Merge tag 'asoc-v5.4-2' of git://git.kernel.org/pub/scm/linux/kernel/git/broonie...
[linux-2.6-block.git] / mm / memcontrol.c
CommitLineData
c942fddf 1// SPDX-License-Identifier: GPL-2.0-or-later
8cdea7c0
BS
2/* memcontrol.c - Memory Controller
3 *
4 * Copyright IBM Corporation, 2007
5 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
6 *
78fb7466
PE
7 * Copyright 2007 OpenVZ SWsoft Inc
8 * Author: Pavel Emelianov <xemul@openvz.org>
9 *
2e72b634
KS
10 * Memory thresholds
11 * Copyright (C) 2009 Nokia Corporation
12 * Author: Kirill A. Shutemov
13 *
7ae1e1d0
GC
14 * Kernel Memory Controller
15 * Copyright (C) 2012 Parallels Inc. and Google Inc.
16 * Authors: Glauber Costa and Suleiman Souhlal
17 *
1575e68b
JW
18 * Native page reclaim
19 * Charge lifetime sanitation
20 * Lockless page tracking & accounting
21 * Unified hierarchy configuration model
22 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
8cdea7c0
BS
23 */
24
3e32cb2e 25#include <linux/page_counter.h>
8cdea7c0
BS
26#include <linux/memcontrol.h>
27#include <linux/cgroup.h>
78fb7466 28#include <linux/mm.h>
6e84f315 29#include <linux/sched/mm.h>
3a4f8a0b 30#include <linux/shmem_fs.h>
4ffef5fe 31#include <linux/hugetlb.h>
d13d1443 32#include <linux/pagemap.h>
1ff9e6e1 33#include <linux/vm_event_item.h>
d52aa412 34#include <linux/smp.h>
8a9f3ccd 35#include <linux/page-flags.h>
66e1707b 36#include <linux/backing-dev.h>
8a9f3ccd
BS
37#include <linux/bit_spinlock.h>
38#include <linux/rcupdate.h>
e222432b 39#include <linux/limits.h>
b9e15baf 40#include <linux/export.h>
8c7c6e34 41#include <linux/mutex.h>
bb4cc1a8 42#include <linux/rbtree.h>
b6ac57d5 43#include <linux/slab.h>
66e1707b 44#include <linux/swap.h>
02491447 45#include <linux/swapops.h>
66e1707b 46#include <linux/spinlock.h>
2e72b634 47#include <linux/eventfd.h>
79bd9814 48#include <linux/poll.h>
2e72b634 49#include <linux/sort.h>
66e1707b 50#include <linux/fs.h>
d2ceb9b7 51#include <linux/seq_file.h>
70ddf637 52#include <linux/vmpressure.h>
b69408e8 53#include <linux/mm_inline.h>
5d1ea48b 54#include <linux/swap_cgroup.h>
cdec2e42 55#include <linux/cpu.h>
158e0a2d 56#include <linux/oom.h>
0056f4e6 57#include <linux/lockdep.h>
79bd9814 58#include <linux/file.h>
b23afb93 59#include <linux/tracehook.h>
c8713d0b 60#include <linux/seq_buf.h>
08e552c6 61#include "internal.h"
d1a4c0b3 62#include <net/sock.h>
4bd2c1ee 63#include <net/ip.h>
f35c3a8e 64#include "slab.h"
8cdea7c0 65
7c0f6ba6 66#include <linux/uaccess.h>
8697d331 67
cc8e970c
KM
68#include <trace/events/vmscan.h>
69
073219e9
TH
70struct cgroup_subsys memory_cgrp_subsys __read_mostly;
71EXPORT_SYMBOL(memory_cgrp_subsys);
68ae564b 72
7d828602
JW
73struct mem_cgroup *root_mem_cgroup __read_mostly;
74
a181b0e8 75#define MEM_CGROUP_RECLAIM_RETRIES 5
8cdea7c0 76
f7e1cb6e
JW
77/* Socket memory accounting disabled? */
78static bool cgroup_memory_nosocket;
79
04823c83
VD
80/* Kernel memory accounting disabled? */
81static bool cgroup_memory_nokmem;
82
21afa38e 83/* Whether the swap controller is active */
c255a458 84#ifdef CONFIG_MEMCG_SWAP
c077719b 85int do_swap_account __read_mostly;
c077719b 86#else
a0db00fc 87#define do_swap_account 0
c077719b
KH
88#endif
89
7941d214
JW
90/* Whether legacy memory+swap accounting is active */
91static bool do_memsw_account(void)
92{
93 return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && do_swap_account;
94}
95
71cd3113 96static const char *const mem_cgroup_lru_names[] = {
58cf188e
SZ
97 "inactive_anon",
98 "active_anon",
99 "inactive_file",
100 "active_file",
101 "unevictable",
102};
103
a0db00fc
KS
104#define THRESHOLDS_EVENTS_TARGET 128
105#define SOFTLIMIT_EVENTS_TARGET 1024
106#define NUMAINFO_EVENTS_TARGET 1024
e9f8974f 107
bb4cc1a8
AM
108/*
109 * Cgroups above their limits are maintained in a RB-Tree, independent of
110 * their hierarchy representation
111 */
112
ef8f2327 113struct mem_cgroup_tree_per_node {
bb4cc1a8 114 struct rb_root rb_root;
fa90b2fd 115 struct rb_node *rb_rightmost;
bb4cc1a8
AM
116 spinlock_t lock;
117};
118
bb4cc1a8
AM
119struct mem_cgroup_tree {
120 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
121};
122
123static struct mem_cgroup_tree soft_limit_tree __read_mostly;
124
9490ff27
KH
125/* for OOM */
126struct mem_cgroup_eventfd_list {
127 struct list_head list;
128 struct eventfd_ctx *eventfd;
129};
2e72b634 130
79bd9814
TH
131/*
132 * cgroup_event represents events which userspace want to receive.
133 */
3bc942f3 134struct mem_cgroup_event {
79bd9814 135 /*
59b6f873 136 * memcg which the event belongs to.
79bd9814 137 */
59b6f873 138 struct mem_cgroup *memcg;
79bd9814
TH
139 /*
140 * eventfd to signal userspace about the event.
141 */
142 struct eventfd_ctx *eventfd;
143 /*
144 * Each of these stored in a list by the cgroup.
145 */
146 struct list_head list;
fba94807
TH
147 /*
148 * register_event() callback will be used to add new userspace
149 * waiter for changes related to this event. Use eventfd_signal()
150 * on eventfd to send notification to userspace.
151 */
59b6f873 152 int (*register_event)(struct mem_cgroup *memcg,
347c4a87 153 struct eventfd_ctx *eventfd, const char *args);
fba94807
TH
154 /*
155 * unregister_event() callback will be called when userspace closes
156 * the eventfd or on cgroup removing. This callback must be set,
157 * if you want provide notification functionality.
158 */
59b6f873 159 void (*unregister_event)(struct mem_cgroup *memcg,
fba94807 160 struct eventfd_ctx *eventfd);
79bd9814
TH
161 /*
162 * All fields below needed to unregister event when
163 * userspace closes eventfd.
164 */
165 poll_table pt;
166 wait_queue_head_t *wqh;
ac6424b9 167 wait_queue_entry_t wait;
79bd9814
TH
168 struct work_struct remove;
169};
170
c0ff4b85
R
171static void mem_cgroup_threshold(struct mem_cgroup *memcg);
172static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
2e72b634 173
7dc74be0
DN
174/* Stuffs for move charges at task migration. */
175/*
1dfab5ab 176 * Types of charges to be moved.
7dc74be0 177 */
1dfab5ab
JW
178#define MOVE_ANON 0x1U
179#define MOVE_FILE 0x2U
180#define MOVE_MASK (MOVE_ANON | MOVE_FILE)
7dc74be0 181
4ffef5fe
DN
182/* "mc" and its members are protected by cgroup_mutex */
183static struct move_charge_struct {
b1dd693e 184 spinlock_t lock; /* for from, to */
264a0ae1 185 struct mm_struct *mm;
4ffef5fe
DN
186 struct mem_cgroup *from;
187 struct mem_cgroup *to;
1dfab5ab 188 unsigned long flags;
4ffef5fe 189 unsigned long precharge;
854ffa8d 190 unsigned long moved_charge;
483c30b5 191 unsigned long moved_swap;
8033b97c
DN
192 struct task_struct *moving_task; /* a task moving charges */
193 wait_queue_head_t waitq; /* a waitq for other context */
194} mc = {
2bd9bb20 195 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
8033b97c
DN
196 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
197};
4ffef5fe 198
4e416953
BS
199/*
200 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
201 * limit reclaim to prevent infinite loops, if they ever occur.
202 */
a0db00fc 203#define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
bb4cc1a8 204#define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
4e416953 205
217bc319
KH
206enum charge_type {
207 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
41326c17 208 MEM_CGROUP_CHARGE_TYPE_ANON,
d13d1443 209 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
8a9478ca 210 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
c05555b5
KH
211 NR_CHARGE_TYPE,
212};
213
8c7c6e34 214/* for encoding cft->private value on file */
86ae53e1
GC
215enum res_type {
216 _MEM,
217 _MEMSWAP,
218 _OOM_TYPE,
510fc4e1 219 _KMEM,
d55f90bf 220 _TCP,
86ae53e1
GC
221};
222
a0db00fc
KS
223#define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
224#define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
8c7c6e34 225#define MEMFILE_ATTR(val) ((val) & 0xffff)
9490ff27
KH
226/* Used for OOM nofiier */
227#define OOM_CONTROL (0)
8c7c6e34 228
b05706f1
KT
229/*
230 * Iteration constructs for visiting all cgroups (under a tree). If
231 * loops are exited prematurely (break), mem_cgroup_iter_break() must
232 * be used for reference counting.
233 */
234#define for_each_mem_cgroup_tree(iter, root) \
235 for (iter = mem_cgroup_iter(root, NULL, NULL); \
236 iter != NULL; \
237 iter = mem_cgroup_iter(root, iter, NULL))
238
239#define for_each_mem_cgroup(iter) \
240 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
241 iter != NULL; \
242 iter = mem_cgroup_iter(NULL, iter, NULL))
243
7775face
TH
244static inline bool should_force_charge(void)
245{
246 return tsk_is_oom_victim(current) || fatal_signal_pending(current) ||
247 (current->flags & PF_EXITING);
248}
249
70ddf637
AV
250/* Some nice accessors for the vmpressure. */
251struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
252{
253 if (!memcg)
254 memcg = root_mem_cgroup;
255 return &memcg->vmpressure;
256}
257
258struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
259{
260 return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
261}
262
84c07d11 263#ifdef CONFIG_MEMCG_KMEM
55007d84 264/*
f7ce3190 265 * This will be the memcg's index in each cache's ->memcg_params.memcg_caches.
b8627835
LZ
266 * The main reason for not using cgroup id for this:
267 * this works better in sparse environments, where we have a lot of memcgs,
268 * but only a few kmem-limited. Or also, if we have, for instance, 200
269 * memcgs, and none but the 200th is kmem-limited, we'd have to have a
270 * 200 entry array for that.
55007d84 271 *
dbcf73e2
VD
272 * The current size of the caches array is stored in memcg_nr_cache_ids. It
273 * will double each time we have to increase it.
55007d84 274 */
dbcf73e2
VD
275static DEFINE_IDA(memcg_cache_ida);
276int memcg_nr_cache_ids;
749c5415 277
05257a1a
VD
278/* Protects memcg_nr_cache_ids */
279static DECLARE_RWSEM(memcg_cache_ids_sem);
280
281void memcg_get_cache_ids(void)
282{
283 down_read(&memcg_cache_ids_sem);
284}
285
286void memcg_put_cache_ids(void)
287{
288 up_read(&memcg_cache_ids_sem);
289}
290
55007d84
GC
291/*
292 * MIN_SIZE is different than 1, because we would like to avoid going through
293 * the alloc/free process all the time. In a small machine, 4 kmem-limited
294 * cgroups is a reasonable guess. In the future, it could be a parameter or
295 * tunable, but that is strictly not necessary.
296 *
b8627835 297 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
55007d84
GC
298 * this constant directly from cgroup, but it is understandable that this is
299 * better kept as an internal representation in cgroup.c. In any case, the
b8627835 300 * cgrp_id space is not getting any smaller, and we don't have to necessarily
55007d84
GC
301 * increase ours as well if it increases.
302 */
303#define MEMCG_CACHES_MIN_SIZE 4
b8627835 304#define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
55007d84 305
d7f25f8a
GC
306/*
307 * A lot of the calls to the cache allocation functions are expected to be
308 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
309 * conditional to this static branch, we'll have to allow modules that does
310 * kmem_cache_alloc and the such to see this symbol as well
311 */
ef12947c 312DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key);
d7f25f8a 313EXPORT_SYMBOL(memcg_kmem_enabled_key);
a8964b9b 314
17cc4dfe
TH
315struct workqueue_struct *memcg_kmem_cache_wq;
316
0a4465d3
KT
317static int memcg_shrinker_map_size;
318static DEFINE_MUTEX(memcg_shrinker_map_mutex);
319
320static void memcg_free_shrinker_map_rcu(struct rcu_head *head)
321{
322 kvfree(container_of(head, struct memcg_shrinker_map, rcu));
323}
324
325static int memcg_expand_one_shrinker_map(struct mem_cgroup *memcg,
326 int size, int old_size)
327{
328 struct memcg_shrinker_map *new, *old;
329 int nid;
330
331 lockdep_assert_held(&memcg_shrinker_map_mutex);
332
333 for_each_node(nid) {
334 old = rcu_dereference_protected(
335 mem_cgroup_nodeinfo(memcg, nid)->shrinker_map, true);
336 /* Not yet online memcg */
337 if (!old)
338 return 0;
339
340 new = kvmalloc(sizeof(*new) + size, GFP_KERNEL);
341 if (!new)
342 return -ENOMEM;
343
344 /* Set all old bits, clear all new bits */
345 memset(new->map, (int)0xff, old_size);
346 memset((void *)new->map + old_size, 0, size - old_size);
347
348 rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_map, new);
349 call_rcu(&old->rcu, memcg_free_shrinker_map_rcu);
350 }
351
352 return 0;
353}
354
355static void memcg_free_shrinker_maps(struct mem_cgroup *memcg)
356{
357 struct mem_cgroup_per_node *pn;
358 struct memcg_shrinker_map *map;
359 int nid;
360
361 if (mem_cgroup_is_root(memcg))
362 return;
363
364 for_each_node(nid) {
365 pn = mem_cgroup_nodeinfo(memcg, nid);
366 map = rcu_dereference_protected(pn->shrinker_map, true);
367 if (map)
368 kvfree(map);
369 rcu_assign_pointer(pn->shrinker_map, NULL);
370 }
371}
372
373static int memcg_alloc_shrinker_maps(struct mem_cgroup *memcg)
374{
375 struct memcg_shrinker_map *map;
376 int nid, size, ret = 0;
377
378 if (mem_cgroup_is_root(memcg))
379 return 0;
380
381 mutex_lock(&memcg_shrinker_map_mutex);
382 size = memcg_shrinker_map_size;
383 for_each_node(nid) {
384 map = kvzalloc(sizeof(*map) + size, GFP_KERNEL);
385 if (!map) {
386 memcg_free_shrinker_maps(memcg);
387 ret = -ENOMEM;
388 break;
389 }
390 rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_map, map);
391 }
392 mutex_unlock(&memcg_shrinker_map_mutex);
393
394 return ret;
395}
396
397int memcg_expand_shrinker_maps(int new_id)
398{
399 int size, old_size, ret = 0;
400 struct mem_cgroup *memcg;
401
402 size = DIV_ROUND_UP(new_id + 1, BITS_PER_LONG) * sizeof(unsigned long);
403 old_size = memcg_shrinker_map_size;
404 if (size <= old_size)
405 return 0;
406
407 mutex_lock(&memcg_shrinker_map_mutex);
408 if (!root_mem_cgroup)
409 goto unlock;
410
411 for_each_mem_cgroup(memcg) {
412 if (mem_cgroup_is_root(memcg))
413 continue;
414 ret = memcg_expand_one_shrinker_map(memcg, size, old_size);
415 if (ret)
416 goto unlock;
417 }
418unlock:
419 if (!ret)
420 memcg_shrinker_map_size = size;
421 mutex_unlock(&memcg_shrinker_map_mutex);
422 return ret;
423}
fae91d6d
KT
424
425void memcg_set_shrinker_bit(struct mem_cgroup *memcg, int nid, int shrinker_id)
426{
427 if (shrinker_id >= 0 && memcg && !mem_cgroup_is_root(memcg)) {
428 struct memcg_shrinker_map *map;
429
430 rcu_read_lock();
431 map = rcu_dereference(memcg->nodeinfo[nid]->shrinker_map);
f90280d6
KT
432 /* Pairs with smp mb in shrink_slab() */
433 smp_mb__before_atomic();
fae91d6d
KT
434 set_bit(shrinker_id, map->map);
435 rcu_read_unlock();
436 }
437}
438
0a4465d3
KT
439#else /* CONFIG_MEMCG_KMEM */
440static int memcg_alloc_shrinker_maps(struct mem_cgroup *memcg)
441{
442 return 0;
443}
444static void memcg_free_shrinker_maps(struct mem_cgroup *memcg) { }
84c07d11 445#endif /* CONFIG_MEMCG_KMEM */
a8964b9b 446
ad7fa852
TH
447/**
448 * mem_cgroup_css_from_page - css of the memcg associated with a page
449 * @page: page of interest
450 *
451 * If memcg is bound to the default hierarchy, css of the memcg associated
452 * with @page is returned. The returned css remains associated with @page
453 * until it is released.
454 *
455 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
456 * is returned.
ad7fa852
TH
457 */
458struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
459{
460 struct mem_cgroup *memcg;
461
ad7fa852
TH
462 memcg = page->mem_cgroup;
463
9e10a130 464 if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
ad7fa852
TH
465 memcg = root_mem_cgroup;
466
ad7fa852
TH
467 return &memcg->css;
468}
469
2fc04524
VD
470/**
471 * page_cgroup_ino - return inode number of the memcg a page is charged to
472 * @page: the page
473 *
474 * Look up the closest online ancestor of the memory cgroup @page is charged to
475 * and return its inode number or 0 if @page is not charged to any cgroup. It
476 * is safe to call this function without holding a reference to @page.
477 *
478 * Note, this function is inherently racy, because there is nothing to prevent
479 * the cgroup inode from getting torn down and potentially reallocated a moment
480 * after page_cgroup_ino() returns, so it only should be used by callers that
481 * do not care (such as procfs interfaces).
482 */
483ino_t page_cgroup_ino(struct page *page)
484{
485 struct mem_cgroup *memcg;
486 unsigned long ino = 0;
487
488 rcu_read_lock();
4d96ba35
RG
489 if (PageHead(page) && PageSlab(page))
490 memcg = memcg_from_slab_page(page);
491 else
492 memcg = READ_ONCE(page->mem_cgroup);
2fc04524
VD
493 while (memcg && !(memcg->css.flags & CSS_ONLINE))
494 memcg = parent_mem_cgroup(memcg);
495 if (memcg)
496 ino = cgroup_ino(memcg->css.cgroup);
497 rcu_read_unlock();
498 return ino;
499}
500
ef8f2327
MG
501static struct mem_cgroup_per_node *
502mem_cgroup_page_nodeinfo(struct mem_cgroup *memcg, struct page *page)
f64c3f54 503{
97a6c37b 504 int nid = page_to_nid(page);
f64c3f54 505
ef8f2327 506 return memcg->nodeinfo[nid];
f64c3f54
BS
507}
508
ef8f2327
MG
509static struct mem_cgroup_tree_per_node *
510soft_limit_tree_node(int nid)
bb4cc1a8 511{
ef8f2327 512 return soft_limit_tree.rb_tree_per_node[nid];
bb4cc1a8
AM
513}
514
ef8f2327 515static struct mem_cgroup_tree_per_node *
bb4cc1a8
AM
516soft_limit_tree_from_page(struct page *page)
517{
518 int nid = page_to_nid(page);
bb4cc1a8 519
ef8f2327 520 return soft_limit_tree.rb_tree_per_node[nid];
bb4cc1a8
AM
521}
522
ef8f2327
MG
523static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz,
524 struct mem_cgroup_tree_per_node *mctz,
3e32cb2e 525 unsigned long new_usage_in_excess)
bb4cc1a8
AM
526{
527 struct rb_node **p = &mctz->rb_root.rb_node;
528 struct rb_node *parent = NULL;
ef8f2327 529 struct mem_cgroup_per_node *mz_node;
fa90b2fd 530 bool rightmost = true;
bb4cc1a8
AM
531
532 if (mz->on_tree)
533 return;
534
535 mz->usage_in_excess = new_usage_in_excess;
536 if (!mz->usage_in_excess)
537 return;
538 while (*p) {
539 parent = *p;
ef8f2327 540 mz_node = rb_entry(parent, struct mem_cgroup_per_node,
bb4cc1a8 541 tree_node);
fa90b2fd 542 if (mz->usage_in_excess < mz_node->usage_in_excess) {
bb4cc1a8 543 p = &(*p)->rb_left;
fa90b2fd
DB
544 rightmost = false;
545 }
546
bb4cc1a8
AM
547 /*
548 * We can't avoid mem cgroups that are over their soft
549 * limit by the same amount
550 */
551 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
552 p = &(*p)->rb_right;
553 }
fa90b2fd
DB
554
555 if (rightmost)
556 mctz->rb_rightmost = &mz->tree_node;
557
bb4cc1a8
AM
558 rb_link_node(&mz->tree_node, parent, p);
559 rb_insert_color(&mz->tree_node, &mctz->rb_root);
560 mz->on_tree = true;
561}
562
ef8f2327
MG
563static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
564 struct mem_cgroup_tree_per_node *mctz)
bb4cc1a8
AM
565{
566 if (!mz->on_tree)
567 return;
fa90b2fd
DB
568
569 if (&mz->tree_node == mctz->rb_rightmost)
570 mctz->rb_rightmost = rb_prev(&mz->tree_node);
571
bb4cc1a8
AM
572 rb_erase(&mz->tree_node, &mctz->rb_root);
573 mz->on_tree = false;
574}
575
ef8f2327
MG
576static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
577 struct mem_cgroup_tree_per_node *mctz)
bb4cc1a8 578{
0a31bc97
JW
579 unsigned long flags;
580
581 spin_lock_irqsave(&mctz->lock, flags);
cf2c8127 582 __mem_cgroup_remove_exceeded(mz, mctz);
0a31bc97 583 spin_unlock_irqrestore(&mctz->lock, flags);
bb4cc1a8
AM
584}
585
3e32cb2e
JW
586static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
587{
588 unsigned long nr_pages = page_counter_read(&memcg->memory);
4db0c3c2 589 unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
3e32cb2e
JW
590 unsigned long excess = 0;
591
592 if (nr_pages > soft_limit)
593 excess = nr_pages - soft_limit;
594
595 return excess;
596}
bb4cc1a8
AM
597
598static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
599{
3e32cb2e 600 unsigned long excess;
ef8f2327
MG
601 struct mem_cgroup_per_node *mz;
602 struct mem_cgroup_tree_per_node *mctz;
bb4cc1a8 603
e231875b 604 mctz = soft_limit_tree_from_page(page);
bfc7228b
LD
605 if (!mctz)
606 return;
bb4cc1a8
AM
607 /*
608 * Necessary to update all ancestors when hierarchy is used.
609 * because their event counter is not touched.
610 */
611 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
ef8f2327 612 mz = mem_cgroup_page_nodeinfo(memcg, page);
3e32cb2e 613 excess = soft_limit_excess(memcg);
bb4cc1a8
AM
614 /*
615 * We have to update the tree if mz is on RB-tree or
616 * mem is over its softlimit.
617 */
618 if (excess || mz->on_tree) {
0a31bc97
JW
619 unsigned long flags;
620
621 spin_lock_irqsave(&mctz->lock, flags);
bb4cc1a8
AM
622 /* if on-tree, remove it */
623 if (mz->on_tree)
cf2c8127 624 __mem_cgroup_remove_exceeded(mz, mctz);
bb4cc1a8
AM
625 /*
626 * Insert again. mz->usage_in_excess will be updated.
627 * If excess is 0, no tree ops.
628 */
cf2c8127 629 __mem_cgroup_insert_exceeded(mz, mctz, excess);
0a31bc97 630 spin_unlock_irqrestore(&mctz->lock, flags);
bb4cc1a8
AM
631 }
632 }
633}
634
635static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
636{
ef8f2327
MG
637 struct mem_cgroup_tree_per_node *mctz;
638 struct mem_cgroup_per_node *mz;
639 int nid;
bb4cc1a8 640
e231875b 641 for_each_node(nid) {
ef8f2327
MG
642 mz = mem_cgroup_nodeinfo(memcg, nid);
643 mctz = soft_limit_tree_node(nid);
bfc7228b
LD
644 if (mctz)
645 mem_cgroup_remove_exceeded(mz, mctz);
bb4cc1a8
AM
646 }
647}
648
ef8f2327
MG
649static struct mem_cgroup_per_node *
650__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
bb4cc1a8 651{
ef8f2327 652 struct mem_cgroup_per_node *mz;
bb4cc1a8
AM
653
654retry:
655 mz = NULL;
fa90b2fd 656 if (!mctz->rb_rightmost)
bb4cc1a8
AM
657 goto done; /* Nothing to reclaim from */
658
fa90b2fd
DB
659 mz = rb_entry(mctz->rb_rightmost,
660 struct mem_cgroup_per_node, tree_node);
bb4cc1a8
AM
661 /*
662 * Remove the node now but someone else can add it back,
663 * we will to add it back at the end of reclaim to its correct
664 * position in the tree.
665 */
cf2c8127 666 __mem_cgroup_remove_exceeded(mz, mctz);
3e32cb2e 667 if (!soft_limit_excess(mz->memcg) ||
ec903c0c 668 !css_tryget_online(&mz->memcg->css))
bb4cc1a8
AM
669 goto retry;
670done:
671 return mz;
672}
673
ef8f2327
MG
674static struct mem_cgroup_per_node *
675mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
bb4cc1a8 676{
ef8f2327 677 struct mem_cgroup_per_node *mz;
bb4cc1a8 678
0a31bc97 679 spin_lock_irq(&mctz->lock);
bb4cc1a8 680 mz = __mem_cgroup_largest_soft_limit_node(mctz);
0a31bc97 681 spin_unlock_irq(&mctz->lock);
bb4cc1a8
AM
682 return mz;
683}
684
db9adbcb
JW
685/**
686 * __mod_memcg_state - update cgroup memory statistics
687 * @memcg: the memory cgroup
688 * @idx: the stat item - can be enum memcg_stat_item or enum node_stat_item
689 * @val: delta to add to the counter, can be negative
690 */
691void __mod_memcg_state(struct mem_cgroup *memcg, int idx, int val)
692{
693 long x;
694
695 if (mem_cgroup_disabled())
696 return;
697
698 x = val + __this_cpu_read(memcg->vmstats_percpu->stat[idx]);
699 if (unlikely(abs(x) > MEMCG_CHARGE_BATCH)) {
42a30035
JW
700 struct mem_cgroup *mi;
701
766a4c19
YS
702 /*
703 * Batch local counters to keep them in sync with
704 * the hierarchical ones.
705 */
706 __this_cpu_add(memcg->vmstats_local->stat[idx], x);
42a30035
JW
707 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
708 atomic_long_add(x, &mi->vmstats[idx]);
db9adbcb
JW
709 x = 0;
710 }
711 __this_cpu_write(memcg->vmstats_percpu->stat[idx], x);
712}
713
42a30035
JW
714static struct mem_cgroup_per_node *
715parent_nodeinfo(struct mem_cgroup_per_node *pn, int nid)
716{
717 struct mem_cgroup *parent;
718
719 parent = parent_mem_cgroup(pn->memcg);
720 if (!parent)
721 return NULL;
722 return mem_cgroup_nodeinfo(parent, nid);
723}
724
db9adbcb
JW
725/**
726 * __mod_lruvec_state - update lruvec memory statistics
727 * @lruvec: the lruvec
728 * @idx: the stat item
729 * @val: delta to add to the counter, can be negative
730 *
731 * The lruvec is the intersection of the NUMA node and a cgroup. This
732 * function updates the all three counters that are affected by a
733 * change of state at this level: per-node, per-cgroup, per-lruvec.
734 */
735void __mod_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
736 int val)
737{
42a30035 738 pg_data_t *pgdat = lruvec_pgdat(lruvec);
db9adbcb 739 struct mem_cgroup_per_node *pn;
42a30035 740 struct mem_cgroup *memcg;
db9adbcb
JW
741 long x;
742
743 /* Update node */
42a30035 744 __mod_node_page_state(pgdat, idx, val);
db9adbcb
JW
745
746 if (mem_cgroup_disabled())
747 return;
748
749 pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
42a30035 750 memcg = pn->memcg;
db9adbcb
JW
751
752 /* Update memcg */
42a30035 753 __mod_memcg_state(memcg, idx, val);
db9adbcb 754
b4c46484
RG
755 /* Update lruvec */
756 __this_cpu_add(pn->lruvec_stat_local->count[idx], val);
757
db9adbcb
JW
758 x = val + __this_cpu_read(pn->lruvec_stat_cpu->count[idx]);
759 if (unlikely(abs(x) > MEMCG_CHARGE_BATCH)) {
42a30035
JW
760 struct mem_cgroup_per_node *pi;
761
42a30035
JW
762 for (pi = pn; pi; pi = parent_nodeinfo(pi, pgdat->node_id))
763 atomic_long_add(x, &pi->lruvec_stat[idx]);
db9adbcb
JW
764 x = 0;
765 }
766 __this_cpu_write(pn->lruvec_stat_cpu->count[idx], x);
767}
768
ec9f0238
RG
769void __mod_lruvec_slab_state(void *p, enum node_stat_item idx, int val)
770{
771 struct page *page = virt_to_head_page(p);
772 pg_data_t *pgdat = page_pgdat(page);
773 struct mem_cgroup *memcg;
774 struct lruvec *lruvec;
775
776 rcu_read_lock();
777 memcg = memcg_from_slab_page(page);
778
779 /* Untracked pages have no memcg, no lruvec. Update only the node */
780 if (!memcg || memcg == root_mem_cgroup) {
781 __mod_node_page_state(pgdat, idx, val);
782 } else {
783 lruvec = mem_cgroup_lruvec(pgdat, memcg);
784 __mod_lruvec_state(lruvec, idx, val);
785 }
786 rcu_read_unlock();
787}
788
db9adbcb
JW
789/**
790 * __count_memcg_events - account VM events in a cgroup
791 * @memcg: the memory cgroup
792 * @idx: the event item
793 * @count: the number of events that occured
794 */
795void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx,
796 unsigned long count)
797{
798 unsigned long x;
799
800 if (mem_cgroup_disabled())
801 return;
802
803 x = count + __this_cpu_read(memcg->vmstats_percpu->events[idx]);
804 if (unlikely(x > MEMCG_CHARGE_BATCH)) {
42a30035
JW
805 struct mem_cgroup *mi;
806
766a4c19
YS
807 /*
808 * Batch local counters to keep them in sync with
809 * the hierarchical ones.
810 */
811 __this_cpu_add(memcg->vmstats_local->events[idx], x);
42a30035
JW
812 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
813 atomic_long_add(x, &mi->vmevents[idx]);
db9adbcb
JW
814 x = 0;
815 }
816 __this_cpu_write(memcg->vmstats_percpu->events[idx], x);
817}
818
42a30035 819static unsigned long memcg_events(struct mem_cgroup *memcg, int event)
e9f8974f 820{
871789d4 821 return atomic_long_read(&memcg->vmevents[event]);
e9f8974f
JW
822}
823
42a30035
JW
824static unsigned long memcg_events_local(struct mem_cgroup *memcg, int event)
825{
815744d7
JW
826 long x = 0;
827 int cpu;
828
829 for_each_possible_cpu(cpu)
830 x += per_cpu(memcg->vmstats_local->events[event], cpu);
831 return x;
42a30035
JW
832}
833
c0ff4b85 834static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
b070e65c 835 struct page *page,
f627c2f5 836 bool compound, int nr_pages)
d52aa412 837{
b2402857
KH
838 /*
839 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
840 * counted as CACHE even if it's on ANON LRU.
841 */
0a31bc97 842 if (PageAnon(page))
c9019e9b 843 __mod_memcg_state(memcg, MEMCG_RSS, nr_pages);
9a4caf1e 844 else {
c9019e9b 845 __mod_memcg_state(memcg, MEMCG_CACHE, nr_pages);
9a4caf1e 846 if (PageSwapBacked(page))
c9019e9b 847 __mod_memcg_state(memcg, NR_SHMEM, nr_pages);
9a4caf1e 848 }
55e462b0 849
f627c2f5
KS
850 if (compound) {
851 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
c9019e9b 852 __mod_memcg_state(memcg, MEMCG_RSS_HUGE, nr_pages);
f627c2f5 853 }
b070e65c 854
e401f176
KH
855 /* pagein of a big page is an event. So, ignore page size */
856 if (nr_pages > 0)
c9019e9b 857 __count_memcg_events(memcg, PGPGIN, 1);
3751d604 858 else {
c9019e9b 859 __count_memcg_events(memcg, PGPGOUT, 1);
3751d604
KH
860 nr_pages = -nr_pages; /* for event */
861 }
e401f176 862
871789d4 863 __this_cpu_add(memcg->vmstats_percpu->nr_page_events, nr_pages);
6d12e2d8
KH
864}
865
f53d7ce3
JW
866static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
867 enum mem_cgroup_events_target target)
7a159cc9
JW
868{
869 unsigned long val, next;
870
871789d4
CD
871 val = __this_cpu_read(memcg->vmstats_percpu->nr_page_events);
872 next = __this_cpu_read(memcg->vmstats_percpu->targets[target]);
7a159cc9 873 /* from time_after() in jiffies.h */
6a1a8b80 874 if ((long)(next - val) < 0) {
f53d7ce3
JW
875 switch (target) {
876 case MEM_CGROUP_TARGET_THRESH:
877 next = val + THRESHOLDS_EVENTS_TARGET;
878 break;
bb4cc1a8
AM
879 case MEM_CGROUP_TARGET_SOFTLIMIT:
880 next = val + SOFTLIMIT_EVENTS_TARGET;
881 break;
f53d7ce3
JW
882 case MEM_CGROUP_TARGET_NUMAINFO:
883 next = val + NUMAINFO_EVENTS_TARGET;
884 break;
885 default:
886 break;
887 }
871789d4 888 __this_cpu_write(memcg->vmstats_percpu->targets[target], next);
f53d7ce3 889 return true;
7a159cc9 890 }
f53d7ce3 891 return false;
d2265e6f
KH
892}
893
894/*
895 * Check events in order.
896 *
897 */
c0ff4b85 898static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
d2265e6f
KH
899{
900 /* threshold event is triggered in finer grain than soft limit */
f53d7ce3
JW
901 if (unlikely(mem_cgroup_event_ratelimit(memcg,
902 MEM_CGROUP_TARGET_THRESH))) {
bb4cc1a8 903 bool do_softlimit;
82b3f2a7 904 bool do_numainfo __maybe_unused;
f53d7ce3 905
bb4cc1a8
AM
906 do_softlimit = mem_cgroup_event_ratelimit(memcg,
907 MEM_CGROUP_TARGET_SOFTLIMIT);
f53d7ce3
JW
908#if MAX_NUMNODES > 1
909 do_numainfo = mem_cgroup_event_ratelimit(memcg,
910 MEM_CGROUP_TARGET_NUMAINFO);
911#endif
c0ff4b85 912 mem_cgroup_threshold(memcg);
bb4cc1a8
AM
913 if (unlikely(do_softlimit))
914 mem_cgroup_update_tree(memcg, page);
453a9bf3 915#if MAX_NUMNODES > 1
f53d7ce3 916 if (unlikely(do_numainfo))
c0ff4b85 917 atomic_inc(&memcg->numainfo_events);
453a9bf3 918#endif
0a31bc97 919 }
d2265e6f
KH
920}
921
cf475ad2 922struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
78fb7466 923{
31a78f23
BS
924 /*
925 * mm_update_next_owner() may clear mm->owner to NULL
926 * if it races with swapoff, page migration, etc.
927 * So this can be called with p == NULL.
928 */
929 if (unlikely(!p))
930 return NULL;
931
073219e9 932 return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
78fb7466 933}
33398cf2 934EXPORT_SYMBOL(mem_cgroup_from_task);
78fb7466 935
d46eb14b
SB
936/**
937 * get_mem_cgroup_from_mm: Obtain a reference on given mm_struct's memcg.
938 * @mm: mm from which memcg should be extracted. It can be NULL.
939 *
940 * Obtain a reference on mm->memcg and returns it if successful. Otherwise
941 * root_mem_cgroup is returned. However if mem_cgroup is disabled, NULL is
942 * returned.
943 */
944struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
54595fe2 945{
d46eb14b
SB
946 struct mem_cgroup *memcg;
947
948 if (mem_cgroup_disabled())
949 return NULL;
0b7f569e 950
54595fe2
KH
951 rcu_read_lock();
952 do {
6f6acb00
MH
953 /*
954 * Page cache insertions can happen withou an
955 * actual mm context, e.g. during disk probing
956 * on boot, loopback IO, acct() writes etc.
957 */
958 if (unlikely(!mm))
df381975 959 memcg = root_mem_cgroup;
6f6acb00
MH
960 else {
961 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
962 if (unlikely(!memcg))
963 memcg = root_mem_cgroup;
964 }
ec903c0c 965 } while (!css_tryget_online(&memcg->css));
54595fe2 966 rcu_read_unlock();
c0ff4b85 967 return memcg;
54595fe2 968}
d46eb14b
SB
969EXPORT_SYMBOL(get_mem_cgroup_from_mm);
970
f745c6f5
SB
971/**
972 * get_mem_cgroup_from_page: Obtain a reference on given page's memcg.
973 * @page: page from which memcg should be extracted.
974 *
975 * Obtain a reference on page->memcg and returns it if successful. Otherwise
976 * root_mem_cgroup is returned.
977 */
978struct mem_cgroup *get_mem_cgroup_from_page(struct page *page)
979{
980 struct mem_cgroup *memcg = page->mem_cgroup;
981
982 if (mem_cgroup_disabled())
983 return NULL;
984
985 rcu_read_lock();
986 if (!memcg || !css_tryget_online(&memcg->css))
987 memcg = root_mem_cgroup;
988 rcu_read_unlock();
989 return memcg;
990}
991EXPORT_SYMBOL(get_mem_cgroup_from_page);
992
d46eb14b
SB
993/**
994 * If current->active_memcg is non-NULL, do not fallback to current->mm->memcg.
995 */
996static __always_inline struct mem_cgroup *get_mem_cgroup_from_current(void)
997{
998 if (unlikely(current->active_memcg)) {
999 struct mem_cgroup *memcg = root_mem_cgroup;
1000
1001 rcu_read_lock();
1002 if (css_tryget_online(&current->active_memcg->css))
1003 memcg = current->active_memcg;
1004 rcu_read_unlock();
1005 return memcg;
1006 }
1007 return get_mem_cgroup_from_mm(current->mm);
1008}
54595fe2 1009
5660048c
JW
1010/**
1011 * mem_cgroup_iter - iterate over memory cgroup hierarchy
1012 * @root: hierarchy root
1013 * @prev: previously returned memcg, NULL on first invocation
1014 * @reclaim: cookie for shared reclaim walks, NULL for full walks
1015 *
1016 * Returns references to children of the hierarchy below @root, or
1017 * @root itself, or %NULL after a full round-trip.
1018 *
1019 * Caller must pass the return value in @prev on subsequent
1020 * invocations for reference counting, or use mem_cgroup_iter_break()
1021 * to cancel a hierarchy walk before the round-trip is complete.
1022 *
b213b54f 1023 * Reclaimers can specify a node and a priority level in @reclaim to
5660048c 1024 * divide up the memcgs in the hierarchy among all concurrent
b213b54f 1025 * reclaimers operating on the same node and priority.
5660048c 1026 */
694fbc0f 1027struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
5660048c 1028 struct mem_cgroup *prev,
694fbc0f 1029 struct mem_cgroup_reclaim_cookie *reclaim)
14067bb3 1030{
33398cf2 1031 struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
5ac8fb31 1032 struct cgroup_subsys_state *css = NULL;
9f3a0d09 1033 struct mem_cgroup *memcg = NULL;
5ac8fb31 1034 struct mem_cgroup *pos = NULL;
711d3d2c 1035
694fbc0f
AM
1036 if (mem_cgroup_disabled())
1037 return NULL;
5660048c 1038
9f3a0d09
JW
1039 if (!root)
1040 root = root_mem_cgroup;
7d74b06f 1041
9f3a0d09 1042 if (prev && !reclaim)
5ac8fb31 1043 pos = prev;
14067bb3 1044
9f3a0d09
JW
1045 if (!root->use_hierarchy && root != root_mem_cgroup) {
1046 if (prev)
5ac8fb31 1047 goto out;
694fbc0f 1048 return root;
9f3a0d09 1049 }
14067bb3 1050
542f85f9 1051 rcu_read_lock();
5f578161 1052
5ac8fb31 1053 if (reclaim) {
ef8f2327 1054 struct mem_cgroup_per_node *mz;
5ac8fb31 1055
ef8f2327 1056 mz = mem_cgroup_nodeinfo(root, reclaim->pgdat->node_id);
5ac8fb31
JW
1057 iter = &mz->iter[reclaim->priority];
1058
1059 if (prev && reclaim->generation != iter->generation)
1060 goto out_unlock;
1061
6df38689 1062 while (1) {
4db0c3c2 1063 pos = READ_ONCE(iter->position);
6df38689
VD
1064 if (!pos || css_tryget(&pos->css))
1065 break;
5ac8fb31 1066 /*
6df38689
VD
1067 * css reference reached zero, so iter->position will
1068 * be cleared by ->css_released. However, we should not
1069 * rely on this happening soon, because ->css_released
1070 * is called from a work queue, and by busy-waiting we
1071 * might block it. So we clear iter->position right
1072 * away.
5ac8fb31 1073 */
6df38689
VD
1074 (void)cmpxchg(&iter->position, pos, NULL);
1075 }
5ac8fb31
JW
1076 }
1077
1078 if (pos)
1079 css = &pos->css;
1080
1081 for (;;) {
1082 css = css_next_descendant_pre(css, &root->css);
1083 if (!css) {
1084 /*
1085 * Reclaimers share the hierarchy walk, and a
1086 * new one might jump in right at the end of
1087 * the hierarchy - make sure they see at least
1088 * one group and restart from the beginning.
1089 */
1090 if (!prev)
1091 continue;
1092 break;
527a5ec9 1093 }
7d74b06f 1094
5ac8fb31
JW
1095 /*
1096 * Verify the css and acquire a reference. The root
1097 * is provided by the caller, so we know it's alive
1098 * and kicking, and don't take an extra reference.
1099 */
1100 memcg = mem_cgroup_from_css(css);
14067bb3 1101
5ac8fb31
JW
1102 if (css == &root->css)
1103 break;
14067bb3 1104
0b8f73e1
JW
1105 if (css_tryget(css))
1106 break;
9f3a0d09 1107
5ac8fb31 1108 memcg = NULL;
9f3a0d09 1109 }
5ac8fb31
JW
1110
1111 if (reclaim) {
5ac8fb31 1112 /*
6df38689
VD
1113 * The position could have already been updated by a competing
1114 * thread, so check that the value hasn't changed since we read
1115 * it to avoid reclaiming from the same cgroup twice.
5ac8fb31 1116 */
6df38689
VD
1117 (void)cmpxchg(&iter->position, pos, memcg);
1118
5ac8fb31
JW
1119 if (pos)
1120 css_put(&pos->css);
1121
1122 if (!memcg)
1123 iter->generation++;
1124 else if (!prev)
1125 reclaim->generation = iter->generation;
9f3a0d09 1126 }
5ac8fb31 1127
542f85f9
MH
1128out_unlock:
1129 rcu_read_unlock();
5ac8fb31 1130out:
c40046f3
MH
1131 if (prev && prev != root)
1132 css_put(&prev->css);
1133
9f3a0d09 1134 return memcg;
14067bb3 1135}
7d74b06f 1136
5660048c
JW
1137/**
1138 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1139 * @root: hierarchy root
1140 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1141 */
1142void mem_cgroup_iter_break(struct mem_cgroup *root,
1143 struct mem_cgroup *prev)
9f3a0d09
JW
1144{
1145 if (!root)
1146 root = root_mem_cgroup;
1147 if (prev && prev != root)
1148 css_put(&prev->css);
1149}
7d74b06f 1150
54a83d6b
MC
1151static void __invalidate_reclaim_iterators(struct mem_cgroup *from,
1152 struct mem_cgroup *dead_memcg)
6df38689 1153{
6df38689 1154 struct mem_cgroup_reclaim_iter *iter;
ef8f2327
MG
1155 struct mem_cgroup_per_node *mz;
1156 int nid;
6df38689
VD
1157 int i;
1158
54a83d6b
MC
1159 for_each_node(nid) {
1160 mz = mem_cgroup_nodeinfo(from, nid);
1161 for (i = 0; i <= DEF_PRIORITY; i++) {
1162 iter = &mz->iter[i];
1163 cmpxchg(&iter->position,
1164 dead_memcg, NULL);
6df38689
VD
1165 }
1166 }
1167}
1168
54a83d6b
MC
1169static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
1170{
1171 struct mem_cgroup *memcg = dead_memcg;
1172 struct mem_cgroup *last;
1173
1174 do {
1175 __invalidate_reclaim_iterators(memcg, dead_memcg);
1176 last = memcg;
1177 } while ((memcg = parent_mem_cgroup(memcg)));
1178
1179 /*
1180 * When cgruop1 non-hierarchy mode is used,
1181 * parent_mem_cgroup() does not walk all the way up to the
1182 * cgroup root (root_mem_cgroup). So we have to handle
1183 * dead_memcg from cgroup root separately.
1184 */
1185 if (last != root_mem_cgroup)
1186 __invalidate_reclaim_iterators(root_mem_cgroup,
1187 dead_memcg);
1188}
1189
7c5f64f8
VD
1190/**
1191 * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy
1192 * @memcg: hierarchy root
1193 * @fn: function to call for each task
1194 * @arg: argument passed to @fn
1195 *
1196 * This function iterates over tasks attached to @memcg or to any of its
1197 * descendants and calls @fn for each task. If @fn returns a non-zero
1198 * value, the function breaks the iteration loop and returns the value.
1199 * Otherwise, it will iterate over all tasks and return 0.
1200 *
1201 * This function must not be called for the root memory cgroup.
1202 */
1203int mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
1204 int (*fn)(struct task_struct *, void *), void *arg)
1205{
1206 struct mem_cgroup *iter;
1207 int ret = 0;
1208
1209 BUG_ON(memcg == root_mem_cgroup);
1210
1211 for_each_mem_cgroup_tree(iter, memcg) {
1212 struct css_task_iter it;
1213 struct task_struct *task;
1214
f168a9a5 1215 css_task_iter_start(&iter->css, CSS_TASK_ITER_PROCS, &it);
7c5f64f8
VD
1216 while (!ret && (task = css_task_iter_next(&it)))
1217 ret = fn(task, arg);
1218 css_task_iter_end(&it);
1219 if (ret) {
1220 mem_cgroup_iter_break(memcg, iter);
1221 break;
1222 }
1223 }
1224 return ret;
1225}
1226
925b7673 1227/**
dfe0e773 1228 * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
925b7673 1229 * @page: the page
f144c390 1230 * @pgdat: pgdat of the page
dfe0e773
JW
1231 *
1232 * This function is only safe when following the LRU page isolation
1233 * and putback protocol: the LRU lock must be held, and the page must
1234 * either be PageLRU() or the caller must have isolated/allocated it.
925b7673 1235 */
599d0c95 1236struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct pglist_data *pgdat)
08e552c6 1237{
ef8f2327 1238 struct mem_cgroup_per_node *mz;
925b7673 1239 struct mem_cgroup *memcg;
bea8c150 1240 struct lruvec *lruvec;
6d12e2d8 1241
bea8c150 1242 if (mem_cgroup_disabled()) {
599d0c95 1243 lruvec = &pgdat->lruvec;
bea8c150
HD
1244 goto out;
1245 }
925b7673 1246
1306a85a 1247 memcg = page->mem_cgroup;
7512102c 1248 /*
dfe0e773 1249 * Swapcache readahead pages are added to the LRU - and
29833315 1250 * possibly migrated - before they are charged.
7512102c 1251 */
29833315
JW
1252 if (!memcg)
1253 memcg = root_mem_cgroup;
7512102c 1254
ef8f2327 1255 mz = mem_cgroup_page_nodeinfo(memcg, page);
bea8c150
HD
1256 lruvec = &mz->lruvec;
1257out:
1258 /*
1259 * Since a node can be onlined after the mem_cgroup was created,
1260 * we have to be prepared to initialize lruvec->zone here;
1261 * and if offlined then reonlined, we need to reinitialize it.
1262 */
599d0c95
MG
1263 if (unlikely(lruvec->pgdat != pgdat))
1264 lruvec->pgdat = pgdat;
bea8c150 1265 return lruvec;
08e552c6 1266}
b69408e8 1267
925b7673 1268/**
fa9add64
HD
1269 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1270 * @lruvec: mem_cgroup per zone lru vector
1271 * @lru: index of lru list the page is sitting on
b4536f0c 1272 * @zid: zone id of the accounted pages
fa9add64 1273 * @nr_pages: positive when adding or negative when removing
925b7673 1274 *
ca707239
HD
1275 * This function must be called under lru_lock, just before a page is added
1276 * to or just after a page is removed from an lru list (that ordering being
1277 * so as to allow it to check that lru_size 0 is consistent with list_empty).
3f58a829 1278 */
fa9add64 1279void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
b4536f0c 1280 int zid, int nr_pages)
3f58a829 1281{
ef8f2327 1282 struct mem_cgroup_per_node *mz;
fa9add64 1283 unsigned long *lru_size;
ca707239 1284 long size;
3f58a829
MK
1285
1286 if (mem_cgroup_disabled())
1287 return;
1288
ef8f2327 1289 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
b4536f0c 1290 lru_size = &mz->lru_zone_size[zid][lru];
ca707239
HD
1291
1292 if (nr_pages < 0)
1293 *lru_size += nr_pages;
1294
1295 size = *lru_size;
b4536f0c
MH
1296 if (WARN_ONCE(size < 0,
1297 "%s(%p, %d, %d): lru_size %ld\n",
1298 __func__, lruvec, lru, nr_pages, size)) {
ca707239
HD
1299 VM_BUG_ON(1);
1300 *lru_size = 0;
1301 }
1302
1303 if (nr_pages > 0)
1304 *lru_size += nr_pages;
08e552c6 1305}
544122e5 1306
19942822 1307/**
9d11ea9f 1308 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
dad7557e 1309 * @memcg: the memory cgroup
19942822 1310 *
9d11ea9f 1311 * Returns the maximum amount of memory @mem can be charged with, in
7ec99d62 1312 * pages.
19942822 1313 */
c0ff4b85 1314static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
19942822 1315{
3e32cb2e
JW
1316 unsigned long margin = 0;
1317 unsigned long count;
1318 unsigned long limit;
9d11ea9f 1319
3e32cb2e 1320 count = page_counter_read(&memcg->memory);
bbec2e15 1321 limit = READ_ONCE(memcg->memory.max);
3e32cb2e
JW
1322 if (count < limit)
1323 margin = limit - count;
1324
7941d214 1325 if (do_memsw_account()) {
3e32cb2e 1326 count = page_counter_read(&memcg->memsw);
bbec2e15 1327 limit = READ_ONCE(memcg->memsw.max);
3e32cb2e
JW
1328 if (count <= limit)
1329 margin = min(margin, limit - count);
cbedbac3
LR
1330 else
1331 margin = 0;
3e32cb2e
JW
1332 }
1333
1334 return margin;
19942822
JW
1335}
1336
32047e2a 1337/*
bdcbb659 1338 * A routine for checking "mem" is under move_account() or not.
32047e2a 1339 *
bdcbb659
QH
1340 * Checking a cgroup is mc.from or mc.to or under hierarchy of
1341 * moving cgroups. This is for waiting at high-memory pressure
1342 * caused by "move".
32047e2a 1343 */
c0ff4b85 1344static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
4b534334 1345{
2bd9bb20
KH
1346 struct mem_cgroup *from;
1347 struct mem_cgroup *to;
4b534334 1348 bool ret = false;
2bd9bb20
KH
1349 /*
1350 * Unlike task_move routines, we access mc.to, mc.from not under
1351 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1352 */
1353 spin_lock(&mc.lock);
1354 from = mc.from;
1355 to = mc.to;
1356 if (!from)
1357 goto unlock;
3e92041d 1358
2314b42d
JW
1359 ret = mem_cgroup_is_descendant(from, memcg) ||
1360 mem_cgroup_is_descendant(to, memcg);
2bd9bb20
KH
1361unlock:
1362 spin_unlock(&mc.lock);
4b534334
KH
1363 return ret;
1364}
1365
c0ff4b85 1366static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
4b534334
KH
1367{
1368 if (mc.moving_task && current != mc.moving_task) {
c0ff4b85 1369 if (mem_cgroup_under_move(memcg)) {
4b534334
KH
1370 DEFINE_WAIT(wait);
1371 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1372 /* moving charge context might have finished. */
1373 if (mc.moving_task)
1374 schedule();
1375 finish_wait(&mc.waitq, &wait);
1376 return true;
1377 }
1378 }
1379 return false;
1380}
1381
c8713d0b
JW
1382static char *memory_stat_format(struct mem_cgroup *memcg)
1383{
1384 struct seq_buf s;
1385 int i;
71cd3113 1386
c8713d0b
JW
1387 seq_buf_init(&s, kmalloc(PAGE_SIZE, GFP_KERNEL), PAGE_SIZE);
1388 if (!s.buffer)
1389 return NULL;
1390
1391 /*
1392 * Provide statistics on the state of the memory subsystem as
1393 * well as cumulative event counters that show past behavior.
1394 *
1395 * This list is ordered following a combination of these gradients:
1396 * 1) generic big picture -> specifics and details
1397 * 2) reflecting userspace activity -> reflecting kernel heuristics
1398 *
1399 * Current memory state:
1400 */
1401
1402 seq_buf_printf(&s, "anon %llu\n",
1403 (u64)memcg_page_state(memcg, MEMCG_RSS) *
1404 PAGE_SIZE);
1405 seq_buf_printf(&s, "file %llu\n",
1406 (u64)memcg_page_state(memcg, MEMCG_CACHE) *
1407 PAGE_SIZE);
1408 seq_buf_printf(&s, "kernel_stack %llu\n",
1409 (u64)memcg_page_state(memcg, MEMCG_KERNEL_STACK_KB) *
1410 1024);
1411 seq_buf_printf(&s, "slab %llu\n",
1412 (u64)(memcg_page_state(memcg, NR_SLAB_RECLAIMABLE) +
1413 memcg_page_state(memcg, NR_SLAB_UNRECLAIMABLE)) *
1414 PAGE_SIZE);
1415 seq_buf_printf(&s, "sock %llu\n",
1416 (u64)memcg_page_state(memcg, MEMCG_SOCK) *
1417 PAGE_SIZE);
1418
1419 seq_buf_printf(&s, "shmem %llu\n",
1420 (u64)memcg_page_state(memcg, NR_SHMEM) *
1421 PAGE_SIZE);
1422 seq_buf_printf(&s, "file_mapped %llu\n",
1423 (u64)memcg_page_state(memcg, NR_FILE_MAPPED) *
1424 PAGE_SIZE);
1425 seq_buf_printf(&s, "file_dirty %llu\n",
1426 (u64)memcg_page_state(memcg, NR_FILE_DIRTY) *
1427 PAGE_SIZE);
1428 seq_buf_printf(&s, "file_writeback %llu\n",
1429 (u64)memcg_page_state(memcg, NR_WRITEBACK) *
1430 PAGE_SIZE);
1431
1432 /*
1433 * TODO: We should eventually replace our own MEMCG_RSS_HUGE counter
1434 * with the NR_ANON_THP vm counter, but right now it's a pain in the
1435 * arse because it requires migrating the work out of rmap to a place
1436 * where the page->mem_cgroup is set up and stable.
1437 */
1438 seq_buf_printf(&s, "anon_thp %llu\n",
1439 (u64)memcg_page_state(memcg, MEMCG_RSS_HUGE) *
1440 PAGE_SIZE);
1441
1442 for (i = 0; i < NR_LRU_LISTS; i++)
1443 seq_buf_printf(&s, "%s %llu\n", mem_cgroup_lru_names[i],
1444 (u64)memcg_page_state(memcg, NR_LRU_BASE + i) *
1445 PAGE_SIZE);
1446
1447 seq_buf_printf(&s, "slab_reclaimable %llu\n",
1448 (u64)memcg_page_state(memcg, NR_SLAB_RECLAIMABLE) *
1449 PAGE_SIZE);
1450 seq_buf_printf(&s, "slab_unreclaimable %llu\n",
1451 (u64)memcg_page_state(memcg, NR_SLAB_UNRECLAIMABLE) *
1452 PAGE_SIZE);
1453
1454 /* Accumulated memory events */
1455
1456 seq_buf_printf(&s, "pgfault %lu\n", memcg_events(memcg, PGFAULT));
1457 seq_buf_printf(&s, "pgmajfault %lu\n", memcg_events(memcg, PGMAJFAULT));
1458
1459 seq_buf_printf(&s, "workingset_refault %lu\n",
1460 memcg_page_state(memcg, WORKINGSET_REFAULT));
1461 seq_buf_printf(&s, "workingset_activate %lu\n",
1462 memcg_page_state(memcg, WORKINGSET_ACTIVATE));
1463 seq_buf_printf(&s, "workingset_nodereclaim %lu\n",
1464 memcg_page_state(memcg, WORKINGSET_NODERECLAIM));
1465
1466 seq_buf_printf(&s, "pgrefill %lu\n", memcg_events(memcg, PGREFILL));
1467 seq_buf_printf(&s, "pgscan %lu\n",
1468 memcg_events(memcg, PGSCAN_KSWAPD) +
1469 memcg_events(memcg, PGSCAN_DIRECT));
1470 seq_buf_printf(&s, "pgsteal %lu\n",
1471 memcg_events(memcg, PGSTEAL_KSWAPD) +
1472 memcg_events(memcg, PGSTEAL_DIRECT));
1473 seq_buf_printf(&s, "pgactivate %lu\n", memcg_events(memcg, PGACTIVATE));
1474 seq_buf_printf(&s, "pgdeactivate %lu\n", memcg_events(memcg, PGDEACTIVATE));
1475 seq_buf_printf(&s, "pglazyfree %lu\n", memcg_events(memcg, PGLAZYFREE));
1476 seq_buf_printf(&s, "pglazyfreed %lu\n", memcg_events(memcg, PGLAZYFREED));
1477
1478#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1479 seq_buf_printf(&s, "thp_fault_alloc %lu\n",
1480 memcg_events(memcg, THP_FAULT_ALLOC));
1481 seq_buf_printf(&s, "thp_collapse_alloc %lu\n",
1482 memcg_events(memcg, THP_COLLAPSE_ALLOC));
1483#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1484
1485 /* The above should easily fit into one page */
1486 WARN_ON_ONCE(seq_buf_has_overflowed(&s));
1487
1488 return s.buffer;
1489}
71cd3113 1490
58cf188e 1491#define K(x) ((x) << (PAGE_SHIFT-10))
e222432b 1492/**
f0c867d9 1493 * mem_cgroup_print_oom_context: Print OOM information relevant to
1494 * memory controller.
e222432b
BS
1495 * @memcg: The memory cgroup that went over limit
1496 * @p: Task that is going to be killed
1497 *
1498 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1499 * enabled
1500 */
f0c867d9 1501void mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p)
e222432b 1502{
e222432b
BS
1503 rcu_read_lock();
1504
f0c867d9 1505 if (memcg) {
1506 pr_cont(",oom_memcg=");
1507 pr_cont_cgroup_path(memcg->css.cgroup);
1508 } else
1509 pr_cont(",global_oom");
2415b9f5 1510 if (p) {
f0c867d9 1511 pr_cont(",task_memcg=");
2415b9f5 1512 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
2415b9f5 1513 }
e222432b 1514 rcu_read_unlock();
f0c867d9 1515}
1516
1517/**
1518 * mem_cgroup_print_oom_meminfo: Print OOM memory information relevant to
1519 * memory controller.
1520 * @memcg: The memory cgroup that went over limit
1521 */
1522void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg)
1523{
c8713d0b 1524 char *buf;
e222432b 1525
3e32cb2e
JW
1526 pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1527 K((u64)page_counter_read(&memcg->memory)),
bbec2e15 1528 K((u64)memcg->memory.max), memcg->memory.failcnt);
c8713d0b
JW
1529 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
1530 pr_info("swap: usage %llukB, limit %llukB, failcnt %lu\n",
1531 K((u64)page_counter_read(&memcg->swap)),
1532 K((u64)memcg->swap.max), memcg->swap.failcnt);
1533 else {
1534 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1535 K((u64)page_counter_read(&memcg->memsw)),
1536 K((u64)memcg->memsw.max), memcg->memsw.failcnt);
1537 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1538 K((u64)page_counter_read(&memcg->kmem)),
1539 K((u64)memcg->kmem.max), memcg->kmem.failcnt);
58cf188e 1540 }
c8713d0b
JW
1541
1542 pr_info("Memory cgroup stats for ");
1543 pr_cont_cgroup_path(memcg->css.cgroup);
1544 pr_cont(":");
1545 buf = memory_stat_format(memcg);
1546 if (!buf)
1547 return;
1548 pr_info("%s", buf);
1549 kfree(buf);
e222432b
BS
1550}
1551
a63d83f4
DR
1552/*
1553 * Return the memory (and swap, if configured) limit for a memcg.
1554 */
bbec2e15 1555unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg)
a63d83f4 1556{
bbec2e15 1557 unsigned long max;
f3e8eb70 1558
bbec2e15 1559 max = memcg->memory.max;
9a5a8f19 1560 if (mem_cgroup_swappiness(memcg)) {
bbec2e15
RG
1561 unsigned long memsw_max;
1562 unsigned long swap_max;
9a5a8f19 1563
bbec2e15
RG
1564 memsw_max = memcg->memsw.max;
1565 swap_max = memcg->swap.max;
1566 swap_max = min(swap_max, (unsigned long)total_swap_pages);
1567 max = min(max + swap_max, memsw_max);
9a5a8f19 1568 }
bbec2e15 1569 return max;
a63d83f4
DR
1570}
1571
b6e6edcf 1572static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
19965460 1573 int order)
9cbb78bb 1574{
6e0fc46d
DR
1575 struct oom_control oc = {
1576 .zonelist = NULL,
1577 .nodemask = NULL,
2a966b77 1578 .memcg = memcg,
6e0fc46d
DR
1579 .gfp_mask = gfp_mask,
1580 .order = order,
6e0fc46d 1581 };
7c5f64f8 1582 bool ret;
9cbb78bb 1583
7775face
TH
1584 if (mutex_lock_killable(&oom_lock))
1585 return true;
1586 /*
1587 * A few threads which were not waiting at mutex_lock_killable() can
1588 * fail to bail out. Therefore, check again after holding oom_lock.
1589 */
1590 ret = should_force_charge() || out_of_memory(&oc);
dc56401f 1591 mutex_unlock(&oom_lock);
7c5f64f8 1592 return ret;
9cbb78bb
DR
1593}
1594
ae6e71d3
MC
1595#if MAX_NUMNODES > 1
1596
4d0c066d
KH
1597/**
1598 * test_mem_cgroup_node_reclaimable
dad7557e 1599 * @memcg: the target memcg
4d0c066d
KH
1600 * @nid: the node ID to be checked.
1601 * @noswap : specify true here if the user wants flle only information.
1602 *
1603 * This function returns whether the specified memcg contains any
1604 * reclaimable pages on a node. Returns true if there are any reclaimable
1605 * pages in the node.
1606 */
c0ff4b85 1607static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
4d0c066d
KH
1608 int nid, bool noswap)
1609{
2b487e59
JW
1610 struct lruvec *lruvec = mem_cgroup_lruvec(NODE_DATA(nid), memcg);
1611
def0fdae
JW
1612 if (lruvec_page_state(lruvec, NR_INACTIVE_FILE) ||
1613 lruvec_page_state(lruvec, NR_ACTIVE_FILE))
4d0c066d
KH
1614 return true;
1615 if (noswap || !total_swap_pages)
1616 return false;
def0fdae
JW
1617 if (lruvec_page_state(lruvec, NR_INACTIVE_ANON) ||
1618 lruvec_page_state(lruvec, NR_ACTIVE_ANON))
4d0c066d
KH
1619 return true;
1620 return false;
1621
1622}
889976db
YH
1623
1624/*
1625 * Always updating the nodemask is not very good - even if we have an empty
1626 * list or the wrong list here, we can start from some node and traverse all
1627 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1628 *
1629 */
c0ff4b85 1630static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
889976db
YH
1631{
1632 int nid;
453a9bf3
KH
1633 /*
1634 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1635 * pagein/pageout changes since the last update.
1636 */
c0ff4b85 1637 if (!atomic_read(&memcg->numainfo_events))
453a9bf3 1638 return;
c0ff4b85 1639 if (atomic_inc_return(&memcg->numainfo_updating) > 1)
889976db
YH
1640 return;
1641
889976db 1642 /* make a nodemask where this memcg uses memory from */
31aaea4a 1643 memcg->scan_nodes = node_states[N_MEMORY];
889976db 1644
31aaea4a 1645 for_each_node_mask(nid, node_states[N_MEMORY]) {
889976db 1646
c0ff4b85
R
1647 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1648 node_clear(nid, memcg->scan_nodes);
889976db 1649 }
453a9bf3 1650
c0ff4b85
R
1651 atomic_set(&memcg->numainfo_events, 0);
1652 atomic_set(&memcg->numainfo_updating, 0);
889976db
YH
1653}
1654
1655/*
1656 * Selecting a node where we start reclaim from. Because what we need is just
1657 * reducing usage counter, start from anywhere is O,K. Considering
1658 * memory reclaim from current node, there are pros. and cons.
1659 *
1660 * Freeing memory from current node means freeing memory from a node which
1661 * we'll use or we've used. So, it may make LRU bad. And if several threads
1662 * hit limits, it will see a contention on a node. But freeing from remote
1663 * node means more costs for memory reclaim because of memory latency.
1664 *
1665 * Now, we use round-robin. Better algorithm is welcomed.
1666 */
c0ff4b85 1667int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
889976db
YH
1668{
1669 int node;
1670
c0ff4b85
R
1671 mem_cgroup_may_update_nodemask(memcg);
1672 node = memcg->last_scanned_node;
889976db 1673
0edaf86c 1674 node = next_node_in(node, memcg->scan_nodes);
889976db 1675 /*
fda3d69b
MH
1676 * mem_cgroup_may_update_nodemask might have seen no reclaimmable pages
1677 * last time it really checked all the LRUs due to rate limiting.
1678 * Fallback to the current node in that case for simplicity.
889976db
YH
1679 */
1680 if (unlikely(node == MAX_NUMNODES))
1681 node = numa_node_id();
1682
c0ff4b85 1683 memcg->last_scanned_node = node;
889976db
YH
1684 return node;
1685}
889976db 1686#else
c0ff4b85 1687int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
889976db
YH
1688{
1689 return 0;
1690}
1691#endif
1692
0608f43d 1693static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
ef8f2327 1694 pg_data_t *pgdat,
0608f43d
AM
1695 gfp_t gfp_mask,
1696 unsigned long *total_scanned)
1697{
1698 struct mem_cgroup *victim = NULL;
1699 int total = 0;
1700 int loop = 0;
1701 unsigned long excess;
1702 unsigned long nr_scanned;
1703 struct mem_cgroup_reclaim_cookie reclaim = {
ef8f2327 1704 .pgdat = pgdat,
0608f43d
AM
1705 .priority = 0,
1706 };
1707
3e32cb2e 1708 excess = soft_limit_excess(root_memcg);
0608f43d
AM
1709
1710 while (1) {
1711 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1712 if (!victim) {
1713 loop++;
1714 if (loop >= 2) {
1715 /*
1716 * If we have not been able to reclaim
1717 * anything, it might because there are
1718 * no reclaimable pages under this hierarchy
1719 */
1720 if (!total)
1721 break;
1722 /*
1723 * We want to do more targeted reclaim.
1724 * excess >> 2 is not to excessive so as to
1725 * reclaim too much, nor too less that we keep
1726 * coming back to reclaim from this cgroup
1727 */
1728 if (total >= (excess >> 2) ||
1729 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1730 break;
1731 }
1732 continue;
1733 }
a9dd0a83 1734 total += mem_cgroup_shrink_node(victim, gfp_mask, false,
ef8f2327 1735 pgdat, &nr_scanned);
0608f43d 1736 *total_scanned += nr_scanned;
3e32cb2e 1737 if (!soft_limit_excess(root_memcg))
0608f43d 1738 break;
6d61ef40 1739 }
0608f43d
AM
1740 mem_cgroup_iter_break(root_memcg, victim);
1741 return total;
6d61ef40
BS
1742}
1743
0056f4e6
JW
1744#ifdef CONFIG_LOCKDEP
1745static struct lockdep_map memcg_oom_lock_dep_map = {
1746 .name = "memcg_oom_lock",
1747};
1748#endif
1749
fb2a6fc5
JW
1750static DEFINE_SPINLOCK(memcg_oom_lock);
1751
867578cb
KH
1752/*
1753 * Check OOM-Killer is already running under our hierarchy.
1754 * If someone is running, return false.
1755 */
fb2a6fc5 1756static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
867578cb 1757{
79dfdacc 1758 struct mem_cgroup *iter, *failed = NULL;
a636b327 1759
fb2a6fc5
JW
1760 spin_lock(&memcg_oom_lock);
1761
9f3a0d09 1762 for_each_mem_cgroup_tree(iter, memcg) {
23751be0 1763 if (iter->oom_lock) {
79dfdacc
MH
1764 /*
1765 * this subtree of our hierarchy is already locked
1766 * so we cannot give a lock.
1767 */
79dfdacc 1768 failed = iter;
9f3a0d09
JW
1769 mem_cgroup_iter_break(memcg, iter);
1770 break;
23751be0
JW
1771 } else
1772 iter->oom_lock = true;
7d74b06f 1773 }
867578cb 1774
fb2a6fc5
JW
1775 if (failed) {
1776 /*
1777 * OK, we failed to lock the whole subtree so we have
1778 * to clean up what we set up to the failing subtree
1779 */
1780 for_each_mem_cgroup_tree(iter, memcg) {
1781 if (iter == failed) {
1782 mem_cgroup_iter_break(memcg, iter);
1783 break;
1784 }
1785 iter->oom_lock = false;
79dfdacc 1786 }
0056f4e6
JW
1787 } else
1788 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
fb2a6fc5
JW
1789
1790 spin_unlock(&memcg_oom_lock);
1791
1792 return !failed;
a636b327 1793}
0b7f569e 1794
fb2a6fc5 1795static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
0b7f569e 1796{
7d74b06f
KH
1797 struct mem_cgroup *iter;
1798
fb2a6fc5 1799 spin_lock(&memcg_oom_lock);
0056f4e6 1800 mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
c0ff4b85 1801 for_each_mem_cgroup_tree(iter, memcg)
79dfdacc 1802 iter->oom_lock = false;
fb2a6fc5 1803 spin_unlock(&memcg_oom_lock);
79dfdacc
MH
1804}
1805
c0ff4b85 1806static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
79dfdacc
MH
1807{
1808 struct mem_cgroup *iter;
1809
c2b42d3c 1810 spin_lock(&memcg_oom_lock);
c0ff4b85 1811 for_each_mem_cgroup_tree(iter, memcg)
c2b42d3c
TH
1812 iter->under_oom++;
1813 spin_unlock(&memcg_oom_lock);
79dfdacc
MH
1814}
1815
c0ff4b85 1816static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
79dfdacc
MH
1817{
1818 struct mem_cgroup *iter;
1819
867578cb
KH
1820 /*
1821 * When a new child is created while the hierarchy is under oom,
c2b42d3c 1822 * mem_cgroup_oom_lock() may not be called. Watch for underflow.
867578cb 1823 */
c2b42d3c 1824 spin_lock(&memcg_oom_lock);
c0ff4b85 1825 for_each_mem_cgroup_tree(iter, memcg)
c2b42d3c
TH
1826 if (iter->under_oom > 0)
1827 iter->under_oom--;
1828 spin_unlock(&memcg_oom_lock);
0b7f569e
KH
1829}
1830
867578cb
KH
1831static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1832
dc98df5a 1833struct oom_wait_info {
d79154bb 1834 struct mem_cgroup *memcg;
ac6424b9 1835 wait_queue_entry_t wait;
dc98df5a
KH
1836};
1837
ac6424b9 1838static int memcg_oom_wake_function(wait_queue_entry_t *wait,
dc98df5a
KH
1839 unsigned mode, int sync, void *arg)
1840{
d79154bb
HD
1841 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1842 struct mem_cgroup *oom_wait_memcg;
dc98df5a
KH
1843 struct oom_wait_info *oom_wait_info;
1844
1845 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
d79154bb 1846 oom_wait_memcg = oom_wait_info->memcg;
dc98df5a 1847
2314b42d
JW
1848 if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1849 !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
dc98df5a 1850 return 0;
dc98df5a
KH
1851 return autoremove_wake_function(wait, mode, sync, arg);
1852}
1853
c0ff4b85 1854static void memcg_oom_recover(struct mem_cgroup *memcg)
3c11ecf4 1855{
c2b42d3c
TH
1856 /*
1857 * For the following lockless ->under_oom test, the only required
1858 * guarantee is that it must see the state asserted by an OOM when
1859 * this function is called as a result of userland actions
1860 * triggered by the notification of the OOM. This is trivially
1861 * achieved by invoking mem_cgroup_mark_under_oom() before
1862 * triggering notification.
1863 */
1864 if (memcg && memcg->under_oom)
f4b90b70 1865 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
3c11ecf4
KH
1866}
1867
29ef680a
MH
1868enum oom_status {
1869 OOM_SUCCESS,
1870 OOM_FAILED,
1871 OOM_ASYNC,
1872 OOM_SKIPPED
1873};
1874
1875static enum oom_status mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
0b7f569e 1876{
7056d3a3
MH
1877 enum oom_status ret;
1878 bool locked;
1879
29ef680a
MH
1880 if (order > PAGE_ALLOC_COSTLY_ORDER)
1881 return OOM_SKIPPED;
1882
7a1adfdd
RG
1883 memcg_memory_event(memcg, MEMCG_OOM);
1884
867578cb 1885 /*
49426420
JW
1886 * We are in the middle of the charge context here, so we
1887 * don't want to block when potentially sitting on a callstack
1888 * that holds all kinds of filesystem and mm locks.
1889 *
29ef680a
MH
1890 * cgroup1 allows disabling the OOM killer and waiting for outside
1891 * handling until the charge can succeed; remember the context and put
1892 * the task to sleep at the end of the page fault when all locks are
1893 * released.
49426420 1894 *
29ef680a
MH
1895 * On the other hand, in-kernel OOM killer allows for an async victim
1896 * memory reclaim (oom_reaper) and that means that we are not solely
1897 * relying on the oom victim to make a forward progress and we can
1898 * invoke the oom killer here.
1899 *
1900 * Please note that mem_cgroup_out_of_memory might fail to find a
1901 * victim and then we have to bail out from the charge path.
867578cb 1902 */
29ef680a
MH
1903 if (memcg->oom_kill_disable) {
1904 if (!current->in_user_fault)
1905 return OOM_SKIPPED;
1906 css_get(&memcg->css);
1907 current->memcg_in_oom = memcg;
1908 current->memcg_oom_gfp_mask = mask;
1909 current->memcg_oom_order = order;
1910
1911 return OOM_ASYNC;
1912 }
1913
7056d3a3
MH
1914 mem_cgroup_mark_under_oom(memcg);
1915
1916 locked = mem_cgroup_oom_trylock(memcg);
1917
1918 if (locked)
1919 mem_cgroup_oom_notify(memcg);
1920
1921 mem_cgroup_unmark_under_oom(memcg);
29ef680a 1922 if (mem_cgroup_out_of_memory(memcg, mask, order))
7056d3a3
MH
1923 ret = OOM_SUCCESS;
1924 else
1925 ret = OOM_FAILED;
1926
1927 if (locked)
1928 mem_cgroup_oom_unlock(memcg);
29ef680a 1929
7056d3a3 1930 return ret;
3812c8c8
JW
1931}
1932
1933/**
1934 * mem_cgroup_oom_synchronize - complete memcg OOM handling
49426420 1935 * @handle: actually kill/wait or just clean up the OOM state
3812c8c8 1936 *
49426420
JW
1937 * This has to be called at the end of a page fault if the memcg OOM
1938 * handler was enabled.
3812c8c8 1939 *
49426420 1940 * Memcg supports userspace OOM handling where failed allocations must
3812c8c8
JW
1941 * sleep on a waitqueue until the userspace task resolves the
1942 * situation. Sleeping directly in the charge context with all kinds
1943 * of locks held is not a good idea, instead we remember an OOM state
1944 * in the task and mem_cgroup_oom_synchronize() has to be called at
49426420 1945 * the end of the page fault to complete the OOM handling.
3812c8c8
JW
1946 *
1947 * Returns %true if an ongoing memcg OOM situation was detected and
49426420 1948 * completed, %false otherwise.
3812c8c8 1949 */
49426420 1950bool mem_cgroup_oom_synchronize(bool handle)
3812c8c8 1951{
626ebc41 1952 struct mem_cgroup *memcg = current->memcg_in_oom;
3812c8c8 1953 struct oom_wait_info owait;
49426420 1954 bool locked;
3812c8c8
JW
1955
1956 /* OOM is global, do not handle */
3812c8c8 1957 if (!memcg)
49426420 1958 return false;
3812c8c8 1959
7c5f64f8 1960 if (!handle)
49426420 1961 goto cleanup;
3812c8c8
JW
1962
1963 owait.memcg = memcg;
1964 owait.wait.flags = 0;
1965 owait.wait.func = memcg_oom_wake_function;
1966 owait.wait.private = current;
2055da97 1967 INIT_LIST_HEAD(&owait.wait.entry);
867578cb 1968
3812c8c8 1969 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
49426420
JW
1970 mem_cgroup_mark_under_oom(memcg);
1971
1972 locked = mem_cgroup_oom_trylock(memcg);
1973
1974 if (locked)
1975 mem_cgroup_oom_notify(memcg);
1976
1977 if (locked && !memcg->oom_kill_disable) {
1978 mem_cgroup_unmark_under_oom(memcg);
1979 finish_wait(&memcg_oom_waitq, &owait.wait);
626ebc41
TH
1980 mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
1981 current->memcg_oom_order);
49426420 1982 } else {
3812c8c8 1983 schedule();
49426420
JW
1984 mem_cgroup_unmark_under_oom(memcg);
1985 finish_wait(&memcg_oom_waitq, &owait.wait);
1986 }
1987
1988 if (locked) {
fb2a6fc5
JW
1989 mem_cgroup_oom_unlock(memcg);
1990 /*
1991 * There is no guarantee that an OOM-lock contender
1992 * sees the wakeups triggered by the OOM kill
1993 * uncharges. Wake any sleepers explicitely.
1994 */
1995 memcg_oom_recover(memcg);
1996 }
49426420 1997cleanup:
626ebc41 1998 current->memcg_in_oom = NULL;
3812c8c8 1999 css_put(&memcg->css);
867578cb 2000 return true;
0b7f569e
KH
2001}
2002
3d8b38eb
RG
2003/**
2004 * mem_cgroup_get_oom_group - get a memory cgroup to clean up after OOM
2005 * @victim: task to be killed by the OOM killer
2006 * @oom_domain: memcg in case of memcg OOM, NULL in case of system-wide OOM
2007 *
2008 * Returns a pointer to a memory cgroup, which has to be cleaned up
2009 * by killing all belonging OOM-killable tasks.
2010 *
2011 * Caller has to call mem_cgroup_put() on the returned non-NULL memcg.
2012 */
2013struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim,
2014 struct mem_cgroup *oom_domain)
2015{
2016 struct mem_cgroup *oom_group = NULL;
2017 struct mem_cgroup *memcg;
2018
2019 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
2020 return NULL;
2021
2022 if (!oom_domain)
2023 oom_domain = root_mem_cgroup;
2024
2025 rcu_read_lock();
2026
2027 memcg = mem_cgroup_from_task(victim);
2028 if (memcg == root_mem_cgroup)
2029 goto out;
2030
2031 /*
2032 * Traverse the memory cgroup hierarchy from the victim task's
2033 * cgroup up to the OOMing cgroup (or root) to find the
2034 * highest-level memory cgroup with oom.group set.
2035 */
2036 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
2037 if (memcg->oom_group)
2038 oom_group = memcg;
2039
2040 if (memcg == oom_domain)
2041 break;
2042 }
2043
2044 if (oom_group)
2045 css_get(&oom_group->css);
2046out:
2047 rcu_read_unlock();
2048
2049 return oom_group;
2050}
2051
2052void mem_cgroup_print_oom_group(struct mem_cgroup *memcg)
2053{
2054 pr_info("Tasks in ");
2055 pr_cont_cgroup_path(memcg->css.cgroup);
2056 pr_cont(" are going to be killed due to memory.oom.group set\n");
2057}
2058
d7365e78 2059/**
81f8c3a4
JW
2060 * lock_page_memcg - lock a page->mem_cgroup binding
2061 * @page: the page
32047e2a 2062 *
81f8c3a4 2063 * This function protects unlocked LRU pages from being moved to
739f79fc
JW
2064 * another cgroup.
2065 *
2066 * It ensures lifetime of the returned memcg. Caller is responsible
2067 * for the lifetime of the page; __unlock_page_memcg() is available
2068 * when @page might get freed inside the locked section.
d69b042f 2069 */
739f79fc 2070struct mem_cgroup *lock_page_memcg(struct page *page)
89c06bd5
KH
2071{
2072 struct mem_cgroup *memcg;
6de22619 2073 unsigned long flags;
89c06bd5 2074
6de22619
JW
2075 /*
2076 * The RCU lock is held throughout the transaction. The fast
2077 * path can get away without acquiring the memcg->move_lock
2078 * because page moving starts with an RCU grace period.
739f79fc
JW
2079 *
2080 * The RCU lock also protects the memcg from being freed when
2081 * the page state that is going to change is the only thing
2082 * preventing the page itself from being freed. E.g. writeback
2083 * doesn't hold a page reference and relies on PG_writeback to
2084 * keep off truncation, migration and so forth.
2085 */
d7365e78
JW
2086 rcu_read_lock();
2087
2088 if (mem_cgroup_disabled())
739f79fc 2089 return NULL;
89c06bd5 2090again:
1306a85a 2091 memcg = page->mem_cgroup;
29833315 2092 if (unlikely(!memcg))
739f79fc 2093 return NULL;
d7365e78 2094
bdcbb659 2095 if (atomic_read(&memcg->moving_account) <= 0)
739f79fc 2096 return memcg;
89c06bd5 2097
6de22619 2098 spin_lock_irqsave(&memcg->move_lock, flags);
1306a85a 2099 if (memcg != page->mem_cgroup) {
6de22619 2100 spin_unlock_irqrestore(&memcg->move_lock, flags);
89c06bd5
KH
2101 goto again;
2102 }
6de22619
JW
2103
2104 /*
2105 * When charge migration first begins, we can have locked and
2106 * unlocked page stat updates happening concurrently. Track
81f8c3a4 2107 * the task who has the lock for unlock_page_memcg().
6de22619
JW
2108 */
2109 memcg->move_lock_task = current;
2110 memcg->move_lock_flags = flags;
d7365e78 2111
739f79fc 2112 return memcg;
89c06bd5 2113}
81f8c3a4 2114EXPORT_SYMBOL(lock_page_memcg);
89c06bd5 2115
d7365e78 2116/**
739f79fc
JW
2117 * __unlock_page_memcg - unlock and unpin a memcg
2118 * @memcg: the memcg
2119 *
2120 * Unlock and unpin a memcg returned by lock_page_memcg().
d7365e78 2121 */
739f79fc 2122void __unlock_page_memcg(struct mem_cgroup *memcg)
89c06bd5 2123{
6de22619
JW
2124 if (memcg && memcg->move_lock_task == current) {
2125 unsigned long flags = memcg->move_lock_flags;
2126
2127 memcg->move_lock_task = NULL;
2128 memcg->move_lock_flags = 0;
2129
2130 spin_unlock_irqrestore(&memcg->move_lock, flags);
2131 }
89c06bd5 2132
d7365e78 2133 rcu_read_unlock();
89c06bd5 2134}
739f79fc
JW
2135
2136/**
2137 * unlock_page_memcg - unlock a page->mem_cgroup binding
2138 * @page: the page
2139 */
2140void unlock_page_memcg(struct page *page)
2141{
2142 __unlock_page_memcg(page->mem_cgroup);
2143}
81f8c3a4 2144EXPORT_SYMBOL(unlock_page_memcg);
89c06bd5 2145
cdec2e42
KH
2146struct memcg_stock_pcp {
2147 struct mem_cgroup *cached; /* this never be root cgroup */
11c9ea4e 2148 unsigned int nr_pages;
cdec2e42 2149 struct work_struct work;
26fe6168 2150 unsigned long flags;
a0db00fc 2151#define FLUSHING_CACHED_CHARGE 0
cdec2e42
KH
2152};
2153static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
9f50fad6 2154static DEFINE_MUTEX(percpu_charge_mutex);
cdec2e42 2155
a0956d54
SS
2156/**
2157 * consume_stock: Try to consume stocked charge on this cpu.
2158 * @memcg: memcg to consume from.
2159 * @nr_pages: how many pages to charge.
2160 *
2161 * The charges will only happen if @memcg matches the current cpu's memcg
2162 * stock, and at least @nr_pages are available in that stock. Failure to
2163 * service an allocation will refill the stock.
2164 *
2165 * returns true if successful, false otherwise.
cdec2e42 2166 */
a0956d54 2167static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
cdec2e42
KH
2168{
2169 struct memcg_stock_pcp *stock;
db2ba40c 2170 unsigned long flags;
3e32cb2e 2171 bool ret = false;
cdec2e42 2172
a983b5eb 2173 if (nr_pages > MEMCG_CHARGE_BATCH)
3e32cb2e 2174 return ret;
a0956d54 2175
db2ba40c
JW
2176 local_irq_save(flags);
2177
2178 stock = this_cpu_ptr(&memcg_stock);
3e32cb2e 2179 if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
a0956d54 2180 stock->nr_pages -= nr_pages;
3e32cb2e
JW
2181 ret = true;
2182 }
db2ba40c
JW
2183
2184 local_irq_restore(flags);
2185
cdec2e42
KH
2186 return ret;
2187}
2188
2189/*
3e32cb2e 2190 * Returns stocks cached in percpu and reset cached information.
cdec2e42
KH
2191 */
2192static void drain_stock(struct memcg_stock_pcp *stock)
2193{
2194 struct mem_cgroup *old = stock->cached;
2195
11c9ea4e 2196 if (stock->nr_pages) {
3e32cb2e 2197 page_counter_uncharge(&old->memory, stock->nr_pages);
7941d214 2198 if (do_memsw_account())
3e32cb2e 2199 page_counter_uncharge(&old->memsw, stock->nr_pages);
e8ea14cc 2200 css_put_many(&old->css, stock->nr_pages);
11c9ea4e 2201 stock->nr_pages = 0;
cdec2e42
KH
2202 }
2203 stock->cached = NULL;
cdec2e42
KH
2204}
2205
cdec2e42
KH
2206static void drain_local_stock(struct work_struct *dummy)
2207{
db2ba40c
JW
2208 struct memcg_stock_pcp *stock;
2209 unsigned long flags;
2210
72f0184c
MH
2211 /*
2212 * The only protection from memory hotplug vs. drain_stock races is
2213 * that we always operate on local CPU stock here with IRQ disabled
2214 */
db2ba40c
JW
2215 local_irq_save(flags);
2216
2217 stock = this_cpu_ptr(&memcg_stock);
cdec2e42 2218 drain_stock(stock);
26fe6168 2219 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
db2ba40c
JW
2220
2221 local_irq_restore(flags);
cdec2e42
KH
2222}
2223
2224/*
3e32cb2e 2225 * Cache charges(val) to local per_cpu area.
320cc51d 2226 * This will be consumed by consume_stock() function, later.
cdec2e42 2227 */
c0ff4b85 2228static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
cdec2e42 2229{
db2ba40c
JW
2230 struct memcg_stock_pcp *stock;
2231 unsigned long flags;
2232
2233 local_irq_save(flags);
cdec2e42 2234
db2ba40c 2235 stock = this_cpu_ptr(&memcg_stock);
c0ff4b85 2236 if (stock->cached != memcg) { /* reset if necessary */
cdec2e42 2237 drain_stock(stock);
c0ff4b85 2238 stock->cached = memcg;
cdec2e42 2239 }
11c9ea4e 2240 stock->nr_pages += nr_pages;
db2ba40c 2241
a983b5eb 2242 if (stock->nr_pages > MEMCG_CHARGE_BATCH)
475d0487
RG
2243 drain_stock(stock);
2244
db2ba40c 2245 local_irq_restore(flags);
cdec2e42
KH
2246}
2247
2248/*
c0ff4b85 2249 * Drains all per-CPU charge caches for given root_memcg resp. subtree
6d3d6aa2 2250 * of the hierarchy under it.
cdec2e42 2251 */
6d3d6aa2 2252static void drain_all_stock(struct mem_cgroup *root_memcg)
cdec2e42 2253{
26fe6168 2254 int cpu, curcpu;
d38144b7 2255
6d3d6aa2
JW
2256 /* If someone's already draining, avoid adding running more workers. */
2257 if (!mutex_trylock(&percpu_charge_mutex))
2258 return;
72f0184c
MH
2259 /*
2260 * Notify other cpus that system-wide "drain" is running
2261 * We do not care about races with the cpu hotplug because cpu down
2262 * as well as workers from this path always operate on the local
2263 * per-cpu data. CPU up doesn't touch memcg_stock at all.
2264 */
5af12d0e 2265 curcpu = get_cpu();
cdec2e42
KH
2266 for_each_online_cpu(cpu) {
2267 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
c0ff4b85 2268 struct mem_cgroup *memcg;
26fe6168 2269
c0ff4b85 2270 memcg = stock->cached;
72f0184c 2271 if (!memcg || !stock->nr_pages || !css_tryget(&memcg->css))
26fe6168 2272 continue;
72f0184c
MH
2273 if (!mem_cgroup_is_descendant(memcg, root_memcg)) {
2274 css_put(&memcg->css);
3e92041d 2275 continue;
72f0184c 2276 }
d1a05b69
MH
2277 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2278 if (cpu == curcpu)
2279 drain_local_stock(&stock->work);
2280 else
2281 schedule_work_on(cpu, &stock->work);
2282 }
72f0184c 2283 css_put(&memcg->css);
cdec2e42 2284 }
5af12d0e 2285 put_cpu();
9f50fad6 2286 mutex_unlock(&percpu_charge_mutex);
cdec2e42
KH
2287}
2288
308167fc 2289static int memcg_hotplug_cpu_dead(unsigned int cpu)
cdec2e42 2290{
cdec2e42 2291 struct memcg_stock_pcp *stock;
42a30035 2292 struct mem_cgroup *memcg, *mi;
cdec2e42 2293
cdec2e42
KH
2294 stock = &per_cpu(memcg_stock, cpu);
2295 drain_stock(stock);
a983b5eb
JW
2296
2297 for_each_mem_cgroup(memcg) {
2298 int i;
2299
2300 for (i = 0; i < MEMCG_NR_STAT; i++) {
2301 int nid;
2302 long x;
2303
871789d4 2304 x = this_cpu_xchg(memcg->vmstats_percpu->stat[i], 0);
815744d7 2305 if (x)
42a30035
JW
2306 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
2307 atomic_long_add(x, &memcg->vmstats[i]);
a983b5eb
JW
2308
2309 if (i >= NR_VM_NODE_STAT_ITEMS)
2310 continue;
2311
2312 for_each_node(nid) {
2313 struct mem_cgroup_per_node *pn;
2314
2315 pn = mem_cgroup_nodeinfo(memcg, nid);
2316 x = this_cpu_xchg(pn->lruvec_stat_cpu->count[i], 0);
815744d7 2317 if (x)
42a30035
JW
2318 do {
2319 atomic_long_add(x, &pn->lruvec_stat[i]);
2320 } while ((pn = parent_nodeinfo(pn, nid)));
a983b5eb
JW
2321 }
2322 }
2323
e27be240 2324 for (i = 0; i < NR_VM_EVENT_ITEMS; i++) {
a983b5eb
JW
2325 long x;
2326
871789d4 2327 x = this_cpu_xchg(memcg->vmstats_percpu->events[i], 0);
815744d7 2328 if (x)
42a30035
JW
2329 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
2330 atomic_long_add(x, &memcg->vmevents[i]);
a983b5eb
JW
2331 }
2332 }
2333
308167fc 2334 return 0;
cdec2e42
KH
2335}
2336
f7e1cb6e
JW
2337static void reclaim_high(struct mem_cgroup *memcg,
2338 unsigned int nr_pages,
2339 gfp_t gfp_mask)
2340{
2341 do {
2342 if (page_counter_read(&memcg->memory) <= memcg->high)
2343 continue;
e27be240 2344 memcg_memory_event(memcg, MEMCG_HIGH);
f7e1cb6e
JW
2345 try_to_free_mem_cgroup_pages(memcg, nr_pages, gfp_mask, true);
2346 } while ((memcg = parent_mem_cgroup(memcg)));
2347}
2348
2349static void high_work_func(struct work_struct *work)
2350{
2351 struct mem_cgroup *memcg;
2352
2353 memcg = container_of(work, struct mem_cgroup, high_work);
a983b5eb 2354 reclaim_high(memcg, MEMCG_CHARGE_BATCH, GFP_KERNEL);
f7e1cb6e
JW
2355}
2356
b23afb93
TH
2357/*
2358 * Scheduled by try_charge() to be executed from the userland return path
2359 * and reclaims memory over the high limit.
2360 */
2361void mem_cgroup_handle_over_high(void)
2362{
2363 unsigned int nr_pages = current->memcg_nr_pages_over_high;
f7e1cb6e 2364 struct mem_cgroup *memcg;
b23afb93
TH
2365
2366 if (likely(!nr_pages))
2367 return;
2368
f7e1cb6e
JW
2369 memcg = get_mem_cgroup_from_mm(current->mm);
2370 reclaim_high(memcg, nr_pages, GFP_KERNEL);
b23afb93
TH
2371 css_put(&memcg->css);
2372 current->memcg_nr_pages_over_high = 0;
2373}
2374
00501b53
JW
2375static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2376 unsigned int nr_pages)
8a9f3ccd 2377{
a983b5eb 2378 unsigned int batch = max(MEMCG_CHARGE_BATCH, nr_pages);
9b130619 2379 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
6539cc05 2380 struct mem_cgroup *mem_over_limit;
3e32cb2e 2381 struct page_counter *counter;
6539cc05 2382 unsigned long nr_reclaimed;
b70a2a21
JW
2383 bool may_swap = true;
2384 bool drained = false;
29ef680a 2385 enum oom_status oom_status;
a636b327 2386
ce00a967 2387 if (mem_cgroup_is_root(memcg))
10d53c74 2388 return 0;
6539cc05 2389retry:
b6b6cc72 2390 if (consume_stock(memcg, nr_pages))
10d53c74 2391 return 0;
8a9f3ccd 2392
7941d214 2393 if (!do_memsw_account() ||
6071ca52
JW
2394 page_counter_try_charge(&memcg->memsw, batch, &counter)) {
2395 if (page_counter_try_charge(&memcg->memory, batch, &counter))
6539cc05 2396 goto done_restock;
7941d214 2397 if (do_memsw_account())
3e32cb2e
JW
2398 page_counter_uncharge(&memcg->memsw, batch);
2399 mem_over_limit = mem_cgroup_from_counter(counter, memory);
3fbe7244 2400 } else {
3e32cb2e 2401 mem_over_limit = mem_cgroup_from_counter(counter, memsw);
b70a2a21 2402 may_swap = false;
3fbe7244 2403 }
7a81b88c 2404
6539cc05
JW
2405 if (batch > nr_pages) {
2406 batch = nr_pages;
2407 goto retry;
2408 }
6d61ef40 2409
06b078fc
JW
2410 /*
2411 * Unlike in global OOM situations, memcg is not in a physical
2412 * memory shortage. Allow dying and OOM-killed tasks to
2413 * bypass the last charges so that they can exit quickly and
2414 * free their memory.
2415 */
7775face 2416 if (unlikely(should_force_charge()))
10d53c74 2417 goto force;
06b078fc 2418
89a28483
JW
2419 /*
2420 * Prevent unbounded recursion when reclaim operations need to
2421 * allocate memory. This might exceed the limits temporarily,
2422 * but we prefer facilitating memory reclaim and getting back
2423 * under the limit over triggering OOM kills in these cases.
2424 */
2425 if (unlikely(current->flags & PF_MEMALLOC))
2426 goto force;
2427
06b078fc
JW
2428 if (unlikely(task_in_memcg_oom(current)))
2429 goto nomem;
2430
d0164adc 2431 if (!gfpflags_allow_blocking(gfp_mask))
6539cc05 2432 goto nomem;
4b534334 2433
e27be240 2434 memcg_memory_event(mem_over_limit, MEMCG_MAX);
241994ed 2435
b70a2a21
JW
2436 nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
2437 gfp_mask, may_swap);
6539cc05 2438
61e02c74 2439 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
6539cc05 2440 goto retry;
28c34c29 2441
b70a2a21 2442 if (!drained) {
6d3d6aa2 2443 drain_all_stock(mem_over_limit);
b70a2a21
JW
2444 drained = true;
2445 goto retry;
2446 }
2447
28c34c29
JW
2448 if (gfp_mask & __GFP_NORETRY)
2449 goto nomem;
6539cc05
JW
2450 /*
2451 * Even though the limit is exceeded at this point, reclaim
2452 * may have been able to free some pages. Retry the charge
2453 * before killing the task.
2454 *
2455 * Only for regular pages, though: huge pages are rather
2456 * unlikely to succeed so close to the limit, and we fall back
2457 * to regular pages anyway in case of failure.
2458 */
61e02c74 2459 if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
6539cc05
JW
2460 goto retry;
2461 /*
2462 * At task move, charge accounts can be doubly counted. So, it's
2463 * better to wait until the end of task_move if something is going on.
2464 */
2465 if (mem_cgroup_wait_acct_move(mem_over_limit))
2466 goto retry;
2467
9b130619
JW
2468 if (nr_retries--)
2469 goto retry;
2470
38d38493 2471 if (gfp_mask & __GFP_RETRY_MAYFAIL)
29ef680a
MH
2472 goto nomem;
2473
06b078fc 2474 if (gfp_mask & __GFP_NOFAIL)
10d53c74 2475 goto force;
06b078fc 2476
6539cc05 2477 if (fatal_signal_pending(current))
10d53c74 2478 goto force;
6539cc05 2479
29ef680a
MH
2480 /*
2481 * keep retrying as long as the memcg oom killer is able to make
2482 * a forward progress or bypass the charge if the oom killer
2483 * couldn't make any progress.
2484 */
2485 oom_status = mem_cgroup_oom(mem_over_limit, gfp_mask,
3608de07 2486 get_order(nr_pages * PAGE_SIZE));
29ef680a
MH
2487 switch (oom_status) {
2488 case OOM_SUCCESS:
2489 nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
29ef680a
MH
2490 goto retry;
2491 case OOM_FAILED:
2492 goto force;
2493 default:
2494 goto nomem;
2495 }
7a81b88c 2496nomem:
6d1fdc48 2497 if (!(gfp_mask & __GFP_NOFAIL))
3168ecbe 2498 return -ENOMEM;
10d53c74
TH
2499force:
2500 /*
2501 * The allocation either can't fail or will lead to more memory
2502 * being freed very soon. Allow memory usage go over the limit
2503 * temporarily by force charging it.
2504 */
2505 page_counter_charge(&memcg->memory, nr_pages);
7941d214 2506 if (do_memsw_account())
10d53c74
TH
2507 page_counter_charge(&memcg->memsw, nr_pages);
2508 css_get_many(&memcg->css, nr_pages);
2509
2510 return 0;
6539cc05
JW
2511
2512done_restock:
e8ea14cc 2513 css_get_many(&memcg->css, batch);
6539cc05
JW
2514 if (batch > nr_pages)
2515 refill_stock(memcg, batch - nr_pages);
b23afb93 2516
241994ed 2517 /*
b23afb93
TH
2518 * If the hierarchy is above the normal consumption range, schedule
2519 * reclaim on returning to userland. We can perform reclaim here
71baba4b 2520 * if __GFP_RECLAIM but let's always punt for simplicity and so that
b23afb93
TH
2521 * GFP_KERNEL can consistently be used during reclaim. @memcg is
2522 * not recorded as it most likely matches current's and won't
2523 * change in the meantime. As high limit is checked again before
2524 * reclaim, the cost of mismatch is negligible.
241994ed
JW
2525 */
2526 do {
b23afb93 2527 if (page_counter_read(&memcg->memory) > memcg->high) {
f7e1cb6e
JW
2528 /* Don't bother a random interrupted task */
2529 if (in_interrupt()) {
2530 schedule_work(&memcg->high_work);
2531 break;
2532 }
9516a18a 2533 current->memcg_nr_pages_over_high += batch;
b23afb93
TH
2534 set_notify_resume(current);
2535 break;
2536 }
241994ed 2537 } while ((memcg = parent_mem_cgroup(memcg)));
10d53c74
TH
2538
2539 return 0;
7a81b88c 2540}
8a9f3ccd 2541
00501b53 2542static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
a3032a2c 2543{
ce00a967
JW
2544 if (mem_cgroup_is_root(memcg))
2545 return;
2546
3e32cb2e 2547 page_counter_uncharge(&memcg->memory, nr_pages);
7941d214 2548 if (do_memsw_account())
3e32cb2e 2549 page_counter_uncharge(&memcg->memsw, nr_pages);
ce00a967 2550
e8ea14cc 2551 css_put_many(&memcg->css, nr_pages);
d01dd17f
KH
2552}
2553
0a31bc97
JW
2554static void lock_page_lru(struct page *page, int *isolated)
2555{
f4b7e272 2556 pg_data_t *pgdat = page_pgdat(page);
0a31bc97 2557
f4b7e272 2558 spin_lock_irq(&pgdat->lru_lock);
0a31bc97
JW
2559 if (PageLRU(page)) {
2560 struct lruvec *lruvec;
2561
f4b7e272 2562 lruvec = mem_cgroup_page_lruvec(page, pgdat);
0a31bc97
JW
2563 ClearPageLRU(page);
2564 del_page_from_lru_list(page, lruvec, page_lru(page));
2565 *isolated = 1;
2566 } else
2567 *isolated = 0;
2568}
2569
2570static void unlock_page_lru(struct page *page, int isolated)
2571{
f4b7e272 2572 pg_data_t *pgdat = page_pgdat(page);
0a31bc97
JW
2573
2574 if (isolated) {
2575 struct lruvec *lruvec;
2576
f4b7e272 2577 lruvec = mem_cgroup_page_lruvec(page, pgdat);
0a31bc97
JW
2578 VM_BUG_ON_PAGE(PageLRU(page), page);
2579 SetPageLRU(page);
2580 add_page_to_lru_list(page, lruvec, page_lru(page));
2581 }
f4b7e272 2582 spin_unlock_irq(&pgdat->lru_lock);
0a31bc97
JW
2583}
2584
00501b53 2585static void commit_charge(struct page *page, struct mem_cgroup *memcg,
6abb5a86 2586 bool lrucare)
7a81b88c 2587{
0a31bc97 2588 int isolated;
9ce70c02 2589
1306a85a 2590 VM_BUG_ON_PAGE(page->mem_cgroup, page);
9ce70c02
HD
2591
2592 /*
2593 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2594 * may already be on some other mem_cgroup's LRU. Take care of it.
2595 */
0a31bc97
JW
2596 if (lrucare)
2597 lock_page_lru(page, &isolated);
9ce70c02 2598
0a31bc97
JW
2599 /*
2600 * Nobody should be changing or seriously looking at
1306a85a 2601 * page->mem_cgroup at this point:
0a31bc97
JW
2602 *
2603 * - the page is uncharged
2604 *
2605 * - the page is off-LRU
2606 *
2607 * - an anonymous fault has exclusive page access, except for
2608 * a locked page table
2609 *
2610 * - a page cache insertion, a swapin fault, or a migration
2611 * have the page locked
2612 */
1306a85a 2613 page->mem_cgroup = memcg;
9ce70c02 2614
0a31bc97
JW
2615 if (lrucare)
2616 unlock_page_lru(page, isolated);
7a81b88c 2617}
66e1707b 2618
84c07d11 2619#ifdef CONFIG_MEMCG_KMEM
f3bb3043 2620static int memcg_alloc_cache_id(void)
55007d84 2621{
f3bb3043
VD
2622 int id, size;
2623 int err;
2624
dbcf73e2 2625 id = ida_simple_get(&memcg_cache_ida,
f3bb3043
VD
2626 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
2627 if (id < 0)
2628 return id;
55007d84 2629
dbcf73e2 2630 if (id < memcg_nr_cache_ids)
f3bb3043
VD
2631 return id;
2632
2633 /*
2634 * There's no space for the new id in memcg_caches arrays,
2635 * so we have to grow them.
2636 */
05257a1a 2637 down_write(&memcg_cache_ids_sem);
f3bb3043
VD
2638
2639 size = 2 * (id + 1);
55007d84
GC
2640 if (size < MEMCG_CACHES_MIN_SIZE)
2641 size = MEMCG_CACHES_MIN_SIZE;
2642 else if (size > MEMCG_CACHES_MAX_SIZE)
2643 size = MEMCG_CACHES_MAX_SIZE;
2644
f3bb3043 2645 err = memcg_update_all_caches(size);
60d3fd32
VD
2646 if (!err)
2647 err = memcg_update_all_list_lrus(size);
05257a1a
VD
2648 if (!err)
2649 memcg_nr_cache_ids = size;
2650
2651 up_write(&memcg_cache_ids_sem);
2652
f3bb3043 2653 if (err) {
dbcf73e2 2654 ida_simple_remove(&memcg_cache_ida, id);
f3bb3043
VD
2655 return err;
2656 }
2657 return id;
2658}
2659
2660static void memcg_free_cache_id(int id)
2661{
dbcf73e2 2662 ida_simple_remove(&memcg_cache_ida, id);
55007d84
GC
2663}
2664
d5b3cf71 2665struct memcg_kmem_cache_create_work {
5722d094
VD
2666 struct mem_cgroup *memcg;
2667 struct kmem_cache *cachep;
2668 struct work_struct work;
2669};
2670
d5b3cf71 2671static void memcg_kmem_cache_create_func(struct work_struct *w)
d7f25f8a 2672{
d5b3cf71
VD
2673 struct memcg_kmem_cache_create_work *cw =
2674 container_of(w, struct memcg_kmem_cache_create_work, work);
5722d094
VD
2675 struct mem_cgroup *memcg = cw->memcg;
2676 struct kmem_cache *cachep = cw->cachep;
d7f25f8a 2677
d5b3cf71 2678 memcg_create_kmem_cache(memcg, cachep);
bd673145 2679
5722d094 2680 css_put(&memcg->css);
d7f25f8a
GC
2681 kfree(cw);
2682}
2683
2684/*
2685 * Enqueue the creation of a per-memcg kmem_cache.
d7f25f8a 2686 */
85cfb245 2687static void memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
d5b3cf71 2688 struct kmem_cache *cachep)
d7f25f8a 2689{
d5b3cf71 2690 struct memcg_kmem_cache_create_work *cw;
d7f25f8a 2691
f0a3a24b
RG
2692 if (!css_tryget_online(&memcg->css))
2693 return;
2694
c892fd82 2695 cw = kmalloc(sizeof(*cw), GFP_NOWAIT | __GFP_NOWARN);
8135be5a 2696 if (!cw)
d7f25f8a 2697 return;
8135be5a 2698
d7f25f8a
GC
2699 cw->memcg = memcg;
2700 cw->cachep = cachep;
d5b3cf71 2701 INIT_WORK(&cw->work, memcg_kmem_cache_create_func);
d7f25f8a 2702
17cc4dfe 2703 queue_work(memcg_kmem_cache_wq, &cw->work);
d7f25f8a
GC
2704}
2705
45264778
VD
2706static inline bool memcg_kmem_bypass(void)
2707{
2708 if (in_interrupt() || !current->mm || (current->flags & PF_KTHREAD))
2709 return true;
2710 return false;
2711}
2712
2713/**
2714 * memcg_kmem_get_cache: select the correct per-memcg cache for allocation
2715 * @cachep: the original global kmem cache
2716 *
d7f25f8a
GC
2717 * Return the kmem_cache we're supposed to use for a slab allocation.
2718 * We try to use the current memcg's version of the cache.
2719 *
45264778
VD
2720 * If the cache does not exist yet, if we are the first user of it, we
2721 * create it asynchronously in a workqueue and let the current allocation
2722 * go through with the original cache.
d7f25f8a 2723 *
45264778
VD
2724 * This function takes a reference to the cache it returns to assure it
2725 * won't get destroyed while we are working with it. Once the caller is
2726 * done with it, memcg_kmem_put_cache() must be called to release the
2727 * reference.
d7f25f8a 2728 */
45264778 2729struct kmem_cache *memcg_kmem_get_cache(struct kmem_cache *cachep)
d7f25f8a
GC
2730{
2731 struct mem_cgroup *memcg;
959c8963 2732 struct kmem_cache *memcg_cachep;
f0a3a24b 2733 struct memcg_cache_array *arr;
2a4db7eb 2734 int kmemcg_id;
d7f25f8a 2735
f7ce3190 2736 VM_BUG_ON(!is_root_cache(cachep));
d7f25f8a 2737
45264778 2738 if (memcg_kmem_bypass())
230e9fc2
VD
2739 return cachep;
2740
f0a3a24b
RG
2741 rcu_read_lock();
2742
2743 if (unlikely(current->active_memcg))
2744 memcg = current->active_memcg;
2745 else
2746 memcg = mem_cgroup_from_task(current);
2747
2748 if (!memcg || memcg == root_mem_cgroup)
2749 goto out_unlock;
2750
4db0c3c2 2751 kmemcg_id = READ_ONCE(memcg->kmemcg_id);
2a4db7eb 2752 if (kmemcg_id < 0)
f0a3a24b 2753 goto out_unlock;
d7f25f8a 2754
f0a3a24b
RG
2755 arr = rcu_dereference(cachep->memcg_params.memcg_caches);
2756
2757 /*
2758 * Make sure we will access the up-to-date value. The code updating
2759 * memcg_caches issues a write barrier to match the data dependency
2760 * barrier inside READ_ONCE() (see memcg_create_kmem_cache()).
2761 */
2762 memcg_cachep = READ_ONCE(arr->entries[kmemcg_id]);
ca0dde97
LZ
2763
2764 /*
2765 * If we are in a safe context (can wait, and not in interrupt
2766 * context), we could be be predictable and return right away.
2767 * This would guarantee that the allocation being performed
2768 * already belongs in the new cache.
2769 *
2770 * However, there are some clashes that can arrive from locking.
2771 * For instance, because we acquire the slab_mutex while doing
776ed0f0
VD
2772 * memcg_create_kmem_cache, this means no further allocation
2773 * could happen with the slab_mutex held. So it's better to
2774 * defer everything.
f0a3a24b
RG
2775 *
2776 * If the memcg is dying or memcg_cache is about to be released,
2777 * don't bother creating new kmem_caches. Because memcg_cachep
2778 * is ZEROed as the fist step of kmem offlining, we don't need
2779 * percpu_ref_tryget_live() here. css_tryget_online() check in
2780 * memcg_schedule_kmem_cache_create() will prevent us from
2781 * creation of a new kmem_cache.
ca0dde97 2782 */
f0a3a24b
RG
2783 if (unlikely(!memcg_cachep))
2784 memcg_schedule_kmem_cache_create(memcg, cachep);
2785 else if (percpu_ref_tryget(&memcg_cachep->memcg_params.refcnt))
2786 cachep = memcg_cachep;
2787out_unlock:
2788 rcu_read_unlock();
ca0dde97 2789 return cachep;
d7f25f8a 2790}
d7f25f8a 2791
45264778
VD
2792/**
2793 * memcg_kmem_put_cache: drop reference taken by memcg_kmem_get_cache
2794 * @cachep: the cache returned by memcg_kmem_get_cache
2795 */
2796void memcg_kmem_put_cache(struct kmem_cache *cachep)
8135be5a
VD
2797{
2798 if (!is_root_cache(cachep))
f0a3a24b 2799 percpu_ref_put(&cachep->memcg_params.refcnt);
8135be5a
VD
2800}
2801
45264778 2802/**
60cd4bcd 2803 * __memcg_kmem_charge_memcg: charge a kmem page
45264778
VD
2804 * @page: page to charge
2805 * @gfp: reclaim mode
2806 * @order: allocation order
2807 * @memcg: memory cgroup to charge
2808 *
2809 * Returns 0 on success, an error code on failure.
2810 */
60cd4bcd 2811int __memcg_kmem_charge_memcg(struct page *page, gfp_t gfp, int order,
45264778 2812 struct mem_cgroup *memcg)
7ae1e1d0 2813{
f3ccb2c4
VD
2814 unsigned int nr_pages = 1 << order;
2815 struct page_counter *counter;
7ae1e1d0
GC
2816 int ret;
2817
f3ccb2c4 2818 ret = try_charge(memcg, gfp, nr_pages);
52c29b04 2819 if (ret)
f3ccb2c4 2820 return ret;
52c29b04
JW
2821
2822 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) &&
2823 !page_counter_try_charge(&memcg->kmem, nr_pages, &counter)) {
2824 cancel_charge(memcg, nr_pages);
2825 return -ENOMEM;
7ae1e1d0 2826 }
f3ccb2c4 2827 return 0;
7ae1e1d0
GC
2828}
2829
45264778 2830/**
60cd4bcd 2831 * __memcg_kmem_charge: charge a kmem page to the current memory cgroup
45264778
VD
2832 * @page: page to charge
2833 * @gfp: reclaim mode
2834 * @order: allocation order
2835 *
2836 * Returns 0 on success, an error code on failure.
2837 */
60cd4bcd 2838int __memcg_kmem_charge(struct page *page, gfp_t gfp, int order)
7ae1e1d0 2839{
f3ccb2c4 2840 struct mem_cgroup *memcg;
fcff7d7e 2841 int ret = 0;
7ae1e1d0 2842
60cd4bcd 2843 if (memcg_kmem_bypass())
45264778
VD
2844 return 0;
2845
d46eb14b 2846 memcg = get_mem_cgroup_from_current();
c4159a75 2847 if (!mem_cgroup_is_root(memcg)) {
60cd4bcd 2848 ret = __memcg_kmem_charge_memcg(page, gfp, order, memcg);
4d96ba35
RG
2849 if (!ret) {
2850 page->mem_cgroup = memcg;
c4159a75 2851 __SetPageKmemcg(page);
4d96ba35 2852 }
c4159a75 2853 }
7ae1e1d0 2854 css_put(&memcg->css);
d05e83a6 2855 return ret;
7ae1e1d0 2856}
49a18eae
RG
2857
2858/**
2859 * __memcg_kmem_uncharge_memcg: uncharge a kmem page
2860 * @memcg: memcg to uncharge
2861 * @nr_pages: number of pages to uncharge
2862 */
2863void __memcg_kmem_uncharge_memcg(struct mem_cgroup *memcg,
2864 unsigned int nr_pages)
2865{
2866 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
2867 page_counter_uncharge(&memcg->kmem, nr_pages);
2868
2869 page_counter_uncharge(&memcg->memory, nr_pages);
2870 if (do_memsw_account())
2871 page_counter_uncharge(&memcg->memsw, nr_pages);
2872}
45264778 2873/**
60cd4bcd 2874 * __memcg_kmem_uncharge: uncharge a kmem page
45264778
VD
2875 * @page: page to uncharge
2876 * @order: allocation order
2877 */
60cd4bcd 2878void __memcg_kmem_uncharge(struct page *page, int order)
7ae1e1d0 2879{
1306a85a 2880 struct mem_cgroup *memcg = page->mem_cgroup;
f3ccb2c4 2881 unsigned int nr_pages = 1 << order;
7ae1e1d0 2882
7ae1e1d0
GC
2883 if (!memcg)
2884 return;
2885
309381fe 2886 VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
49a18eae 2887 __memcg_kmem_uncharge_memcg(memcg, nr_pages);
1306a85a 2888 page->mem_cgroup = NULL;
c4159a75
VD
2889
2890 /* slab pages do not have PageKmemcg flag set */
2891 if (PageKmemcg(page))
2892 __ClearPageKmemcg(page);
2893
f3ccb2c4 2894 css_put_many(&memcg->css, nr_pages);
60d3fd32 2895}
84c07d11 2896#endif /* CONFIG_MEMCG_KMEM */
7ae1e1d0 2897
ca3e0214
KH
2898#ifdef CONFIG_TRANSPARENT_HUGEPAGE
2899
ca3e0214
KH
2900/*
2901 * Because tail pages are not marked as "used", set it. We're under
f4b7e272 2902 * pgdat->lru_lock and migration entries setup in all page mappings.
ca3e0214 2903 */
e94c8a9c 2904void mem_cgroup_split_huge_fixup(struct page *head)
ca3e0214 2905{
e94c8a9c 2906 int i;
ca3e0214 2907
3d37c4a9
KH
2908 if (mem_cgroup_disabled())
2909 return;
b070e65c 2910
29833315 2911 for (i = 1; i < HPAGE_PMD_NR; i++)
1306a85a 2912 head[i].mem_cgroup = head->mem_cgroup;
b9982f8d 2913
c9019e9b 2914 __mod_memcg_state(head->mem_cgroup, MEMCG_RSS_HUGE, -HPAGE_PMD_NR);
ca3e0214 2915}
12d27107 2916#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
ca3e0214 2917
c255a458 2918#ifdef CONFIG_MEMCG_SWAP
02491447
DN
2919/**
2920 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
2921 * @entry: swap entry to be moved
2922 * @from: mem_cgroup which the entry is moved from
2923 * @to: mem_cgroup which the entry is moved to
2924 *
2925 * It succeeds only when the swap_cgroup's record for this entry is the same
2926 * as the mem_cgroup's id of @from.
2927 *
2928 * Returns 0 on success, -EINVAL on failure.
2929 *
3e32cb2e 2930 * The caller must have charged to @to, IOW, called page_counter_charge() about
02491447
DN
2931 * both res and memsw, and called css_get().
2932 */
2933static int mem_cgroup_move_swap_account(swp_entry_t entry,
e91cbb42 2934 struct mem_cgroup *from, struct mem_cgroup *to)
02491447
DN
2935{
2936 unsigned short old_id, new_id;
2937
34c00c31
LZ
2938 old_id = mem_cgroup_id(from);
2939 new_id = mem_cgroup_id(to);
02491447
DN
2940
2941 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
c9019e9b
JW
2942 mod_memcg_state(from, MEMCG_SWAP, -1);
2943 mod_memcg_state(to, MEMCG_SWAP, 1);
02491447
DN
2944 return 0;
2945 }
2946 return -EINVAL;
2947}
2948#else
2949static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
e91cbb42 2950 struct mem_cgroup *from, struct mem_cgroup *to)
02491447
DN
2951{
2952 return -EINVAL;
2953}
8c7c6e34 2954#endif
d13d1443 2955
bbec2e15 2956static DEFINE_MUTEX(memcg_max_mutex);
f212ad7c 2957
bbec2e15
RG
2958static int mem_cgroup_resize_max(struct mem_cgroup *memcg,
2959 unsigned long max, bool memsw)
628f4235 2960{
3e32cb2e 2961 bool enlarge = false;
bb4a7ea2 2962 bool drained = false;
3e32cb2e 2963 int ret;
c054a78c
YZ
2964 bool limits_invariant;
2965 struct page_counter *counter = memsw ? &memcg->memsw : &memcg->memory;
81d39c20 2966
3e32cb2e 2967 do {
628f4235
KH
2968 if (signal_pending(current)) {
2969 ret = -EINTR;
2970 break;
2971 }
3e32cb2e 2972
bbec2e15 2973 mutex_lock(&memcg_max_mutex);
c054a78c
YZ
2974 /*
2975 * Make sure that the new limit (memsw or memory limit) doesn't
bbec2e15 2976 * break our basic invariant rule memory.max <= memsw.max.
c054a78c 2977 */
bbec2e15
RG
2978 limits_invariant = memsw ? max >= memcg->memory.max :
2979 max <= memcg->memsw.max;
c054a78c 2980 if (!limits_invariant) {
bbec2e15 2981 mutex_unlock(&memcg_max_mutex);
8c7c6e34 2982 ret = -EINVAL;
8c7c6e34
KH
2983 break;
2984 }
bbec2e15 2985 if (max > counter->max)
3e32cb2e 2986 enlarge = true;
bbec2e15
RG
2987 ret = page_counter_set_max(counter, max);
2988 mutex_unlock(&memcg_max_mutex);
8c7c6e34
KH
2989
2990 if (!ret)
2991 break;
2992
bb4a7ea2
SB
2993 if (!drained) {
2994 drain_all_stock(memcg);
2995 drained = true;
2996 continue;
2997 }
2998
1ab5c056
AR
2999 if (!try_to_free_mem_cgroup_pages(memcg, 1,
3000 GFP_KERNEL, !memsw)) {
3001 ret = -EBUSY;
3002 break;
3003 }
3004 } while (true);
3e32cb2e 3005
3c11ecf4
KH
3006 if (!ret && enlarge)
3007 memcg_oom_recover(memcg);
3e32cb2e 3008
628f4235
KH
3009 return ret;
3010}
3011
ef8f2327 3012unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
0608f43d
AM
3013 gfp_t gfp_mask,
3014 unsigned long *total_scanned)
3015{
3016 unsigned long nr_reclaimed = 0;
ef8f2327 3017 struct mem_cgroup_per_node *mz, *next_mz = NULL;
0608f43d
AM
3018 unsigned long reclaimed;
3019 int loop = 0;
ef8f2327 3020 struct mem_cgroup_tree_per_node *mctz;
3e32cb2e 3021 unsigned long excess;
0608f43d
AM
3022 unsigned long nr_scanned;
3023
3024 if (order > 0)
3025 return 0;
3026
ef8f2327 3027 mctz = soft_limit_tree_node(pgdat->node_id);
d6507ff5
MH
3028
3029 /*
3030 * Do not even bother to check the largest node if the root
3031 * is empty. Do it lockless to prevent lock bouncing. Races
3032 * are acceptable as soft limit is best effort anyway.
3033 */
bfc7228b 3034 if (!mctz || RB_EMPTY_ROOT(&mctz->rb_root))
d6507ff5
MH
3035 return 0;
3036
0608f43d
AM
3037 /*
3038 * This loop can run a while, specially if mem_cgroup's continuously
3039 * keep exceeding their soft limit and putting the system under
3040 * pressure
3041 */
3042 do {
3043 if (next_mz)
3044 mz = next_mz;
3045 else
3046 mz = mem_cgroup_largest_soft_limit_node(mctz);
3047 if (!mz)
3048 break;
3049
3050 nr_scanned = 0;
ef8f2327 3051 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat,
0608f43d
AM
3052 gfp_mask, &nr_scanned);
3053 nr_reclaimed += reclaimed;
3054 *total_scanned += nr_scanned;
0a31bc97 3055 spin_lock_irq(&mctz->lock);
bc2f2e7f 3056 __mem_cgroup_remove_exceeded(mz, mctz);
0608f43d
AM
3057
3058 /*
3059 * If we failed to reclaim anything from this memory cgroup
3060 * it is time to move on to the next cgroup
3061 */
3062 next_mz = NULL;
bc2f2e7f
VD
3063 if (!reclaimed)
3064 next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
3065
3e32cb2e 3066 excess = soft_limit_excess(mz->memcg);
0608f43d
AM
3067 /*
3068 * One school of thought says that we should not add
3069 * back the node to the tree if reclaim returns 0.
3070 * But our reclaim could return 0, simply because due
3071 * to priority we are exposing a smaller subset of
3072 * memory to reclaim from. Consider this as a longer
3073 * term TODO.
3074 */
3075 /* If excess == 0, no tree ops */
cf2c8127 3076 __mem_cgroup_insert_exceeded(mz, mctz, excess);
0a31bc97 3077 spin_unlock_irq(&mctz->lock);
0608f43d
AM
3078 css_put(&mz->memcg->css);
3079 loop++;
3080 /*
3081 * Could not reclaim anything and there are no more
3082 * mem cgroups to try or we seem to be looping without
3083 * reclaiming anything.
3084 */
3085 if (!nr_reclaimed &&
3086 (next_mz == NULL ||
3087 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3088 break;
3089 } while (!nr_reclaimed);
3090 if (next_mz)
3091 css_put(&next_mz->memcg->css);
3092 return nr_reclaimed;
3093}
3094
ea280e7b
TH
3095/*
3096 * Test whether @memcg has children, dead or alive. Note that this
3097 * function doesn't care whether @memcg has use_hierarchy enabled and
3098 * returns %true if there are child csses according to the cgroup
3099 * hierarchy. Testing use_hierarchy is the caller's responsiblity.
3100 */
b5f99b53
GC
3101static inline bool memcg_has_children(struct mem_cgroup *memcg)
3102{
ea280e7b
TH
3103 bool ret;
3104
ea280e7b
TH
3105 rcu_read_lock();
3106 ret = css_next_child(NULL, &memcg->css);
3107 rcu_read_unlock();
3108 return ret;
b5f99b53
GC
3109}
3110
c26251f9 3111/*
51038171 3112 * Reclaims as many pages from the given memcg as possible.
c26251f9
MH
3113 *
3114 * Caller is responsible for holding css reference for memcg.
3115 */
3116static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
3117{
3118 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
c26251f9 3119
c1e862c1
KH
3120 /* we call try-to-free pages for make this cgroup empty */
3121 lru_add_drain_all();
d12c60f6
JS
3122
3123 drain_all_stock(memcg);
3124
f817ed48 3125 /* try to free all pages in this cgroup */
3e32cb2e 3126 while (nr_retries && page_counter_read(&memcg->memory)) {
f817ed48 3127 int progress;
c1e862c1 3128
c26251f9
MH
3129 if (signal_pending(current))
3130 return -EINTR;
3131
b70a2a21
JW
3132 progress = try_to_free_mem_cgroup_pages(memcg, 1,
3133 GFP_KERNEL, true);
c1e862c1 3134 if (!progress) {
f817ed48 3135 nr_retries--;
c1e862c1 3136 /* maybe some writeback is necessary */
8aa7e847 3137 congestion_wait(BLK_RW_ASYNC, HZ/10);
c1e862c1 3138 }
f817ed48
KH
3139
3140 }
ab5196c2
MH
3141
3142 return 0;
cc847582
KH
3143}
3144
6770c64e
TH
3145static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
3146 char *buf, size_t nbytes,
3147 loff_t off)
c1e862c1 3148{
6770c64e 3149 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
c26251f9 3150
d8423011
MH
3151 if (mem_cgroup_is_root(memcg))
3152 return -EINVAL;
6770c64e 3153 return mem_cgroup_force_empty(memcg) ?: nbytes;
c1e862c1
KH
3154}
3155
182446d0
TH
3156static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
3157 struct cftype *cft)
18f59ea7 3158{
182446d0 3159 return mem_cgroup_from_css(css)->use_hierarchy;
18f59ea7
BS
3160}
3161
182446d0
TH
3162static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
3163 struct cftype *cft, u64 val)
18f59ea7
BS
3164{
3165 int retval = 0;
182446d0 3166 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5c9d535b 3167 struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
18f59ea7 3168
567fb435 3169 if (memcg->use_hierarchy == val)
0b8f73e1 3170 return 0;
567fb435 3171
18f59ea7 3172 /*
af901ca1 3173 * If parent's use_hierarchy is set, we can't make any modifications
18f59ea7
BS
3174 * in the child subtrees. If it is unset, then the change can
3175 * occur, provided the current cgroup has no children.
3176 *
3177 * For the root cgroup, parent_mem is NULL, we allow value to be
3178 * set if there are no children.
3179 */
c0ff4b85 3180 if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
18f59ea7 3181 (val == 1 || val == 0)) {
ea280e7b 3182 if (!memcg_has_children(memcg))
c0ff4b85 3183 memcg->use_hierarchy = val;
18f59ea7
BS
3184 else
3185 retval = -EBUSY;
3186 } else
3187 retval = -EINVAL;
567fb435 3188
18f59ea7
BS
3189 return retval;
3190}
3191
6f646156 3192static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
ce00a967 3193{
42a30035 3194 unsigned long val;
ce00a967 3195
3e32cb2e 3196 if (mem_cgroup_is_root(memcg)) {
42a30035
JW
3197 val = memcg_page_state(memcg, MEMCG_CACHE) +
3198 memcg_page_state(memcg, MEMCG_RSS);
3199 if (swap)
3200 val += memcg_page_state(memcg, MEMCG_SWAP);
3e32cb2e 3201 } else {
ce00a967 3202 if (!swap)
3e32cb2e 3203 val = page_counter_read(&memcg->memory);
ce00a967 3204 else
3e32cb2e 3205 val = page_counter_read(&memcg->memsw);
ce00a967 3206 }
c12176d3 3207 return val;
ce00a967
JW
3208}
3209
3e32cb2e
JW
3210enum {
3211 RES_USAGE,
3212 RES_LIMIT,
3213 RES_MAX_USAGE,
3214 RES_FAILCNT,
3215 RES_SOFT_LIMIT,
3216};
ce00a967 3217
791badbd 3218static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
05b84301 3219 struct cftype *cft)
8cdea7c0 3220{
182446d0 3221 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3e32cb2e 3222 struct page_counter *counter;
af36f906 3223
3e32cb2e 3224 switch (MEMFILE_TYPE(cft->private)) {
8c7c6e34 3225 case _MEM:
3e32cb2e
JW
3226 counter = &memcg->memory;
3227 break;
8c7c6e34 3228 case _MEMSWAP:
3e32cb2e
JW
3229 counter = &memcg->memsw;
3230 break;
510fc4e1 3231 case _KMEM:
3e32cb2e 3232 counter = &memcg->kmem;
510fc4e1 3233 break;
d55f90bf 3234 case _TCP:
0db15298 3235 counter = &memcg->tcpmem;
d55f90bf 3236 break;
8c7c6e34
KH
3237 default:
3238 BUG();
8c7c6e34 3239 }
3e32cb2e
JW
3240
3241 switch (MEMFILE_ATTR(cft->private)) {
3242 case RES_USAGE:
3243 if (counter == &memcg->memory)
c12176d3 3244 return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
3e32cb2e 3245 if (counter == &memcg->memsw)
c12176d3 3246 return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
3e32cb2e
JW
3247 return (u64)page_counter_read(counter) * PAGE_SIZE;
3248 case RES_LIMIT:
bbec2e15 3249 return (u64)counter->max * PAGE_SIZE;
3e32cb2e
JW
3250 case RES_MAX_USAGE:
3251 return (u64)counter->watermark * PAGE_SIZE;
3252 case RES_FAILCNT:
3253 return counter->failcnt;
3254 case RES_SOFT_LIMIT:
3255 return (u64)memcg->soft_limit * PAGE_SIZE;
3256 default:
3257 BUG();
3258 }
8cdea7c0 3259}
510fc4e1 3260
bee07b33 3261static void memcg_flush_percpu_vmstats(struct mem_cgroup *memcg, bool slab_only)
c350a99e
RG
3262{
3263 unsigned long stat[MEMCG_NR_STAT];
3264 struct mem_cgroup *mi;
3265 int node, cpu, i;
bee07b33 3266 int min_idx, max_idx;
c350a99e 3267
bee07b33
RG
3268 if (slab_only) {
3269 min_idx = NR_SLAB_RECLAIMABLE;
3270 max_idx = NR_SLAB_UNRECLAIMABLE;
3271 } else {
3272 min_idx = 0;
3273 max_idx = MEMCG_NR_STAT;
3274 }
3275
3276 for (i = min_idx; i < max_idx; i++)
c350a99e
RG
3277 stat[i] = 0;
3278
3279 for_each_online_cpu(cpu)
bee07b33 3280 for (i = min_idx; i < max_idx; i++)
6c1c2808 3281 stat[i] += per_cpu(memcg->vmstats_percpu->stat[i], cpu);
c350a99e
RG
3282
3283 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
bee07b33 3284 for (i = min_idx; i < max_idx; i++)
c350a99e
RG
3285 atomic_long_add(stat[i], &mi->vmstats[i]);
3286
bee07b33
RG
3287 if (!slab_only)
3288 max_idx = NR_VM_NODE_STAT_ITEMS;
3289
c350a99e
RG
3290 for_each_node(node) {
3291 struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];
3292 struct mem_cgroup_per_node *pi;
3293
bee07b33 3294 for (i = min_idx; i < max_idx; i++)
c350a99e
RG
3295 stat[i] = 0;
3296
3297 for_each_online_cpu(cpu)
bee07b33 3298 for (i = min_idx; i < max_idx; i++)
6c1c2808
SB
3299 stat[i] += per_cpu(
3300 pn->lruvec_stat_cpu->count[i], cpu);
c350a99e
RG
3301
3302 for (pi = pn; pi; pi = parent_nodeinfo(pi, node))
bee07b33 3303 for (i = min_idx; i < max_idx; i++)
c350a99e
RG
3304 atomic_long_add(stat[i], &pi->lruvec_stat[i]);
3305 }
3306}
3307
bb65f89b
RG
3308static void memcg_flush_percpu_vmevents(struct mem_cgroup *memcg)
3309{
3310 unsigned long events[NR_VM_EVENT_ITEMS];
3311 struct mem_cgroup *mi;
3312 int cpu, i;
3313
3314 for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
3315 events[i] = 0;
3316
3317 for_each_online_cpu(cpu)
3318 for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
6c1c2808
SB
3319 events[i] += per_cpu(memcg->vmstats_percpu->events[i],
3320 cpu);
bb65f89b
RG
3321
3322 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
3323 for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
3324 atomic_long_add(events[i], &mi->vmevents[i]);
3325}
3326
84c07d11 3327#ifdef CONFIG_MEMCG_KMEM
567e9ab2 3328static int memcg_online_kmem(struct mem_cgroup *memcg)
d6441637 3329{
d6441637
VD
3330 int memcg_id;
3331
b313aeee
VD
3332 if (cgroup_memory_nokmem)
3333 return 0;
3334
2a4db7eb 3335 BUG_ON(memcg->kmemcg_id >= 0);
567e9ab2 3336 BUG_ON(memcg->kmem_state);
d6441637 3337
f3bb3043 3338 memcg_id = memcg_alloc_cache_id();
0b8f73e1
JW
3339 if (memcg_id < 0)
3340 return memcg_id;
d6441637 3341
ef12947c 3342 static_branch_inc(&memcg_kmem_enabled_key);
d6441637 3343 /*
567e9ab2 3344 * A memory cgroup is considered kmem-online as soon as it gets
900a38f0 3345 * kmemcg_id. Setting the id after enabling static branching will
d6441637
VD
3346 * guarantee no one starts accounting before all call sites are
3347 * patched.
3348 */
900a38f0 3349 memcg->kmemcg_id = memcg_id;
567e9ab2 3350 memcg->kmem_state = KMEM_ONLINE;
bc2791f8 3351 INIT_LIST_HEAD(&memcg->kmem_caches);
0b8f73e1
JW
3352
3353 return 0;
d6441637
VD
3354}
3355
8e0a8912
JW
3356static void memcg_offline_kmem(struct mem_cgroup *memcg)
3357{
3358 struct cgroup_subsys_state *css;
3359 struct mem_cgroup *parent, *child;
3360 int kmemcg_id;
3361
3362 if (memcg->kmem_state != KMEM_ONLINE)
3363 return;
3364 /*
3365 * Clear the online state before clearing memcg_caches array
3366 * entries. The slab_mutex in memcg_deactivate_kmem_caches()
3367 * guarantees that no cache will be created for this cgroup
3368 * after we are done (see memcg_create_kmem_cache()).
3369 */
3370 memcg->kmem_state = KMEM_ALLOCATED;
3371
8e0a8912
JW
3372 parent = parent_mem_cgroup(memcg);
3373 if (!parent)
3374 parent = root_mem_cgroup;
3375
bee07b33
RG
3376 /*
3377 * Deactivate and reparent kmem_caches. Then flush percpu
3378 * slab statistics to have precise values at the parent and
3379 * all ancestor levels. It's required to keep slab stats
3380 * accurate after the reparenting of kmem_caches.
3381 */
fb2f2b0a 3382 memcg_deactivate_kmem_caches(memcg, parent);
bee07b33 3383 memcg_flush_percpu_vmstats(memcg, true);
fb2f2b0a
RG
3384
3385 kmemcg_id = memcg->kmemcg_id;
3386 BUG_ON(kmemcg_id < 0);
3387
8e0a8912
JW
3388 /*
3389 * Change kmemcg_id of this cgroup and all its descendants to the
3390 * parent's id, and then move all entries from this cgroup's list_lrus
3391 * to ones of the parent. After we have finished, all list_lrus
3392 * corresponding to this cgroup are guaranteed to remain empty. The
3393 * ordering is imposed by list_lru_node->lock taken by
3394 * memcg_drain_all_list_lrus().
3395 */
3a06bb78 3396 rcu_read_lock(); /* can be called from css_free w/o cgroup_mutex */
8e0a8912
JW
3397 css_for_each_descendant_pre(css, &memcg->css) {
3398 child = mem_cgroup_from_css(css);
3399 BUG_ON(child->kmemcg_id != kmemcg_id);
3400 child->kmemcg_id = parent->kmemcg_id;
3401 if (!memcg->use_hierarchy)
3402 break;
3403 }
3a06bb78
TH
3404 rcu_read_unlock();
3405
9bec5c35 3406 memcg_drain_all_list_lrus(kmemcg_id, parent);
8e0a8912
JW
3407
3408 memcg_free_cache_id(kmemcg_id);
3409}
3410
3411static void memcg_free_kmem(struct mem_cgroup *memcg)
3412{
0b8f73e1
JW
3413 /* css_alloc() failed, offlining didn't happen */
3414 if (unlikely(memcg->kmem_state == KMEM_ONLINE))
3415 memcg_offline_kmem(memcg);
3416
8e0a8912 3417 if (memcg->kmem_state == KMEM_ALLOCATED) {
f0a3a24b 3418 WARN_ON(!list_empty(&memcg->kmem_caches));
8e0a8912 3419 static_branch_dec(&memcg_kmem_enabled_key);
8e0a8912 3420 }
8e0a8912 3421}
d6441637 3422#else
0b8f73e1 3423static int memcg_online_kmem(struct mem_cgroup *memcg)
127424c8
JW
3424{
3425 return 0;
3426}
3427static void memcg_offline_kmem(struct mem_cgroup *memcg)
3428{
3429}
3430static void memcg_free_kmem(struct mem_cgroup *memcg)
3431{
3432}
84c07d11 3433#endif /* CONFIG_MEMCG_KMEM */
127424c8 3434
bbec2e15
RG
3435static int memcg_update_kmem_max(struct mem_cgroup *memcg,
3436 unsigned long max)
d6441637 3437{
b313aeee 3438 int ret;
127424c8 3439
bbec2e15
RG
3440 mutex_lock(&memcg_max_mutex);
3441 ret = page_counter_set_max(&memcg->kmem, max);
3442 mutex_unlock(&memcg_max_mutex);
127424c8 3443 return ret;
d6441637 3444}
510fc4e1 3445
bbec2e15 3446static int memcg_update_tcp_max(struct mem_cgroup *memcg, unsigned long max)
d55f90bf
VD
3447{
3448 int ret;
3449
bbec2e15 3450 mutex_lock(&memcg_max_mutex);
d55f90bf 3451
bbec2e15 3452 ret = page_counter_set_max(&memcg->tcpmem, max);
d55f90bf
VD
3453 if (ret)
3454 goto out;
3455
0db15298 3456 if (!memcg->tcpmem_active) {
d55f90bf
VD
3457 /*
3458 * The active flag needs to be written after the static_key
3459 * update. This is what guarantees that the socket activation
2d758073
JW
3460 * function is the last one to run. See mem_cgroup_sk_alloc()
3461 * for details, and note that we don't mark any socket as
3462 * belonging to this memcg until that flag is up.
d55f90bf
VD
3463 *
3464 * We need to do this, because static_keys will span multiple
3465 * sites, but we can't control their order. If we mark a socket
3466 * as accounted, but the accounting functions are not patched in
3467 * yet, we'll lose accounting.
3468 *
2d758073 3469 * We never race with the readers in mem_cgroup_sk_alloc(),
d55f90bf
VD
3470 * because when this value change, the code to process it is not
3471 * patched in yet.
3472 */
3473 static_branch_inc(&memcg_sockets_enabled_key);
0db15298 3474 memcg->tcpmem_active = true;
d55f90bf
VD
3475 }
3476out:
bbec2e15 3477 mutex_unlock(&memcg_max_mutex);
d55f90bf
VD
3478 return ret;
3479}
d55f90bf 3480
628f4235
KH
3481/*
3482 * The user of this function is...
3483 * RES_LIMIT.
3484 */
451af504
TH
3485static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
3486 char *buf, size_t nbytes, loff_t off)
8cdea7c0 3487{
451af504 3488 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3e32cb2e 3489 unsigned long nr_pages;
628f4235
KH
3490 int ret;
3491
451af504 3492 buf = strstrip(buf);
650c5e56 3493 ret = page_counter_memparse(buf, "-1", &nr_pages);
3e32cb2e
JW
3494 if (ret)
3495 return ret;
af36f906 3496
3e32cb2e 3497 switch (MEMFILE_ATTR(of_cft(of)->private)) {
628f4235 3498 case RES_LIMIT:
4b3bde4c
BS
3499 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3500 ret = -EINVAL;
3501 break;
3502 }
3e32cb2e
JW
3503 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3504 case _MEM:
bbec2e15 3505 ret = mem_cgroup_resize_max(memcg, nr_pages, false);
8c7c6e34 3506 break;
3e32cb2e 3507 case _MEMSWAP:
bbec2e15 3508 ret = mem_cgroup_resize_max(memcg, nr_pages, true);
296c81d8 3509 break;
3e32cb2e 3510 case _KMEM:
bbec2e15 3511 ret = memcg_update_kmem_max(memcg, nr_pages);
3e32cb2e 3512 break;
d55f90bf 3513 case _TCP:
bbec2e15 3514 ret = memcg_update_tcp_max(memcg, nr_pages);
d55f90bf 3515 break;
3e32cb2e 3516 }
296c81d8 3517 break;
3e32cb2e
JW
3518 case RES_SOFT_LIMIT:
3519 memcg->soft_limit = nr_pages;
3520 ret = 0;
628f4235
KH
3521 break;
3522 }
451af504 3523 return ret ?: nbytes;
8cdea7c0
BS
3524}
3525
6770c64e
TH
3526static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
3527 size_t nbytes, loff_t off)
c84872e1 3528{
6770c64e 3529 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3e32cb2e 3530 struct page_counter *counter;
c84872e1 3531
3e32cb2e
JW
3532 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3533 case _MEM:
3534 counter = &memcg->memory;
3535 break;
3536 case _MEMSWAP:
3537 counter = &memcg->memsw;
3538 break;
3539 case _KMEM:
3540 counter = &memcg->kmem;
3541 break;
d55f90bf 3542 case _TCP:
0db15298 3543 counter = &memcg->tcpmem;
d55f90bf 3544 break;
3e32cb2e
JW
3545 default:
3546 BUG();
3547 }
af36f906 3548
3e32cb2e 3549 switch (MEMFILE_ATTR(of_cft(of)->private)) {
29f2a4da 3550 case RES_MAX_USAGE:
3e32cb2e 3551 page_counter_reset_watermark(counter);
29f2a4da
PE
3552 break;
3553 case RES_FAILCNT:
3e32cb2e 3554 counter->failcnt = 0;
29f2a4da 3555 break;
3e32cb2e
JW
3556 default:
3557 BUG();
29f2a4da 3558 }
f64c3f54 3559
6770c64e 3560 return nbytes;
c84872e1
PE
3561}
3562
182446d0 3563static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
7dc74be0
DN
3564 struct cftype *cft)
3565{
182446d0 3566 return mem_cgroup_from_css(css)->move_charge_at_immigrate;
7dc74be0
DN
3567}
3568
02491447 3569#ifdef CONFIG_MMU
182446d0 3570static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
7dc74be0
DN
3571 struct cftype *cft, u64 val)
3572{
182446d0 3573 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
7dc74be0 3574
1dfab5ab 3575 if (val & ~MOVE_MASK)
7dc74be0 3576 return -EINVAL;
ee5e8472 3577
7dc74be0 3578 /*
ee5e8472
GC
3579 * No kind of locking is needed in here, because ->can_attach() will
3580 * check this value once in the beginning of the process, and then carry
3581 * on with stale data. This means that changes to this value will only
3582 * affect task migrations starting after the change.
7dc74be0 3583 */
c0ff4b85 3584 memcg->move_charge_at_immigrate = val;
7dc74be0
DN
3585 return 0;
3586}
02491447 3587#else
182446d0 3588static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
02491447
DN
3589 struct cftype *cft, u64 val)
3590{
3591 return -ENOSYS;
3592}
3593#endif
7dc74be0 3594
406eb0c9 3595#ifdef CONFIG_NUMA
113b7dfd
JW
3596
3597#define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE))
3598#define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON))
3599#define LRU_ALL ((1 << NR_LRU_LISTS) - 1)
3600
3601static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
3602 int nid, unsigned int lru_mask)
3603{
3604 struct lruvec *lruvec = mem_cgroup_lruvec(NODE_DATA(nid), memcg);
3605 unsigned long nr = 0;
3606 enum lru_list lru;
3607
3608 VM_BUG_ON((unsigned)nid >= nr_node_ids);
3609
3610 for_each_lru(lru) {
3611 if (!(BIT(lru) & lru_mask))
3612 continue;
205b20cc 3613 nr += lruvec_page_state_local(lruvec, NR_LRU_BASE + lru);
113b7dfd
JW
3614 }
3615 return nr;
3616}
3617
3618static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
3619 unsigned int lru_mask)
3620{
3621 unsigned long nr = 0;
3622 enum lru_list lru;
3623
3624 for_each_lru(lru) {
3625 if (!(BIT(lru) & lru_mask))
3626 continue;
205b20cc 3627 nr += memcg_page_state_local(memcg, NR_LRU_BASE + lru);
113b7dfd
JW
3628 }
3629 return nr;
3630}
3631
2da8ca82 3632static int memcg_numa_stat_show(struct seq_file *m, void *v)
406eb0c9 3633{
25485de6
GT
3634 struct numa_stat {
3635 const char *name;
3636 unsigned int lru_mask;
3637 };
3638
3639 static const struct numa_stat stats[] = {
3640 { "total", LRU_ALL },
3641 { "file", LRU_ALL_FILE },
3642 { "anon", LRU_ALL_ANON },
3643 { "unevictable", BIT(LRU_UNEVICTABLE) },
3644 };
3645 const struct numa_stat *stat;
406eb0c9 3646 int nid;
25485de6 3647 unsigned long nr;
aa9694bb 3648 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
406eb0c9 3649
25485de6
GT
3650 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3651 nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
3652 seq_printf(m, "%s=%lu", stat->name, nr);
3653 for_each_node_state(nid, N_MEMORY) {
3654 nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
3655 stat->lru_mask);
3656 seq_printf(m, " N%d=%lu", nid, nr);
3657 }
3658 seq_putc(m, '\n');
406eb0c9 3659 }
406eb0c9 3660
071aee13
YH
3661 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3662 struct mem_cgroup *iter;
3663
3664 nr = 0;
3665 for_each_mem_cgroup_tree(iter, memcg)
3666 nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
3667 seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
3668 for_each_node_state(nid, N_MEMORY) {
3669 nr = 0;
3670 for_each_mem_cgroup_tree(iter, memcg)
3671 nr += mem_cgroup_node_nr_lru_pages(
3672 iter, nid, stat->lru_mask);
3673 seq_printf(m, " N%d=%lu", nid, nr);
3674 }
3675 seq_putc(m, '\n');
406eb0c9 3676 }
406eb0c9 3677
406eb0c9
YH
3678 return 0;
3679}
3680#endif /* CONFIG_NUMA */
3681
c8713d0b
JW
3682static const unsigned int memcg1_stats[] = {
3683 MEMCG_CACHE,
3684 MEMCG_RSS,
3685 MEMCG_RSS_HUGE,
3686 NR_SHMEM,
3687 NR_FILE_MAPPED,
3688 NR_FILE_DIRTY,
3689 NR_WRITEBACK,
3690 MEMCG_SWAP,
3691};
3692
3693static const char *const memcg1_stat_names[] = {
3694 "cache",
3695 "rss",
3696 "rss_huge",
3697 "shmem",
3698 "mapped_file",
3699 "dirty",
3700 "writeback",
3701 "swap",
3702};
3703
df0e53d0 3704/* Universal VM events cgroup1 shows, original sort order */
8dd53fd3 3705static const unsigned int memcg1_events[] = {
df0e53d0
JW
3706 PGPGIN,
3707 PGPGOUT,
3708 PGFAULT,
3709 PGMAJFAULT,
3710};
3711
3712static const char *const memcg1_event_names[] = {
3713 "pgpgin",
3714 "pgpgout",
3715 "pgfault",
3716 "pgmajfault",
3717};
3718
2da8ca82 3719static int memcg_stat_show(struct seq_file *m, void *v)
d2ceb9b7 3720{
aa9694bb 3721 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
3e32cb2e 3722 unsigned long memory, memsw;
af7c4b0e
JW
3723 struct mem_cgroup *mi;
3724 unsigned int i;
406eb0c9 3725
71cd3113 3726 BUILD_BUG_ON(ARRAY_SIZE(memcg1_stat_names) != ARRAY_SIZE(memcg1_stats));
70bc068c
RS
3727 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
3728
71cd3113
JW
3729 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
3730 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
1dd3a273 3731 continue;
71cd3113 3732 seq_printf(m, "%s %lu\n", memcg1_stat_names[i],
205b20cc 3733 memcg_page_state_local(memcg, memcg1_stats[i]) *
71cd3113 3734 PAGE_SIZE);
1dd3a273 3735 }
7b854121 3736
df0e53d0
JW
3737 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
3738 seq_printf(m, "%s %lu\n", memcg1_event_names[i],
205b20cc 3739 memcg_events_local(memcg, memcg1_events[i]));
af7c4b0e
JW
3740
3741 for (i = 0; i < NR_LRU_LISTS; i++)
3742 seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
205b20cc 3743 memcg_page_state_local(memcg, NR_LRU_BASE + i) *
21d89d15 3744 PAGE_SIZE);
af7c4b0e 3745
14067bb3 3746 /* Hierarchical information */
3e32cb2e
JW
3747 memory = memsw = PAGE_COUNTER_MAX;
3748 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
bbec2e15
RG
3749 memory = min(memory, mi->memory.max);
3750 memsw = min(memsw, mi->memsw.max);
fee7b548 3751 }
3e32cb2e
JW
3752 seq_printf(m, "hierarchical_memory_limit %llu\n",
3753 (u64)memory * PAGE_SIZE);
7941d214 3754 if (do_memsw_account())
3e32cb2e
JW
3755 seq_printf(m, "hierarchical_memsw_limit %llu\n",
3756 (u64)memsw * PAGE_SIZE);
7f016ee8 3757
8de7ecc6 3758 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
71cd3113 3759 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
1dd3a273 3760 continue;
8de7ecc6 3761 seq_printf(m, "total_%s %llu\n", memcg1_stat_names[i],
dd923990
YS
3762 (u64)memcg_page_state(memcg, memcg1_stats[i]) *
3763 PAGE_SIZE);
af7c4b0e
JW
3764 }
3765
8de7ecc6
SB
3766 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
3767 seq_printf(m, "total_%s %llu\n", memcg1_event_names[i],
dd923990 3768 (u64)memcg_events(memcg, memcg1_events[i]));
af7c4b0e 3769
8de7ecc6
SB
3770 for (i = 0; i < NR_LRU_LISTS; i++)
3771 seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i],
42a30035
JW
3772 (u64)memcg_page_state(memcg, NR_LRU_BASE + i) *
3773 PAGE_SIZE);
14067bb3 3774
7f016ee8 3775#ifdef CONFIG_DEBUG_VM
7f016ee8 3776 {
ef8f2327
MG
3777 pg_data_t *pgdat;
3778 struct mem_cgroup_per_node *mz;
89abfab1 3779 struct zone_reclaim_stat *rstat;
7f016ee8
KM
3780 unsigned long recent_rotated[2] = {0, 0};
3781 unsigned long recent_scanned[2] = {0, 0};
3782
ef8f2327
MG
3783 for_each_online_pgdat(pgdat) {
3784 mz = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
3785 rstat = &mz->lruvec.reclaim_stat;
7f016ee8 3786
ef8f2327
MG
3787 recent_rotated[0] += rstat->recent_rotated[0];
3788 recent_rotated[1] += rstat->recent_rotated[1];
3789 recent_scanned[0] += rstat->recent_scanned[0];
3790 recent_scanned[1] += rstat->recent_scanned[1];
3791 }
78ccf5b5
JW
3792 seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
3793 seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
3794 seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
3795 seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
7f016ee8
KM
3796 }
3797#endif
3798
d2ceb9b7
KH
3799 return 0;
3800}
3801
182446d0
TH
3802static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
3803 struct cftype *cft)
a7885eb8 3804{
182446d0 3805 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
a7885eb8 3806
1f4c025b 3807 return mem_cgroup_swappiness(memcg);
a7885eb8
KM
3808}
3809
182446d0
TH
3810static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
3811 struct cftype *cft, u64 val)
a7885eb8 3812{
182446d0 3813 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
a7885eb8 3814
3dae7fec 3815 if (val > 100)
a7885eb8
KM
3816 return -EINVAL;
3817
14208b0e 3818 if (css->parent)
3dae7fec
JW
3819 memcg->swappiness = val;
3820 else
3821 vm_swappiness = val;
068b38c1 3822
a7885eb8
KM
3823 return 0;
3824}
3825
2e72b634
KS
3826static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
3827{
3828 struct mem_cgroup_threshold_ary *t;
3e32cb2e 3829 unsigned long usage;
2e72b634
KS
3830 int i;
3831
3832 rcu_read_lock();
3833 if (!swap)
2c488db2 3834 t = rcu_dereference(memcg->thresholds.primary);
2e72b634 3835 else
2c488db2 3836 t = rcu_dereference(memcg->memsw_thresholds.primary);
2e72b634
KS
3837
3838 if (!t)
3839 goto unlock;
3840
ce00a967 3841 usage = mem_cgroup_usage(memcg, swap);
2e72b634
KS
3842
3843 /*
748dad36 3844 * current_threshold points to threshold just below or equal to usage.
2e72b634
KS
3845 * If it's not true, a threshold was crossed after last
3846 * call of __mem_cgroup_threshold().
3847 */
5407a562 3848 i = t->current_threshold;
2e72b634
KS
3849
3850 /*
3851 * Iterate backward over array of thresholds starting from
3852 * current_threshold and check if a threshold is crossed.
3853 * If none of thresholds below usage is crossed, we read
3854 * only one element of the array here.
3855 */
3856 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
3857 eventfd_signal(t->entries[i].eventfd, 1);
3858
3859 /* i = current_threshold + 1 */
3860 i++;
3861
3862 /*
3863 * Iterate forward over array of thresholds starting from
3864 * current_threshold+1 and check if a threshold is crossed.
3865 * If none of thresholds above usage is crossed, we read
3866 * only one element of the array here.
3867 */
3868 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
3869 eventfd_signal(t->entries[i].eventfd, 1);
3870
3871 /* Update current_threshold */
5407a562 3872 t->current_threshold = i - 1;
2e72b634
KS
3873unlock:
3874 rcu_read_unlock();
3875}
3876
3877static void mem_cgroup_threshold(struct mem_cgroup *memcg)
3878{
ad4ca5f4
KS
3879 while (memcg) {
3880 __mem_cgroup_threshold(memcg, false);
7941d214 3881 if (do_memsw_account())
ad4ca5f4
KS
3882 __mem_cgroup_threshold(memcg, true);
3883
3884 memcg = parent_mem_cgroup(memcg);
3885 }
2e72b634
KS
3886}
3887
3888static int compare_thresholds(const void *a, const void *b)
3889{
3890 const struct mem_cgroup_threshold *_a = a;
3891 const struct mem_cgroup_threshold *_b = b;
3892
2bff24a3
GT
3893 if (_a->threshold > _b->threshold)
3894 return 1;
3895
3896 if (_a->threshold < _b->threshold)
3897 return -1;
3898
3899 return 0;
2e72b634
KS
3900}
3901
c0ff4b85 3902static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
9490ff27
KH
3903{
3904 struct mem_cgroup_eventfd_list *ev;
3905
2bcf2e92
MH
3906 spin_lock(&memcg_oom_lock);
3907
c0ff4b85 3908 list_for_each_entry(ev, &memcg->oom_notify, list)
9490ff27 3909 eventfd_signal(ev->eventfd, 1);
2bcf2e92
MH
3910
3911 spin_unlock(&memcg_oom_lock);
9490ff27
KH
3912 return 0;
3913}
3914
c0ff4b85 3915static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
9490ff27 3916{
7d74b06f
KH
3917 struct mem_cgroup *iter;
3918
c0ff4b85 3919 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f 3920 mem_cgroup_oom_notify_cb(iter);
9490ff27
KH
3921}
3922
59b6f873 3923static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87 3924 struct eventfd_ctx *eventfd, const char *args, enum res_type type)
2e72b634 3925{
2c488db2
KS
3926 struct mem_cgroup_thresholds *thresholds;
3927 struct mem_cgroup_threshold_ary *new;
3e32cb2e
JW
3928 unsigned long threshold;
3929 unsigned long usage;
2c488db2 3930 int i, size, ret;
2e72b634 3931
650c5e56 3932 ret = page_counter_memparse(args, "-1", &threshold);
2e72b634
KS
3933 if (ret)
3934 return ret;
3935
3936 mutex_lock(&memcg->thresholds_lock);
2c488db2 3937
05b84301 3938 if (type == _MEM) {
2c488db2 3939 thresholds = &memcg->thresholds;
ce00a967 3940 usage = mem_cgroup_usage(memcg, false);
05b84301 3941 } else if (type == _MEMSWAP) {
2c488db2 3942 thresholds = &memcg->memsw_thresholds;
ce00a967 3943 usage = mem_cgroup_usage(memcg, true);
05b84301 3944 } else
2e72b634
KS
3945 BUG();
3946
2e72b634 3947 /* Check if a threshold crossed before adding a new one */
2c488db2 3948 if (thresholds->primary)
2e72b634
KS
3949 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3950
2c488db2 3951 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
2e72b634
KS
3952
3953 /* Allocate memory for new array of thresholds */
67b8046f 3954 new = kmalloc(struct_size(new, entries, size), GFP_KERNEL);
2c488db2 3955 if (!new) {
2e72b634
KS
3956 ret = -ENOMEM;
3957 goto unlock;
3958 }
2c488db2 3959 new->size = size;
2e72b634
KS
3960
3961 /* Copy thresholds (if any) to new array */
2c488db2
KS
3962 if (thresholds->primary) {
3963 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
2e72b634 3964 sizeof(struct mem_cgroup_threshold));
2c488db2
KS
3965 }
3966
2e72b634 3967 /* Add new threshold */
2c488db2
KS
3968 new->entries[size - 1].eventfd = eventfd;
3969 new->entries[size - 1].threshold = threshold;
2e72b634
KS
3970
3971 /* Sort thresholds. Registering of new threshold isn't time-critical */
2c488db2 3972 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
2e72b634
KS
3973 compare_thresholds, NULL);
3974
3975 /* Find current threshold */
2c488db2 3976 new->current_threshold = -1;
2e72b634 3977 for (i = 0; i < size; i++) {
748dad36 3978 if (new->entries[i].threshold <= usage) {
2e72b634 3979 /*
2c488db2
KS
3980 * new->current_threshold will not be used until
3981 * rcu_assign_pointer(), so it's safe to increment
2e72b634
KS
3982 * it here.
3983 */
2c488db2 3984 ++new->current_threshold;
748dad36
SZ
3985 } else
3986 break;
2e72b634
KS
3987 }
3988
2c488db2
KS
3989 /* Free old spare buffer and save old primary buffer as spare */
3990 kfree(thresholds->spare);
3991 thresholds->spare = thresholds->primary;
3992
3993 rcu_assign_pointer(thresholds->primary, new);
2e72b634 3994
907860ed 3995 /* To be sure that nobody uses thresholds */
2e72b634
KS
3996 synchronize_rcu();
3997
2e72b634
KS
3998unlock:
3999 mutex_unlock(&memcg->thresholds_lock);
4000
4001 return ret;
4002}
4003
59b6f873 4004static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87
TH
4005 struct eventfd_ctx *eventfd, const char *args)
4006{
59b6f873 4007 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
347c4a87
TH
4008}
4009
59b6f873 4010static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87
TH
4011 struct eventfd_ctx *eventfd, const char *args)
4012{
59b6f873 4013 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
347c4a87
TH
4014}
4015
59b6f873 4016static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87 4017 struct eventfd_ctx *eventfd, enum res_type type)
2e72b634 4018{
2c488db2
KS
4019 struct mem_cgroup_thresholds *thresholds;
4020 struct mem_cgroup_threshold_ary *new;
3e32cb2e 4021 unsigned long usage;
2c488db2 4022 int i, j, size;
2e72b634
KS
4023
4024 mutex_lock(&memcg->thresholds_lock);
05b84301
JW
4025
4026 if (type == _MEM) {
2c488db2 4027 thresholds = &memcg->thresholds;
ce00a967 4028 usage = mem_cgroup_usage(memcg, false);
05b84301 4029 } else if (type == _MEMSWAP) {
2c488db2 4030 thresholds = &memcg->memsw_thresholds;
ce00a967 4031 usage = mem_cgroup_usage(memcg, true);
05b84301 4032 } else
2e72b634
KS
4033 BUG();
4034
371528ca
AV
4035 if (!thresholds->primary)
4036 goto unlock;
4037
2e72b634
KS
4038 /* Check if a threshold crossed before removing */
4039 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4040
4041 /* Calculate new number of threshold */
2c488db2
KS
4042 size = 0;
4043 for (i = 0; i < thresholds->primary->size; i++) {
4044 if (thresholds->primary->entries[i].eventfd != eventfd)
2e72b634
KS
4045 size++;
4046 }
4047
2c488db2 4048 new = thresholds->spare;
907860ed 4049
2e72b634
KS
4050 /* Set thresholds array to NULL if we don't have thresholds */
4051 if (!size) {
2c488db2
KS
4052 kfree(new);
4053 new = NULL;
907860ed 4054 goto swap_buffers;
2e72b634
KS
4055 }
4056
2c488db2 4057 new->size = size;
2e72b634
KS
4058
4059 /* Copy thresholds and find current threshold */
2c488db2
KS
4060 new->current_threshold = -1;
4061 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
4062 if (thresholds->primary->entries[i].eventfd == eventfd)
2e72b634
KS
4063 continue;
4064
2c488db2 4065 new->entries[j] = thresholds->primary->entries[i];
748dad36 4066 if (new->entries[j].threshold <= usage) {
2e72b634 4067 /*
2c488db2 4068 * new->current_threshold will not be used
2e72b634
KS
4069 * until rcu_assign_pointer(), so it's safe to increment
4070 * it here.
4071 */
2c488db2 4072 ++new->current_threshold;
2e72b634
KS
4073 }
4074 j++;
4075 }
4076
907860ed 4077swap_buffers:
2c488db2
KS
4078 /* Swap primary and spare array */
4079 thresholds->spare = thresholds->primary;
8c757763 4080
2c488db2 4081 rcu_assign_pointer(thresholds->primary, new);
2e72b634 4082
907860ed 4083 /* To be sure that nobody uses thresholds */
2e72b634 4084 synchronize_rcu();
6611d8d7
MC
4085
4086 /* If all events are unregistered, free the spare array */
4087 if (!new) {
4088 kfree(thresholds->spare);
4089 thresholds->spare = NULL;
4090 }
371528ca 4091unlock:
2e72b634 4092 mutex_unlock(&memcg->thresholds_lock);
2e72b634 4093}
c1e862c1 4094
59b6f873 4095static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87
TH
4096 struct eventfd_ctx *eventfd)
4097{
59b6f873 4098 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
347c4a87
TH
4099}
4100
59b6f873 4101static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87
TH
4102 struct eventfd_ctx *eventfd)
4103{
59b6f873 4104 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
347c4a87
TH
4105}
4106
59b6f873 4107static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
347c4a87 4108 struct eventfd_ctx *eventfd, const char *args)
9490ff27 4109{
9490ff27 4110 struct mem_cgroup_eventfd_list *event;
9490ff27 4111
9490ff27
KH
4112 event = kmalloc(sizeof(*event), GFP_KERNEL);
4113 if (!event)
4114 return -ENOMEM;
4115
1af8efe9 4116 spin_lock(&memcg_oom_lock);
9490ff27
KH
4117
4118 event->eventfd = eventfd;
4119 list_add(&event->list, &memcg->oom_notify);
4120
4121 /* already in OOM ? */
c2b42d3c 4122 if (memcg->under_oom)
9490ff27 4123 eventfd_signal(eventfd, 1);
1af8efe9 4124 spin_unlock(&memcg_oom_lock);
9490ff27
KH
4125
4126 return 0;
4127}
4128
59b6f873 4129static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
347c4a87 4130 struct eventfd_ctx *eventfd)
9490ff27 4131{
9490ff27 4132 struct mem_cgroup_eventfd_list *ev, *tmp;
9490ff27 4133
1af8efe9 4134 spin_lock(&memcg_oom_lock);
9490ff27 4135
c0ff4b85 4136 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
9490ff27
KH
4137 if (ev->eventfd == eventfd) {
4138 list_del(&ev->list);
4139 kfree(ev);
4140 }
4141 }
4142
1af8efe9 4143 spin_unlock(&memcg_oom_lock);
9490ff27
KH
4144}
4145
2da8ca82 4146static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
3c11ecf4 4147{
aa9694bb 4148 struct mem_cgroup *memcg = mem_cgroup_from_seq(sf);
3c11ecf4 4149
791badbd 4150 seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
c2b42d3c 4151 seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
fe6bdfc8
RG
4152 seq_printf(sf, "oom_kill %lu\n",
4153 atomic_long_read(&memcg->memory_events[MEMCG_OOM_KILL]));
3c11ecf4
KH
4154 return 0;
4155}
4156
182446d0 4157static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
3c11ecf4
KH
4158 struct cftype *cft, u64 val)
4159{
182446d0 4160 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3c11ecf4
KH
4161
4162 /* cannot set to root cgroup and only 0 and 1 are allowed */
14208b0e 4163 if (!css->parent || !((val == 0) || (val == 1)))
3c11ecf4
KH
4164 return -EINVAL;
4165
c0ff4b85 4166 memcg->oom_kill_disable = val;
4d845ebf 4167 if (!val)
c0ff4b85 4168 memcg_oom_recover(memcg);
3dae7fec 4169
3c11ecf4
KH
4170 return 0;
4171}
4172
52ebea74
TH
4173#ifdef CONFIG_CGROUP_WRITEBACK
4174
841710aa
TH
4175static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
4176{
4177 return wb_domain_init(&memcg->cgwb_domain, gfp);
4178}
4179
4180static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
4181{
4182 wb_domain_exit(&memcg->cgwb_domain);
4183}
4184
2529bb3a
TH
4185static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
4186{
4187 wb_domain_size_changed(&memcg->cgwb_domain);
4188}
4189
841710aa
TH
4190struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
4191{
4192 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4193
4194 if (!memcg->css.parent)
4195 return NULL;
4196
4197 return &memcg->cgwb_domain;
4198}
4199
0b3d6e6f
GT
4200/*
4201 * idx can be of type enum memcg_stat_item or node_stat_item.
4202 * Keep in sync with memcg_exact_page().
4203 */
4204static unsigned long memcg_exact_page_state(struct mem_cgroup *memcg, int idx)
4205{
871789d4 4206 long x = atomic_long_read(&memcg->vmstats[idx]);
0b3d6e6f
GT
4207 int cpu;
4208
4209 for_each_online_cpu(cpu)
871789d4 4210 x += per_cpu_ptr(memcg->vmstats_percpu, cpu)->stat[idx];
0b3d6e6f
GT
4211 if (x < 0)
4212 x = 0;
4213 return x;
4214}
4215
c2aa723a
TH
4216/**
4217 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
4218 * @wb: bdi_writeback in question
c5edf9cd
TH
4219 * @pfilepages: out parameter for number of file pages
4220 * @pheadroom: out parameter for number of allocatable pages according to memcg
c2aa723a
TH
4221 * @pdirty: out parameter for number of dirty pages
4222 * @pwriteback: out parameter for number of pages under writeback
4223 *
c5edf9cd
TH
4224 * Determine the numbers of file, headroom, dirty, and writeback pages in
4225 * @wb's memcg. File, dirty and writeback are self-explanatory. Headroom
4226 * is a bit more involved.
c2aa723a 4227 *
c5edf9cd
TH
4228 * A memcg's headroom is "min(max, high) - used". In the hierarchy, the
4229 * headroom is calculated as the lowest headroom of itself and the
4230 * ancestors. Note that this doesn't consider the actual amount of
4231 * available memory in the system. The caller should further cap
4232 * *@pheadroom accordingly.
c2aa723a 4233 */
c5edf9cd
TH
4234void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
4235 unsigned long *pheadroom, unsigned long *pdirty,
4236 unsigned long *pwriteback)
c2aa723a
TH
4237{
4238 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4239 struct mem_cgroup *parent;
c2aa723a 4240
0b3d6e6f 4241 *pdirty = memcg_exact_page_state(memcg, NR_FILE_DIRTY);
c2aa723a
TH
4242
4243 /* this should eventually include NR_UNSTABLE_NFS */
0b3d6e6f 4244 *pwriteback = memcg_exact_page_state(memcg, NR_WRITEBACK);
21d89d15
JW
4245 *pfilepages = memcg_exact_page_state(memcg, NR_INACTIVE_FILE) +
4246 memcg_exact_page_state(memcg, NR_ACTIVE_FILE);
c5edf9cd 4247 *pheadroom = PAGE_COUNTER_MAX;
c2aa723a 4248
c2aa723a 4249 while ((parent = parent_mem_cgroup(memcg))) {
bbec2e15 4250 unsigned long ceiling = min(memcg->memory.max, memcg->high);
c2aa723a
TH
4251 unsigned long used = page_counter_read(&memcg->memory);
4252
c5edf9cd 4253 *pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
c2aa723a
TH
4254 memcg = parent;
4255 }
c2aa723a
TH
4256}
4257
841710aa
TH
4258#else /* CONFIG_CGROUP_WRITEBACK */
4259
4260static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
4261{
4262 return 0;
4263}
4264
4265static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
4266{
4267}
4268
2529bb3a
TH
4269static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
4270{
4271}
4272
52ebea74
TH
4273#endif /* CONFIG_CGROUP_WRITEBACK */
4274
3bc942f3
TH
4275/*
4276 * DO NOT USE IN NEW FILES.
4277 *
4278 * "cgroup.event_control" implementation.
4279 *
4280 * This is way over-engineered. It tries to support fully configurable
4281 * events for each user. Such level of flexibility is completely
4282 * unnecessary especially in the light of the planned unified hierarchy.
4283 *
4284 * Please deprecate this and replace with something simpler if at all
4285 * possible.
4286 */
4287
79bd9814
TH
4288/*
4289 * Unregister event and free resources.
4290 *
4291 * Gets called from workqueue.
4292 */
3bc942f3 4293static void memcg_event_remove(struct work_struct *work)
79bd9814 4294{
3bc942f3
TH
4295 struct mem_cgroup_event *event =
4296 container_of(work, struct mem_cgroup_event, remove);
59b6f873 4297 struct mem_cgroup *memcg = event->memcg;
79bd9814
TH
4298
4299 remove_wait_queue(event->wqh, &event->wait);
4300
59b6f873 4301 event->unregister_event(memcg, event->eventfd);
79bd9814
TH
4302
4303 /* Notify userspace the event is going away. */
4304 eventfd_signal(event->eventfd, 1);
4305
4306 eventfd_ctx_put(event->eventfd);
4307 kfree(event);
59b6f873 4308 css_put(&memcg->css);
79bd9814
TH
4309}
4310
4311/*
a9a08845 4312 * Gets called on EPOLLHUP on eventfd when user closes it.
79bd9814
TH
4313 *
4314 * Called with wqh->lock held and interrupts disabled.
4315 */
ac6424b9 4316static int memcg_event_wake(wait_queue_entry_t *wait, unsigned mode,
3bc942f3 4317 int sync, void *key)
79bd9814 4318{
3bc942f3
TH
4319 struct mem_cgroup_event *event =
4320 container_of(wait, struct mem_cgroup_event, wait);
59b6f873 4321 struct mem_cgroup *memcg = event->memcg;
3ad6f93e 4322 __poll_t flags = key_to_poll(key);
79bd9814 4323
a9a08845 4324 if (flags & EPOLLHUP) {
79bd9814
TH
4325 /*
4326 * If the event has been detached at cgroup removal, we
4327 * can simply return knowing the other side will cleanup
4328 * for us.
4329 *
4330 * We can't race against event freeing since the other
4331 * side will require wqh->lock via remove_wait_queue(),
4332 * which we hold.
4333 */
fba94807 4334 spin_lock(&memcg->event_list_lock);
79bd9814
TH
4335 if (!list_empty(&event->list)) {
4336 list_del_init(&event->list);
4337 /*
4338 * We are in atomic context, but cgroup_event_remove()
4339 * may sleep, so we have to call it in workqueue.
4340 */
4341 schedule_work(&event->remove);
4342 }
fba94807 4343 spin_unlock(&memcg->event_list_lock);
79bd9814
TH
4344 }
4345
4346 return 0;
4347}
4348
3bc942f3 4349static void memcg_event_ptable_queue_proc(struct file *file,
79bd9814
TH
4350 wait_queue_head_t *wqh, poll_table *pt)
4351{
3bc942f3
TH
4352 struct mem_cgroup_event *event =
4353 container_of(pt, struct mem_cgroup_event, pt);
79bd9814
TH
4354
4355 event->wqh = wqh;
4356 add_wait_queue(wqh, &event->wait);
4357}
4358
4359/*
3bc942f3
TH
4360 * DO NOT USE IN NEW FILES.
4361 *
79bd9814
TH
4362 * Parse input and register new cgroup event handler.
4363 *
4364 * Input must be in format '<event_fd> <control_fd> <args>'.
4365 * Interpretation of args is defined by control file implementation.
4366 */
451af504
TH
4367static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
4368 char *buf, size_t nbytes, loff_t off)
79bd9814 4369{
451af504 4370 struct cgroup_subsys_state *css = of_css(of);
fba94807 4371 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3bc942f3 4372 struct mem_cgroup_event *event;
79bd9814
TH
4373 struct cgroup_subsys_state *cfile_css;
4374 unsigned int efd, cfd;
4375 struct fd efile;
4376 struct fd cfile;
fba94807 4377 const char *name;
79bd9814
TH
4378 char *endp;
4379 int ret;
4380
451af504
TH
4381 buf = strstrip(buf);
4382
4383 efd = simple_strtoul(buf, &endp, 10);
79bd9814
TH
4384 if (*endp != ' ')
4385 return -EINVAL;
451af504 4386 buf = endp + 1;
79bd9814 4387
451af504 4388 cfd = simple_strtoul(buf, &endp, 10);
79bd9814
TH
4389 if ((*endp != ' ') && (*endp != '\0'))
4390 return -EINVAL;
451af504 4391 buf = endp + 1;
79bd9814
TH
4392
4393 event = kzalloc(sizeof(*event), GFP_KERNEL);
4394 if (!event)
4395 return -ENOMEM;
4396
59b6f873 4397 event->memcg = memcg;
79bd9814 4398 INIT_LIST_HEAD(&event->list);
3bc942f3
TH
4399 init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
4400 init_waitqueue_func_entry(&event->wait, memcg_event_wake);
4401 INIT_WORK(&event->remove, memcg_event_remove);
79bd9814
TH
4402
4403 efile = fdget(efd);
4404 if (!efile.file) {
4405 ret = -EBADF;
4406 goto out_kfree;
4407 }
4408
4409 event->eventfd = eventfd_ctx_fileget(efile.file);
4410 if (IS_ERR(event->eventfd)) {
4411 ret = PTR_ERR(event->eventfd);
4412 goto out_put_efile;
4413 }
4414
4415 cfile = fdget(cfd);
4416 if (!cfile.file) {
4417 ret = -EBADF;
4418 goto out_put_eventfd;
4419 }
4420
4421 /* the process need read permission on control file */
4422 /* AV: shouldn't we check that it's been opened for read instead? */
4423 ret = inode_permission(file_inode(cfile.file), MAY_READ);
4424 if (ret < 0)
4425 goto out_put_cfile;
4426
fba94807
TH
4427 /*
4428 * Determine the event callbacks and set them in @event. This used
4429 * to be done via struct cftype but cgroup core no longer knows
4430 * about these events. The following is crude but the whole thing
4431 * is for compatibility anyway.
3bc942f3
TH
4432 *
4433 * DO NOT ADD NEW FILES.
fba94807 4434 */
b583043e 4435 name = cfile.file->f_path.dentry->d_name.name;
fba94807
TH
4436
4437 if (!strcmp(name, "memory.usage_in_bytes")) {
4438 event->register_event = mem_cgroup_usage_register_event;
4439 event->unregister_event = mem_cgroup_usage_unregister_event;
4440 } else if (!strcmp(name, "memory.oom_control")) {
4441 event->register_event = mem_cgroup_oom_register_event;
4442 event->unregister_event = mem_cgroup_oom_unregister_event;
4443 } else if (!strcmp(name, "memory.pressure_level")) {
4444 event->register_event = vmpressure_register_event;
4445 event->unregister_event = vmpressure_unregister_event;
4446 } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
347c4a87
TH
4447 event->register_event = memsw_cgroup_usage_register_event;
4448 event->unregister_event = memsw_cgroup_usage_unregister_event;
fba94807
TH
4449 } else {
4450 ret = -EINVAL;
4451 goto out_put_cfile;
4452 }
4453
79bd9814 4454 /*
b5557c4c
TH
4455 * Verify @cfile should belong to @css. Also, remaining events are
4456 * automatically removed on cgroup destruction but the removal is
4457 * asynchronous, so take an extra ref on @css.
79bd9814 4458 */
b583043e 4459 cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
ec903c0c 4460 &memory_cgrp_subsys);
79bd9814 4461 ret = -EINVAL;
5a17f543 4462 if (IS_ERR(cfile_css))
79bd9814 4463 goto out_put_cfile;
5a17f543
TH
4464 if (cfile_css != css) {
4465 css_put(cfile_css);
79bd9814 4466 goto out_put_cfile;
5a17f543 4467 }
79bd9814 4468
451af504 4469 ret = event->register_event(memcg, event->eventfd, buf);
79bd9814
TH
4470 if (ret)
4471 goto out_put_css;
4472
9965ed17 4473 vfs_poll(efile.file, &event->pt);
79bd9814 4474
fba94807
TH
4475 spin_lock(&memcg->event_list_lock);
4476 list_add(&event->list, &memcg->event_list);
4477 spin_unlock(&memcg->event_list_lock);
79bd9814
TH
4478
4479 fdput(cfile);
4480 fdput(efile);
4481
451af504 4482 return nbytes;
79bd9814
TH
4483
4484out_put_css:
b5557c4c 4485 css_put(css);
79bd9814
TH
4486out_put_cfile:
4487 fdput(cfile);
4488out_put_eventfd:
4489 eventfd_ctx_put(event->eventfd);
4490out_put_efile:
4491 fdput(efile);
4492out_kfree:
4493 kfree(event);
4494
4495 return ret;
4496}
4497
241994ed 4498static struct cftype mem_cgroup_legacy_files[] = {
8cdea7c0 4499 {
0eea1030 4500 .name = "usage_in_bytes",
8c7c6e34 4501 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
791badbd 4502 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 4503 },
c84872e1
PE
4504 {
4505 .name = "max_usage_in_bytes",
8c7c6e34 4506 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
6770c64e 4507 .write = mem_cgroup_reset,
791badbd 4508 .read_u64 = mem_cgroup_read_u64,
c84872e1 4509 },
8cdea7c0 4510 {
0eea1030 4511 .name = "limit_in_bytes",
8c7c6e34 4512 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
451af504 4513 .write = mem_cgroup_write,
791badbd 4514 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 4515 },
296c81d8
BS
4516 {
4517 .name = "soft_limit_in_bytes",
4518 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
451af504 4519 .write = mem_cgroup_write,
791badbd 4520 .read_u64 = mem_cgroup_read_u64,
296c81d8 4521 },
8cdea7c0
BS
4522 {
4523 .name = "failcnt",
8c7c6e34 4524 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
6770c64e 4525 .write = mem_cgroup_reset,
791badbd 4526 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 4527 },
d2ceb9b7
KH
4528 {
4529 .name = "stat",
2da8ca82 4530 .seq_show = memcg_stat_show,
d2ceb9b7 4531 },
c1e862c1
KH
4532 {
4533 .name = "force_empty",
6770c64e 4534 .write = mem_cgroup_force_empty_write,
c1e862c1 4535 },
18f59ea7
BS
4536 {
4537 .name = "use_hierarchy",
4538 .write_u64 = mem_cgroup_hierarchy_write,
4539 .read_u64 = mem_cgroup_hierarchy_read,
4540 },
79bd9814 4541 {
3bc942f3 4542 .name = "cgroup.event_control", /* XXX: for compat */
451af504 4543 .write = memcg_write_event_control,
7dbdb199 4544 .flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
79bd9814 4545 },
a7885eb8
KM
4546 {
4547 .name = "swappiness",
4548 .read_u64 = mem_cgroup_swappiness_read,
4549 .write_u64 = mem_cgroup_swappiness_write,
4550 },
7dc74be0
DN
4551 {
4552 .name = "move_charge_at_immigrate",
4553 .read_u64 = mem_cgroup_move_charge_read,
4554 .write_u64 = mem_cgroup_move_charge_write,
4555 },
9490ff27
KH
4556 {
4557 .name = "oom_control",
2da8ca82 4558 .seq_show = mem_cgroup_oom_control_read,
3c11ecf4 4559 .write_u64 = mem_cgroup_oom_control_write,
9490ff27
KH
4560 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
4561 },
70ddf637
AV
4562 {
4563 .name = "pressure_level",
70ddf637 4564 },
406eb0c9
YH
4565#ifdef CONFIG_NUMA
4566 {
4567 .name = "numa_stat",
2da8ca82 4568 .seq_show = memcg_numa_stat_show,
406eb0c9
YH
4569 },
4570#endif
510fc4e1
GC
4571 {
4572 .name = "kmem.limit_in_bytes",
4573 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
451af504 4574 .write = mem_cgroup_write,
791badbd 4575 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
4576 },
4577 {
4578 .name = "kmem.usage_in_bytes",
4579 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
791badbd 4580 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
4581 },
4582 {
4583 .name = "kmem.failcnt",
4584 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
6770c64e 4585 .write = mem_cgroup_reset,
791badbd 4586 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
4587 },
4588 {
4589 .name = "kmem.max_usage_in_bytes",
4590 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
6770c64e 4591 .write = mem_cgroup_reset,
791badbd 4592 .read_u64 = mem_cgroup_read_u64,
510fc4e1 4593 },
5b365771 4594#if defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG)
749c5415
GC
4595 {
4596 .name = "kmem.slabinfo",
bc2791f8
TH
4597 .seq_start = memcg_slab_start,
4598 .seq_next = memcg_slab_next,
4599 .seq_stop = memcg_slab_stop,
b047501c 4600 .seq_show = memcg_slab_show,
749c5415
GC
4601 },
4602#endif
d55f90bf
VD
4603 {
4604 .name = "kmem.tcp.limit_in_bytes",
4605 .private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
4606 .write = mem_cgroup_write,
4607 .read_u64 = mem_cgroup_read_u64,
4608 },
4609 {
4610 .name = "kmem.tcp.usage_in_bytes",
4611 .private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
4612 .read_u64 = mem_cgroup_read_u64,
4613 },
4614 {
4615 .name = "kmem.tcp.failcnt",
4616 .private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
4617 .write = mem_cgroup_reset,
4618 .read_u64 = mem_cgroup_read_u64,
4619 },
4620 {
4621 .name = "kmem.tcp.max_usage_in_bytes",
4622 .private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
4623 .write = mem_cgroup_reset,
4624 .read_u64 = mem_cgroup_read_u64,
4625 },
6bc10349 4626 { }, /* terminate */
af36f906 4627};
8c7c6e34 4628
73f576c0
JW
4629/*
4630 * Private memory cgroup IDR
4631 *
4632 * Swap-out records and page cache shadow entries need to store memcg
4633 * references in constrained space, so we maintain an ID space that is
4634 * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of
4635 * memory-controlled cgroups to 64k.
4636 *
4637 * However, there usually are many references to the oflline CSS after
4638 * the cgroup has been destroyed, such as page cache or reclaimable
4639 * slab objects, that don't need to hang on to the ID. We want to keep
4640 * those dead CSS from occupying IDs, or we might quickly exhaust the
4641 * relatively small ID space and prevent the creation of new cgroups
4642 * even when there are much fewer than 64k cgroups - possibly none.
4643 *
4644 * Maintain a private 16-bit ID space for memcg, and allow the ID to
4645 * be freed and recycled when it's no longer needed, which is usually
4646 * when the CSS is offlined.
4647 *
4648 * The only exception to that are records of swapped out tmpfs/shmem
4649 * pages that need to be attributed to live ancestors on swapin. But
4650 * those references are manageable from userspace.
4651 */
4652
4653static DEFINE_IDR(mem_cgroup_idr);
4654
7e97de0b
KT
4655static void mem_cgroup_id_remove(struct mem_cgroup *memcg)
4656{
4657 if (memcg->id.id > 0) {
4658 idr_remove(&mem_cgroup_idr, memcg->id.id);
4659 memcg->id.id = 0;
4660 }
4661}
4662
615d66c3 4663static void mem_cgroup_id_get_many(struct mem_cgroup *memcg, unsigned int n)
73f576c0 4664{
1c2d479a 4665 refcount_add(n, &memcg->id.ref);
73f576c0
JW
4666}
4667
615d66c3 4668static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n)
73f576c0 4669{
1c2d479a 4670 if (refcount_sub_and_test(n, &memcg->id.ref)) {
7e97de0b 4671 mem_cgroup_id_remove(memcg);
73f576c0
JW
4672
4673 /* Memcg ID pins CSS */
4674 css_put(&memcg->css);
4675 }
4676}
4677
615d66c3
VD
4678static inline void mem_cgroup_id_get(struct mem_cgroup *memcg)
4679{
4680 mem_cgroup_id_get_many(memcg, 1);
4681}
4682
4683static inline void mem_cgroup_id_put(struct mem_cgroup *memcg)
4684{
4685 mem_cgroup_id_put_many(memcg, 1);
4686}
4687
73f576c0
JW
4688/**
4689 * mem_cgroup_from_id - look up a memcg from a memcg id
4690 * @id: the memcg id to look up
4691 *
4692 * Caller must hold rcu_read_lock().
4693 */
4694struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
4695{
4696 WARN_ON_ONCE(!rcu_read_lock_held());
4697 return idr_find(&mem_cgroup_idr, id);
4698}
4699
ef8f2327 4700static int alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
6d12e2d8
KH
4701{
4702 struct mem_cgroup_per_node *pn;
ef8f2327 4703 int tmp = node;
1ecaab2b
KH
4704 /*
4705 * This routine is called against possible nodes.
4706 * But it's BUG to call kmalloc() against offline node.
4707 *
4708 * TODO: this routine can waste much memory for nodes which will
4709 * never be onlined. It's better to use memory hotplug callback
4710 * function.
4711 */
41e3355d
KH
4712 if (!node_state(node, N_NORMAL_MEMORY))
4713 tmp = -1;
17295c88 4714 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
6d12e2d8
KH
4715 if (!pn)
4716 return 1;
1ecaab2b 4717
815744d7
JW
4718 pn->lruvec_stat_local = alloc_percpu(struct lruvec_stat);
4719 if (!pn->lruvec_stat_local) {
4720 kfree(pn);
4721 return 1;
4722 }
4723
a983b5eb
JW
4724 pn->lruvec_stat_cpu = alloc_percpu(struct lruvec_stat);
4725 if (!pn->lruvec_stat_cpu) {
815744d7 4726 free_percpu(pn->lruvec_stat_local);
00f3ca2c
JW
4727 kfree(pn);
4728 return 1;
4729 }
4730
ef8f2327
MG
4731 lruvec_init(&pn->lruvec);
4732 pn->usage_in_excess = 0;
4733 pn->on_tree = false;
4734 pn->memcg = memcg;
4735
54f72fe0 4736 memcg->nodeinfo[node] = pn;
6d12e2d8
KH
4737 return 0;
4738}
4739
ef8f2327 4740static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
1ecaab2b 4741{
00f3ca2c
JW
4742 struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];
4743
4eaf431f
MH
4744 if (!pn)
4745 return;
4746
a983b5eb 4747 free_percpu(pn->lruvec_stat_cpu);
815744d7 4748 free_percpu(pn->lruvec_stat_local);
00f3ca2c 4749 kfree(pn);
1ecaab2b
KH
4750}
4751
40e952f9 4752static void __mem_cgroup_free(struct mem_cgroup *memcg)
59927fb9 4753{
c8b2a36f 4754 int node;
59927fb9 4755
c350a99e 4756 /*
bb65f89b 4757 * Flush percpu vmstats and vmevents to guarantee the value correctness
c350a99e
RG
4758 * on parent's and all ancestor levels.
4759 */
bee07b33 4760 memcg_flush_percpu_vmstats(memcg, false);
bb65f89b 4761 memcg_flush_percpu_vmevents(memcg);
c8b2a36f 4762 for_each_node(node)
ef8f2327 4763 free_mem_cgroup_per_node_info(memcg, node);
871789d4 4764 free_percpu(memcg->vmstats_percpu);
815744d7 4765 free_percpu(memcg->vmstats_local);
8ff69e2c 4766 kfree(memcg);
59927fb9 4767}
3afe36b1 4768
40e952f9
TE
4769static void mem_cgroup_free(struct mem_cgroup *memcg)
4770{
4771 memcg_wb_domain_exit(memcg);
4772 __mem_cgroup_free(memcg);
4773}
4774
0b8f73e1 4775static struct mem_cgroup *mem_cgroup_alloc(void)
8cdea7c0 4776{
d142e3e6 4777 struct mem_cgroup *memcg;
b9726c26 4778 unsigned int size;
6d12e2d8 4779 int node;
8cdea7c0 4780
0b8f73e1
JW
4781 size = sizeof(struct mem_cgroup);
4782 size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
4783
4784 memcg = kzalloc(size, GFP_KERNEL);
c0ff4b85 4785 if (!memcg)
0b8f73e1
JW
4786 return NULL;
4787
73f576c0
JW
4788 memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL,
4789 1, MEM_CGROUP_ID_MAX,
4790 GFP_KERNEL);
4791 if (memcg->id.id < 0)
4792 goto fail;
4793
815744d7
JW
4794 memcg->vmstats_local = alloc_percpu(struct memcg_vmstats_percpu);
4795 if (!memcg->vmstats_local)
4796 goto fail;
4797
871789d4
CD
4798 memcg->vmstats_percpu = alloc_percpu(struct memcg_vmstats_percpu);
4799 if (!memcg->vmstats_percpu)
0b8f73e1 4800 goto fail;
78fb7466 4801
3ed28fa1 4802 for_each_node(node)
ef8f2327 4803 if (alloc_mem_cgroup_per_node_info(memcg, node))
0b8f73e1 4804 goto fail;
f64c3f54 4805
0b8f73e1
JW
4806 if (memcg_wb_domain_init(memcg, GFP_KERNEL))
4807 goto fail;
28dbc4b6 4808
f7e1cb6e 4809 INIT_WORK(&memcg->high_work, high_work_func);
d142e3e6
GC
4810 memcg->last_scanned_node = MAX_NUMNODES;
4811 INIT_LIST_HEAD(&memcg->oom_notify);
d142e3e6
GC
4812 mutex_init(&memcg->thresholds_lock);
4813 spin_lock_init(&memcg->move_lock);
70ddf637 4814 vmpressure_init(&memcg->vmpressure);
fba94807
TH
4815 INIT_LIST_HEAD(&memcg->event_list);
4816 spin_lock_init(&memcg->event_list_lock);
d886f4e4 4817 memcg->socket_pressure = jiffies;
84c07d11 4818#ifdef CONFIG_MEMCG_KMEM
900a38f0 4819 memcg->kmemcg_id = -1;
900a38f0 4820#endif
52ebea74
TH
4821#ifdef CONFIG_CGROUP_WRITEBACK
4822 INIT_LIST_HEAD(&memcg->cgwb_list);
4823#endif
73f576c0 4824 idr_replace(&mem_cgroup_idr, memcg, memcg->id.id);
0b8f73e1
JW
4825 return memcg;
4826fail:
7e97de0b 4827 mem_cgroup_id_remove(memcg);
40e952f9 4828 __mem_cgroup_free(memcg);
0b8f73e1 4829 return NULL;
d142e3e6
GC
4830}
4831
0b8f73e1
JW
4832static struct cgroup_subsys_state * __ref
4833mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
d142e3e6 4834{
0b8f73e1
JW
4835 struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
4836 struct mem_cgroup *memcg;
4837 long error = -ENOMEM;
d142e3e6 4838
0b8f73e1
JW
4839 memcg = mem_cgroup_alloc();
4840 if (!memcg)
4841 return ERR_PTR(error);
d142e3e6 4842
0b8f73e1
JW
4843 memcg->high = PAGE_COUNTER_MAX;
4844 memcg->soft_limit = PAGE_COUNTER_MAX;
4845 if (parent) {
4846 memcg->swappiness = mem_cgroup_swappiness(parent);
4847 memcg->oom_kill_disable = parent->oom_kill_disable;
4848 }
4849 if (parent && parent->use_hierarchy) {
4850 memcg->use_hierarchy = true;
3e32cb2e 4851 page_counter_init(&memcg->memory, &parent->memory);
37e84351 4852 page_counter_init(&memcg->swap, &parent->swap);
3e32cb2e
JW
4853 page_counter_init(&memcg->memsw, &parent->memsw);
4854 page_counter_init(&memcg->kmem, &parent->kmem);
0db15298 4855 page_counter_init(&memcg->tcpmem, &parent->tcpmem);
18f59ea7 4856 } else {
3e32cb2e 4857 page_counter_init(&memcg->memory, NULL);
37e84351 4858 page_counter_init(&memcg->swap, NULL);
3e32cb2e
JW
4859 page_counter_init(&memcg->memsw, NULL);
4860 page_counter_init(&memcg->kmem, NULL);
0db15298 4861 page_counter_init(&memcg->tcpmem, NULL);
8c7f6edb
TH
4862 /*
4863 * Deeper hierachy with use_hierarchy == false doesn't make
4864 * much sense so let cgroup subsystem know about this
4865 * unfortunate state in our controller.
4866 */
d142e3e6 4867 if (parent != root_mem_cgroup)
073219e9 4868 memory_cgrp_subsys.broken_hierarchy = true;
18f59ea7 4869 }
d6441637 4870
0b8f73e1
JW
4871 /* The following stuff does not apply to the root */
4872 if (!parent) {
fb2f2b0a
RG
4873#ifdef CONFIG_MEMCG_KMEM
4874 INIT_LIST_HEAD(&memcg->kmem_caches);
4875#endif
0b8f73e1
JW
4876 root_mem_cgroup = memcg;
4877 return &memcg->css;
4878 }
4879
b313aeee 4880 error = memcg_online_kmem(memcg);
0b8f73e1
JW
4881 if (error)
4882 goto fail;
127424c8 4883
f7e1cb6e 4884 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
ef12947c 4885 static_branch_inc(&memcg_sockets_enabled_key);
f7e1cb6e 4886
0b8f73e1
JW
4887 return &memcg->css;
4888fail:
7e97de0b 4889 mem_cgroup_id_remove(memcg);
0b8f73e1 4890 mem_cgroup_free(memcg);
ea3a9645 4891 return ERR_PTR(-ENOMEM);
0b8f73e1
JW
4892}
4893
73f576c0 4894static int mem_cgroup_css_online(struct cgroup_subsys_state *css)
0b8f73e1 4895{
58fa2a55
VD
4896 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4897
0a4465d3
KT
4898 /*
4899 * A memcg must be visible for memcg_expand_shrinker_maps()
4900 * by the time the maps are allocated. So, we allocate maps
4901 * here, when for_each_mem_cgroup() can't skip it.
4902 */
4903 if (memcg_alloc_shrinker_maps(memcg)) {
4904 mem_cgroup_id_remove(memcg);
4905 return -ENOMEM;
4906 }
4907
73f576c0 4908 /* Online state pins memcg ID, memcg ID pins CSS */
1c2d479a 4909 refcount_set(&memcg->id.ref, 1);
73f576c0 4910 css_get(css);
2f7dd7a4 4911 return 0;
8cdea7c0
BS
4912}
4913
eb95419b 4914static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
df878fb0 4915{
eb95419b 4916 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3bc942f3 4917 struct mem_cgroup_event *event, *tmp;
79bd9814
TH
4918
4919 /*
4920 * Unregister events and notify userspace.
4921 * Notify userspace about cgroup removing only after rmdir of cgroup
4922 * directory to avoid race between userspace and kernelspace.
4923 */
fba94807
TH
4924 spin_lock(&memcg->event_list_lock);
4925 list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
79bd9814
TH
4926 list_del_init(&event->list);
4927 schedule_work(&event->remove);
4928 }
fba94807 4929 spin_unlock(&memcg->event_list_lock);
ec64f515 4930
bf8d5d52 4931 page_counter_set_min(&memcg->memory, 0);
23067153 4932 page_counter_set_low(&memcg->memory, 0);
63677c74 4933
567e9ab2 4934 memcg_offline_kmem(memcg);
52ebea74 4935 wb_memcg_offline(memcg);
73f576c0 4936
591edfb1
RG
4937 drain_all_stock(memcg);
4938
73f576c0 4939 mem_cgroup_id_put(memcg);
df878fb0
KH
4940}
4941
6df38689
VD
4942static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
4943{
4944 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4945
4946 invalidate_reclaim_iterators(memcg);
4947}
4948
eb95419b 4949static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
8cdea7c0 4950{
eb95419b 4951 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
c268e994 4952
f7e1cb6e 4953 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
ef12947c 4954 static_branch_dec(&memcg_sockets_enabled_key);
127424c8 4955
0db15298 4956 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active)
d55f90bf 4957 static_branch_dec(&memcg_sockets_enabled_key);
3893e302 4958
0b8f73e1
JW
4959 vmpressure_cleanup(&memcg->vmpressure);
4960 cancel_work_sync(&memcg->high_work);
4961 mem_cgroup_remove_from_trees(memcg);
0a4465d3 4962 memcg_free_shrinker_maps(memcg);
d886f4e4 4963 memcg_free_kmem(memcg);
0b8f73e1 4964 mem_cgroup_free(memcg);
8cdea7c0
BS
4965}
4966
1ced953b
TH
4967/**
4968 * mem_cgroup_css_reset - reset the states of a mem_cgroup
4969 * @css: the target css
4970 *
4971 * Reset the states of the mem_cgroup associated with @css. This is
4972 * invoked when the userland requests disabling on the default hierarchy
4973 * but the memcg is pinned through dependency. The memcg should stop
4974 * applying policies and should revert to the vanilla state as it may be
4975 * made visible again.
4976 *
4977 * The current implementation only resets the essential configurations.
4978 * This needs to be expanded to cover all the visible parts.
4979 */
4980static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
4981{
4982 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4983
bbec2e15
RG
4984 page_counter_set_max(&memcg->memory, PAGE_COUNTER_MAX);
4985 page_counter_set_max(&memcg->swap, PAGE_COUNTER_MAX);
4986 page_counter_set_max(&memcg->memsw, PAGE_COUNTER_MAX);
4987 page_counter_set_max(&memcg->kmem, PAGE_COUNTER_MAX);
4988 page_counter_set_max(&memcg->tcpmem, PAGE_COUNTER_MAX);
bf8d5d52 4989 page_counter_set_min(&memcg->memory, 0);
23067153 4990 page_counter_set_low(&memcg->memory, 0);
241994ed 4991 memcg->high = PAGE_COUNTER_MAX;
24d404dc 4992 memcg->soft_limit = PAGE_COUNTER_MAX;
2529bb3a 4993 memcg_wb_domain_size_changed(memcg);
1ced953b
TH
4994}
4995
02491447 4996#ifdef CONFIG_MMU
7dc74be0 4997/* Handlers for move charge at task migration. */
854ffa8d 4998static int mem_cgroup_do_precharge(unsigned long count)
7dc74be0 4999{
05b84301 5000 int ret;
9476db97 5001
d0164adc
MG
5002 /* Try a single bulk charge without reclaim first, kswapd may wake */
5003 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
9476db97 5004 if (!ret) {
854ffa8d 5005 mc.precharge += count;
854ffa8d
DN
5006 return ret;
5007 }
9476db97 5008
3674534b 5009 /* Try charges one by one with reclaim, but do not retry */
854ffa8d 5010 while (count--) {
3674534b 5011 ret = try_charge(mc.to, GFP_KERNEL | __GFP_NORETRY, 1);
38c5d72f 5012 if (ret)
38c5d72f 5013 return ret;
854ffa8d 5014 mc.precharge++;
9476db97 5015 cond_resched();
854ffa8d 5016 }
9476db97 5017 return 0;
4ffef5fe
DN
5018}
5019
4ffef5fe
DN
5020union mc_target {
5021 struct page *page;
02491447 5022 swp_entry_t ent;
4ffef5fe
DN
5023};
5024
4ffef5fe 5025enum mc_target_type {
8d32ff84 5026 MC_TARGET_NONE = 0,
4ffef5fe 5027 MC_TARGET_PAGE,
02491447 5028 MC_TARGET_SWAP,
c733a828 5029 MC_TARGET_DEVICE,
4ffef5fe
DN
5030};
5031
90254a65
DN
5032static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
5033 unsigned long addr, pte_t ptent)
4ffef5fe 5034{
25b2995a 5035 struct page *page = vm_normal_page(vma, addr, ptent);
4ffef5fe 5036
90254a65
DN
5037 if (!page || !page_mapped(page))
5038 return NULL;
5039 if (PageAnon(page)) {
1dfab5ab 5040 if (!(mc.flags & MOVE_ANON))
90254a65 5041 return NULL;
1dfab5ab
JW
5042 } else {
5043 if (!(mc.flags & MOVE_FILE))
5044 return NULL;
5045 }
90254a65
DN
5046 if (!get_page_unless_zero(page))
5047 return NULL;
5048
5049 return page;
5050}
5051
c733a828 5052#if defined(CONFIG_SWAP) || defined(CONFIG_DEVICE_PRIVATE)
90254a65 5053static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
48406ef8 5054 pte_t ptent, swp_entry_t *entry)
90254a65 5055{
90254a65
DN
5056 struct page *page = NULL;
5057 swp_entry_t ent = pte_to_swp_entry(ptent);
5058
1dfab5ab 5059 if (!(mc.flags & MOVE_ANON) || non_swap_entry(ent))
90254a65 5060 return NULL;
c733a828
JG
5061
5062 /*
5063 * Handle MEMORY_DEVICE_PRIVATE which are ZONE_DEVICE page belonging to
5064 * a device and because they are not accessible by CPU they are store
5065 * as special swap entry in the CPU page table.
5066 */
5067 if (is_device_private_entry(ent)) {
5068 page = device_private_entry_to_page(ent);
5069 /*
5070 * MEMORY_DEVICE_PRIVATE means ZONE_DEVICE page and which have
5071 * a refcount of 1 when free (unlike normal page)
5072 */
5073 if (!page_ref_add_unless(page, 1, 1))
5074 return NULL;
5075 return page;
5076 }
5077
4b91355e
KH
5078 /*
5079 * Because lookup_swap_cache() updates some statistics counter,
5080 * we call find_get_page() with swapper_space directly.
5081 */
f6ab1f7f 5082 page = find_get_page(swap_address_space(ent), swp_offset(ent));
7941d214 5083 if (do_memsw_account())
90254a65
DN
5084 entry->val = ent.val;
5085
5086 return page;
5087}
4b91355e
KH
5088#else
5089static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
48406ef8 5090 pte_t ptent, swp_entry_t *entry)
4b91355e
KH
5091{
5092 return NULL;
5093}
5094#endif
90254a65 5095
87946a72
DN
5096static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
5097 unsigned long addr, pte_t ptent, swp_entry_t *entry)
5098{
5099 struct page *page = NULL;
87946a72
DN
5100 struct address_space *mapping;
5101 pgoff_t pgoff;
5102
5103 if (!vma->vm_file) /* anonymous vma */
5104 return NULL;
1dfab5ab 5105 if (!(mc.flags & MOVE_FILE))
87946a72
DN
5106 return NULL;
5107
87946a72 5108 mapping = vma->vm_file->f_mapping;
0661a336 5109 pgoff = linear_page_index(vma, addr);
87946a72
DN
5110
5111 /* page is moved even if it's not RSS of this task(page-faulted). */
aa3b1895
HD
5112#ifdef CONFIG_SWAP
5113 /* shmem/tmpfs may report page out on swap: account for that too. */
139b6a6f
JW
5114 if (shmem_mapping(mapping)) {
5115 page = find_get_entry(mapping, pgoff);
3159f943 5116 if (xa_is_value(page)) {
139b6a6f 5117 swp_entry_t swp = radix_to_swp_entry(page);
7941d214 5118 if (do_memsw_account())
139b6a6f 5119 *entry = swp;
f6ab1f7f
HY
5120 page = find_get_page(swap_address_space(swp),
5121 swp_offset(swp));
139b6a6f
JW
5122 }
5123 } else
5124 page = find_get_page(mapping, pgoff);
5125#else
5126 page = find_get_page(mapping, pgoff);
aa3b1895 5127#endif
87946a72
DN
5128 return page;
5129}
5130
b1b0deab
CG
5131/**
5132 * mem_cgroup_move_account - move account of the page
5133 * @page: the page
25843c2b 5134 * @compound: charge the page as compound or small page
b1b0deab
CG
5135 * @from: mem_cgroup which the page is moved from.
5136 * @to: mem_cgroup which the page is moved to. @from != @to.
5137 *
3ac808fd 5138 * The caller must make sure the page is not on LRU (isolate_page() is useful.)
b1b0deab
CG
5139 *
5140 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
5141 * from old cgroup.
5142 */
5143static int mem_cgroup_move_account(struct page *page,
f627c2f5 5144 bool compound,
b1b0deab
CG
5145 struct mem_cgroup *from,
5146 struct mem_cgroup *to)
5147{
5148 unsigned long flags;
f627c2f5 5149 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
b1b0deab 5150 int ret;
c4843a75 5151 bool anon;
b1b0deab
CG
5152
5153 VM_BUG_ON(from == to);
5154 VM_BUG_ON_PAGE(PageLRU(page), page);
f627c2f5 5155 VM_BUG_ON(compound && !PageTransHuge(page));
b1b0deab
CG
5156
5157 /*
6a93ca8f 5158 * Prevent mem_cgroup_migrate() from looking at
45637bab 5159 * page->mem_cgroup of its source page while we change it.
b1b0deab 5160 */
f627c2f5 5161 ret = -EBUSY;
b1b0deab
CG
5162 if (!trylock_page(page))
5163 goto out;
5164
5165 ret = -EINVAL;
5166 if (page->mem_cgroup != from)
5167 goto out_unlock;
5168
c4843a75
GT
5169 anon = PageAnon(page);
5170
b1b0deab
CG
5171 spin_lock_irqsave(&from->move_lock, flags);
5172
c4843a75 5173 if (!anon && page_mapped(page)) {
c9019e9b
JW
5174 __mod_memcg_state(from, NR_FILE_MAPPED, -nr_pages);
5175 __mod_memcg_state(to, NR_FILE_MAPPED, nr_pages);
b1b0deab
CG
5176 }
5177
c4843a75
GT
5178 /*
5179 * move_lock grabbed above and caller set from->moving_account, so
ccda7f43 5180 * mod_memcg_page_state will serialize updates to PageDirty.
c4843a75
GT
5181 * So mapping should be stable for dirty pages.
5182 */
5183 if (!anon && PageDirty(page)) {
5184 struct address_space *mapping = page_mapping(page);
5185
5186 if (mapping_cap_account_dirty(mapping)) {
c9019e9b
JW
5187 __mod_memcg_state(from, NR_FILE_DIRTY, -nr_pages);
5188 __mod_memcg_state(to, NR_FILE_DIRTY, nr_pages);
c4843a75
GT
5189 }
5190 }
5191
b1b0deab 5192 if (PageWriteback(page)) {
c9019e9b
JW
5193 __mod_memcg_state(from, NR_WRITEBACK, -nr_pages);
5194 __mod_memcg_state(to, NR_WRITEBACK, nr_pages);
b1b0deab
CG
5195 }
5196
5197 /*
5198 * It is safe to change page->mem_cgroup here because the page
5199 * is referenced, charged, and isolated - we can't race with
5200 * uncharging, charging, migration, or LRU putback.
5201 */
5202
5203 /* caller should have done css_get */
5204 page->mem_cgroup = to;
5205 spin_unlock_irqrestore(&from->move_lock, flags);
5206
5207 ret = 0;
5208
5209 local_irq_disable();
f627c2f5 5210 mem_cgroup_charge_statistics(to, page, compound, nr_pages);
b1b0deab 5211 memcg_check_events(to, page);
f627c2f5 5212 mem_cgroup_charge_statistics(from, page, compound, -nr_pages);
b1b0deab
CG
5213 memcg_check_events(from, page);
5214 local_irq_enable();
5215out_unlock:
5216 unlock_page(page);
5217out:
5218 return ret;
5219}
5220
7cf7806c
LR
5221/**
5222 * get_mctgt_type - get target type of moving charge
5223 * @vma: the vma the pte to be checked belongs
5224 * @addr: the address corresponding to the pte to be checked
5225 * @ptent: the pte to be checked
5226 * @target: the pointer the target page or swap ent will be stored(can be NULL)
5227 *
5228 * Returns
5229 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
5230 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
5231 * move charge. if @target is not NULL, the page is stored in target->page
5232 * with extra refcnt got(Callers should handle it).
5233 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
5234 * target for charge migration. if @target is not NULL, the entry is stored
5235 * in target->ent.
25b2995a
CH
5236 * 3(MC_TARGET_DEVICE): like MC_TARGET_PAGE but page is MEMORY_DEVICE_PRIVATE
5237 * (so ZONE_DEVICE page and thus not on the lru).
df6ad698
JG
5238 * For now we such page is charge like a regular page would be as for all
5239 * intent and purposes it is just special memory taking the place of a
5240 * regular page.
c733a828
JG
5241 *
5242 * See Documentations/vm/hmm.txt and include/linux/hmm.h
7cf7806c
LR
5243 *
5244 * Called with pte lock held.
5245 */
5246
8d32ff84 5247static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
90254a65
DN
5248 unsigned long addr, pte_t ptent, union mc_target *target)
5249{
5250 struct page *page = NULL;
8d32ff84 5251 enum mc_target_type ret = MC_TARGET_NONE;
90254a65
DN
5252 swp_entry_t ent = { .val = 0 };
5253
5254 if (pte_present(ptent))
5255 page = mc_handle_present_pte(vma, addr, ptent);
5256 else if (is_swap_pte(ptent))
48406ef8 5257 page = mc_handle_swap_pte(vma, ptent, &ent);
0661a336 5258 else if (pte_none(ptent))
87946a72 5259 page = mc_handle_file_pte(vma, addr, ptent, &ent);
90254a65
DN
5260
5261 if (!page && !ent.val)
8d32ff84 5262 return ret;
02491447 5263 if (page) {
02491447 5264 /*
0a31bc97 5265 * Do only loose check w/o serialization.
1306a85a 5266 * mem_cgroup_move_account() checks the page is valid or
0a31bc97 5267 * not under LRU exclusion.
02491447 5268 */
1306a85a 5269 if (page->mem_cgroup == mc.from) {
02491447 5270 ret = MC_TARGET_PAGE;
25b2995a 5271 if (is_device_private_page(page))
c733a828 5272 ret = MC_TARGET_DEVICE;
02491447
DN
5273 if (target)
5274 target->page = page;
5275 }
5276 if (!ret || !target)
5277 put_page(page);
5278 }
3e14a57b
HY
5279 /*
5280 * There is a swap entry and a page doesn't exist or isn't charged.
5281 * But we cannot move a tail-page in a THP.
5282 */
5283 if (ent.val && !ret && (!page || !PageTransCompound(page)) &&
34c00c31 5284 mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
7f0f1546
KH
5285 ret = MC_TARGET_SWAP;
5286 if (target)
5287 target->ent = ent;
4ffef5fe 5288 }
4ffef5fe
DN
5289 return ret;
5290}
5291
12724850
NH
5292#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5293/*
d6810d73
HY
5294 * We don't consider PMD mapped swapping or file mapped pages because THP does
5295 * not support them for now.
12724850
NH
5296 * Caller should make sure that pmd_trans_huge(pmd) is true.
5297 */
5298static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5299 unsigned long addr, pmd_t pmd, union mc_target *target)
5300{
5301 struct page *page = NULL;
12724850
NH
5302 enum mc_target_type ret = MC_TARGET_NONE;
5303
84c3fc4e
ZY
5304 if (unlikely(is_swap_pmd(pmd))) {
5305 VM_BUG_ON(thp_migration_supported() &&
5306 !is_pmd_migration_entry(pmd));
5307 return ret;
5308 }
12724850 5309 page = pmd_page(pmd);
309381fe 5310 VM_BUG_ON_PAGE(!page || !PageHead(page), page);
1dfab5ab 5311 if (!(mc.flags & MOVE_ANON))
12724850 5312 return ret;
1306a85a 5313 if (page->mem_cgroup == mc.from) {
12724850
NH
5314 ret = MC_TARGET_PAGE;
5315 if (target) {
5316 get_page(page);
5317 target->page = page;
5318 }
5319 }
5320 return ret;
5321}
5322#else
5323static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5324 unsigned long addr, pmd_t pmd, union mc_target *target)
5325{
5326 return MC_TARGET_NONE;
5327}
5328#endif
5329
4ffef5fe
DN
5330static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
5331 unsigned long addr, unsigned long end,
5332 struct mm_walk *walk)
5333{
26bcd64a 5334 struct vm_area_struct *vma = walk->vma;
4ffef5fe
DN
5335 pte_t *pte;
5336 spinlock_t *ptl;
5337
b6ec57f4
KS
5338 ptl = pmd_trans_huge_lock(pmd, vma);
5339 if (ptl) {
c733a828
JG
5340 /*
5341 * Note their can not be MC_TARGET_DEVICE for now as we do not
25b2995a
CH
5342 * support transparent huge page with MEMORY_DEVICE_PRIVATE but
5343 * this might change.
c733a828 5344 */
12724850
NH
5345 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
5346 mc.precharge += HPAGE_PMD_NR;
bf929152 5347 spin_unlock(ptl);
1a5a9906 5348 return 0;
12724850 5349 }
03319327 5350
45f83cef
AA
5351 if (pmd_trans_unstable(pmd))
5352 return 0;
4ffef5fe
DN
5353 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5354 for (; addr != end; pte++, addr += PAGE_SIZE)
8d32ff84 5355 if (get_mctgt_type(vma, addr, *pte, NULL))
4ffef5fe
DN
5356 mc.precharge++; /* increment precharge temporarily */
5357 pte_unmap_unlock(pte - 1, ptl);
5358 cond_resched();
5359
7dc74be0
DN
5360 return 0;
5361}
5362
4ffef5fe
DN
5363static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
5364{
5365 unsigned long precharge;
4ffef5fe 5366
26bcd64a
NH
5367 struct mm_walk mem_cgroup_count_precharge_walk = {
5368 .pmd_entry = mem_cgroup_count_precharge_pte_range,
5369 .mm = mm,
5370 };
dfe076b0 5371 down_read(&mm->mmap_sem);
0247f3f4
JM
5372 walk_page_range(0, mm->highest_vm_end,
5373 &mem_cgroup_count_precharge_walk);
dfe076b0 5374 up_read(&mm->mmap_sem);
4ffef5fe
DN
5375
5376 precharge = mc.precharge;
5377 mc.precharge = 0;
5378
5379 return precharge;
5380}
5381
4ffef5fe
DN
5382static int mem_cgroup_precharge_mc(struct mm_struct *mm)
5383{
dfe076b0
DN
5384 unsigned long precharge = mem_cgroup_count_precharge(mm);
5385
5386 VM_BUG_ON(mc.moving_task);
5387 mc.moving_task = current;
5388 return mem_cgroup_do_precharge(precharge);
4ffef5fe
DN
5389}
5390
dfe076b0
DN
5391/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
5392static void __mem_cgroup_clear_mc(void)
4ffef5fe 5393{
2bd9bb20
KH
5394 struct mem_cgroup *from = mc.from;
5395 struct mem_cgroup *to = mc.to;
5396
4ffef5fe 5397 /* we must uncharge all the leftover precharges from mc.to */
854ffa8d 5398 if (mc.precharge) {
00501b53 5399 cancel_charge(mc.to, mc.precharge);
854ffa8d
DN
5400 mc.precharge = 0;
5401 }
5402 /*
5403 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
5404 * we must uncharge here.
5405 */
5406 if (mc.moved_charge) {
00501b53 5407 cancel_charge(mc.from, mc.moved_charge);
854ffa8d 5408 mc.moved_charge = 0;
4ffef5fe 5409 }
483c30b5
DN
5410 /* we must fixup refcnts and charges */
5411 if (mc.moved_swap) {
483c30b5 5412 /* uncharge swap account from the old cgroup */
ce00a967 5413 if (!mem_cgroup_is_root(mc.from))
3e32cb2e 5414 page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
483c30b5 5415
615d66c3
VD
5416 mem_cgroup_id_put_many(mc.from, mc.moved_swap);
5417
05b84301 5418 /*
3e32cb2e
JW
5419 * we charged both to->memory and to->memsw, so we
5420 * should uncharge to->memory.
05b84301 5421 */
ce00a967 5422 if (!mem_cgroup_is_root(mc.to))
3e32cb2e
JW
5423 page_counter_uncharge(&mc.to->memory, mc.moved_swap);
5424
615d66c3
VD
5425 mem_cgroup_id_get_many(mc.to, mc.moved_swap);
5426 css_put_many(&mc.to->css, mc.moved_swap);
3e32cb2e 5427
483c30b5
DN
5428 mc.moved_swap = 0;
5429 }
dfe076b0
DN
5430 memcg_oom_recover(from);
5431 memcg_oom_recover(to);
5432 wake_up_all(&mc.waitq);
5433}
5434
5435static void mem_cgroup_clear_mc(void)
5436{
264a0ae1
TH
5437 struct mm_struct *mm = mc.mm;
5438
dfe076b0
DN
5439 /*
5440 * we must clear moving_task before waking up waiters at the end of
5441 * task migration.
5442 */
5443 mc.moving_task = NULL;
5444 __mem_cgroup_clear_mc();
2bd9bb20 5445 spin_lock(&mc.lock);
4ffef5fe
DN
5446 mc.from = NULL;
5447 mc.to = NULL;
264a0ae1 5448 mc.mm = NULL;
2bd9bb20 5449 spin_unlock(&mc.lock);
264a0ae1
TH
5450
5451 mmput(mm);
4ffef5fe
DN
5452}
5453
1f7dd3e5 5454static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
7dc74be0 5455{
1f7dd3e5 5456 struct cgroup_subsys_state *css;
eed67d75 5457 struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
9f2115f9 5458 struct mem_cgroup *from;
4530eddb 5459 struct task_struct *leader, *p;
9f2115f9 5460 struct mm_struct *mm;
1dfab5ab 5461 unsigned long move_flags;
9f2115f9 5462 int ret = 0;
7dc74be0 5463
1f7dd3e5
TH
5464 /* charge immigration isn't supported on the default hierarchy */
5465 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
9f2115f9
TH
5466 return 0;
5467
4530eddb
TH
5468 /*
5469 * Multi-process migrations only happen on the default hierarchy
5470 * where charge immigration is not used. Perform charge
5471 * immigration if @tset contains a leader and whine if there are
5472 * multiple.
5473 */
5474 p = NULL;
1f7dd3e5 5475 cgroup_taskset_for_each_leader(leader, css, tset) {
4530eddb
TH
5476 WARN_ON_ONCE(p);
5477 p = leader;
1f7dd3e5 5478 memcg = mem_cgroup_from_css(css);
4530eddb
TH
5479 }
5480 if (!p)
5481 return 0;
5482
1f7dd3e5
TH
5483 /*
5484 * We are now commited to this value whatever it is. Changes in this
5485 * tunable will only affect upcoming migrations, not the current one.
5486 * So we need to save it, and keep it going.
5487 */
5488 move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
5489 if (!move_flags)
5490 return 0;
5491
9f2115f9
TH
5492 from = mem_cgroup_from_task(p);
5493
5494 VM_BUG_ON(from == memcg);
5495
5496 mm = get_task_mm(p);
5497 if (!mm)
5498 return 0;
5499 /* We move charges only when we move a owner of the mm */
5500 if (mm->owner == p) {
5501 VM_BUG_ON(mc.from);
5502 VM_BUG_ON(mc.to);
5503 VM_BUG_ON(mc.precharge);
5504 VM_BUG_ON(mc.moved_charge);
5505 VM_BUG_ON(mc.moved_swap);
5506
5507 spin_lock(&mc.lock);
264a0ae1 5508 mc.mm = mm;
9f2115f9
TH
5509 mc.from = from;
5510 mc.to = memcg;
5511 mc.flags = move_flags;
5512 spin_unlock(&mc.lock);
5513 /* We set mc.moving_task later */
5514
5515 ret = mem_cgroup_precharge_mc(mm);
5516 if (ret)
5517 mem_cgroup_clear_mc();
264a0ae1
TH
5518 } else {
5519 mmput(mm);
7dc74be0
DN
5520 }
5521 return ret;
5522}
5523
1f7dd3e5 5524static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
7dc74be0 5525{
4e2f245d
JW
5526 if (mc.to)
5527 mem_cgroup_clear_mc();
7dc74be0
DN
5528}
5529
4ffef5fe
DN
5530static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
5531 unsigned long addr, unsigned long end,
5532 struct mm_walk *walk)
7dc74be0 5533{
4ffef5fe 5534 int ret = 0;
26bcd64a 5535 struct vm_area_struct *vma = walk->vma;
4ffef5fe
DN
5536 pte_t *pte;
5537 spinlock_t *ptl;
12724850
NH
5538 enum mc_target_type target_type;
5539 union mc_target target;
5540 struct page *page;
4ffef5fe 5541
b6ec57f4
KS
5542 ptl = pmd_trans_huge_lock(pmd, vma);
5543 if (ptl) {
62ade86a 5544 if (mc.precharge < HPAGE_PMD_NR) {
bf929152 5545 spin_unlock(ptl);
12724850
NH
5546 return 0;
5547 }
5548 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
5549 if (target_type == MC_TARGET_PAGE) {
5550 page = target.page;
5551 if (!isolate_lru_page(page)) {
f627c2f5 5552 if (!mem_cgroup_move_account(page, true,
1306a85a 5553 mc.from, mc.to)) {
12724850
NH
5554 mc.precharge -= HPAGE_PMD_NR;
5555 mc.moved_charge += HPAGE_PMD_NR;
5556 }
5557 putback_lru_page(page);
5558 }
5559 put_page(page);
c733a828
JG
5560 } else if (target_type == MC_TARGET_DEVICE) {
5561 page = target.page;
5562 if (!mem_cgroup_move_account(page, true,
5563 mc.from, mc.to)) {
5564 mc.precharge -= HPAGE_PMD_NR;
5565 mc.moved_charge += HPAGE_PMD_NR;
5566 }
5567 put_page(page);
12724850 5568 }
bf929152 5569 spin_unlock(ptl);
1a5a9906 5570 return 0;
12724850
NH
5571 }
5572
45f83cef
AA
5573 if (pmd_trans_unstable(pmd))
5574 return 0;
4ffef5fe
DN
5575retry:
5576 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5577 for (; addr != end; addr += PAGE_SIZE) {
5578 pte_t ptent = *(pte++);
c733a828 5579 bool device = false;
02491447 5580 swp_entry_t ent;
4ffef5fe
DN
5581
5582 if (!mc.precharge)
5583 break;
5584
8d32ff84 5585 switch (get_mctgt_type(vma, addr, ptent, &target)) {
c733a828
JG
5586 case MC_TARGET_DEVICE:
5587 device = true;
5588 /* fall through */
4ffef5fe
DN
5589 case MC_TARGET_PAGE:
5590 page = target.page;
53f9263b
KS
5591 /*
5592 * We can have a part of the split pmd here. Moving it
5593 * can be done but it would be too convoluted so simply
5594 * ignore such a partial THP and keep it in original
5595 * memcg. There should be somebody mapping the head.
5596 */
5597 if (PageTransCompound(page))
5598 goto put;
c733a828 5599 if (!device && isolate_lru_page(page))
4ffef5fe 5600 goto put;
f627c2f5
KS
5601 if (!mem_cgroup_move_account(page, false,
5602 mc.from, mc.to)) {
4ffef5fe 5603 mc.precharge--;
854ffa8d
DN
5604 /* we uncharge from mc.from later. */
5605 mc.moved_charge++;
4ffef5fe 5606 }
c733a828
JG
5607 if (!device)
5608 putback_lru_page(page);
8d32ff84 5609put: /* get_mctgt_type() gets the page */
4ffef5fe
DN
5610 put_page(page);
5611 break;
02491447
DN
5612 case MC_TARGET_SWAP:
5613 ent = target.ent;
e91cbb42 5614 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
02491447 5615 mc.precharge--;
483c30b5
DN
5616 /* we fixup refcnts and charges later. */
5617 mc.moved_swap++;
5618 }
02491447 5619 break;
4ffef5fe
DN
5620 default:
5621 break;
5622 }
5623 }
5624 pte_unmap_unlock(pte - 1, ptl);
5625 cond_resched();
5626
5627 if (addr != end) {
5628 /*
5629 * We have consumed all precharges we got in can_attach().
5630 * We try charge one by one, but don't do any additional
5631 * charges to mc.to if we have failed in charge once in attach()
5632 * phase.
5633 */
854ffa8d 5634 ret = mem_cgroup_do_precharge(1);
4ffef5fe
DN
5635 if (!ret)
5636 goto retry;
5637 }
5638
5639 return ret;
5640}
5641
264a0ae1 5642static void mem_cgroup_move_charge(void)
4ffef5fe 5643{
26bcd64a
NH
5644 struct mm_walk mem_cgroup_move_charge_walk = {
5645 .pmd_entry = mem_cgroup_move_charge_pte_range,
264a0ae1 5646 .mm = mc.mm,
26bcd64a 5647 };
4ffef5fe
DN
5648
5649 lru_add_drain_all();
312722cb 5650 /*
81f8c3a4
JW
5651 * Signal lock_page_memcg() to take the memcg's move_lock
5652 * while we're moving its pages to another memcg. Then wait
5653 * for already started RCU-only updates to finish.
312722cb
JW
5654 */
5655 atomic_inc(&mc.from->moving_account);
5656 synchronize_rcu();
dfe076b0 5657retry:
264a0ae1 5658 if (unlikely(!down_read_trylock(&mc.mm->mmap_sem))) {
dfe076b0
DN
5659 /*
5660 * Someone who are holding the mmap_sem might be waiting in
5661 * waitq. So we cancel all extra charges, wake up all waiters,
5662 * and retry. Because we cancel precharges, we might not be able
5663 * to move enough charges, but moving charge is a best-effort
5664 * feature anyway, so it wouldn't be a big problem.
5665 */
5666 __mem_cgroup_clear_mc();
5667 cond_resched();
5668 goto retry;
5669 }
26bcd64a
NH
5670 /*
5671 * When we have consumed all precharges and failed in doing
5672 * additional charge, the page walk just aborts.
5673 */
0247f3f4
JM
5674 walk_page_range(0, mc.mm->highest_vm_end, &mem_cgroup_move_charge_walk);
5675
264a0ae1 5676 up_read(&mc.mm->mmap_sem);
312722cb 5677 atomic_dec(&mc.from->moving_account);
7dc74be0
DN
5678}
5679
264a0ae1 5680static void mem_cgroup_move_task(void)
67e465a7 5681{
264a0ae1
TH
5682 if (mc.to) {
5683 mem_cgroup_move_charge();
a433658c 5684 mem_cgroup_clear_mc();
264a0ae1 5685 }
67e465a7 5686}
5cfb80a7 5687#else /* !CONFIG_MMU */
1f7dd3e5 5688static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
5cfb80a7
DN
5689{
5690 return 0;
5691}
1f7dd3e5 5692static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
5cfb80a7
DN
5693{
5694}
264a0ae1 5695static void mem_cgroup_move_task(void)
5cfb80a7
DN
5696{
5697}
5698#endif
67e465a7 5699
f00baae7
TH
5700/*
5701 * Cgroup retains root cgroups across [un]mount cycles making it necessary
aa6ec29b
TH
5702 * to verify whether we're attached to the default hierarchy on each mount
5703 * attempt.
f00baae7 5704 */
eb95419b 5705static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
f00baae7
TH
5706{
5707 /*
aa6ec29b 5708 * use_hierarchy is forced on the default hierarchy. cgroup core
f00baae7
TH
5709 * guarantees that @root doesn't have any children, so turning it
5710 * on for the root memcg is enough.
5711 */
9e10a130 5712 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
7feee590
VD
5713 root_mem_cgroup->use_hierarchy = true;
5714 else
5715 root_mem_cgroup->use_hierarchy = false;
f00baae7
TH
5716}
5717
677dc973
CD
5718static int seq_puts_memcg_tunable(struct seq_file *m, unsigned long value)
5719{
5720 if (value == PAGE_COUNTER_MAX)
5721 seq_puts(m, "max\n");
5722 else
5723 seq_printf(m, "%llu\n", (u64)value * PAGE_SIZE);
5724
5725 return 0;
5726}
5727
241994ed
JW
5728static u64 memory_current_read(struct cgroup_subsys_state *css,
5729 struct cftype *cft)
5730{
f5fc3c5d
JW
5731 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5732
5733 return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
241994ed
JW
5734}
5735
bf8d5d52
RG
5736static int memory_min_show(struct seq_file *m, void *v)
5737{
677dc973
CD
5738 return seq_puts_memcg_tunable(m,
5739 READ_ONCE(mem_cgroup_from_seq(m)->memory.min));
bf8d5d52
RG
5740}
5741
5742static ssize_t memory_min_write(struct kernfs_open_file *of,
5743 char *buf, size_t nbytes, loff_t off)
5744{
5745 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5746 unsigned long min;
5747 int err;
5748
5749 buf = strstrip(buf);
5750 err = page_counter_memparse(buf, "max", &min);
5751 if (err)
5752 return err;
5753
5754 page_counter_set_min(&memcg->memory, min);
5755
5756 return nbytes;
5757}
5758
241994ed
JW
5759static int memory_low_show(struct seq_file *m, void *v)
5760{
677dc973
CD
5761 return seq_puts_memcg_tunable(m,
5762 READ_ONCE(mem_cgroup_from_seq(m)->memory.low));
241994ed
JW
5763}
5764
5765static ssize_t memory_low_write(struct kernfs_open_file *of,
5766 char *buf, size_t nbytes, loff_t off)
5767{
5768 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5769 unsigned long low;
5770 int err;
5771
5772 buf = strstrip(buf);
d2973697 5773 err = page_counter_memparse(buf, "max", &low);
241994ed
JW
5774 if (err)
5775 return err;
5776
23067153 5777 page_counter_set_low(&memcg->memory, low);
241994ed
JW
5778
5779 return nbytes;
5780}
5781
5782static int memory_high_show(struct seq_file *m, void *v)
5783{
677dc973 5784 return seq_puts_memcg_tunable(m, READ_ONCE(mem_cgroup_from_seq(m)->high));
241994ed
JW
5785}
5786
5787static ssize_t memory_high_write(struct kernfs_open_file *of,
5788 char *buf, size_t nbytes, loff_t off)
5789{
5790 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
588083bb 5791 unsigned long nr_pages;
241994ed
JW
5792 unsigned long high;
5793 int err;
5794
5795 buf = strstrip(buf);
d2973697 5796 err = page_counter_memparse(buf, "max", &high);
241994ed
JW
5797 if (err)
5798 return err;
5799
5800 memcg->high = high;
5801
588083bb
JW
5802 nr_pages = page_counter_read(&memcg->memory);
5803 if (nr_pages > high)
5804 try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
5805 GFP_KERNEL, true);
5806
2529bb3a 5807 memcg_wb_domain_size_changed(memcg);
241994ed
JW
5808 return nbytes;
5809}
5810
5811static int memory_max_show(struct seq_file *m, void *v)
5812{
677dc973
CD
5813 return seq_puts_memcg_tunable(m,
5814 READ_ONCE(mem_cgroup_from_seq(m)->memory.max));
241994ed
JW
5815}
5816
5817static ssize_t memory_max_write(struct kernfs_open_file *of,
5818 char *buf, size_t nbytes, loff_t off)
5819{
5820 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
b6e6edcf
JW
5821 unsigned int nr_reclaims = MEM_CGROUP_RECLAIM_RETRIES;
5822 bool drained = false;
241994ed
JW
5823 unsigned long max;
5824 int err;
5825
5826 buf = strstrip(buf);
d2973697 5827 err = page_counter_memparse(buf, "max", &max);
241994ed
JW
5828 if (err)
5829 return err;
5830
bbec2e15 5831 xchg(&memcg->memory.max, max);
b6e6edcf
JW
5832
5833 for (;;) {
5834 unsigned long nr_pages = page_counter_read(&memcg->memory);
5835
5836 if (nr_pages <= max)
5837 break;
5838
5839 if (signal_pending(current)) {
5840 err = -EINTR;
5841 break;
5842 }
5843
5844 if (!drained) {
5845 drain_all_stock(memcg);
5846 drained = true;
5847 continue;
5848 }
5849
5850 if (nr_reclaims) {
5851 if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
5852 GFP_KERNEL, true))
5853 nr_reclaims--;
5854 continue;
5855 }
5856
e27be240 5857 memcg_memory_event(memcg, MEMCG_OOM);
b6e6edcf
JW
5858 if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
5859 break;
5860 }
241994ed 5861
2529bb3a 5862 memcg_wb_domain_size_changed(memcg);
241994ed
JW
5863 return nbytes;
5864}
5865
1e577f97
SB
5866static void __memory_events_show(struct seq_file *m, atomic_long_t *events)
5867{
5868 seq_printf(m, "low %lu\n", atomic_long_read(&events[MEMCG_LOW]));
5869 seq_printf(m, "high %lu\n", atomic_long_read(&events[MEMCG_HIGH]));
5870 seq_printf(m, "max %lu\n", atomic_long_read(&events[MEMCG_MAX]));
5871 seq_printf(m, "oom %lu\n", atomic_long_read(&events[MEMCG_OOM]));
5872 seq_printf(m, "oom_kill %lu\n",
5873 atomic_long_read(&events[MEMCG_OOM_KILL]));
5874}
5875
241994ed
JW
5876static int memory_events_show(struct seq_file *m, void *v)
5877{
aa9694bb 5878 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
241994ed 5879
1e577f97
SB
5880 __memory_events_show(m, memcg->memory_events);
5881 return 0;
5882}
5883
5884static int memory_events_local_show(struct seq_file *m, void *v)
5885{
5886 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
241994ed 5887
1e577f97 5888 __memory_events_show(m, memcg->memory_events_local);
241994ed
JW
5889 return 0;
5890}
5891
587d9f72
JW
5892static int memory_stat_show(struct seq_file *m, void *v)
5893{
aa9694bb 5894 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
c8713d0b 5895 char *buf;
1ff9e6e1 5896
c8713d0b
JW
5897 buf = memory_stat_format(memcg);
5898 if (!buf)
5899 return -ENOMEM;
5900 seq_puts(m, buf);
5901 kfree(buf);
587d9f72
JW
5902 return 0;
5903}
5904
3d8b38eb
RG
5905static int memory_oom_group_show(struct seq_file *m, void *v)
5906{
aa9694bb 5907 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
3d8b38eb
RG
5908
5909 seq_printf(m, "%d\n", memcg->oom_group);
5910
5911 return 0;
5912}
5913
5914static ssize_t memory_oom_group_write(struct kernfs_open_file *of,
5915 char *buf, size_t nbytes, loff_t off)
5916{
5917 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5918 int ret, oom_group;
5919
5920 buf = strstrip(buf);
5921 if (!buf)
5922 return -EINVAL;
5923
5924 ret = kstrtoint(buf, 0, &oom_group);
5925 if (ret)
5926 return ret;
5927
5928 if (oom_group != 0 && oom_group != 1)
5929 return -EINVAL;
5930
5931 memcg->oom_group = oom_group;
5932
5933 return nbytes;
5934}
5935
241994ed
JW
5936static struct cftype memory_files[] = {
5937 {
5938 .name = "current",
f5fc3c5d 5939 .flags = CFTYPE_NOT_ON_ROOT,
241994ed
JW
5940 .read_u64 = memory_current_read,
5941 },
bf8d5d52
RG
5942 {
5943 .name = "min",
5944 .flags = CFTYPE_NOT_ON_ROOT,
5945 .seq_show = memory_min_show,
5946 .write = memory_min_write,
5947 },
241994ed
JW
5948 {
5949 .name = "low",
5950 .flags = CFTYPE_NOT_ON_ROOT,
5951 .seq_show = memory_low_show,
5952 .write = memory_low_write,
5953 },
5954 {
5955 .name = "high",
5956 .flags = CFTYPE_NOT_ON_ROOT,
5957 .seq_show = memory_high_show,
5958 .write = memory_high_write,
5959 },
5960 {
5961 .name = "max",
5962 .flags = CFTYPE_NOT_ON_ROOT,
5963 .seq_show = memory_max_show,
5964 .write = memory_max_write,
5965 },
5966 {
5967 .name = "events",
5968 .flags = CFTYPE_NOT_ON_ROOT,
472912a2 5969 .file_offset = offsetof(struct mem_cgroup, events_file),
241994ed
JW
5970 .seq_show = memory_events_show,
5971 },
1e577f97
SB
5972 {
5973 .name = "events.local",
5974 .flags = CFTYPE_NOT_ON_ROOT,
5975 .file_offset = offsetof(struct mem_cgroup, events_local_file),
5976 .seq_show = memory_events_local_show,
5977 },
587d9f72
JW
5978 {
5979 .name = "stat",
5980 .flags = CFTYPE_NOT_ON_ROOT,
5981 .seq_show = memory_stat_show,
5982 },
3d8b38eb
RG
5983 {
5984 .name = "oom.group",
5985 .flags = CFTYPE_NOT_ON_ROOT | CFTYPE_NS_DELEGATABLE,
5986 .seq_show = memory_oom_group_show,
5987 .write = memory_oom_group_write,
5988 },
241994ed
JW
5989 { } /* terminate */
5990};
5991
073219e9 5992struct cgroup_subsys memory_cgrp_subsys = {
92fb9748 5993 .css_alloc = mem_cgroup_css_alloc,
d142e3e6 5994 .css_online = mem_cgroup_css_online,
92fb9748 5995 .css_offline = mem_cgroup_css_offline,
6df38689 5996 .css_released = mem_cgroup_css_released,
92fb9748 5997 .css_free = mem_cgroup_css_free,
1ced953b 5998 .css_reset = mem_cgroup_css_reset,
7dc74be0
DN
5999 .can_attach = mem_cgroup_can_attach,
6000 .cancel_attach = mem_cgroup_cancel_attach,
264a0ae1 6001 .post_attach = mem_cgroup_move_task,
f00baae7 6002 .bind = mem_cgroup_bind,
241994ed
JW
6003 .dfl_cftypes = memory_files,
6004 .legacy_cftypes = mem_cgroup_legacy_files,
6d12e2d8 6005 .early_init = 0,
8cdea7c0 6006};
c077719b 6007
241994ed 6008/**
bf8d5d52 6009 * mem_cgroup_protected - check if memory consumption is in the normal range
34c81057 6010 * @root: the top ancestor of the sub-tree being checked
241994ed
JW
6011 * @memcg: the memory cgroup to check
6012 *
23067153
RG
6013 * WARNING: This function is not stateless! It can only be used as part
6014 * of a top-down tree iteration, not for isolated queries.
34c81057 6015 *
bf8d5d52
RG
6016 * Returns one of the following:
6017 * MEMCG_PROT_NONE: cgroup memory is not protected
6018 * MEMCG_PROT_LOW: cgroup memory is protected as long there is
6019 * an unprotected supply of reclaimable memory from other cgroups.
6020 * MEMCG_PROT_MIN: cgroup memory is protected
34c81057 6021 *
bf8d5d52 6022 * @root is exclusive; it is never protected when looked at directly
34c81057 6023 *
bf8d5d52
RG
6024 * To provide a proper hierarchical behavior, effective memory.min/low values
6025 * are used. Below is the description of how effective memory.low is calculated.
6026 * Effective memory.min values is calculated in the same way.
34c81057 6027 *
23067153
RG
6028 * Effective memory.low is always equal or less than the original memory.low.
6029 * If there is no memory.low overcommittment (which is always true for
6030 * top-level memory cgroups), these two values are equal.
6031 * Otherwise, it's a part of parent's effective memory.low,
6032 * calculated as a cgroup's memory.low usage divided by sum of sibling's
6033 * memory.low usages, where memory.low usage is the size of actually
6034 * protected memory.
34c81057 6035 *
23067153
RG
6036 * low_usage
6037 * elow = min( memory.low, parent->elow * ------------------ ),
6038 * siblings_low_usage
34c81057 6039 *
23067153
RG
6040 * | memory.current, if memory.current < memory.low
6041 * low_usage = |
82ede7ee 6042 * | 0, otherwise.
34c81057 6043 *
23067153
RG
6044 *
6045 * Such definition of the effective memory.low provides the expected
6046 * hierarchical behavior: parent's memory.low value is limiting
6047 * children, unprotected memory is reclaimed first and cgroups,
6048 * which are not using their guarantee do not affect actual memory
6049 * distribution.
6050 *
6051 * For example, if there are memcgs A, A/B, A/C, A/D and A/E:
6052 *
6053 * A A/memory.low = 2G, A/memory.current = 6G
6054 * //\\
6055 * BC DE B/memory.low = 3G B/memory.current = 2G
6056 * C/memory.low = 1G C/memory.current = 2G
6057 * D/memory.low = 0 D/memory.current = 2G
6058 * E/memory.low = 10G E/memory.current = 0
6059 *
6060 * and the memory pressure is applied, the following memory distribution
6061 * is expected (approximately):
6062 *
6063 * A/memory.current = 2G
6064 *
6065 * B/memory.current = 1.3G
6066 * C/memory.current = 0.6G
6067 * D/memory.current = 0
6068 * E/memory.current = 0
6069 *
6070 * These calculations require constant tracking of the actual low usages
bf8d5d52
RG
6071 * (see propagate_protected_usage()), as well as recursive calculation of
6072 * effective memory.low values. But as we do call mem_cgroup_protected()
23067153
RG
6073 * path for each memory cgroup top-down from the reclaim,
6074 * it's possible to optimize this part, and save calculated elow
6075 * for next usage. This part is intentionally racy, but it's ok,
6076 * as memory.low is a best-effort mechanism.
241994ed 6077 */
bf8d5d52
RG
6078enum mem_cgroup_protection mem_cgroup_protected(struct mem_cgroup *root,
6079 struct mem_cgroup *memcg)
241994ed 6080{
23067153 6081 struct mem_cgroup *parent;
bf8d5d52
RG
6082 unsigned long emin, parent_emin;
6083 unsigned long elow, parent_elow;
6084 unsigned long usage;
23067153 6085
241994ed 6086 if (mem_cgroup_disabled())
bf8d5d52 6087 return MEMCG_PROT_NONE;
241994ed 6088
34c81057
SC
6089 if (!root)
6090 root = root_mem_cgroup;
6091 if (memcg == root)
bf8d5d52 6092 return MEMCG_PROT_NONE;
241994ed 6093
23067153 6094 usage = page_counter_read(&memcg->memory);
bf8d5d52
RG
6095 if (!usage)
6096 return MEMCG_PROT_NONE;
6097
6098 emin = memcg->memory.min;
6099 elow = memcg->memory.low;
34c81057 6100
bf8d5d52 6101 parent = parent_mem_cgroup(memcg);
df2a4196
RG
6102 /* No parent means a non-hierarchical mode on v1 memcg */
6103 if (!parent)
6104 return MEMCG_PROT_NONE;
6105
23067153
RG
6106 if (parent == root)
6107 goto exit;
6108
bf8d5d52
RG
6109 parent_emin = READ_ONCE(parent->memory.emin);
6110 emin = min(emin, parent_emin);
6111 if (emin && parent_emin) {
6112 unsigned long min_usage, siblings_min_usage;
6113
6114 min_usage = min(usage, memcg->memory.min);
6115 siblings_min_usage = atomic_long_read(
6116 &parent->memory.children_min_usage);
6117
6118 if (min_usage && siblings_min_usage)
6119 emin = min(emin, parent_emin * min_usage /
6120 siblings_min_usage);
6121 }
6122
23067153
RG
6123 parent_elow = READ_ONCE(parent->memory.elow);
6124 elow = min(elow, parent_elow);
bf8d5d52
RG
6125 if (elow && parent_elow) {
6126 unsigned long low_usage, siblings_low_usage;
23067153 6127
bf8d5d52
RG
6128 low_usage = min(usage, memcg->memory.low);
6129 siblings_low_usage = atomic_long_read(
6130 &parent->memory.children_low_usage);
23067153 6131
bf8d5d52
RG
6132 if (low_usage && siblings_low_usage)
6133 elow = min(elow, parent_elow * low_usage /
6134 siblings_low_usage);
6135 }
23067153 6136
23067153 6137exit:
bf8d5d52 6138 memcg->memory.emin = emin;
23067153 6139 memcg->memory.elow = elow;
bf8d5d52
RG
6140
6141 if (usage <= emin)
6142 return MEMCG_PROT_MIN;
6143 else if (usage <= elow)
6144 return MEMCG_PROT_LOW;
6145 else
6146 return MEMCG_PROT_NONE;
241994ed
JW
6147}
6148
00501b53
JW
6149/**
6150 * mem_cgroup_try_charge - try charging a page
6151 * @page: page to charge
6152 * @mm: mm context of the victim
6153 * @gfp_mask: reclaim mode
6154 * @memcgp: charged memcg return
25843c2b 6155 * @compound: charge the page as compound or small page
00501b53
JW
6156 *
6157 * Try to charge @page to the memcg that @mm belongs to, reclaiming
6158 * pages according to @gfp_mask if necessary.
6159 *
6160 * Returns 0 on success, with *@memcgp pointing to the charged memcg.
6161 * Otherwise, an error code is returned.
6162 *
6163 * After page->mapping has been set up, the caller must finalize the
6164 * charge with mem_cgroup_commit_charge(). Or abort the transaction
6165 * with mem_cgroup_cancel_charge() in case page instantiation fails.
6166 */
6167int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
f627c2f5
KS
6168 gfp_t gfp_mask, struct mem_cgroup **memcgp,
6169 bool compound)
00501b53
JW
6170{
6171 struct mem_cgroup *memcg = NULL;
f627c2f5 6172 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
00501b53
JW
6173 int ret = 0;
6174
6175 if (mem_cgroup_disabled())
6176 goto out;
6177
6178 if (PageSwapCache(page)) {
00501b53
JW
6179 /*
6180 * Every swap fault against a single page tries to charge the
6181 * page, bail as early as possible. shmem_unuse() encounters
6182 * already charged pages, too. The USED bit is protected by
6183 * the page lock, which serializes swap cache removal, which
6184 * in turn serializes uncharging.
6185 */
e993d905 6186 VM_BUG_ON_PAGE(!PageLocked(page), page);
abe2895b 6187 if (compound_head(page)->mem_cgroup)
00501b53 6188 goto out;
e993d905 6189
37e84351 6190 if (do_swap_account) {
e993d905
VD
6191 swp_entry_t ent = { .val = page_private(page), };
6192 unsigned short id = lookup_swap_cgroup_id(ent);
6193
6194 rcu_read_lock();
6195 memcg = mem_cgroup_from_id(id);
6196 if (memcg && !css_tryget_online(&memcg->css))
6197 memcg = NULL;
6198 rcu_read_unlock();
6199 }
00501b53
JW
6200 }
6201
00501b53
JW
6202 if (!memcg)
6203 memcg = get_mem_cgroup_from_mm(mm);
6204
6205 ret = try_charge(memcg, gfp_mask, nr_pages);
6206
6207 css_put(&memcg->css);
00501b53
JW
6208out:
6209 *memcgp = memcg;
6210 return ret;
6211}
6212
2cf85583
TH
6213int mem_cgroup_try_charge_delay(struct page *page, struct mm_struct *mm,
6214 gfp_t gfp_mask, struct mem_cgroup **memcgp,
6215 bool compound)
6216{
6217 struct mem_cgroup *memcg;
6218 int ret;
6219
6220 ret = mem_cgroup_try_charge(page, mm, gfp_mask, memcgp, compound);
6221 memcg = *memcgp;
6222 mem_cgroup_throttle_swaprate(memcg, page_to_nid(page), gfp_mask);
6223 return ret;
6224}
6225
00501b53
JW
6226/**
6227 * mem_cgroup_commit_charge - commit a page charge
6228 * @page: page to charge
6229 * @memcg: memcg to charge the page to
6230 * @lrucare: page might be on LRU already
25843c2b 6231 * @compound: charge the page as compound or small page
00501b53
JW
6232 *
6233 * Finalize a charge transaction started by mem_cgroup_try_charge(),
6234 * after page->mapping has been set up. This must happen atomically
6235 * as part of the page instantiation, i.e. under the page table lock
6236 * for anonymous pages, under the page lock for page and swap cache.
6237 *
6238 * In addition, the page must not be on the LRU during the commit, to
6239 * prevent racing with task migration. If it might be, use @lrucare.
6240 *
6241 * Use mem_cgroup_cancel_charge() to cancel the transaction instead.
6242 */
6243void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
f627c2f5 6244 bool lrucare, bool compound)
00501b53 6245{
f627c2f5 6246 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
00501b53
JW
6247
6248 VM_BUG_ON_PAGE(!page->mapping, page);
6249 VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page);
6250
6251 if (mem_cgroup_disabled())
6252 return;
6253 /*
6254 * Swap faults will attempt to charge the same page multiple
6255 * times. But reuse_swap_page() might have removed the page
6256 * from swapcache already, so we can't check PageSwapCache().
6257 */
6258 if (!memcg)
6259 return;
6260
6abb5a86
JW
6261 commit_charge(page, memcg, lrucare);
6262
6abb5a86 6263 local_irq_disable();
f627c2f5 6264 mem_cgroup_charge_statistics(memcg, page, compound, nr_pages);
6abb5a86
JW
6265 memcg_check_events(memcg, page);
6266 local_irq_enable();
00501b53 6267
7941d214 6268 if (do_memsw_account() && PageSwapCache(page)) {
00501b53
JW
6269 swp_entry_t entry = { .val = page_private(page) };
6270 /*
6271 * The swap entry might not get freed for a long time,
6272 * let's not wait for it. The page already received a
6273 * memory+swap charge, drop the swap entry duplicate.
6274 */
38d8b4e6 6275 mem_cgroup_uncharge_swap(entry, nr_pages);
00501b53
JW
6276 }
6277}
6278
6279/**
6280 * mem_cgroup_cancel_charge - cancel a page charge
6281 * @page: page to charge
6282 * @memcg: memcg to charge the page to
25843c2b 6283 * @compound: charge the page as compound or small page
00501b53
JW
6284 *
6285 * Cancel a charge transaction started by mem_cgroup_try_charge().
6286 */
f627c2f5
KS
6287void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg,
6288 bool compound)
00501b53 6289{
f627c2f5 6290 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
00501b53
JW
6291
6292 if (mem_cgroup_disabled())
6293 return;
6294 /*
6295 * Swap faults will attempt to charge the same page multiple
6296 * times. But reuse_swap_page() might have removed the page
6297 * from swapcache already, so we can't check PageSwapCache().
6298 */
6299 if (!memcg)
6300 return;
6301
00501b53
JW
6302 cancel_charge(memcg, nr_pages);
6303}
6304
a9d5adee
JG
6305struct uncharge_gather {
6306 struct mem_cgroup *memcg;
6307 unsigned long pgpgout;
6308 unsigned long nr_anon;
6309 unsigned long nr_file;
6310 unsigned long nr_kmem;
6311 unsigned long nr_huge;
6312 unsigned long nr_shmem;
6313 struct page *dummy_page;
6314};
6315
6316static inline void uncharge_gather_clear(struct uncharge_gather *ug)
747db954 6317{
a9d5adee
JG
6318 memset(ug, 0, sizeof(*ug));
6319}
6320
6321static void uncharge_batch(const struct uncharge_gather *ug)
6322{
6323 unsigned long nr_pages = ug->nr_anon + ug->nr_file + ug->nr_kmem;
747db954
JW
6324 unsigned long flags;
6325
a9d5adee
JG
6326 if (!mem_cgroup_is_root(ug->memcg)) {
6327 page_counter_uncharge(&ug->memcg->memory, nr_pages);
7941d214 6328 if (do_memsw_account())
a9d5adee
JG
6329 page_counter_uncharge(&ug->memcg->memsw, nr_pages);
6330 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && ug->nr_kmem)
6331 page_counter_uncharge(&ug->memcg->kmem, ug->nr_kmem);
6332 memcg_oom_recover(ug->memcg);
ce00a967 6333 }
747db954
JW
6334
6335 local_irq_save(flags);
c9019e9b
JW
6336 __mod_memcg_state(ug->memcg, MEMCG_RSS, -ug->nr_anon);
6337 __mod_memcg_state(ug->memcg, MEMCG_CACHE, -ug->nr_file);
6338 __mod_memcg_state(ug->memcg, MEMCG_RSS_HUGE, -ug->nr_huge);
6339 __mod_memcg_state(ug->memcg, NR_SHMEM, -ug->nr_shmem);
6340 __count_memcg_events(ug->memcg, PGPGOUT, ug->pgpgout);
871789d4 6341 __this_cpu_add(ug->memcg->vmstats_percpu->nr_page_events, nr_pages);
a9d5adee 6342 memcg_check_events(ug->memcg, ug->dummy_page);
747db954 6343 local_irq_restore(flags);
e8ea14cc 6344
a9d5adee
JG
6345 if (!mem_cgroup_is_root(ug->memcg))
6346 css_put_many(&ug->memcg->css, nr_pages);
6347}
6348
6349static void uncharge_page(struct page *page, struct uncharge_gather *ug)
6350{
6351 VM_BUG_ON_PAGE(PageLRU(page), page);
3f2eb028
JG
6352 VM_BUG_ON_PAGE(page_count(page) && !is_zone_device_page(page) &&
6353 !PageHWPoison(page) , page);
a9d5adee
JG
6354
6355 if (!page->mem_cgroup)
6356 return;
6357
6358 /*
6359 * Nobody should be changing or seriously looking at
6360 * page->mem_cgroup at this point, we have fully
6361 * exclusive access to the page.
6362 */
6363
6364 if (ug->memcg != page->mem_cgroup) {
6365 if (ug->memcg) {
6366 uncharge_batch(ug);
6367 uncharge_gather_clear(ug);
6368 }
6369 ug->memcg = page->mem_cgroup;
6370 }
6371
6372 if (!PageKmemcg(page)) {
6373 unsigned int nr_pages = 1;
6374
6375 if (PageTransHuge(page)) {
6376 nr_pages <<= compound_order(page);
6377 ug->nr_huge += nr_pages;
6378 }
6379 if (PageAnon(page))
6380 ug->nr_anon += nr_pages;
6381 else {
6382 ug->nr_file += nr_pages;
6383 if (PageSwapBacked(page))
6384 ug->nr_shmem += nr_pages;
6385 }
6386 ug->pgpgout++;
6387 } else {
6388 ug->nr_kmem += 1 << compound_order(page);
6389 __ClearPageKmemcg(page);
6390 }
6391
6392 ug->dummy_page = page;
6393 page->mem_cgroup = NULL;
747db954
JW
6394}
6395
6396static void uncharge_list(struct list_head *page_list)
6397{
a9d5adee 6398 struct uncharge_gather ug;
747db954 6399 struct list_head *next;
a9d5adee
JG
6400
6401 uncharge_gather_clear(&ug);
747db954 6402
8b592656
JW
6403 /*
6404 * Note that the list can be a single page->lru; hence the
6405 * do-while loop instead of a simple list_for_each_entry().
6406 */
747db954
JW
6407 next = page_list->next;
6408 do {
a9d5adee
JG
6409 struct page *page;
6410
747db954
JW
6411 page = list_entry(next, struct page, lru);
6412 next = page->lru.next;
6413
a9d5adee 6414 uncharge_page(page, &ug);
747db954
JW
6415 } while (next != page_list);
6416
a9d5adee
JG
6417 if (ug.memcg)
6418 uncharge_batch(&ug);
747db954
JW
6419}
6420
0a31bc97
JW
6421/**
6422 * mem_cgroup_uncharge - uncharge a page
6423 * @page: page to uncharge
6424 *
6425 * Uncharge a page previously charged with mem_cgroup_try_charge() and
6426 * mem_cgroup_commit_charge().
6427 */
6428void mem_cgroup_uncharge(struct page *page)
6429{
a9d5adee
JG
6430 struct uncharge_gather ug;
6431
0a31bc97
JW
6432 if (mem_cgroup_disabled())
6433 return;
6434
747db954 6435 /* Don't touch page->lru of any random page, pre-check: */
1306a85a 6436 if (!page->mem_cgroup)
0a31bc97
JW
6437 return;
6438
a9d5adee
JG
6439 uncharge_gather_clear(&ug);
6440 uncharge_page(page, &ug);
6441 uncharge_batch(&ug);
747db954 6442}
0a31bc97 6443
747db954
JW
6444/**
6445 * mem_cgroup_uncharge_list - uncharge a list of page
6446 * @page_list: list of pages to uncharge
6447 *
6448 * Uncharge a list of pages previously charged with
6449 * mem_cgroup_try_charge() and mem_cgroup_commit_charge().
6450 */
6451void mem_cgroup_uncharge_list(struct list_head *page_list)
6452{
6453 if (mem_cgroup_disabled())
6454 return;
0a31bc97 6455
747db954
JW
6456 if (!list_empty(page_list))
6457 uncharge_list(page_list);
0a31bc97
JW
6458}
6459
6460/**
6a93ca8f
JW
6461 * mem_cgroup_migrate - charge a page's replacement
6462 * @oldpage: currently circulating page
6463 * @newpage: replacement page
0a31bc97 6464 *
6a93ca8f
JW
6465 * Charge @newpage as a replacement page for @oldpage. @oldpage will
6466 * be uncharged upon free.
0a31bc97
JW
6467 *
6468 * Both pages must be locked, @newpage->mapping must be set up.
6469 */
6a93ca8f 6470void mem_cgroup_migrate(struct page *oldpage, struct page *newpage)
0a31bc97 6471{
29833315 6472 struct mem_cgroup *memcg;
44b7a8d3
JW
6473 unsigned int nr_pages;
6474 bool compound;
d93c4130 6475 unsigned long flags;
0a31bc97
JW
6476
6477 VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
6478 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
0a31bc97 6479 VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
6abb5a86
JW
6480 VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
6481 newpage);
0a31bc97
JW
6482
6483 if (mem_cgroup_disabled())
6484 return;
6485
6486 /* Page cache replacement: new page already charged? */
1306a85a 6487 if (newpage->mem_cgroup)
0a31bc97
JW
6488 return;
6489
45637bab 6490 /* Swapcache readahead pages can get replaced before being charged */
1306a85a 6491 memcg = oldpage->mem_cgroup;
29833315 6492 if (!memcg)
0a31bc97
JW
6493 return;
6494
44b7a8d3
JW
6495 /* Force-charge the new page. The old one will be freed soon */
6496 compound = PageTransHuge(newpage);
6497 nr_pages = compound ? hpage_nr_pages(newpage) : 1;
6498
6499 page_counter_charge(&memcg->memory, nr_pages);
6500 if (do_memsw_account())
6501 page_counter_charge(&memcg->memsw, nr_pages);
6502 css_get_many(&memcg->css, nr_pages);
0a31bc97 6503
9cf7666a 6504 commit_charge(newpage, memcg, false);
44b7a8d3 6505
d93c4130 6506 local_irq_save(flags);
44b7a8d3
JW
6507 mem_cgroup_charge_statistics(memcg, newpage, compound, nr_pages);
6508 memcg_check_events(memcg, newpage);
d93c4130 6509 local_irq_restore(flags);
0a31bc97
JW
6510}
6511
ef12947c 6512DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
11092087
JW
6513EXPORT_SYMBOL(memcg_sockets_enabled_key);
6514
2d758073 6515void mem_cgroup_sk_alloc(struct sock *sk)
11092087
JW
6516{
6517 struct mem_cgroup *memcg;
6518
2d758073
JW
6519 if (!mem_cgroup_sockets_enabled)
6520 return;
6521
edbe69ef
RG
6522 /*
6523 * Socket cloning can throw us here with sk_memcg already
6524 * filled. It won't however, necessarily happen from
6525 * process context. So the test for root memcg given
6526 * the current task's memcg won't help us in this case.
6527 *
6528 * Respecting the original socket's memcg is a better
6529 * decision in this case.
6530 */
6531 if (sk->sk_memcg) {
6532 css_get(&sk->sk_memcg->css);
6533 return;
6534 }
6535
11092087
JW
6536 rcu_read_lock();
6537 memcg = mem_cgroup_from_task(current);
f7e1cb6e
JW
6538 if (memcg == root_mem_cgroup)
6539 goto out;
0db15298 6540 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active)
f7e1cb6e 6541 goto out;
f7e1cb6e 6542 if (css_tryget_online(&memcg->css))
11092087 6543 sk->sk_memcg = memcg;
f7e1cb6e 6544out:
11092087
JW
6545 rcu_read_unlock();
6546}
11092087 6547
2d758073 6548void mem_cgroup_sk_free(struct sock *sk)
11092087 6549{
2d758073
JW
6550 if (sk->sk_memcg)
6551 css_put(&sk->sk_memcg->css);
11092087
JW
6552}
6553
6554/**
6555 * mem_cgroup_charge_skmem - charge socket memory
6556 * @memcg: memcg to charge
6557 * @nr_pages: number of pages to charge
6558 *
6559 * Charges @nr_pages to @memcg. Returns %true if the charge fit within
6560 * @memcg's configured limit, %false if the charge had to be forced.
6561 */
6562bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
6563{
f7e1cb6e 6564 gfp_t gfp_mask = GFP_KERNEL;
11092087 6565
f7e1cb6e 6566 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
0db15298 6567 struct page_counter *fail;
f7e1cb6e 6568
0db15298
JW
6569 if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
6570 memcg->tcpmem_pressure = 0;
f7e1cb6e
JW
6571 return true;
6572 }
0db15298
JW
6573 page_counter_charge(&memcg->tcpmem, nr_pages);
6574 memcg->tcpmem_pressure = 1;
f7e1cb6e 6575 return false;
11092087 6576 }
d886f4e4 6577
f7e1cb6e
JW
6578 /* Don't block in the packet receive path */
6579 if (in_softirq())
6580 gfp_mask = GFP_NOWAIT;
6581
c9019e9b 6582 mod_memcg_state(memcg, MEMCG_SOCK, nr_pages);
b2807f07 6583
f7e1cb6e
JW
6584 if (try_charge(memcg, gfp_mask, nr_pages) == 0)
6585 return true;
6586
6587 try_charge(memcg, gfp_mask|__GFP_NOFAIL, nr_pages);
11092087
JW
6588 return false;
6589}
6590
6591/**
6592 * mem_cgroup_uncharge_skmem - uncharge socket memory
b7701a5f
MR
6593 * @memcg: memcg to uncharge
6594 * @nr_pages: number of pages to uncharge
11092087
JW
6595 */
6596void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
6597{
f7e1cb6e 6598 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
0db15298 6599 page_counter_uncharge(&memcg->tcpmem, nr_pages);
f7e1cb6e
JW
6600 return;
6601 }
d886f4e4 6602
c9019e9b 6603 mod_memcg_state(memcg, MEMCG_SOCK, -nr_pages);
b2807f07 6604
475d0487 6605 refill_stock(memcg, nr_pages);
11092087
JW
6606}
6607
f7e1cb6e
JW
6608static int __init cgroup_memory(char *s)
6609{
6610 char *token;
6611
6612 while ((token = strsep(&s, ",")) != NULL) {
6613 if (!*token)
6614 continue;
6615 if (!strcmp(token, "nosocket"))
6616 cgroup_memory_nosocket = true;
04823c83
VD
6617 if (!strcmp(token, "nokmem"))
6618 cgroup_memory_nokmem = true;
f7e1cb6e
JW
6619 }
6620 return 0;
6621}
6622__setup("cgroup.memory=", cgroup_memory);
11092087 6623
2d11085e 6624/*
1081312f
MH
6625 * subsys_initcall() for memory controller.
6626 *
308167fc
SAS
6627 * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this
6628 * context because of lock dependencies (cgroup_lock -> cpu hotplug) but
6629 * basically everything that doesn't depend on a specific mem_cgroup structure
6630 * should be initialized from here.
2d11085e
MH
6631 */
6632static int __init mem_cgroup_init(void)
6633{
95a045f6
JW
6634 int cpu, node;
6635
84c07d11 6636#ifdef CONFIG_MEMCG_KMEM
13583c3d
VD
6637 /*
6638 * Kmem cache creation is mostly done with the slab_mutex held,
17cc4dfe
TH
6639 * so use a workqueue with limited concurrency to avoid stalling
6640 * all worker threads in case lots of cgroups are created and
6641 * destroyed simultaneously.
13583c3d 6642 */
17cc4dfe
TH
6643 memcg_kmem_cache_wq = alloc_workqueue("memcg_kmem_cache", 0, 1);
6644 BUG_ON(!memcg_kmem_cache_wq);
13583c3d
VD
6645#endif
6646
308167fc
SAS
6647 cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL,
6648 memcg_hotplug_cpu_dead);
95a045f6
JW
6649
6650 for_each_possible_cpu(cpu)
6651 INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
6652 drain_local_stock);
6653
6654 for_each_node(node) {
6655 struct mem_cgroup_tree_per_node *rtpn;
95a045f6
JW
6656
6657 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
6658 node_online(node) ? node : NUMA_NO_NODE);
6659
ef8f2327 6660 rtpn->rb_root = RB_ROOT;
fa90b2fd 6661 rtpn->rb_rightmost = NULL;
ef8f2327 6662 spin_lock_init(&rtpn->lock);
95a045f6
JW
6663 soft_limit_tree.rb_tree_per_node[node] = rtpn;
6664 }
6665
2d11085e
MH
6666 return 0;
6667}
6668subsys_initcall(mem_cgroup_init);
21afa38e
JW
6669
6670#ifdef CONFIG_MEMCG_SWAP
358c07fc
AB
6671static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg)
6672{
1c2d479a 6673 while (!refcount_inc_not_zero(&memcg->id.ref)) {
358c07fc
AB
6674 /*
6675 * The root cgroup cannot be destroyed, so it's refcount must
6676 * always be >= 1.
6677 */
6678 if (WARN_ON_ONCE(memcg == root_mem_cgroup)) {
6679 VM_BUG_ON(1);
6680 break;
6681 }
6682 memcg = parent_mem_cgroup(memcg);
6683 if (!memcg)
6684 memcg = root_mem_cgroup;
6685 }
6686 return memcg;
6687}
6688
21afa38e
JW
6689/**
6690 * mem_cgroup_swapout - transfer a memsw charge to swap
6691 * @page: page whose memsw charge to transfer
6692 * @entry: swap entry to move the charge to
6693 *
6694 * Transfer the memsw charge of @page to @entry.
6695 */
6696void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
6697{
1f47b61f 6698 struct mem_cgroup *memcg, *swap_memcg;
d6810d73 6699 unsigned int nr_entries;
21afa38e
JW
6700 unsigned short oldid;
6701
6702 VM_BUG_ON_PAGE(PageLRU(page), page);
6703 VM_BUG_ON_PAGE(page_count(page), page);
6704
7941d214 6705 if (!do_memsw_account())
21afa38e
JW
6706 return;
6707
6708 memcg = page->mem_cgroup;
6709
6710 /* Readahead page, never charged */
6711 if (!memcg)
6712 return;
6713
1f47b61f
VD
6714 /*
6715 * In case the memcg owning these pages has been offlined and doesn't
6716 * have an ID allocated to it anymore, charge the closest online
6717 * ancestor for the swap instead and transfer the memory+swap charge.
6718 */
6719 swap_memcg = mem_cgroup_id_get_online(memcg);
d6810d73
HY
6720 nr_entries = hpage_nr_pages(page);
6721 /* Get references for the tail pages, too */
6722 if (nr_entries > 1)
6723 mem_cgroup_id_get_many(swap_memcg, nr_entries - 1);
6724 oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg),
6725 nr_entries);
21afa38e 6726 VM_BUG_ON_PAGE(oldid, page);
c9019e9b 6727 mod_memcg_state(swap_memcg, MEMCG_SWAP, nr_entries);
21afa38e
JW
6728
6729 page->mem_cgroup = NULL;
6730
6731 if (!mem_cgroup_is_root(memcg))
d6810d73 6732 page_counter_uncharge(&memcg->memory, nr_entries);
21afa38e 6733
1f47b61f
VD
6734 if (memcg != swap_memcg) {
6735 if (!mem_cgroup_is_root(swap_memcg))
d6810d73
HY
6736 page_counter_charge(&swap_memcg->memsw, nr_entries);
6737 page_counter_uncharge(&memcg->memsw, nr_entries);
1f47b61f
VD
6738 }
6739
ce9ce665
SAS
6740 /*
6741 * Interrupts should be disabled here because the caller holds the
b93b0163 6742 * i_pages lock which is taken with interrupts-off. It is
ce9ce665 6743 * important here to have the interrupts disabled because it is the
b93b0163 6744 * only synchronisation we have for updating the per-CPU variables.
ce9ce665
SAS
6745 */
6746 VM_BUG_ON(!irqs_disabled());
d6810d73
HY
6747 mem_cgroup_charge_statistics(memcg, page, PageTransHuge(page),
6748 -nr_entries);
21afa38e 6749 memcg_check_events(memcg, page);
73f576c0
JW
6750
6751 if (!mem_cgroup_is_root(memcg))
d08afa14 6752 css_put_many(&memcg->css, nr_entries);
21afa38e
JW
6753}
6754
38d8b4e6
HY
6755/**
6756 * mem_cgroup_try_charge_swap - try charging swap space for a page
37e84351
VD
6757 * @page: page being added to swap
6758 * @entry: swap entry to charge
6759 *
38d8b4e6 6760 * Try to charge @page's memcg for the swap space at @entry.
37e84351
VD
6761 *
6762 * Returns 0 on success, -ENOMEM on failure.
6763 */
6764int mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry)
6765{
38d8b4e6 6766 unsigned int nr_pages = hpage_nr_pages(page);
37e84351 6767 struct page_counter *counter;
38d8b4e6 6768 struct mem_cgroup *memcg;
37e84351
VD
6769 unsigned short oldid;
6770
6771 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) || !do_swap_account)
6772 return 0;
6773
6774 memcg = page->mem_cgroup;
6775
6776 /* Readahead page, never charged */
6777 if (!memcg)
6778 return 0;
6779
f3a53a3a
TH
6780 if (!entry.val) {
6781 memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
bb98f2c5 6782 return 0;
f3a53a3a 6783 }
bb98f2c5 6784
1f47b61f
VD
6785 memcg = mem_cgroup_id_get_online(memcg);
6786
37e84351 6787 if (!mem_cgroup_is_root(memcg) &&
38d8b4e6 6788 !page_counter_try_charge(&memcg->swap, nr_pages, &counter)) {
f3a53a3a
TH
6789 memcg_memory_event(memcg, MEMCG_SWAP_MAX);
6790 memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
1f47b61f 6791 mem_cgroup_id_put(memcg);
37e84351 6792 return -ENOMEM;
1f47b61f 6793 }
37e84351 6794
38d8b4e6
HY
6795 /* Get references for the tail pages, too */
6796 if (nr_pages > 1)
6797 mem_cgroup_id_get_many(memcg, nr_pages - 1);
6798 oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg), nr_pages);
37e84351 6799 VM_BUG_ON_PAGE(oldid, page);
c9019e9b 6800 mod_memcg_state(memcg, MEMCG_SWAP, nr_pages);
37e84351 6801
37e84351
VD
6802 return 0;
6803}
6804
21afa38e 6805/**
38d8b4e6 6806 * mem_cgroup_uncharge_swap - uncharge swap space
21afa38e 6807 * @entry: swap entry to uncharge
38d8b4e6 6808 * @nr_pages: the amount of swap space to uncharge
21afa38e 6809 */
38d8b4e6 6810void mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages)
21afa38e
JW
6811{
6812 struct mem_cgroup *memcg;
6813 unsigned short id;
6814
37e84351 6815 if (!do_swap_account)
21afa38e
JW
6816 return;
6817
38d8b4e6 6818 id = swap_cgroup_record(entry, 0, nr_pages);
21afa38e 6819 rcu_read_lock();
adbe427b 6820 memcg = mem_cgroup_from_id(id);
21afa38e 6821 if (memcg) {
37e84351
VD
6822 if (!mem_cgroup_is_root(memcg)) {
6823 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
38d8b4e6 6824 page_counter_uncharge(&memcg->swap, nr_pages);
37e84351 6825 else
38d8b4e6 6826 page_counter_uncharge(&memcg->memsw, nr_pages);
37e84351 6827 }
c9019e9b 6828 mod_memcg_state(memcg, MEMCG_SWAP, -nr_pages);
38d8b4e6 6829 mem_cgroup_id_put_many(memcg, nr_pages);
21afa38e
JW
6830 }
6831 rcu_read_unlock();
6832}
6833
d8b38438
VD
6834long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
6835{
6836 long nr_swap_pages = get_nr_swap_pages();
6837
6838 if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
6839 return nr_swap_pages;
6840 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
6841 nr_swap_pages = min_t(long, nr_swap_pages,
bbec2e15 6842 READ_ONCE(memcg->swap.max) -
d8b38438
VD
6843 page_counter_read(&memcg->swap));
6844 return nr_swap_pages;
6845}
6846
5ccc5aba
VD
6847bool mem_cgroup_swap_full(struct page *page)
6848{
6849 struct mem_cgroup *memcg;
6850
6851 VM_BUG_ON_PAGE(!PageLocked(page), page);
6852
6853 if (vm_swap_full())
6854 return true;
6855 if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
6856 return false;
6857
6858 memcg = page->mem_cgroup;
6859 if (!memcg)
6860 return false;
6861
6862 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
bbec2e15 6863 if (page_counter_read(&memcg->swap) * 2 >= memcg->swap.max)
5ccc5aba
VD
6864 return true;
6865
6866 return false;
6867}
6868
21afa38e
JW
6869/* for remember boot option*/
6870#ifdef CONFIG_MEMCG_SWAP_ENABLED
6871static int really_do_swap_account __initdata = 1;
6872#else
6873static int really_do_swap_account __initdata;
6874#endif
6875
6876static int __init enable_swap_account(char *s)
6877{
6878 if (!strcmp(s, "1"))
6879 really_do_swap_account = 1;
6880 else if (!strcmp(s, "0"))
6881 really_do_swap_account = 0;
6882 return 1;
6883}
6884__setup("swapaccount=", enable_swap_account);
6885
37e84351
VD
6886static u64 swap_current_read(struct cgroup_subsys_state *css,
6887 struct cftype *cft)
6888{
6889 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6890
6891 return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
6892}
6893
6894static int swap_max_show(struct seq_file *m, void *v)
6895{
677dc973
CD
6896 return seq_puts_memcg_tunable(m,
6897 READ_ONCE(mem_cgroup_from_seq(m)->swap.max));
37e84351
VD
6898}
6899
6900static ssize_t swap_max_write(struct kernfs_open_file *of,
6901 char *buf, size_t nbytes, loff_t off)
6902{
6903 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6904 unsigned long max;
6905 int err;
6906
6907 buf = strstrip(buf);
6908 err = page_counter_memparse(buf, "max", &max);
6909 if (err)
6910 return err;
6911
be09102b 6912 xchg(&memcg->swap.max, max);
37e84351
VD
6913
6914 return nbytes;
6915}
6916
f3a53a3a
TH
6917static int swap_events_show(struct seq_file *m, void *v)
6918{
aa9694bb 6919 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
f3a53a3a
TH
6920
6921 seq_printf(m, "max %lu\n",
6922 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_MAX]));
6923 seq_printf(m, "fail %lu\n",
6924 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_FAIL]));
6925
6926 return 0;
6927}
6928
37e84351
VD
6929static struct cftype swap_files[] = {
6930 {
6931 .name = "swap.current",
6932 .flags = CFTYPE_NOT_ON_ROOT,
6933 .read_u64 = swap_current_read,
6934 },
6935 {
6936 .name = "swap.max",
6937 .flags = CFTYPE_NOT_ON_ROOT,
6938 .seq_show = swap_max_show,
6939 .write = swap_max_write,
6940 },
f3a53a3a
TH
6941 {
6942 .name = "swap.events",
6943 .flags = CFTYPE_NOT_ON_ROOT,
6944 .file_offset = offsetof(struct mem_cgroup, swap_events_file),
6945 .seq_show = swap_events_show,
6946 },
37e84351
VD
6947 { } /* terminate */
6948};
6949
21afa38e
JW
6950static struct cftype memsw_cgroup_files[] = {
6951 {
6952 .name = "memsw.usage_in_bytes",
6953 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
6954 .read_u64 = mem_cgroup_read_u64,
6955 },
6956 {
6957 .name = "memsw.max_usage_in_bytes",
6958 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
6959 .write = mem_cgroup_reset,
6960 .read_u64 = mem_cgroup_read_u64,
6961 },
6962 {
6963 .name = "memsw.limit_in_bytes",
6964 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
6965 .write = mem_cgroup_write,
6966 .read_u64 = mem_cgroup_read_u64,
6967 },
6968 {
6969 .name = "memsw.failcnt",
6970 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
6971 .write = mem_cgroup_reset,
6972 .read_u64 = mem_cgroup_read_u64,
6973 },
6974 { }, /* terminate */
6975};
6976
6977static int __init mem_cgroup_swap_init(void)
6978{
6979 if (!mem_cgroup_disabled() && really_do_swap_account) {
6980 do_swap_account = 1;
37e84351
VD
6981 WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys,
6982 swap_files));
21afa38e
JW
6983 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys,
6984 memsw_cgroup_files));
6985 }
6986 return 0;
6987}
6988subsys_initcall(mem_cgroup_swap_init);
6989
6990#endif /* CONFIG_MEMCG_SWAP */