Merge tag 'powerpc-4.20-4' of git://git.kernel.org/pub/scm/linux/kernel/git/powerpc...
[linux-2.6-block.git] / mm / memcontrol.c
CommitLineData
8cdea7c0
BS
1/* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
78fb7466
PE
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
2e72b634
KS
9 * Memory thresholds
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
12 *
7ae1e1d0
GC
13 * Kernel Memory Controller
14 * Copyright (C) 2012 Parallels Inc. and Google Inc.
15 * Authors: Glauber Costa and Suleiman Souhlal
16 *
1575e68b
JW
17 * Native page reclaim
18 * Charge lifetime sanitation
19 * Lockless page tracking & accounting
20 * Unified hierarchy configuration model
21 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
22 *
8cdea7c0
BS
23 * This program is free software; you can redistribute it and/or modify
24 * it under the terms of the GNU General Public License as published by
25 * the Free Software Foundation; either version 2 of the License, or
26 * (at your option) any later version.
27 *
28 * This program is distributed in the hope that it will be useful,
29 * but WITHOUT ANY WARRANTY; without even the implied warranty of
30 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
31 * GNU General Public License for more details.
32 */
33
3e32cb2e 34#include <linux/page_counter.h>
8cdea7c0
BS
35#include <linux/memcontrol.h>
36#include <linux/cgroup.h>
78fb7466 37#include <linux/mm.h>
6e84f315 38#include <linux/sched/mm.h>
3a4f8a0b 39#include <linux/shmem_fs.h>
4ffef5fe 40#include <linux/hugetlb.h>
d13d1443 41#include <linux/pagemap.h>
d52aa412 42#include <linux/smp.h>
8a9f3ccd 43#include <linux/page-flags.h>
66e1707b 44#include <linux/backing-dev.h>
8a9f3ccd
BS
45#include <linux/bit_spinlock.h>
46#include <linux/rcupdate.h>
e222432b 47#include <linux/limits.h>
b9e15baf 48#include <linux/export.h>
8c7c6e34 49#include <linux/mutex.h>
bb4cc1a8 50#include <linux/rbtree.h>
b6ac57d5 51#include <linux/slab.h>
66e1707b 52#include <linux/swap.h>
02491447 53#include <linux/swapops.h>
66e1707b 54#include <linux/spinlock.h>
2e72b634 55#include <linux/eventfd.h>
79bd9814 56#include <linux/poll.h>
2e72b634 57#include <linux/sort.h>
66e1707b 58#include <linux/fs.h>
d2ceb9b7 59#include <linux/seq_file.h>
70ddf637 60#include <linux/vmpressure.h>
b69408e8 61#include <linux/mm_inline.h>
5d1ea48b 62#include <linux/swap_cgroup.h>
cdec2e42 63#include <linux/cpu.h>
158e0a2d 64#include <linux/oom.h>
0056f4e6 65#include <linux/lockdep.h>
79bd9814 66#include <linux/file.h>
b23afb93 67#include <linux/tracehook.h>
08e552c6 68#include "internal.h"
d1a4c0b3 69#include <net/sock.h>
4bd2c1ee 70#include <net/ip.h>
f35c3a8e 71#include "slab.h"
8cdea7c0 72
7c0f6ba6 73#include <linux/uaccess.h>
8697d331 74
cc8e970c
KM
75#include <trace/events/vmscan.h>
76
073219e9
TH
77struct cgroup_subsys memory_cgrp_subsys __read_mostly;
78EXPORT_SYMBOL(memory_cgrp_subsys);
68ae564b 79
7d828602
JW
80struct mem_cgroup *root_mem_cgroup __read_mostly;
81
a181b0e8 82#define MEM_CGROUP_RECLAIM_RETRIES 5
8cdea7c0 83
f7e1cb6e
JW
84/* Socket memory accounting disabled? */
85static bool cgroup_memory_nosocket;
86
04823c83
VD
87/* Kernel memory accounting disabled? */
88static bool cgroup_memory_nokmem;
89
21afa38e 90/* Whether the swap controller is active */
c255a458 91#ifdef CONFIG_MEMCG_SWAP
c077719b 92int do_swap_account __read_mostly;
c077719b 93#else
a0db00fc 94#define do_swap_account 0
c077719b
KH
95#endif
96
7941d214
JW
97/* Whether legacy memory+swap accounting is active */
98static bool do_memsw_account(void)
99{
100 return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && do_swap_account;
101}
102
71cd3113 103static const char *const mem_cgroup_lru_names[] = {
58cf188e
SZ
104 "inactive_anon",
105 "active_anon",
106 "inactive_file",
107 "active_file",
108 "unevictable",
109};
110
a0db00fc
KS
111#define THRESHOLDS_EVENTS_TARGET 128
112#define SOFTLIMIT_EVENTS_TARGET 1024
113#define NUMAINFO_EVENTS_TARGET 1024
e9f8974f 114
bb4cc1a8
AM
115/*
116 * Cgroups above their limits are maintained in a RB-Tree, independent of
117 * their hierarchy representation
118 */
119
ef8f2327 120struct mem_cgroup_tree_per_node {
bb4cc1a8 121 struct rb_root rb_root;
fa90b2fd 122 struct rb_node *rb_rightmost;
bb4cc1a8
AM
123 spinlock_t lock;
124};
125
bb4cc1a8
AM
126struct mem_cgroup_tree {
127 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
128};
129
130static struct mem_cgroup_tree soft_limit_tree __read_mostly;
131
9490ff27
KH
132/* for OOM */
133struct mem_cgroup_eventfd_list {
134 struct list_head list;
135 struct eventfd_ctx *eventfd;
136};
2e72b634 137
79bd9814
TH
138/*
139 * cgroup_event represents events which userspace want to receive.
140 */
3bc942f3 141struct mem_cgroup_event {
79bd9814 142 /*
59b6f873 143 * memcg which the event belongs to.
79bd9814 144 */
59b6f873 145 struct mem_cgroup *memcg;
79bd9814
TH
146 /*
147 * eventfd to signal userspace about the event.
148 */
149 struct eventfd_ctx *eventfd;
150 /*
151 * Each of these stored in a list by the cgroup.
152 */
153 struct list_head list;
fba94807
TH
154 /*
155 * register_event() callback will be used to add new userspace
156 * waiter for changes related to this event. Use eventfd_signal()
157 * on eventfd to send notification to userspace.
158 */
59b6f873 159 int (*register_event)(struct mem_cgroup *memcg,
347c4a87 160 struct eventfd_ctx *eventfd, const char *args);
fba94807
TH
161 /*
162 * unregister_event() callback will be called when userspace closes
163 * the eventfd or on cgroup removing. This callback must be set,
164 * if you want provide notification functionality.
165 */
59b6f873 166 void (*unregister_event)(struct mem_cgroup *memcg,
fba94807 167 struct eventfd_ctx *eventfd);
79bd9814
TH
168 /*
169 * All fields below needed to unregister event when
170 * userspace closes eventfd.
171 */
172 poll_table pt;
173 wait_queue_head_t *wqh;
ac6424b9 174 wait_queue_entry_t wait;
79bd9814
TH
175 struct work_struct remove;
176};
177
c0ff4b85
R
178static void mem_cgroup_threshold(struct mem_cgroup *memcg);
179static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
2e72b634 180
7dc74be0
DN
181/* Stuffs for move charges at task migration. */
182/*
1dfab5ab 183 * Types of charges to be moved.
7dc74be0 184 */
1dfab5ab
JW
185#define MOVE_ANON 0x1U
186#define MOVE_FILE 0x2U
187#define MOVE_MASK (MOVE_ANON | MOVE_FILE)
7dc74be0 188
4ffef5fe
DN
189/* "mc" and its members are protected by cgroup_mutex */
190static struct move_charge_struct {
b1dd693e 191 spinlock_t lock; /* for from, to */
264a0ae1 192 struct mm_struct *mm;
4ffef5fe
DN
193 struct mem_cgroup *from;
194 struct mem_cgroup *to;
1dfab5ab 195 unsigned long flags;
4ffef5fe 196 unsigned long precharge;
854ffa8d 197 unsigned long moved_charge;
483c30b5 198 unsigned long moved_swap;
8033b97c
DN
199 struct task_struct *moving_task; /* a task moving charges */
200 wait_queue_head_t waitq; /* a waitq for other context */
201} mc = {
2bd9bb20 202 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
8033b97c
DN
203 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
204};
4ffef5fe 205
4e416953
BS
206/*
207 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
208 * limit reclaim to prevent infinite loops, if they ever occur.
209 */
a0db00fc 210#define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
bb4cc1a8 211#define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
4e416953 212
217bc319
KH
213enum charge_type {
214 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
41326c17 215 MEM_CGROUP_CHARGE_TYPE_ANON,
d13d1443 216 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
8a9478ca 217 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
c05555b5
KH
218 NR_CHARGE_TYPE,
219};
220
8c7c6e34 221/* for encoding cft->private value on file */
86ae53e1
GC
222enum res_type {
223 _MEM,
224 _MEMSWAP,
225 _OOM_TYPE,
510fc4e1 226 _KMEM,
d55f90bf 227 _TCP,
86ae53e1
GC
228};
229
a0db00fc
KS
230#define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
231#define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
8c7c6e34 232#define MEMFILE_ATTR(val) ((val) & 0xffff)
9490ff27
KH
233/* Used for OOM nofiier */
234#define OOM_CONTROL (0)
8c7c6e34 235
b05706f1
KT
236/*
237 * Iteration constructs for visiting all cgroups (under a tree). If
238 * loops are exited prematurely (break), mem_cgroup_iter_break() must
239 * be used for reference counting.
240 */
241#define for_each_mem_cgroup_tree(iter, root) \
242 for (iter = mem_cgroup_iter(root, NULL, NULL); \
243 iter != NULL; \
244 iter = mem_cgroup_iter(root, iter, NULL))
245
246#define for_each_mem_cgroup(iter) \
247 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
248 iter != NULL; \
249 iter = mem_cgroup_iter(NULL, iter, NULL))
250
70ddf637
AV
251/* Some nice accessors for the vmpressure. */
252struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
253{
254 if (!memcg)
255 memcg = root_mem_cgroup;
256 return &memcg->vmpressure;
257}
258
259struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
260{
261 return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
262}
263
84c07d11 264#ifdef CONFIG_MEMCG_KMEM
55007d84 265/*
f7ce3190 266 * This will be the memcg's index in each cache's ->memcg_params.memcg_caches.
b8627835
LZ
267 * The main reason for not using cgroup id for this:
268 * this works better in sparse environments, where we have a lot of memcgs,
269 * but only a few kmem-limited. Or also, if we have, for instance, 200
270 * memcgs, and none but the 200th is kmem-limited, we'd have to have a
271 * 200 entry array for that.
55007d84 272 *
dbcf73e2
VD
273 * The current size of the caches array is stored in memcg_nr_cache_ids. It
274 * will double each time we have to increase it.
55007d84 275 */
dbcf73e2
VD
276static DEFINE_IDA(memcg_cache_ida);
277int memcg_nr_cache_ids;
749c5415 278
05257a1a
VD
279/* Protects memcg_nr_cache_ids */
280static DECLARE_RWSEM(memcg_cache_ids_sem);
281
282void memcg_get_cache_ids(void)
283{
284 down_read(&memcg_cache_ids_sem);
285}
286
287void memcg_put_cache_ids(void)
288{
289 up_read(&memcg_cache_ids_sem);
290}
291
55007d84
GC
292/*
293 * MIN_SIZE is different than 1, because we would like to avoid going through
294 * the alloc/free process all the time. In a small machine, 4 kmem-limited
295 * cgroups is a reasonable guess. In the future, it could be a parameter or
296 * tunable, but that is strictly not necessary.
297 *
b8627835 298 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
55007d84
GC
299 * this constant directly from cgroup, but it is understandable that this is
300 * better kept as an internal representation in cgroup.c. In any case, the
b8627835 301 * cgrp_id space is not getting any smaller, and we don't have to necessarily
55007d84
GC
302 * increase ours as well if it increases.
303 */
304#define MEMCG_CACHES_MIN_SIZE 4
b8627835 305#define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
55007d84 306
d7f25f8a
GC
307/*
308 * A lot of the calls to the cache allocation functions are expected to be
309 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
310 * conditional to this static branch, we'll have to allow modules that does
311 * kmem_cache_alloc and the such to see this symbol as well
312 */
ef12947c 313DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key);
d7f25f8a 314EXPORT_SYMBOL(memcg_kmem_enabled_key);
a8964b9b 315
17cc4dfe
TH
316struct workqueue_struct *memcg_kmem_cache_wq;
317
0a4465d3
KT
318static int memcg_shrinker_map_size;
319static DEFINE_MUTEX(memcg_shrinker_map_mutex);
320
321static void memcg_free_shrinker_map_rcu(struct rcu_head *head)
322{
323 kvfree(container_of(head, struct memcg_shrinker_map, rcu));
324}
325
326static int memcg_expand_one_shrinker_map(struct mem_cgroup *memcg,
327 int size, int old_size)
328{
329 struct memcg_shrinker_map *new, *old;
330 int nid;
331
332 lockdep_assert_held(&memcg_shrinker_map_mutex);
333
334 for_each_node(nid) {
335 old = rcu_dereference_protected(
336 mem_cgroup_nodeinfo(memcg, nid)->shrinker_map, true);
337 /* Not yet online memcg */
338 if (!old)
339 return 0;
340
341 new = kvmalloc(sizeof(*new) + size, GFP_KERNEL);
342 if (!new)
343 return -ENOMEM;
344
345 /* Set all old bits, clear all new bits */
346 memset(new->map, (int)0xff, old_size);
347 memset((void *)new->map + old_size, 0, size - old_size);
348
349 rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_map, new);
350 call_rcu(&old->rcu, memcg_free_shrinker_map_rcu);
351 }
352
353 return 0;
354}
355
356static void memcg_free_shrinker_maps(struct mem_cgroup *memcg)
357{
358 struct mem_cgroup_per_node *pn;
359 struct memcg_shrinker_map *map;
360 int nid;
361
362 if (mem_cgroup_is_root(memcg))
363 return;
364
365 for_each_node(nid) {
366 pn = mem_cgroup_nodeinfo(memcg, nid);
367 map = rcu_dereference_protected(pn->shrinker_map, true);
368 if (map)
369 kvfree(map);
370 rcu_assign_pointer(pn->shrinker_map, NULL);
371 }
372}
373
374static int memcg_alloc_shrinker_maps(struct mem_cgroup *memcg)
375{
376 struct memcg_shrinker_map *map;
377 int nid, size, ret = 0;
378
379 if (mem_cgroup_is_root(memcg))
380 return 0;
381
382 mutex_lock(&memcg_shrinker_map_mutex);
383 size = memcg_shrinker_map_size;
384 for_each_node(nid) {
385 map = kvzalloc(sizeof(*map) + size, GFP_KERNEL);
386 if (!map) {
387 memcg_free_shrinker_maps(memcg);
388 ret = -ENOMEM;
389 break;
390 }
391 rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_map, map);
392 }
393 mutex_unlock(&memcg_shrinker_map_mutex);
394
395 return ret;
396}
397
398int memcg_expand_shrinker_maps(int new_id)
399{
400 int size, old_size, ret = 0;
401 struct mem_cgroup *memcg;
402
403 size = DIV_ROUND_UP(new_id + 1, BITS_PER_LONG) * sizeof(unsigned long);
404 old_size = memcg_shrinker_map_size;
405 if (size <= old_size)
406 return 0;
407
408 mutex_lock(&memcg_shrinker_map_mutex);
409 if (!root_mem_cgroup)
410 goto unlock;
411
412 for_each_mem_cgroup(memcg) {
413 if (mem_cgroup_is_root(memcg))
414 continue;
415 ret = memcg_expand_one_shrinker_map(memcg, size, old_size);
416 if (ret)
417 goto unlock;
418 }
419unlock:
420 if (!ret)
421 memcg_shrinker_map_size = size;
422 mutex_unlock(&memcg_shrinker_map_mutex);
423 return ret;
424}
fae91d6d
KT
425
426void memcg_set_shrinker_bit(struct mem_cgroup *memcg, int nid, int shrinker_id)
427{
428 if (shrinker_id >= 0 && memcg && !mem_cgroup_is_root(memcg)) {
429 struct memcg_shrinker_map *map;
430
431 rcu_read_lock();
432 map = rcu_dereference(memcg->nodeinfo[nid]->shrinker_map);
f90280d6
KT
433 /* Pairs with smp mb in shrink_slab() */
434 smp_mb__before_atomic();
fae91d6d
KT
435 set_bit(shrinker_id, map->map);
436 rcu_read_unlock();
437 }
438}
439
0a4465d3
KT
440#else /* CONFIG_MEMCG_KMEM */
441static int memcg_alloc_shrinker_maps(struct mem_cgroup *memcg)
442{
443 return 0;
444}
445static void memcg_free_shrinker_maps(struct mem_cgroup *memcg) { }
84c07d11 446#endif /* CONFIG_MEMCG_KMEM */
a8964b9b 447
ad7fa852
TH
448/**
449 * mem_cgroup_css_from_page - css of the memcg associated with a page
450 * @page: page of interest
451 *
452 * If memcg is bound to the default hierarchy, css of the memcg associated
453 * with @page is returned. The returned css remains associated with @page
454 * until it is released.
455 *
456 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
457 * is returned.
ad7fa852
TH
458 */
459struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
460{
461 struct mem_cgroup *memcg;
462
ad7fa852
TH
463 memcg = page->mem_cgroup;
464
9e10a130 465 if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
ad7fa852
TH
466 memcg = root_mem_cgroup;
467
ad7fa852
TH
468 return &memcg->css;
469}
470
2fc04524
VD
471/**
472 * page_cgroup_ino - return inode number of the memcg a page is charged to
473 * @page: the page
474 *
475 * Look up the closest online ancestor of the memory cgroup @page is charged to
476 * and return its inode number or 0 if @page is not charged to any cgroup. It
477 * is safe to call this function without holding a reference to @page.
478 *
479 * Note, this function is inherently racy, because there is nothing to prevent
480 * the cgroup inode from getting torn down and potentially reallocated a moment
481 * after page_cgroup_ino() returns, so it only should be used by callers that
482 * do not care (such as procfs interfaces).
483 */
484ino_t page_cgroup_ino(struct page *page)
485{
486 struct mem_cgroup *memcg;
487 unsigned long ino = 0;
488
489 rcu_read_lock();
490 memcg = READ_ONCE(page->mem_cgroup);
491 while (memcg && !(memcg->css.flags & CSS_ONLINE))
492 memcg = parent_mem_cgroup(memcg);
493 if (memcg)
494 ino = cgroup_ino(memcg->css.cgroup);
495 rcu_read_unlock();
496 return ino;
497}
498
ef8f2327
MG
499static struct mem_cgroup_per_node *
500mem_cgroup_page_nodeinfo(struct mem_cgroup *memcg, struct page *page)
f64c3f54 501{
97a6c37b 502 int nid = page_to_nid(page);
f64c3f54 503
ef8f2327 504 return memcg->nodeinfo[nid];
f64c3f54
BS
505}
506
ef8f2327
MG
507static struct mem_cgroup_tree_per_node *
508soft_limit_tree_node(int nid)
bb4cc1a8 509{
ef8f2327 510 return soft_limit_tree.rb_tree_per_node[nid];
bb4cc1a8
AM
511}
512
ef8f2327 513static struct mem_cgroup_tree_per_node *
bb4cc1a8
AM
514soft_limit_tree_from_page(struct page *page)
515{
516 int nid = page_to_nid(page);
bb4cc1a8 517
ef8f2327 518 return soft_limit_tree.rb_tree_per_node[nid];
bb4cc1a8
AM
519}
520
ef8f2327
MG
521static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz,
522 struct mem_cgroup_tree_per_node *mctz,
3e32cb2e 523 unsigned long new_usage_in_excess)
bb4cc1a8
AM
524{
525 struct rb_node **p = &mctz->rb_root.rb_node;
526 struct rb_node *parent = NULL;
ef8f2327 527 struct mem_cgroup_per_node *mz_node;
fa90b2fd 528 bool rightmost = true;
bb4cc1a8
AM
529
530 if (mz->on_tree)
531 return;
532
533 mz->usage_in_excess = new_usage_in_excess;
534 if (!mz->usage_in_excess)
535 return;
536 while (*p) {
537 parent = *p;
ef8f2327 538 mz_node = rb_entry(parent, struct mem_cgroup_per_node,
bb4cc1a8 539 tree_node);
fa90b2fd 540 if (mz->usage_in_excess < mz_node->usage_in_excess) {
bb4cc1a8 541 p = &(*p)->rb_left;
fa90b2fd
DB
542 rightmost = false;
543 }
544
bb4cc1a8
AM
545 /*
546 * We can't avoid mem cgroups that are over their soft
547 * limit by the same amount
548 */
549 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
550 p = &(*p)->rb_right;
551 }
fa90b2fd
DB
552
553 if (rightmost)
554 mctz->rb_rightmost = &mz->tree_node;
555
bb4cc1a8
AM
556 rb_link_node(&mz->tree_node, parent, p);
557 rb_insert_color(&mz->tree_node, &mctz->rb_root);
558 mz->on_tree = true;
559}
560
ef8f2327
MG
561static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
562 struct mem_cgroup_tree_per_node *mctz)
bb4cc1a8
AM
563{
564 if (!mz->on_tree)
565 return;
fa90b2fd
DB
566
567 if (&mz->tree_node == mctz->rb_rightmost)
568 mctz->rb_rightmost = rb_prev(&mz->tree_node);
569
bb4cc1a8
AM
570 rb_erase(&mz->tree_node, &mctz->rb_root);
571 mz->on_tree = false;
572}
573
ef8f2327
MG
574static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
575 struct mem_cgroup_tree_per_node *mctz)
bb4cc1a8 576{
0a31bc97
JW
577 unsigned long flags;
578
579 spin_lock_irqsave(&mctz->lock, flags);
cf2c8127 580 __mem_cgroup_remove_exceeded(mz, mctz);
0a31bc97 581 spin_unlock_irqrestore(&mctz->lock, flags);
bb4cc1a8
AM
582}
583
3e32cb2e
JW
584static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
585{
586 unsigned long nr_pages = page_counter_read(&memcg->memory);
4db0c3c2 587 unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
3e32cb2e
JW
588 unsigned long excess = 0;
589
590 if (nr_pages > soft_limit)
591 excess = nr_pages - soft_limit;
592
593 return excess;
594}
bb4cc1a8
AM
595
596static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
597{
3e32cb2e 598 unsigned long excess;
ef8f2327
MG
599 struct mem_cgroup_per_node *mz;
600 struct mem_cgroup_tree_per_node *mctz;
bb4cc1a8 601
e231875b 602 mctz = soft_limit_tree_from_page(page);
bfc7228b
LD
603 if (!mctz)
604 return;
bb4cc1a8
AM
605 /*
606 * Necessary to update all ancestors when hierarchy is used.
607 * because their event counter is not touched.
608 */
609 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
ef8f2327 610 mz = mem_cgroup_page_nodeinfo(memcg, page);
3e32cb2e 611 excess = soft_limit_excess(memcg);
bb4cc1a8
AM
612 /*
613 * We have to update the tree if mz is on RB-tree or
614 * mem is over its softlimit.
615 */
616 if (excess || mz->on_tree) {
0a31bc97
JW
617 unsigned long flags;
618
619 spin_lock_irqsave(&mctz->lock, flags);
bb4cc1a8
AM
620 /* if on-tree, remove it */
621 if (mz->on_tree)
cf2c8127 622 __mem_cgroup_remove_exceeded(mz, mctz);
bb4cc1a8
AM
623 /*
624 * Insert again. mz->usage_in_excess will be updated.
625 * If excess is 0, no tree ops.
626 */
cf2c8127 627 __mem_cgroup_insert_exceeded(mz, mctz, excess);
0a31bc97 628 spin_unlock_irqrestore(&mctz->lock, flags);
bb4cc1a8
AM
629 }
630 }
631}
632
633static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
634{
ef8f2327
MG
635 struct mem_cgroup_tree_per_node *mctz;
636 struct mem_cgroup_per_node *mz;
637 int nid;
bb4cc1a8 638
e231875b 639 for_each_node(nid) {
ef8f2327
MG
640 mz = mem_cgroup_nodeinfo(memcg, nid);
641 mctz = soft_limit_tree_node(nid);
bfc7228b
LD
642 if (mctz)
643 mem_cgroup_remove_exceeded(mz, mctz);
bb4cc1a8
AM
644 }
645}
646
ef8f2327
MG
647static struct mem_cgroup_per_node *
648__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
bb4cc1a8 649{
ef8f2327 650 struct mem_cgroup_per_node *mz;
bb4cc1a8
AM
651
652retry:
653 mz = NULL;
fa90b2fd 654 if (!mctz->rb_rightmost)
bb4cc1a8
AM
655 goto done; /* Nothing to reclaim from */
656
fa90b2fd
DB
657 mz = rb_entry(mctz->rb_rightmost,
658 struct mem_cgroup_per_node, tree_node);
bb4cc1a8
AM
659 /*
660 * Remove the node now but someone else can add it back,
661 * we will to add it back at the end of reclaim to its correct
662 * position in the tree.
663 */
cf2c8127 664 __mem_cgroup_remove_exceeded(mz, mctz);
3e32cb2e 665 if (!soft_limit_excess(mz->memcg) ||
ec903c0c 666 !css_tryget_online(&mz->memcg->css))
bb4cc1a8
AM
667 goto retry;
668done:
669 return mz;
670}
671
ef8f2327
MG
672static struct mem_cgroup_per_node *
673mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
bb4cc1a8 674{
ef8f2327 675 struct mem_cgroup_per_node *mz;
bb4cc1a8 676
0a31bc97 677 spin_lock_irq(&mctz->lock);
bb4cc1a8 678 mz = __mem_cgroup_largest_soft_limit_node(mctz);
0a31bc97 679 spin_unlock_irq(&mctz->lock);
bb4cc1a8
AM
680 return mz;
681}
682
ccda7f43 683static unsigned long memcg_sum_events(struct mem_cgroup *memcg,
04fecbf5 684 int event)
e9f8974f 685{
a983b5eb 686 return atomic_long_read(&memcg->events[event]);
e9f8974f
JW
687}
688
c0ff4b85 689static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
b070e65c 690 struct page *page,
f627c2f5 691 bool compound, int nr_pages)
d52aa412 692{
b2402857
KH
693 /*
694 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
695 * counted as CACHE even if it's on ANON LRU.
696 */
0a31bc97 697 if (PageAnon(page))
c9019e9b 698 __mod_memcg_state(memcg, MEMCG_RSS, nr_pages);
9a4caf1e 699 else {
c9019e9b 700 __mod_memcg_state(memcg, MEMCG_CACHE, nr_pages);
9a4caf1e 701 if (PageSwapBacked(page))
c9019e9b 702 __mod_memcg_state(memcg, NR_SHMEM, nr_pages);
9a4caf1e 703 }
55e462b0 704
f627c2f5
KS
705 if (compound) {
706 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
c9019e9b 707 __mod_memcg_state(memcg, MEMCG_RSS_HUGE, nr_pages);
f627c2f5 708 }
b070e65c 709
e401f176
KH
710 /* pagein of a big page is an event. So, ignore page size */
711 if (nr_pages > 0)
c9019e9b 712 __count_memcg_events(memcg, PGPGIN, 1);
3751d604 713 else {
c9019e9b 714 __count_memcg_events(memcg, PGPGOUT, 1);
3751d604
KH
715 nr_pages = -nr_pages; /* for event */
716 }
e401f176 717
a983b5eb 718 __this_cpu_add(memcg->stat_cpu->nr_page_events, nr_pages);
6d12e2d8
KH
719}
720
0a6b76dd
VD
721unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
722 int nid, unsigned int lru_mask)
bb2a0de9 723{
b4536f0c 724 struct lruvec *lruvec = mem_cgroup_lruvec(NODE_DATA(nid), memcg);
e231875b 725 unsigned long nr = 0;
ef8f2327 726 enum lru_list lru;
889976db 727
e231875b 728 VM_BUG_ON((unsigned)nid >= nr_node_ids);
bb2a0de9 729
ef8f2327
MG
730 for_each_lru(lru) {
731 if (!(BIT(lru) & lru_mask))
732 continue;
b4536f0c 733 nr += mem_cgroup_get_lru_size(lruvec, lru);
e231875b
JZ
734 }
735 return nr;
889976db 736}
bb2a0de9 737
c0ff4b85 738static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
bb2a0de9 739 unsigned int lru_mask)
6d12e2d8 740{
e231875b 741 unsigned long nr = 0;
889976db 742 int nid;
6d12e2d8 743
31aaea4a 744 for_each_node_state(nid, N_MEMORY)
e231875b
JZ
745 nr += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
746 return nr;
d52aa412
KH
747}
748
f53d7ce3
JW
749static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
750 enum mem_cgroup_events_target target)
7a159cc9
JW
751{
752 unsigned long val, next;
753
a983b5eb
JW
754 val = __this_cpu_read(memcg->stat_cpu->nr_page_events);
755 next = __this_cpu_read(memcg->stat_cpu->targets[target]);
7a159cc9 756 /* from time_after() in jiffies.h */
6a1a8b80 757 if ((long)(next - val) < 0) {
f53d7ce3
JW
758 switch (target) {
759 case MEM_CGROUP_TARGET_THRESH:
760 next = val + THRESHOLDS_EVENTS_TARGET;
761 break;
bb4cc1a8
AM
762 case MEM_CGROUP_TARGET_SOFTLIMIT:
763 next = val + SOFTLIMIT_EVENTS_TARGET;
764 break;
f53d7ce3
JW
765 case MEM_CGROUP_TARGET_NUMAINFO:
766 next = val + NUMAINFO_EVENTS_TARGET;
767 break;
768 default:
769 break;
770 }
a983b5eb 771 __this_cpu_write(memcg->stat_cpu->targets[target], next);
f53d7ce3 772 return true;
7a159cc9 773 }
f53d7ce3 774 return false;
d2265e6f
KH
775}
776
777/*
778 * Check events in order.
779 *
780 */
c0ff4b85 781static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
d2265e6f
KH
782{
783 /* threshold event is triggered in finer grain than soft limit */
f53d7ce3
JW
784 if (unlikely(mem_cgroup_event_ratelimit(memcg,
785 MEM_CGROUP_TARGET_THRESH))) {
bb4cc1a8 786 bool do_softlimit;
82b3f2a7 787 bool do_numainfo __maybe_unused;
f53d7ce3 788
bb4cc1a8
AM
789 do_softlimit = mem_cgroup_event_ratelimit(memcg,
790 MEM_CGROUP_TARGET_SOFTLIMIT);
f53d7ce3
JW
791#if MAX_NUMNODES > 1
792 do_numainfo = mem_cgroup_event_ratelimit(memcg,
793 MEM_CGROUP_TARGET_NUMAINFO);
794#endif
c0ff4b85 795 mem_cgroup_threshold(memcg);
bb4cc1a8
AM
796 if (unlikely(do_softlimit))
797 mem_cgroup_update_tree(memcg, page);
453a9bf3 798#if MAX_NUMNODES > 1
f53d7ce3 799 if (unlikely(do_numainfo))
c0ff4b85 800 atomic_inc(&memcg->numainfo_events);
453a9bf3 801#endif
0a31bc97 802 }
d2265e6f
KH
803}
804
cf475ad2 805struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
78fb7466 806{
31a78f23
BS
807 /*
808 * mm_update_next_owner() may clear mm->owner to NULL
809 * if it races with swapoff, page migration, etc.
810 * So this can be called with p == NULL.
811 */
812 if (unlikely(!p))
813 return NULL;
814
073219e9 815 return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
78fb7466 816}
33398cf2 817EXPORT_SYMBOL(mem_cgroup_from_task);
78fb7466 818
d46eb14b
SB
819/**
820 * get_mem_cgroup_from_mm: Obtain a reference on given mm_struct's memcg.
821 * @mm: mm from which memcg should be extracted. It can be NULL.
822 *
823 * Obtain a reference on mm->memcg and returns it if successful. Otherwise
824 * root_mem_cgroup is returned. However if mem_cgroup is disabled, NULL is
825 * returned.
826 */
827struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
54595fe2 828{
d46eb14b
SB
829 struct mem_cgroup *memcg;
830
831 if (mem_cgroup_disabled())
832 return NULL;
0b7f569e 833
54595fe2
KH
834 rcu_read_lock();
835 do {
6f6acb00
MH
836 /*
837 * Page cache insertions can happen withou an
838 * actual mm context, e.g. during disk probing
839 * on boot, loopback IO, acct() writes etc.
840 */
841 if (unlikely(!mm))
df381975 842 memcg = root_mem_cgroup;
6f6acb00
MH
843 else {
844 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
845 if (unlikely(!memcg))
846 memcg = root_mem_cgroup;
847 }
ec903c0c 848 } while (!css_tryget_online(&memcg->css));
54595fe2 849 rcu_read_unlock();
c0ff4b85 850 return memcg;
54595fe2 851}
d46eb14b
SB
852EXPORT_SYMBOL(get_mem_cgroup_from_mm);
853
f745c6f5
SB
854/**
855 * get_mem_cgroup_from_page: Obtain a reference on given page's memcg.
856 * @page: page from which memcg should be extracted.
857 *
858 * Obtain a reference on page->memcg and returns it if successful. Otherwise
859 * root_mem_cgroup is returned.
860 */
861struct mem_cgroup *get_mem_cgroup_from_page(struct page *page)
862{
863 struct mem_cgroup *memcg = page->mem_cgroup;
864
865 if (mem_cgroup_disabled())
866 return NULL;
867
868 rcu_read_lock();
869 if (!memcg || !css_tryget_online(&memcg->css))
870 memcg = root_mem_cgroup;
871 rcu_read_unlock();
872 return memcg;
873}
874EXPORT_SYMBOL(get_mem_cgroup_from_page);
875
d46eb14b
SB
876/**
877 * If current->active_memcg is non-NULL, do not fallback to current->mm->memcg.
878 */
879static __always_inline struct mem_cgroup *get_mem_cgroup_from_current(void)
880{
881 if (unlikely(current->active_memcg)) {
882 struct mem_cgroup *memcg = root_mem_cgroup;
883
884 rcu_read_lock();
885 if (css_tryget_online(&current->active_memcg->css))
886 memcg = current->active_memcg;
887 rcu_read_unlock();
888 return memcg;
889 }
890 return get_mem_cgroup_from_mm(current->mm);
891}
54595fe2 892
5660048c
JW
893/**
894 * mem_cgroup_iter - iterate over memory cgroup hierarchy
895 * @root: hierarchy root
896 * @prev: previously returned memcg, NULL on first invocation
897 * @reclaim: cookie for shared reclaim walks, NULL for full walks
898 *
899 * Returns references to children of the hierarchy below @root, or
900 * @root itself, or %NULL after a full round-trip.
901 *
902 * Caller must pass the return value in @prev on subsequent
903 * invocations for reference counting, or use mem_cgroup_iter_break()
904 * to cancel a hierarchy walk before the round-trip is complete.
905 *
b213b54f 906 * Reclaimers can specify a node and a priority level in @reclaim to
5660048c 907 * divide up the memcgs in the hierarchy among all concurrent
b213b54f 908 * reclaimers operating on the same node and priority.
5660048c 909 */
694fbc0f 910struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
5660048c 911 struct mem_cgroup *prev,
694fbc0f 912 struct mem_cgroup_reclaim_cookie *reclaim)
14067bb3 913{
33398cf2 914 struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
5ac8fb31 915 struct cgroup_subsys_state *css = NULL;
9f3a0d09 916 struct mem_cgroup *memcg = NULL;
5ac8fb31 917 struct mem_cgroup *pos = NULL;
711d3d2c 918
694fbc0f
AM
919 if (mem_cgroup_disabled())
920 return NULL;
5660048c 921
9f3a0d09
JW
922 if (!root)
923 root = root_mem_cgroup;
7d74b06f 924
9f3a0d09 925 if (prev && !reclaim)
5ac8fb31 926 pos = prev;
14067bb3 927
9f3a0d09
JW
928 if (!root->use_hierarchy && root != root_mem_cgroup) {
929 if (prev)
5ac8fb31 930 goto out;
694fbc0f 931 return root;
9f3a0d09 932 }
14067bb3 933
542f85f9 934 rcu_read_lock();
5f578161 935
5ac8fb31 936 if (reclaim) {
ef8f2327 937 struct mem_cgroup_per_node *mz;
5ac8fb31 938
ef8f2327 939 mz = mem_cgroup_nodeinfo(root, reclaim->pgdat->node_id);
5ac8fb31
JW
940 iter = &mz->iter[reclaim->priority];
941
942 if (prev && reclaim->generation != iter->generation)
943 goto out_unlock;
944
6df38689 945 while (1) {
4db0c3c2 946 pos = READ_ONCE(iter->position);
6df38689
VD
947 if (!pos || css_tryget(&pos->css))
948 break;
5ac8fb31 949 /*
6df38689
VD
950 * css reference reached zero, so iter->position will
951 * be cleared by ->css_released. However, we should not
952 * rely on this happening soon, because ->css_released
953 * is called from a work queue, and by busy-waiting we
954 * might block it. So we clear iter->position right
955 * away.
5ac8fb31 956 */
6df38689
VD
957 (void)cmpxchg(&iter->position, pos, NULL);
958 }
5ac8fb31
JW
959 }
960
961 if (pos)
962 css = &pos->css;
963
964 for (;;) {
965 css = css_next_descendant_pre(css, &root->css);
966 if (!css) {
967 /*
968 * Reclaimers share the hierarchy walk, and a
969 * new one might jump in right at the end of
970 * the hierarchy - make sure they see at least
971 * one group and restart from the beginning.
972 */
973 if (!prev)
974 continue;
975 break;
527a5ec9 976 }
7d74b06f 977
5ac8fb31
JW
978 /*
979 * Verify the css and acquire a reference. The root
980 * is provided by the caller, so we know it's alive
981 * and kicking, and don't take an extra reference.
982 */
983 memcg = mem_cgroup_from_css(css);
14067bb3 984
5ac8fb31
JW
985 if (css == &root->css)
986 break;
14067bb3 987
0b8f73e1
JW
988 if (css_tryget(css))
989 break;
9f3a0d09 990
5ac8fb31 991 memcg = NULL;
9f3a0d09 992 }
5ac8fb31
JW
993
994 if (reclaim) {
5ac8fb31 995 /*
6df38689
VD
996 * The position could have already been updated by a competing
997 * thread, so check that the value hasn't changed since we read
998 * it to avoid reclaiming from the same cgroup twice.
5ac8fb31 999 */
6df38689
VD
1000 (void)cmpxchg(&iter->position, pos, memcg);
1001
5ac8fb31
JW
1002 if (pos)
1003 css_put(&pos->css);
1004
1005 if (!memcg)
1006 iter->generation++;
1007 else if (!prev)
1008 reclaim->generation = iter->generation;
9f3a0d09 1009 }
5ac8fb31 1010
542f85f9
MH
1011out_unlock:
1012 rcu_read_unlock();
5ac8fb31 1013out:
c40046f3
MH
1014 if (prev && prev != root)
1015 css_put(&prev->css);
1016
9f3a0d09 1017 return memcg;
14067bb3 1018}
7d74b06f 1019
5660048c
JW
1020/**
1021 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1022 * @root: hierarchy root
1023 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1024 */
1025void mem_cgroup_iter_break(struct mem_cgroup *root,
1026 struct mem_cgroup *prev)
9f3a0d09
JW
1027{
1028 if (!root)
1029 root = root_mem_cgroup;
1030 if (prev && prev != root)
1031 css_put(&prev->css);
1032}
7d74b06f 1033
6df38689
VD
1034static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
1035{
1036 struct mem_cgroup *memcg = dead_memcg;
1037 struct mem_cgroup_reclaim_iter *iter;
ef8f2327
MG
1038 struct mem_cgroup_per_node *mz;
1039 int nid;
6df38689
VD
1040 int i;
1041
9f15bde6 1042 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
6df38689 1043 for_each_node(nid) {
ef8f2327
MG
1044 mz = mem_cgroup_nodeinfo(memcg, nid);
1045 for (i = 0; i <= DEF_PRIORITY; i++) {
1046 iter = &mz->iter[i];
1047 cmpxchg(&iter->position,
1048 dead_memcg, NULL);
6df38689
VD
1049 }
1050 }
1051 }
1052}
1053
7c5f64f8
VD
1054/**
1055 * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy
1056 * @memcg: hierarchy root
1057 * @fn: function to call for each task
1058 * @arg: argument passed to @fn
1059 *
1060 * This function iterates over tasks attached to @memcg or to any of its
1061 * descendants and calls @fn for each task. If @fn returns a non-zero
1062 * value, the function breaks the iteration loop and returns the value.
1063 * Otherwise, it will iterate over all tasks and return 0.
1064 *
1065 * This function must not be called for the root memory cgroup.
1066 */
1067int mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
1068 int (*fn)(struct task_struct *, void *), void *arg)
1069{
1070 struct mem_cgroup *iter;
1071 int ret = 0;
1072
1073 BUG_ON(memcg == root_mem_cgroup);
1074
1075 for_each_mem_cgroup_tree(iter, memcg) {
1076 struct css_task_iter it;
1077 struct task_struct *task;
1078
bc2fb7ed 1079 css_task_iter_start(&iter->css, 0, &it);
7c5f64f8
VD
1080 while (!ret && (task = css_task_iter_next(&it)))
1081 ret = fn(task, arg);
1082 css_task_iter_end(&it);
1083 if (ret) {
1084 mem_cgroup_iter_break(memcg, iter);
1085 break;
1086 }
1087 }
1088 return ret;
1089}
1090
925b7673 1091/**
dfe0e773 1092 * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
925b7673 1093 * @page: the page
f144c390 1094 * @pgdat: pgdat of the page
dfe0e773
JW
1095 *
1096 * This function is only safe when following the LRU page isolation
1097 * and putback protocol: the LRU lock must be held, and the page must
1098 * either be PageLRU() or the caller must have isolated/allocated it.
925b7673 1099 */
599d0c95 1100struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct pglist_data *pgdat)
08e552c6 1101{
ef8f2327 1102 struct mem_cgroup_per_node *mz;
925b7673 1103 struct mem_cgroup *memcg;
bea8c150 1104 struct lruvec *lruvec;
6d12e2d8 1105
bea8c150 1106 if (mem_cgroup_disabled()) {
599d0c95 1107 lruvec = &pgdat->lruvec;
bea8c150
HD
1108 goto out;
1109 }
925b7673 1110
1306a85a 1111 memcg = page->mem_cgroup;
7512102c 1112 /*
dfe0e773 1113 * Swapcache readahead pages are added to the LRU - and
29833315 1114 * possibly migrated - before they are charged.
7512102c 1115 */
29833315
JW
1116 if (!memcg)
1117 memcg = root_mem_cgroup;
7512102c 1118
ef8f2327 1119 mz = mem_cgroup_page_nodeinfo(memcg, page);
bea8c150
HD
1120 lruvec = &mz->lruvec;
1121out:
1122 /*
1123 * Since a node can be onlined after the mem_cgroup was created,
1124 * we have to be prepared to initialize lruvec->zone here;
1125 * and if offlined then reonlined, we need to reinitialize it.
1126 */
599d0c95
MG
1127 if (unlikely(lruvec->pgdat != pgdat))
1128 lruvec->pgdat = pgdat;
bea8c150 1129 return lruvec;
08e552c6 1130}
b69408e8 1131
925b7673 1132/**
fa9add64
HD
1133 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1134 * @lruvec: mem_cgroup per zone lru vector
1135 * @lru: index of lru list the page is sitting on
b4536f0c 1136 * @zid: zone id of the accounted pages
fa9add64 1137 * @nr_pages: positive when adding or negative when removing
925b7673 1138 *
ca707239
HD
1139 * This function must be called under lru_lock, just before a page is added
1140 * to or just after a page is removed from an lru list (that ordering being
1141 * so as to allow it to check that lru_size 0 is consistent with list_empty).
3f58a829 1142 */
fa9add64 1143void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
b4536f0c 1144 int zid, int nr_pages)
3f58a829 1145{
ef8f2327 1146 struct mem_cgroup_per_node *mz;
fa9add64 1147 unsigned long *lru_size;
ca707239 1148 long size;
3f58a829
MK
1149
1150 if (mem_cgroup_disabled())
1151 return;
1152
ef8f2327 1153 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
b4536f0c 1154 lru_size = &mz->lru_zone_size[zid][lru];
ca707239
HD
1155
1156 if (nr_pages < 0)
1157 *lru_size += nr_pages;
1158
1159 size = *lru_size;
b4536f0c
MH
1160 if (WARN_ONCE(size < 0,
1161 "%s(%p, %d, %d): lru_size %ld\n",
1162 __func__, lruvec, lru, nr_pages, size)) {
ca707239
HD
1163 VM_BUG_ON(1);
1164 *lru_size = 0;
1165 }
1166
1167 if (nr_pages > 0)
1168 *lru_size += nr_pages;
08e552c6 1169}
544122e5 1170
2314b42d 1171bool task_in_mem_cgroup(struct task_struct *task, struct mem_cgroup *memcg)
c3ac9a8a 1172{
2314b42d 1173 struct mem_cgroup *task_memcg;
158e0a2d 1174 struct task_struct *p;
ffbdccf5 1175 bool ret;
4c4a2214 1176
158e0a2d 1177 p = find_lock_task_mm(task);
de077d22 1178 if (p) {
2314b42d 1179 task_memcg = get_mem_cgroup_from_mm(p->mm);
de077d22
DR
1180 task_unlock(p);
1181 } else {
1182 /*
1183 * All threads may have already detached their mm's, but the oom
1184 * killer still needs to detect if they have already been oom
1185 * killed to prevent needlessly killing additional tasks.
1186 */
ffbdccf5 1187 rcu_read_lock();
2314b42d
JW
1188 task_memcg = mem_cgroup_from_task(task);
1189 css_get(&task_memcg->css);
ffbdccf5 1190 rcu_read_unlock();
de077d22 1191 }
2314b42d
JW
1192 ret = mem_cgroup_is_descendant(task_memcg, memcg);
1193 css_put(&task_memcg->css);
4c4a2214
DR
1194 return ret;
1195}
1196
19942822 1197/**
9d11ea9f 1198 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
dad7557e 1199 * @memcg: the memory cgroup
19942822 1200 *
9d11ea9f 1201 * Returns the maximum amount of memory @mem can be charged with, in
7ec99d62 1202 * pages.
19942822 1203 */
c0ff4b85 1204static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
19942822 1205{
3e32cb2e
JW
1206 unsigned long margin = 0;
1207 unsigned long count;
1208 unsigned long limit;
9d11ea9f 1209
3e32cb2e 1210 count = page_counter_read(&memcg->memory);
bbec2e15 1211 limit = READ_ONCE(memcg->memory.max);
3e32cb2e
JW
1212 if (count < limit)
1213 margin = limit - count;
1214
7941d214 1215 if (do_memsw_account()) {
3e32cb2e 1216 count = page_counter_read(&memcg->memsw);
bbec2e15 1217 limit = READ_ONCE(memcg->memsw.max);
3e32cb2e
JW
1218 if (count <= limit)
1219 margin = min(margin, limit - count);
cbedbac3
LR
1220 else
1221 margin = 0;
3e32cb2e
JW
1222 }
1223
1224 return margin;
19942822
JW
1225}
1226
32047e2a 1227/*
bdcbb659 1228 * A routine for checking "mem" is under move_account() or not.
32047e2a 1229 *
bdcbb659
QH
1230 * Checking a cgroup is mc.from or mc.to or under hierarchy of
1231 * moving cgroups. This is for waiting at high-memory pressure
1232 * caused by "move".
32047e2a 1233 */
c0ff4b85 1234static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
4b534334 1235{
2bd9bb20
KH
1236 struct mem_cgroup *from;
1237 struct mem_cgroup *to;
4b534334 1238 bool ret = false;
2bd9bb20
KH
1239 /*
1240 * Unlike task_move routines, we access mc.to, mc.from not under
1241 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1242 */
1243 spin_lock(&mc.lock);
1244 from = mc.from;
1245 to = mc.to;
1246 if (!from)
1247 goto unlock;
3e92041d 1248
2314b42d
JW
1249 ret = mem_cgroup_is_descendant(from, memcg) ||
1250 mem_cgroup_is_descendant(to, memcg);
2bd9bb20
KH
1251unlock:
1252 spin_unlock(&mc.lock);
4b534334
KH
1253 return ret;
1254}
1255
c0ff4b85 1256static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
4b534334
KH
1257{
1258 if (mc.moving_task && current != mc.moving_task) {
c0ff4b85 1259 if (mem_cgroup_under_move(memcg)) {
4b534334
KH
1260 DEFINE_WAIT(wait);
1261 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1262 /* moving charge context might have finished. */
1263 if (mc.moving_task)
1264 schedule();
1265 finish_wait(&mc.waitq, &wait);
1266 return true;
1267 }
1268 }
1269 return false;
1270}
1271
8ad6e404 1272static const unsigned int memcg1_stats[] = {
71cd3113
JW
1273 MEMCG_CACHE,
1274 MEMCG_RSS,
1275 MEMCG_RSS_HUGE,
1276 NR_SHMEM,
1277 NR_FILE_MAPPED,
1278 NR_FILE_DIRTY,
1279 NR_WRITEBACK,
1280 MEMCG_SWAP,
1281};
1282
1283static const char *const memcg1_stat_names[] = {
1284 "cache",
1285 "rss",
1286 "rss_huge",
1287 "shmem",
1288 "mapped_file",
1289 "dirty",
1290 "writeback",
1291 "swap",
1292};
1293
58cf188e 1294#define K(x) ((x) << (PAGE_SHIFT-10))
e222432b 1295/**
58cf188e 1296 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
e222432b
BS
1297 * @memcg: The memory cgroup that went over limit
1298 * @p: Task that is going to be killed
1299 *
1300 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1301 * enabled
1302 */
1303void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1304{
58cf188e
SZ
1305 struct mem_cgroup *iter;
1306 unsigned int i;
e222432b 1307
e222432b
BS
1308 rcu_read_lock();
1309
2415b9f5
BV
1310 if (p) {
1311 pr_info("Task in ");
1312 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1313 pr_cont(" killed as a result of limit of ");
1314 } else {
1315 pr_info("Memory limit reached of cgroup ");
1316 }
1317
e61734c5 1318 pr_cont_cgroup_path(memcg->css.cgroup);
0346dadb 1319 pr_cont("\n");
e222432b 1320
e222432b
BS
1321 rcu_read_unlock();
1322
3e32cb2e
JW
1323 pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1324 K((u64)page_counter_read(&memcg->memory)),
bbec2e15 1325 K((u64)memcg->memory.max), memcg->memory.failcnt);
3e32cb2e
JW
1326 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1327 K((u64)page_counter_read(&memcg->memsw)),
bbec2e15 1328 K((u64)memcg->memsw.max), memcg->memsw.failcnt);
3e32cb2e
JW
1329 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1330 K((u64)page_counter_read(&memcg->kmem)),
bbec2e15 1331 K((u64)memcg->kmem.max), memcg->kmem.failcnt);
58cf188e
SZ
1332
1333 for_each_mem_cgroup_tree(iter, memcg) {
e61734c5
TH
1334 pr_info("Memory cgroup stats for ");
1335 pr_cont_cgroup_path(iter->css.cgroup);
58cf188e
SZ
1336 pr_cont(":");
1337
71cd3113
JW
1338 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
1339 if (memcg1_stats[i] == MEMCG_SWAP && !do_swap_account)
58cf188e 1340 continue;
71cd3113 1341 pr_cont(" %s:%luKB", memcg1_stat_names[i],
ccda7f43 1342 K(memcg_page_state(iter, memcg1_stats[i])));
58cf188e
SZ
1343 }
1344
1345 for (i = 0; i < NR_LRU_LISTS; i++)
1346 pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
1347 K(mem_cgroup_nr_lru_pages(iter, BIT(i))));
1348
1349 pr_cont("\n");
1350 }
e222432b
BS
1351}
1352
a63d83f4
DR
1353/*
1354 * Return the memory (and swap, if configured) limit for a memcg.
1355 */
bbec2e15 1356unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg)
a63d83f4 1357{
bbec2e15 1358 unsigned long max;
f3e8eb70 1359
bbec2e15 1360 max = memcg->memory.max;
9a5a8f19 1361 if (mem_cgroup_swappiness(memcg)) {
bbec2e15
RG
1362 unsigned long memsw_max;
1363 unsigned long swap_max;
9a5a8f19 1364
bbec2e15
RG
1365 memsw_max = memcg->memsw.max;
1366 swap_max = memcg->swap.max;
1367 swap_max = min(swap_max, (unsigned long)total_swap_pages);
1368 max = min(max + swap_max, memsw_max);
9a5a8f19 1369 }
bbec2e15 1370 return max;
a63d83f4
DR
1371}
1372
b6e6edcf 1373static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
19965460 1374 int order)
9cbb78bb 1375{
6e0fc46d
DR
1376 struct oom_control oc = {
1377 .zonelist = NULL,
1378 .nodemask = NULL,
2a966b77 1379 .memcg = memcg,
6e0fc46d
DR
1380 .gfp_mask = gfp_mask,
1381 .order = order,
6e0fc46d 1382 };
7c5f64f8 1383 bool ret;
9cbb78bb 1384
dc56401f 1385 mutex_lock(&oom_lock);
7c5f64f8 1386 ret = out_of_memory(&oc);
dc56401f 1387 mutex_unlock(&oom_lock);
7c5f64f8 1388 return ret;
9cbb78bb
DR
1389}
1390
ae6e71d3
MC
1391#if MAX_NUMNODES > 1
1392
4d0c066d
KH
1393/**
1394 * test_mem_cgroup_node_reclaimable
dad7557e 1395 * @memcg: the target memcg
4d0c066d
KH
1396 * @nid: the node ID to be checked.
1397 * @noswap : specify true here if the user wants flle only information.
1398 *
1399 * This function returns whether the specified memcg contains any
1400 * reclaimable pages on a node. Returns true if there are any reclaimable
1401 * pages in the node.
1402 */
c0ff4b85 1403static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
4d0c066d
KH
1404 int nid, bool noswap)
1405{
c0ff4b85 1406 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
4d0c066d
KH
1407 return true;
1408 if (noswap || !total_swap_pages)
1409 return false;
c0ff4b85 1410 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
4d0c066d
KH
1411 return true;
1412 return false;
1413
1414}
889976db
YH
1415
1416/*
1417 * Always updating the nodemask is not very good - even if we have an empty
1418 * list or the wrong list here, we can start from some node and traverse all
1419 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1420 *
1421 */
c0ff4b85 1422static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
889976db
YH
1423{
1424 int nid;
453a9bf3
KH
1425 /*
1426 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1427 * pagein/pageout changes since the last update.
1428 */
c0ff4b85 1429 if (!atomic_read(&memcg->numainfo_events))
453a9bf3 1430 return;
c0ff4b85 1431 if (atomic_inc_return(&memcg->numainfo_updating) > 1)
889976db
YH
1432 return;
1433
889976db 1434 /* make a nodemask where this memcg uses memory from */
31aaea4a 1435 memcg->scan_nodes = node_states[N_MEMORY];
889976db 1436
31aaea4a 1437 for_each_node_mask(nid, node_states[N_MEMORY]) {
889976db 1438
c0ff4b85
R
1439 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1440 node_clear(nid, memcg->scan_nodes);
889976db 1441 }
453a9bf3 1442
c0ff4b85
R
1443 atomic_set(&memcg->numainfo_events, 0);
1444 atomic_set(&memcg->numainfo_updating, 0);
889976db
YH
1445}
1446
1447/*
1448 * Selecting a node where we start reclaim from. Because what we need is just
1449 * reducing usage counter, start from anywhere is O,K. Considering
1450 * memory reclaim from current node, there are pros. and cons.
1451 *
1452 * Freeing memory from current node means freeing memory from a node which
1453 * we'll use or we've used. So, it may make LRU bad. And if several threads
1454 * hit limits, it will see a contention on a node. But freeing from remote
1455 * node means more costs for memory reclaim because of memory latency.
1456 *
1457 * Now, we use round-robin. Better algorithm is welcomed.
1458 */
c0ff4b85 1459int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
889976db
YH
1460{
1461 int node;
1462
c0ff4b85
R
1463 mem_cgroup_may_update_nodemask(memcg);
1464 node = memcg->last_scanned_node;
889976db 1465
0edaf86c 1466 node = next_node_in(node, memcg->scan_nodes);
889976db 1467 /*
fda3d69b
MH
1468 * mem_cgroup_may_update_nodemask might have seen no reclaimmable pages
1469 * last time it really checked all the LRUs due to rate limiting.
1470 * Fallback to the current node in that case for simplicity.
889976db
YH
1471 */
1472 if (unlikely(node == MAX_NUMNODES))
1473 node = numa_node_id();
1474
c0ff4b85 1475 memcg->last_scanned_node = node;
889976db
YH
1476 return node;
1477}
889976db 1478#else
c0ff4b85 1479int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
889976db
YH
1480{
1481 return 0;
1482}
1483#endif
1484
0608f43d 1485static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
ef8f2327 1486 pg_data_t *pgdat,
0608f43d
AM
1487 gfp_t gfp_mask,
1488 unsigned long *total_scanned)
1489{
1490 struct mem_cgroup *victim = NULL;
1491 int total = 0;
1492 int loop = 0;
1493 unsigned long excess;
1494 unsigned long nr_scanned;
1495 struct mem_cgroup_reclaim_cookie reclaim = {
ef8f2327 1496 .pgdat = pgdat,
0608f43d
AM
1497 .priority = 0,
1498 };
1499
3e32cb2e 1500 excess = soft_limit_excess(root_memcg);
0608f43d
AM
1501
1502 while (1) {
1503 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1504 if (!victim) {
1505 loop++;
1506 if (loop >= 2) {
1507 /*
1508 * If we have not been able to reclaim
1509 * anything, it might because there are
1510 * no reclaimable pages under this hierarchy
1511 */
1512 if (!total)
1513 break;
1514 /*
1515 * We want to do more targeted reclaim.
1516 * excess >> 2 is not to excessive so as to
1517 * reclaim too much, nor too less that we keep
1518 * coming back to reclaim from this cgroup
1519 */
1520 if (total >= (excess >> 2) ||
1521 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1522 break;
1523 }
1524 continue;
1525 }
a9dd0a83 1526 total += mem_cgroup_shrink_node(victim, gfp_mask, false,
ef8f2327 1527 pgdat, &nr_scanned);
0608f43d 1528 *total_scanned += nr_scanned;
3e32cb2e 1529 if (!soft_limit_excess(root_memcg))
0608f43d 1530 break;
6d61ef40 1531 }
0608f43d
AM
1532 mem_cgroup_iter_break(root_memcg, victim);
1533 return total;
6d61ef40
BS
1534}
1535
0056f4e6
JW
1536#ifdef CONFIG_LOCKDEP
1537static struct lockdep_map memcg_oom_lock_dep_map = {
1538 .name = "memcg_oom_lock",
1539};
1540#endif
1541
fb2a6fc5
JW
1542static DEFINE_SPINLOCK(memcg_oom_lock);
1543
867578cb
KH
1544/*
1545 * Check OOM-Killer is already running under our hierarchy.
1546 * If someone is running, return false.
1547 */
fb2a6fc5 1548static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
867578cb 1549{
79dfdacc 1550 struct mem_cgroup *iter, *failed = NULL;
a636b327 1551
fb2a6fc5
JW
1552 spin_lock(&memcg_oom_lock);
1553
9f3a0d09 1554 for_each_mem_cgroup_tree(iter, memcg) {
23751be0 1555 if (iter->oom_lock) {
79dfdacc
MH
1556 /*
1557 * this subtree of our hierarchy is already locked
1558 * so we cannot give a lock.
1559 */
79dfdacc 1560 failed = iter;
9f3a0d09
JW
1561 mem_cgroup_iter_break(memcg, iter);
1562 break;
23751be0
JW
1563 } else
1564 iter->oom_lock = true;
7d74b06f 1565 }
867578cb 1566
fb2a6fc5
JW
1567 if (failed) {
1568 /*
1569 * OK, we failed to lock the whole subtree so we have
1570 * to clean up what we set up to the failing subtree
1571 */
1572 for_each_mem_cgroup_tree(iter, memcg) {
1573 if (iter == failed) {
1574 mem_cgroup_iter_break(memcg, iter);
1575 break;
1576 }
1577 iter->oom_lock = false;
79dfdacc 1578 }
0056f4e6
JW
1579 } else
1580 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
fb2a6fc5
JW
1581
1582 spin_unlock(&memcg_oom_lock);
1583
1584 return !failed;
a636b327 1585}
0b7f569e 1586
fb2a6fc5 1587static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
0b7f569e 1588{
7d74b06f
KH
1589 struct mem_cgroup *iter;
1590
fb2a6fc5 1591 spin_lock(&memcg_oom_lock);
0056f4e6 1592 mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
c0ff4b85 1593 for_each_mem_cgroup_tree(iter, memcg)
79dfdacc 1594 iter->oom_lock = false;
fb2a6fc5 1595 spin_unlock(&memcg_oom_lock);
79dfdacc
MH
1596}
1597
c0ff4b85 1598static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
79dfdacc
MH
1599{
1600 struct mem_cgroup *iter;
1601
c2b42d3c 1602 spin_lock(&memcg_oom_lock);
c0ff4b85 1603 for_each_mem_cgroup_tree(iter, memcg)
c2b42d3c
TH
1604 iter->under_oom++;
1605 spin_unlock(&memcg_oom_lock);
79dfdacc
MH
1606}
1607
c0ff4b85 1608static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
79dfdacc
MH
1609{
1610 struct mem_cgroup *iter;
1611
867578cb
KH
1612 /*
1613 * When a new child is created while the hierarchy is under oom,
c2b42d3c 1614 * mem_cgroup_oom_lock() may not be called. Watch for underflow.
867578cb 1615 */
c2b42d3c 1616 spin_lock(&memcg_oom_lock);
c0ff4b85 1617 for_each_mem_cgroup_tree(iter, memcg)
c2b42d3c
TH
1618 if (iter->under_oom > 0)
1619 iter->under_oom--;
1620 spin_unlock(&memcg_oom_lock);
0b7f569e
KH
1621}
1622
867578cb
KH
1623static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1624
dc98df5a 1625struct oom_wait_info {
d79154bb 1626 struct mem_cgroup *memcg;
ac6424b9 1627 wait_queue_entry_t wait;
dc98df5a
KH
1628};
1629
ac6424b9 1630static int memcg_oom_wake_function(wait_queue_entry_t *wait,
dc98df5a
KH
1631 unsigned mode, int sync, void *arg)
1632{
d79154bb
HD
1633 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1634 struct mem_cgroup *oom_wait_memcg;
dc98df5a
KH
1635 struct oom_wait_info *oom_wait_info;
1636
1637 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
d79154bb 1638 oom_wait_memcg = oom_wait_info->memcg;
dc98df5a 1639
2314b42d
JW
1640 if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1641 !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
dc98df5a 1642 return 0;
dc98df5a
KH
1643 return autoremove_wake_function(wait, mode, sync, arg);
1644}
1645
c0ff4b85 1646static void memcg_oom_recover(struct mem_cgroup *memcg)
3c11ecf4 1647{
c2b42d3c
TH
1648 /*
1649 * For the following lockless ->under_oom test, the only required
1650 * guarantee is that it must see the state asserted by an OOM when
1651 * this function is called as a result of userland actions
1652 * triggered by the notification of the OOM. This is trivially
1653 * achieved by invoking mem_cgroup_mark_under_oom() before
1654 * triggering notification.
1655 */
1656 if (memcg && memcg->under_oom)
f4b90b70 1657 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
3c11ecf4
KH
1658}
1659
29ef680a
MH
1660enum oom_status {
1661 OOM_SUCCESS,
1662 OOM_FAILED,
1663 OOM_ASYNC,
1664 OOM_SKIPPED
1665};
1666
1667static enum oom_status mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
0b7f569e 1668{
29ef680a
MH
1669 if (order > PAGE_ALLOC_COSTLY_ORDER)
1670 return OOM_SKIPPED;
1671
7a1adfdd
RG
1672 memcg_memory_event(memcg, MEMCG_OOM);
1673
867578cb 1674 /*
49426420
JW
1675 * We are in the middle of the charge context here, so we
1676 * don't want to block when potentially sitting on a callstack
1677 * that holds all kinds of filesystem and mm locks.
1678 *
29ef680a
MH
1679 * cgroup1 allows disabling the OOM killer and waiting for outside
1680 * handling until the charge can succeed; remember the context and put
1681 * the task to sleep at the end of the page fault when all locks are
1682 * released.
49426420 1683 *
29ef680a
MH
1684 * On the other hand, in-kernel OOM killer allows for an async victim
1685 * memory reclaim (oom_reaper) and that means that we are not solely
1686 * relying on the oom victim to make a forward progress and we can
1687 * invoke the oom killer here.
1688 *
1689 * Please note that mem_cgroup_out_of_memory might fail to find a
1690 * victim and then we have to bail out from the charge path.
867578cb 1691 */
29ef680a
MH
1692 if (memcg->oom_kill_disable) {
1693 if (!current->in_user_fault)
1694 return OOM_SKIPPED;
1695 css_get(&memcg->css);
1696 current->memcg_in_oom = memcg;
1697 current->memcg_oom_gfp_mask = mask;
1698 current->memcg_oom_order = order;
1699
1700 return OOM_ASYNC;
1701 }
1702
1703 if (mem_cgroup_out_of_memory(memcg, mask, order))
1704 return OOM_SUCCESS;
1705
29ef680a 1706 return OOM_FAILED;
3812c8c8
JW
1707}
1708
1709/**
1710 * mem_cgroup_oom_synchronize - complete memcg OOM handling
49426420 1711 * @handle: actually kill/wait or just clean up the OOM state
3812c8c8 1712 *
49426420
JW
1713 * This has to be called at the end of a page fault if the memcg OOM
1714 * handler was enabled.
3812c8c8 1715 *
49426420 1716 * Memcg supports userspace OOM handling where failed allocations must
3812c8c8
JW
1717 * sleep on a waitqueue until the userspace task resolves the
1718 * situation. Sleeping directly in the charge context with all kinds
1719 * of locks held is not a good idea, instead we remember an OOM state
1720 * in the task and mem_cgroup_oom_synchronize() has to be called at
49426420 1721 * the end of the page fault to complete the OOM handling.
3812c8c8
JW
1722 *
1723 * Returns %true if an ongoing memcg OOM situation was detected and
49426420 1724 * completed, %false otherwise.
3812c8c8 1725 */
49426420 1726bool mem_cgroup_oom_synchronize(bool handle)
3812c8c8 1727{
626ebc41 1728 struct mem_cgroup *memcg = current->memcg_in_oom;
3812c8c8 1729 struct oom_wait_info owait;
49426420 1730 bool locked;
3812c8c8
JW
1731
1732 /* OOM is global, do not handle */
3812c8c8 1733 if (!memcg)
49426420 1734 return false;
3812c8c8 1735
7c5f64f8 1736 if (!handle)
49426420 1737 goto cleanup;
3812c8c8
JW
1738
1739 owait.memcg = memcg;
1740 owait.wait.flags = 0;
1741 owait.wait.func = memcg_oom_wake_function;
1742 owait.wait.private = current;
2055da97 1743 INIT_LIST_HEAD(&owait.wait.entry);
867578cb 1744
3812c8c8 1745 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
49426420
JW
1746 mem_cgroup_mark_under_oom(memcg);
1747
1748 locked = mem_cgroup_oom_trylock(memcg);
1749
1750 if (locked)
1751 mem_cgroup_oom_notify(memcg);
1752
1753 if (locked && !memcg->oom_kill_disable) {
1754 mem_cgroup_unmark_under_oom(memcg);
1755 finish_wait(&memcg_oom_waitq, &owait.wait);
626ebc41
TH
1756 mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
1757 current->memcg_oom_order);
49426420 1758 } else {
3812c8c8 1759 schedule();
49426420
JW
1760 mem_cgroup_unmark_under_oom(memcg);
1761 finish_wait(&memcg_oom_waitq, &owait.wait);
1762 }
1763
1764 if (locked) {
fb2a6fc5
JW
1765 mem_cgroup_oom_unlock(memcg);
1766 /*
1767 * There is no guarantee that an OOM-lock contender
1768 * sees the wakeups triggered by the OOM kill
1769 * uncharges. Wake any sleepers explicitely.
1770 */
1771 memcg_oom_recover(memcg);
1772 }
49426420 1773cleanup:
626ebc41 1774 current->memcg_in_oom = NULL;
3812c8c8 1775 css_put(&memcg->css);
867578cb 1776 return true;
0b7f569e
KH
1777}
1778
3d8b38eb
RG
1779/**
1780 * mem_cgroup_get_oom_group - get a memory cgroup to clean up after OOM
1781 * @victim: task to be killed by the OOM killer
1782 * @oom_domain: memcg in case of memcg OOM, NULL in case of system-wide OOM
1783 *
1784 * Returns a pointer to a memory cgroup, which has to be cleaned up
1785 * by killing all belonging OOM-killable tasks.
1786 *
1787 * Caller has to call mem_cgroup_put() on the returned non-NULL memcg.
1788 */
1789struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim,
1790 struct mem_cgroup *oom_domain)
1791{
1792 struct mem_cgroup *oom_group = NULL;
1793 struct mem_cgroup *memcg;
1794
1795 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
1796 return NULL;
1797
1798 if (!oom_domain)
1799 oom_domain = root_mem_cgroup;
1800
1801 rcu_read_lock();
1802
1803 memcg = mem_cgroup_from_task(victim);
1804 if (memcg == root_mem_cgroup)
1805 goto out;
1806
1807 /*
1808 * Traverse the memory cgroup hierarchy from the victim task's
1809 * cgroup up to the OOMing cgroup (or root) to find the
1810 * highest-level memory cgroup with oom.group set.
1811 */
1812 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
1813 if (memcg->oom_group)
1814 oom_group = memcg;
1815
1816 if (memcg == oom_domain)
1817 break;
1818 }
1819
1820 if (oom_group)
1821 css_get(&oom_group->css);
1822out:
1823 rcu_read_unlock();
1824
1825 return oom_group;
1826}
1827
1828void mem_cgroup_print_oom_group(struct mem_cgroup *memcg)
1829{
1830 pr_info("Tasks in ");
1831 pr_cont_cgroup_path(memcg->css.cgroup);
1832 pr_cont(" are going to be killed due to memory.oom.group set\n");
1833}
1834
d7365e78 1835/**
81f8c3a4
JW
1836 * lock_page_memcg - lock a page->mem_cgroup binding
1837 * @page: the page
32047e2a 1838 *
81f8c3a4 1839 * This function protects unlocked LRU pages from being moved to
739f79fc
JW
1840 * another cgroup.
1841 *
1842 * It ensures lifetime of the returned memcg. Caller is responsible
1843 * for the lifetime of the page; __unlock_page_memcg() is available
1844 * when @page might get freed inside the locked section.
d69b042f 1845 */
739f79fc 1846struct mem_cgroup *lock_page_memcg(struct page *page)
89c06bd5
KH
1847{
1848 struct mem_cgroup *memcg;
6de22619 1849 unsigned long flags;
89c06bd5 1850
6de22619
JW
1851 /*
1852 * The RCU lock is held throughout the transaction. The fast
1853 * path can get away without acquiring the memcg->move_lock
1854 * because page moving starts with an RCU grace period.
739f79fc
JW
1855 *
1856 * The RCU lock also protects the memcg from being freed when
1857 * the page state that is going to change is the only thing
1858 * preventing the page itself from being freed. E.g. writeback
1859 * doesn't hold a page reference and relies on PG_writeback to
1860 * keep off truncation, migration and so forth.
1861 */
d7365e78
JW
1862 rcu_read_lock();
1863
1864 if (mem_cgroup_disabled())
739f79fc 1865 return NULL;
89c06bd5 1866again:
1306a85a 1867 memcg = page->mem_cgroup;
29833315 1868 if (unlikely(!memcg))
739f79fc 1869 return NULL;
d7365e78 1870
bdcbb659 1871 if (atomic_read(&memcg->moving_account) <= 0)
739f79fc 1872 return memcg;
89c06bd5 1873
6de22619 1874 spin_lock_irqsave(&memcg->move_lock, flags);
1306a85a 1875 if (memcg != page->mem_cgroup) {
6de22619 1876 spin_unlock_irqrestore(&memcg->move_lock, flags);
89c06bd5
KH
1877 goto again;
1878 }
6de22619
JW
1879
1880 /*
1881 * When charge migration first begins, we can have locked and
1882 * unlocked page stat updates happening concurrently. Track
81f8c3a4 1883 * the task who has the lock for unlock_page_memcg().
6de22619
JW
1884 */
1885 memcg->move_lock_task = current;
1886 memcg->move_lock_flags = flags;
d7365e78 1887
739f79fc 1888 return memcg;
89c06bd5 1889}
81f8c3a4 1890EXPORT_SYMBOL(lock_page_memcg);
89c06bd5 1891
d7365e78 1892/**
739f79fc
JW
1893 * __unlock_page_memcg - unlock and unpin a memcg
1894 * @memcg: the memcg
1895 *
1896 * Unlock and unpin a memcg returned by lock_page_memcg().
d7365e78 1897 */
739f79fc 1898void __unlock_page_memcg(struct mem_cgroup *memcg)
89c06bd5 1899{
6de22619
JW
1900 if (memcg && memcg->move_lock_task == current) {
1901 unsigned long flags = memcg->move_lock_flags;
1902
1903 memcg->move_lock_task = NULL;
1904 memcg->move_lock_flags = 0;
1905
1906 spin_unlock_irqrestore(&memcg->move_lock, flags);
1907 }
89c06bd5 1908
d7365e78 1909 rcu_read_unlock();
89c06bd5 1910}
739f79fc
JW
1911
1912/**
1913 * unlock_page_memcg - unlock a page->mem_cgroup binding
1914 * @page: the page
1915 */
1916void unlock_page_memcg(struct page *page)
1917{
1918 __unlock_page_memcg(page->mem_cgroup);
1919}
81f8c3a4 1920EXPORT_SYMBOL(unlock_page_memcg);
89c06bd5 1921
cdec2e42
KH
1922struct memcg_stock_pcp {
1923 struct mem_cgroup *cached; /* this never be root cgroup */
11c9ea4e 1924 unsigned int nr_pages;
cdec2e42 1925 struct work_struct work;
26fe6168 1926 unsigned long flags;
a0db00fc 1927#define FLUSHING_CACHED_CHARGE 0
cdec2e42
KH
1928};
1929static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
9f50fad6 1930static DEFINE_MUTEX(percpu_charge_mutex);
cdec2e42 1931
a0956d54
SS
1932/**
1933 * consume_stock: Try to consume stocked charge on this cpu.
1934 * @memcg: memcg to consume from.
1935 * @nr_pages: how many pages to charge.
1936 *
1937 * The charges will only happen if @memcg matches the current cpu's memcg
1938 * stock, and at least @nr_pages are available in that stock. Failure to
1939 * service an allocation will refill the stock.
1940 *
1941 * returns true if successful, false otherwise.
cdec2e42 1942 */
a0956d54 1943static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
cdec2e42
KH
1944{
1945 struct memcg_stock_pcp *stock;
db2ba40c 1946 unsigned long flags;
3e32cb2e 1947 bool ret = false;
cdec2e42 1948
a983b5eb 1949 if (nr_pages > MEMCG_CHARGE_BATCH)
3e32cb2e 1950 return ret;
a0956d54 1951
db2ba40c
JW
1952 local_irq_save(flags);
1953
1954 stock = this_cpu_ptr(&memcg_stock);
3e32cb2e 1955 if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
a0956d54 1956 stock->nr_pages -= nr_pages;
3e32cb2e
JW
1957 ret = true;
1958 }
db2ba40c
JW
1959
1960 local_irq_restore(flags);
1961
cdec2e42
KH
1962 return ret;
1963}
1964
1965/*
3e32cb2e 1966 * Returns stocks cached in percpu and reset cached information.
cdec2e42
KH
1967 */
1968static void drain_stock(struct memcg_stock_pcp *stock)
1969{
1970 struct mem_cgroup *old = stock->cached;
1971
11c9ea4e 1972 if (stock->nr_pages) {
3e32cb2e 1973 page_counter_uncharge(&old->memory, stock->nr_pages);
7941d214 1974 if (do_memsw_account())
3e32cb2e 1975 page_counter_uncharge(&old->memsw, stock->nr_pages);
e8ea14cc 1976 css_put_many(&old->css, stock->nr_pages);
11c9ea4e 1977 stock->nr_pages = 0;
cdec2e42
KH
1978 }
1979 stock->cached = NULL;
cdec2e42
KH
1980}
1981
cdec2e42
KH
1982static void drain_local_stock(struct work_struct *dummy)
1983{
db2ba40c
JW
1984 struct memcg_stock_pcp *stock;
1985 unsigned long flags;
1986
72f0184c
MH
1987 /*
1988 * The only protection from memory hotplug vs. drain_stock races is
1989 * that we always operate on local CPU stock here with IRQ disabled
1990 */
db2ba40c
JW
1991 local_irq_save(flags);
1992
1993 stock = this_cpu_ptr(&memcg_stock);
cdec2e42 1994 drain_stock(stock);
26fe6168 1995 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
db2ba40c
JW
1996
1997 local_irq_restore(flags);
cdec2e42
KH
1998}
1999
2000/*
3e32cb2e 2001 * Cache charges(val) to local per_cpu area.
320cc51d 2002 * This will be consumed by consume_stock() function, later.
cdec2e42 2003 */
c0ff4b85 2004static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
cdec2e42 2005{
db2ba40c
JW
2006 struct memcg_stock_pcp *stock;
2007 unsigned long flags;
2008
2009 local_irq_save(flags);
cdec2e42 2010
db2ba40c 2011 stock = this_cpu_ptr(&memcg_stock);
c0ff4b85 2012 if (stock->cached != memcg) { /* reset if necessary */
cdec2e42 2013 drain_stock(stock);
c0ff4b85 2014 stock->cached = memcg;
cdec2e42 2015 }
11c9ea4e 2016 stock->nr_pages += nr_pages;
db2ba40c 2017
a983b5eb 2018 if (stock->nr_pages > MEMCG_CHARGE_BATCH)
475d0487
RG
2019 drain_stock(stock);
2020
db2ba40c 2021 local_irq_restore(flags);
cdec2e42
KH
2022}
2023
2024/*
c0ff4b85 2025 * Drains all per-CPU charge caches for given root_memcg resp. subtree
6d3d6aa2 2026 * of the hierarchy under it.
cdec2e42 2027 */
6d3d6aa2 2028static void drain_all_stock(struct mem_cgroup *root_memcg)
cdec2e42 2029{
26fe6168 2030 int cpu, curcpu;
d38144b7 2031
6d3d6aa2
JW
2032 /* If someone's already draining, avoid adding running more workers. */
2033 if (!mutex_trylock(&percpu_charge_mutex))
2034 return;
72f0184c
MH
2035 /*
2036 * Notify other cpus that system-wide "drain" is running
2037 * We do not care about races with the cpu hotplug because cpu down
2038 * as well as workers from this path always operate on the local
2039 * per-cpu data. CPU up doesn't touch memcg_stock at all.
2040 */
5af12d0e 2041 curcpu = get_cpu();
cdec2e42
KH
2042 for_each_online_cpu(cpu) {
2043 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
c0ff4b85 2044 struct mem_cgroup *memcg;
26fe6168 2045
c0ff4b85 2046 memcg = stock->cached;
72f0184c 2047 if (!memcg || !stock->nr_pages || !css_tryget(&memcg->css))
26fe6168 2048 continue;
72f0184c
MH
2049 if (!mem_cgroup_is_descendant(memcg, root_memcg)) {
2050 css_put(&memcg->css);
3e92041d 2051 continue;
72f0184c 2052 }
d1a05b69
MH
2053 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2054 if (cpu == curcpu)
2055 drain_local_stock(&stock->work);
2056 else
2057 schedule_work_on(cpu, &stock->work);
2058 }
72f0184c 2059 css_put(&memcg->css);
cdec2e42 2060 }
5af12d0e 2061 put_cpu();
9f50fad6 2062 mutex_unlock(&percpu_charge_mutex);
cdec2e42
KH
2063}
2064
308167fc 2065static int memcg_hotplug_cpu_dead(unsigned int cpu)
cdec2e42 2066{
cdec2e42 2067 struct memcg_stock_pcp *stock;
a983b5eb 2068 struct mem_cgroup *memcg;
cdec2e42 2069
cdec2e42
KH
2070 stock = &per_cpu(memcg_stock, cpu);
2071 drain_stock(stock);
a983b5eb
JW
2072
2073 for_each_mem_cgroup(memcg) {
2074 int i;
2075
2076 for (i = 0; i < MEMCG_NR_STAT; i++) {
2077 int nid;
2078 long x;
2079
2080 x = this_cpu_xchg(memcg->stat_cpu->count[i], 0);
2081 if (x)
2082 atomic_long_add(x, &memcg->stat[i]);
2083
2084 if (i >= NR_VM_NODE_STAT_ITEMS)
2085 continue;
2086
2087 for_each_node(nid) {
2088 struct mem_cgroup_per_node *pn;
2089
2090 pn = mem_cgroup_nodeinfo(memcg, nid);
2091 x = this_cpu_xchg(pn->lruvec_stat_cpu->count[i], 0);
2092 if (x)
2093 atomic_long_add(x, &pn->lruvec_stat[i]);
2094 }
2095 }
2096
e27be240 2097 for (i = 0; i < NR_VM_EVENT_ITEMS; i++) {
a983b5eb
JW
2098 long x;
2099
2100 x = this_cpu_xchg(memcg->stat_cpu->events[i], 0);
2101 if (x)
2102 atomic_long_add(x, &memcg->events[i]);
2103 }
2104 }
2105
308167fc 2106 return 0;
cdec2e42
KH
2107}
2108
f7e1cb6e
JW
2109static void reclaim_high(struct mem_cgroup *memcg,
2110 unsigned int nr_pages,
2111 gfp_t gfp_mask)
2112{
2113 do {
2114 if (page_counter_read(&memcg->memory) <= memcg->high)
2115 continue;
e27be240 2116 memcg_memory_event(memcg, MEMCG_HIGH);
f7e1cb6e
JW
2117 try_to_free_mem_cgroup_pages(memcg, nr_pages, gfp_mask, true);
2118 } while ((memcg = parent_mem_cgroup(memcg)));
2119}
2120
2121static void high_work_func(struct work_struct *work)
2122{
2123 struct mem_cgroup *memcg;
2124
2125 memcg = container_of(work, struct mem_cgroup, high_work);
a983b5eb 2126 reclaim_high(memcg, MEMCG_CHARGE_BATCH, GFP_KERNEL);
f7e1cb6e
JW
2127}
2128
b23afb93
TH
2129/*
2130 * Scheduled by try_charge() to be executed from the userland return path
2131 * and reclaims memory over the high limit.
2132 */
2133void mem_cgroup_handle_over_high(void)
2134{
2135 unsigned int nr_pages = current->memcg_nr_pages_over_high;
f7e1cb6e 2136 struct mem_cgroup *memcg;
b23afb93
TH
2137
2138 if (likely(!nr_pages))
2139 return;
2140
f7e1cb6e
JW
2141 memcg = get_mem_cgroup_from_mm(current->mm);
2142 reclaim_high(memcg, nr_pages, GFP_KERNEL);
b23afb93
TH
2143 css_put(&memcg->css);
2144 current->memcg_nr_pages_over_high = 0;
2145}
2146
00501b53
JW
2147static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2148 unsigned int nr_pages)
8a9f3ccd 2149{
a983b5eb 2150 unsigned int batch = max(MEMCG_CHARGE_BATCH, nr_pages);
9b130619 2151 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
6539cc05 2152 struct mem_cgroup *mem_over_limit;
3e32cb2e 2153 struct page_counter *counter;
6539cc05 2154 unsigned long nr_reclaimed;
b70a2a21
JW
2155 bool may_swap = true;
2156 bool drained = false;
29ef680a
MH
2157 bool oomed = false;
2158 enum oom_status oom_status;
a636b327 2159
ce00a967 2160 if (mem_cgroup_is_root(memcg))
10d53c74 2161 return 0;
6539cc05 2162retry:
b6b6cc72 2163 if (consume_stock(memcg, nr_pages))
10d53c74 2164 return 0;
8a9f3ccd 2165
7941d214 2166 if (!do_memsw_account() ||
6071ca52
JW
2167 page_counter_try_charge(&memcg->memsw, batch, &counter)) {
2168 if (page_counter_try_charge(&memcg->memory, batch, &counter))
6539cc05 2169 goto done_restock;
7941d214 2170 if (do_memsw_account())
3e32cb2e
JW
2171 page_counter_uncharge(&memcg->memsw, batch);
2172 mem_over_limit = mem_cgroup_from_counter(counter, memory);
3fbe7244 2173 } else {
3e32cb2e 2174 mem_over_limit = mem_cgroup_from_counter(counter, memsw);
b70a2a21 2175 may_swap = false;
3fbe7244 2176 }
7a81b88c 2177
6539cc05
JW
2178 if (batch > nr_pages) {
2179 batch = nr_pages;
2180 goto retry;
2181 }
6d61ef40 2182
06b078fc
JW
2183 /*
2184 * Unlike in global OOM situations, memcg is not in a physical
2185 * memory shortage. Allow dying and OOM-killed tasks to
2186 * bypass the last charges so that they can exit quickly and
2187 * free their memory.
2188 */
da99ecf1 2189 if (unlikely(tsk_is_oom_victim(current) ||
06b078fc
JW
2190 fatal_signal_pending(current) ||
2191 current->flags & PF_EXITING))
10d53c74 2192 goto force;
06b078fc 2193
89a28483
JW
2194 /*
2195 * Prevent unbounded recursion when reclaim operations need to
2196 * allocate memory. This might exceed the limits temporarily,
2197 * but we prefer facilitating memory reclaim and getting back
2198 * under the limit over triggering OOM kills in these cases.
2199 */
2200 if (unlikely(current->flags & PF_MEMALLOC))
2201 goto force;
2202
06b078fc
JW
2203 if (unlikely(task_in_memcg_oom(current)))
2204 goto nomem;
2205
d0164adc 2206 if (!gfpflags_allow_blocking(gfp_mask))
6539cc05 2207 goto nomem;
4b534334 2208
e27be240 2209 memcg_memory_event(mem_over_limit, MEMCG_MAX);
241994ed 2210
b70a2a21
JW
2211 nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
2212 gfp_mask, may_swap);
6539cc05 2213
61e02c74 2214 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
6539cc05 2215 goto retry;
28c34c29 2216
b70a2a21 2217 if (!drained) {
6d3d6aa2 2218 drain_all_stock(mem_over_limit);
b70a2a21
JW
2219 drained = true;
2220 goto retry;
2221 }
2222
28c34c29
JW
2223 if (gfp_mask & __GFP_NORETRY)
2224 goto nomem;
6539cc05
JW
2225 /*
2226 * Even though the limit is exceeded at this point, reclaim
2227 * may have been able to free some pages. Retry the charge
2228 * before killing the task.
2229 *
2230 * Only for regular pages, though: huge pages are rather
2231 * unlikely to succeed so close to the limit, and we fall back
2232 * to regular pages anyway in case of failure.
2233 */
61e02c74 2234 if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
6539cc05
JW
2235 goto retry;
2236 /*
2237 * At task move, charge accounts can be doubly counted. So, it's
2238 * better to wait until the end of task_move if something is going on.
2239 */
2240 if (mem_cgroup_wait_acct_move(mem_over_limit))
2241 goto retry;
2242
9b130619
JW
2243 if (nr_retries--)
2244 goto retry;
2245
29ef680a
MH
2246 if (gfp_mask & __GFP_RETRY_MAYFAIL && oomed)
2247 goto nomem;
2248
06b078fc 2249 if (gfp_mask & __GFP_NOFAIL)
10d53c74 2250 goto force;
06b078fc 2251
6539cc05 2252 if (fatal_signal_pending(current))
10d53c74 2253 goto force;
6539cc05 2254
29ef680a
MH
2255 /*
2256 * keep retrying as long as the memcg oom killer is able to make
2257 * a forward progress or bypass the charge if the oom killer
2258 * couldn't make any progress.
2259 */
2260 oom_status = mem_cgroup_oom(mem_over_limit, gfp_mask,
3608de07 2261 get_order(nr_pages * PAGE_SIZE));
29ef680a
MH
2262 switch (oom_status) {
2263 case OOM_SUCCESS:
2264 nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
2265 oomed = true;
2266 goto retry;
2267 case OOM_FAILED:
2268 goto force;
2269 default:
2270 goto nomem;
2271 }
7a81b88c 2272nomem:
6d1fdc48 2273 if (!(gfp_mask & __GFP_NOFAIL))
3168ecbe 2274 return -ENOMEM;
10d53c74
TH
2275force:
2276 /*
2277 * The allocation either can't fail or will lead to more memory
2278 * being freed very soon. Allow memory usage go over the limit
2279 * temporarily by force charging it.
2280 */
2281 page_counter_charge(&memcg->memory, nr_pages);
7941d214 2282 if (do_memsw_account())
10d53c74
TH
2283 page_counter_charge(&memcg->memsw, nr_pages);
2284 css_get_many(&memcg->css, nr_pages);
2285
2286 return 0;
6539cc05
JW
2287
2288done_restock:
e8ea14cc 2289 css_get_many(&memcg->css, batch);
6539cc05
JW
2290 if (batch > nr_pages)
2291 refill_stock(memcg, batch - nr_pages);
b23afb93 2292
241994ed 2293 /*
b23afb93
TH
2294 * If the hierarchy is above the normal consumption range, schedule
2295 * reclaim on returning to userland. We can perform reclaim here
71baba4b 2296 * if __GFP_RECLAIM but let's always punt for simplicity and so that
b23afb93
TH
2297 * GFP_KERNEL can consistently be used during reclaim. @memcg is
2298 * not recorded as it most likely matches current's and won't
2299 * change in the meantime. As high limit is checked again before
2300 * reclaim, the cost of mismatch is negligible.
241994ed
JW
2301 */
2302 do {
b23afb93 2303 if (page_counter_read(&memcg->memory) > memcg->high) {
f7e1cb6e
JW
2304 /* Don't bother a random interrupted task */
2305 if (in_interrupt()) {
2306 schedule_work(&memcg->high_work);
2307 break;
2308 }
9516a18a 2309 current->memcg_nr_pages_over_high += batch;
b23afb93
TH
2310 set_notify_resume(current);
2311 break;
2312 }
241994ed 2313 } while ((memcg = parent_mem_cgroup(memcg)));
10d53c74
TH
2314
2315 return 0;
7a81b88c 2316}
8a9f3ccd 2317
00501b53 2318static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
a3032a2c 2319{
ce00a967
JW
2320 if (mem_cgroup_is_root(memcg))
2321 return;
2322
3e32cb2e 2323 page_counter_uncharge(&memcg->memory, nr_pages);
7941d214 2324 if (do_memsw_account())
3e32cb2e 2325 page_counter_uncharge(&memcg->memsw, nr_pages);
ce00a967 2326
e8ea14cc 2327 css_put_many(&memcg->css, nr_pages);
d01dd17f
KH
2328}
2329
0a31bc97
JW
2330static void lock_page_lru(struct page *page, int *isolated)
2331{
2332 struct zone *zone = page_zone(page);
2333
a52633d8 2334 spin_lock_irq(zone_lru_lock(zone));
0a31bc97
JW
2335 if (PageLRU(page)) {
2336 struct lruvec *lruvec;
2337
599d0c95 2338 lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat);
0a31bc97
JW
2339 ClearPageLRU(page);
2340 del_page_from_lru_list(page, lruvec, page_lru(page));
2341 *isolated = 1;
2342 } else
2343 *isolated = 0;
2344}
2345
2346static void unlock_page_lru(struct page *page, int isolated)
2347{
2348 struct zone *zone = page_zone(page);
2349
2350 if (isolated) {
2351 struct lruvec *lruvec;
2352
599d0c95 2353 lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat);
0a31bc97
JW
2354 VM_BUG_ON_PAGE(PageLRU(page), page);
2355 SetPageLRU(page);
2356 add_page_to_lru_list(page, lruvec, page_lru(page));
2357 }
a52633d8 2358 spin_unlock_irq(zone_lru_lock(zone));
0a31bc97
JW
2359}
2360
00501b53 2361static void commit_charge(struct page *page, struct mem_cgroup *memcg,
6abb5a86 2362 bool lrucare)
7a81b88c 2363{
0a31bc97 2364 int isolated;
9ce70c02 2365
1306a85a 2366 VM_BUG_ON_PAGE(page->mem_cgroup, page);
9ce70c02
HD
2367
2368 /*
2369 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2370 * may already be on some other mem_cgroup's LRU. Take care of it.
2371 */
0a31bc97
JW
2372 if (lrucare)
2373 lock_page_lru(page, &isolated);
9ce70c02 2374
0a31bc97
JW
2375 /*
2376 * Nobody should be changing or seriously looking at
1306a85a 2377 * page->mem_cgroup at this point:
0a31bc97
JW
2378 *
2379 * - the page is uncharged
2380 *
2381 * - the page is off-LRU
2382 *
2383 * - an anonymous fault has exclusive page access, except for
2384 * a locked page table
2385 *
2386 * - a page cache insertion, a swapin fault, or a migration
2387 * have the page locked
2388 */
1306a85a 2389 page->mem_cgroup = memcg;
9ce70c02 2390
0a31bc97
JW
2391 if (lrucare)
2392 unlock_page_lru(page, isolated);
7a81b88c 2393}
66e1707b 2394
84c07d11 2395#ifdef CONFIG_MEMCG_KMEM
f3bb3043 2396static int memcg_alloc_cache_id(void)
55007d84 2397{
f3bb3043
VD
2398 int id, size;
2399 int err;
2400
dbcf73e2 2401 id = ida_simple_get(&memcg_cache_ida,
f3bb3043
VD
2402 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
2403 if (id < 0)
2404 return id;
55007d84 2405
dbcf73e2 2406 if (id < memcg_nr_cache_ids)
f3bb3043
VD
2407 return id;
2408
2409 /*
2410 * There's no space for the new id in memcg_caches arrays,
2411 * so we have to grow them.
2412 */
05257a1a 2413 down_write(&memcg_cache_ids_sem);
f3bb3043
VD
2414
2415 size = 2 * (id + 1);
55007d84
GC
2416 if (size < MEMCG_CACHES_MIN_SIZE)
2417 size = MEMCG_CACHES_MIN_SIZE;
2418 else if (size > MEMCG_CACHES_MAX_SIZE)
2419 size = MEMCG_CACHES_MAX_SIZE;
2420
f3bb3043 2421 err = memcg_update_all_caches(size);
60d3fd32
VD
2422 if (!err)
2423 err = memcg_update_all_list_lrus(size);
05257a1a
VD
2424 if (!err)
2425 memcg_nr_cache_ids = size;
2426
2427 up_write(&memcg_cache_ids_sem);
2428
f3bb3043 2429 if (err) {
dbcf73e2 2430 ida_simple_remove(&memcg_cache_ida, id);
f3bb3043
VD
2431 return err;
2432 }
2433 return id;
2434}
2435
2436static void memcg_free_cache_id(int id)
2437{
dbcf73e2 2438 ida_simple_remove(&memcg_cache_ida, id);
55007d84
GC
2439}
2440
d5b3cf71 2441struct memcg_kmem_cache_create_work {
5722d094
VD
2442 struct mem_cgroup *memcg;
2443 struct kmem_cache *cachep;
2444 struct work_struct work;
2445};
2446
d5b3cf71 2447static void memcg_kmem_cache_create_func(struct work_struct *w)
d7f25f8a 2448{
d5b3cf71
VD
2449 struct memcg_kmem_cache_create_work *cw =
2450 container_of(w, struct memcg_kmem_cache_create_work, work);
5722d094
VD
2451 struct mem_cgroup *memcg = cw->memcg;
2452 struct kmem_cache *cachep = cw->cachep;
d7f25f8a 2453
d5b3cf71 2454 memcg_create_kmem_cache(memcg, cachep);
bd673145 2455
5722d094 2456 css_put(&memcg->css);
d7f25f8a
GC
2457 kfree(cw);
2458}
2459
2460/*
2461 * Enqueue the creation of a per-memcg kmem_cache.
d7f25f8a 2462 */
85cfb245 2463static void memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
d5b3cf71 2464 struct kmem_cache *cachep)
d7f25f8a 2465{
d5b3cf71 2466 struct memcg_kmem_cache_create_work *cw;
d7f25f8a 2467
c892fd82 2468 cw = kmalloc(sizeof(*cw), GFP_NOWAIT | __GFP_NOWARN);
8135be5a 2469 if (!cw)
d7f25f8a 2470 return;
8135be5a
VD
2471
2472 css_get(&memcg->css);
d7f25f8a
GC
2473
2474 cw->memcg = memcg;
2475 cw->cachep = cachep;
d5b3cf71 2476 INIT_WORK(&cw->work, memcg_kmem_cache_create_func);
d7f25f8a 2477
17cc4dfe 2478 queue_work(memcg_kmem_cache_wq, &cw->work);
d7f25f8a
GC
2479}
2480
45264778
VD
2481static inline bool memcg_kmem_bypass(void)
2482{
2483 if (in_interrupt() || !current->mm || (current->flags & PF_KTHREAD))
2484 return true;
2485 return false;
2486}
2487
2488/**
2489 * memcg_kmem_get_cache: select the correct per-memcg cache for allocation
2490 * @cachep: the original global kmem cache
2491 *
d7f25f8a
GC
2492 * Return the kmem_cache we're supposed to use for a slab allocation.
2493 * We try to use the current memcg's version of the cache.
2494 *
45264778
VD
2495 * If the cache does not exist yet, if we are the first user of it, we
2496 * create it asynchronously in a workqueue and let the current allocation
2497 * go through with the original cache.
d7f25f8a 2498 *
45264778
VD
2499 * This function takes a reference to the cache it returns to assure it
2500 * won't get destroyed while we are working with it. Once the caller is
2501 * done with it, memcg_kmem_put_cache() must be called to release the
2502 * reference.
d7f25f8a 2503 */
45264778 2504struct kmem_cache *memcg_kmem_get_cache(struct kmem_cache *cachep)
d7f25f8a
GC
2505{
2506 struct mem_cgroup *memcg;
959c8963 2507 struct kmem_cache *memcg_cachep;
2a4db7eb 2508 int kmemcg_id;
d7f25f8a 2509
f7ce3190 2510 VM_BUG_ON(!is_root_cache(cachep));
d7f25f8a 2511
45264778 2512 if (memcg_kmem_bypass())
230e9fc2
VD
2513 return cachep;
2514
d46eb14b 2515 memcg = get_mem_cgroup_from_current();
4db0c3c2 2516 kmemcg_id = READ_ONCE(memcg->kmemcg_id);
2a4db7eb 2517 if (kmemcg_id < 0)
ca0dde97 2518 goto out;
d7f25f8a 2519
2a4db7eb 2520 memcg_cachep = cache_from_memcg_idx(cachep, kmemcg_id);
8135be5a
VD
2521 if (likely(memcg_cachep))
2522 return memcg_cachep;
ca0dde97
LZ
2523
2524 /*
2525 * If we are in a safe context (can wait, and not in interrupt
2526 * context), we could be be predictable and return right away.
2527 * This would guarantee that the allocation being performed
2528 * already belongs in the new cache.
2529 *
2530 * However, there are some clashes that can arrive from locking.
2531 * For instance, because we acquire the slab_mutex while doing
776ed0f0
VD
2532 * memcg_create_kmem_cache, this means no further allocation
2533 * could happen with the slab_mutex held. So it's better to
2534 * defer everything.
ca0dde97 2535 */
d5b3cf71 2536 memcg_schedule_kmem_cache_create(memcg, cachep);
ca0dde97 2537out:
8135be5a 2538 css_put(&memcg->css);
ca0dde97 2539 return cachep;
d7f25f8a 2540}
d7f25f8a 2541
45264778
VD
2542/**
2543 * memcg_kmem_put_cache: drop reference taken by memcg_kmem_get_cache
2544 * @cachep: the cache returned by memcg_kmem_get_cache
2545 */
2546void memcg_kmem_put_cache(struct kmem_cache *cachep)
8135be5a
VD
2547{
2548 if (!is_root_cache(cachep))
f7ce3190 2549 css_put(&cachep->memcg_params.memcg->css);
8135be5a
VD
2550}
2551
45264778 2552/**
b213b54f 2553 * memcg_kmem_charge_memcg: charge a kmem page
45264778
VD
2554 * @page: page to charge
2555 * @gfp: reclaim mode
2556 * @order: allocation order
2557 * @memcg: memory cgroup to charge
2558 *
2559 * Returns 0 on success, an error code on failure.
2560 */
2561int memcg_kmem_charge_memcg(struct page *page, gfp_t gfp, int order,
2562 struct mem_cgroup *memcg)
7ae1e1d0 2563{
f3ccb2c4
VD
2564 unsigned int nr_pages = 1 << order;
2565 struct page_counter *counter;
7ae1e1d0
GC
2566 int ret;
2567
f3ccb2c4 2568 ret = try_charge(memcg, gfp, nr_pages);
52c29b04 2569 if (ret)
f3ccb2c4 2570 return ret;
52c29b04
JW
2571
2572 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) &&
2573 !page_counter_try_charge(&memcg->kmem, nr_pages, &counter)) {
2574 cancel_charge(memcg, nr_pages);
2575 return -ENOMEM;
7ae1e1d0
GC
2576 }
2577
f3ccb2c4 2578 page->mem_cgroup = memcg;
7ae1e1d0 2579
f3ccb2c4 2580 return 0;
7ae1e1d0
GC
2581}
2582
45264778
VD
2583/**
2584 * memcg_kmem_charge: charge a kmem page to the current memory cgroup
2585 * @page: page to charge
2586 * @gfp: reclaim mode
2587 * @order: allocation order
2588 *
2589 * Returns 0 on success, an error code on failure.
2590 */
2591int memcg_kmem_charge(struct page *page, gfp_t gfp, int order)
7ae1e1d0 2592{
f3ccb2c4 2593 struct mem_cgroup *memcg;
fcff7d7e 2594 int ret = 0;
7ae1e1d0 2595
e68599a3 2596 if (mem_cgroup_disabled() || memcg_kmem_bypass())
45264778
VD
2597 return 0;
2598
d46eb14b 2599 memcg = get_mem_cgroup_from_current();
c4159a75 2600 if (!mem_cgroup_is_root(memcg)) {
45264778 2601 ret = memcg_kmem_charge_memcg(page, gfp, order, memcg);
c4159a75
VD
2602 if (!ret)
2603 __SetPageKmemcg(page);
2604 }
7ae1e1d0 2605 css_put(&memcg->css);
d05e83a6 2606 return ret;
7ae1e1d0 2607}
45264778
VD
2608/**
2609 * memcg_kmem_uncharge: uncharge a kmem page
2610 * @page: page to uncharge
2611 * @order: allocation order
2612 */
2613void memcg_kmem_uncharge(struct page *page, int order)
7ae1e1d0 2614{
1306a85a 2615 struct mem_cgroup *memcg = page->mem_cgroup;
f3ccb2c4 2616 unsigned int nr_pages = 1 << order;
7ae1e1d0 2617
7ae1e1d0
GC
2618 if (!memcg)
2619 return;
2620
309381fe 2621 VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
29833315 2622
52c29b04
JW
2623 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
2624 page_counter_uncharge(&memcg->kmem, nr_pages);
2625
f3ccb2c4 2626 page_counter_uncharge(&memcg->memory, nr_pages);
7941d214 2627 if (do_memsw_account())
f3ccb2c4 2628 page_counter_uncharge(&memcg->memsw, nr_pages);
60d3fd32 2629
1306a85a 2630 page->mem_cgroup = NULL;
c4159a75
VD
2631
2632 /* slab pages do not have PageKmemcg flag set */
2633 if (PageKmemcg(page))
2634 __ClearPageKmemcg(page);
2635
f3ccb2c4 2636 css_put_many(&memcg->css, nr_pages);
60d3fd32 2637}
84c07d11 2638#endif /* CONFIG_MEMCG_KMEM */
7ae1e1d0 2639
ca3e0214
KH
2640#ifdef CONFIG_TRANSPARENT_HUGEPAGE
2641
ca3e0214
KH
2642/*
2643 * Because tail pages are not marked as "used", set it. We're under
a52633d8 2644 * zone_lru_lock and migration entries setup in all page mappings.
ca3e0214 2645 */
e94c8a9c 2646void mem_cgroup_split_huge_fixup(struct page *head)
ca3e0214 2647{
e94c8a9c 2648 int i;
ca3e0214 2649
3d37c4a9
KH
2650 if (mem_cgroup_disabled())
2651 return;
b070e65c 2652
29833315 2653 for (i = 1; i < HPAGE_PMD_NR; i++)
1306a85a 2654 head[i].mem_cgroup = head->mem_cgroup;
b9982f8d 2655
c9019e9b 2656 __mod_memcg_state(head->mem_cgroup, MEMCG_RSS_HUGE, -HPAGE_PMD_NR);
ca3e0214 2657}
12d27107 2658#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
ca3e0214 2659
c255a458 2660#ifdef CONFIG_MEMCG_SWAP
02491447
DN
2661/**
2662 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
2663 * @entry: swap entry to be moved
2664 * @from: mem_cgroup which the entry is moved from
2665 * @to: mem_cgroup which the entry is moved to
2666 *
2667 * It succeeds only when the swap_cgroup's record for this entry is the same
2668 * as the mem_cgroup's id of @from.
2669 *
2670 * Returns 0 on success, -EINVAL on failure.
2671 *
3e32cb2e 2672 * The caller must have charged to @to, IOW, called page_counter_charge() about
02491447
DN
2673 * both res and memsw, and called css_get().
2674 */
2675static int mem_cgroup_move_swap_account(swp_entry_t entry,
e91cbb42 2676 struct mem_cgroup *from, struct mem_cgroup *to)
02491447
DN
2677{
2678 unsigned short old_id, new_id;
2679
34c00c31
LZ
2680 old_id = mem_cgroup_id(from);
2681 new_id = mem_cgroup_id(to);
02491447
DN
2682
2683 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
c9019e9b
JW
2684 mod_memcg_state(from, MEMCG_SWAP, -1);
2685 mod_memcg_state(to, MEMCG_SWAP, 1);
02491447
DN
2686 return 0;
2687 }
2688 return -EINVAL;
2689}
2690#else
2691static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
e91cbb42 2692 struct mem_cgroup *from, struct mem_cgroup *to)
02491447
DN
2693{
2694 return -EINVAL;
2695}
8c7c6e34 2696#endif
d13d1443 2697
bbec2e15 2698static DEFINE_MUTEX(memcg_max_mutex);
f212ad7c 2699
bbec2e15
RG
2700static int mem_cgroup_resize_max(struct mem_cgroup *memcg,
2701 unsigned long max, bool memsw)
628f4235 2702{
3e32cb2e 2703 bool enlarge = false;
bb4a7ea2 2704 bool drained = false;
3e32cb2e 2705 int ret;
c054a78c
YZ
2706 bool limits_invariant;
2707 struct page_counter *counter = memsw ? &memcg->memsw : &memcg->memory;
81d39c20 2708
3e32cb2e 2709 do {
628f4235
KH
2710 if (signal_pending(current)) {
2711 ret = -EINTR;
2712 break;
2713 }
3e32cb2e 2714
bbec2e15 2715 mutex_lock(&memcg_max_mutex);
c054a78c
YZ
2716 /*
2717 * Make sure that the new limit (memsw or memory limit) doesn't
bbec2e15 2718 * break our basic invariant rule memory.max <= memsw.max.
c054a78c 2719 */
bbec2e15
RG
2720 limits_invariant = memsw ? max >= memcg->memory.max :
2721 max <= memcg->memsw.max;
c054a78c 2722 if (!limits_invariant) {
bbec2e15 2723 mutex_unlock(&memcg_max_mutex);
8c7c6e34 2724 ret = -EINVAL;
8c7c6e34
KH
2725 break;
2726 }
bbec2e15 2727 if (max > counter->max)
3e32cb2e 2728 enlarge = true;
bbec2e15
RG
2729 ret = page_counter_set_max(counter, max);
2730 mutex_unlock(&memcg_max_mutex);
8c7c6e34
KH
2731
2732 if (!ret)
2733 break;
2734
bb4a7ea2
SB
2735 if (!drained) {
2736 drain_all_stock(memcg);
2737 drained = true;
2738 continue;
2739 }
2740
1ab5c056
AR
2741 if (!try_to_free_mem_cgroup_pages(memcg, 1,
2742 GFP_KERNEL, !memsw)) {
2743 ret = -EBUSY;
2744 break;
2745 }
2746 } while (true);
3e32cb2e 2747
3c11ecf4
KH
2748 if (!ret && enlarge)
2749 memcg_oom_recover(memcg);
3e32cb2e 2750
628f4235
KH
2751 return ret;
2752}
2753
ef8f2327 2754unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
0608f43d
AM
2755 gfp_t gfp_mask,
2756 unsigned long *total_scanned)
2757{
2758 unsigned long nr_reclaimed = 0;
ef8f2327 2759 struct mem_cgroup_per_node *mz, *next_mz = NULL;
0608f43d
AM
2760 unsigned long reclaimed;
2761 int loop = 0;
ef8f2327 2762 struct mem_cgroup_tree_per_node *mctz;
3e32cb2e 2763 unsigned long excess;
0608f43d
AM
2764 unsigned long nr_scanned;
2765
2766 if (order > 0)
2767 return 0;
2768
ef8f2327 2769 mctz = soft_limit_tree_node(pgdat->node_id);
d6507ff5
MH
2770
2771 /*
2772 * Do not even bother to check the largest node if the root
2773 * is empty. Do it lockless to prevent lock bouncing. Races
2774 * are acceptable as soft limit is best effort anyway.
2775 */
bfc7228b 2776 if (!mctz || RB_EMPTY_ROOT(&mctz->rb_root))
d6507ff5
MH
2777 return 0;
2778
0608f43d
AM
2779 /*
2780 * This loop can run a while, specially if mem_cgroup's continuously
2781 * keep exceeding their soft limit and putting the system under
2782 * pressure
2783 */
2784 do {
2785 if (next_mz)
2786 mz = next_mz;
2787 else
2788 mz = mem_cgroup_largest_soft_limit_node(mctz);
2789 if (!mz)
2790 break;
2791
2792 nr_scanned = 0;
ef8f2327 2793 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat,
0608f43d
AM
2794 gfp_mask, &nr_scanned);
2795 nr_reclaimed += reclaimed;
2796 *total_scanned += nr_scanned;
0a31bc97 2797 spin_lock_irq(&mctz->lock);
bc2f2e7f 2798 __mem_cgroup_remove_exceeded(mz, mctz);
0608f43d
AM
2799
2800 /*
2801 * If we failed to reclaim anything from this memory cgroup
2802 * it is time to move on to the next cgroup
2803 */
2804 next_mz = NULL;
bc2f2e7f
VD
2805 if (!reclaimed)
2806 next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
2807
3e32cb2e 2808 excess = soft_limit_excess(mz->memcg);
0608f43d
AM
2809 /*
2810 * One school of thought says that we should not add
2811 * back the node to the tree if reclaim returns 0.
2812 * But our reclaim could return 0, simply because due
2813 * to priority we are exposing a smaller subset of
2814 * memory to reclaim from. Consider this as a longer
2815 * term TODO.
2816 */
2817 /* If excess == 0, no tree ops */
cf2c8127 2818 __mem_cgroup_insert_exceeded(mz, mctz, excess);
0a31bc97 2819 spin_unlock_irq(&mctz->lock);
0608f43d
AM
2820 css_put(&mz->memcg->css);
2821 loop++;
2822 /*
2823 * Could not reclaim anything and there are no more
2824 * mem cgroups to try or we seem to be looping without
2825 * reclaiming anything.
2826 */
2827 if (!nr_reclaimed &&
2828 (next_mz == NULL ||
2829 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
2830 break;
2831 } while (!nr_reclaimed);
2832 if (next_mz)
2833 css_put(&next_mz->memcg->css);
2834 return nr_reclaimed;
2835}
2836
ea280e7b
TH
2837/*
2838 * Test whether @memcg has children, dead or alive. Note that this
2839 * function doesn't care whether @memcg has use_hierarchy enabled and
2840 * returns %true if there are child csses according to the cgroup
2841 * hierarchy. Testing use_hierarchy is the caller's responsiblity.
2842 */
b5f99b53
GC
2843static inline bool memcg_has_children(struct mem_cgroup *memcg)
2844{
ea280e7b
TH
2845 bool ret;
2846
ea280e7b
TH
2847 rcu_read_lock();
2848 ret = css_next_child(NULL, &memcg->css);
2849 rcu_read_unlock();
2850 return ret;
b5f99b53
GC
2851}
2852
c26251f9 2853/*
51038171 2854 * Reclaims as many pages from the given memcg as possible.
c26251f9
MH
2855 *
2856 * Caller is responsible for holding css reference for memcg.
2857 */
2858static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
2859{
2860 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
c26251f9 2861
c1e862c1
KH
2862 /* we call try-to-free pages for make this cgroup empty */
2863 lru_add_drain_all();
d12c60f6
JS
2864
2865 drain_all_stock(memcg);
2866
f817ed48 2867 /* try to free all pages in this cgroup */
3e32cb2e 2868 while (nr_retries && page_counter_read(&memcg->memory)) {
f817ed48 2869 int progress;
c1e862c1 2870
c26251f9
MH
2871 if (signal_pending(current))
2872 return -EINTR;
2873
b70a2a21
JW
2874 progress = try_to_free_mem_cgroup_pages(memcg, 1,
2875 GFP_KERNEL, true);
c1e862c1 2876 if (!progress) {
f817ed48 2877 nr_retries--;
c1e862c1 2878 /* maybe some writeback is necessary */
8aa7e847 2879 congestion_wait(BLK_RW_ASYNC, HZ/10);
c1e862c1 2880 }
f817ed48
KH
2881
2882 }
ab5196c2
MH
2883
2884 return 0;
cc847582
KH
2885}
2886
6770c64e
TH
2887static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
2888 char *buf, size_t nbytes,
2889 loff_t off)
c1e862c1 2890{
6770c64e 2891 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
c26251f9 2892
d8423011
MH
2893 if (mem_cgroup_is_root(memcg))
2894 return -EINVAL;
6770c64e 2895 return mem_cgroup_force_empty(memcg) ?: nbytes;
c1e862c1
KH
2896}
2897
182446d0
TH
2898static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
2899 struct cftype *cft)
18f59ea7 2900{
182446d0 2901 return mem_cgroup_from_css(css)->use_hierarchy;
18f59ea7
BS
2902}
2903
182446d0
TH
2904static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
2905 struct cftype *cft, u64 val)
18f59ea7
BS
2906{
2907 int retval = 0;
182446d0 2908 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5c9d535b 2909 struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
18f59ea7 2910
567fb435 2911 if (memcg->use_hierarchy == val)
0b8f73e1 2912 return 0;
567fb435 2913
18f59ea7 2914 /*
af901ca1 2915 * If parent's use_hierarchy is set, we can't make any modifications
18f59ea7
BS
2916 * in the child subtrees. If it is unset, then the change can
2917 * occur, provided the current cgroup has no children.
2918 *
2919 * For the root cgroup, parent_mem is NULL, we allow value to be
2920 * set if there are no children.
2921 */
c0ff4b85 2922 if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
18f59ea7 2923 (val == 1 || val == 0)) {
ea280e7b 2924 if (!memcg_has_children(memcg))
c0ff4b85 2925 memcg->use_hierarchy = val;
18f59ea7
BS
2926 else
2927 retval = -EBUSY;
2928 } else
2929 retval = -EINVAL;
567fb435 2930
18f59ea7
BS
2931 return retval;
2932}
2933
8de7ecc6
SB
2934struct accumulated_stats {
2935 unsigned long stat[MEMCG_NR_STAT];
2936 unsigned long events[NR_VM_EVENT_ITEMS];
2937 unsigned long lru_pages[NR_LRU_LISTS];
2938 const unsigned int *stats_array;
2939 const unsigned int *events_array;
2940 int stats_size;
2941 int events_size;
2942};
ce00a967 2943
8de7ecc6
SB
2944static void accumulate_memcg_tree(struct mem_cgroup *memcg,
2945 struct accumulated_stats *acc)
587d9f72 2946{
8de7ecc6 2947 struct mem_cgroup *mi;
72b54e73 2948 int i;
587d9f72 2949
8de7ecc6
SB
2950 for_each_mem_cgroup_tree(mi, memcg) {
2951 for (i = 0; i < acc->stats_size; i++)
2952 acc->stat[i] += memcg_page_state(mi,
2953 acc->stats_array ? acc->stats_array[i] : i);
587d9f72 2954
8de7ecc6
SB
2955 for (i = 0; i < acc->events_size; i++)
2956 acc->events[i] += memcg_sum_events(mi,
2957 acc->events_array ? acc->events_array[i] : i);
2958
2959 for (i = 0; i < NR_LRU_LISTS; i++)
2960 acc->lru_pages[i] +=
2961 mem_cgroup_nr_lru_pages(mi, BIT(i));
72b54e73 2962 }
587d9f72
JW
2963}
2964
6f646156 2965static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
ce00a967 2966{
72b54e73 2967 unsigned long val = 0;
ce00a967 2968
3e32cb2e 2969 if (mem_cgroup_is_root(memcg)) {
72b54e73
VD
2970 struct mem_cgroup *iter;
2971
2972 for_each_mem_cgroup_tree(iter, memcg) {
ccda7f43
JW
2973 val += memcg_page_state(iter, MEMCG_CACHE);
2974 val += memcg_page_state(iter, MEMCG_RSS);
72b54e73 2975 if (swap)
ccda7f43 2976 val += memcg_page_state(iter, MEMCG_SWAP);
72b54e73 2977 }
3e32cb2e 2978 } else {
ce00a967 2979 if (!swap)
3e32cb2e 2980 val = page_counter_read(&memcg->memory);
ce00a967 2981 else
3e32cb2e 2982 val = page_counter_read(&memcg->memsw);
ce00a967 2983 }
c12176d3 2984 return val;
ce00a967
JW
2985}
2986
3e32cb2e
JW
2987enum {
2988 RES_USAGE,
2989 RES_LIMIT,
2990 RES_MAX_USAGE,
2991 RES_FAILCNT,
2992 RES_SOFT_LIMIT,
2993};
ce00a967 2994
791badbd 2995static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
05b84301 2996 struct cftype *cft)
8cdea7c0 2997{
182446d0 2998 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3e32cb2e 2999 struct page_counter *counter;
af36f906 3000
3e32cb2e 3001 switch (MEMFILE_TYPE(cft->private)) {
8c7c6e34 3002 case _MEM:
3e32cb2e
JW
3003 counter = &memcg->memory;
3004 break;
8c7c6e34 3005 case _MEMSWAP:
3e32cb2e
JW
3006 counter = &memcg->memsw;
3007 break;
510fc4e1 3008 case _KMEM:
3e32cb2e 3009 counter = &memcg->kmem;
510fc4e1 3010 break;
d55f90bf 3011 case _TCP:
0db15298 3012 counter = &memcg->tcpmem;
d55f90bf 3013 break;
8c7c6e34
KH
3014 default:
3015 BUG();
8c7c6e34 3016 }
3e32cb2e
JW
3017
3018 switch (MEMFILE_ATTR(cft->private)) {
3019 case RES_USAGE:
3020 if (counter == &memcg->memory)
c12176d3 3021 return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
3e32cb2e 3022 if (counter == &memcg->memsw)
c12176d3 3023 return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
3e32cb2e
JW
3024 return (u64)page_counter_read(counter) * PAGE_SIZE;
3025 case RES_LIMIT:
bbec2e15 3026 return (u64)counter->max * PAGE_SIZE;
3e32cb2e
JW
3027 case RES_MAX_USAGE:
3028 return (u64)counter->watermark * PAGE_SIZE;
3029 case RES_FAILCNT:
3030 return counter->failcnt;
3031 case RES_SOFT_LIMIT:
3032 return (u64)memcg->soft_limit * PAGE_SIZE;
3033 default:
3034 BUG();
3035 }
8cdea7c0 3036}
510fc4e1 3037
84c07d11 3038#ifdef CONFIG_MEMCG_KMEM
567e9ab2 3039static int memcg_online_kmem(struct mem_cgroup *memcg)
d6441637 3040{
d6441637
VD
3041 int memcg_id;
3042
b313aeee
VD
3043 if (cgroup_memory_nokmem)
3044 return 0;
3045
2a4db7eb 3046 BUG_ON(memcg->kmemcg_id >= 0);
567e9ab2 3047 BUG_ON(memcg->kmem_state);
d6441637 3048
f3bb3043 3049 memcg_id = memcg_alloc_cache_id();
0b8f73e1
JW
3050 if (memcg_id < 0)
3051 return memcg_id;
d6441637 3052
ef12947c 3053 static_branch_inc(&memcg_kmem_enabled_key);
d6441637 3054 /*
567e9ab2 3055 * A memory cgroup is considered kmem-online as soon as it gets
900a38f0 3056 * kmemcg_id. Setting the id after enabling static branching will
d6441637
VD
3057 * guarantee no one starts accounting before all call sites are
3058 * patched.
3059 */
900a38f0 3060 memcg->kmemcg_id = memcg_id;
567e9ab2 3061 memcg->kmem_state = KMEM_ONLINE;
bc2791f8 3062 INIT_LIST_HEAD(&memcg->kmem_caches);
0b8f73e1
JW
3063
3064 return 0;
d6441637
VD
3065}
3066
8e0a8912
JW
3067static void memcg_offline_kmem(struct mem_cgroup *memcg)
3068{
3069 struct cgroup_subsys_state *css;
3070 struct mem_cgroup *parent, *child;
3071 int kmemcg_id;
3072
3073 if (memcg->kmem_state != KMEM_ONLINE)
3074 return;
3075 /*
3076 * Clear the online state before clearing memcg_caches array
3077 * entries. The slab_mutex in memcg_deactivate_kmem_caches()
3078 * guarantees that no cache will be created for this cgroup
3079 * after we are done (see memcg_create_kmem_cache()).
3080 */
3081 memcg->kmem_state = KMEM_ALLOCATED;
3082
3083 memcg_deactivate_kmem_caches(memcg);
3084
3085 kmemcg_id = memcg->kmemcg_id;
3086 BUG_ON(kmemcg_id < 0);
3087
3088 parent = parent_mem_cgroup(memcg);
3089 if (!parent)
3090 parent = root_mem_cgroup;
3091
3092 /*
3093 * Change kmemcg_id of this cgroup and all its descendants to the
3094 * parent's id, and then move all entries from this cgroup's list_lrus
3095 * to ones of the parent. After we have finished, all list_lrus
3096 * corresponding to this cgroup are guaranteed to remain empty. The
3097 * ordering is imposed by list_lru_node->lock taken by
3098 * memcg_drain_all_list_lrus().
3099 */
3a06bb78 3100 rcu_read_lock(); /* can be called from css_free w/o cgroup_mutex */
8e0a8912
JW
3101 css_for_each_descendant_pre(css, &memcg->css) {
3102 child = mem_cgroup_from_css(css);
3103 BUG_ON(child->kmemcg_id != kmemcg_id);
3104 child->kmemcg_id = parent->kmemcg_id;
3105 if (!memcg->use_hierarchy)
3106 break;
3107 }
3a06bb78
TH
3108 rcu_read_unlock();
3109
9bec5c35 3110 memcg_drain_all_list_lrus(kmemcg_id, parent);
8e0a8912
JW
3111
3112 memcg_free_cache_id(kmemcg_id);
3113}
3114
3115static void memcg_free_kmem(struct mem_cgroup *memcg)
3116{
0b8f73e1
JW
3117 /* css_alloc() failed, offlining didn't happen */
3118 if (unlikely(memcg->kmem_state == KMEM_ONLINE))
3119 memcg_offline_kmem(memcg);
3120
8e0a8912
JW
3121 if (memcg->kmem_state == KMEM_ALLOCATED) {
3122 memcg_destroy_kmem_caches(memcg);
3123 static_branch_dec(&memcg_kmem_enabled_key);
3124 WARN_ON(page_counter_read(&memcg->kmem));
3125 }
8e0a8912 3126}
d6441637 3127#else
0b8f73e1 3128static int memcg_online_kmem(struct mem_cgroup *memcg)
127424c8
JW
3129{
3130 return 0;
3131}
3132static void memcg_offline_kmem(struct mem_cgroup *memcg)
3133{
3134}
3135static void memcg_free_kmem(struct mem_cgroup *memcg)
3136{
3137}
84c07d11 3138#endif /* CONFIG_MEMCG_KMEM */
127424c8 3139
bbec2e15
RG
3140static int memcg_update_kmem_max(struct mem_cgroup *memcg,
3141 unsigned long max)
d6441637 3142{
b313aeee 3143 int ret;
127424c8 3144
bbec2e15
RG
3145 mutex_lock(&memcg_max_mutex);
3146 ret = page_counter_set_max(&memcg->kmem, max);
3147 mutex_unlock(&memcg_max_mutex);
127424c8 3148 return ret;
d6441637 3149}
510fc4e1 3150
bbec2e15 3151static int memcg_update_tcp_max(struct mem_cgroup *memcg, unsigned long max)
d55f90bf
VD
3152{
3153 int ret;
3154
bbec2e15 3155 mutex_lock(&memcg_max_mutex);
d55f90bf 3156
bbec2e15 3157 ret = page_counter_set_max(&memcg->tcpmem, max);
d55f90bf
VD
3158 if (ret)
3159 goto out;
3160
0db15298 3161 if (!memcg->tcpmem_active) {
d55f90bf
VD
3162 /*
3163 * The active flag needs to be written after the static_key
3164 * update. This is what guarantees that the socket activation
2d758073
JW
3165 * function is the last one to run. See mem_cgroup_sk_alloc()
3166 * for details, and note that we don't mark any socket as
3167 * belonging to this memcg until that flag is up.
d55f90bf
VD
3168 *
3169 * We need to do this, because static_keys will span multiple
3170 * sites, but we can't control their order. If we mark a socket
3171 * as accounted, but the accounting functions are not patched in
3172 * yet, we'll lose accounting.
3173 *
2d758073 3174 * We never race with the readers in mem_cgroup_sk_alloc(),
d55f90bf
VD
3175 * because when this value change, the code to process it is not
3176 * patched in yet.
3177 */
3178 static_branch_inc(&memcg_sockets_enabled_key);
0db15298 3179 memcg->tcpmem_active = true;
d55f90bf
VD
3180 }
3181out:
bbec2e15 3182 mutex_unlock(&memcg_max_mutex);
d55f90bf
VD
3183 return ret;
3184}
d55f90bf 3185
628f4235
KH
3186/*
3187 * The user of this function is...
3188 * RES_LIMIT.
3189 */
451af504
TH
3190static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
3191 char *buf, size_t nbytes, loff_t off)
8cdea7c0 3192{
451af504 3193 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3e32cb2e 3194 unsigned long nr_pages;
628f4235
KH
3195 int ret;
3196
451af504 3197 buf = strstrip(buf);
650c5e56 3198 ret = page_counter_memparse(buf, "-1", &nr_pages);
3e32cb2e
JW
3199 if (ret)
3200 return ret;
af36f906 3201
3e32cb2e 3202 switch (MEMFILE_ATTR(of_cft(of)->private)) {
628f4235 3203 case RES_LIMIT:
4b3bde4c
BS
3204 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3205 ret = -EINVAL;
3206 break;
3207 }
3e32cb2e
JW
3208 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3209 case _MEM:
bbec2e15 3210 ret = mem_cgroup_resize_max(memcg, nr_pages, false);
8c7c6e34 3211 break;
3e32cb2e 3212 case _MEMSWAP:
bbec2e15 3213 ret = mem_cgroup_resize_max(memcg, nr_pages, true);
296c81d8 3214 break;
3e32cb2e 3215 case _KMEM:
bbec2e15 3216 ret = memcg_update_kmem_max(memcg, nr_pages);
3e32cb2e 3217 break;
d55f90bf 3218 case _TCP:
bbec2e15 3219 ret = memcg_update_tcp_max(memcg, nr_pages);
d55f90bf 3220 break;
3e32cb2e 3221 }
296c81d8 3222 break;
3e32cb2e
JW
3223 case RES_SOFT_LIMIT:
3224 memcg->soft_limit = nr_pages;
3225 ret = 0;
628f4235
KH
3226 break;
3227 }
451af504 3228 return ret ?: nbytes;
8cdea7c0
BS
3229}
3230
6770c64e
TH
3231static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
3232 size_t nbytes, loff_t off)
c84872e1 3233{
6770c64e 3234 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3e32cb2e 3235 struct page_counter *counter;
c84872e1 3236
3e32cb2e
JW
3237 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3238 case _MEM:
3239 counter = &memcg->memory;
3240 break;
3241 case _MEMSWAP:
3242 counter = &memcg->memsw;
3243 break;
3244 case _KMEM:
3245 counter = &memcg->kmem;
3246 break;
d55f90bf 3247 case _TCP:
0db15298 3248 counter = &memcg->tcpmem;
d55f90bf 3249 break;
3e32cb2e
JW
3250 default:
3251 BUG();
3252 }
af36f906 3253
3e32cb2e 3254 switch (MEMFILE_ATTR(of_cft(of)->private)) {
29f2a4da 3255 case RES_MAX_USAGE:
3e32cb2e 3256 page_counter_reset_watermark(counter);
29f2a4da
PE
3257 break;
3258 case RES_FAILCNT:
3e32cb2e 3259 counter->failcnt = 0;
29f2a4da 3260 break;
3e32cb2e
JW
3261 default:
3262 BUG();
29f2a4da 3263 }
f64c3f54 3264
6770c64e 3265 return nbytes;
c84872e1
PE
3266}
3267
182446d0 3268static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
7dc74be0
DN
3269 struct cftype *cft)
3270{
182446d0 3271 return mem_cgroup_from_css(css)->move_charge_at_immigrate;
7dc74be0
DN
3272}
3273
02491447 3274#ifdef CONFIG_MMU
182446d0 3275static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
7dc74be0
DN
3276 struct cftype *cft, u64 val)
3277{
182446d0 3278 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
7dc74be0 3279
1dfab5ab 3280 if (val & ~MOVE_MASK)
7dc74be0 3281 return -EINVAL;
ee5e8472 3282
7dc74be0 3283 /*
ee5e8472
GC
3284 * No kind of locking is needed in here, because ->can_attach() will
3285 * check this value once in the beginning of the process, and then carry
3286 * on with stale data. This means that changes to this value will only
3287 * affect task migrations starting after the change.
7dc74be0 3288 */
c0ff4b85 3289 memcg->move_charge_at_immigrate = val;
7dc74be0
DN
3290 return 0;
3291}
02491447 3292#else
182446d0 3293static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
02491447
DN
3294 struct cftype *cft, u64 val)
3295{
3296 return -ENOSYS;
3297}
3298#endif
7dc74be0 3299
406eb0c9 3300#ifdef CONFIG_NUMA
2da8ca82 3301static int memcg_numa_stat_show(struct seq_file *m, void *v)
406eb0c9 3302{
25485de6
GT
3303 struct numa_stat {
3304 const char *name;
3305 unsigned int lru_mask;
3306 };
3307
3308 static const struct numa_stat stats[] = {
3309 { "total", LRU_ALL },
3310 { "file", LRU_ALL_FILE },
3311 { "anon", LRU_ALL_ANON },
3312 { "unevictable", BIT(LRU_UNEVICTABLE) },
3313 };
3314 const struct numa_stat *stat;
406eb0c9 3315 int nid;
25485de6 3316 unsigned long nr;
2da8ca82 3317 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
406eb0c9 3318
25485de6
GT
3319 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3320 nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
3321 seq_printf(m, "%s=%lu", stat->name, nr);
3322 for_each_node_state(nid, N_MEMORY) {
3323 nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
3324 stat->lru_mask);
3325 seq_printf(m, " N%d=%lu", nid, nr);
3326 }
3327 seq_putc(m, '\n');
406eb0c9 3328 }
406eb0c9 3329
071aee13
YH
3330 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3331 struct mem_cgroup *iter;
3332
3333 nr = 0;
3334 for_each_mem_cgroup_tree(iter, memcg)
3335 nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
3336 seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
3337 for_each_node_state(nid, N_MEMORY) {
3338 nr = 0;
3339 for_each_mem_cgroup_tree(iter, memcg)
3340 nr += mem_cgroup_node_nr_lru_pages(
3341 iter, nid, stat->lru_mask);
3342 seq_printf(m, " N%d=%lu", nid, nr);
3343 }
3344 seq_putc(m, '\n');
406eb0c9 3345 }
406eb0c9 3346
406eb0c9
YH
3347 return 0;
3348}
3349#endif /* CONFIG_NUMA */
3350
df0e53d0 3351/* Universal VM events cgroup1 shows, original sort order */
8dd53fd3 3352static const unsigned int memcg1_events[] = {
df0e53d0
JW
3353 PGPGIN,
3354 PGPGOUT,
3355 PGFAULT,
3356 PGMAJFAULT,
3357};
3358
3359static const char *const memcg1_event_names[] = {
3360 "pgpgin",
3361 "pgpgout",
3362 "pgfault",
3363 "pgmajfault",
3364};
3365
2da8ca82 3366static int memcg_stat_show(struct seq_file *m, void *v)
d2ceb9b7 3367{
2da8ca82 3368 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3e32cb2e 3369 unsigned long memory, memsw;
af7c4b0e
JW
3370 struct mem_cgroup *mi;
3371 unsigned int i;
8de7ecc6 3372 struct accumulated_stats acc;
406eb0c9 3373
71cd3113 3374 BUILD_BUG_ON(ARRAY_SIZE(memcg1_stat_names) != ARRAY_SIZE(memcg1_stats));
70bc068c
RS
3375 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
3376
71cd3113
JW
3377 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
3378 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
1dd3a273 3379 continue;
71cd3113 3380 seq_printf(m, "%s %lu\n", memcg1_stat_names[i],
ccda7f43 3381 memcg_page_state(memcg, memcg1_stats[i]) *
71cd3113 3382 PAGE_SIZE);
1dd3a273 3383 }
7b854121 3384
df0e53d0
JW
3385 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
3386 seq_printf(m, "%s %lu\n", memcg1_event_names[i],
ccda7f43 3387 memcg_sum_events(memcg, memcg1_events[i]));
af7c4b0e
JW
3388
3389 for (i = 0; i < NR_LRU_LISTS; i++)
3390 seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
3391 mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);
3392
14067bb3 3393 /* Hierarchical information */
3e32cb2e
JW
3394 memory = memsw = PAGE_COUNTER_MAX;
3395 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
bbec2e15
RG
3396 memory = min(memory, mi->memory.max);
3397 memsw = min(memsw, mi->memsw.max);
fee7b548 3398 }
3e32cb2e
JW
3399 seq_printf(m, "hierarchical_memory_limit %llu\n",
3400 (u64)memory * PAGE_SIZE);
7941d214 3401 if (do_memsw_account())
3e32cb2e
JW
3402 seq_printf(m, "hierarchical_memsw_limit %llu\n",
3403 (u64)memsw * PAGE_SIZE);
7f016ee8 3404
8de7ecc6
SB
3405 memset(&acc, 0, sizeof(acc));
3406 acc.stats_size = ARRAY_SIZE(memcg1_stats);
3407 acc.stats_array = memcg1_stats;
3408 acc.events_size = ARRAY_SIZE(memcg1_events);
3409 acc.events_array = memcg1_events;
3410 accumulate_memcg_tree(memcg, &acc);
af7c4b0e 3411
8de7ecc6 3412 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
71cd3113 3413 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
1dd3a273 3414 continue;
8de7ecc6
SB
3415 seq_printf(m, "total_%s %llu\n", memcg1_stat_names[i],
3416 (u64)acc.stat[i] * PAGE_SIZE);
af7c4b0e
JW
3417 }
3418
8de7ecc6
SB
3419 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
3420 seq_printf(m, "total_%s %llu\n", memcg1_event_names[i],
3421 (u64)acc.events[i]);
af7c4b0e 3422
8de7ecc6
SB
3423 for (i = 0; i < NR_LRU_LISTS; i++)
3424 seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i],
3425 (u64)acc.lru_pages[i] * PAGE_SIZE);
14067bb3 3426
7f016ee8 3427#ifdef CONFIG_DEBUG_VM
7f016ee8 3428 {
ef8f2327
MG
3429 pg_data_t *pgdat;
3430 struct mem_cgroup_per_node *mz;
89abfab1 3431 struct zone_reclaim_stat *rstat;
7f016ee8
KM
3432 unsigned long recent_rotated[2] = {0, 0};
3433 unsigned long recent_scanned[2] = {0, 0};
3434
ef8f2327
MG
3435 for_each_online_pgdat(pgdat) {
3436 mz = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
3437 rstat = &mz->lruvec.reclaim_stat;
7f016ee8 3438
ef8f2327
MG
3439 recent_rotated[0] += rstat->recent_rotated[0];
3440 recent_rotated[1] += rstat->recent_rotated[1];
3441 recent_scanned[0] += rstat->recent_scanned[0];
3442 recent_scanned[1] += rstat->recent_scanned[1];
3443 }
78ccf5b5
JW
3444 seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
3445 seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
3446 seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
3447 seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
7f016ee8
KM
3448 }
3449#endif
3450
d2ceb9b7
KH
3451 return 0;
3452}
3453
182446d0
TH
3454static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
3455 struct cftype *cft)
a7885eb8 3456{
182446d0 3457 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
a7885eb8 3458
1f4c025b 3459 return mem_cgroup_swappiness(memcg);
a7885eb8
KM
3460}
3461
182446d0
TH
3462static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
3463 struct cftype *cft, u64 val)
a7885eb8 3464{
182446d0 3465 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
a7885eb8 3466
3dae7fec 3467 if (val > 100)
a7885eb8
KM
3468 return -EINVAL;
3469
14208b0e 3470 if (css->parent)
3dae7fec
JW
3471 memcg->swappiness = val;
3472 else
3473 vm_swappiness = val;
068b38c1 3474
a7885eb8
KM
3475 return 0;
3476}
3477
2e72b634
KS
3478static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
3479{
3480 struct mem_cgroup_threshold_ary *t;
3e32cb2e 3481 unsigned long usage;
2e72b634
KS
3482 int i;
3483
3484 rcu_read_lock();
3485 if (!swap)
2c488db2 3486 t = rcu_dereference(memcg->thresholds.primary);
2e72b634 3487 else
2c488db2 3488 t = rcu_dereference(memcg->memsw_thresholds.primary);
2e72b634
KS
3489
3490 if (!t)
3491 goto unlock;
3492
ce00a967 3493 usage = mem_cgroup_usage(memcg, swap);
2e72b634
KS
3494
3495 /*
748dad36 3496 * current_threshold points to threshold just below or equal to usage.
2e72b634
KS
3497 * If it's not true, a threshold was crossed after last
3498 * call of __mem_cgroup_threshold().
3499 */
5407a562 3500 i = t->current_threshold;
2e72b634
KS
3501
3502 /*
3503 * Iterate backward over array of thresholds starting from
3504 * current_threshold and check if a threshold is crossed.
3505 * If none of thresholds below usage is crossed, we read
3506 * only one element of the array here.
3507 */
3508 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
3509 eventfd_signal(t->entries[i].eventfd, 1);
3510
3511 /* i = current_threshold + 1 */
3512 i++;
3513
3514 /*
3515 * Iterate forward over array of thresholds starting from
3516 * current_threshold+1 and check if a threshold is crossed.
3517 * If none of thresholds above usage is crossed, we read
3518 * only one element of the array here.
3519 */
3520 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
3521 eventfd_signal(t->entries[i].eventfd, 1);
3522
3523 /* Update current_threshold */
5407a562 3524 t->current_threshold = i - 1;
2e72b634
KS
3525unlock:
3526 rcu_read_unlock();
3527}
3528
3529static void mem_cgroup_threshold(struct mem_cgroup *memcg)
3530{
ad4ca5f4
KS
3531 while (memcg) {
3532 __mem_cgroup_threshold(memcg, false);
7941d214 3533 if (do_memsw_account())
ad4ca5f4
KS
3534 __mem_cgroup_threshold(memcg, true);
3535
3536 memcg = parent_mem_cgroup(memcg);
3537 }
2e72b634
KS
3538}
3539
3540static int compare_thresholds(const void *a, const void *b)
3541{
3542 const struct mem_cgroup_threshold *_a = a;
3543 const struct mem_cgroup_threshold *_b = b;
3544
2bff24a3
GT
3545 if (_a->threshold > _b->threshold)
3546 return 1;
3547
3548 if (_a->threshold < _b->threshold)
3549 return -1;
3550
3551 return 0;
2e72b634
KS
3552}
3553
c0ff4b85 3554static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
9490ff27
KH
3555{
3556 struct mem_cgroup_eventfd_list *ev;
3557
2bcf2e92
MH
3558 spin_lock(&memcg_oom_lock);
3559
c0ff4b85 3560 list_for_each_entry(ev, &memcg->oom_notify, list)
9490ff27 3561 eventfd_signal(ev->eventfd, 1);
2bcf2e92
MH
3562
3563 spin_unlock(&memcg_oom_lock);
9490ff27
KH
3564 return 0;
3565}
3566
c0ff4b85 3567static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
9490ff27 3568{
7d74b06f
KH
3569 struct mem_cgroup *iter;
3570
c0ff4b85 3571 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f 3572 mem_cgroup_oom_notify_cb(iter);
9490ff27
KH
3573}
3574
59b6f873 3575static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87 3576 struct eventfd_ctx *eventfd, const char *args, enum res_type type)
2e72b634 3577{
2c488db2
KS
3578 struct mem_cgroup_thresholds *thresholds;
3579 struct mem_cgroup_threshold_ary *new;
3e32cb2e
JW
3580 unsigned long threshold;
3581 unsigned long usage;
2c488db2 3582 int i, size, ret;
2e72b634 3583
650c5e56 3584 ret = page_counter_memparse(args, "-1", &threshold);
2e72b634
KS
3585 if (ret)
3586 return ret;
3587
3588 mutex_lock(&memcg->thresholds_lock);
2c488db2 3589
05b84301 3590 if (type == _MEM) {
2c488db2 3591 thresholds = &memcg->thresholds;
ce00a967 3592 usage = mem_cgroup_usage(memcg, false);
05b84301 3593 } else if (type == _MEMSWAP) {
2c488db2 3594 thresholds = &memcg->memsw_thresholds;
ce00a967 3595 usage = mem_cgroup_usage(memcg, true);
05b84301 3596 } else
2e72b634
KS
3597 BUG();
3598
2e72b634 3599 /* Check if a threshold crossed before adding a new one */
2c488db2 3600 if (thresholds->primary)
2e72b634
KS
3601 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3602
2c488db2 3603 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
2e72b634
KS
3604
3605 /* Allocate memory for new array of thresholds */
2c488db2 3606 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
2e72b634 3607 GFP_KERNEL);
2c488db2 3608 if (!new) {
2e72b634
KS
3609 ret = -ENOMEM;
3610 goto unlock;
3611 }
2c488db2 3612 new->size = size;
2e72b634
KS
3613
3614 /* Copy thresholds (if any) to new array */
2c488db2
KS
3615 if (thresholds->primary) {
3616 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
2e72b634 3617 sizeof(struct mem_cgroup_threshold));
2c488db2
KS
3618 }
3619
2e72b634 3620 /* Add new threshold */
2c488db2
KS
3621 new->entries[size - 1].eventfd = eventfd;
3622 new->entries[size - 1].threshold = threshold;
2e72b634
KS
3623
3624 /* Sort thresholds. Registering of new threshold isn't time-critical */
2c488db2 3625 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
2e72b634
KS
3626 compare_thresholds, NULL);
3627
3628 /* Find current threshold */
2c488db2 3629 new->current_threshold = -1;
2e72b634 3630 for (i = 0; i < size; i++) {
748dad36 3631 if (new->entries[i].threshold <= usage) {
2e72b634 3632 /*
2c488db2
KS
3633 * new->current_threshold will not be used until
3634 * rcu_assign_pointer(), so it's safe to increment
2e72b634
KS
3635 * it here.
3636 */
2c488db2 3637 ++new->current_threshold;
748dad36
SZ
3638 } else
3639 break;
2e72b634
KS
3640 }
3641
2c488db2
KS
3642 /* Free old spare buffer and save old primary buffer as spare */
3643 kfree(thresholds->spare);
3644 thresholds->spare = thresholds->primary;
3645
3646 rcu_assign_pointer(thresholds->primary, new);
2e72b634 3647
907860ed 3648 /* To be sure that nobody uses thresholds */
2e72b634
KS
3649 synchronize_rcu();
3650
2e72b634
KS
3651unlock:
3652 mutex_unlock(&memcg->thresholds_lock);
3653
3654 return ret;
3655}
3656
59b6f873 3657static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87
TH
3658 struct eventfd_ctx *eventfd, const char *args)
3659{
59b6f873 3660 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
347c4a87
TH
3661}
3662
59b6f873 3663static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87
TH
3664 struct eventfd_ctx *eventfd, const char *args)
3665{
59b6f873 3666 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
347c4a87
TH
3667}
3668
59b6f873 3669static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87 3670 struct eventfd_ctx *eventfd, enum res_type type)
2e72b634 3671{
2c488db2
KS
3672 struct mem_cgroup_thresholds *thresholds;
3673 struct mem_cgroup_threshold_ary *new;
3e32cb2e 3674 unsigned long usage;
2c488db2 3675 int i, j, size;
2e72b634
KS
3676
3677 mutex_lock(&memcg->thresholds_lock);
05b84301
JW
3678
3679 if (type == _MEM) {
2c488db2 3680 thresholds = &memcg->thresholds;
ce00a967 3681 usage = mem_cgroup_usage(memcg, false);
05b84301 3682 } else if (type == _MEMSWAP) {
2c488db2 3683 thresholds = &memcg->memsw_thresholds;
ce00a967 3684 usage = mem_cgroup_usage(memcg, true);
05b84301 3685 } else
2e72b634
KS
3686 BUG();
3687
371528ca
AV
3688 if (!thresholds->primary)
3689 goto unlock;
3690
2e72b634
KS
3691 /* Check if a threshold crossed before removing */
3692 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3693
3694 /* Calculate new number of threshold */
2c488db2
KS
3695 size = 0;
3696 for (i = 0; i < thresholds->primary->size; i++) {
3697 if (thresholds->primary->entries[i].eventfd != eventfd)
2e72b634
KS
3698 size++;
3699 }
3700
2c488db2 3701 new = thresholds->spare;
907860ed 3702
2e72b634
KS
3703 /* Set thresholds array to NULL if we don't have thresholds */
3704 if (!size) {
2c488db2
KS
3705 kfree(new);
3706 new = NULL;
907860ed 3707 goto swap_buffers;
2e72b634
KS
3708 }
3709
2c488db2 3710 new->size = size;
2e72b634
KS
3711
3712 /* Copy thresholds and find current threshold */
2c488db2
KS
3713 new->current_threshold = -1;
3714 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
3715 if (thresholds->primary->entries[i].eventfd == eventfd)
2e72b634
KS
3716 continue;
3717
2c488db2 3718 new->entries[j] = thresholds->primary->entries[i];
748dad36 3719 if (new->entries[j].threshold <= usage) {
2e72b634 3720 /*
2c488db2 3721 * new->current_threshold will not be used
2e72b634
KS
3722 * until rcu_assign_pointer(), so it's safe to increment
3723 * it here.
3724 */
2c488db2 3725 ++new->current_threshold;
2e72b634
KS
3726 }
3727 j++;
3728 }
3729
907860ed 3730swap_buffers:
2c488db2
KS
3731 /* Swap primary and spare array */
3732 thresholds->spare = thresholds->primary;
8c757763 3733
2c488db2 3734 rcu_assign_pointer(thresholds->primary, new);
2e72b634 3735
907860ed 3736 /* To be sure that nobody uses thresholds */
2e72b634 3737 synchronize_rcu();
6611d8d7
MC
3738
3739 /* If all events are unregistered, free the spare array */
3740 if (!new) {
3741 kfree(thresholds->spare);
3742 thresholds->spare = NULL;
3743 }
371528ca 3744unlock:
2e72b634 3745 mutex_unlock(&memcg->thresholds_lock);
2e72b634 3746}
c1e862c1 3747
59b6f873 3748static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87
TH
3749 struct eventfd_ctx *eventfd)
3750{
59b6f873 3751 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
347c4a87
TH
3752}
3753
59b6f873 3754static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87
TH
3755 struct eventfd_ctx *eventfd)
3756{
59b6f873 3757 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
347c4a87
TH
3758}
3759
59b6f873 3760static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
347c4a87 3761 struct eventfd_ctx *eventfd, const char *args)
9490ff27 3762{
9490ff27 3763 struct mem_cgroup_eventfd_list *event;
9490ff27 3764
9490ff27
KH
3765 event = kmalloc(sizeof(*event), GFP_KERNEL);
3766 if (!event)
3767 return -ENOMEM;
3768
1af8efe9 3769 spin_lock(&memcg_oom_lock);
9490ff27
KH
3770
3771 event->eventfd = eventfd;
3772 list_add(&event->list, &memcg->oom_notify);
3773
3774 /* already in OOM ? */
c2b42d3c 3775 if (memcg->under_oom)
9490ff27 3776 eventfd_signal(eventfd, 1);
1af8efe9 3777 spin_unlock(&memcg_oom_lock);
9490ff27
KH
3778
3779 return 0;
3780}
3781
59b6f873 3782static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
347c4a87 3783 struct eventfd_ctx *eventfd)
9490ff27 3784{
9490ff27 3785 struct mem_cgroup_eventfd_list *ev, *tmp;
9490ff27 3786
1af8efe9 3787 spin_lock(&memcg_oom_lock);
9490ff27 3788
c0ff4b85 3789 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
9490ff27
KH
3790 if (ev->eventfd == eventfd) {
3791 list_del(&ev->list);
3792 kfree(ev);
3793 }
3794 }
3795
1af8efe9 3796 spin_unlock(&memcg_oom_lock);
9490ff27
KH
3797}
3798
2da8ca82 3799static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
3c11ecf4 3800{
2da8ca82 3801 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf));
3c11ecf4 3802
791badbd 3803 seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
c2b42d3c 3804 seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
fe6bdfc8
RG
3805 seq_printf(sf, "oom_kill %lu\n",
3806 atomic_long_read(&memcg->memory_events[MEMCG_OOM_KILL]));
3c11ecf4
KH
3807 return 0;
3808}
3809
182446d0 3810static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
3c11ecf4
KH
3811 struct cftype *cft, u64 val)
3812{
182446d0 3813 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3c11ecf4
KH
3814
3815 /* cannot set to root cgroup and only 0 and 1 are allowed */
14208b0e 3816 if (!css->parent || !((val == 0) || (val == 1)))
3c11ecf4
KH
3817 return -EINVAL;
3818
c0ff4b85 3819 memcg->oom_kill_disable = val;
4d845ebf 3820 if (!val)
c0ff4b85 3821 memcg_oom_recover(memcg);
3dae7fec 3822
3c11ecf4
KH
3823 return 0;
3824}
3825
52ebea74
TH
3826#ifdef CONFIG_CGROUP_WRITEBACK
3827
841710aa
TH
3828static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
3829{
3830 return wb_domain_init(&memcg->cgwb_domain, gfp);
3831}
3832
3833static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
3834{
3835 wb_domain_exit(&memcg->cgwb_domain);
3836}
3837
2529bb3a
TH
3838static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
3839{
3840 wb_domain_size_changed(&memcg->cgwb_domain);
3841}
3842
841710aa
TH
3843struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
3844{
3845 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3846
3847 if (!memcg->css.parent)
3848 return NULL;
3849
3850 return &memcg->cgwb_domain;
3851}
3852
c2aa723a
TH
3853/**
3854 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
3855 * @wb: bdi_writeback in question
c5edf9cd
TH
3856 * @pfilepages: out parameter for number of file pages
3857 * @pheadroom: out parameter for number of allocatable pages according to memcg
c2aa723a
TH
3858 * @pdirty: out parameter for number of dirty pages
3859 * @pwriteback: out parameter for number of pages under writeback
3860 *
c5edf9cd
TH
3861 * Determine the numbers of file, headroom, dirty, and writeback pages in
3862 * @wb's memcg. File, dirty and writeback are self-explanatory. Headroom
3863 * is a bit more involved.
c2aa723a 3864 *
c5edf9cd
TH
3865 * A memcg's headroom is "min(max, high) - used". In the hierarchy, the
3866 * headroom is calculated as the lowest headroom of itself and the
3867 * ancestors. Note that this doesn't consider the actual amount of
3868 * available memory in the system. The caller should further cap
3869 * *@pheadroom accordingly.
c2aa723a 3870 */
c5edf9cd
TH
3871void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
3872 unsigned long *pheadroom, unsigned long *pdirty,
3873 unsigned long *pwriteback)
c2aa723a
TH
3874{
3875 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3876 struct mem_cgroup *parent;
c2aa723a 3877
ccda7f43 3878 *pdirty = memcg_page_state(memcg, NR_FILE_DIRTY);
c2aa723a
TH
3879
3880 /* this should eventually include NR_UNSTABLE_NFS */
ccda7f43 3881 *pwriteback = memcg_page_state(memcg, NR_WRITEBACK);
c5edf9cd
TH
3882 *pfilepages = mem_cgroup_nr_lru_pages(memcg, (1 << LRU_INACTIVE_FILE) |
3883 (1 << LRU_ACTIVE_FILE));
3884 *pheadroom = PAGE_COUNTER_MAX;
c2aa723a 3885
c2aa723a 3886 while ((parent = parent_mem_cgroup(memcg))) {
bbec2e15 3887 unsigned long ceiling = min(memcg->memory.max, memcg->high);
c2aa723a
TH
3888 unsigned long used = page_counter_read(&memcg->memory);
3889
c5edf9cd 3890 *pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
c2aa723a
TH
3891 memcg = parent;
3892 }
c2aa723a
TH
3893}
3894
841710aa
TH
3895#else /* CONFIG_CGROUP_WRITEBACK */
3896
3897static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
3898{
3899 return 0;
3900}
3901
3902static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
3903{
3904}
3905
2529bb3a
TH
3906static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
3907{
3908}
3909
52ebea74
TH
3910#endif /* CONFIG_CGROUP_WRITEBACK */
3911
3bc942f3
TH
3912/*
3913 * DO NOT USE IN NEW FILES.
3914 *
3915 * "cgroup.event_control" implementation.
3916 *
3917 * This is way over-engineered. It tries to support fully configurable
3918 * events for each user. Such level of flexibility is completely
3919 * unnecessary especially in the light of the planned unified hierarchy.
3920 *
3921 * Please deprecate this and replace with something simpler if at all
3922 * possible.
3923 */
3924
79bd9814
TH
3925/*
3926 * Unregister event and free resources.
3927 *
3928 * Gets called from workqueue.
3929 */
3bc942f3 3930static void memcg_event_remove(struct work_struct *work)
79bd9814 3931{
3bc942f3
TH
3932 struct mem_cgroup_event *event =
3933 container_of(work, struct mem_cgroup_event, remove);
59b6f873 3934 struct mem_cgroup *memcg = event->memcg;
79bd9814
TH
3935
3936 remove_wait_queue(event->wqh, &event->wait);
3937
59b6f873 3938 event->unregister_event(memcg, event->eventfd);
79bd9814
TH
3939
3940 /* Notify userspace the event is going away. */
3941 eventfd_signal(event->eventfd, 1);
3942
3943 eventfd_ctx_put(event->eventfd);
3944 kfree(event);
59b6f873 3945 css_put(&memcg->css);
79bd9814
TH
3946}
3947
3948/*
a9a08845 3949 * Gets called on EPOLLHUP on eventfd when user closes it.
79bd9814
TH
3950 *
3951 * Called with wqh->lock held and interrupts disabled.
3952 */
ac6424b9 3953static int memcg_event_wake(wait_queue_entry_t *wait, unsigned mode,
3bc942f3 3954 int sync, void *key)
79bd9814 3955{
3bc942f3
TH
3956 struct mem_cgroup_event *event =
3957 container_of(wait, struct mem_cgroup_event, wait);
59b6f873 3958 struct mem_cgroup *memcg = event->memcg;
3ad6f93e 3959 __poll_t flags = key_to_poll(key);
79bd9814 3960
a9a08845 3961 if (flags & EPOLLHUP) {
79bd9814
TH
3962 /*
3963 * If the event has been detached at cgroup removal, we
3964 * can simply return knowing the other side will cleanup
3965 * for us.
3966 *
3967 * We can't race against event freeing since the other
3968 * side will require wqh->lock via remove_wait_queue(),
3969 * which we hold.
3970 */
fba94807 3971 spin_lock(&memcg->event_list_lock);
79bd9814
TH
3972 if (!list_empty(&event->list)) {
3973 list_del_init(&event->list);
3974 /*
3975 * We are in atomic context, but cgroup_event_remove()
3976 * may sleep, so we have to call it in workqueue.
3977 */
3978 schedule_work(&event->remove);
3979 }
fba94807 3980 spin_unlock(&memcg->event_list_lock);
79bd9814
TH
3981 }
3982
3983 return 0;
3984}
3985
3bc942f3 3986static void memcg_event_ptable_queue_proc(struct file *file,
79bd9814
TH
3987 wait_queue_head_t *wqh, poll_table *pt)
3988{
3bc942f3
TH
3989 struct mem_cgroup_event *event =
3990 container_of(pt, struct mem_cgroup_event, pt);
79bd9814
TH
3991
3992 event->wqh = wqh;
3993 add_wait_queue(wqh, &event->wait);
3994}
3995
3996/*
3bc942f3
TH
3997 * DO NOT USE IN NEW FILES.
3998 *
79bd9814
TH
3999 * Parse input and register new cgroup event handler.
4000 *
4001 * Input must be in format '<event_fd> <control_fd> <args>'.
4002 * Interpretation of args is defined by control file implementation.
4003 */
451af504
TH
4004static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
4005 char *buf, size_t nbytes, loff_t off)
79bd9814 4006{
451af504 4007 struct cgroup_subsys_state *css = of_css(of);
fba94807 4008 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3bc942f3 4009 struct mem_cgroup_event *event;
79bd9814
TH
4010 struct cgroup_subsys_state *cfile_css;
4011 unsigned int efd, cfd;
4012 struct fd efile;
4013 struct fd cfile;
fba94807 4014 const char *name;
79bd9814
TH
4015 char *endp;
4016 int ret;
4017
451af504
TH
4018 buf = strstrip(buf);
4019
4020 efd = simple_strtoul(buf, &endp, 10);
79bd9814
TH
4021 if (*endp != ' ')
4022 return -EINVAL;
451af504 4023 buf = endp + 1;
79bd9814 4024
451af504 4025 cfd = simple_strtoul(buf, &endp, 10);
79bd9814
TH
4026 if ((*endp != ' ') && (*endp != '\0'))
4027 return -EINVAL;
451af504 4028 buf = endp + 1;
79bd9814
TH
4029
4030 event = kzalloc(sizeof(*event), GFP_KERNEL);
4031 if (!event)
4032 return -ENOMEM;
4033
59b6f873 4034 event->memcg = memcg;
79bd9814 4035 INIT_LIST_HEAD(&event->list);
3bc942f3
TH
4036 init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
4037 init_waitqueue_func_entry(&event->wait, memcg_event_wake);
4038 INIT_WORK(&event->remove, memcg_event_remove);
79bd9814
TH
4039
4040 efile = fdget(efd);
4041 if (!efile.file) {
4042 ret = -EBADF;
4043 goto out_kfree;
4044 }
4045
4046 event->eventfd = eventfd_ctx_fileget(efile.file);
4047 if (IS_ERR(event->eventfd)) {
4048 ret = PTR_ERR(event->eventfd);
4049 goto out_put_efile;
4050 }
4051
4052 cfile = fdget(cfd);
4053 if (!cfile.file) {
4054 ret = -EBADF;
4055 goto out_put_eventfd;
4056 }
4057
4058 /* the process need read permission on control file */
4059 /* AV: shouldn't we check that it's been opened for read instead? */
4060 ret = inode_permission(file_inode(cfile.file), MAY_READ);
4061 if (ret < 0)
4062 goto out_put_cfile;
4063
fba94807
TH
4064 /*
4065 * Determine the event callbacks and set them in @event. This used
4066 * to be done via struct cftype but cgroup core no longer knows
4067 * about these events. The following is crude but the whole thing
4068 * is for compatibility anyway.
3bc942f3
TH
4069 *
4070 * DO NOT ADD NEW FILES.
fba94807 4071 */
b583043e 4072 name = cfile.file->f_path.dentry->d_name.name;
fba94807
TH
4073
4074 if (!strcmp(name, "memory.usage_in_bytes")) {
4075 event->register_event = mem_cgroup_usage_register_event;
4076 event->unregister_event = mem_cgroup_usage_unregister_event;
4077 } else if (!strcmp(name, "memory.oom_control")) {
4078 event->register_event = mem_cgroup_oom_register_event;
4079 event->unregister_event = mem_cgroup_oom_unregister_event;
4080 } else if (!strcmp(name, "memory.pressure_level")) {
4081 event->register_event = vmpressure_register_event;
4082 event->unregister_event = vmpressure_unregister_event;
4083 } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
347c4a87
TH
4084 event->register_event = memsw_cgroup_usage_register_event;
4085 event->unregister_event = memsw_cgroup_usage_unregister_event;
fba94807
TH
4086 } else {
4087 ret = -EINVAL;
4088 goto out_put_cfile;
4089 }
4090
79bd9814 4091 /*
b5557c4c
TH
4092 * Verify @cfile should belong to @css. Also, remaining events are
4093 * automatically removed on cgroup destruction but the removal is
4094 * asynchronous, so take an extra ref on @css.
79bd9814 4095 */
b583043e 4096 cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
ec903c0c 4097 &memory_cgrp_subsys);
79bd9814 4098 ret = -EINVAL;
5a17f543 4099 if (IS_ERR(cfile_css))
79bd9814 4100 goto out_put_cfile;
5a17f543
TH
4101 if (cfile_css != css) {
4102 css_put(cfile_css);
79bd9814 4103 goto out_put_cfile;
5a17f543 4104 }
79bd9814 4105
451af504 4106 ret = event->register_event(memcg, event->eventfd, buf);
79bd9814
TH
4107 if (ret)
4108 goto out_put_css;
4109
9965ed17 4110 vfs_poll(efile.file, &event->pt);
79bd9814 4111
fba94807
TH
4112 spin_lock(&memcg->event_list_lock);
4113 list_add(&event->list, &memcg->event_list);
4114 spin_unlock(&memcg->event_list_lock);
79bd9814
TH
4115
4116 fdput(cfile);
4117 fdput(efile);
4118
451af504 4119 return nbytes;
79bd9814
TH
4120
4121out_put_css:
b5557c4c 4122 css_put(css);
79bd9814
TH
4123out_put_cfile:
4124 fdput(cfile);
4125out_put_eventfd:
4126 eventfd_ctx_put(event->eventfd);
4127out_put_efile:
4128 fdput(efile);
4129out_kfree:
4130 kfree(event);
4131
4132 return ret;
4133}
4134
241994ed 4135static struct cftype mem_cgroup_legacy_files[] = {
8cdea7c0 4136 {
0eea1030 4137 .name = "usage_in_bytes",
8c7c6e34 4138 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
791badbd 4139 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 4140 },
c84872e1
PE
4141 {
4142 .name = "max_usage_in_bytes",
8c7c6e34 4143 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
6770c64e 4144 .write = mem_cgroup_reset,
791badbd 4145 .read_u64 = mem_cgroup_read_u64,
c84872e1 4146 },
8cdea7c0 4147 {
0eea1030 4148 .name = "limit_in_bytes",
8c7c6e34 4149 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
451af504 4150 .write = mem_cgroup_write,
791badbd 4151 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 4152 },
296c81d8
BS
4153 {
4154 .name = "soft_limit_in_bytes",
4155 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
451af504 4156 .write = mem_cgroup_write,
791badbd 4157 .read_u64 = mem_cgroup_read_u64,
296c81d8 4158 },
8cdea7c0
BS
4159 {
4160 .name = "failcnt",
8c7c6e34 4161 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
6770c64e 4162 .write = mem_cgroup_reset,
791badbd 4163 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 4164 },
d2ceb9b7
KH
4165 {
4166 .name = "stat",
2da8ca82 4167 .seq_show = memcg_stat_show,
d2ceb9b7 4168 },
c1e862c1
KH
4169 {
4170 .name = "force_empty",
6770c64e 4171 .write = mem_cgroup_force_empty_write,
c1e862c1 4172 },
18f59ea7
BS
4173 {
4174 .name = "use_hierarchy",
4175 .write_u64 = mem_cgroup_hierarchy_write,
4176 .read_u64 = mem_cgroup_hierarchy_read,
4177 },
79bd9814 4178 {
3bc942f3 4179 .name = "cgroup.event_control", /* XXX: for compat */
451af504 4180 .write = memcg_write_event_control,
7dbdb199 4181 .flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
79bd9814 4182 },
a7885eb8
KM
4183 {
4184 .name = "swappiness",
4185 .read_u64 = mem_cgroup_swappiness_read,
4186 .write_u64 = mem_cgroup_swappiness_write,
4187 },
7dc74be0
DN
4188 {
4189 .name = "move_charge_at_immigrate",
4190 .read_u64 = mem_cgroup_move_charge_read,
4191 .write_u64 = mem_cgroup_move_charge_write,
4192 },
9490ff27
KH
4193 {
4194 .name = "oom_control",
2da8ca82 4195 .seq_show = mem_cgroup_oom_control_read,
3c11ecf4 4196 .write_u64 = mem_cgroup_oom_control_write,
9490ff27
KH
4197 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
4198 },
70ddf637
AV
4199 {
4200 .name = "pressure_level",
70ddf637 4201 },
406eb0c9
YH
4202#ifdef CONFIG_NUMA
4203 {
4204 .name = "numa_stat",
2da8ca82 4205 .seq_show = memcg_numa_stat_show,
406eb0c9
YH
4206 },
4207#endif
510fc4e1
GC
4208 {
4209 .name = "kmem.limit_in_bytes",
4210 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
451af504 4211 .write = mem_cgroup_write,
791badbd 4212 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
4213 },
4214 {
4215 .name = "kmem.usage_in_bytes",
4216 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
791badbd 4217 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
4218 },
4219 {
4220 .name = "kmem.failcnt",
4221 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
6770c64e 4222 .write = mem_cgroup_reset,
791badbd 4223 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
4224 },
4225 {
4226 .name = "kmem.max_usage_in_bytes",
4227 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
6770c64e 4228 .write = mem_cgroup_reset,
791badbd 4229 .read_u64 = mem_cgroup_read_u64,
510fc4e1 4230 },
5b365771 4231#if defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG)
749c5415
GC
4232 {
4233 .name = "kmem.slabinfo",
bc2791f8
TH
4234 .seq_start = memcg_slab_start,
4235 .seq_next = memcg_slab_next,
4236 .seq_stop = memcg_slab_stop,
b047501c 4237 .seq_show = memcg_slab_show,
749c5415
GC
4238 },
4239#endif
d55f90bf
VD
4240 {
4241 .name = "kmem.tcp.limit_in_bytes",
4242 .private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
4243 .write = mem_cgroup_write,
4244 .read_u64 = mem_cgroup_read_u64,
4245 },
4246 {
4247 .name = "kmem.tcp.usage_in_bytes",
4248 .private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
4249 .read_u64 = mem_cgroup_read_u64,
4250 },
4251 {
4252 .name = "kmem.tcp.failcnt",
4253 .private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
4254 .write = mem_cgroup_reset,
4255 .read_u64 = mem_cgroup_read_u64,
4256 },
4257 {
4258 .name = "kmem.tcp.max_usage_in_bytes",
4259 .private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
4260 .write = mem_cgroup_reset,
4261 .read_u64 = mem_cgroup_read_u64,
4262 },
6bc10349 4263 { }, /* terminate */
af36f906 4264};
8c7c6e34 4265
73f576c0
JW
4266/*
4267 * Private memory cgroup IDR
4268 *
4269 * Swap-out records and page cache shadow entries need to store memcg
4270 * references in constrained space, so we maintain an ID space that is
4271 * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of
4272 * memory-controlled cgroups to 64k.
4273 *
4274 * However, there usually are many references to the oflline CSS after
4275 * the cgroup has been destroyed, such as page cache or reclaimable
4276 * slab objects, that don't need to hang on to the ID. We want to keep
4277 * those dead CSS from occupying IDs, or we might quickly exhaust the
4278 * relatively small ID space and prevent the creation of new cgroups
4279 * even when there are much fewer than 64k cgroups - possibly none.
4280 *
4281 * Maintain a private 16-bit ID space for memcg, and allow the ID to
4282 * be freed and recycled when it's no longer needed, which is usually
4283 * when the CSS is offlined.
4284 *
4285 * The only exception to that are records of swapped out tmpfs/shmem
4286 * pages that need to be attributed to live ancestors on swapin. But
4287 * those references are manageable from userspace.
4288 */
4289
4290static DEFINE_IDR(mem_cgroup_idr);
4291
7e97de0b
KT
4292static void mem_cgroup_id_remove(struct mem_cgroup *memcg)
4293{
4294 if (memcg->id.id > 0) {
4295 idr_remove(&mem_cgroup_idr, memcg->id.id);
4296 memcg->id.id = 0;
4297 }
4298}
4299
615d66c3 4300static void mem_cgroup_id_get_many(struct mem_cgroup *memcg, unsigned int n)
73f576c0 4301{
1c2d479a 4302 refcount_add(n, &memcg->id.ref);
73f576c0
JW
4303}
4304
615d66c3 4305static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n)
73f576c0 4306{
1c2d479a 4307 if (refcount_sub_and_test(n, &memcg->id.ref)) {
7e97de0b 4308 mem_cgroup_id_remove(memcg);
73f576c0
JW
4309
4310 /* Memcg ID pins CSS */
4311 css_put(&memcg->css);
4312 }
4313}
4314
615d66c3
VD
4315static inline void mem_cgroup_id_get(struct mem_cgroup *memcg)
4316{
4317 mem_cgroup_id_get_many(memcg, 1);
4318}
4319
4320static inline void mem_cgroup_id_put(struct mem_cgroup *memcg)
4321{
4322 mem_cgroup_id_put_many(memcg, 1);
4323}
4324
73f576c0
JW
4325/**
4326 * mem_cgroup_from_id - look up a memcg from a memcg id
4327 * @id: the memcg id to look up
4328 *
4329 * Caller must hold rcu_read_lock().
4330 */
4331struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
4332{
4333 WARN_ON_ONCE(!rcu_read_lock_held());
4334 return idr_find(&mem_cgroup_idr, id);
4335}
4336
ef8f2327 4337static int alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
6d12e2d8
KH
4338{
4339 struct mem_cgroup_per_node *pn;
ef8f2327 4340 int tmp = node;
1ecaab2b
KH
4341 /*
4342 * This routine is called against possible nodes.
4343 * But it's BUG to call kmalloc() against offline node.
4344 *
4345 * TODO: this routine can waste much memory for nodes which will
4346 * never be onlined. It's better to use memory hotplug callback
4347 * function.
4348 */
41e3355d
KH
4349 if (!node_state(node, N_NORMAL_MEMORY))
4350 tmp = -1;
17295c88 4351 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
6d12e2d8
KH
4352 if (!pn)
4353 return 1;
1ecaab2b 4354
a983b5eb
JW
4355 pn->lruvec_stat_cpu = alloc_percpu(struct lruvec_stat);
4356 if (!pn->lruvec_stat_cpu) {
00f3ca2c
JW
4357 kfree(pn);
4358 return 1;
4359 }
4360
ef8f2327
MG
4361 lruvec_init(&pn->lruvec);
4362 pn->usage_in_excess = 0;
4363 pn->on_tree = false;
4364 pn->memcg = memcg;
4365
54f72fe0 4366 memcg->nodeinfo[node] = pn;
6d12e2d8
KH
4367 return 0;
4368}
4369
ef8f2327 4370static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
1ecaab2b 4371{
00f3ca2c
JW
4372 struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];
4373
4eaf431f
MH
4374 if (!pn)
4375 return;
4376
a983b5eb 4377 free_percpu(pn->lruvec_stat_cpu);
00f3ca2c 4378 kfree(pn);
1ecaab2b
KH
4379}
4380
40e952f9 4381static void __mem_cgroup_free(struct mem_cgroup *memcg)
59927fb9 4382{
c8b2a36f 4383 int node;
59927fb9 4384
c8b2a36f 4385 for_each_node(node)
ef8f2327 4386 free_mem_cgroup_per_node_info(memcg, node);
a983b5eb 4387 free_percpu(memcg->stat_cpu);
8ff69e2c 4388 kfree(memcg);
59927fb9 4389}
3afe36b1 4390
40e952f9
TE
4391static void mem_cgroup_free(struct mem_cgroup *memcg)
4392{
4393 memcg_wb_domain_exit(memcg);
4394 __mem_cgroup_free(memcg);
4395}
4396
0b8f73e1 4397static struct mem_cgroup *mem_cgroup_alloc(void)
8cdea7c0 4398{
d142e3e6 4399 struct mem_cgroup *memcg;
0b8f73e1 4400 size_t size;
6d12e2d8 4401 int node;
8cdea7c0 4402
0b8f73e1
JW
4403 size = sizeof(struct mem_cgroup);
4404 size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
4405
4406 memcg = kzalloc(size, GFP_KERNEL);
c0ff4b85 4407 if (!memcg)
0b8f73e1
JW
4408 return NULL;
4409
73f576c0
JW
4410 memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL,
4411 1, MEM_CGROUP_ID_MAX,
4412 GFP_KERNEL);
4413 if (memcg->id.id < 0)
4414 goto fail;
4415
a983b5eb
JW
4416 memcg->stat_cpu = alloc_percpu(struct mem_cgroup_stat_cpu);
4417 if (!memcg->stat_cpu)
0b8f73e1 4418 goto fail;
78fb7466 4419
3ed28fa1 4420 for_each_node(node)
ef8f2327 4421 if (alloc_mem_cgroup_per_node_info(memcg, node))
0b8f73e1 4422 goto fail;
f64c3f54 4423
0b8f73e1
JW
4424 if (memcg_wb_domain_init(memcg, GFP_KERNEL))
4425 goto fail;
28dbc4b6 4426
f7e1cb6e 4427 INIT_WORK(&memcg->high_work, high_work_func);
d142e3e6
GC
4428 memcg->last_scanned_node = MAX_NUMNODES;
4429 INIT_LIST_HEAD(&memcg->oom_notify);
d142e3e6
GC
4430 mutex_init(&memcg->thresholds_lock);
4431 spin_lock_init(&memcg->move_lock);
70ddf637 4432 vmpressure_init(&memcg->vmpressure);
fba94807
TH
4433 INIT_LIST_HEAD(&memcg->event_list);
4434 spin_lock_init(&memcg->event_list_lock);
d886f4e4 4435 memcg->socket_pressure = jiffies;
84c07d11 4436#ifdef CONFIG_MEMCG_KMEM
900a38f0 4437 memcg->kmemcg_id = -1;
900a38f0 4438#endif
52ebea74
TH
4439#ifdef CONFIG_CGROUP_WRITEBACK
4440 INIT_LIST_HEAD(&memcg->cgwb_list);
4441#endif
73f576c0 4442 idr_replace(&mem_cgroup_idr, memcg, memcg->id.id);
0b8f73e1
JW
4443 return memcg;
4444fail:
7e97de0b 4445 mem_cgroup_id_remove(memcg);
40e952f9 4446 __mem_cgroup_free(memcg);
0b8f73e1 4447 return NULL;
d142e3e6
GC
4448}
4449
0b8f73e1
JW
4450static struct cgroup_subsys_state * __ref
4451mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
d142e3e6 4452{
0b8f73e1
JW
4453 struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
4454 struct mem_cgroup *memcg;
4455 long error = -ENOMEM;
d142e3e6 4456
0b8f73e1
JW
4457 memcg = mem_cgroup_alloc();
4458 if (!memcg)
4459 return ERR_PTR(error);
d142e3e6 4460
0b8f73e1
JW
4461 memcg->high = PAGE_COUNTER_MAX;
4462 memcg->soft_limit = PAGE_COUNTER_MAX;
4463 if (parent) {
4464 memcg->swappiness = mem_cgroup_swappiness(parent);
4465 memcg->oom_kill_disable = parent->oom_kill_disable;
4466 }
4467 if (parent && parent->use_hierarchy) {
4468 memcg->use_hierarchy = true;
3e32cb2e 4469 page_counter_init(&memcg->memory, &parent->memory);
37e84351 4470 page_counter_init(&memcg->swap, &parent->swap);
3e32cb2e
JW
4471 page_counter_init(&memcg->memsw, &parent->memsw);
4472 page_counter_init(&memcg->kmem, &parent->kmem);
0db15298 4473 page_counter_init(&memcg->tcpmem, &parent->tcpmem);
18f59ea7 4474 } else {
3e32cb2e 4475 page_counter_init(&memcg->memory, NULL);
37e84351 4476 page_counter_init(&memcg->swap, NULL);
3e32cb2e
JW
4477 page_counter_init(&memcg->memsw, NULL);
4478 page_counter_init(&memcg->kmem, NULL);
0db15298 4479 page_counter_init(&memcg->tcpmem, NULL);
8c7f6edb
TH
4480 /*
4481 * Deeper hierachy with use_hierarchy == false doesn't make
4482 * much sense so let cgroup subsystem know about this
4483 * unfortunate state in our controller.
4484 */
d142e3e6 4485 if (parent != root_mem_cgroup)
073219e9 4486 memory_cgrp_subsys.broken_hierarchy = true;
18f59ea7 4487 }
d6441637 4488
0b8f73e1
JW
4489 /* The following stuff does not apply to the root */
4490 if (!parent) {
4491 root_mem_cgroup = memcg;
4492 return &memcg->css;
4493 }
4494
b313aeee 4495 error = memcg_online_kmem(memcg);
0b8f73e1
JW
4496 if (error)
4497 goto fail;
127424c8 4498
f7e1cb6e 4499 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
ef12947c 4500 static_branch_inc(&memcg_sockets_enabled_key);
f7e1cb6e 4501
0b8f73e1
JW
4502 return &memcg->css;
4503fail:
7e97de0b 4504 mem_cgroup_id_remove(memcg);
0b8f73e1 4505 mem_cgroup_free(memcg);
ea3a9645 4506 return ERR_PTR(-ENOMEM);
0b8f73e1
JW
4507}
4508
73f576c0 4509static int mem_cgroup_css_online(struct cgroup_subsys_state *css)
0b8f73e1 4510{
58fa2a55
VD
4511 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4512
0a4465d3
KT
4513 /*
4514 * A memcg must be visible for memcg_expand_shrinker_maps()
4515 * by the time the maps are allocated. So, we allocate maps
4516 * here, when for_each_mem_cgroup() can't skip it.
4517 */
4518 if (memcg_alloc_shrinker_maps(memcg)) {
4519 mem_cgroup_id_remove(memcg);
4520 return -ENOMEM;
4521 }
4522
73f576c0 4523 /* Online state pins memcg ID, memcg ID pins CSS */
1c2d479a 4524 refcount_set(&memcg->id.ref, 1);
73f576c0 4525 css_get(css);
2f7dd7a4 4526 return 0;
8cdea7c0
BS
4527}
4528
eb95419b 4529static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
df878fb0 4530{
eb95419b 4531 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3bc942f3 4532 struct mem_cgroup_event *event, *tmp;
79bd9814
TH
4533
4534 /*
4535 * Unregister events and notify userspace.
4536 * Notify userspace about cgroup removing only after rmdir of cgroup
4537 * directory to avoid race between userspace and kernelspace.
4538 */
fba94807
TH
4539 spin_lock(&memcg->event_list_lock);
4540 list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
79bd9814
TH
4541 list_del_init(&event->list);
4542 schedule_work(&event->remove);
4543 }
fba94807 4544 spin_unlock(&memcg->event_list_lock);
ec64f515 4545
bf8d5d52 4546 page_counter_set_min(&memcg->memory, 0);
23067153 4547 page_counter_set_low(&memcg->memory, 0);
63677c74 4548
567e9ab2 4549 memcg_offline_kmem(memcg);
52ebea74 4550 wb_memcg_offline(memcg);
73f576c0 4551
591edfb1
RG
4552 drain_all_stock(memcg);
4553
73f576c0 4554 mem_cgroup_id_put(memcg);
df878fb0
KH
4555}
4556
6df38689
VD
4557static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
4558{
4559 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4560
4561 invalidate_reclaim_iterators(memcg);
4562}
4563
eb95419b 4564static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
8cdea7c0 4565{
eb95419b 4566 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
c268e994 4567
f7e1cb6e 4568 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
ef12947c 4569 static_branch_dec(&memcg_sockets_enabled_key);
127424c8 4570
0db15298 4571 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active)
d55f90bf 4572 static_branch_dec(&memcg_sockets_enabled_key);
3893e302 4573
0b8f73e1
JW
4574 vmpressure_cleanup(&memcg->vmpressure);
4575 cancel_work_sync(&memcg->high_work);
4576 mem_cgroup_remove_from_trees(memcg);
0a4465d3 4577 memcg_free_shrinker_maps(memcg);
d886f4e4 4578 memcg_free_kmem(memcg);
0b8f73e1 4579 mem_cgroup_free(memcg);
8cdea7c0
BS
4580}
4581
1ced953b
TH
4582/**
4583 * mem_cgroup_css_reset - reset the states of a mem_cgroup
4584 * @css: the target css
4585 *
4586 * Reset the states of the mem_cgroup associated with @css. This is
4587 * invoked when the userland requests disabling on the default hierarchy
4588 * but the memcg is pinned through dependency. The memcg should stop
4589 * applying policies and should revert to the vanilla state as it may be
4590 * made visible again.
4591 *
4592 * The current implementation only resets the essential configurations.
4593 * This needs to be expanded to cover all the visible parts.
4594 */
4595static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
4596{
4597 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4598
bbec2e15
RG
4599 page_counter_set_max(&memcg->memory, PAGE_COUNTER_MAX);
4600 page_counter_set_max(&memcg->swap, PAGE_COUNTER_MAX);
4601 page_counter_set_max(&memcg->memsw, PAGE_COUNTER_MAX);
4602 page_counter_set_max(&memcg->kmem, PAGE_COUNTER_MAX);
4603 page_counter_set_max(&memcg->tcpmem, PAGE_COUNTER_MAX);
bf8d5d52 4604 page_counter_set_min(&memcg->memory, 0);
23067153 4605 page_counter_set_low(&memcg->memory, 0);
241994ed 4606 memcg->high = PAGE_COUNTER_MAX;
24d404dc 4607 memcg->soft_limit = PAGE_COUNTER_MAX;
2529bb3a 4608 memcg_wb_domain_size_changed(memcg);
1ced953b
TH
4609}
4610
02491447 4611#ifdef CONFIG_MMU
7dc74be0 4612/* Handlers for move charge at task migration. */
854ffa8d 4613static int mem_cgroup_do_precharge(unsigned long count)
7dc74be0 4614{
05b84301 4615 int ret;
9476db97 4616
d0164adc
MG
4617 /* Try a single bulk charge without reclaim first, kswapd may wake */
4618 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
9476db97 4619 if (!ret) {
854ffa8d 4620 mc.precharge += count;
854ffa8d
DN
4621 return ret;
4622 }
9476db97 4623
3674534b 4624 /* Try charges one by one with reclaim, but do not retry */
854ffa8d 4625 while (count--) {
3674534b 4626 ret = try_charge(mc.to, GFP_KERNEL | __GFP_NORETRY, 1);
38c5d72f 4627 if (ret)
38c5d72f 4628 return ret;
854ffa8d 4629 mc.precharge++;
9476db97 4630 cond_resched();
854ffa8d 4631 }
9476db97 4632 return 0;
4ffef5fe
DN
4633}
4634
4ffef5fe
DN
4635union mc_target {
4636 struct page *page;
02491447 4637 swp_entry_t ent;
4ffef5fe
DN
4638};
4639
4ffef5fe 4640enum mc_target_type {
8d32ff84 4641 MC_TARGET_NONE = 0,
4ffef5fe 4642 MC_TARGET_PAGE,
02491447 4643 MC_TARGET_SWAP,
c733a828 4644 MC_TARGET_DEVICE,
4ffef5fe
DN
4645};
4646
90254a65
DN
4647static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
4648 unsigned long addr, pte_t ptent)
4ffef5fe 4649{
c733a828 4650 struct page *page = _vm_normal_page(vma, addr, ptent, true);
4ffef5fe 4651
90254a65
DN
4652 if (!page || !page_mapped(page))
4653 return NULL;
4654 if (PageAnon(page)) {
1dfab5ab 4655 if (!(mc.flags & MOVE_ANON))
90254a65 4656 return NULL;
1dfab5ab
JW
4657 } else {
4658 if (!(mc.flags & MOVE_FILE))
4659 return NULL;
4660 }
90254a65
DN
4661 if (!get_page_unless_zero(page))
4662 return NULL;
4663
4664 return page;
4665}
4666
c733a828 4667#if defined(CONFIG_SWAP) || defined(CONFIG_DEVICE_PRIVATE)
90254a65 4668static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
48406ef8 4669 pte_t ptent, swp_entry_t *entry)
90254a65 4670{
90254a65
DN
4671 struct page *page = NULL;
4672 swp_entry_t ent = pte_to_swp_entry(ptent);
4673
1dfab5ab 4674 if (!(mc.flags & MOVE_ANON) || non_swap_entry(ent))
90254a65 4675 return NULL;
c733a828
JG
4676
4677 /*
4678 * Handle MEMORY_DEVICE_PRIVATE which are ZONE_DEVICE page belonging to
4679 * a device and because they are not accessible by CPU they are store
4680 * as special swap entry in the CPU page table.
4681 */
4682 if (is_device_private_entry(ent)) {
4683 page = device_private_entry_to_page(ent);
4684 /*
4685 * MEMORY_DEVICE_PRIVATE means ZONE_DEVICE page and which have
4686 * a refcount of 1 when free (unlike normal page)
4687 */
4688 if (!page_ref_add_unless(page, 1, 1))
4689 return NULL;
4690 return page;
4691 }
4692
4b91355e
KH
4693 /*
4694 * Because lookup_swap_cache() updates some statistics counter,
4695 * we call find_get_page() with swapper_space directly.
4696 */
f6ab1f7f 4697 page = find_get_page(swap_address_space(ent), swp_offset(ent));
7941d214 4698 if (do_memsw_account())
90254a65
DN
4699 entry->val = ent.val;
4700
4701 return page;
4702}
4b91355e
KH
4703#else
4704static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
48406ef8 4705 pte_t ptent, swp_entry_t *entry)
4b91355e
KH
4706{
4707 return NULL;
4708}
4709#endif
90254a65 4710
87946a72
DN
4711static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
4712 unsigned long addr, pte_t ptent, swp_entry_t *entry)
4713{
4714 struct page *page = NULL;
87946a72
DN
4715 struct address_space *mapping;
4716 pgoff_t pgoff;
4717
4718 if (!vma->vm_file) /* anonymous vma */
4719 return NULL;
1dfab5ab 4720 if (!(mc.flags & MOVE_FILE))
87946a72
DN
4721 return NULL;
4722
87946a72 4723 mapping = vma->vm_file->f_mapping;
0661a336 4724 pgoff = linear_page_index(vma, addr);
87946a72
DN
4725
4726 /* page is moved even if it's not RSS of this task(page-faulted). */
aa3b1895
HD
4727#ifdef CONFIG_SWAP
4728 /* shmem/tmpfs may report page out on swap: account for that too. */
139b6a6f
JW
4729 if (shmem_mapping(mapping)) {
4730 page = find_get_entry(mapping, pgoff);
3159f943 4731 if (xa_is_value(page)) {
139b6a6f 4732 swp_entry_t swp = radix_to_swp_entry(page);
7941d214 4733 if (do_memsw_account())
139b6a6f 4734 *entry = swp;
f6ab1f7f
HY
4735 page = find_get_page(swap_address_space(swp),
4736 swp_offset(swp));
139b6a6f
JW
4737 }
4738 } else
4739 page = find_get_page(mapping, pgoff);
4740#else
4741 page = find_get_page(mapping, pgoff);
aa3b1895 4742#endif
87946a72
DN
4743 return page;
4744}
4745
b1b0deab
CG
4746/**
4747 * mem_cgroup_move_account - move account of the page
4748 * @page: the page
25843c2b 4749 * @compound: charge the page as compound or small page
b1b0deab
CG
4750 * @from: mem_cgroup which the page is moved from.
4751 * @to: mem_cgroup which the page is moved to. @from != @to.
4752 *
3ac808fd 4753 * The caller must make sure the page is not on LRU (isolate_page() is useful.)
b1b0deab
CG
4754 *
4755 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
4756 * from old cgroup.
4757 */
4758static int mem_cgroup_move_account(struct page *page,
f627c2f5 4759 bool compound,
b1b0deab
CG
4760 struct mem_cgroup *from,
4761 struct mem_cgroup *to)
4762{
4763 unsigned long flags;
f627c2f5 4764 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
b1b0deab 4765 int ret;
c4843a75 4766 bool anon;
b1b0deab
CG
4767
4768 VM_BUG_ON(from == to);
4769 VM_BUG_ON_PAGE(PageLRU(page), page);
f627c2f5 4770 VM_BUG_ON(compound && !PageTransHuge(page));
b1b0deab
CG
4771
4772 /*
6a93ca8f 4773 * Prevent mem_cgroup_migrate() from looking at
45637bab 4774 * page->mem_cgroup of its source page while we change it.
b1b0deab 4775 */
f627c2f5 4776 ret = -EBUSY;
b1b0deab
CG
4777 if (!trylock_page(page))
4778 goto out;
4779
4780 ret = -EINVAL;
4781 if (page->mem_cgroup != from)
4782 goto out_unlock;
4783
c4843a75
GT
4784 anon = PageAnon(page);
4785
b1b0deab
CG
4786 spin_lock_irqsave(&from->move_lock, flags);
4787
c4843a75 4788 if (!anon && page_mapped(page)) {
c9019e9b
JW
4789 __mod_memcg_state(from, NR_FILE_MAPPED, -nr_pages);
4790 __mod_memcg_state(to, NR_FILE_MAPPED, nr_pages);
b1b0deab
CG
4791 }
4792
c4843a75
GT
4793 /*
4794 * move_lock grabbed above and caller set from->moving_account, so
ccda7f43 4795 * mod_memcg_page_state will serialize updates to PageDirty.
c4843a75
GT
4796 * So mapping should be stable for dirty pages.
4797 */
4798 if (!anon && PageDirty(page)) {
4799 struct address_space *mapping = page_mapping(page);
4800
4801 if (mapping_cap_account_dirty(mapping)) {
c9019e9b
JW
4802 __mod_memcg_state(from, NR_FILE_DIRTY, -nr_pages);
4803 __mod_memcg_state(to, NR_FILE_DIRTY, nr_pages);
c4843a75
GT
4804 }
4805 }
4806
b1b0deab 4807 if (PageWriteback(page)) {
c9019e9b
JW
4808 __mod_memcg_state(from, NR_WRITEBACK, -nr_pages);
4809 __mod_memcg_state(to, NR_WRITEBACK, nr_pages);
b1b0deab
CG
4810 }
4811
4812 /*
4813 * It is safe to change page->mem_cgroup here because the page
4814 * is referenced, charged, and isolated - we can't race with
4815 * uncharging, charging, migration, or LRU putback.
4816 */
4817
4818 /* caller should have done css_get */
4819 page->mem_cgroup = to;
4820 spin_unlock_irqrestore(&from->move_lock, flags);
4821
4822 ret = 0;
4823
4824 local_irq_disable();
f627c2f5 4825 mem_cgroup_charge_statistics(to, page, compound, nr_pages);
b1b0deab 4826 memcg_check_events(to, page);
f627c2f5 4827 mem_cgroup_charge_statistics(from, page, compound, -nr_pages);
b1b0deab
CG
4828 memcg_check_events(from, page);
4829 local_irq_enable();
4830out_unlock:
4831 unlock_page(page);
4832out:
4833 return ret;
4834}
4835
7cf7806c
LR
4836/**
4837 * get_mctgt_type - get target type of moving charge
4838 * @vma: the vma the pte to be checked belongs
4839 * @addr: the address corresponding to the pte to be checked
4840 * @ptent: the pte to be checked
4841 * @target: the pointer the target page or swap ent will be stored(can be NULL)
4842 *
4843 * Returns
4844 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
4845 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
4846 * move charge. if @target is not NULL, the page is stored in target->page
4847 * with extra refcnt got(Callers should handle it).
4848 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
4849 * target for charge migration. if @target is not NULL, the entry is stored
4850 * in target->ent.
df6ad698
JG
4851 * 3(MC_TARGET_DEVICE): like MC_TARGET_PAGE but page is MEMORY_DEVICE_PUBLIC
4852 * or MEMORY_DEVICE_PRIVATE (so ZONE_DEVICE page and thus not on the lru).
4853 * For now we such page is charge like a regular page would be as for all
4854 * intent and purposes it is just special memory taking the place of a
4855 * regular page.
c733a828
JG
4856 *
4857 * See Documentations/vm/hmm.txt and include/linux/hmm.h
7cf7806c
LR
4858 *
4859 * Called with pte lock held.
4860 */
4861
8d32ff84 4862static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
90254a65
DN
4863 unsigned long addr, pte_t ptent, union mc_target *target)
4864{
4865 struct page *page = NULL;
8d32ff84 4866 enum mc_target_type ret = MC_TARGET_NONE;
90254a65
DN
4867 swp_entry_t ent = { .val = 0 };
4868
4869 if (pte_present(ptent))
4870 page = mc_handle_present_pte(vma, addr, ptent);
4871 else if (is_swap_pte(ptent))
48406ef8 4872 page = mc_handle_swap_pte(vma, ptent, &ent);
0661a336 4873 else if (pte_none(ptent))
87946a72 4874 page = mc_handle_file_pte(vma, addr, ptent, &ent);
90254a65
DN
4875
4876 if (!page && !ent.val)
8d32ff84 4877 return ret;
02491447 4878 if (page) {
02491447 4879 /*
0a31bc97 4880 * Do only loose check w/o serialization.
1306a85a 4881 * mem_cgroup_move_account() checks the page is valid or
0a31bc97 4882 * not under LRU exclusion.
02491447 4883 */
1306a85a 4884 if (page->mem_cgroup == mc.from) {
02491447 4885 ret = MC_TARGET_PAGE;
df6ad698
JG
4886 if (is_device_private_page(page) ||
4887 is_device_public_page(page))
c733a828 4888 ret = MC_TARGET_DEVICE;
02491447
DN
4889 if (target)
4890 target->page = page;
4891 }
4892 if (!ret || !target)
4893 put_page(page);
4894 }
3e14a57b
HY
4895 /*
4896 * There is a swap entry and a page doesn't exist or isn't charged.
4897 * But we cannot move a tail-page in a THP.
4898 */
4899 if (ent.val && !ret && (!page || !PageTransCompound(page)) &&
34c00c31 4900 mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
7f0f1546
KH
4901 ret = MC_TARGET_SWAP;
4902 if (target)
4903 target->ent = ent;
4ffef5fe 4904 }
4ffef5fe
DN
4905 return ret;
4906}
4907
12724850
NH
4908#ifdef CONFIG_TRANSPARENT_HUGEPAGE
4909/*
d6810d73
HY
4910 * We don't consider PMD mapped swapping or file mapped pages because THP does
4911 * not support them for now.
12724850
NH
4912 * Caller should make sure that pmd_trans_huge(pmd) is true.
4913 */
4914static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
4915 unsigned long addr, pmd_t pmd, union mc_target *target)
4916{
4917 struct page *page = NULL;
12724850
NH
4918 enum mc_target_type ret = MC_TARGET_NONE;
4919
84c3fc4e
ZY
4920 if (unlikely(is_swap_pmd(pmd))) {
4921 VM_BUG_ON(thp_migration_supported() &&
4922 !is_pmd_migration_entry(pmd));
4923 return ret;
4924 }
12724850 4925 page = pmd_page(pmd);
309381fe 4926 VM_BUG_ON_PAGE(!page || !PageHead(page), page);
1dfab5ab 4927 if (!(mc.flags & MOVE_ANON))
12724850 4928 return ret;
1306a85a 4929 if (page->mem_cgroup == mc.from) {
12724850
NH
4930 ret = MC_TARGET_PAGE;
4931 if (target) {
4932 get_page(page);
4933 target->page = page;
4934 }
4935 }
4936 return ret;
4937}
4938#else
4939static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
4940 unsigned long addr, pmd_t pmd, union mc_target *target)
4941{
4942 return MC_TARGET_NONE;
4943}
4944#endif
4945
4ffef5fe
DN
4946static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
4947 unsigned long addr, unsigned long end,
4948 struct mm_walk *walk)
4949{
26bcd64a 4950 struct vm_area_struct *vma = walk->vma;
4ffef5fe
DN
4951 pte_t *pte;
4952 spinlock_t *ptl;
4953
b6ec57f4
KS
4954 ptl = pmd_trans_huge_lock(pmd, vma);
4955 if (ptl) {
c733a828
JG
4956 /*
4957 * Note their can not be MC_TARGET_DEVICE for now as we do not
4958 * support transparent huge page with MEMORY_DEVICE_PUBLIC or
4959 * MEMORY_DEVICE_PRIVATE but this might change.
4960 */
12724850
NH
4961 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
4962 mc.precharge += HPAGE_PMD_NR;
bf929152 4963 spin_unlock(ptl);
1a5a9906 4964 return 0;
12724850 4965 }
03319327 4966
45f83cef
AA
4967 if (pmd_trans_unstable(pmd))
4968 return 0;
4ffef5fe
DN
4969 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4970 for (; addr != end; pte++, addr += PAGE_SIZE)
8d32ff84 4971 if (get_mctgt_type(vma, addr, *pte, NULL))
4ffef5fe
DN
4972 mc.precharge++; /* increment precharge temporarily */
4973 pte_unmap_unlock(pte - 1, ptl);
4974 cond_resched();
4975
7dc74be0
DN
4976 return 0;
4977}
4978
4ffef5fe
DN
4979static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
4980{
4981 unsigned long precharge;
4ffef5fe 4982
26bcd64a
NH
4983 struct mm_walk mem_cgroup_count_precharge_walk = {
4984 .pmd_entry = mem_cgroup_count_precharge_pte_range,
4985 .mm = mm,
4986 };
dfe076b0 4987 down_read(&mm->mmap_sem);
0247f3f4
JM
4988 walk_page_range(0, mm->highest_vm_end,
4989 &mem_cgroup_count_precharge_walk);
dfe076b0 4990 up_read(&mm->mmap_sem);
4ffef5fe
DN
4991
4992 precharge = mc.precharge;
4993 mc.precharge = 0;
4994
4995 return precharge;
4996}
4997
4ffef5fe
DN
4998static int mem_cgroup_precharge_mc(struct mm_struct *mm)
4999{
dfe076b0
DN
5000 unsigned long precharge = mem_cgroup_count_precharge(mm);
5001
5002 VM_BUG_ON(mc.moving_task);
5003 mc.moving_task = current;
5004 return mem_cgroup_do_precharge(precharge);
4ffef5fe
DN
5005}
5006
dfe076b0
DN
5007/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
5008static void __mem_cgroup_clear_mc(void)
4ffef5fe 5009{
2bd9bb20
KH
5010 struct mem_cgroup *from = mc.from;
5011 struct mem_cgroup *to = mc.to;
5012
4ffef5fe 5013 /* we must uncharge all the leftover precharges from mc.to */
854ffa8d 5014 if (mc.precharge) {
00501b53 5015 cancel_charge(mc.to, mc.precharge);
854ffa8d
DN
5016 mc.precharge = 0;
5017 }
5018 /*
5019 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
5020 * we must uncharge here.
5021 */
5022 if (mc.moved_charge) {
00501b53 5023 cancel_charge(mc.from, mc.moved_charge);
854ffa8d 5024 mc.moved_charge = 0;
4ffef5fe 5025 }
483c30b5
DN
5026 /* we must fixup refcnts and charges */
5027 if (mc.moved_swap) {
483c30b5 5028 /* uncharge swap account from the old cgroup */
ce00a967 5029 if (!mem_cgroup_is_root(mc.from))
3e32cb2e 5030 page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
483c30b5 5031
615d66c3
VD
5032 mem_cgroup_id_put_many(mc.from, mc.moved_swap);
5033
05b84301 5034 /*
3e32cb2e
JW
5035 * we charged both to->memory and to->memsw, so we
5036 * should uncharge to->memory.
05b84301 5037 */
ce00a967 5038 if (!mem_cgroup_is_root(mc.to))
3e32cb2e
JW
5039 page_counter_uncharge(&mc.to->memory, mc.moved_swap);
5040
615d66c3
VD
5041 mem_cgroup_id_get_many(mc.to, mc.moved_swap);
5042 css_put_many(&mc.to->css, mc.moved_swap);
3e32cb2e 5043
483c30b5
DN
5044 mc.moved_swap = 0;
5045 }
dfe076b0
DN
5046 memcg_oom_recover(from);
5047 memcg_oom_recover(to);
5048 wake_up_all(&mc.waitq);
5049}
5050
5051static void mem_cgroup_clear_mc(void)
5052{
264a0ae1
TH
5053 struct mm_struct *mm = mc.mm;
5054
dfe076b0
DN
5055 /*
5056 * we must clear moving_task before waking up waiters at the end of
5057 * task migration.
5058 */
5059 mc.moving_task = NULL;
5060 __mem_cgroup_clear_mc();
2bd9bb20 5061 spin_lock(&mc.lock);
4ffef5fe
DN
5062 mc.from = NULL;
5063 mc.to = NULL;
264a0ae1 5064 mc.mm = NULL;
2bd9bb20 5065 spin_unlock(&mc.lock);
264a0ae1
TH
5066
5067 mmput(mm);
4ffef5fe
DN
5068}
5069
1f7dd3e5 5070static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
7dc74be0 5071{
1f7dd3e5 5072 struct cgroup_subsys_state *css;
eed67d75 5073 struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
9f2115f9 5074 struct mem_cgroup *from;
4530eddb 5075 struct task_struct *leader, *p;
9f2115f9 5076 struct mm_struct *mm;
1dfab5ab 5077 unsigned long move_flags;
9f2115f9 5078 int ret = 0;
7dc74be0 5079
1f7dd3e5
TH
5080 /* charge immigration isn't supported on the default hierarchy */
5081 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
9f2115f9
TH
5082 return 0;
5083
4530eddb
TH
5084 /*
5085 * Multi-process migrations only happen on the default hierarchy
5086 * where charge immigration is not used. Perform charge
5087 * immigration if @tset contains a leader and whine if there are
5088 * multiple.
5089 */
5090 p = NULL;
1f7dd3e5 5091 cgroup_taskset_for_each_leader(leader, css, tset) {
4530eddb
TH
5092 WARN_ON_ONCE(p);
5093 p = leader;
1f7dd3e5 5094 memcg = mem_cgroup_from_css(css);
4530eddb
TH
5095 }
5096 if (!p)
5097 return 0;
5098
1f7dd3e5
TH
5099 /*
5100 * We are now commited to this value whatever it is. Changes in this
5101 * tunable will only affect upcoming migrations, not the current one.
5102 * So we need to save it, and keep it going.
5103 */
5104 move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
5105 if (!move_flags)
5106 return 0;
5107
9f2115f9
TH
5108 from = mem_cgroup_from_task(p);
5109
5110 VM_BUG_ON(from == memcg);
5111
5112 mm = get_task_mm(p);
5113 if (!mm)
5114 return 0;
5115 /* We move charges only when we move a owner of the mm */
5116 if (mm->owner == p) {
5117 VM_BUG_ON(mc.from);
5118 VM_BUG_ON(mc.to);
5119 VM_BUG_ON(mc.precharge);
5120 VM_BUG_ON(mc.moved_charge);
5121 VM_BUG_ON(mc.moved_swap);
5122
5123 spin_lock(&mc.lock);
264a0ae1 5124 mc.mm = mm;
9f2115f9
TH
5125 mc.from = from;
5126 mc.to = memcg;
5127 mc.flags = move_flags;
5128 spin_unlock(&mc.lock);
5129 /* We set mc.moving_task later */
5130
5131 ret = mem_cgroup_precharge_mc(mm);
5132 if (ret)
5133 mem_cgroup_clear_mc();
264a0ae1
TH
5134 } else {
5135 mmput(mm);
7dc74be0
DN
5136 }
5137 return ret;
5138}
5139
1f7dd3e5 5140static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
7dc74be0 5141{
4e2f245d
JW
5142 if (mc.to)
5143 mem_cgroup_clear_mc();
7dc74be0
DN
5144}
5145
4ffef5fe
DN
5146static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
5147 unsigned long addr, unsigned long end,
5148 struct mm_walk *walk)
7dc74be0 5149{
4ffef5fe 5150 int ret = 0;
26bcd64a 5151 struct vm_area_struct *vma = walk->vma;
4ffef5fe
DN
5152 pte_t *pte;
5153 spinlock_t *ptl;
12724850
NH
5154 enum mc_target_type target_type;
5155 union mc_target target;
5156 struct page *page;
4ffef5fe 5157
b6ec57f4
KS
5158 ptl = pmd_trans_huge_lock(pmd, vma);
5159 if (ptl) {
62ade86a 5160 if (mc.precharge < HPAGE_PMD_NR) {
bf929152 5161 spin_unlock(ptl);
12724850
NH
5162 return 0;
5163 }
5164 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
5165 if (target_type == MC_TARGET_PAGE) {
5166 page = target.page;
5167 if (!isolate_lru_page(page)) {
f627c2f5 5168 if (!mem_cgroup_move_account(page, true,
1306a85a 5169 mc.from, mc.to)) {
12724850
NH
5170 mc.precharge -= HPAGE_PMD_NR;
5171 mc.moved_charge += HPAGE_PMD_NR;
5172 }
5173 putback_lru_page(page);
5174 }
5175 put_page(page);
c733a828
JG
5176 } else if (target_type == MC_TARGET_DEVICE) {
5177 page = target.page;
5178 if (!mem_cgroup_move_account(page, true,
5179 mc.from, mc.to)) {
5180 mc.precharge -= HPAGE_PMD_NR;
5181 mc.moved_charge += HPAGE_PMD_NR;
5182 }
5183 put_page(page);
12724850 5184 }
bf929152 5185 spin_unlock(ptl);
1a5a9906 5186 return 0;
12724850
NH
5187 }
5188
45f83cef
AA
5189 if (pmd_trans_unstable(pmd))
5190 return 0;
4ffef5fe
DN
5191retry:
5192 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5193 for (; addr != end; addr += PAGE_SIZE) {
5194 pte_t ptent = *(pte++);
c733a828 5195 bool device = false;
02491447 5196 swp_entry_t ent;
4ffef5fe
DN
5197
5198 if (!mc.precharge)
5199 break;
5200
8d32ff84 5201 switch (get_mctgt_type(vma, addr, ptent, &target)) {
c733a828
JG
5202 case MC_TARGET_DEVICE:
5203 device = true;
5204 /* fall through */
4ffef5fe
DN
5205 case MC_TARGET_PAGE:
5206 page = target.page;
53f9263b
KS
5207 /*
5208 * We can have a part of the split pmd here. Moving it
5209 * can be done but it would be too convoluted so simply
5210 * ignore such a partial THP and keep it in original
5211 * memcg. There should be somebody mapping the head.
5212 */
5213 if (PageTransCompound(page))
5214 goto put;
c733a828 5215 if (!device && isolate_lru_page(page))
4ffef5fe 5216 goto put;
f627c2f5
KS
5217 if (!mem_cgroup_move_account(page, false,
5218 mc.from, mc.to)) {
4ffef5fe 5219 mc.precharge--;
854ffa8d
DN
5220 /* we uncharge from mc.from later. */
5221 mc.moved_charge++;
4ffef5fe 5222 }
c733a828
JG
5223 if (!device)
5224 putback_lru_page(page);
8d32ff84 5225put: /* get_mctgt_type() gets the page */
4ffef5fe
DN
5226 put_page(page);
5227 break;
02491447
DN
5228 case MC_TARGET_SWAP:
5229 ent = target.ent;
e91cbb42 5230 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
02491447 5231 mc.precharge--;
483c30b5
DN
5232 /* we fixup refcnts and charges later. */
5233 mc.moved_swap++;
5234 }
02491447 5235 break;
4ffef5fe
DN
5236 default:
5237 break;
5238 }
5239 }
5240 pte_unmap_unlock(pte - 1, ptl);
5241 cond_resched();
5242
5243 if (addr != end) {
5244 /*
5245 * We have consumed all precharges we got in can_attach().
5246 * We try charge one by one, but don't do any additional
5247 * charges to mc.to if we have failed in charge once in attach()
5248 * phase.
5249 */
854ffa8d 5250 ret = mem_cgroup_do_precharge(1);
4ffef5fe
DN
5251 if (!ret)
5252 goto retry;
5253 }
5254
5255 return ret;
5256}
5257
264a0ae1 5258static void mem_cgroup_move_charge(void)
4ffef5fe 5259{
26bcd64a
NH
5260 struct mm_walk mem_cgroup_move_charge_walk = {
5261 .pmd_entry = mem_cgroup_move_charge_pte_range,
264a0ae1 5262 .mm = mc.mm,
26bcd64a 5263 };
4ffef5fe
DN
5264
5265 lru_add_drain_all();
312722cb 5266 /*
81f8c3a4
JW
5267 * Signal lock_page_memcg() to take the memcg's move_lock
5268 * while we're moving its pages to another memcg. Then wait
5269 * for already started RCU-only updates to finish.
312722cb
JW
5270 */
5271 atomic_inc(&mc.from->moving_account);
5272 synchronize_rcu();
dfe076b0 5273retry:
264a0ae1 5274 if (unlikely(!down_read_trylock(&mc.mm->mmap_sem))) {
dfe076b0
DN
5275 /*
5276 * Someone who are holding the mmap_sem might be waiting in
5277 * waitq. So we cancel all extra charges, wake up all waiters,
5278 * and retry. Because we cancel precharges, we might not be able
5279 * to move enough charges, but moving charge is a best-effort
5280 * feature anyway, so it wouldn't be a big problem.
5281 */
5282 __mem_cgroup_clear_mc();
5283 cond_resched();
5284 goto retry;
5285 }
26bcd64a
NH
5286 /*
5287 * When we have consumed all precharges and failed in doing
5288 * additional charge, the page walk just aborts.
5289 */
0247f3f4
JM
5290 walk_page_range(0, mc.mm->highest_vm_end, &mem_cgroup_move_charge_walk);
5291
264a0ae1 5292 up_read(&mc.mm->mmap_sem);
312722cb 5293 atomic_dec(&mc.from->moving_account);
7dc74be0
DN
5294}
5295
264a0ae1 5296static void mem_cgroup_move_task(void)
67e465a7 5297{
264a0ae1
TH
5298 if (mc.to) {
5299 mem_cgroup_move_charge();
a433658c 5300 mem_cgroup_clear_mc();
264a0ae1 5301 }
67e465a7 5302}
5cfb80a7 5303#else /* !CONFIG_MMU */
1f7dd3e5 5304static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
5cfb80a7
DN
5305{
5306 return 0;
5307}
1f7dd3e5 5308static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
5cfb80a7
DN
5309{
5310}
264a0ae1 5311static void mem_cgroup_move_task(void)
5cfb80a7
DN
5312{
5313}
5314#endif
67e465a7 5315
f00baae7
TH
5316/*
5317 * Cgroup retains root cgroups across [un]mount cycles making it necessary
aa6ec29b
TH
5318 * to verify whether we're attached to the default hierarchy on each mount
5319 * attempt.
f00baae7 5320 */
eb95419b 5321static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
f00baae7
TH
5322{
5323 /*
aa6ec29b 5324 * use_hierarchy is forced on the default hierarchy. cgroup core
f00baae7
TH
5325 * guarantees that @root doesn't have any children, so turning it
5326 * on for the root memcg is enough.
5327 */
9e10a130 5328 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
7feee590
VD
5329 root_mem_cgroup->use_hierarchy = true;
5330 else
5331 root_mem_cgroup->use_hierarchy = false;
f00baae7
TH
5332}
5333
241994ed
JW
5334static u64 memory_current_read(struct cgroup_subsys_state *css,
5335 struct cftype *cft)
5336{
f5fc3c5d
JW
5337 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5338
5339 return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
241994ed
JW
5340}
5341
bf8d5d52
RG
5342static int memory_min_show(struct seq_file *m, void *v)
5343{
5344 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5345 unsigned long min = READ_ONCE(memcg->memory.min);
5346
5347 if (min == PAGE_COUNTER_MAX)
5348 seq_puts(m, "max\n");
5349 else
5350 seq_printf(m, "%llu\n", (u64)min * PAGE_SIZE);
5351
5352 return 0;
5353}
5354
5355static ssize_t memory_min_write(struct kernfs_open_file *of,
5356 char *buf, size_t nbytes, loff_t off)
5357{
5358 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5359 unsigned long min;
5360 int err;
5361
5362 buf = strstrip(buf);
5363 err = page_counter_memparse(buf, "max", &min);
5364 if (err)
5365 return err;
5366
5367 page_counter_set_min(&memcg->memory, min);
5368
5369 return nbytes;
5370}
5371
241994ed
JW
5372static int memory_low_show(struct seq_file *m, void *v)
5373{
5374 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
23067153 5375 unsigned long low = READ_ONCE(memcg->memory.low);
241994ed
JW
5376
5377 if (low == PAGE_COUNTER_MAX)
d2973697 5378 seq_puts(m, "max\n");
241994ed
JW
5379 else
5380 seq_printf(m, "%llu\n", (u64)low * PAGE_SIZE);
5381
5382 return 0;
5383}
5384
5385static ssize_t memory_low_write(struct kernfs_open_file *of,
5386 char *buf, size_t nbytes, loff_t off)
5387{
5388 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5389 unsigned long low;
5390 int err;
5391
5392 buf = strstrip(buf);
d2973697 5393 err = page_counter_memparse(buf, "max", &low);
241994ed
JW
5394 if (err)
5395 return err;
5396
23067153 5397 page_counter_set_low(&memcg->memory, low);
241994ed
JW
5398
5399 return nbytes;
5400}
5401
5402static int memory_high_show(struct seq_file *m, void *v)
5403{
5404 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
4db0c3c2 5405 unsigned long high = READ_ONCE(memcg->high);
241994ed
JW
5406
5407 if (high == PAGE_COUNTER_MAX)
d2973697 5408 seq_puts(m, "max\n");
241994ed
JW
5409 else
5410 seq_printf(m, "%llu\n", (u64)high * PAGE_SIZE);
5411
5412 return 0;
5413}
5414
5415static ssize_t memory_high_write(struct kernfs_open_file *of,
5416 char *buf, size_t nbytes, loff_t off)
5417{
5418 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
588083bb 5419 unsigned long nr_pages;
241994ed
JW
5420 unsigned long high;
5421 int err;
5422
5423 buf = strstrip(buf);
d2973697 5424 err = page_counter_memparse(buf, "max", &high);
241994ed
JW
5425 if (err)
5426 return err;
5427
5428 memcg->high = high;
5429
588083bb
JW
5430 nr_pages = page_counter_read(&memcg->memory);
5431 if (nr_pages > high)
5432 try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
5433 GFP_KERNEL, true);
5434
2529bb3a 5435 memcg_wb_domain_size_changed(memcg);
241994ed
JW
5436 return nbytes;
5437}
5438
5439static int memory_max_show(struct seq_file *m, void *v)
5440{
5441 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
bbec2e15 5442 unsigned long max = READ_ONCE(memcg->memory.max);
241994ed
JW
5443
5444 if (max == PAGE_COUNTER_MAX)
d2973697 5445 seq_puts(m, "max\n");
241994ed
JW
5446 else
5447 seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);
5448
5449 return 0;
5450}
5451
5452static ssize_t memory_max_write(struct kernfs_open_file *of,
5453 char *buf, size_t nbytes, loff_t off)
5454{
5455 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
b6e6edcf
JW
5456 unsigned int nr_reclaims = MEM_CGROUP_RECLAIM_RETRIES;
5457 bool drained = false;
241994ed
JW
5458 unsigned long max;
5459 int err;
5460
5461 buf = strstrip(buf);
d2973697 5462 err = page_counter_memparse(buf, "max", &max);
241994ed
JW
5463 if (err)
5464 return err;
5465
bbec2e15 5466 xchg(&memcg->memory.max, max);
b6e6edcf
JW
5467
5468 for (;;) {
5469 unsigned long nr_pages = page_counter_read(&memcg->memory);
5470
5471 if (nr_pages <= max)
5472 break;
5473
5474 if (signal_pending(current)) {
5475 err = -EINTR;
5476 break;
5477 }
5478
5479 if (!drained) {
5480 drain_all_stock(memcg);
5481 drained = true;
5482 continue;
5483 }
5484
5485 if (nr_reclaims) {
5486 if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
5487 GFP_KERNEL, true))
5488 nr_reclaims--;
5489 continue;
5490 }
5491
e27be240 5492 memcg_memory_event(memcg, MEMCG_OOM);
b6e6edcf
JW
5493 if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
5494 break;
5495 }
241994ed 5496
2529bb3a 5497 memcg_wb_domain_size_changed(memcg);
241994ed
JW
5498 return nbytes;
5499}
5500
5501static int memory_events_show(struct seq_file *m, void *v)
5502{
5503 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5504
e27be240
JW
5505 seq_printf(m, "low %lu\n",
5506 atomic_long_read(&memcg->memory_events[MEMCG_LOW]));
5507 seq_printf(m, "high %lu\n",
5508 atomic_long_read(&memcg->memory_events[MEMCG_HIGH]));
5509 seq_printf(m, "max %lu\n",
5510 atomic_long_read(&memcg->memory_events[MEMCG_MAX]));
5511 seq_printf(m, "oom %lu\n",
5512 atomic_long_read(&memcg->memory_events[MEMCG_OOM]));
fe6bdfc8
RG
5513 seq_printf(m, "oom_kill %lu\n",
5514 atomic_long_read(&memcg->memory_events[MEMCG_OOM_KILL]));
241994ed
JW
5515
5516 return 0;
5517}
5518
587d9f72
JW
5519static int memory_stat_show(struct seq_file *m, void *v)
5520{
5521 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
8de7ecc6 5522 struct accumulated_stats acc;
587d9f72
JW
5523 int i;
5524
5525 /*
5526 * Provide statistics on the state of the memory subsystem as
5527 * well as cumulative event counters that show past behavior.
5528 *
5529 * This list is ordered following a combination of these gradients:
5530 * 1) generic big picture -> specifics and details
5531 * 2) reflecting userspace activity -> reflecting kernel heuristics
5532 *
5533 * Current memory state:
5534 */
5535
8de7ecc6
SB
5536 memset(&acc, 0, sizeof(acc));
5537 acc.stats_size = MEMCG_NR_STAT;
5538 acc.events_size = NR_VM_EVENT_ITEMS;
5539 accumulate_memcg_tree(memcg, &acc);
72b54e73 5540
587d9f72 5541 seq_printf(m, "anon %llu\n",
8de7ecc6 5542 (u64)acc.stat[MEMCG_RSS] * PAGE_SIZE);
587d9f72 5543 seq_printf(m, "file %llu\n",
8de7ecc6 5544 (u64)acc.stat[MEMCG_CACHE] * PAGE_SIZE);
12580e4b 5545 seq_printf(m, "kernel_stack %llu\n",
8de7ecc6 5546 (u64)acc.stat[MEMCG_KERNEL_STACK_KB] * 1024);
27ee57c9 5547 seq_printf(m, "slab %llu\n",
8de7ecc6
SB
5548 (u64)(acc.stat[NR_SLAB_RECLAIMABLE] +
5549 acc.stat[NR_SLAB_UNRECLAIMABLE]) * PAGE_SIZE);
b2807f07 5550 seq_printf(m, "sock %llu\n",
8de7ecc6 5551 (u64)acc.stat[MEMCG_SOCK] * PAGE_SIZE);
587d9f72 5552
9a4caf1e 5553 seq_printf(m, "shmem %llu\n",
8de7ecc6 5554 (u64)acc.stat[NR_SHMEM] * PAGE_SIZE);
587d9f72 5555 seq_printf(m, "file_mapped %llu\n",
8de7ecc6 5556 (u64)acc.stat[NR_FILE_MAPPED] * PAGE_SIZE);
587d9f72 5557 seq_printf(m, "file_dirty %llu\n",
8de7ecc6 5558 (u64)acc.stat[NR_FILE_DIRTY] * PAGE_SIZE);
587d9f72 5559 seq_printf(m, "file_writeback %llu\n",
8de7ecc6 5560 (u64)acc.stat[NR_WRITEBACK] * PAGE_SIZE);
587d9f72 5561
8de7ecc6
SB
5562 for (i = 0; i < NR_LRU_LISTS; i++)
5563 seq_printf(m, "%s %llu\n", mem_cgroup_lru_names[i],
5564 (u64)acc.lru_pages[i] * PAGE_SIZE);
587d9f72 5565
27ee57c9 5566 seq_printf(m, "slab_reclaimable %llu\n",
8de7ecc6 5567 (u64)acc.stat[NR_SLAB_RECLAIMABLE] * PAGE_SIZE);
27ee57c9 5568 seq_printf(m, "slab_unreclaimable %llu\n",
8de7ecc6 5569 (u64)acc.stat[NR_SLAB_UNRECLAIMABLE] * PAGE_SIZE);
27ee57c9 5570
587d9f72
JW
5571 /* Accumulated memory events */
5572
8de7ecc6
SB
5573 seq_printf(m, "pgfault %lu\n", acc.events[PGFAULT]);
5574 seq_printf(m, "pgmajfault %lu\n", acc.events[PGMAJFAULT]);
587d9f72 5575
e9b257ed
JW
5576 seq_printf(m, "workingset_refault %lu\n",
5577 acc.stat[WORKINGSET_REFAULT]);
5578 seq_printf(m, "workingset_activate %lu\n",
5579 acc.stat[WORKINGSET_ACTIVATE]);
5580 seq_printf(m, "workingset_nodereclaim %lu\n",
5581 acc.stat[WORKINGSET_NODERECLAIM]);
5582
8de7ecc6
SB
5583 seq_printf(m, "pgrefill %lu\n", acc.events[PGREFILL]);
5584 seq_printf(m, "pgscan %lu\n", acc.events[PGSCAN_KSWAPD] +
5585 acc.events[PGSCAN_DIRECT]);
5586 seq_printf(m, "pgsteal %lu\n", acc.events[PGSTEAL_KSWAPD] +
5587 acc.events[PGSTEAL_DIRECT]);
5588 seq_printf(m, "pgactivate %lu\n", acc.events[PGACTIVATE]);
5589 seq_printf(m, "pgdeactivate %lu\n", acc.events[PGDEACTIVATE]);
5590 seq_printf(m, "pglazyfree %lu\n", acc.events[PGLAZYFREE]);
5591 seq_printf(m, "pglazyfreed %lu\n", acc.events[PGLAZYFREED]);
2262185c 5592
587d9f72
JW
5593 return 0;
5594}
5595
3d8b38eb
RG
5596static int memory_oom_group_show(struct seq_file *m, void *v)
5597{
5598 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5599
5600 seq_printf(m, "%d\n", memcg->oom_group);
5601
5602 return 0;
5603}
5604
5605static ssize_t memory_oom_group_write(struct kernfs_open_file *of,
5606 char *buf, size_t nbytes, loff_t off)
5607{
5608 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5609 int ret, oom_group;
5610
5611 buf = strstrip(buf);
5612 if (!buf)
5613 return -EINVAL;
5614
5615 ret = kstrtoint(buf, 0, &oom_group);
5616 if (ret)
5617 return ret;
5618
5619 if (oom_group != 0 && oom_group != 1)
5620 return -EINVAL;
5621
5622 memcg->oom_group = oom_group;
5623
5624 return nbytes;
5625}
5626
241994ed
JW
5627static struct cftype memory_files[] = {
5628 {
5629 .name = "current",
f5fc3c5d 5630 .flags = CFTYPE_NOT_ON_ROOT,
241994ed
JW
5631 .read_u64 = memory_current_read,
5632 },
bf8d5d52
RG
5633 {
5634 .name = "min",
5635 .flags = CFTYPE_NOT_ON_ROOT,
5636 .seq_show = memory_min_show,
5637 .write = memory_min_write,
5638 },
241994ed
JW
5639 {
5640 .name = "low",
5641 .flags = CFTYPE_NOT_ON_ROOT,
5642 .seq_show = memory_low_show,
5643 .write = memory_low_write,
5644 },
5645 {
5646 .name = "high",
5647 .flags = CFTYPE_NOT_ON_ROOT,
5648 .seq_show = memory_high_show,
5649 .write = memory_high_write,
5650 },
5651 {
5652 .name = "max",
5653 .flags = CFTYPE_NOT_ON_ROOT,
5654 .seq_show = memory_max_show,
5655 .write = memory_max_write,
5656 },
5657 {
5658 .name = "events",
5659 .flags = CFTYPE_NOT_ON_ROOT,
472912a2 5660 .file_offset = offsetof(struct mem_cgroup, events_file),
241994ed
JW
5661 .seq_show = memory_events_show,
5662 },
587d9f72
JW
5663 {
5664 .name = "stat",
5665 .flags = CFTYPE_NOT_ON_ROOT,
5666 .seq_show = memory_stat_show,
5667 },
3d8b38eb
RG
5668 {
5669 .name = "oom.group",
5670 .flags = CFTYPE_NOT_ON_ROOT | CFTYPE_NS_DELEGATABLE,
5671 .seq_show = memory_oom_group_show,
5672 .write = memory_oom_group_write,
5673 },
241994ed
JW
5674 { } /* terminate */
5675};
5676
073219e9 5677struct cgroup_subsys memory_cgrp_subsys = {
92fb9748 5678 .css_alloc = mem_cgroup_css_alloc,
d142e3e6 5679 .css_online = mem_cgroup_css_online,
92fb9748 5680 .css_offline = mem_cgroup_css_offline,
6df38689 5681 .css_released = mem_cgroup_css_released,
92fb9748 5682 .css_free = mem_cgroup_css_free,
1ced953b 5683 .css_reset = mem_cgroup_css_reset,
7dc74be0
DN
5684 .can_attach = mem_cgroup_can_attach,
5685 .cancel_attach = mem_cgroup_cancel_attach,
264a0ae1 5686 .post_attach = mem_cgroup_move_task,
f00baae7 5687 .bind = mem_cgroup_bind,
241994ed
JW
5688 .dfl_cftypes = memory_files,
5689 .legacy_cftypes = mem_cgroup_legacy_files,
6d12e2d8 5690 .early_init = 0,
8cdea7c0 5691};
c077719b 5692
241994ed 5693/**
bf8d5d52 5694 * mem_cgroup_protected - check if memory consumption is in the normal range
34c81057 5695 * @root: the top ancestor of the sub-tree being checked
241994ed
JW
5696 * @memcg: the memory cgroup to check
5697 *
23067153
RG
5698 * WARNING: This function is not stateless! It can only be used as part
5699 * of a top-down tree iteration, not for isolated queries.
34c81057 5700 *
bf8d5d52
RG
5701 * Returns one of the following:
5702 * MEMCG_PROT_NONE: cgroup memory is not protected
5703 * MEMCG_PROT_LOW: cgroup memory is protected as long there is
5704 * an unprotected supply of reclaimable memory from other cgroups.
5705 * MEMCG_PROT_MIN: cgroup memory is protected
34c81057 5706 *
bf8d5d52 5707 * @root is exclusive; it is never protected when looked at directly
34c81057 5708 *
bf8d5d52
RG
5709 * To provide a proper hierarchical behavior, effective memory.min/low values
5710 * are used. Below is the description of how effective memory.low is calculated.
5711 * Effective memory.min values is calculated in the same way.
34c81057 5712 *
23067153
RG
5713 * Effective memory.low is always equal or less than the original memory.low.
5714 * If there is no memory.low overcommittment (which is always true for
5715 * top-level memory cgroups), these two values are equal.
5716 * Otherwise, it's a part of parent's effective memory.low,
5717 * calculated as a cgroup's memory.low usage divided by sum of sibling's
5718 * memory.low usages, where memory.low usage is the size of actually
5719 * protected memory.
34c81057 5720 *
23067153
RG
5721 * low_usage
5722 * elow = min( memory.low, parent->elow * ------------------ ),
5723 * siblings_low_usage
34c81057 5724 *
23067153
RG
5725 * | memory.current, if memory.current < memory.low
5726 * low_usage = |
5727 | 0, otherwise.
34c81057 5728 *
23067153
RG
5729 *
5730 * Such definition of the effective memory.low provides the expected
5731 * hierarchical behavior: parent's memory.low value is limiting
5732 * children, unprotected memory is reclaimed first and cgroups,
5733 * which are not using their guarantee do not affect actual memory
5734 * distribution.
5735 *
5736 * For example, if there are memcgs A, A/B, A/C, A/D and A/E:
5737 *
5738 * A A/memory.low = 2G, A/memory.current = 6G
5739 * //\\
5740 * BC DE B/memory.low = 3G B/memory.current = 2G
5741 * C/memory.low = 1G C/memory.current = 2G
5742 * D/memory.low = 0 D/memory.current = 2G
5743 * E/memory.low = 10G E/memory.current = 0
5744 *
5745 * and the memory pressure is applied, the following memory distribution
5746 * is expected (approximately):
5747 *
5748 * A/memory.current = 2G
5749 *
5750 * B/memory.current = 1.3G
5751 * C/memory.current = 0.6G
5752 * D/memory.current = 0
5753 * E/memory.current = 0
5754 *
5755 * These calculations require constant tracking of the actual low usages
bf8d5d52
RG
5756 * (see propagate_protected_usage()), as well as recursive calculation of
5757 * effective memory.low values. But as we do call mem_cgroup_protected()
23067153
RG
5758 * path for each memory cgroup top-down from the reclaim,
5759 * it's possible to optimize this part, and save calculated elow
5760 * for next usage. This part is intentionally racy, but it's ok,
5761 * as memory.low is a best-effort mechanism.
241994ed 5762 */
bf8d5d52
RG
5763enum mem_cgroup_protection mem_cgroup_protected(struct mem_cgroup *root,
5764 struct mem_cgroup *memcg)
241994ed 5765{
23067153 5766 struct mem_cgroup *parent;
bf8d5d52
RG
5767 unsigned long emin, parent_emin;
5768 unsigned long elow, parent_elow;
5769 unsigned long usage;
23067153 5770
241994ed 5771 if (mem_cgroup_disabled())
bf8d5d52 5772 return MEMCG_PROT_NONE;
241994ed 5773
34c81057
SC
5774 if (!root)
5775 root = root_mem_cgroup;
5776 if (memcg == root)
bf8d5d52 5777 return MEMCG_PROT_NONE;
241994ed 5778
23067153 5779 usage = page_counter_read(&memcg->memory);
bf8d5d52
RG
5780 if (!usage)
5781 return MEMCG_PROT_NONE;
5782
5783 emin = memcg->memory.min;
5784 elow = memcg->memory.low;
34c81057 5785
bf8d5d52 5786 parent = parent_mem_cgroup(memcg);
df2a4196
RG
5787 /* No parent means a non-hierarchical mode on v1 memcg */
5788 if (!parent)
5789 return MEMCG_PROT_NONE;
5790
23067153
RG
5791 if (parent == root)
5792 goto exit;
5793
bf8d5d52
RG
5794 parent_emin = READ_ONCE(parent->memory.emin);
5795 emin = min(emin, parent_emin);
5796 if (emin && parent_emin) {
5797 unsigned long min_usage, siblings_min_usage;
5798
5799 min_usage = min(usage, memcg->memory.min);
5800 siblings_min_usage = atomic_long_read(
5801 &parent->memory.children_min_usage);
5802
5803 if (min_usage && siblings_min_usage)
5804 emin = min(emin, parent_emin * min_usage /
5805 siblings_min_usage);
5806 }
5807
23067153
RG
5808 parent_elow = READ_ONCE(parent->memory.elow);
5809 elow = min(elow, parent_elow);
bf8d5d52
RG
5810 if (elow && parent_elow) {
5811 unsigned long low_usage, siblings_low_usage;
23067153 5812
bf8d5d52
RG
5813 low_usage = min(usage, memcg->memory.low);
5814 siblings_low_usage = atomic_long_read(
5815 &parent->memory.children_low_usage);
23067153 5816
bf8d5d52
RG
5817 if (low_usage && siblings_low_usage)
5818 elow = min(elow, parent_elow * low_usage /
5819 siblings_low_usage);
5820 }
23067153 5821
23067153 5822exit:
bf8d5d52 5823 memcg->memory.emin = emin;
23067153 5824 memcg->memory.elow = elow;
bf8d5d52
RG
5825
5826 if (usage <= emin)
5827 return MEMCG_PROT_MIN;
5828 else if (usage <= elow)
5829 return MEMCG_PROT_LOW;
5830 else
5831 return MEMCG_PROT_NONE;
241994ed
JW
5832}
5833
00501b53
JW
5834/**
5835 * mem_cgroup_try_charge - try charging a page
5836 * @page: page to charge
5837 * @mm: mm context of the victim
5838 * @gfp_mask: reclaim mode
5839 * @memcgp: charged memcg return
25843c2b 5840 * @compound: charge the page as compound or small page
00501b53
JW
5841 *
5842 * Try to charge @page to the memcg that @mm belongs to, reclaiming
5843 * pages according to @gfp_mask if necessary.
5844 *
5845 * Returns 0 on success, with *@memcgp pointing to the charged memcg.
5846 * Otherwise, an error code is returned.
5847 *
5848 * After page->mapping has been set up, the caller must finalize the
5849 * charge with mem_cgroup_commit_charge(). Or abort the transaction
5850 * with mem_cgroup_cancel_charge() in case page instantiation fails.
5851 */
5852int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
f627c2f5
KS
5853 gfp_t gfp_mask, struct mem_cgroup **memcgp,
5854 bool compound)
00501b53
JW
5855{
5856 struct mem_cgroup *memcg = NULL;
f627c2f5 5857 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
00501b53
JW
5858 int ret = 0;
5859
5860 if (mem_cgroup_disabled())
5861 goto out;
5862
5863 if (PageSwapCache(page)) {
00501b53
JW
5864 /*
5865 * Every swap fault against a single page tries to charge the
5866 * page, bail as early as possible. shmem_unuse() encounters
5867 * already charged pages, too. The USED bit is protected by
5868 * the page lock, which serializes swap cache removal, which
5869 * in turn serializes uncharging.
5870 */
e993d905 5871 VM_BUG_ON_PAGE(!PageLocked(page), page);
abe2895b 5872 if (compound_head(page)->mem_cgroup)
00501b53 5873 goto out;
e993d905 5874
37e84351 5875 if (do_swap_account) {
e993d905
VD
5876 swp_entry_t ent = { .val = page_private(page), };
5877 unsigned short id = lookup_swap_cgroup_id(ent);
5878
5879 rcu_read_lock();
5880 memcg = mem_cgroup_from_id(id);
5881 if (memcg && !css_tryget_online(&memcg->css))
5882 memcg = NULL;
5883 rcu_read_unlock();
5884 }
00501b53
JW
5885 }
5886
00501b53
JW
5887 if (!memcg)
5888 memcg = get_mem_cgroup_from_mm(mm);
5889
5890 ret = try_charge(memcg, gfp_mask, nr_pages);
5891
5892 css_put(&memcg->css);
00501b53
JW
5893out:
5894 *memcgp = memcg;
5895 return ret;
5896}
5897
2cf85583
TH
5898int mem_cgroup_try_charge_delay(struct page *page, struct mm_struct *mm,
5899 gfp_t gfp_mask, struct mem_cgroup **memcgp,
5900 bool compound)
5901{
5902 struct mem_cgroup *memcg;
5903 int ret;
5904
5905 ret = mem_cgroup_try_charge(page, mm, gfp_mask, memcgp, compound);
5906 memcg = *memcgp;
5907 mem_cgroup_throttle_swaprate(memcg, page_to_nid(page), gfp_mask);
5908 return ret;
5909}
5910
00501b53
JW
5911/**
5912 * mem_cgroup_commit_charge - commit a page charge
5913 * @page: page to charge
5914 * @memcg: memcg to charge the page to
5915 * @lrucare: page might be on LRU already
25843c2b 5916 * @compound: charge the page as compound or small page
00501b53
JW
5917 *
5918 * Finalize a charge transaction started by mem_cgroup_try_charge(),
5919 * after page->mapping has been set up. This must happen atomically
5920 * as part of the page instantiation, i.e. under the page table lock
5921 * for anonymous pages, under the page lock for page and swap cache.
5922 *
5923 * In addition, the page must not be on the LRU during the commit, to
5924 * prevent racing with task migration. If it might be, use @lrucare.
5925 *
5926 * Use mem_cgroup_cancel_charge() to cancel the transaction instead.
5927 */
5928void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
f627c2f5 5929 bool lrucare, bool compound)
00501b53 5930{
f627c2f5 5931 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
00501b53
JW
5932
5933 VM_BUG_ON_PAGE(!page->mapping, page);
5934 VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page);
5935
5936 if (mem_cgroup_disabled())
5937 return;
5938 /*
5939 * Swap faults will attempt to charge the same page multiple
5940 * times. But reuse_swap_page() might have removed the page
5941 * from swapcache already, so we can't check PageSwapCache().
5942 */
5943 if (!memcg)
5944 return;
5945
6abb5a86
JW
5946 commit_charge(page, memcg, lrucare);
5947
6abb5a86 5948 local_irq_disable();
f627c2f5 5949 mem_cgroup_charge_statistics(memcg, page, compound, nr_pages);
6abb5a86
JW
5950 memcg_check_events(memcg, page);
5951 local_irq_enable();
00501b53 5952
7941d214 5953 if (do_memsw_account() && PageSwapCache(page)) {
00501b53
JW
5954 swp_entry_t entry = { .val = page_private(page) };
5955 /*
5956 * The swap entry might not get freed for a long time,
5957 * let's not wait for it. The page already received a
5958 * memory+swap charge, drop the swap entry duplicate.
5959 */
38d8b4e6 5960 mem_cgroup_uncharge_swap(entry, nr_pages);
00501b53
JW
5961 }
5962}
5963
5964/**
5965 * mem_cgroup_cancel_charge - cancel a page charge
5966 * @page: page to charge
5967 * @memcg: memcg to charge the page to
25843c2b 5968 * @compound: charge the page as compound or small page
00501b53
JW
5969 *
5970 * Cancel a charge transaction started by mem_cgroup_try_charge().
5971 */
f627c2f5
KS
5972void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg,
5973 bool compound)
00501b53 5974{
f627c2f5 5975 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
00501b53
JW
5976
5977 if (mem_cgroup_disabled())
5978 return;
5979 /*
5980 * Swap faults will attempt to charge the same page multiple
5981 * times. But reuse_swap_page() might have removed the page
5982 * from swapcache already, so we can't check PageSwapCache().
5983 */
5984 if (!memcg)
5985 return;
5986
00501b53
JW
5987 cancel_charge(memcg, nr_pages);
5988}
5989
a9d5adee
JG
5990struct uncharge_gather {
5991 struct mem_cgroup *memcg;
5992 unsigned long pgpgout;
5993 unsigned long nr_anon;
5994 unsigned long nr_file;
5995 unsigned long nr_kmem;
5996 unsigned long nr_huge;
5997 unsigned long nr_shmem;
5998 struct page *dummy_page;
5999};
6000
6001static inline void uncharge_gather_clear(struct uncharge_gather *ug)
747db954 6002{
a9d5adee
JG
6003 memset(ug, 0, sizeof(*ug));
6004}
6005
6006static void uncharge_batch(const struct uncharge_gather *ug)
6007{
6008 unsigned long nr_pages = ug->nr_anon + ug->nr_file + ug->nr_kmem;
747db954
JW
6009 unsigned long flags;
6010
a9d5adee
JG
6011 if (!mem_cgroup_is_root(ug->memcg)) {
6012 page_counter_uncharge(&ug->memcg->memory, nr_pages);
7941d214 6013 if (do_memsw_account())
a9d5adee
JG
6014 page_counter_uncharge(&ug->memcg->memsw, nr_pages);
6015 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && ug->nr_kmem)
6016 page_counter_uncharge(&ug->memcg->kmem, ug->nr_kmem);
6017 memcg_oom_recover(ug->memcg);
ce00a967 6018 }
747db954
JW
6019
6020 local_irq_save(flags);
c9019e9b
JW
6021 __mod_memcg_state(ug->memcg, MEMCG_RSS, -ug->nr_anon);
6022 __mod_memcg_state(ug->memcg, MEMCG_CACHE, -ug->nr_file);
6023 __mod_memcg_state(ug->memcg, MEMCG_RSS_HUGE, -ug->nr_huge);
6024 __mod_memcg_state(ug->memcg, NR_SHMEM, -ug->nr_shmem);
6025 __count_memcg_events(ug->memcg, PGPGOUT, ug->pgpgout);
a983b5eb 6026 __this_cpu_add(ug->memcg->stat_cpu->nr_page_events, nr_pages);
a9d5adee 6027 memcg_check_events(ug->memcg, ug->dummy_page);
747db954 6028 local_irq_restore(flags);
e8ea14cc 6029
a9d5adee
JG
6030 if (!mem_cgroup_is_root(ug->memcg))
6031 css_put_many(&ug->memcg->css, nr_pages);
6032}
6033
6034static void uncharge_page(struct page *page, struct uncharge_gather *ug)
6035{
6036 VM_BUG_ON_PAGE(PageLRU(page), page);
3f2eb028
JG
6037 VM_BUG_ON_PAGE(page_count(page) && !is_zone_device_page(page) &&
6038 !PageHWPoison(page) , page);
a9d5adee
JG
6039
6040 if (!page->mem_cgroup)
6041 return;
6042
6043 /*
6044 * Nobody should be changing or seriously looking at
6045 * page->mem_cgroup at this point, we have fully
6046 * exclusive access to the page.
6047 */
6048
6049 if (ug->memcg != page->mem_cgroup) {
6050 if (ug->memcg) {
6051 uncharge_batch(ug);
6052 uncharge_gather_clear(ug);
6053 }
6054 ug->memcg = page->mem_cgroup;
6055 }
6056
6057 if (!PageKmemcg(page)) {
6058 unsigned int nr_pages = 1;
6059
6060 if (PageTransHuge(page)) {
6061 nr_pages <<= compound_order(page);
6062 ug->nr_huge += nr_pages;
6063 }
6064 if (PageAnon(page))
6065 ug->nr_anon += nr_pages;
6066 else {
6067 ug->nr_file += nr_pages;
6068 if (PageSwapBacked(page))
6069 ug->nr_shmem += nr_pages;
6070 }
6071 ug->pgpgout++;
6072 } else {
6073 ug->nr_kmem += 1 << compound_order(page);
6074 __ClearPageKmemcg(page);
6075 }
6076
6077 ug->dummy_page = page;
6078 page->mem_cgroup = NULL;
747db954
JW
6079}
6080
6081static void uncharge_list(struct list_head *page_list)
6082{
a9d5adee 6083 struct uncharge_gather ug;
747db954 6084 struct list_head *next;
a9d5adee
JG
6085
6086 uncharge_gather_clear(&ug);
747db954 6087
8b592656
JW
6088 /*
6089 * Note that the list can be a single page->lru; hence the
6090 * do-while loop instead of a simple list_for_each_entry().
6091 */
747db954
JW
6092 next = page_list->next;
6093 do {
a9d5adee
JG
6094 struct page *page;
6095
747db954
JW
6096 page = list_entry(next, struct page, lru);
6097 next = page->lru.next;
6098
a9d5adee 6099 uncharge_page(page, &ug);
747db954
JW
6100 } while (next != page_list);
6101
a9d5adee
JG
6102 if (ug.memcg)
6103 uncharge_batch(&ug);
747db954
JW
6104}
6105
0a31bc97
JW
6106/**
6107 * mem_cgroup_uncharge - uncharge a page
6108 * @page: page to uncharge
6109 *
6110 * Uncharge a page previously charged with mem_cgroup_try_charge() and
6111 * mem_cgroup_commit_charge().
6112 */
6113void mem_cgroup_uncharge(struct page *page)
6114{
a9d5adee
JG
6115 struct uncharge_gather ug;
6116
0a31bc97
JW
6117 if (mem_cgroup_disabled())
6118 return;
6119
747db954 6120 /* Don't touch page->lru of any random page, pre-check: */
1306a85a 6121 if (!page->mem_cgroup)
0a31bc97
JW
6122 return;
6123
a9d5adee
JG
6124 uncharge_gather_clear(&ug);
6125 uncharge_page(page, &ug);
6126 uncharge_batch(&ug);
747db954 6127}
0a31bc97 6128
747db954
JW
6129/**
6130 * mem_cgroup_uncharge_list - uncharge a list of page
6131 * @page_list: list of pages to uncharge
6132 *
6133 * Uncharge a list of pages previously charged with
6134 * mem_cgroup_try_charge() and mem_cgroup_commit_charge().
6135 */
6136void mem_cgroup_uncharge_list(struct list_head *page_list)
6137{
6138 if (mem_cgroup_disabled())
6139 return;
0a31bc97 6140
747db954
JW
6141 if (!list_empty(page_list))
6142 uncharge_list(page_list);
0a31bc97
JW
6143}
6144
6145/**
6a93ca8f
JW
6146 * mem_cgroup_migrate - charge a page's replacement
6147 * @oldpage: currently circulating page
6148 * @newpage: replacement page
0a31bc97 6149 *
6a93ca8f
JW
6150 * Charge @newpage as a replacement page for @oldpage. @oldpage will
6151 * be uncharged upon free.
0a31bc97
JW
6152 *
6153 * Both pages must be locked, @newpage->mapping must be set up.
6154 */
6a93ca8f 6155void mem_cgroup_migrate(struct page *oldpage, struct page *newpage)
0a31bc97 6156{
29833315 6157 struct mem_cgroup *memcg;
44b7a8d3
JW
6158 unsigned int nr_pages;
6159 bool compound;
d93c4130 6160 unsigned long flags;
0a31bc97
JW
6161
6162 VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
6163 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
0a31bc97 6164 VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
6abb5a86
JW
6165 VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
6166 newpage);
0a31bc97
JW
6167
6168 if (mem_cgroup_disabled())
6169 return;
6170
6171 /* Page cache replacement: new page already charged? */
1306a85a 6172 if (newpage->mem_cgroup)
0a31bc97
JW
6173 return;
6174
45637bab 6175 /* Swapcache readahead pages can get replaced before being charged */
1306a85a 6176 memcg = oldpage->mem_cgroup;
29833315 6177 if (!memcg)
0a31bc97
JW
6178 return;
6179
44b7a8d3
JW
6180 /* Force-charge the new page. The old one will be freed soon */
6181 compound = PageTransHuge(newpage);
6182 nr_pages = compound ? hpage_nr_pages(newpage) : 1;
6183
6184 page_counter_charge(&memcg->memory, nr_pages);
6185 if (do_memsw_account())
6186 page_counter_charge(&memcg->memsw, nr_pages);
6187 css_get_many(&memcg->css, nr_pages);
0a31bc97 6188
9cf7666a 6189 commit_charge(newpage, memcg, false);
44b7a8d3 6190
d93c4130 6191 local_irq_save(flags);
44b7a8d3
JW
6192 mem_cgroup_charge_statistics(memcg, newpage, compound, nr_pages);
6193 memcg_check_events(memcg, newpage);
d93c4130 6194 local_irq_restore(flags);
0a31bc97
JW
6195}
6196
ef12947c 6197DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
11092087
JW
6198EXPORT_SYMBOL(memcg_sockets_enabled_key);
6199
2d758073 6200void mem_cgroup_sk_alloc(struct sock *sk)
11092087
JW
6201{
6202 struct mem_cgroup *memcg;
6203
2d758073
JW
6204 if (!mem_cgroup_sockets_enabled)
6205 return;
6206
edbe69ef
RG
6207 /*
6208 * Socket cloning can throw us here with sk_memcg already
6209 * filled. It won't however, necessarily happen from
6210 * process context. So the test for root memcg given
6211 * the current task's memcg won't help us in this case.
6212 *
6213 * Respecting the original socket's memcg is a better
6214 * decision in this case.
6215 */
6216 if (sk->sk_memcg) {
6217 css_get(&sk->sk_memcg->css);
6218 return;
6219 }
6220
11092087
JW
6221 rcu_read_lock();
6222 memcg = mem_cgroup_from_task(current);
f7e1cb6e
JW
6223 if (memcg == root_mem_cgroup)
6224 goto out;
0db15298 6225 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active)
f7e1cb6e 6226 goto out;
f7e1cb6e 6227 if (css_tryget_online(&memcg->css))
11092087 6228 sk->sk_memcg = memcg;
f7e1cb6e 6229out:
11092087
JW
6230 rcu_read_unlock();
6231}
11092087 6232
2d758073 6233void mem_cgroup_sk_free(struct sock *sk)
11092087 6234{
2d758073
JW
6235 if (sk->sk_memcg)
6236 css_put(&sk->sk_memcg->css);
11092087
JW
6237}
6238
6239/**
6240 * mem_cgroup_charge_skmem - charge socket memory
6241 * @memcg: memcg to charge
6242 * @nr_pages: number of pages to charge
6243 *
6244 * Charges @nr_pages to @memcg. Returns %true if the charge fit within
6245 * @memcg's configured limit, %false if the charge had to be forced.
6246 */
6247bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
6248{
f7e1cb6e 6249 gfp_t gfp_mask = GFP_KERNEL;
11092087 6250
f7e1cb6e 6251 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
0db15298 6252 struct page_counter *fail;
f7e1cb6e 6253
0db15298
JW
6254 if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
6255 memcg->tcpmem_pressure = 0;
f7e1cb6e
JW
6256 return true;
6257 }
0db15298
JW
6258 page_counter_charge(&memcg->tcpmem, nr_pages);
6259 memcg->tcpmem_pressure = 1;
f7e1cb6e 6260 return false;
11092087 6261 }
d886f4e4 6262
f7e1cb6e
JW
6263 /* Don't block in the packet receive path */
6264 if (in_softirq())
6265 gfp_mask = GFP_NOWAIT;
6266
c9019e9b 6267 mod_memcg_state(memcg, MEMCG_SOCK, nr_pages);
b2807f07 6268
f7e1cb6e
JW
6269 if (try_charge(memcg, gfp_mask, nr_pages) == 0)
6270 return true;
6271
6272 try_charge(memcg, gfp_mask|__GFP_NOFAIL, nr_pages);
11092087
JW
6273 return false;
6274}
6275
6276/**
6277 * mem_cgroup_uncharge_skmem - uncharge socket memory
b7701a5f
MR
6278 * @memcg: memcg to uncharge
6279 * @nr_pages: number of pages to uncharge
11092087
JW
6280 */
6281void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
6282{
f7e1cb6e 6283 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
0db15298 6284 page_counter_uncharge(&memcg->tcpmem, nr_pages);
f7e1cb6e
JW
6285 return;
6286 }
d886f4e4 6287
c9019e9b 6288 mod_memcg_state(memcg, MEMCG_SOCK, -nr_pages);
b2807f07 6289
475d0487 6290 refill_stock(memcg, nr_pages);
11092087
JW
6291}
6292
f7e1cb6e
JW
6293static int __init cgroup_memory(char *s)
6294{
6295 char *token;
6296
6297 while ((token = strsep(&s, ",")) != NULL) {
6298 if (!*token)
6299 continue;
6300 if (!strcmp(token, "nosocket"))
6301 cgroup_memory_nosocket = true;
04823c83
VD
6302 if (!strcmp(token, "nokmem"))
6303 cgroup_memory_nokmem = true;
f7e1cb6e
JW
6304 }
6305 return 0;
6306}
6307__setup("cgroup.memory=", cgroup_memory);
11092087 6308
2d11085e 6309/*
1081312f
MH
6310 * subsys_initcall() for memory controller.
6311 *
308167fc
SAS
6312 * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this
6313 * context because of lock dependencies (cgroup_lock -> cpu hotplug) but
6314 * basically everything that doesn't depend on a specific mem_cgroup structure
6315 * should be initialized from here.
2d11085e
MH
6316 */
6317static int __init mem_cgroup_init(void)
6318{
95a045f6
JW
6319 int cpu, node;
6320
84c07d11 6321#ifdef CONFIG_MEMCG_KMEM
13583c3d
VD
6322 /*
6323 * Kmem cache creation is mostly done with the slab_mutex held,
17cc4dfe
TH
6324 * so use a workqueue with limited concurrency to avoid stalling
6325 * all worker threads in case lots of cgroups are created and
6326 * destroyed simultaneously.
13583c3d 6327 */
17cc4dfe
TH
6328 memcg_kmem_cache_wq = alloc_workqueue("memcg_kmem_cache", 0, 1);
6329 BUG_ON(!memcg_kmem_cache_wq);
13583c3d
VD
6330#endif
6331
308167fc
SAS
6332 cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL,
6333 memcg_hotplug_cpu_dead);
95a045f6
JW
6334
6335 for_each_possible_cpu(cpu)
6336 INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
6337 drain_local_stock);
6338
6339 for_each_node(node) {
6340 struct mem_cgroup_tree_per_node *rtpn;
95a045f6
JW
6341
6342 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
6343 node_online(node) ? node : NUMA_NO_NODE);
6344
ef8f2327 6345 rtpn->rb_root = RB_ROOT;
fa90b2fd 6346 rtpn->rb_rightmost = NULL;
ef8f2327 6347 spin_lock_init(&rtpn->lock);
95a045f6
JW
6348 soft_limit_tree.rb_tree_per_node[node] = rtpn;
6349 }
6350
2d11085e
MH
6351 return 0;
6352}
6353subsys_initcall(mem_cgroup_init);
21afa38e
JW
6354
6355#ifdef CONFIG_MEMCG_SWAP
358c07fc
AB
6356static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg)
6357{
1c2d479a 6358 while (!refcount_inc_not_zero(&memcg->id.ref)) {
358c07fc
AB
6359 /*
6360 * The root cgroup cannot be destroyed, so it's refcount must
6361 * always be >= 1.
6362 */
6363 if (WARN_ON_ONCE(memcg == root_mem_cgroup)) {
6364 VM_BUG_ON(1);
6365 break;
6366 }
6367 memcg = parent_mem_cgroup(memcg);
6368 if (!memcg)
6369 memcg = root_mem_cgroup;
6370 }
6371 return memcg;
6372}
6373
21afa38e
JW
6374/**
6375 * mem_cgroup_swapout - transfer a memsw charge to swap
6376 * @page: page whose memsw charge to transfer
6377 * @entry: swap entry to move the charge to
6378 *
6379 * Transfer the memsw charge of @page to @entry.
6380 */
6381void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
6382{
1f47b61f 6383 struct mem_cgroup *memcg, *swap_memcg;
d6810d73 6384 unsigned int nr_entries;
21afa38e
JW
6385 unsigned short oldid;
6386
6387 VM_BUG_ON_PAGE(PageLRU(page), page);
6388 VM_BUG_ON_PAGE(page_count(page), page);
6389
7941d214 6390 if (!do_memsw_account())
21afa38e
JW
6391 return;
6392
6393 memcg = page->mem_cgroup;
6394
6395 /* Readahead page, never charged */
6396 if (!memcg)
6397 return;
6398
1f47b61f
VD
6399 /*
6400 * In case the memcg owning these pages has been offlined and doesn't
6401 * have an ID allocated to it anymore, charge the closest online
6402 * ancestor for the swap instead and transfer the memory+swap charge.
6403 */
6404 swap_memcg = mem_cgroup_id_get_online(memcg);
d6810d73
HY
6405 nr_entries = hpage_nr_pages(page);
6406 /* Get references for the tail pages, too */
6407 if (nr_entries > 1)
6408 mem_cgroup_id_get_many(swap_memcg, nr_entries - 1);
6409 oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg),
6410 nr_entries);
21afa38e 6411 VM_BUG_ON_PAGE(oldid, page);
c9019e9b 6412 mod_memcg_state(swap_memcg, MEMCG_SWAP, nr_entries);
21afa38e
JW
6413
6414 page->mem_cgroup = NULL;
6415
6416 if (!mem_cgroup_is_root(memcg))
d6810d73 6417 page_counter_uncharge(&memcg->memory, nr_entries);
21afa38e 6418
1f47b61f
VD
6419 if (memcg != swap_memcg) {
6420 if (!mem_cgroup_is_root(swap_memcg))
d6810d73
HY
6421 page_counter_charge(&swap_memcg->memsw, nr_entries);
6422 page_counter_uncharge(&memcg->memsw, nr_entries);
1f47b61f
VD
6423 }
6424
ce9ce665
SAS
6425 /*
6426 * Interrupts should be disabled here because the caller holds the
b93b0163 6427 * i_pages lock which is taken with interrupts-off. It is
ce9ce665 6428 * important here to have the interrupts disabled because it is the
b93b0163 6429 * only synchronisation we have for updating the per-CPU variables.
ce9ce665
SAS
6430 */
6431 VM_BUG_ON(!irqs_disabled());
d6810d73
HY
6432 mem_cgroup_charge_statistics(memcg, page, PageTransHuge(page),
6433 -nr_entries);
21afa38e 6434 memcg_check_events(memcg, page);
73f576c0
JW
6435
6436 if (!mem_cgroup_is_root(memcg))
d08afa14 6437 css_put_many(&memcg->css, nr_entries);
21afa38e
JW
6438}
6439
38d8b4e6
HY
6440/**
6441 * mem_cgroup_try_charge_swap - try charging swap space for a page
37e84351
VD
6442 * @page: page being added to swap
6443 * @entry: swap entry to charge
6444 *
38d8b4e6 6445 * Try to charge @page's memcg for the swap space at @entry.
37e84351
VD
6446 *
6447 * Returns 0 on success, -ENOMEM on failure.
6448 */
6449int mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry)
6450{
38d8b4e6 6451 unsigned int nr_pages = hpage_nr_pages(page);
37e84351 6452 struct page_counter *counter;
38d8b4e6 6453 struct mem_cgroup *memcg;
37e84351
VD
6454 unsigned short oldid;
6455
6456 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) || !do_swap_account)
6457 return 0;
6458
6459 memcg = page->mem_cgroup;
6460
6461 /* Readahead page, never charged */
6462 if (!memcg)
6463 return 0;
6464
f3a53a3a
TH
6465 if (!entry.val) {
6466 memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
bb98f2c5 6467 return 0;
f3a53a3a 6468 }
bb98f2c5 6469
1f47b61f
VD
6470 memcg = mem_cgroup_id_get_online(memcg);
6471
37e84351 6472 if (!mem_cgroup_is_root(memcg) &&
38d8b4e6 6473 !page_counter_try_charge(&memcg->swap, nr_pages, &counter)) {
f3a53a3a
TH
6474 memcg_memory_event(memcg, MEMCG_SWAP_MAX);
6475 memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
1f47b61f 6476 mem_cgroup_id_put(memcg);
37e84351 6477 return -ENOMEM;
1f47b61f 6478 }
37e84351 6479
38d8b4e6
HY
6480 /* Get references for the tail pages, too */
6481 if (nr_pages > 1)
6482 mem_cgroup_id_get_many(memcg, nr_pages - 1);
6483 oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg), nr_pages);
37e84351 6484 VM_BUG_ON_PAGE(oldid, page);
c9019e9b 6485 mod_memcg_state(memcg, MEMCG_SWAP, nr_pages);
37e84351 6486
37e84351
VD
6487 return 0;
6488}
6489
21afa38e 6490/**
38d8b4e6 6491 * mem_cgroup_uncharge_swap - uncharge swap space
21afa38e 6492 * @entry: swap entry to uncharge
38d8b4e6 6493 * @nr_pages: the amount of swap space to uncharge
21afa38e 6494 */
38d8b4e6 6495void mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages)
21afa38e
JW
6496{
6497 struct mem_cgroup *memcg;
6498 unsigned short id;
6499
37e84351 6500 if (!do_swap_account)
21afa38e
JW
6501 return;
6502
38d8b4e6 6503 id = swap_cgroup_record(entry, 0, nr_pages);
21afa38e 6504 rcu_read_lock();
adbe427b 6505 memcg = mem_cgroup_from_id(id);
21afa38e 6506 if (memcg) {
37e84351
VD
6507 if (!mem_cgroup_is_root(memcg)) {
6508 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
38d8b4e6 6509 page_counter_uncharge(&memcg->swap, nr_pages);
37e84351 6510 else
38d8b4e6 6511 page_counter_uncharge(&memcg->memsw, nr_pages);
37e84351 6512 }
c9019e9b 6513 mod_memcg_state(memcg, MEMCG_SWAP, -nr_pages);
38d8b4e6 6514 mem_cgroup_id_put_many(memcg, nr_pages);
21afa38e
JW
6515 }
6516 rcu_read_unlock();
6517}
6518
d8b38438
VD
6519long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
6520{
6521 long nr_swap_pages = get_nr_swap_pages();
6522
6523 if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
6524 return nr_swap_pages;
6525 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
6526 nr_swap_pages = min_t(long, nr_swap_pages,
bbec2e15 6527 READ_ONCE(memcg->swap.max) -
d8b38438
VD
6528 page_counter_read(&memcg->swap));
6529 return nr_swap_pages;
6530}
6531
5ccc5aba
VD
6532bool mem_cgroup_swap_full(struct page *page)
6533{
6534 struct mem_cgroup *memcg;
6535
6536 VM_BUG_ON_PAGE(!PageLocked(page), page);
6537
6538 if (vm_swap_full())
6539 return true;
6540 if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
6541 return false;
6542
6543 memcg = page->mem_cgroup;
6544 if (!memcg)
6545 return false;
6546
6547 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
bbec2e15 6548 if (page_counter_read(&memcg->swap) * 2 >= memcg->swap.max)
5ccc5aba
VD
6549 return true;
6550
6551 return false;
6552}
6553
21afa38e
JW
6554/* for remember boot option*/
6555#ifdef CONFIG_MEMCG_SWAP_ENABLED
6556static int really_do_swap_account __initdata = 1;
6557#else
6558static int really_do_swap_account __initdata;
6559#endif
6560
6561static int __init enable_swap_account(char *s)
6562{
6563 if (!strcmp(s, "1"))
6564 really_do_swap_account = 1;
6565 else if (!strcmp(s, "0"))
6566 really_do_swap_account = 0;
6567 return 1;
6568}
6569__setup("swapaccount=", enable_swap_account);
6570
37e84351
VD
6571static u64 swap_current_read(struct cgroup_subsys_state *css,
6572 struct cftype *cft)
6573{
6574 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6575
6576 return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
6577}
6578
6579static int swap_max_show(struct seq_file *m, void *v)
6580{
6581 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
bbec2e15 6582 unsigned long max = READ_ONCE(memcg->swap.max);
37e84351
VD
6583
6584 if (max == PAGE_COUNTER_MAX)
6585 seq_puts(m, "max\n");
6586 else
6587 seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);
6588
6589 return 0;
6590}
6591
6592static ssize_t swap_max_write(struct kernfs_open_file *of,
6593 char *buf, size_t nbytes, loff_t off)
6594{
6595 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6596 unsigned long max;
6597 int err;
6598
6599 buf = strstrip(buf);
6600 err = page_counter_memparse(buf, "max", &max);
6601 if (err)
6602 return err;
6603
be09102b 6604 xchg(&memcg->swap.max, max);
37e84351
VD
6605
6606 return nbytes;
6607}
6608
f3a53a3a
TH
6609static int swap_events_show(struct seq_file *m, void *v)
6610{
6611 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
6612
6613 seq_printf(m, "max %lu\n",
6614 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_MAX]));
6615 seq_printf(m, "fail %lu\n",
6616 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_FAIL]));
6617
6618 return 0;
6619}
6620
37e84351
VD
6621static struct cftype swap_files[] = {
6622 {
6623 .name = "swap.current",
6624 .flags = CFTYPE_NOT_ON_ROOT,
6625 .read_u64 = swap_current_read,
6626 },
6627 {
6628 .name = "swap.max",
6629 .flags = CFTYPE_NOT_ON_ROOT,
6630 .seq_show = swap_max_show,
6631 .write = swap_max_write,
6632 },
f3a53a3a
TH
6633 {
6634 .name = "swap.events",
6635 .flags = CFTYPE_NOT_ON_ROOT,
6636 .file_offset = offsetof(struct mem_cgroup, swap_events_file),
6637 .seq_show = swap_events_show,
6638 },
37e84351
VD
6639 { } /* terminate */
6640};
6641
21afa38e
JW
6642static struct cftype memsw_cgroup_files[] = {
6643 {
6644 .name = "memsw.usage_in_bytes",
6645 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
6646 .read_u64 = mem_cgroup_read_u64,
6647 },
6648 {
6649 .name = "memsw.max_usage_in_bytes",
6650 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
6651 .write = mem_cgroup_reset,
6652 .read_u64 = mem_cgroup_read_u64,
6653 },
6654 {
6655 .name = "memsw.limit_in_bytes",
6656 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
6657 .write = mem_cgroup_write,
6658 .read_u64 = mem_cgroup_read_u64,
6659 },
6660 {
6661 .name = "memsw.failcnt",
6662 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
6663 .write = mem_cgroup_reset,
6664 .read_u64 = mem_cgroup_read_u64,
6665 },
6666 { }, /* terminate */
6667};
6668
6669static int __init mem_cgroup_swap_init(void)
6670{
6671 if (!mem_cgroup_disabled() && really_do_swap_account) {
6672 do_swap_account = 1;
37e84351
VD
6673 WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys,
6674 swap_files));
21afa38e
JW
6675 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys,
6676 memsw_cgroup_files));
6677 }
6678 return 0;
6679}
6680subsys_initcall(mem_cgroup_swap_init);
6681
6682#endif /* CONFIG_MEMCG_SWAP */