blk-mq: add blk_mq_stop_hw_queues
[linux-block.git] / mm / memcontrol.c
CommitLineData
8cdea7c0
BS
1/* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
78fb7466
PE
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
2e72b634
KS
9 * Memory thresholds
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
12 *
7ae1e1d0
GC
13 * Kernel Memory Controller
14 * Copyright (C) 2012 Parallels Inc. and Google Inc.
15 * Authors: Glauber Costa and Suleiman Souhlal
16 *
8cdea7c0
BS
17 * This program is free software; you can redistribute it and/or modify
18 * it under the terms of the GNU General Public License as published by
19 * the Free Software Foundation; either version 2 of the License, or
20 * (at your option) any later version.
21 *
22 * This program is distributed in the hope that it will be useful,
23 * but WITHOUT ANY WARRANTY; without even the implied warranty of
24 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
25 * GNU General Public License for more details.
26 */
27
28#include <linux/res_counter.h>
29#include <linux/memcontrol.h>
30#include <linux/cgroup.h>
78fb7466 31#include <linux/mm.h>
4ffef5fe 32#include <linux/hugetlb.h>
d13d1443 33#include <linux/pagemap.h>
d52aa412 34#include <linux/smp.h>
8a9f3ccd 35#include <linux/page-flags.h>
66e1707b 36#include <linux/backing-dev.h>
8a9f3ccd
BS
37#include <linux/bit_spinlock.h>
38#include <linux/rcupdate.h>
e222432b 39#include <linux/limits.h>
b9e15baf 40#include <linux/export.h>
8c7c6e34 41#include <linux/mutex.h>
bb4cc1a8 42#include <linux/rbtree.h>
b6ac57d5 43#include <linux/slab.h>
66e1707b 44#include <linux/swap.h>
02491447 45#include <linux/swapops.h>
66e1707b 46#include <linux/spinlock.h>
2e72b634
KS
47#include <linux/eventfd.h>
48#include <linux/sort.h>
66e1707b 49#include <linux/fs.h>
d2ceb9b7 50#include <linux/seq_file.h>
33327948 51#include <linux/vmalloc.h>
70ddf637 52#include <linux/vmpressure.h>
b69408e8 53#include <linux/mm_inline.h>
52d4b9ac 54#include <linux/page_cgroup.h>
cdec2e42 55#include <linux/cpu.h>
158e0a2d 56#include <linux/oom.h>
08e552c6 57#include "internal.h"
d1a4c0b3 58#include <net/sock.h>
4bd2c1ee 59#include <net/ip.h>
d1a4c0b3 60#include <net/tcp_memcontrol.h>
8cdea7c0 61
8697d331
BS
62#include <asm/uaccess.h>
63
cc8e970c
KM
64#include <trace/events/vmscan.h>
65
a181b0e8 66struct cgroup_subsys mem_cgroup_subsys __read_mostly;
68ae564b
DR
67EXPORT_SYMBOL(mem_cgroup_subsys);
68
a181b0e8 69#define MEM_CGROUP_RECLAIM_RETRIES 5
6bbda35c 70static struct mem_cgroup *root_mem_cgroup __read_mostly;
8cdea7c0 71
c255a458 72#ifdef CONFIG_MEMCG_SWAP
338c8431 73/* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
c077719b 74int do_swap_account __read_mostly;
a42c390c
MH
75
76/* for remember boot option*/
c255a458 77#ifdef CONFIG_MEMCG_SWAP_ENABLED
a42c390c
MH
78static int really_do_swap_account __initdata = 1;
79#else
80static int really_do_swap_account __initdata = 0;
81#endif
82
c077719b 83#else
a0db00fc 84#define do_swap_account 0
c077719b
KH
85#endif
86
87
af7c4b0e
JW
88static const char * const mem_cgroup_stat_names[] = {
89 "cache",
90 "rss",
b070e65c 91 "rss_huge",
af7c4b0e 92 "mapped_file",
3ea67d06 93 "writeback",
af7c4b0e
JW
94 "swap",
95};
96
e9f8974f
JW
97enum mem_cgroup_events_index {
98 MEM_CGROUP_EVENTS_PGPGIN, /* # of pages paged in */
99 MEM_CGROUP_EVENTS_PGPGOUT, /* # of pages paged out */
456f998e
YH
100 MEM_CGROUP_EVENTS_PGFAULT, /* # of page-faults */
101 MEM_CGROUP_EVENTS_PGMAJFAULT, /* # of major page-faults */
e9f8974f
JW
102 MEM_CGROUP_EVENTS_NSTATS,
103};
af7c4b0e
JW
104
105static const char * const mem_cgroup_events_names[] = {
106 "pgpgin",
107 "pgpgout",
108 "pgfault",
109 "pgmajfault",
110};
111
58cf188e
SZ
112static const char * const mem_cgroup_lru_names[] = {
113 "inactive_anon",
114 "active_anon",
115 "inactive_file",
116 "active_file",
117 "unevictable",
118};
119
7a159cc9
JW
120/*
121 * Per memcg event counter is incremented at every pagein/pageout. With THP,
122 * it will be incremated by the number of pages. This counter is used for
123 * for trigger some periodic events. This is straightforward and better
124 * than using jiffies etc. to handle periodic memcg event.
125 */
126enum mem_cgroup_events_target {
127 MEM_CGROUP_TARGET_THRESH,
bb4cc1a8 128 MEM_CGROUP_TARGET_SOFTLIMIT,
453a9bf3 129 MEM_CGROUP_TARGET_NUMAINFO,
7a159cc9
JW
130 MEM_CGROUP_NTARGETS,
131};
a0db00fc
KS
132#define THRESHOLDS_EVENTS_TARGET 128
133#define SOFTLIMIT_EVENTS_TARGET 1024
134#define NUMAINFO_EVENTS_TARGET 1024
e9f8974f 135
d52aa412 136struct mem_cgroup_stat_cpu {
7a159cc9 137 long count[MEM_CGROUP_STAT_NSTATS];
e9f8974f 138 unsigned long events[MEM_CGROUP_EVENTS_NSTATS];
13114716 139 unsigned long nr_page_events;
7a159cc9 140 unsigned long targets[MEM_CGROUP_NTARGETS];
d52aa412
KH
141};
142
527a5ec9 143struct mem_cgroup_reclaim_iter {
5f578161
MH
144 /*
145 * last scanned hierarchy member. Valid only if last_dead_count
146 * matches memcg->dead_count of the hierarchy root group.
147 */
542f85f9 148 struct mem_cgroup *last_visited;
5f578161
MH
149 unsigned long last_dead_count;
150
527a5ec9
JW
151 /* scan generation, increased every round-trip */
152 unsigned int generation;
153};
154
6d12e2d8
KH
155/*
156 * per-zone information in memory controller.
157 */
6d12e2d8 158struct mem_cgroup_per_zone {
6290df54 159 struct lruvec lruvec;
1eb49272 160 unsigned long lru_size[NR_LRU_LISTS];
3e2f41f1 161
527a5ec9
JW
162 struct mem_cgroup_reclaim_iter reclaim_iter[DEF_PRIORITY + 1];
163
bb4cc1a8
AM
164 struct rb_node tree_node; /* RB tree node */
165 unsigned long long usage_in_excess;/* Set to the value by which */
166 /* the soft limit is exceeded*/
167 bool on_tree;
d79154bb 168 struct mem_cgroup *memcg; /* Back pointer, we cannot */
4e416953 169 /* use container_of */
6d12e2d8 170};
6d12e2d8
KH
171
172struct mem_cgroup_per_node {
173 struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
174};
175
bb4cc1a8
AM
176/*
177 * Cgroups above their limits are maintained in a RB-Tree, independent of
178 * their hierarchy representation
179 */
180
181struct mem_cgroup_tree_per_zone {
182 struct rb_root rb_root;
183 spinlock_t lock;
184};
185
186struct mem_cgroup_tree_per_node {
187 struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
188};
189
190struct mem_cgroup_tree {
191 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
192};
193
194static struct mem_cgroup_tree soft_limit_tree __read_mostly;
195
2e72b634
KS
196struct mem_cgroup_threshold {
197 struct eventfd_ctx *eventfd;
198 u64 threshold;
199};
200
9490ff27 201/* For threshold */
2e72b634 202struct mem_cgroup_threshold_ary {
748dad36 203 /* An array index points to threshold just below or equal to usage. */
5407a562 204 int current_threshold;
2e72b634
KS
205 /* Size of entries[] */
206 unsigned int size;
207 /* Array of thresholds */
208 struct mem_cgroup_threshold entries[0];
209};
2c488db2
KS
210
211struct mem_cgroup_thresholds {
212 /* Primary thresholds array */
213 struct mem_cgroup_threshold_ary *primary;
214 /*
215 * Spare threshold array.
216 * This is needed to make mem_cgroup_unregister_event() "never fail".
217 * It must be able to store at least primary->size - 1 entries.
218 */
219 struct mem_cgroup_threshold_ary *spare;
220};
221
9490ff27
KH
222/* for OOM */
223struct mem_cgroup_eventfd_list {
224 struct list_head list;
225 struct eventfd_ctx *eventfd;
226};
2e72b634 227
c0ff4b85
R
228static void mem_cgroup_threshold(struct mem_cgroup *memcg);
229static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
2e72b634 230
8cdea7c0
BS
231/*
232 * The memory controller data structure. The memory controller controls both
233 * page cache and RSS per cgroup. We would eventually like to provide
234 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
235 * to help the administrator determine what knobs to tune.
236 *
237 * TODO: Add a water mark for the memory controller. Reclaim will begin when
8a9f3ccd
BS
238 * we hit the water mark. May be even add a low water mark, such that
239 * no reclaim occurs from a cgroup at it's low water mark, this is
240 * a feature that will be implemented much later in the future.
8cdea7c0
BS
241 */
242struct mem_cgroup {
243 struct cgroup_subsys_state css;
244 /*
245 * the counter to account for memory usage
246 */
247 struct res_counter res;
59927fb9 248
70ddf637
AV
249 /* vmpressure notifications */
250 struct vmpressure vmpressure;
251
465939a1
LZ
252 /*
253 * the counter to account for mem+swap usage.
254 */
255 struct res_counter memsw;
59927fb9 256
510fc4e1
GC
257 /*
258 * the counter to account for kernel memory usage.
259 */
260 struct res_counter kmem;
18f59ea7
BS
261 /*
262 * Should the accounting and control be hierarchical, per subtree?
263 */
264 bool use_hierarchy;
510fc4e1 265 unsigned long kmem_account_flags; /* See KMEM_ACCOUNTED_*, below */
79dfdacc
MH
266
267 bool oom_lock;
268 atomic_t under_oom;
3812c8c8 269 atomic_t oom_wakeups;
79dfdacc 270
1f4c025b 271 int swappiness;
3c11ecf4
KH
272 /* OOM-Killer disable */
273 int oom_kill_disable;
a7885eb8 274
22a668d7
KH
275 /* set when res.limit == memsw.limit */
276 bool memsw_is_minimum;
277
2e72b634
KS
278 /* protect arrays of thresholds */
279 struct mutex thresholds_lock;
280
281 /* thresholds for memory usage. RCU-protected */
2c488db2 282 struct mem_cgroup_thresholds thresholds;
907860ed 283
2e72b634 284 /* thresholds for mem+swap usage. RCU-protected */
2c488db2 285 struct mem_cgroup_thresholds memsw_thresholds;
907860ed 286
9490ff27
KH
287 /* For oom notifier event fd */
288 struct list_head oom_notify;
185efc0f 289
7dc74be0
DN
290 /*
291 * Should we move charges of a task when a task is moved into this
292 * mem_cgroup ? And what type of charges should we move ?
293 */
f894ffa8 294 unsigned long move_charge_at_immigrate;
619d094b
KH
295 /*
296 * set > 0 if pages under this cgroup are moving to other cgroup.
297 */
298 atomic_t moving_account;
312734c0
KH
299 /* taken only while moving_account > 0 */
300 spinlock_t move_lock;
d52aa412 301 /*
c62b1a3b 302 * percpu counter.
d52aa412 303 */
3a7951b4 304 struct mem_cgroup_stat_cpu __percpu *stat;
711d3d2c
KH
305 /*
306 * used when a cpu is offlined or other synchronizations
307 * See mem_cgroup_read_stat().
308 */
309 struct mem_cgroup_stat_cpu nocpu_base;
310 spinlock_t pcp_counter_lock;
d1a4c0b3 311
5f578161 312 atomic_t dead_count;
4bd2c1ee 313#if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_INET)
d1a4c0b3
GC
314 struct tcp_memcontrol tcp_mem;
315#endif
2633d7a0
GC
316#if defined(CONFIG_MEMCG_KMEM)
317 /* analogous to slab_common's slab_caches list. per-memcg */
318 struct list_head memcg_slab_caches;
319 /* Not a spinlock, we can take a lot of time walking the list */
320 struct mutex slab_caches_mutex;
321 /* Index in the kmem_cache->memcg_params->memcg_caches array */
322 int kmemcg_id;
323#endif
45cf7ebd
GC
324
325 int last_scanned_node;
326#if MAX_NUMNODES > 1
327 nodemask_t scan_nodes;
328 atomic_t numainfo_events;
329 atomic_t numainfo_updating;
330#endif
70ddf637 331
54f72fe0
JW
332 struct mem_cgroup_per_node *nodeinfo[0];
333 /* WARNING: nodeinfo must be the last member here */
8cdea7c0
BS
334};
335
45cf7ebd
GC
336static size_t memcg_size(void)
337{
338 return sizeof(struct mem_cgroup) +
339 nr_node_ids * sizeof(struct mem_cgroup_per_node);
340}
341
510fc4e1
GC
342/* internal only representation about the status of kmem accounting. */
343enum {
344 KMEM_ACCOUNTED_ACTIVE = 0, /* accounted by this cgroup itself */
a8964b9b 345 KMEM_ACCOUNTED_ACTIVATED, /* static key enabled. */
7de37682 346 KMEM_ACCOUNTED_DEAD, /* dead memcg with pending kmem charges */
510fc4e1
GC
347};
348
a8964b9b
GC
349/* We account when limit is on, but only after call sites are patched */
350#define KMEM_ACCOUNTED_MASK \
351 ((1 << KMEM_ACCOUNTED_ACTIVE) | (1 << KMEM_ACCOUNTED_ACTIVATED))
510fc4e1
GC
352
353#ifdef CONFIG_MEMCG_KMEM
354static inline void memcg_kmem_set_active(struct mem_cgroup *memcg)
355{
356 set_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
357}
7de37682
GC
358
359static bool memcg_kmem_is_active(struct mem_cgroup *memcg)
360{
361 return test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
362}
363
a8964b9b
GC
364static void memcg_kmem_set_activated(struct mem_cgroup *memcg)
365{
366 set_bit(KMEM_ACCOUNTED_ACTIVATED, &memcg->kmem_account_flags);
367}
368
55007d84
GC
369static void memcg_kmem_clear_activated(struct mem_cgroup *memcg)
370{
371 clear_bit(KMEM_ACCOUNTED_ACTIVATED, &memcg->kmem_account_flags);
372}
373
7de37682
GC
374static void memcg_kmem_mark_dead(struct mem_cgroup *memcg)
375{
10d5ebf4
LZ
376 /*
377 * Our caller must use css_get() first, because memcg_uncharge_kmem()
378 * will call css_put() if it sees the memcg is dead.
379 */
380 smp_wmb();
7de37682
GC
381 if (test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags))
382 set_bit(KMEM_ACCOUNTED_DEAD, &memcg->kmem_account_flags);
383}
384
385static bool memcg_kmem_test_and_clear_dead(struct mem_cgroup *memcg)
386{
387 return test_and_clear_bit(KMEM_ACCOUNTED_DEAD,
388 &memcg->kmem_account_flags);
389}
510fc4e1
GC
390#endif
391
7dc74be0
DN
392/* Stuffs for move charges at task migration. */
393/*
ee5e8472
GC
394 * Types of charges to be moved. "move_charge_at_immitgrate" and
395 * "immigrate_flags" are treated as a left-shifted bitmap of these types.
7dc74be0
DN
396 */
397enum move_type {
4ffef5fe 398 MOVE_CHARGE_TYPE_ANON, /* private anonymous page and swap of it */
87946a72 399 MOVE_CHARGE_TYPE_FILE, /* file page(including tmpfs) and swap of it */
7dc74be0
DN
400 NR_MOVE_TYPE,
401};
402
4ffef5fe
DN
403/* "mc" and its members are protected by cgroup_mutex */
404static struct move_charge_struct {
b1dd693e 405 spinlock_t lock; /* for from, to */
4ffef5fe
DN
406 struct mem_cgroup *from;
407 struct mem_cgroup *to;
ee5e8472 408 unsigned long immigrate_flags;
4ffef5fe 409 unsigned long precharge;
854ffa8d 410 unsigned long moved_charge;
483c30b5 411 unsigned long moved_swap;
8033b97c
DN
412 struct task_struct *moving_task; /* a task moving charges */
413 wait_queue_head_t waitq; /* a waitq for other context */
414} mc = {
2bd9bb20 415 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
8033b97c
DN
416 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
417};
4ffef5fe 418
90254a65
DN
419static bool move_anon(void)
420{
ee5e8472 421 return test_bit(MOVE_CHARGE_TYPE_ANON, &mc.immigrate_flags);
90254a65
DN
422}
423
87946a72
DN
424static bool move_file(void)
425{
ee5e8472 426 return test_bit(MOVE_CHARGE_TYPE_FILE, &mc.immigrate_flags);
87946a72
DN
427}
428
4e416953
BS
429/*
430 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
431 * limit reclaim to prevent infinite loops, if they ever occur.
432 */
a0db00fc 433#define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
bb4cc1a8 434#define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
4e416953 435
217bc319
KH
436enum charge_type {
437 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
41326c17 438 MEM_CGROUP_CHARGE_TYPE_ANON,
d13d1443 439 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
8a9478ca 440 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
c05555b5
KH
441 NR_CHARGE_TYPE,
442};
443
8c7c6e34 444/* for encoding cft->private value on file */
86ae53e1
GC
445enum res_type {
446 _MEM,
447 _MEMSWAP,
448 _OOM_TYPE,
510fc4e1 449 _KMEM,
86ae53e1
GC
450};
451
a0db00fc
KS
452#define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
453#define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
8c7c6e34 454#define MEMFILE_ATTR(val) ((val) & 0xffff)
9490ff27
KH
455/* Used for OOM nofiier */
456#define OOM_CONTROL (0)
8c7c6e34 457
75822b44
BS
458/*
459 * Reclaim flags for mem_cgroup_hierarchical_reclaim
460 */
461#define MEM_CGROUP_RECLAIM_NOSWAP_BIT 0x0
462#define MEM_CGROUP_RECLAIM_NOSWAP (1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
463#define MEM_CGROUP_RECLAIM_SHRINK_BIT 0x1
464#define MEM_CGROUP_RECLAIM_SHRINK (1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)
465
0999821b
GC
466/*
467 * The memcg_create_mutex will be held whenever a new cgroup is created.
468 * As a consequence, any change that needs to protect against new child cgroups
469 * appearing has to hold it as well.
470 */
471static DEFINE_MUTEX(memcg_create_mutex);
472
b2145145
WL
473struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *s)
474{
a7c6d554 475 return s ? container_of(s, struct mem_cgroup, css) : NULL;
b2145145
WL
476}
477
70ddf637
AV
478/* Some nice accessors for the vmpressure. */
479struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
480{
481 if (!memcg)
482 memcg = root_mem_cgroup;
483 return &memcg->vmpressure;
484}
485
486struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
487{
488 return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
489}
490
491struct vmpressure *css_to_vmpressure(struct cgroup_subsys_state *css)
492{
493 return &mem_cgroup_from_css(css)->vmpressure;
494}
495
7ffc0edc
MH
496static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
497{
498 return (memcg == root_mem_cgroup);
499}
500
e1aab161 501/* Writing them here to avoid exposing memcg's inner layout */
4bd2c1ee 502#if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM)
e1aab161 503
e1aab161
GC
504void sock_update_memcg(struct sock *sk)
505{
376be5ff 506 if (mem_cgroup_sockets_enabled) {
e1aab161 507 struct mem_cgroup *memcg;
3f134619 508 struct cg_proto *cg_proto;
e1aab161
GC
509
510 BUG_ON(!sk->sk_prot->proto_cgroup);
511
f3f511e1
GC
512 /* Socket cloning can throw us here with sk_cgrp already
513 * filled. It won't however, necessarily happen from
514 * process context. So the test for root memcg given
515 * the current task's memcg won't help us in this case.
516 *
517 * Respecting the original socket's memcg is a better
518 * decision in this case.
519 */
520 if (sk->sk_cgrp) {
521 BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg));
5347e5ae 522 css_get(&sk->sk_cgrp->memcg->css);
f3f511e1
GC
523 return;
524 }
525
e1aab161
GC
526 rcu_read_lock();
527 memcg = mem_cgroup_from_task(current);
3f134619 528 cg_proto = sk->sk_prot->proto_cgroup(memcg);
5347e5ae
LZ
529 if (!mem_cgroup_is_root(memcg) &&
530 memcg_proto_active(cg_proto) && css_tryget(&memcg->css)) {
3f134619 531 sk->sk_cgrp = cg_proto;
e1aab161
GC
532 }
533 rcu_read_unlock();
534 }
535}
536EXPORT_SYMBOL(sock_update_memcg);
537
538void sock_release_memcg(struct sock *sk)
539{
376be5ff 540 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
e1aab161
GC
541 struct mem_cgroup *memcg;
542 WARN_ON(!sk->sk_cgrp->memcg);
543 memcg = sk->sk_cgrp->memcg;
5347e5ae 544 css_put(&sk->sk_cgrp->memcg->css);
e1aab161
GC
545 }
546}
d1a4c0b3
GC
547
548struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
549{
550 if (!memcg || mem_cgroup_is_root(memcg))
551 return NULL;
552
553 return &memcg->tcp_mem.cg_proto;
554}
555EXPORT_SYMBOL(tcp_proto_cgroup);
e1aab161 556
3f134619
GC
557static void disarm_sock_keys(struct mem_cgroup *memcg)
558{
559 if (!memcg_proto_activated(&memcg->tcp_mem.cg_proto))
560 return;
561 static_key_slow_dec(&memcg_socket_limit_enabled);
562}
563#else
564static void disarm_sock_keys(struct mem_cgroup *memcg)
565{
566}
567#endif
568
a8964b9b 569#ifdef CONFIG_MEMCG_KMEM
55007d84
GC
570/*
571 * This will be the memcg's index in each cache's ->memcg_params->memcg_caches.
572 * There are two main reasons for not using the css_id for this:
573 * 1) this works better in sparse environments, where we have a lot of memcgs,
574 * but only a few kmem-limited. Or also, if we have, for instance, 200
575 * memcgs, and none but the 200th is kmem-limited, we'd have to have a
576 * 200 entry array for that.
577 *
578 * 2) In order not to violate the cgroup API, we would like to do all memory
579 * allocation in ->create(). At that point, we haven't yet allocated the
580 * css_id. Having a separate index prevents us from messing with the cgroup
581 * core for this
582 *
583 * The current size of the caches array is stored in
584 * memcg_limited_groups_array_size. It will double each time we have to
585 * increase it.
586 */
587static DEFINE_IDA(kmem_limited_groups);
749c5415
GC
588int memcg_limited_groups_array_size;
589
55007d84
GC
590/*
591 * MIN_SIZE is different than 1, because we would like to avoid going through
592 * the alloc/free process all the time. In a small machine, 4 kmem-limited
593 * cgroups is a reasonable guess. In the future, it could be a parameter or
594 * tunable, but that is strictly not necessary.
595 *
596 * MAX_SIZE should be as large as the number of css_ids. Ideally, we could get
597 * this constant directly from cgroup, but it is understandable that this is
598 * better kept as an internal representation in cgroup.c. In any case, the
599 * css_id space is not getting any smaller, and we don't have to necessarily
600 * increase ours as well if it increases.
601 */
602#define MEMCG_CACHES_MIN_SIZE 4
603#define MEMCG_CACHES_MAX_SIZE 65535
604
d7f25f8a
GC
605/*
606 * A lot of the calls to the cache allocation functions are expected to be
607 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
608 * conditional to this static branch, we'll have to allow modules that does
609 * kmem_cache_alloc and the such to see this symbol as well
610 */
a8964b9b 611struct static_key memcg_kmem_enabled_key;
d7f25f8a 612EXPORT_SYMBOL(memcg_kmem_enabled_key);
a8964b9b
GC
613
614static void disarm_kmem_keys(struct mem_cgroup *memcg)
615{
55007d84 616 if (memcg_kmem_is_active(memcg)) {
a8964b9b 617 static_key_slow_dec(&memcg_kmem_enabled_key);
55007d84
GC
618 ida_simple_remove(&kmem_limited_groups, memcg->kmemcg_id);
619 }
bea207c8
GC
620 /*
621 * This check can't live in kmem destruction function,
622 * since the charges will outlive the cgroup
623 */
624 WARN_ON(res_counter_read_u64(&memcg->kmem, RES_USAGE) != 0);
a8964b9b
GC
625}
626#else
627static void disarm_kmem_keys(struct mem_cgroup *memcg)
628{
629}
630#endif /* CONFIG_MEMCG_KMEM */
631
632static void disarm_static_keys(struct mem_cgroup *memcg)
633{
634 disarm_sock_keys(memcg);
635 disarm_kmem_keys(memcg);
636}
637
c0ff4b85 638static void drain_all_stock_async(struct mem_cgroup *memcg);
8c7c6e34 639
f64c3f54 640static struct mem_cgroup_per_zone *
c0ff4b85 641mem_cgroup_zoneinfo(struct mem_cgroup *memcg, int nid, int zid)
f64c3f54 642{
45cf7ebd 643 VM_BUG_ON((unsigned)nid >= nr_node_ids);
54f72fe0 644 return &memcg->nodeinfo[nid]->zoneinfo[zid];
f64c3f54
BS
645}
646
c0ff4b85 647struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg)
d324236b 648{
c0ff4b85 649 return &memcg->css;
d324236b
WF
650}
651
f64c3f54 652static struct mem_cgroup_per_zone *
c0ff4b85 653page_cgroup_zoneinfo(struct mem_cgroup *memcg, struct page *page)
f64c3f54 654{
97a6c37b
JW
655 int nid = page_to_nid(page);
656 int zid = page_zonenum(page);
f64c3f54 657
c0ff4b85 658 return mem_cgroup_zoneinfo(memcg, nid, zid);
f64c3f54
BS
659}
660
bb4cc1a8
AM
661static struct mem_cgroup_tree_per_zone *
662soft_limit_tree_node_zone(int nid, int zid)
663{
664 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
665}
666
667static struct mem_cgroup_tree_per_zone *
668soft_limit_tree_from_page(struct page *page)
669{
670 int nid = page_to_nid(page);
671 int zid = page_zonenum(page);
672
673 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
674}
675
676static void
677__mem_cgroup_insert_exceeded(struct mem_cgroup *memcg,
678 struct mem_cgroup_per_zone *mz,
679 struct mem_cgroup_tree_per_zone *mctz,
680 unsigned long long new_usage_in_excess)
681{
682 struct rb_node **p = &mctz->rb_root.rb_node;
683 struct rb_node *parent = NULL;
684 struct mem_cgroup_per_zone *mz_node;
685
686 if (mz->on_tree)
687 return;
688
689 mz->usage_in_excess = new_usage_in_excess;
690 if (!mz->usage_in_excess)
691 return;
692 while (*p) {
693 parent = *p;
694 mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
695 tree_node);
696 if (mz->usage_in_excess < mz_node->usage_in_excess)
697 p = &(*p)->rb_left;
698 /*
699 * We can't avoid mem cgroups that are over their soft
700 * limit by the same amount
701 */
702 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
703 p = &(*p)->rb_right;
704 }
705 rb_link_node(&mz->tree_node, parent, p);
706 rb_insert_color(&mz->tree_node, &mctz->rb_root);
707 mz->on_tree = true;
708}
709
710static void
711__mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
712 struct mem_cgroup_per_zone *mz,
713 struct mem_cgroup_tree_per_zone *mctz)
714{
715 if (!mz->on_tree)
716 return;
717 rb_erase(&mz->tree_node, &mctz->rb_root);
718 mz->on_tree = false;
719}
720
721static void
722mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
723 struct mem_cgroup_per_zone *mz,
724 struct mem_cgroup_tree_per_zone *mctz)
725{
726 spin_lock(&mctz->lock);
727 __mem_cgroup_remove_exceeded(memcg, mz, mctz);
728 spin_unlock(&mctz->lock);
729}
730
731
732static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
733{
734 unsigned long long excess;
735 struct mem_cgroup_per_zone *mz;
736 struct mem_cgroup_tree_per_zone *mctz;
737 int nid = page_to_nid(page);
738 int zid = page_zonenum(page);
739 mctz = soft_limit_tree_from_page(page);
740
741 /*
742 * Necessary to update all ancestors when hierarchy is used.
743 * because their event counter is not touched.
744 */
745 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
746 mz = mem_cgroup_zoneinfo(memcg, nid, zid);
747 excess = res_counter_soft_limit_excess(&memcg->res);
748 /*
749 * We have to update the tree if mz is on RB-tree or
750 * mem is over its softlimit.
751 */
752 if (excess || mz->on_tree) {
753 spin_lock(&mctz->lock);
754 /* if on-tree, remove it */
755 if (mz->on_tree)
756 __mem_cgroup_remove_exceeded(memcg, mz, mctz);
757 /*
758 * Insert again. mz->usage_in_excess will be updated.
759 * If excess is 0, no tree ops.
760 */
761 __mem_cgroup_insert_exceeded(memcg, mz, mctz, excess);
762 spin_unlock(&mctz->lock);
763 }
764 }
765}
766
767static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
768{
769 int node, zone;
770 struct mem_cgroup_per_zone *mz;
771 struct mem_cgroup_tree_per_zone *mctz;
772
773 for_each_node(node) {
774 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
775 mz = mem_cgroup_zoneinfo(memcg, node, zone);
776 mctz = soft_limit_tree_node_zone(node, zone);
777 mem_cgroup_remove_exceeded(memcg, mz, mctz);
778 }
779 }
780}
781
782static struct mem_cgroup_per_zone *
783__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
784{
785 struct rb_node *rightmost = NULL;
786 struct mem_cgroup_per_zone *mz;
787
788retry:
789 mz = NULL;
790 rightmost = rb_last(&mctz->rb_root);
791 if (!rightmost)
792 goto done; /* Nothing to reclaim from */
793
794 mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
795 /*
796 * Remove the node now but someone else can add it back,
797 * we will to add it back at the end of reclaim to its correct
798 * position in the tree.
799 */
800 __mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
801 if (!res_counter_soft_limit_excess(&mz->memcg->res) ||
802 !css_tryget(&mz->memcg->css))
803 goto retry;
804done:
805 return mz;
806}
807
808static struct mem_cgroup_per_zone *
809mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
810{
811 struct mem_cgroup_per_zone *mz;
812
813 spin_lock(&mctz->lock);
814 mz = __mem_cgroup_largest_soft_limit_node(mctz);
815 spin_unlock(&mctz->lock);
816 return mz;
817}
818
711d3d2c
KH
819/*
820 * Implementation Note: reading percpu statistics for memcg.
821 *
822 * Both of vmstat[] and percpu_counter has threshold and do periodic
823 * synchronization to implement "quick" read. There are trade-off between
824 * reading cost and precision of value. Then, we may have a chance to implement
825 * a periodic synchronizion of counter in memcg's counter.
826 *
827 * But this _read() function is used for user interface now. The user accounts
828 * memory usage by memory cgroup and he _always_ requires exact value because
829 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
830 * have to visit all online cpus and make sum. So, for now, unnecessary
831 * synchronization is not implemented. (just implemented for cpu hotplug)
832 *
833 * If there are kernel internal actions which can make use of some not-exact
834 * value, and reading all cpu value can be performance bottleneck in some
835 * common workload, threashold and synchonization as vmstat[] should be
836 * implemented.
837 */
c0ff4b85 838static long mem_cgroup_read_stat(struct mem_cgroup *memcg,
7a159cc9 839 enum mem_cgroup_stat_index idx)
c62b1a3b 840{
7a159cc9 841 long val = 0;
c62b1a3b 842 int cpu;
c62b1a3b 843
711d3d2c
KH
844 get_online_cpus();
845 for_each_online_cpu(cpu)
c0ff4b85 846 val += per_cpu(memcg->stat->count[idx], cpu);
711d3d2c 847#ifdef CONFIG_HOTPLUG_CPU
c0ff4b85
R
848 spin_lock(&memcg->pcp_counter_lock);
849 val += memcg->nocpu_base.count[idx];
850 spin_unlock(&memcg->pcp_counter_lock);
711d3d2c
KH
851#endif
852 put_online_cpus();
c62b1a3b
KH
853 return val;
854}
855
c0ff4b85 856static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
0c3e73e8
BS
857 bool charge)
858{
859 int val = (charge) ? 1 : -1;
bff6bb83 860 this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
0c3e73e8
BS
861}
862
c0ff4b85 863static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
e9f8974f
JW
864 enum mem_cgroup_events_index idx)
865{
866 unsigned long val = 0;
867 int cpu;
868
869 for_each_online_cpu(cpu)
c0ff4b85 870 val += per_cpu(memcg->stat->events[idx], cpu);
e9f8974f 871#ifdef CONFIG_HOTPLUG_CPU
c0ff4b85
R
872 spin_lock(&memcg->pcp_counter_lock);
873 val += memcg->nocpu_base.events[idx];
874 spin_unlock(&memcg->pcp_counter_lock);
e9f8974f
JW
875#endif
876 return val;
877}
878
c0ff4b85 879static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
b070e65c 880 struct page *page,
b2402857 881 bool anon, int nr_pages)
d52aa412 882{
c62b1a3b
KH
883 preempt_disable();
884
b2402857
KH
885 /*
886 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
887 * counted as CACHE even if it's on ANON LRU.
888 */
889 if (anon)
890 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
c0ff4b85 891 nr_pages);
d52aa412 892 else
b2402857 893 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
c0ff4b85 894 nr_pages);
55e462b0 895
b070e65c
DR
896 if (PageTransHuge(page))
897 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
898 nr_pages);
899
e401f176
KH
900 /* pagein of a big page is an event. So, ignore page size */
901 if (nr_pages > 0)
c0ff4b85 902 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
3751d604 903 else {
c0ff4b85 904 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
3751d604
KH
905 nr_pages = -nr_pages; /* for event */
906 }
e401f176 907
13114716 908 __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
2e72b634 909
c62b1a3b 910 preempt_enable();
6d12e2d8
KH
911}
912
bb2a0de9 913unsigned long
4d7dcca2 914mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru)
074291fe
KK
915{
916 struct mem_cgroup_per_zone *mz;
917
918 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
919 return mz->lru_size[lru];
920}
921
922static unsigned long
c0ff4b85 923mem_cgroup_zone_nr_lru_pages(struct mem_cgroup *memcg, int nid, int zid,
bb2a0de9 924 unsigned int lru_mask)
889976db
YH
925{
926 struct mem_cgroup_per_zone *mz;
f156ab93 927 enum lru_list lru;
bb2a0de9
KH
928 unsigned long ret = 0;
929
c0ff4b85 930 mz = mem_cgroup_zoneinfo(memcg, nid, zid);
bb2a0de9 931
f156ab93
HD
932 for_each_lru(lru) {
933 if (BIT(lru) & lru_mask)
934 ret += mz->lru_size[lru];
bb2a0de9
KH
935 }
936 return ret;
937}
938
939static unsigned long
c0ff4b85 940mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
bb2a0de9
KH
941 int nid, unsigned int lru_mask)
942{
889976db
YH
943 u64 total = 0;
944 int zid;
945
bb2a0de9 946 for (zid = 0; zid < MAX_NR_ZONES; zid++)
c0ff4b85
R
947 total += mem_cgroup_zone_nr_lru_pages(memcg,
948 nid, zid, lru_mask);
bb2a0de9 949
889976db
YH
950 return total;
951}
bb2a0de9 952
c0ff4b85 953static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
bb2a0de9 954 unsigned int lru_mask)
6d12e2d8 955{
889976db 956 int nid;
6d12e2d8
KH
957 u64 total = 0;
958
31aaea4a 959 for_each_node_state(nid, N_MEMORY)
c0ff4b85 960 total += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
6d12e2d8 961 return total;
d52aa412
KH
962}
963
f53d7ce3
JW
964static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
965 enum mem_cgroup_events_target target)
7a159cc9
JW
966{
967 unsigned long val, next;
968
13114716 969 val = __this_cpu_read(memcg->stat->nr_page_events);
4799401f 970 next = __this_cpu_read(memcg->stat->targets[target]);
7a159cc9 971 /* from time_after() in jiffies.h */
f53d7ce3
JW
972 if ((long)next - (long)val < 0) {
973 switch (target) {
974 case MEM_CGROUP_TARGET_THRESH:
975 next = val + THRESHOLDS_EVENTS_TARGET;
976 break;
bb4cc1a8
AM
977 case MEM_CGROUP_TARGET_SOFTLIMIT:
978 next = val + SOFTLIMIT_EVENTS_TARGET;
979 break;
f53d7ce3
JW
980 case MEM_CGROUP_TARGET_NUMAINFO:
981 next = val + NUMAINFO_EVENTS_TARGET;
982 break;
983 default:
984 break;
985 }
986 __this_cpu_write(memcg->stat->targets[target], next);
987 return true;
7a159cc9 988 }
f53d7ce3 989 return false;
d2265e6f
KH
990}
991
992/*
993 * Check events in order.
994 *
995 */
c0ff4b85 996static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
d2265e6f 997{
4799401f 998 preempt_disable();
d2265e6f 999 /* threshold event is triggered in finer grain than soft limit */
f53d7ce3
JW
1000 if (unlikely(mem_cgroup_event_ratelimit(memcg,
1001 MEM_CGROUP_TARGET_THRESH))) {
bb4cc1a8 1002 bool do_softlimit;
82b3f2a7 1003 bool do_numainfo __maybe_unused;
f53d7ce3 1004
bb4cc1a8
AM
1005 do_softlimit = mem_cgroup_event_ratelimit(memcg,
1006 MEM_CGROUP_TARGET_SOFTLIMIT);
f53d7ce3
JW
1007#if MAX_NUMNODES > 1
1008 do_numainfo = mem_cgroup_event_ratelimit(memcg,
1009 MEM_CGROUP_TARGET_NUMAINFO);
1010#endif
1011 preempt_enable();
1012
c0ff4b85 1013 mem_cgroup_threshold(memcg);
bb4cc1a8
AM
1014 if (unlikely(do_softlimit))
1015 mem_cgroup_update_tree(memcg, page);
453a9bf3 1016#if MAX_NUMNODES > 1
f53d7ce3 1017 if (unlikely(do_numainfo))
c0ff4b85 1018 atomic_inc(&memcg->numainfo_events);
453a9bf3 1019#endif
f53d7ce3
JW
1020 } else
1021 preempt_enable();
d2265e6f
KH
1022}
1023
cf475ad2 1024struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
78fb7466 1025{
31a78f23
BS
1026 /*
1027 * mm_update_next_owner() may clear mm->owner to NULL
1028 * if it races with swapoff, page migration, etc.
1029 * So this can be called with p == NULL.
1030 */
1031 if (unlikely(!p))
1032 return NULL;
1033
8af01f56 1034 return mem_cgroup_from_css(task_css(p, mem_cgroup_subsys_id));
78fb7466
PE
1035}
1036
a433658c 1037struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
54595fe2 1038{
c0ff4b85 1039 struct mem_cgroup *memcg = NULL;
0b7f569e
KH
1040
1041 if (!mm)
1042 return NULL;
54595fe2
KH
1043 /*
1044 * Because we have no locks, mm->owner's may be being moved to other
1045 * cgroup. We use css_tryget() here even if this looks
1046 * pessimistic (rather than adding locks here).
1047 */
1048 rcu_read_lock();
1049 do {
c0ff4b85
R
1050 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1051 if (unlikely(!memcg))
54595fe2 1052 break;
c0ff4b85 1053 } while (!css_tryget(&memcg->css));
54595fe2 1054 rcu_read_unlock();
c0ff4b85 1055 return memcg;
54595fe2
KH
1056}
1057
16248d8f
MH
1058/*
1059 * Returns a next (in a pre-order walk) alive memcg (with elevated css
1060 * ref. count) or NULL if the whole root's subtree has been visited.
1061 *
1062 * helper function to be used by mem_cgroup_iter
1063 */
1064static struct mem_cgroup *__mem_cgroup_iter_next(struct mem_cgroup *root,
694fbc0f 1065 struct mem_cgroup *last_visited)
16248d8f 1066{
492eb21b 1067 struct cgroup_subsys_state *prev_css, *next_css;
16248d8f 1068
bd8815a6 1069 prev_css = last_visited ? &last_visited->css : NULL;
16248d8f 1070skip_node:
492eb21b 1071 next_css = css_next_descendant_pre(prev_css, &root->css);
16248d8f
MH
1072
1073 /*
1074 * Even if we found a group we have to make sure it is
1075 * alive. css && !memcg means that the groups should be
1076 * skipped and we should continue the tree walk.
1077 * last_visited css is safe to use because it is
1078 * protected by css_get and the tree walk is rcu safe.
1079 */
492eb21b
TH
1080 if (next_css) {
1081 struct mem_cgroup *mem = mem_cgroup_from_css(next_css);
1082
694fbc0f
AM
1083 if (css_tryget(&mem->css))
1084 return mem;
1085 else {
492eb21b 1086 prev_css = next_css;
16248d8f
MH
1087 goto skip_node;
1088 }
1089 }
1090
1091 return NULL;
1092}
1093
519ebea3
JW
1094static void mem_cgroup_iter_invalidate(struct mem_cgroup *root)
1095{
1096 /*
1097 * When a group in the hierarchy below root is destroyed, the
1098 * hierarchy iterator can no longer be trusted since it might
1099 * have pointed to the destroyed group. Invalidate it.
1100 */
1101 atomic_inc(&root->dead_count);
1102}
1103
1104static struct mem_cgroup *
1105mem_cgroup_iter_load(struct mem_cgroup_reclaim_iter *iter,
1106 struct mem_cgroup *root,
1107 int *sequence)
1108{
1109 struct mem_cgroup *position = NULL;
1110 /*
1111 * A cgroup destruction happens in two stages: offlining and
1112 * release. They are separated by a RCU grace period.
1113 *
1114 * If the iterator is valid, we may still race with an
1115 * offlining. The RCU lock ensures the object won't be
1116 * released, tryget will fail if we lost the race.
1117 */
1118 *sequence = atomic_read(&root->dead_count);
1119 if (iter->last_dead_count == *sequence) {
1120 smp_rmb();
1121 position = iter->last_visited;
1122 if (position && !css_tryget(&position->css))
1123 position = NULL;
1124 }
1125 return position;
1126}
1127
1128static void mem_cgroup_iter_update(struct mem_cgroup_reclaim_iter *iter,
1129 struct mem_cgroup *last_visited,
1130 struct mem_cgroup *new_position,
1131 int sequence)
1132{
1133 if (last_visited)
1134 css_put(&last_visited->css);
1135 /*
1136 * We store the sequence count from the time @last_visited was
1137 * loaded successfully instead of rereading it here so that we
1138 * don't lose destruction events in between. We could have
1139 * raced with the destruction of @new_position after all.
1140 */
1141 iter->last_visited = new_position;
1142 smp_wmb();
1143 iter->last_dead_count = sequence;
1144}
1145
5660048c
JW
1146/**
1147 * mem_cgroup_iter - iterate over memory cgroup hierarchy
1148 * @root: hierarchy root
1149 * @prev: previously returned memcg, NULL on first invocation
1150 * @reclaim: cookie for shared reclaim walks, NULL for full walks
1151 *
1152 * Returns references to children of the hierarchy below @root, or
1153 * @root itself, or %NULL after a full round-trip.
1154 *
1155 * Caller must pass the return value in @prev on subsequent
1156 * invocations for reference counting, or use mem_cgroup_iter_break()
1157 * to cancel a hierarchy walk before the round-trip is complete.
1158 *
1159 * Reclaimers can specify a zone and a priority level in @reclaim to
1160 * divide up the memcgs in the hierarchy among all concurrent
1161 * reclaimers operating on the same zone and priority.
1162 */
694fbc0f 1163struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
5660048c 1164 struct mem_cgroup *prev,
694fbc0f 1165 struct mem_cgroup_reclaim_cookie *reclaim)
14067bb3 1166{
9f3a0d09 1167 struct mem_cgroup *memcg = NULL;
542f85f9 1168 struct mem_cgroup *last_visited = NULL;
711d3d2c 1169
694fbc0f
AM
1170 if (mem_cgroup_disabled())
1171 return NULL;
5660048c 1172
9f3a0d09
JW
1173 if (!root)
1174 root = root_mem_cgroup;
7d74b06f 1175
9f3a0d09 1176 if (prev && !reclaim)
542f85f9 1177 last_visited = prev;
14067bb3 1178
9f3a0d09
JW
1179 if (!root->use_hierarchy && root != root_mem_cgroup) {
1180 if (prev)
c40046f3 1181 goto out_css_put;
694fbc0f 1182 return root;
9f3a0d09 1183 }
14067bb3 1184
542f85f9 1185 rcu_read_lock();
9f3a0d09 1186 while (!memcg) {
527a5ec9 1187 struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
519ebea3 1188 int uninitialized_var(seq);
711d3d2c 1189
527a5ec9
JW
1190 if (reclaim) {
1191 int nid = zone_to_nid(reclaim->zone);
1192 int zid = zone_idx(reclaim->zone);
1193 struct mem_cgroup_per_zone *mz;
1194
1195 mz = mem_cgroup_zoneinfo(root, nid, zid);
1196 iter = &mz->reclaim_iter[reclaim->priority];
542f85f9 1197 if (prev && reclaim->generation != iter->generation) {
5f578161 1198 iter->last_visited = NULL;
542f85f9
MH
1199 goto out_unlock;
1200 }
5f578161 1201
519ebea3 1202 last_visited = mem_cgroup_iter_load(iter, root, &seq);
527a5ec9 1203 }
7d74b06f 1204
694fbc0f 1205 memcg = __mem_cgroup_iter_next(root, last_visited);
14067bb3 1206
527a5ec9 1207 if (reclaim) {
519ebea3 1208 mem_cgroup_iter_update(iter, last_visited, memcg, seq);
542f85f9 1209
19f39402 1210 if (!memcg)
527a5ec9
JW
1211 iter->generation++;
1212 else if (!prev && memcg)
1213 reclaim->generation = iter->generation;
1214 }
9f3a0d09 1215
694fbc0f 1216 if (prev && !memcg)
542f85f9 1217 goto out_unlock;
9f3a0d09 1218 }
542f85f9
MH
1219out_unlock:
1220 rcu_read_unlock();
c40046f3
MH
1221out_css_put:
1222 if (prev && prev != root)
1223 css_put(&prev->css);
1224
9f3a0d09 1225 return memcg;
14067bb3 1226}
7d74b06f 1227
5660048c
JW
1228/**
1229 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1230 * @root: hierarchy root
1231 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1232 */
1233void mem_cgroup_iter_break(struct mem_cgroup *root,
1234 struct mem_cgroup *prev)
9f3a0d09
JW
1235{
1236 if (!root)
1237 root = root_mem_cgroup;
1238 if (prev && prev != root)
1239 css_put(&prev->css);
1240}
7d74b06f 1241
9f3a0d09
JW
1242/*
1243 * Iteration constructs for visiting all cgroups (under a tree). If
1244 * loops are exited prematurely (break), mem_cgroup_iter_break() must
1245 * be used for reference counting.
1246 */
1247#define for_each_mem_cgroup_tree(iter, root) \
527a5ec9 1248 for (iter = mem_cgroup_iter(root, NULL, NULL); \
9f3a0d09 1249 iter != NULL; \
527a5ec9 1250 iter = mem_cgroup_iter(root, iter, NULL))
711d3d2c 1251
9f3a0d09 1252#define for_each_mem_cgroup(iter) \
527a5ec9 1253 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
9f3a0d09 1254 iter != NULL; \
527a5ec9 1255 iter = mem_cgroup_iter(NULL, iter, NULL))
14067bb3 1256
68ae564b 1257void __mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
456f998e 1258{
c0ff4b85 1259 struct mem_cgroup *memcg;
456f998e 1260
456f998e 1261 rcu_read_lock();
c0ff4b85
R
1262 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1263 if (unlikely(!memcg))
456f998e
YH
1264 goto out;
1265
1266 switch (idx) {
456f998e 1267 case PGFAULT:
0e574a93
JW
1268 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]);
1269 break;
1270 case PGMAJFAULT:
1271 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
456f998e
YH
1272 break;
1273 default:
1274 BUG();
1275 }
1276out:
1277 rcu_read_unlock();
1278}
68ae564b 1279EXPORT_SYMBOL(__mem_cgroup_count_vm_event);
456f998e 1280
925b7673
JW
1281/**
1282 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
1283 * @zone: zone of the wanted lruvec
fa9add64 1284 * @memcg: memcg of the wanted lruvec
925b7673
JW
1285 *
1286 * Returns the lru list vector holding pages for the given @zone and
1287 * @mem. This can be the global zone lruvec, if the memory controller
1288 * is disabled.
1289 */
1290struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
1291 struct mem_cgroup *memcg)
1292{
1293 struct mem_cgroup_per_zone *mz;
bea8c150 1294 struct lruvec *lruvec;
925b7673 1295
bea8c150
HD
1296 if (mem_cgroup_disabled()) {
1297 lruvec = &zone->lruvec;
1298 goto out;
1299 }
925b7673
JW
1300
1301 mz = mem_cgroup_zoneinfo(memcg, zone_to_nid(zone), zone_idx(zone));
bea8c150
HD
1302 lruvec = &mz->lruvec;
1303out:
1304 /*
1305 * Since a node can be onlined after the mem_cgroup was created,
1306 * we have to be prepared to initialize lruvec->zone here;
1307 * and if offlined then reonlined, we need to reinitialize it.
1308 */
1309 if (unlikely(lruvec->zone != zone))
1310 lruvec->zone = zone;
1311 return lruvec;
925b7673
JW
1312}
1313
08e552c6
KH
1314/*
1315 * Following LRU functions are allowed to be used without PCG_LOCK.
1316 * Operations are called by routine of global LRU independently from memcg.
1317 * What we have to take care of here is validness of pc->mem_cgroup.
1318 *
1319 * Changes to pc->mem_cgroup happens when
1320 * 1. charge
1321 * 2. moving account
1322 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
1323 * It is added to LRU before charge.
1324 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
1325 * When moving account, the page is not on LRU. It's isolated.
1326 */
4f98a2fe 1327
925b7673 1328/**
fa9add64 1329 * mem_cgroup_page_lruvec - return lruvec for adding an lru page
925b7673 1330 * @page: the page
fa9add64 1331 * @zone: zone of the page
925b7673 1332 */
fa9add64 1333struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
08e552c6 1334{
08e552c6 1335 struct mem_cgroup_per_zone *mz;
925b7673
JW
1336 struct mem_cgroup *memcg;
1337 struct page_cgroup *pc;
bea8c150 1338 struct lruvec *lruvec;
6d12e2d8 1339
bea8c150
HD
1340 if (mem_cgroup_disabled()) {
1341 lruvec = &zone->lruvec;
1342 goto out;
1343 }
925b7673 1344
08e552c6 1345 pc = lookup_page_cgroup(page);
38c5d72f 1346 memcg = pc->mem_cgroup;
7512102c
HD
1347
1348 /*
fa9add64 1349 * Surreptitiously switch any uncharged offlist page to root:
7512102c
HD
1350 * an uncharged page off lru does nothing to secure
1351 * its former mem_cgroup from sudden removal.
1352 *
1353 * Our caller holds lru_lock, and PageCgroupUsed is updated
1354 * under page_cgroup lock: between them, they make all uses
1355 * of pc->mem_cgroup safe.
1356 */
fa9add64 1357 if (!PageLRU(page) && !PageCgroupUsed(pc) && memcg != root_mem_cgroup)
7512102c
HD
1358 pc->mem_cgroup = memcg = root_mem_cgroup;
1359
925b7673 1360 mz = page_cgroup_zoneinfo(memcg, page);
bea8c150
HD
1361 lruvec = &mz->lruvec;
1362out:
1363 /*
1364 * Since a node can be onlined after the mem_cgroup was created,
1365 * we have to be prepared to initialize lruvec->zone here;
1366 * and if offlined then reonlined, we need to reinitialize it.
1367 */
1368 if (unlikely(lruvec->zone != zone))
1369 lruvec->zone = zone;
1370 return lruvec;
08e552c6 1371}
b69408e8 1372
925b7673 1373/**
fa9add64
HD
1374 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1375 * @lruvec: mem_cgroup per zone lru vector
1376 * @lru: index of lru list the page is sitting on
1377 * @nr_pages: positive when adding or negative when removing
925b7673 1378 *
fa9add64
HD
1379 * This function must be called when a page is added to or removed from an
1380 * lru list.
3f58a829 1381 */
fa9add64
HD
1382void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1383 int nr_pages)
3f58a829
MK
1384{
1385 struct mem_cgroup_per_zone *mz;
fa9add64 1386 unsigned long *lru_size;
3f58a829
MK
1387
1388 if (mem_cgroup_disabled())
1389 return;
1390
fa9add64
HD
1391 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
1392 lru_size = mz->lru_size + lru;
1393 *lru_size += nr_pages;
1394 VM_BUG_ON((long)(*lru_size) < 0);
08e552c6 1395}
544122e5 1396
3e92041d 1397/*
c0ff4b85 1398 * Checks whether given mem is same or in the root_mem_cgroup's
3e92041d
MH
1399 * hierarchy subtree
1400 */
c3ac9a8a
JW
1401bool __mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
1402 struct mem_cgroup *memcg)
3e92041d 1403{
91c63734
JW
1404 if (root_memcg == memcg)
1405 return true;
3a981f48 1406 if (!root_memcg->use_hierarchy || !memcg)
91c63734 1407 return false;
c3ac9a8a
JW
1408 return css_is_ancestor(&memcg->css, &root_memcg->css);
1409}
1410
1411static bool mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
1412 struct mem_cgroup *memcg)
1413{
1414 bool ret;
1415
91c63734 1416 rcu_read_lock();
c3ac9a8a 1417 ret = __mem_cgroup_same_or_subtree(root_memcg, memcg);
91c63734
JW
1418 rcu_read_unlock();
1419 return ret;
3e92041d
MH
1420}
1421
ffbdccf5
DR
1422bool task_in_mem_cgroup(struct task_struct *task,
1423 const struct mem_cgroup *memcg)
4c4a2214 1424{
0b7f569e 1425 struct mem_cgroup *curr = NULL;
158e0a2d 1426 struct task_struct *p;
ffbdccf5 1427 bool ret;
4c4a2214 1428
158e0a2d 1429 p = find_lock_task_mm(task);
de077d22
DR
1430 if (p) {
1431 curr = try_get_mem_cgroup_from_mm(p->mm);
1432 task_unlock(p);
1433 } else {
1434 /*
1435 * All threads may have already detached their mm's, but the oom
1436 * killer still needs to detect if they have already been oom
1437 * killed to prevent needlessly killing additional tasks.
1438 */
ffbdccf5 1439 rcu_read_lock();
de077d22
DR
1440 curr = mem_cgroup_from_task(task);
1441 if (curr)
1442 css_get(&curr->css);
ffbdccf5 1443 rcu_read_unlock();
de077d22 1444 }
0b7f569e 1445 if (!curr)
ffbdccf5 1446 return false;
d31f56db 1447 /*
c0ff4b85 1448 * We should check use_hierarchy of "memcg" not "curr". Because checking
d31f56db 1449 * use_hierarchy of "curr" here make this function true if hierarchy is
c0ff4b85
R
1450 * enabled in "curr" and "curr" is a child of "memcg" in *cgroup*
1451 * hierarchy(even if use_hierarchy is disabled in "memcg").
d31f56db 1452 */
c0ff4b85 1453 ret = mem_cgroup_same_or_subtree(memcg, curr);
0b7f569e 1454 css_put(&curr->css);
4c4a2214
DR
1455 return ret;
1456}
1457
c56d5c7d 1458int mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec)
14797e23 1459{
9b272977 1460 unsigned long inactive_ratio;
14797e23 1461 unsigned long inactive;
9b272977 1462 unsigned long active;
c772be93 1463 unsigned long gb;
14797e23 1464
4d7dcca2
HD
1465 inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_ANON);
1466 active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_ANON);
14797e23 1467
c772be93
KM
1468 gb = (inactive + active) >> (30 - PAGE_SHIFT);
1469 if (gb)
1470 inactive_ratio = int_sqrt(10 * gb);
1471 else
1472 inactive_ratio = 1;
1473
9b272977 1474 return inactive * inactive_ratio < active;
14797e23
KM
1475}
1476
6d61ef40
BS
1477#define mem_cgroup_from_res_counter(counter, member) \
1478 container_of(counter, struct mem_cgroup, member)
1479
19942822 1480/**
9d11ea9f 1481 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
dad7557e 1482 * @memcg: the memory cgroup
19942822 1483 *
9d11ea9f 1484 * Returns the maximum amount of memory @mem can be charged with, in
7ec99d62 1485 * pages.
19942822 1486 */
c0ff4b85 1487static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
19942822 1488{
9d11ea9f
JW
1489 unsigned long long margin;
1490
c0ff4b85 1491 margin = res_counter_margin(&memcg->res);
9d11ea9f 1492 if (do_swap_account)
c0ff4b85 1493 margin = min(margin, res_counter_margin(&memcg->memsw));
7ec99d62 1494 return margin >> PAGE_SHIFT;
19942822
JW
1495}
1496
1f4c025b 1497int mem_cgroup_swappiness(struct mem_cgroup *memcg)
a7885eb8 1498{
a7885eb8 1499 /* root ? */
63876986 1500 if (!css_parent(&memcg->css))
a7885eb8
KM
1501 return vm_swappiness;
1502
bf1ff263 1503 return memcg->swappiness;
a7885eb8
KM
1504}
1505
619d094b
KH
1506/*
1507 * memcg->moving_account is used for checking possibility that some thread is
1508 * calling move_account(). When a thread on CPU-A starts moving pages under
1509 * a memcg, other threads should check memcg->moving_account under
1510 * rcu_read_lock(), like this:
1511 *
1512 * CPU-A CPU-B
1513 * rcu_read_lock()
1514 * memcg->moving_account+1 if (memcg->mocing_account)
1515 * take heavy locks.
1516 * synchronize_rcu() update something.
1517 * rcu_read_unlock()
1518 * start move here.
1519 */
4331f7d3
KH
1520
1521/* for quick checking without looking up memcg */
1522atomic_t memcg_moving __read_mostly;
1523
c0ff4b85 1524static void mem_cgroup_start_move(struct mem_cgroup *memcg)
32047e2a 1525{
4331f7d3 1526 atomic_inc(&memcg_moving);
619d094b 1527 atomic_inc(&memcg->moving_account);
32047e2a
KH
1528 synchronize_rcu();
1529}
1530
c0ff4b85 1531static void mem_cgroup_end_move(struct mem_cgroup *memcg)
32047e2a 1532{
619d094b
KH
1533 /*
1534 * Now, mem_cgroup_clear_mc() may call this function with NULL.
1535 * We check NULL in callee rather than caller.
1536 */
4331f7d3
KH
1537 if (memcg) {
1538 atomic_dec(&memcg_moving);
619d094b 1539 atomic_dec(&memcg->moving_account);
4331f7d3 1540 }
32047e2a 1541}
619d094b 1542
32047e2a
KH
1543/*
1544 * 2 routines for checking "mem" is under move_account() or not.
1545 *
13fd1dd9
AM
1546 * mem_cgroup_stolen() - checking whether a cgroup is mc.from or not. This
1547 * is used for avoiding races in accounting. If true,
32047e2a
KH
1548 * pc->mem_cgroup may be overwritten.
1549 *
1550 * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or
1551 * under hierarchy of moving cgroups. This is for
1552 * waiting at hith-memory prressure caused by "move".
1553 */
1554
13fd1dd9 1555static bool mem_cgroup_stolen(struct mem_cgroup *memcg)
32047e2a
KH
1556{
1557 VM_BUG_ON(!rcu_read_lock_held());
619d094b 1558 return atomic_read(&memcg->moving_account) > 0;
32047e2a 1559}
4b534334 1560
c0ff4b85 1561static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
4b534334 1562{
2bd9bb20
KH
1563 struct mem_cgroup *from;
1564 struct mem_cgroup *to;
4b534334 1565 bool ret = false;
2bd9bb20
KH
1566 /*
1567 * Unlike task_move routines, we access mc.to, mc.from not under
1568 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1569 */
1570 spin_lock(&mc.lock);
1571 from = mc.from;
1572 to = mc.to;
1573 if (!from)
1574 goto unlock;
3e92041d 1575
c0ff4b85
R
1576 ret = mem_cgroup_same_or_subtree(memcg, from)
1577 || mem_cgroup_same_or_subtree(memcg, to);
2bd9bb20
KH
1578unlock:
1579 spin_unlock(&mc.lock);
4b534334
KH
1580 return ret;
1581}
1582
c0ff4b85 1583static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
4b534334
KH
1584{
1585 if (mc.moving_task && current != mc.moving_task) {
c0ff4b85 1586 if (mem_cgroup_under_move(memcg)) {
4b534334
KH
1587 DEFINE_WAIT(wait);
1588 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1589 /* moving charge context might have finished. */
1590 if (mc.moving_task)
1591 schedule();
1592 finish_wait(&mc.waitq, &wait);
1593 return true;
1594 }
1595 }
1596 return false;
1597}
1598
312734c0
KH
1599/*
1600 * Take this lock when
1601 * - a code tries to modify page's memcg while it's USED.
1602 * - a code tries to modify page state accounting in a memcg.
13fd1dd9 1603 * see mem_cgroup_stolen(), too.
312734c0
KH
1604 */
1605static void move_lock_mem_cgroup(struct mem_cgroup *memcg,
1606 unsigned long *flags)
1607{
1608 spin_lock_irqsave(&memcg->move_lock, *flags);
1609}
1610
1611static void move_unlock_mem_cgroup(struct mem_cgroup *memcg,
1612 unsigned long *flags)
1613{
1614 spin_unlock_irqrestore(&memcg->move_lock, *flags);
1615}
1616
58cf188e 1617#define K(x) ((x) << (PAGE_SHIFT-10))
e222432b 1618/**
58cf188e 1619 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
e222432b
BS
1620 * @memcg: The memory cgroup that went over limit
1621 * @p: Task that is going to be killed
1622 *
1623 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1624 * enabled
1625 */
1626void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1627{
1628 struct cgroup *task_cgrp;
1629 struct cgroup *mem_cgrp;
1630 /*
1631 * Need a buffer in BSS, can't rely on allocations. The code relies
1632 * on the assumption that OOM is serialized for memory controller.
1633 * If this assumption is broken, revisit this code.
1634 */
1635 static char memcg_name[PATH_MAX];
1636 int ret;
58cf188e
SZ
1637 struct mem_cgroup *iter;
1638 unsigned int i;
e222432b 1639
58cf188e 1640 if (!p)
e222432b
BS
1641 return;
1642
e222432b
BS
1643 rcu_read_lock();
1644
1645 mem_cgrp = memcg->css.cgroup;
1646 task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);
1647
1648 ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
1649 if (ret < 0) {
1650 /*
1651 * Unfortunately, we are unable to convert to a useful name
1652 * But we'll still print out the usage information
1653 */
1654 rcu_read_unlock();
1655 goto done;
1656 }
1657 rcu_read_unlock();
1658
d045197f 1659 pr_info("Task in %s killed", memcg_name);
e222432b
BS
1660
1661 rcu_read_lock();
1662 ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
1663 if (ret < 0) {
1664 rcu_read_unlock();
1665 goto done;
1666 }
1667 rcu_read_unlock();
1668
1669 /*
1670 * Continues from above, so we don't need an KERN_ level
1671 */
d045197f 1672 pr_cont(" as a result of limit of %s\n", memcg_name);
e222432b
BS
1673done:
1674
d045197f 1675 pr_info("memory: usage %llukB, limit %llukB, failcnt %llu\n",
e222432b
BS
1676 res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
1677 res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
1678 res_counter_read_u64(&memcg->res, RES_FAILCNT));
d045197f 1679 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %llu\n",
e222432b
BS
1680 res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
1681 res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
1682 res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
d045197f 1683 pr_info("kmem: usage %llukB, limit %llukB, failcnt %llu\n",
510fc4e1
GC
1684 res_counter_read_u64(&memcg->kmem, RES_USAGE) >> 10,
1685 res_counter_read_u64(&memcg->kmem, RES_LIMIT) >> 10,
1686 res_counter_read_u64(&memcg->kmem, RES_FAILCNT));
58cf188e
SZ
1687
1688 for_each_mem_cgroup_tree(iter, memcg) {
1689 pr_info("Memory cgroup stats");
1690
1691 rcu_read_lock();
1692 ret = cgroup_path(iter->css.cgroup, memcg_name, PATH_MAX);
1693 if (!ret)
1694 pr_cont(" for %s", memcg_name);
1695 rcu_read_unlock();
1696 pr_cont(":");
1697
1698 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
1699 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1700 continue;
1701 pr_cont(" %s:%ldKB", mem_cgroup_stat_names[i],
1702 K(mem_cgroup_read_stat(iter, i)));
1703 }
1704
1705 for (i = 0; i < NR_LRU_LISTS; i++)
1706 pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
1707 K(mem_cgroup_nr_lru_pages(iter, BIT(i))));
1708
1709 pr_cont("\n");
1710 }
e222432b
BS
1711}
1712
81d39c20
KH
1713/*
1714 * This function returns the number of memcg under hierarchy tree. Returns
1715 * 1(self count) if no children.
1716 */
c0ff4b85 1717static int mem_cgroup_count_children(struct mem_cgroup *memcg)
81d39c20
KH
1718{
1719 int num = 0;
7d74b06f
KH
1720 struct mem_cgroup *iter;
1721
c0ff4b85 1722 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f 1723 num++;
81d39c20
KH
1724 return num;
1725}
1726
a63d83f4
DR
1727/*
1728 * Return the memory (and swap, if configured) limit for a memcg.
1729 */
9cbb78bb 1730static u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
a63d83f4
DR
1731{
1732 u64 limit;
a63d83f4 1733
f3e8eb70 1734 limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
f3e8eb70 1735
a63d83f4 1736 /*
9a5a8f19 1737 * Do not consider swap space if we cannot swap due to swappiness
a63d83f4 1738 */
9a5a8f19
MH
1739 if (mem_cgroup_swappiness(memcg)) {
1740 u64 memsw;
1741
1742 limit += total_swap_pages << PAGE_SHIFT;
1743 memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
1744
1745 /*
1746 * If memsw is finite and limits the amount of swap space
1747 * available to this memcg, return that limit.
1748 */
1749 limit = min(limit, memsw);
1750 }
1751
1752 return limit;
a63d83f4
DR
1753}
1754
19965460
DR
1755static void mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1756 int order)
9cbb78bb
DR
1757{
1758 struct mem_cgroup *iter;
1759 unsigned long chosen_points = 0;
1760 unsigned long totalpages;
1761 unsigned int points = 0;
1762 struct task_struct *chosen = NULL;
1763
876aafbf 1764 /*
465adcf1
DR
1765 * If current has a pending SIGKILL or is exiting, then automatically
1766 * select it. The goal is to allow it to allocate so that it may
1767 * quickly exit and free its memory.
876aafbf 1768 */
465adcf1 1769 if (fatal_signal_pending(current) || current->flags & PF_EXITING) {
876aafbf
DR
1770 set_thread_flag(TIF_MEMDIE);
1771 return;
1772 }
1773
1774 check_panic_on_oom(CONSTRAINT_MEMCG, gfp_mask, order, NULL);
9cbb78bb
DR
1775 totalpages = mem_cgroup_get_limit(memcg) >> PAGE_SHIFT ? : 1;
1776 for_each_mem_cgroup_tree(iter, memcg) {
72ec7029 1777 struct css_task_iter it;
9cbb78bb
DR
1778 struct task_struct *task;
1779
72ec7029
TH
1780 css_task_iter_start(&iter->css, &it);
1781 while ((task = css_task_iter_next(&it))) {
9cbb78bb
DR
1782 switch (oom_scan_process_thread(task, totalpages, NULL,
1783 false)) {
1784 case OOM_SCAN_SELECT:
1785 if (chosen)
1786 put_task_struct(chosen);
1787 chosen = task;
1788 chosen_points = ULONG_MAX;
1789 get_task_struct(chosen);
1790 /* fall through */
1791 case OOM_SCAN_CONTINUE:
1792 continue;
1793 case OOM_SCAN_ABORT:
72ec7029 1794 css_task_iter_end(&it);
9cbb78bb
DR
1795 mem_cgroup_iter_break(memcg, iter);
1796 if (chosen)
1797 put_task_struct(chosen);
1798 return;
1799 case OOM_SCAN_OK:
1800 break;
1801 };
1802 points = oom_badness(task, memcg, NULL, totalpages);
1803 if (points > chosen_points) {
1804 if (chosen)
1805 put_task_struct(chosen);
1806 chosen = task;
1807 chosen_points = points;
1808 get_task_struct(chosen);
1809 }
1810 }
72ec7029 1811 css_task_iter_end(&it);
9cbb78bb
DR
1812 }
1813
1814 if (!chosen)
1815 return;
1816 points = chosen_points * 1000 / totalpages;
9cbb78bb
DR
1817 oom_kill_process(chosen, gfp_mask, order, points, totalpages, memcg,
1818 NULL, "Memory cgroup out of memory");
9cbb78bb
DR
1819}
1820
5660048c
JW
1821static unsigned long mem_cgroup_reclaim(struct mem_cgroup *memcg,
1822 gfp_t gfp_mask,
1823 unsigned long flags)
1824{
1825 unsigned long total = 0;
1826 bool noswap = false;
1827 int loop;
1828
1829 if (flags & MEM_CGROUP_RECLAIM_NOSWAP)
1830 noswap = true;
1831 if (!(flags & MEM_CGROUP_RECLAIM_SHRINK) && memcg->memsw_is_minimum)
1832 noswap = true;
1833
1834 for (loop = 0; loop < MEM_CGROUP_MAX_RECLAIM_LOOPS; loop++) {
1835 if (loop)
1836 drain_all_stock_async(memcg);
1837 total += try_to_free_mem_cgroup_pages(memcg, gfp_mask, noswap);
1838 /*
1839 * Allow limit shrinkers, which are triggered directly
1840 * by userspace, to catch signals and stop reclaim
1841 * after minimal progress, regardless of the margin.
1842 */
1843 if (total && (flags & MEM_CGROUP_RECLAIM_SHRINK))
1844 break;
1845 if (mem_cgroup_margin(memcg))
1846 break;
1847 /*
1848 * If nothing was reclaimed after two attempts, there
1849 * may be no reclaimable pages in this hierarchy.
1850 */
1851 if (loop && !total)
1852 break;
1853 }
1854 return total;
1855}
1856
4d0c066d
KH
1857/**
1858 * test_mem_cgroup_node_reclaimable
dad7557e 1859 * @memcg: the target memcg
4d0c066d
KH
1860 * @nid: the node ID to be checked.
1861 * @noswap : specify true here if the user wants flle only information.
1862 *
1863 * This function returns whether the specified memcg contains any
1864 * reclaimable pages on a node. Returns true if there are any reclaimable
1865 * pages in the node.
1866 */
c0ff4b85 1867static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
4d0c066d
KH
1868 int nid, bool noswap)
1869{
c0ff4b85 1870 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
4d0c066d
KH
1871 return true;
1872 if (noswap || !total_swap_pages)
1873 return false;
c0ff4b85 1874 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
4d0c066d
KH
1875 return true;
1876 return false;
1877
1878}
bb4cc1a8 1879#if MAX_NUMNODES > 1
889976db
YH
1880
1881/*
1882 * Always updating the nodemask is not very good - even if we have an empty
1883 * list or the wrong list here, we can start from some node and traverse all
1884 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1885 *
1886 */
c0ff4b85 1887static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
889976db
YH
1888{
1889 int nid;
453a9bf3
KH
1890 /*
1891 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1892 * pagein/pageout changes since the last update.
1893 */
c0ff4b85 1894 if (!atomic_read(&memcg->numainfo_events))
453a9bf3 1895 return;
c0ff4b85 1896 if (atomic_inc_return(&memcg->numainfo_updating) > 1)
889976db
YH
1897 return;
1898
889976db 1899 /* make a nodemask where this memcg uses memory from */
31aaea4a 1900 memcg->scan_nodes = node_states[N_MEMORY];
889976db 1901
31aaea4a 1902 for_each_node_mask(nid, node_states[N_MEMORY]) {
889976db 1903
c0ff4b85
R
1904 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1905 node_clear(nid, memcg->scan_nodes);
889976db 1906 }
453a9bf3 1907
c0ff4b85
R
1908 atomic_set(&memcg->numainfo_events, 0);
1909 atomic_set(&memcg->numainfo_updating, 0);
889976db
YH
1910}
1911
1912/*
1913 * Selecting a node where we start reclaim from. Because what we need is just
1914 * reducing usage counter, start from anywhere is O,K. Considering
1915 * memory reclaim from current node, there are pros. and cons.
1916 *
1917 * Freeing memory from current node means freeing memory from a node which
1918 * we'll use or we've used. So, it may make LRU bad. And if several threads
1919 * hit limits, it will see a contention on a node. But freeing from remote
1920 * node means more costs for memory reclaim because of memory latency.
1921 *
1922 * Now, we use round-robin. Better algorithm is welcomed.
1923 */
c0ff4b85 1924int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
889976db
YH
1925{
1926 int node;
1927
c0ff4b85
R
1928 mem_cgroup_may_update_nodemask(memcg);
1929 node = memcg->last_scanned_node;
889976db 1930
c0ff4b85 1931 node = next_node(node, memcg->scan_nodes);
889976db 1932 if (node == MAX_NUMNODES)
c0ff4b85 1933 node = first_node(memcg->scan_nodes);
889976db
YH
1934 /*
1935 * We call this when we hit limit, not when pages are added to LRU.
1936 * No LRU may hold pages because all pages are UNEVICTABLE or
1937 * memcg is too small and all pages are not on LRU. In that case,
1938 * we use curret node.
1939 */
1940 if (unlikely(node == MAX_NUMNODES))
1941 node = numa_node_id();
1942
c0ff4b85 1943 memcg->last_scanned_node = node;
889976db
YH
1944 return node;
1945}
1946
bb4cc1a8
AM
1947/*
1948 * Check all nodes whether it contains reclaimable pages or not.
1949 * For quick scan, we make use of scan_nodes. This will allow us to skip
1950 * unused nodes. But scan_nodes is lazily updated and may not cotain
1951 * enough new information. We need to do double check.
1952 */
1953static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
1954{
1955 int nid;
1956
1957 /*
1958 * quick check...making use of scan_node.
1959 * We can skip unused nodes.
1960 */
1961 if (!nodes_empty(memcg->scan_nodes)) {
1962 for (nid = first_node(memcg->scan_nodes);
1963 nid < MAX_NUMNODES;
1964 nid = next_node(nid, memcg->scan_nodes)) {
1965
1966 if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
1967 return true;
1968 }
1969 }
1970 /*
1971 * Check rest of nodes.
1972 */
1973 for_each_node_state(nid, N_MEMORY) {
1974 if (node_isset(nid, memcg->scan_nodes))
1975 continue;
1976 if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
1977 return true;
1978 }
1979 return false;
1980}
1981
889976db 1982#else
c0ff4b85 1983int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
889976db
YH
1984{
1985 return 0;
1986}
4d0c066d 1987
bb4cc1a8
AM
1988static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
1989{
1990 return test_mem_cgroup_node_reclaimable(memcg, 0, noswap);
1991}
889976db
YH
1992#endif
1993
0608f43d
AM
1994static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1995 struct zone *zone,
1996 gfp_t gfp_mask,
1997 unsigned long *total_scanned)
1998{
1999 struct mem_cgroup *victim = NULL;
2000 int total = 0;
2001 int loop = 0;
2002 unsigned long excess;
2003 unsigned long nr_scanned;
2004 struct mem_cgroup_reclaim_cookie reclaim = {
2005 .zone = zone,
2006 .priority = 0,
2007 };
2008
2009 excess = res_counter_soft_limit_excess(&root_memcg->res) >> PAGE_SHIFT;
2010
2011 while (1) {
2012 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
2013 if (!victim) {
2014 loop++;
2015 if (loop >= 2) {
2016 /*
2017 * If we have not been able to reclaim
2018 * anything, it might because there are
2019 * no reclaimable pages under this hierarchy
2020 */
2021 if (!total)
2022 break;
2023 /*
2024 * We want to do more targeted reclaim.
2025 * excess >> 2 is not to excessive so as to
2026 * reclaim too much, nor too less that we keep
2027 * coming back to reclaim from this cgroup
2028 */
2029 if (total >= (excess >> 2) ||
2030 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
2031 break;
2032 }
2033 continue;
2034 }
2035 if (!mem_cgroup_reclaimable(victim, false))
2036 continue;
2037 total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
2038 zone, &nr_scanned);
2039 *total_scanned += nr_scanned;
2040 if (!res_counter_soft_limit_excess(&root_memcg->res))
2041 break;
6d61ef40 2042 }
0608f43d
AM
2043 mem_cgroup_iter_break(root_memcg, victim);
2044 return total;
6d61ef40
BS
2045}
2046
fb2a6fc5
JW
2047static DEFINE_SPINLOCK(memcg_oom_lock);
2048
867578cb
KH
2049/*
2050 * Check OOM-Killer is already running under our hierarchy.
2051 * If someone is running, return false.
2052 */
fb2a6fc5 2053static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
867578cb 2054{
79dfdacc 2055 struct mem_cgroup *iter, *failed = NULL;
a636b327 2056
fb2a6fc5
JW
2057 spin_lock(&memcg_oom_lock);
2058
9f3a0d09 2059 for_each_mem_cgroup_tree(iter, memcg) {
23751be0 2060 if (iter->oom_lock) {
79dfdacc
MH
2061 /*
2062 * this subtree of our hierarchy is already locked
2063 * so we cannot give a lock.
2064 */
79dfdacc 2065 failed = iter;
9f3a0d09
JW
2066 mem_cgroup_iter_break(memcg, iter);
2067 break;
23751be0
JW
2068 } else
2069 iter->oom_lock = true;
7d74b06f 2070 }
867578cb 2071
fb2a6fc5
JW
2072 if (failed) {
2073 /*
2074 * OK, we failed to lock the whole subtree so we have
2075 * to clean up what we set up to the failing subtree
2076 */
2077 for_each_mem_cgroup_tree(iter, memcg) {
2078 if (iter == failed) {
2079 mem_cgroup_iter_break(memcg, iter);
2080 break;
2081 }
2082 iter->oom_lock = false;
79dfdacc 2083 }
79dfdacc 2084 }
fb2a6fc5
JW
2085
2086 spin_unlock(&memcg_oom_lock);
2087
2088 return !failed;
a636b327 2089}
0b7f569e 2090
fb2a6fc5 2091static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
0b7f569e 2092{
7d74b06f
KH
2093 struct mem_cgroup *iter;
2094
fb2a6fc5 2095 spin_lock(&memcg_oom_lock);
c0ff4b85 2096 for_each_mem_cgroup_tree(iter, memcg)
79dfdacc 2097 iter->oom_lock = false;
fb2a6fc5 2098 spin_unlock(&memcg_oom_lock);
79dfdacc
MH
2099}
2100
c0ff4b85 2101static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
79dfdacc
MH
2102{
2103 struct mem_cgroup *iter;
2104
c0ff4b85 2105 for_each_mem_cgroup_tree(iter, memcg)
79dfdacc
MH
2106 atomic_inc(&iter->under_oom);
2107}
2108
c0ff4b85 2109static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
79dfdacc
MH
2110{
2111 struct mem_cgroup *iter;
2112
867578cb
KH
2113 /*
2114 * When a new child is created while the hierarchy is under oom,
2115 * mem_cgroup_oom_lock() may not be called. We have to use
2116 * atomic_add_unless() here.
2117 */
c0ff4b85 2118 for_each_mem_cgroup_tree(iter, memcg)
79dfdacc 2119 atomic_add_unless(&iter->under_oom, -1, 0);
0b7f569e
KH
2120}
2121
867578cb
KH
2122static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
2123
dc98df5a 2124struct oom_wait_info {
d79154bb 2125 struct mem_cgroup *memcg;
dc98df5a
KH
2126 wait_queue_t wait;
2127};
2128
2129static int memcg_oom_wake_function(wait_queue_t *wait,
2130 unsigned mode, int sync, void *arg)
2131{
d79154bb
HD
2132 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
2133 struct mem_cgroup *oom_wait_memcg;
dc98df5a
KH
2134 struct oom_wait_info *oom_wait_info;
2135
2136 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
d79154bb 2137 oom_wait_memcg = oom_wait_info->memcg;
dc98df5a 2138
dc98df5a 2139 /*
d79154bb 2140 * Both of oom_wait_info->memcg and wake_memcg are stable under us.
dc98df5a
KH
2141 * Then we can use css_is_ancestor without taking care of RCU.
2142 */
c0ff4b85
R
2143 if (!mem_cgroup_same_or_subtree(oom_wait_memcg, wake_memcg)
2144 && !mem_cgroup_same_or_subtree(wake_memcg, oom_wait_memcg))
dc98df5a 2145 return 0;
dc98df5a
KH
2146 return autoremove_wake_function(wait, mode, sync, arg);
2147}
2148
c0ff4b85 2149static void memcg_wakeup_oom(struct mem_cgroup *memcg)
dc98df5a 2150{
3812c8c8 2151 atomic_inc(&memcg->oom_wakeups);
c0ff4b85
R
2152 /* for filtering, pass "memcg" as argument. */
2153 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
dc98df5a
KH
2154}
2155
c0ff4b85 2156static void memcg_oom_recover(struct mem_cgroup *memcg)
3c11ecf4 2157{
c0ff4b85
R
2158 if (memcg && atomic_read(&memcg->under_oom))
2159 memcg_wakeup_oom(memcg);
3c11ecf4
KH
2160}
2161
867578cb 2162/*
3812c8c8 2163 * try to call OOM killer
867578cb 2164 */
3812c8c8 2165static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
0b7f569e 2166{
fb2a6fc5 2167 bool locked;
3812c8c8 2168 int wakeups;
867578cb 2169
3812c8c8
JW
2170 if (!current->memcg_oom.may_oom)
2171 return;
2172
2173 current->memcg_oom.in_memcg_oom = 1;
79dfdacc 2174
867578cb 2175 /*
fb2a6fc5
JW
2176 * As with any blocking lock, a contender needs to start
2177 * listening for wakeups before attempting the trylock,
2178 * otherwise it can miss the wakeup from the unlock and sleep
2179 * indefinitely. This is just open-coded because our locking
2180 * is so particular to memcg hierarchies.
867578cb 2181 */
3812c8c8 2182 wakeups = atomic_read(&memcg->oom_wakeups);
fb2a6fc5
JW
2183 mem_cgroup_mark_under_oom(memcg);
2184
2185 locked = mem_cgroup_oom_trylock(memcg);
2186
3c11ecf4 2187 if (locked)
c0ff4b85 2188 mem_cgroup_oom_notify(memcg);
867578cb 2189
fb2a6fc5
JW
2190 if (locked && !memcg->oom_kill_disable) {
2191 mem_cgroup_unmark_under_oom(memcg);
e845e199 2192 mem_cgroup_out_of_memory(memcg, mask, order);
3812c8c8
JW
2193 mem_cgroup_oom_unlock(memcg);
2194 /*
2195 * There is no guarantee that an OOM-lock contender
2196 * sees the wakeups triggered by the OOM kill
2197 * uncharges. Wake any sleepers explicitely.
2198 */
2199 memcg_oom_recover(memcg);
3c11ecf4 2200 } else {
3812c8c8
JW
2201 /*
2202 * A system call can just return -ENOMEM, but if this
2203 * is a page fault and somebody else is handling the
2204 * OOM already, we need to sleep on the OOM waitqueue
2205 * for this memcg until the situation is resolved.
2206 * Which can take some time because it might be
2207 * handled by a userspace task.
2208 *
2209 * However, this is the charge context, which means
2210 * that we may sit on a large call stack and hold
2211 * various filesystem locks, the mmap_sem etc. and we
2212 * don't want the OOM handler to deadlock on them
2213 * while we sit here and wait. Store the current OOM
2214 * context in the task_struct, then return -ENOMEM.
2215 * At the end of the page fault handler, with the
2216 * stack unwound, pagefault_out_of_memory() will check
2217 * back with us by calling
2218 * mem_cgroup_oom_synchronize(), possibly putting the
2219 * task to sleep.
2220 */
2221 current->memcg_oom.oom_locked = locked;
2222 current->memcg_oom.wakeups = wakeups;
2223 css_get(&memcg->css);
2224 current->memcg_oom.wait_on_memcg = memcg;
867578cb 2225 }
3812c8c8
JW
2226}
2227
2228/**
2229 * mem_cgroup_oom_synchronize - complete memcg OOM handling
2230 *
2231 * This has to be called at the end of a page fault if the the memcg
2232 * OOM handler was enabled and the fault is returning %VM_FAULT_OOM.
2233 *
2234 * Memcg supports userspace OOM handling, so failed allocations must
2235 * sleep on a waitqueue until the userspace task resolves the
2236 * situation. Sleeping directly in the charge context with all kinds
2237 * of locks held is not a good idea, instead we remember an OOM state
2238 * in the task and mem_cgroup_oom_synchronize() has to be called at
2239 * the end of the page fault to put the task to sleep and clean up the
2240 * OOM state.
2241 *
2242 * Returns %true if an ongoing memcg OOM situation was detected and
2243 * finalized, %false otherwise.
2244 */
2245bool mem_cgroup_oom_synchronize(void)
2246{
2247 struct oom_wait_info owait;
2248 struct mem_cgroup *memcg;
2249
2250 /* OOM is global, do not handle */
2251 if (!current->memcg_oom.in_memcg_oom)
2252 return false;
2253
2254 /*
2255 * We invoked the OOM killer but there is a chance that a kill
2256 * did not free up any charges. Everybody else might already
2257 * be sleeping, so restart the fault and keep the rampage
2258 * going until some charges are released.
2259 */
2260 memcg = current->memcg_oom.wait_on_memcg;
2261 if (!memcg)
2262 goto out;
2263
2264 if (test_thread_flag(TIF_MEMDIE) || fatal_signal_pending(current))
2265 goto out_memcg;
2266
2267 owait.memcg = memcg;
2268 owait.wait.flags = 0;
2269 owait.wait.func = memcg_oom_wake_function;
2270 owait.wait.private = current;
2271 INIT_LIST_HEAD(&owait.wait.task_list);
867578cb 2272
3812c8c8
JW
2273 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
2274 /* Only sleep if we didn't miss any wakeups since OOM */
2275 if (atomic_read(&memcg->oom_wakeups) == current->memcg_oom.wakeups)
2276 schedule();
2277 finish_wait(&memcg_oom_waitq, &owait.wait);
2278out_memcg:
2279 mem_cgroup_unmark_under_oom(memcg);
2280 if (current->memcg_oom.oom_locked) {
fb2a6fc5
JW
2281 mem_cgroup_oom_unlock(memcg);
2282 /*
2283 * There is no guarantee that an OOM-lock contender
2284 * sees the wakeups triggered by the OOM kill
2285 * uncharges. Wake any sleepers explicitely.
2286 */
2287 memcg_oom_recover(memcg);
2288 }
3812c8c8
JW
2289 css_put(&memcg->css);
2290 current->memcg_oom.wait_on_memcg = NULL;
2291out:
2292 current->memcg_oom.in_memcg_oom = 0;
867578cb 2293 return true;
0b7f569e
KH
2294}
2295
d69b042f
BS
2296/*
2297 * Currently used to update mapped file statistics, but the routine can be
2298 * generalized to update other statistics as well.
32047e2a
KH
2299 *
2300 * Notes: Race condition
2301 *
2302 * We usually use page_cgroup_lock() for accessing page_cgroup member but
2303 * it tends to be costly. But considering some conditions, we doesn't need
2304 * to do so _always_.
2305 *
2306 * Considering "charge", lock_page_cgroup() is not required because all
2307 * file-stat operations happen after a page is attached to radix-tree. There
2308 * are no race with "charge".
2309 *
2310 * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
2311 * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
2312 * if there are race with "uncharge". Statistics itself is properly handled
2313 * by flags.
2314 *
2315 * Considering "move", this is an only case we see a race. To make the race
619d094b
KH
2316 * small, we check mm->moving_account and detect there are possibility of race
2317 * If there is, we take a lock.
d69b042f 2318 */
26174efd 2319
89c06bd5
KH
2320void __mem_cgroup_begin_update_page_stat(struct page *page,
2321 bool *locked, unsigned long *flags)
2322{
2323 struct mem_cgroup *memcg;
2324 struct page_cgroup *pc;
2325
2326 pc = lookup_page_cgroup(page);
2327again:
2328 memcg = pc->mem_cgroup;
2329 if (unlikely(!memcg || !PageCgroupUsed(pc)))
2330 return;
2331 /*
2332 * If this memory cgroup is not under account moving, we don't
da92c47d 2333 * need to take move_lock_mem_cgroup(). Because we already hold
89c06bd5 2334 * rcu_read_lock(), any calls to move_account will be delayed until
13fd1dd9 2335 * rcu_read_unlock() if mem_cgroup_stolen() == true.
89c06bd5 2336 */
13fd1dd9 2337 if (!mem_cgroup_stolen(memcg))
89c06bd5
KH
2338 return;
2339
2340 move_lock_mem_cgroup(memcg, flags);
2341 if (memcg != pc->mem_cgroup || !PageCgroupUsed(pc)) {
2342 move_unlock_mem_cgroup(memcg, flags);
2343 goto again;
2344 }
2345 *locked = true;
2346}
2347
2348void __mem_cgroup_end_update_page_stat(struct page *page, unsigned long *flags)
2349{
2350 struct page_cgroup *pc = lookup_page_cgroup(page);
2351
2352 /*
2353 * It's guaranteed that pc->mem_cgroup never changes while
2354 * lock is held because a routine modifies pc->mem_cgroup
da92c47d 2355 * should take move_lock_mem_cgroup().
89c06bd5
KH
2356 */
2357 move_unlock_mem_cgroup(pc->mem_cgroup, flags);
2358}
2359
2a7106f2 2360void mem_cgroup_update_page_stat(struct page *page,
68b4876d 2361 enum mem_cgroup_stat_index idx, int val)
d69b042f 2362{
c0ff4b85 2363 struct mem_cgroup *memcg;
32047e2a 2364 struct page_cgroup *pc = lookup_page_cgroup(page);
dbd4ea78 2365 unsigned long uninitialized_var(flags);
d69b042f 2366
cfa44946 2367 if (mem_cgroup_disabled())
d69b042f 2368 return;
89c06bd5 2369
658b72c5 2370 VM_BUG_ON(!rcu_read_lock_held());
c0ff4b85
R
2371 memcg = pc->mem_cgroup;
2372 if (unlikely(!memcg || !PageCgroupUsed(pc)))
89c06bd5 2373 return;
26174efd 2374
c0ff4b85 2375 this_cpu_add(memcg->stat->count[idx], val);
d69b042f 2376}
26174efd 2377
cdec2e42
KH
2378/*
2379 * size of first charge trial. "32" comes from vmscan.c's magic value.
2380 * TODO: maybe necessary to use big numbers in big irons.
2381 */
7ec99d62 2382#define CHARGE_BATCH 32U
cdec2e42
KH
2383struct memcg_stock_pcp {
2384 struct mem_cgroup *cached; /* this never be root cgroup */
11c9ea4e 2385 unsigned int nr_pages;
cdec2e42 2386 struct work_struct work;
26fe6168 2387 unsigned long flags;
a0db00fc 2388#define FLUSHING_CACHED_CHARGE 0
cdec2e42
KH
2389};
2390static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
9f50fad6 2391static DEFINE_MUTEX(percpu_charge_mutex);
cdec2e42 2392
a0956d54
SS
2393/**
2394 * consume_stock: Try to consume stocked charge on this cpu.
2395 * @memcg: memcg to consume from.
2396 * @nr_pages: how many pages to charge.
2397 *
2398 * The charges will only happen if @memcg matches the current cpu's memcg
2399 * stock, and at least @nr_pages are available in that stock. Failure to
2400 * service an allocation will refill the stock.
2401 *
2402 * returns true if successful, false otherwise.
cdec2e42 2403 */
a0956d54 2404static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
cdec2e42
KH
2405{
2406 struct memcg_stock_pcp *stock;
2407 bool ret = true;
2408
a0956d54
SS
2409 if (nr_pages > CHARGE_BATCH)
2410 return false;
2411
cdec2e42 2412 stock = &get_cpu_var(memcg_stock);
a0956d54
SS
2413 if (memcg == stock->cached && stock->nr_pages >= nr_pages)
2414 stock->nr_pages -= nr_pages;
cdec2e42
KH
2415 else /* need to call res_counter_charge */
2416 ret = false;
2417 put_cpu_var(memcg_stock);
2418 return ret;
2419}
2420
2421/*
2422 * Returns stocks cached in percpu to res_counter and reset cached information.
2423 */
2424static void drain_stock(struct memcg_stock_pcp *stock)
2425{
2426 struct mem_cgroup *old = stock->cached;
2427
11c9ea4e
JW
2428 if (stock->nr_pages) {
2429 unsigned long bytes = stock->nr_pages * PAGE_SIZE;
2430
2431 res_counter_uncharge(&old->res, bytes);
cdec2e42 2432 if (do_swap_account)
11c9ea4e
JW
2433 res_counter_uncharge(&old->memsw, bytes);
2434 stock->nr_pages = 0;
cdec2e42
KH
2435 }
2436 stock->cached = NULL;
cdec2e42
KH
2437}
2438
2439/*
2440 * This must be called under preempt disabled or must be called by
2441 * a thread which is pinned to local cpu.
2442 */
2443static void drain_local_stock(struct work_struct *dummy)
2444{
2445 struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
2446 drain_stock(stock);
26fe6168 2447 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
cdec2e42
KH
2448}
2449
e4777496
MH
2450static void __init memcg_stock_init(void)
2451{
2452 int cpu;
2453
2454 for_each_possible_cpu(cpu) {
2455 struct memcg_stock_pcp *stock =
2456 &per_cpu(memcg_stock, cpu);
2457 INIT_WORK(&stock->work, drain_local_stock);
2458 }
2459}
2460
cdec2e42
KH
2461/*
2462 * Cache charges(val) which is from res_counter, to local per_cpu area.
320cc51d 2463 * This will be consumed by consume_stock() function, later.
cdec2e42 2464 */
c0ff4b85 2465static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
cdec2e42
KH
2466{
2467 struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
2468
c0ff4b85 2469 if (stock->cached != memcg) { /* reset if necessary */
cdec2e42 2470 drain_stock(stock);
c0ff4b85 2471 stock->cached = memcg;
cdec2e42 2472 }
11c9ea4e 2473 stock->nr_pages += nr_pages;
cdec2e42
KH
2474 put_cpu_var(memcg_stock);
2475}
2476
2477/*
c0ff4b85 2478 * Drains all per-CPU charge caches for given root_memcg resp. subtree
d38144b7
MH
2479 * of the hierarchy under it. sync flag says whether we should block
2480 * until the work is done.
cdec2e42 2481 */
c0ff4b85 2482static void drain_all_stock(struct mem_cgroup *root_memcg, bool sync)
cdec2e42 2483{
26fe6168 2484 int cpu, curcpu;
d38144b7 2485
cdec2e42 2486 /* Notify other cpus that system-wide "drain" is running */
cdec2e42 2487 get_online_cpus();
5af12d0e 2488 curcpu = get_cpu();
cdec2e42
KH
2489 for_each_online_cpu(cpu) {
2490 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
c0ff4b85 2491 struct mem_cgroup *memcg;
26fe6168 2492
c0ff4b85
R
2493 memcg = stock->cached;
2494 if (!memcg || !stock->nr_pages)
26fe6168 2495 continue;
c0ff4b85 2496 if (!mem_cgroup_same_or_subtree(root_memcg, memcg))
3e92041d 2497 continue;
d1a05b69
MH
2498 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2499 if (cpu == curcpu)
2500 drain_local_stock(&stock->work);
2501 else
2502 schedule_work_on(cpu, &stock->work);
2503 }
cdec2e42 2504 }
5af12d0e 2505 put_cpu();
d38144b7
MH
2506
2507 if (!sync)
2508 goto out;
2509
2510 for_each_online_cpu(cpu) {
2511 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
9f50fad6 2512 if (test_bit(FLUSHING_CACHED_CHARGE, &stock->flags))
d38144b7
MH
2513 flush_work(&stock->work);
2514 }
2515out:
f894ffa8 2516 put_online_cpus();
d38144b7
MH
2517}
2518
2519/*
2520 * Tries to drain stocked charges in other cpus. This function is asynchronous
2521 * and just put a work per cpu for draining localy on each cpu. Caller can
2522 * expects some charges will be back to res_counter later but cannot wait for
2523 * it.
2524 */
c0ff4b85 2525static void drain_all_stock_async(struct mem_cgroup *root_memcg)
d38144b7 2526{
9f50fad6
MH
2527 /*
2528 * If someone calls draining, avoid adding more kworker runs.
2529 */
2530 if (!mutex_trylock(&percpu_charge_mutex))
2531 return;
c0ff4b85 2532 drain_all_stock(root_memcg, false);
9f50fad6 2533 mutex_unlock(&percpu_charge_mutex);
cdec2e42
KH
2534}
2535
2536/* This is a synchronous drain interface. */
c0ff4b85 2537static void drain_all_stock_sync(struct mem_cgroup *root_memcg)
cdec2e42
KH
2538{
2539 /* called when force_empty is called */
9f50fad6 2540 mutex_lock(&percpu_charge_mutex);
c0ff4b85 2541 drain_all_stock(root_memcg, true);
9f50fad6 2542 mutex_unlock(&percpu_charge_mutex);
cdec2e42
KH
2543}
2544
711d3d2c
KH
2545/*
2546 * This function drains percpu counter value from DEAD cpu and
2547 * move it to local cpu. Note that this function can be preempted.
2548 */
c0ff4b85 2549static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu)
711d3d2c
KH
2550{
2551 int i;
2552
c0ff4b85 2553 spin_lock(&memcg->pcp_counter_lock);
6104621d 2554 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
c0ff4b85 2555 long x = per_cpu(memcg->stat->count[i], cpu);
711d3d2c 2556
c0ff4b85
R
2557 per_cpu(memcg->stat->count[i], cpu) = 0;
2558 memcg->nocpu_base.count[i] += x;
711d3d2c 2559 }
e9f8974f 2560 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
c0ff4b85 2561 unsigned long x = per_cpu(memcg->stat->events[i], cpu);
e9f8974f 2562
c0ff4b85
R
2563 per_cpu(memcg->stat->events[i], cpu) = 0;
2564 memcg->nocpu_base.events[i] += x;
e9f8974f 2565 }
c0ff4b85 2566 spin_unlock(&memcg->pcp_counter_lock);
711d3d2c
KH
2567}
2568
0db0628d 2569static int memcg_cpu_hotplug_callback(struct notifier_block *nb,
cdec2e42
KH
2570 unsigned long action,
2571 void *hcpu)
2572{
2573 int cpu = (unsigned long)hcpu;
2574 struct memcg_stock_pcp *stock;
711d3d2c 2575 struct mem_cgroup *iter;
cdec2e42 2576
619d094b 2577 if (action == CPU_ONLINE)
1489ebad 2578 return NOTIFY_OK;
1489ebad 2579
d833049b 2580 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
cdec2e42 2581 return NOTIFY_OK;
711d3d2c 2582
9f3a0d09 2583 for_each_mem_cgroup(iter)
711d3d2c
KH
2584 mem_cgroup_drain_pcp_counter(iter, cpu);
2585
cdec2e42
KH
2586 stock = &per_cpu(memcg_stock, cpu);
2587 drain_stock(stock);
2588 return NOTIFY_OK;
2589}
2590
4b534334
KH
2591
2592/* See __mem_cgroup_try_charge() for details */
2593enum {
2594 CHARGE_OK, /* success */
2595 CHARGE_RETRY, /* need to retry but retry is not bad */
2596 CHARGE_NOMEM, /* we can't do more. return -ENOMEM */
2597 CHARGE_WOULDBLOCK, /* GFP_WAIT wasn't set and no enough res. */
4b534334
KH
2598};
2599
c0ff4b85 2600static int mem_cgroup_do_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
4c9c5359 2601 unsigned int nr_pages, unsigned int min_pages,
3812c8c8 2602 bool invoke_oom)
4b534334 2603{
7ec99d62 2604 unsigned long csize = nr_pages * PAGE_SIZE;
4b534334
KH
2605 struct mem_cgroup *mem_over_limit;
2606 struct res_counter *fail_res;
2607 unsigned long flags = 0;
2608 int ret;
2609
c0ff4b85 2610 ret = res_counter_charge(&memcg->res, csize, &fail_res);
4b534334
KH
2611
2612 if (likely(!ret)) {
2613 if (!do_swap_account)
2614 return CHARGE_OK;
c0ff4b85 2615 ret = res_counter_charge(&memcg->memsw, csize, &fail_res);
4b534334
KH
2616 if (likely(!ret))
2617 return CHARGE_OK;
2618
c0ff4b85 2619 res_counter_uncharge(&memcg->res, csize);
4b534334
KH
2620 mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
2621 flags |= MEM_CGROUP_RECLAIM_NOSWAP;
2622 } else
2623 mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
9221edb7 2624 /*
9221edb7
JW
2625 * Never reclaim on behalf of optional batching, retry with a
2626 * single page instead.
2627 */
4c9c5359 2628 if (nr_pages > min_pages)
4b534334
KH
2629 return CHARGE_RETRY;
2630
2631 if (!(gfp_mask & __GFP_WAIT))
2632 return CHARGE_WOULDBLOCK;
2633
4c9c5359
SS
2634 if (gfp_mask & __GFP_NORETRY)
2635 return CHARGE_NOMEM;
2636
5660048c 2637 ret = mem_cgroup_reclaim(mem_over_limit, gfp_mask, flags);
7ec99d62 2638 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
19942822 2639 return CHARGE_RETRY;
4b534334 2640 /*
19942822
JW
2641 * Even though the limit is exceeded at this point, reclaim
2642 * may have been able to free some pages. Retry the charge
2643 * before killing the task.
2644 *
2645 * Only for regular pages, though: huge pages are rather
2646 * unlikely to succeed so close to the limit, and we fall back
2647 * to regular pages anyway in case of failure.
4b534334 2648 */
4c9c5359 2649 if (nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER) && ret)
4b534334
KH
2650 return CHARGE_RETRY;
2651
2652 /*
2653 * At task move, charge accounts can be doubly counted. So, it's
2654 * better to wait until the end of task_move if something is going on.
2655 */
2656 if (mem_cgroup_wait_acct_move(mem_over_limit))
2657 return CHARGE_RETRY;
2658
3812c8c8
JW
2659 if (invoke_oom)
2660 mem_cgroup_oom(mem_over_limit, gfp_mask, get_order(csize));
4b534334 2661
3812c8c8 2662 return CHARGE_NOMEM;
4b534334
KH
2663}
2664
f817ed48 2665/*
38c5d72f
KH
2666 * __mem_cgroup_try_charge() does
2667 * 1. detect memcg to be charged against from passed *mm and *ptr,
2668 * 2. update res_counter
2669 * 3. call memory reclaim if necessary.
2670 *
2671 * In some special case, if the task is fatal, fatal_signal_pending() or
2672 * has TIF_MEMDIE, this function returns -EINTR while writing root_mem_cgroup
2673 * to *ptr. There are two reasons for this. 1: fatal threads should quit as soon
2674 * as possible without any hazards. 2: all pages should have a valid
2675 * pc->mem_cgroup. If mm is NULL and the caller doesn't pass a valid memcg
2676 * pointer, that is treated as a charge to root_mem_cgroup.
2677 *
2678 * So __mem_cgroup_try_charge() will return
2679 * 0 ... on success, filling *ptr with a valid memcg pointer.
2680 * -ENOMEM ... charge failure because of resource limits.
2681 * -EINTR ... if thread is fatal. *ptr is filled with root_mem_cgroup.
2682 *
2683 * Unlike the exported interface, an "oom" parameter is added. if oom==true,
2684 * the oom-killer can be invoked.
8a9f3ccd 2685 */
f817ed48 2686static int __mem_cgroup_try_charge(struct mm_struct *mm,
ec168510 2687 gfp_t gfp_mask,
7ec99d62 2688 unsigned int nr_pages,
c0ff4b85 2689 struct mem_cgroup **ptr,
7ec99d62 2690 bool oom)
8a9f3ccd 2691{
7ec99d62 2692 unsigned int batch = max(CHARGE_BATCH, nr_pages);
4b534334 2693 int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
c0ff4b85 2694 struct mem_cgroup *memcg = NULL;
4b534334 2695 int ret;
a636b327 2696
867578cb
KH
2697 /*
2698 * Unlike gloval-vm's OOM-kill, we're not in memory shortage
2699 * in system level. So, allow to go ahead dying process in addition to
2700 * MEMDIE process.
2701 */
2702 if (unlikely(test_thread_flag(TIF_MEMDIE)
2703 || fatal_signal_pending(current)))
2704 goto bypass;
a636b327 2705
8a9f3ccd 2706 /*
3be91277
HD
2707 * We always charge the cgroup the mm_struct belongs to.
2708 * The mm_struct's mem_cgroup changes on task migration if the
8a9f3ccd 2709 * thread group leader migrates. It's possible that mm is not
24467cac 2710 * set, if so charge the root memcg (happens for pagecache usage).
8a9f3ccd 2711 */
c0ff4b85 2712 if (!*ptr && !mm)
38c5d72f 2713 *ptr = root_mem_cgroup;
f75ca962 2714again:
c0ff4b85
R
2715 if (*ptr) { /* css should be a valid one */
2716 memcg = *ptr;
c0ff4b85 2717 if (mem_cgroup_is_root(memcg))
f75ca962 2718 goto done;
a0956d54 2719 if (consume_stock(memcg, nr_pages))
f75ca962 2720 goto done;
c0ff4b85 2721 css_get(&memcg->css);
4b534334 2722 } else {
f75ca962 2723 struct task_struct *p;
54595fe2 2724
f75ca962
KH
2725 rcu_read_lock();
2726 p = rcu_dereference(mm->owner);
f75ca962 2727 /*
ebb76ce1 2728 * Because we don't have task_lock(), "p" can exit.
c0ff4b85 2729 * In that case, "memcg" can point to root or p can be NULL with
ebb76ce1
KH
2730 * race with swapoff. Then, we have small risk of mis-accouning.
2731 * But such kind of mis-account by race always happens because
2732 * we don't have cgroup_mutex(). It's overkill and we allo that
2733 * small race, here.
2734 * (*) swapoff at el will charge against mm-struct not against
2735 * task-struct. So, mm->owner can be NULL.
f75ca962 2736 */
c0ff4b85 2737 memcg = mem_cgroup_from_task(p);
38c5d72f
KH
2738 if (!memcg)
2739 memcg = root_mem_cgroup;
2740 if (mem_cgroup_is_root(memcg)) {
f75ca962
KH
2741 rcu_read_unlock();
2742 goto done;
2743 }
a0956d54 2744 if (consume_stock(memcg, nr_pages)) {
f75ca962
KH
2745 /*
2746 * It seems dagerous to access memcg without css_get().
2747 * But considering how consume_stok works, it's not
2748 * necessary. If consume_stock success, some charges
2749 * from this memcg are cached on this cpu. So, we
2750 * don't need to call css_get()/css_tryget() before
2751 * calling consume_stock().
2752 */
2753 rcu_read_unlock();
2754 goto done;
2755 }
2756 /* after here, we may be blocked. we need to get refcnt */
c0ff4b85 2757 if (!css_tryget(&memcg->css)) {
f75ca962
KH
2758 rcu_read_unlock();
2759 goto again;
2760 }
2761 rcu_read_unlock();
2762 }
8a9f3ccd 2763
4b534334 2764 do {
3812c8c8 2765 bool invoke_oom = oom && !nr_oom_retries;
7a81b88c 2766
4b534334 2767 /* If killed, bypass charge */
f75ca962 2768 if (fatal_signal_pending(current)) {
c0ff4b85 2769 css_put(&memcg->css);
4b534334 2770 goto bypass;
f75ca962 2771 }
6d61ef40 2772
3812c8c8
JW
2773 ret = mem_cgroup_do_charge(memcg, gfp_mask, batch,
2774 nr_pages, invoke_oom);
4b534334
KH
2775 switch (ret) {
2776 case CHARGE_OK:
2777 break;
2778 case CHARGE_RETRY: /* not in OOM situation but retry */
7ec99d62 2779 batch = nr_pages;
c0ff4b85
R
2780 css_put(&memcg->css);
2781 memcg = NULL;
f75ca962 2782 goto again;
4b534334 2783 case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */
c0ff4b85 2784 css_put(&memcg->css);
4b534334
KH
2785 goto nomem;
2786 case CHARGE_NOMEM: /* OOM routine works */
3812c8c8 2787 if (!oom || invoke_oom) {
c0ff4b85 2788 css_put(&memcg->css);
867578cb 2789 goto nomem;
f75ca962 2790 }
4b534334
KH
2791 nr_oom_retries--;
2792 break;
66e1707b 2793 }
4b534334
KH
2794 } while (ret != CHARGE_OK);
2795
7ec99d62 2796 if (batch > nr_pages)
c0ff4b85
R
2797 refill_stock(memcg, batch - nr_pages);
2798 css_put(&memcg->css);
0c3e73e8 2799done:
c0ff4b85 2800 *ptr = memcg;
7a81b88c
KH
2801 return 0;
2802nomem:
c0ff4b85 2803 *ptr = NULL;
7a81b88c 2804 return -ENOMEM;
867578cb 2805bypass:
38c5d72f
KH
2806 *ptr = root_mem_cgroup;
2807 return -EINTR;
7a81b88c 2808}
8a9f3ccd 2809
a3032a2c
DN
2810/*
2811 * Somemtimes we have to undo a charge we got by try_charge().
2812 * This function is for that and do uncharge, put css's refcnt.
2813 * gotten by try_charge().
2814 */
c0ff4b85 2815static void __mem_cgroup_cancel_charge(struct mem_cgroup *memcg,
e7018b8d 2816 unsigned int nr_pages)
a3032a2c 2817{
c0ff4b85 2818 if (!mem_cgroup_is_root(memcg)) {
e7018b8d
JW
2819 unsigned long bytes = nr_pages * PAGE_SIZE;
2820
c0ff4b85 2821 res_counter_uncharge(&memcg->res, bytes);
a3032a2c 2822 if (do_swap_account)
c0ff4b85 2823 res_counter_uncharge(&memcg->memsw, bytes);
a3032a2c 2824 }
854ffa8d
DN
2825}
2826
d01dd17f
KH
2827/*
2828 * Cancel chrages in this cgroup....doesn't propagate to parent cgroup.
2829 * This is useful when moving usage to parent cgroup.
2830 */
2831static void __mem_cgroup_cancel_local_charge(struct mem_cgroup *memcg,
2832 unsigned int nr_pages)
2833{
2834 unsigned long bytes = nr_pages * PAGE_SIZE;
2835
2836 if (mem_cgroup_is_root(memcg))
2837 return;
2838
2839 res_counter_uncharge_until(&memcg->res, memcg->res.parent, bytes);
2840 if (do_swap_account)
2841 res_counter_uncharge_until(&memcg->memsw,
2842 memcg->memsw.parent, bytes);
2843}
2844
a3b2d692
KH
2845/*
2846 * A helper function to get mem_cgroup from ID. must be called under
e9316080
TH
2847 * rcu_read_lock(). The caller is responsible for calling css_tryget if
2848 * the mem_cgroup is used for charging. (dropping refcnt from swap can be
2849 * called against removed memcg.)
a3b2d692
KH
2850 */
2851static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
2852{
2853 struct cgroup_subsys_state *css;
2854
2855 /* ID 0 is unused ID */
2856 if (!id)
2857 return NULL;
2858 css = css_lookup(&mem_cgroup_subsys, id);
2859 if (!css)
2860 return NULL;
b2145145 2861 return mem_cgroup_from_css(css);
a3b2d692
KH
2862}
2863
e42d9d5d 2864struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
b5a84319 2865{
c0ff4b85 2866 struct mem_cgroup *memcg = NULL;
3c776e64 2867 struct page_cgroup *pc;
a3b2d692 2868 unsigned short id;
b5a84319
KH
2869 swp_entry_t ent;
2870
3c776e64
DN
2871 VM_BUG_ON(!PageLocked(page));
2872
3c776e64 2873 pc = lookup_page_cgroup(page);
c0bd3f63 2874 lock_page_cgroup(pc);
a3b2d692 2875 if (PageCgroupUsed(pc)) {
c0ff4b85
R
2876 memcg = pc->mem_cgroup;
2877 if (memcg && !css_tryget(&memcg->css))
2878 memcg = NULL;
e42d9d5d 2879 } else if (PageSwapCache(page)) {
3c776e64 2880 ent.val = page_private(page);
9fb4b7cc 2881 id = lookup_swap_cgroup_id(ent);
a3b2d692 2882 rcu_read_lock();
c0ff4b85
R
2883 memcg = mem_cgroup_lookup(id);
2884 if (memcg && !css_tryget(&memcg->css))
2885 memcg = NULL;
a3b2d692 2886 rcu_read_unlock();
3c776e64 2887 }
c0bd3f63 2888 unlock_page_cgroup(pc);
c0ff4b85 2889 return memcg;
b5a84319
KH
2890}
2891
c0ff4b85 2892static void __mem_cgroup_commit_charge(struct mem_cgroup *memcg,
5564e88b 2893 struct page *page,
7ec99d62 2894 unsigned int nr_pages,
9ce70c02
HD
2895 enum charge_type ctype,
2896 bool lrucare)
7a81b88c 2897{
ce587e65 2898 struct page_cgroup *pc = lookup_page_cgroup(page);
9ce70c02 2899 struct zone *uninitialized_var(zone);
fa9add64 2900 struct lruvec *lruvec;
9ce70c02 2901 bool was_on_lru = false;
b2402857 2902 bool anon;
9ce70c02 2903
ca3e0214 2904 lock_page_cgroup(pc);
90deb788 2905 VM_BUG_ON(PageCgroupUsed(pc));
ca3e0214
KH
2906 /*
2907 * we don't need page_cgroup_lock about tail pages, becase they are not
2908 * accessed by any other context at this point.
2909 */
9ce70c02
HD
2910
2911 /*
2912 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2913 * may already be on some other mem_cgroup's LRU. Take care of it.
2914 */
2915 if (lrucare) {
2916 zone = page_zone(page);
2917 spin_lock_irq(&zone->lru_lock);
2918 if (PageLRU(page)) {
fa9add64 2919 lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
9ce70c02 2920 ClearPageLRU(page);
fa9add64 2921 del_page_from_lru_list(page, lruvec, page_lru(page));
9ce70c02
HD
2922 was_on_lru = true;
2923 }
2924 }
2925
c0ff4b85 2926 pc->mem_cgroup = memcg;
261fb61a
KH
2927 /*
2928 * We access a page_cgroup asynchronously without lock_page_cgroup().
2929 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
2930 * is accessed after testing USED bit. To make pc->mem_cgroup visible
2931 * before USED bit, we need memory barrier here.
2932 * See mem_cgroup_add_lru_list(), etc.
f894ffa8 2933 */
08e552c6 2934 smp_wmb();
b2402857 2935 SetPageCgroupUsed(pc);
3be91277 2936
9ce70c02
HD
2937 if (lrucare) {
2938 if (was_on_lru) {
fa9add64 2939 lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
9ce70c02
HD
2940 VM_BUG_ON(PageLRU(page));
2941 SetPageLRU(page);
fa9add64 2942 add_page_to_lru_list(page, lruvec, page_lru(page));
9ce70c02
HD
2943 }
2944 spin_unlock_irq(&zone->lru_lock);
2945 }
2946
41326c17 2947 if (ctype == MEM_CGROUP_CHARGE_TYPE_ANON)
b2402857
KH
2948 anon = true;
2949 else
2950 anon = false;
2951
b070e65c 2952 mem_cgroup_charge_statistics(memcg, page, anon, nr_pages);
52d4b9ac 2953 unlock_page_cgroup(pc);
9ce70c02 2954
430e4863 2955 /*
bb4cc1a8
AM
2956 * "charge_statistics" updated event counter. Then, check it.
2957 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
2958 * if they exceeds softlimit.
430e4863 2959 */
c0ff4b85 2960 memcg_check_events(memcg, page);
7a81b88c 2961}
66e1707b 2962
7cf27982
GC
2963static DEFINE_MUTEX(set_limit_mutex);
2964
7ae1e1d0
GC
2965#ifdef CONFIG_MEMCG_KMEM
2966static inline bool memcg_can_account_kmem(struct mem_cgroup *memcg)
2967{
2968 return !mem_cgroup_disabled() && !mem_cgroup_is_root(memcg) &&
2969 (memcg->kmem_account_flags & KMEM_ACCOUNTED_MASK);
2970}
2971
1f458cbf
GC
2972/*
2973 * This is a bit cumbersome, but it is rarely used and avoids a backpointer
2974 * in the memcg_cache_params struct.
2975 */
2976static struct kmem_cache *memcg_params_to_cache(struct memcg_cache_params *p)
2977{
2978 struct kmem_cache *cachep;
2979
2980 VM_BUG_ON(p->is_root_cache);
2981 cachep = p->root_cache;
2982 return cachep->memcg_params->memcg_caches[memcg_cache_id(p->memcg)];
2983}
2984
749c5415 2985#ifdef CONFIG_SLABINFO
182446d0
TH
2986static int mem_cgroup_slabinfo_read(struct cgroup_subsys_state *css,
2987 struct cftype *cft, struct seq_file *m)
749c5415 2988{
182446d0 2989 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
749c5415
GC
2990 struct memcg_cache_params *params;
2991
2992 if (!memcg_can_account_kmem(memcg))
2993 return -EIO;
2994
2995 print_slabinfo_header(m);
2996
2997 mutex_lock(&memcg->slab_caches_mutex);
2998 list_for_each_entry(params, &memcg->memcg_slab_caches, list)
2999 cache_show(memcg_params_to_cache(params), m);
3000 mutex_unlock(&memcg->slab_caches_mutex);
3001
3002 return 0;
3003}
3004#endif
3005
7ae1e1d0
GC
3006static int memcg_charge_kmem(struct mem_cgroup *memcg, gfp_t gfp, u64 size)
3007{
3008 struct res_counter *fail_res;
3009 struct mem_cgroup *_memcg;
3010 int ret = 0;
3011 bool may_oom;
3012
3013 ret = res_counter_charge(&memcg->kmem, size, &fail_res);
3014 if (ret)
3015 return ret;
3016
3017 /*
3018 * Conditions under which we can wait for the oom_killer. Those are
3019 * the same conditions tested by the core page allocator
3020 */
3021 may_oom = (gfp & __GFP_FS) && !(gfp & __GFP_NORETRY);
3022
3023 _memcg = memcg;
3024 ret = __mem_cgroup_try_charge(NULL, gfp, size >> PAGE_SHIFT,
3025 &_memcg, may_oom);
3026
3027 if (ret == -EINTR) {
3028 /*
3029 * __mem_cgroup_try_charge() chosed to bypass to root due to
3030 * OOM kill or fatal signal. Since our only options are to
3031 * either fail the allocation or charge it to this cgroup, do
3032 * it as a temporary condition. But we can't fail. From a
3033 * kmem/slab perspective, the cache has already been selected,
3034 * by mem_cgroup_kmem_get_cache(), so it is too late to change
3035 * our minds.
3036 *
3037 * This condition will only trigger if the task entered
3038 * memcg_charge_kmem in a sane state, but was OOM-killed during
3039 * __mem_cgroup_try_charge() above. Tasks that were already
3040 * dying when the allocation triggers should have been already
3041 * directed to the root cgroup in memcontrol.h
3042 */
3043 res_counter_charge_nofail(&memcg->res, size, &fail_res);
3044 if (do_swap_account)
3045 res_counter_charge_nofail(&memcg->memsw, size,
3046 &fail_res);
3047 ret = 0;
3048 } else if (ret)
3049 res_counter_uncharge(&memcg->kmem, size);
3050
3051 return ret;
3052}
3053
3054static void memcg_uncharge_kmem(struct mem_cgroup *memcg, u64 size)
3055{
7ae1e1d0
GC
3056 res_counter_uncharge(&memcg->res, size);
3057 if (do_swap_account)
3058 res_counter_uncharge(&memcg->memsw, size);
7de37682
GC
3059
3060 /* Not down to 0 */
3061 if (res_counter_uncharge(&memcg->kmem, size))
3062 return;
3063
10d5ebf4
LZ
3064 /*
3065 * Releases a reference taken in kmem_cgroup_css_offline in case
3066 * this last uncharge is racing with the offlining code or it is
3067 * outliving the memcg existence.
3068 *
3069 * The memory barrier imposed by test&clear is paired with the
3070 * explicit one in memcg_kmem_mark_dead().
3071 */
7de37682 3072 if (memcg_kmem_test_and_clear_dead(memcg))
10d5ebf4 3073 css_put(&memcg->css);
7ae1e1d0
GC
3074}
3075
2633d7a0
GC
3076void memcg_cache_list_add(struct mem_cgroup *memcg, struct kmem_cache *cachep)
3077{
3078 if (!memcg)
3079 return;
3080
3081 mutex_lock(&memcg->slab_caches_mutex);
3082 list_add(&cachep->memcg_params->list, &memcg->memcg_slab_caches);
3083 mutex_unlock(&memcg->slab_caches_mutex);
3084}
3085
3086/*
3087 * helper for acessing a memcg's index. It will be used as an index in the
3088 * child cache array in kmem_cache, and also to derive its name. This function
3089 * will return -1 when this is not a kmem-limited memcg.
3090 */
3091int memcg_cache_id(struct mem_cgroup *memcg)
3092{
3093 return memcg ? memcg->kmemcg_id : -1;
3094}
3095
55007d84
GC
3096/*
3097 * This ends up being protected by the set_limit mutex, during normal
3098 * operation, because that is its main call site.
3099 *
3100 * But when we create a new cache, we can call this as well if its parent
3101 * is kmem-limited. That will have to hold set_limit_mutex as well.
3102 */
3103int memcg_update_cache_sizes(struct mem_cgroup *memcg)
3104{
3105 int num, ret;
3106
3107 num = ida_simple_get(&kmem_limited_groups,
3108 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
3109 if (num < 0)
3110 return num;
3111 /*
3112 * After this point, kmem_accounted (that we test atomically in
3113 * the beginning of this conditional), is no longer 0. This
3114 * guarantees only one process will set the following boolean
3115 * to true. We don't need test_and_set because we're protected
3116 * by the set_limit_mutex anyway.
3117 */
3118 memcg_kmem_set_activated(memcg);
3119
3120 ret = memcg_update_all_caches(num+1);
3121 if (ret) {
3122 ida_simple_remove(&kmem_limited_groups, num);
3123 memcg_kmem_clear_activated(memcg);
3124 return ret;
3125 }
3126
3127 memcg->kmemcg_id = num;
3128 INIT_LIST_HEAD(&memcg->memcg_slab_caches);
3129 mutex_init(&memcg->slab_caches_mutex);
3130 return 0;
3131}
3132
3133static size_t memcg_caches_array_size(int num_groups)
3134{
3135 ssize_t size;
3136 if (num_groups <= 0)
3137 return 0;
3138
3139 size = 2 * num_groups;
3140 if (size < MEMCG_CACHES_MIN_SIZE)
3141 size = MEMCG_CACHES_MIN_SIZE;
3142 else if (size > MEMCG_CACHES_MAX_SIZE)
3143 size = MEMCG_CACHES_MAX_SIZE;
3144
3145 return size;
3146}
3147
3148/*
3149 * We should update the current array size iff all caches updates succeed. This
3150 * can only be done from the slab side. The slab mutex needs to be held when
3151 * calling this.
3152 */
3153void memcg_update_array_size(int num)
3154{
3155 if (num > memcg_limited_groups_array_size)
3156 memcg_limited_groups_array_size = memcg_caches_array_size(num);
3157}
3158
15cf17d2
KK
3159static void kmem_cache_destroy_work_func(struct work_struct *w);
3160
55007d84
GC
3161int memcg_update_cache_size(struct kmem_cache *s, int num_groups)
3162{
3163 struct memcg_cache_params *cur_params = s->memcg_params;
3164
3165 VM_BUG_ON(s->memcg_params && !s->memcg_params->is_root_cache);
3166
3167 if (num_groups > memcg_limited_groups_array_size) {
3168 int i;
3169 ssize_t size = memcg_caches_array_size(num_groups);
3170
3171 size *= sizeof(void *);
90c7a79c 3172 size += offsetof(struct memcg_cache_params, memcg_caches);
55007d84
GC
3173
3174 s->memcg_params = kzalloc(size, GFP_KERNEL);
3175 if (!s->memcg_params) {
3176 s->memcg_params = cur_params;
3177 return -ENOMEM;
3178 }
3179
3180 s->memcg_params->is_root_cache = true;
3181
3182 /*
3183 * There is the chance it will be bigger than
3184 * memcg_limited_groups_array_size, if we failed an allocation
3185 * in a cache, in which case all caches updated before it, will
3186 * have a bigger array.
3187 *
3188 * But if that is the case, the data after
3189 * memcg_limited_groups_array_size is certainly unused
3190 */
3191 for (i = 0; i < memcg_limited_groups_array_size; i++) {
3192 if (!cur_params->memcg_caches[i])
3193 continue;
3194 s->memcg_params->memcg_caches[i] =
3195 cur_params->memcg_caches[i];
3196 }
3197
3198 /*
3199 * Ideally, we would wait until all caches succeed, and only
3200 * then free the old one. But this is not worth the extra
3201 * pointer per-cache we'd have to have for this.
3202 *
3203 * It is not a big deal if some caches are left with a size
3204 * bigger than the others. And all updates will reset this
3205 * anyway.
3206 */
3207 kfree(cur_params);
3208 }
3209 return 0;
3210}
3211
943a451a
GC
3212int memcg_register_cache(struct mem_cgroup *memcg, struct kmem_cache *s,
3213 struct kmem_cache *root_cache)
2633d7a0 3214{
90c7a79c 3215 size_t size;
2633d7a0
GC
3216
3217 if (!memcg_kmem_enabled())
3218 return 0;
3219
90c7a79c
AV
3220 if (!memcg) {
3221 size = offsetof(struct memcg_cache_params, memcg_caches);
55007d84 3222 size += memcg_limited_groups_array_size * sizeof(void *);
90c7a79c
AV
3223 } else
3224 size = sizeof(struct memcg_cache_params);
55007d84 3225
2633d7a0
GC
3226 s->memcg_params = kzalloc(size, GFP_KERNEL);
3227 if (!s->memcg_params)
3228 return -ENOMEM;
3229
943a451a 3230 if (memcg) {
2633d7a0 3231 s->memcg_params->memcg = memcg;
943a451a 3232 s->memcg_params->root_cache = root_cache;
3e6b11df
AV
3233 INIT_WORK(&s->memcg_params->destroy,
3234 kmem_cache_destroy_work_func);
4ba902b5
GC
3235 } else
3236 s->memcg_params->is_root_cache = true;
3237
2633d7a0
GC
3238 return 0;
3239}
3240
3241void memcg_release_cache(struct kmem_cache *s)
3242{
d7f25f8a
GC
3243 struct kmem_cache *root;
3244 struct mem_cgroup *memcg;
3245 int id;
3246
3247 /*
3248 * This happens, for instance, when a root cache goes away before we
3249 * add any memcg.
3250 */
3251 if (!s->memcg_params)
3252 return;
3253
3254 if (s->memcg_params->is_root_cache)
3255 goto out;
3256
3257 memcg = s->memcg_params->memcg;
3258 id = memcg_cache_id(memcg);
3259
3260 root = s->memcg_params->root_cache;
3261 root->memcg_params->memcg_caches[id] = NULL;
d7f25f8a
GC
3262
3263 mutex_lock(&memcg->slab_caches_mutex);
3264 list_del(&s->memcg_params->list);
3265 mutex_unlock(&memcg->slab_caches_mutex);
3266
20f05310 3267 css_put(&memcg->css);
d7f25f8a 3268out:
2633d7a0
GC
3269 kfree(s->memcg_params);
3270}
3271
0e9d92f2
GC
3272/*
3273 * During the creation a new cache, we need to disable our accounting mechanism
3274 * altogether. This is true even if we are not creating, but rather just
3275 * enqueing new caches to be created.
3276 *
3277 * This is because that process will trigger allocations; some visible, like
3278 * explicit kmallocs to auxiliary data structures, name strings and internal
3279 * cache structures; some well concealed, like INIT_WORK() that can allocate
3280 * objects during debug.
3281 *
3282 * If any allocation happens during memcg_kmem_get_cache, we will recurse back
3283 * to it. This may not be a bounded recursion: since the first cache creation
3284 * failed to complete (waiting on the allocation), we'll just try to create the
3285 * cache again, failing at the same point.
3286 *
3287 * memcg_kmem_get_cache is prepared to abort after seeing a positive count of
3288 * memcg_kmem_skip_account. So we enclose anything that might allocate memory
3289 * inside the following two functions.
3290 */
3291static inline void memcg_stop_kmem_account(void)
3292{
3293 VM_BUG_ON(!current->mm);
3294 current->memcg_kmem_skip_account++;
3295}
3296
3297static inline void memcg_resume_kmem_account(void)
3298{
3299 VM_BUG_ON(!current->mm);
3300 current->memcg_kmem_skip_account--;
3301}
3302
1f458cbf
GC
3303static void kmem_cache_destroy_work_func(struct work_struct *w)
3304{
3305 struct kmem_cache *cachep;
3306 struct memcg_cache_params *p;
3307
3308 p = container_of(w, struct memcg_cache_params, destroy);
3309
3310 cachep = memcg_params_to_cache(p);
3311
22933152
GC
3312 /*
3313 * If we get down to 0 after shrink, we could delete right away.
3314 * However, memcg_release_pages() already puts us back in the workqueue
3315 * in that case. If we proceed deleting, we'll get a dangling
3316 * reference, and removing the object from the workqueue in that case
3317 * is unnecessary complication. We are not a fast path.
3318 *
3319 * Note that this case is fundamentally different from racing with
3320 * shrink_slab(): if memcg_cgroup_destroy_cache() is called in
3321 * kmem_cache_shrink, not only we would be reinserting a dead cache
3322 * into the queue, but doing so from inside the worker racing to
3323 * destroy it.
3324 *
3325 * So if we aren't down to zero, we'll just schedule a worker and try
3326 * again
3327 */
3328 if (atomic_read(&cachep->memcg_params->nr_pages) != 0) {
3329 kmem_cache_shrink(cachep);
3330 if (atomic_read(&cachep->memcg_params->nr_pages) == 0)
3331 return;
3332 } else
1f458cbf
GC
3333 kmem_cache_destroy(cachep);
3334}
3335
3336void mem_cgroup_destroy_cache(struct kmem_cache *cachep)
3337{
3338 if (!cachep->memcg_params->dead)
3339 return;
3340
22933152
GC
3341 /*
3342 * There are many ways in which we can get here.
3343 *
3344 * We can get to a memory-pressure situation while the delayed work is
3345 * still pending to run. The vmscan shrinkers can then release all
3346 * cache memory and get us to destruction. If this is the case, we'll
3347 * be executed twice, which is a bug (the second time will execute over
3348 * bogus data). In this case, cancelling the work should be fine.
3349 *
3350 * But we can also get here from the worker itself, if
3351 * kmem_cache_shrink is enough to shake all the remaining objects and
3352 * get the page count to 0. In this case, we'll deadlock if we try to
3353 * cancel the work (the worker runs with an internal lock held, which
3354 * is the same lock we would hold for cancel_work_sync().)
3355 *
3356 * Since we can't possibly know who got us here, just refrain from
3357 * running if there is already work pending
3358 */
3359 if (work_pending(&cachep->memcg_params->destroy))
3360 return;
1f458cbf
GC
3361 /*
3362 * We have to defer the actual destroying to a workqueue, because
3363 * we might currently be in a context that cannot sleep.
3364 */
3365 schedule_work(&cachep->memcg_params->destroy);
3366}
3367
d9c10ddd
MH
3368/*
3369 * This lock protects updaters, not readers. We want readers to be as fast as
3370 * they can, and they will either see NULL or a valid cache value. Our model
3371 * allow them to see NULL, in which case the root memcg will be selected.
3372 *
3373 * We need this lock because multiple allocations to the same cache from a non
3374 * will span more than one worker. Only one of them can create the cache.
3375 */
3376static DEFINE_MUTEX(memcg_cache_mutex);
d7f25f8a 3377
d9c10ddd
MH
3378/*
3379 * Called with memcg_cache_mutex held
3380 */
d7f25f8a
GC
3381static struct kmem_cache *kmem_cache_dup(struct mem_cgroup *memcg,
3382 struct kmem_cache *s)
3383{
d7f25f8a 3384 struct kmem_cache *new;
d9c10ddd 3385 static char *tmp_name = NULL;
d7f25f8a 3386
d9c10ddd
MH
3387 lockdep_assert_held(&memcg_cache_mutex);
3388
3389 /*
3390 * kmem_cache_create_memcg duplicates the given name and
3391 * cgroup_name for this name requires RCU context.
3392 * This static temporary buffer is used to prevent from
3393 * pointless shortliving allocation.
3394 */
3395 if (!tmp_name) {
3396 tmp_name = kmalloc(PATH_MAX, GFP_KERNEL);
3397 if (!tmp_name)
3398 return NULL;
3399 }
3400
3401 rcu_read_lock();
3402 snprintf(tmp_name, PATH_MAX, "%s(%d:%s)", s->name,
3403 memcg_cache_id(memcg), cgroup_name(memcg->css.cgroup));
3404 rcu_read_unlock();
d7f25f8a 3405
d9c10ddd 3406 new = kmem_cache_create_memcg(memcg, tmp_name, s->object_size, s->align,
943a451a 3407 (s->flags & ~SLAB_PANIC), s->ctor, s);
d7f25f8a 3408
d79923fa
GC
3409 if (new)
3410 new->allocflags |= __GFP_KMEMCG;
3411
d7f25f8a
GC
3412 return new;
3413}
3414
d7f25f8a
GC
3415static struct kmem_cache *memcg_create_kmem_cache(struct mem_cgroup *memcg,
3416 struct kmem_cache *cachep)
3417{
3418 struct kmem_cache *new_cachep;
3419 int idx;
3420
3421 BUG_ON(!memcg_can_account_kmem(memcg));
3422
3423 idx = memcg_cache_id(memcg);
3424
3425 mutex_lock(&memcg_cache_mutex);
3426 new_cachep = cachep->memcg_params->memcg_caches[idx];
20f05310
LZ
3427 if (new_cachep) {
3428 css_put(&memcg->css);
d7f25f8a 3429 goto out;
20f05310 3430 }
d7f25f8a
GC
3431
3432 new_cachep = kmem_cache_dup(memcg, cachep);
d7f25f8a
GC
3433 if (new_cachep == NULL) {
3434 new_cachep = cachep;
20f05310 3435 css_put(&memcg->css);
d7f25f8a
GC
3436 goto out;
3437 }
3438
1f458cbf 3439 atomic_set(&new_cachep->memcg_params->nr_pages , 0);
d7f25f8a
GC
3440
3441 cachep->memcg_params->memcg_caches[idx] = new_cachep;
3442 /*
3443 * the readers won't lock, make sure everybody sees the updated value,
3444 * so they won't put stuff in the queue again for no reason
3445 */
3446 wmb();
3447out:
3448 mutex_unlock(&memcg_cache_mutex);
3449 return new_cachep;
3450}
3451
7cf27982
GC
3452void kmem_cache_destroy_memcg_children(struct kmem_cache *s)
3453{
3454 struct kmem_cache *c;
3455 int i;
3456
3457 if (!s->memcg_params)
3458 return;
3459 if (!s->memcg_params->is_root_cache)
3460 return;
3461
3462 /*
3463 * If the cache is being destroyed, we trust that there is no one else
3464 * requesting objects from it. Even if there are, the sanity checks in
3465 * kmem_cache_destroy should caught this ill-case.
3466 *
3467 * Still, we don't want anyone else freeing memcg_caches under our
3468 * noses, which can happen if a new memcg comes to life. As usual,
3469 * we'll take the set_limit_mutex to protect ourselves against this.
3470 */
3471 mutex_lock(&set_limit_mutex);
3472 for (i = 0; i < memcg_limited_groups_array_size; i++) {
3473 c = s->memcg_params->memcg_caches[i];
3474 if (!c)
3475 continue;
3476
3477 /*
3478 * We will now manually delete the caches, so to avoid races
3479 * we need to cancel all pending destruction workers and
3480 * proceed with destruction ourselves.
3481 *
3482 * kmem_cache_destroy() will call kmem_cache_shrink internally,
3483 * and that could spawn the workers again: it is likely that
3484 * the cache still have active pages until this very moment.
3485 * This would lead us back to mem_cgroup_destroy_cache.
3486 *
3487 * But that will not execute at all if the "dead" flag is not
3488 * set, so flip it down to guarantee we are in control.
3489 */
3490 c->memcg_params->dead = false;
22933152 3491 cancel_work_sync(&c->memcg_params->destroy);
7cf27982
GC
3492 kmem_cache_destroy(c);
3493 }
3494 mutex_unlock(&set_limit_mutex);
3495}
3496
d7f25f8a
GC
3497struct create_work {
3498 struct mem_cgroup *memcg;
3499 struct kmem_cache *cachep;
3500 struct work_struct work;
3501};
3502
1f458cbf
GC
3503static void mem_cgroup_destroy_all_caches(struct mem_cgroup *memcg)
3504{
3505 struct kmem_cache *cachep;
3506 struct memcg_cache_params *params;
3507
3508 if (!memcg_kmem_is_active(memcg))
3509 return;
3510
3511 mutex_lock(&memcg->slab_caches_mutex);
3512 list_for_each_entry(params, &memcg->memcg_slab_caches, list) {
3513 cachep = memcg_params_to_cache(params);
3514 cachep->memcg_params->dead = true;
1f458cbf
GC
3515 schedule_work(&cachep->memcg_params->destroy);
3516 }
3517 mutex_unlock(&memcg->slab_caches_mutex);
3518}
3519
d7f25f8a
GC
3520static void memcg_create_cache_work_func(struct work_struct *w)
3521{
3522 struct create_work *cw;
3523
3524 cw = container_of(w, struct create_work, work);
3525 memcg_create_kmem_cache(cw->memcg, cw->cachep);
d7f25f8a
GC
3526 kfree(cw);
3527}
3528
3529/*
3530 * Enqueue the creation of a per-memcg kmem_cache.
d7f25f8a 3531 */
0e9d92f2
GC
3532static void __memcg_create_cache_enqueue(struct mem_cgroup *memcg,
3533 struct kmem_cache *cachep)
d7f25f8a
GC
3534{
3535 struct create_work *cw;
3536
3537 cw = kmalloc(sizeof(struct create_work), GFP_NOWAIT);
ca0dde97
LZ
3538 if (cw == NULL) {
3539 css_put(&memcg->css);
d7f25f8a
GC
3540 return;
3541 }
3542
3543 cw->memcg = memcg;
3544 cw->cachep = cachep;
3545
3546 INIT_WORK(&cw->work, memcg_create_cache_work_func);
3547 schedule_work(&cw->work);
3548}
3549
0e9d92f2
GC
3550static void memcg_create_cache_enqueue(struct mem_cgroup *memcg,
3551 struct kmem_cache *cachep)
3552{
3553 /*
3554 * We need to stop accounting when we kmalloc, because if the
3555 * corresponding kmalloc cache is not yet created, the first allocation
3556 * in __memcg_create_cache_enqueue will recurse.
3557 *
3558 * However, it is better to enclose the whole function. Depending on
3559 * the debugging options enabled, INIT_WORK(), for instance, can
3560 * trigger an allocation. This too, will make us recurse. Because at
3561 * this point we can't allow ourselves back into memcg_kmem_get_cache,
3562 * the safest choice is to do it like this, wrapping the whole function.
3563 */
3564 memcg_stop_kmem_account();
3565 __memcg_create_cache_enqueue(memcg, cachep);
3566 memcg_resume_kmem_account();
3567}
d7f25f8a
GC
3568/*
3569 * Return the kmem_cache we're supposed to use for a slab allocation.
3570 * We try to use the current memcg's version of the cache.
3571 *
3572 * If the cache does not exist yet, if we are the first user of it,
3573 * we either create it immediately, if possible, or create it asynchronously
3574 * in a workqueue.
3575 * In the latter case, we will let the current allocation go through with
3576 * the original cache.
3577 *
3578 * Can't be called in interrupt context or from kernel threads.
3579 * This function needs to be called with rcu_read_lock() held.
3580 */
3581struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep,
3582 gfp_t gfp)
3583{
3584 struct mem_cgroup *memcg;
3585 int idx;
3586
3587 VM_BUG_ON(!cachep->memcg_params);
3588 VM_BUG_ON(!cachep->memcg_params->is_root_cache);
3589
0e9d92f2
GC
3590 if (!current->mm || current->memcg_kmem_skip_account)
3591 return cachep;
3592
d7f25f8a
GC
3593 rcu_read_lock();
3594 memcg = mem_cgroup_from_task(rcu_dereference(current->mm->owner));
d7f25f8a
GC
3595
3596 if (!memcg_can_account_kmem(memcg))
ca0dde97 3597 goto out;
d7f25f8a
GC
3598
3599 idx = memcg_cache_id(memcg);
3600
3601 /*
3602 * barrier to mare sure we're always seeing the up to date value. The
3603 * code updating memcg_caches will issue a write barrier to match this.
3604 */
3605 read_barrier_depends();
ca0dde97
LZ
3606 if (likely(cachep->memcg_params->memcg_caches[idx])) {
3607 cachep = cachep->memcg_params->memcg_caches[idx];
3608 goto out;
d7f25f8a
GC
3609 }
3610
ca0dde97
LZ
3611 /* The corresponding put will be done in the workqueue. */
3612 if (!css_tryget(&memcg->css))
3613 goto out;
3614 rcu_read_unlock();
3615
3616 /*
3617 * If we are in a safe context (can wait, and not in interrupt
3618 * context), we could be be predictable and return right away.
3619 * This would guarantee that the allocation being performed
3620 * already belongs in the new cache.
3621 *
3622 * However, there are some clashes that can arrive from locking.
3623 * For instance, because we acquire the slab_mutex while doing
3624 * kmem_cache_dup, this means no further allocation could happen
3625 * with the slab_mutex held.
3626 *
3627 * Also, because cache creation issue get_online_cpus(), this
3628 * creates a lock chain: memcg_slab_mutex -> cpu_hotplug_mutex,
3629 * that ends up reversed during cpu hotplug. (cpuset allocates
3630 * a bunch of GFP_KERNEL memory during cpuup). Due to all that,
3631 * better to defer everything.
3632 */
3633 memcg_create_cache_enqueue(memcg, cachep);
3634 return cachep;
3635out:
3636 rcu_read_unlock();
3637 return cachep;
d7f25f8a
GC
3638}
3639EXPORT_SYMBOL(__memcg_kmem_get_cache);
3640
7ae1e1d0
GC
3641/*
3642 * We need to verify if the allocation against current->mm->owner's memcg is
3643 * possible for the given order. But the page is not allocated yet, so we'll
3644 * need a further commit step to do the final arrangements.
3645 *
3646 * It is possible for the task to switch cgroups in this mean time, so at
3647 * commit time, we can't rely on task conversion any longer. We'll then use
3648 * the handle argument to return to the caller which cgroup we should commit
3649 * against. We could also return the memcg directly and avoid the pointer
3650 * passing, but a boolean return value gives better semantics considering
3651 * the compiled-out case as well.
3652 *
3653 * Returning true means the allocation is possible.
3654 */
3655bool
3656__memcg_kmem_newpage_charge(gfp_t gfp, struct mem_cgroup **_memcg, int order)
3657{
3658 struct mem_cgroup *memcg;
3659 int ret;
3660
3661 *_memcg = NULL;
6d42c232
GC
3662
3663 /*
3664 * Disabling accounting is only relevant for some specific memcg
3665 * internal allocations. Therefore we would initially not have such
3666 * check here, since direct calls to the page allocator that are marked
3667 * with GFP_KMEMCG only happen outside memcg core. We are mostly
3668 * concerned with cache allocations, and by having this test at
3669 * memcg_kmem_get_cache, we are already able to relay the allocation to
3670 * the root cache and bypass the memcg cache altogether.
3671 *
3672 * There is one exception, though: the SLUB allocator does not create
3673 * large order caches, but rather service large kmallocs directly from
3674 * the page allocator. Therefore, the following sequence when backed by
3675 * the SLUB allocator:
3676 *
f894ffa8
AM
3677 * memcg_stop_kmem_account();
3678 * kmalloc(<large_number>)
3679 * memcg_resume_kmem_account();
6d42c232
GC
3680 *
3681 * would effectively ignore the fact that we should skip accounting,
3682 * since it will drive us directly to this function without passing
3683 * through the cache selector memcg_kmem_get_cache. Such large
3684 * allocations are extremely rare but can happen, for instance, for the
3685 * cache arrays. We bring this test here.
3686 */
3687 if (!current->mm || current->memcg_kmem_skip_account)
3688 return true;
3689
7ae1e1d0
GC
3690 memcg = try_get_mem_cgroup_from_mm(current->mm);
3691
3692 /*
3693 * very rare case described in mem_cgroup_from_task. Unfortunately there
3694 * isn't much we can do without complicating this too much, and it would
3695 * be gfp-dependent anyway. Just let it go
3696 */
3697 if (unlikely(!memcg))
3698 return true;
3699
3700 if (!memcg_can_account_kmem(memcg)) {
3701 css_put(&memcg->css);
3702 return true;
3703 }
3704
7ae1e1d0
GC
3705 ret = memcg_charge_kmem(memcg, gfp, PAGE_SIZE << order);
3706 if (!ret)
3707 *_memcg = memcg;
7ae1e1d0
GC
3708
3709 css_put(&memcg->css);
3710 return (ret == 0);
3711}
3712
3713void __memcg_kmem_commit_charge(struct page *page, struct mem_cgroup *memcg,
3714 int order)
3715{
3716 struct page_cgroup *pc;
3717
3718 VM_BUG_ON(mem_cgroup_is_root(memcg));
3719
3720 /* The page allocation failed. Revert */
3721 if (!page) {
3722 memcg_uncharge_kmem(memcg, PAGE_SIZE << order);
7ae1e1d0
GC
3723 return;
3724 }
3725
3726 pc = lookup_page_cgroup(page);
3727 lock_page_cgroup(pc);
3728 pc->mem_cgroup = memcg;
3729 SetPageCgroupUsed(pc);
3730 unlock_page_cgroup(pc);
3731}
3732
3733void __memcg_kmem_uncharge_pages(struct page *page, int order)
3734{
3735 struct mem_cgroup *memcg = NULL;
3736 struct page_cgroup *pc;
3737
3738
3739 pc = lookup_page_cgroup(page);
3740 /*
3741 * Fast unlocked return. Theoretically might have changed, have to
3742 * check again after locking.
3743 */
3744 if (!PageCgroupUsed(pc))
3745 return;
3746
3747 lock_page_cgroup(pc);
3748 if (PageCgroupUsed(pc)) {
3749 memcg = pc->mem_cgroup;
3750 ClearPageCgroupUsed(pc);
3751 }
3752 unlock_page_cgroup(pc);
3753
3754 /*
3755 * We trust that only if there is a memcg associated with the page, it
3756 * is a valid allocation
3757 */
3758 if (!memcg)
3759 return;
3760
3761 VM_BUG_ON(mem_cgroup_is_root(memcg));
3762 memcg_uncharge_kmem(memcg, PAGE_SIZE << order);
7ae1e1d0 3763}
1f458cbf
GC
3764#else
3765static inline void mem_cgroup_destroy_all_caches(struct mem_cgroup *memcg)
3766{
3767}
7ae1e1d0
GC
3768#endif /* CONFIG_MEMCG_KMEM */
3769
ca3e0214
KH
3770#ifdef CONFIG_TRANSPARENT_HUGEPAGE
3771
a0db00fc 3772#define PCGF_NOCOPY_AT_SPLIT (1 << PCG_LOCK | 1 << PCG_MIGRATION)
ca3e0214
KH
3773/*
3774 * Because tail pages are not marked as "used", set it. We're under
e94c8a9c
KH
3775 * zone->lru_lock, 'splitting on pmd' and compound_lock.
3776 * charge/uncharge will be never happen and move_account() is done under
3777 * compound_lock(), so we don't have to take care of races.
ca3e0214 3778 */
e94c8a9c 3779void mem_cgroup_split_huge_fixup(struct page *head)
ca3e0214
KH
3780{
3781 struct page_cgroup *head_pc = lookup_page_cgroup(head);
e94c8a9c 3782 struct page_cgroup *pc;
b070e65c 3783 struct mem_cgroup *memcg;
e94c8a9c 3784 int i;
ca3e0214 3785
3d37c4a9
KH
3786 if (mem_cgroup_disabled())
3787 return;
b070e65c
DR
3788
3789 memcg = head_pc->mem_cgroup;
e94c8a9c
KH
3790 for (i = 1; i < HPAGE_PMD_NR; i++) {
3791 pc = head_pc + i;
b070e65c 3792 pc->mem_cgroup = memcg;
e94c8a9c 3793 smp_wmb();/* see __commit_charge() */
e94c8a9c
KH
3794 pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT;
3795 }
b070e65c
DR
3796 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
3797 HPAGE_PMD_NR);
ca3e0214 3798}
12d27107 3799#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
ca3e0214 3800
3ea67d06
SZ
3801static inline
3802void mem_cgroup_move_account_page_stat(struct mem_cgroup *from,
3803 struct mem_cgroup *to,
3804 unsigned int nr_pages,
3805 enum mem_cgroup_stat_index idx)
3806{
3807 /* Update stat data for mem_cgroup */
3808 preempt_disable();
3809 WARN_ON_ONCE(from->stat->count[idx] < nr_pages);
3810 __this_cpu_add(from->stat->count[idx], -nr_pages);
3811 __this_cpu_add(to->stat->count[idx], nr_pages);
3812 preempt_enable();
3813}
3814
f817ed48 3815/**
de3638d9 3816 * mem_cgroup_move_account - move account of the page
5564e88b 3817 * @page: the page
7ec99d62 3818 * @nr_pages: number of regular pages (>1 for huge pages)
f817ed48
KH
3819 * @pc: page_cgroup of the page.
3820 * @from: mem_cgroup which the page is moved from.
3821 * @to: mem_cgroup which the page is moved to. @from != @to.
3822 *
3823 * The caller must confirm following.
08e552c6 3824 * - page is not on LRU (isolate_page() is useful.)
7ec99d62 3825 * - compound_lock is held when nr_pages > 1
f817ed48 3826 *
2f3479b1
KH
3827 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
3828 * from old cgroup.
f817ed48 3829 */
7ec99d62
JW
3830static int mem_cgroup_move_account(struct page *page,
3831 unsigned int nr_pages,
3832 struct page_cgroup *pc,
3833 struct mem_cgroup *from,
2f3479b1 3834 struct mem_cgroup *to)
f817ed48 3835{
de3638d9
JW
3836 unsigned long flags;
3837 int ret;
b2402857 3838 bool anon = PageAnon(page);
987eba66 3839
f817ed48 3840 VM_BUG_ON(from == to);
5564e88b 3841 VM_BUG_ON(PageLRU(page));
de3638d9
JW
3842 /*
3843 * The page is isolated from LRU. So, collapse function
3844 * will not handle this page. But page splitting can happen.
3845 * Do this check under compound_page_lock(). The caller should
3846 * hold it.
3847 */
3848 ret = -EBUSY;
7ec99d62 3849 if (nr_pages > 1 && !PageTransHuge(page))
de3638d9
JW
3850 goto out;
3851
3852 lock_page_cgroup(pc);
3853
3854 ret = -EINVAL;
3855 if (!PageCgroupUsed(pc) || pc->mem_cgroup != from)
3856 goto unlock;
3857
312734c0 3858 move_lock_mem_cgroup(from, &flags);
f817ed48 3859
3ea67d06
SZ
3860 if (!anon && page_mapped(page))
3861 mem_cgroup_move_account_page_stat(from, to, nr_pages,
3862 MEM_CGROUP_STAT_FILE_MAPPED);
3863
3864 if (PageWriteback(page))
3865 mem_cgroup_move_account_page_stat(from, to, nr_pages,
3866 MEM_CGROUP_STAT_WRITEBACK);
3867
b070e65c 3868 mem_cgroup_charge_statistics(from, page, anon, -nr_pages);
d69b042f 3869
854ffa8d 3870 /* caller should have done css_get */
08e552c6 3871 pc->mem_cgroup = to;
b070e65c 3872 mem_cgroup_charge_statistics(to, page, anon, nr_pages);
312734c0 3873 move_unlock_mem_cgroup(from, &flags);
de3638d9
JW
3874 ret = 0;
3875unlock:
57f9fd7d 3876 unlock_page_cgroup(pc);
d2265e6f
KH
3877 /*
3878 * check events
3879 */
5564e88b
JW
3880 memcg_check_events(to, page);
3881 memcg_check_events(from, page);
de3638d9 3882out:
f817ed48
KH
3883 return ret;
3884}
3885
2ef37d3f
MH
3886/**
3887 * mem_cgroup_move_parent - moves page to the parent group
3888 * @page: the page to move
3889 * @pc: page_cgroup of the page
3890 * @child: page's cgroup
3891 *
3892 * move charges to its parent or the root cgroup if the group has no
3893 * parent (aka use_hierarchy==0).
3894 * Although this might fail (get_page_unless_zero, isolate_lru_page or
3895 * mem_cgroup_move_account fails) the failure is always temporary and
3896 * it signals a race with a page removal/uncharge or migration. In the
3897 * first case the page is on the way out and it will vanish from the LRU
3898 * on the next attempt and the call should be retried later.
3899 * Isolation from the LRU fails only if page has been isolated from
3900 * the LRU since we looked at it and that usually means either global
3901 * reclaim or migration going on. The page will either get back to the
3902 * LRU or vanish.
3903 * Finaly mem_cgroup_move_account fails only if the page got uncharged
3904 * (!PageCgroupUsed) or moved to a different group. The page will
3905 * disappear in the next attempt.
f817ed48 3906 */
5564e88b
JW
3907static int mem_cgroup_move_parent(struct page *page,
3908 struct page_cgroup *pc,
6068bf01 3909 struct mem_cgroup *child)
f817ed48 3910{
f817ed48 3911 struct mem_cgroup *parent;
7ec99d62 3912 unsigned int nr_pages;
4be4489f 3913 unsigned long uninitialized_var(flags);
f817ed48
KH
3914 int ret;
3915
d8423011 3916 VM_BUG_ON(mem_cgroup_is_root(child));
f817ed48 3917
57f9fd7d
DN
3918 ret = -EBUSY;
3919 if (!get_page_unless_zero(page))
3920 goto out;
3921 if (isolate_lru_page(page))
3922 goto put;
52dbb905 3923
7ec99d62 3924 nr_pages = hpage_nr_pages(page);
08e552c6 3925
cc926f78
KH
3926 parent = parent_mem_cgroup(child);
3927 /*
3928 * If no parent, move charges to root cgroup.
3929 */
3930 if (!parent)
3931 parent = root_mem_cgroup;
f817ed48 3932
2ef37d3f
MH
3933 if (nr_pages > 1) {
3934 VM_BUG_ON(!PageTransHuge(page));
987eba66 3935 flags = compound_lock_irqsave(page);
2ef37d3f 3936 }
987eba66 3937
cc926f78 3938 ret = mem_cgroup_move_account(page, nr_pages,
2f3479b1 3939 pc, child, parent);
cc926f78
KH
3940 if (!ret)
3941 __mem_cgroup_cancel_local_charge(child, nr_pages);
8dba474f 3942
7ec99d62 3943 if (nr_pages > 1)
987eba66 3944 compound_unlock_irqrestore(page, flags);
08e552c6 3945 putback_lru_page(page);
57f9fd7d 3946put:
40d58138 3947 put_page(page);
57f9fd7d 3948out:
f817ed48
KH
3949 return ret;
3950}
3951
7a81b88c
KH
3952/*
3953 * Charge the memory controller for page usage.
3954 * Return
3955 * 0 if the charge was successful
3956 * < 0 if the cgroup is over its limit
3957 */
3958static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
73045c47 3959 gfp_t gfp_mask, enum charge_type ctype)
7a81b88c 3960{
c0ff4b85 3961 struct mem_cgroup *memcg = NULL;
7ec99d62 3962 unsigned int nr_pages = 1;
8493ae43 3963 bool oom = true;
7a81b88c 3964 int ret;
ec168510 3965
37c2ac78 3966 if (PageTransHuge(page)) {
7ec99d62 3967 nr_pages <<= compound_order(page);
37c2ac78 3968 VM_BUG_ON(!PageTransHuge(page));
8493ae43
JW
3969 /*
3970 * Never OOM-kill a process for a huge page. The
3971 * fault handler will fall back to regular pages.
3972 */
3973 oom = false;
37c2ac78 3974 }
7a81b88c 3975
c0ff4b85 3976 ret = __mem_cgroup_try_charge(mm, gfp_mask, nr_pages, &memcg, oom);
38c5d72f 3977 if (ret == -ENOMEM)
7a81b88c 3978 return ret;
ce587e65 3979 __mem_cgroup_commit_charge(memcg, page, nr_pages, ctype, false);
8a9f3ccd 3980 return 0;
8a9f3ccd
BS
3981}
3982
7a81b88c
KH
3983int mem_cgroup_newpage_charge(struct page *page,
3984 struct mm_struct *mm, gfp_t gfp_mask)
217bc319 3985{
f8d66542 3986 if (mem_cgroup_disabled())
cede86ac 3987 return 0;
7a0524cf
JW
3988 VM_BUG_ON(page_mapped(page));
3989 VM_BUG_ON(page->mapping && !PageAnon(page));
3990 VM_BUG_ON(!mm);
217bc319 3991 return mem_cgroup_charge_common(page, mm, gfp_mask,
41326c17 3992 MEM_CGROUP_CHARGE_TYPE_ANON);
217bc319
KH
3993}
3994
54595fe2
KH
3995/*
3996 * While swap-in, try_charge -> commit or cancel, the page is locked.
3997 * And when try_charge() successfully returns, one refcnt to memcg without
21ae2956 3998 * struct page_cgroup is acquired. This refcnt will be consumed by
54595fe2
KH
3999 * "commit()" or removed by "cancel()"
4000 */
0435a2fd
JW
4001static int __mem_cgroup_try_charge_swapin(struct mm_struct *mm,
4002 struct page *page,
4003 gfp_t mask,
4004 struct mem_cgroup **memcgp)
8c7c6e34 4005{
c0ff4b85 4006 struct mem_cgroup *memcg;
90deb788 4007 struct page_cgroup *pc;
54595fe2 4008 int ret;
8c7c6e34 4009
90deb788
JW
4010 pc = lookup_page_cgroup(page);
4011 /*
4012 * Every swap fault against a single page tries to charge the
4013 * page, bail as early as possible. shmem_unuse() encounters
4014 * already charged pages, too. The USED bit is protected by
4015 * the page lock, which serializes swap cache removal, which
4016 * in turn serializes uncharging.
4017 */
4018 if (PageCgroupUsed(pc))
4019 return 0;
8c7c6e34
KH
4020 if (!do_swap_account)
4021 goto charge_cur_mm;
c0ff4b85
R
4022 memcg = try_get_mem_cgroup_from_page(page);
4023 if (!memcg)
54595fe2 4024 goto charge_cur_mm;
72835c86
JW
4025 *memcgp = memcg;
4026 ret = __mem_cgroup_try_charge(NULL, mask, 1, memcgp, true);
c0ff4b85 4027 css_put(&memcg->css);
38c5d72f
KH
4028 if (ret == -EINTR)
4029 ret = 0;
54595fe2 4030 return ret;
8c7c6e34 4031charge_cur_mm:
38c5d72f
KH
4032 ret = __mem_cgroup_try_charge(mm, mask, 1, memcgp, true);
4033 if (ret == -EINTR)
4034 ret = 0;
4035 return ret;
8c7c6e34
KH
4036}
4037
0435a2fd
JW
4038int mem_cgroup_try_charge_swapin(struct mm_struct *mm, struct page *page,
4039 gfp_t gfp_mask, struct mem_cgroup **memcgp)
4040{
4041 *memcgp = NULL;
4042 if (mem_cgroup_disabled())
4043 return 0;
bdf4f4d2
JW
4044 /*
4045 * A racing thread's fault, or swapoff, may have already
4046 * updated the pte, and even removed page from swap cache: in
4047 * those cases unuse_pte()'s pte_same() test will fail; but
4048 * there's also a KSM case which does need to charge the page.
4049 */
4050 if (!PageSwapCache(page)) {
4051 int ret;
4052
4053 ret = __mem_cgroup_try_charge(mm, gfp_mask, 1, memcgp, true);
4054 if (ret == -EINTR)
4055 ret = 0;
4056 return ret;
4057 }
0435a2fd
JW
4058 return __mem_cgroup_try_charge_swapin(mm, page, gfp_mask, memcgp);
4059}
4060
827a03d2
JW
4061void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *memcg)
4062{
4063 if (mem_cgroup_disabled())
4064 return;
4065 if (!memcg)
4066 return;
4067 __mem_cgroup_cancel_charge(memcg, 1);
4068}
4069
83aae4c7 4070static void
72835c86 4071__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *memcg,
83aae4c7 4072 enum charge_type ctype)
7a81b88c 4073{
f8d66542 4074 if (mem_cgroup_disabled())
7a81b88c 4075 return;
72835c86 4076 if (!memcg)
7a81b88c 4077 return;
5a6475a4 4078
ce587e65 4079 __mem_cgroup_commit_charge(memcg, page, 1, ctype, true);
8c7c6e34
KH
4080 /*
4081 * Now swap is on-memory. This means this page may be
4082 * counted both as mem and swap....double count.
03f3c433
KH
4083 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
4084 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
4085 * may call delete_from_swap_cache() before reach here.
8c7c6e34 4086 */
03f3c433 4087 if (do_swap_account && PageSwapCache(page)) {
8c7c6e34 4088 swp_entry_t ent = {.val = page_private(page)};
86493009 4089 mem_cgroup_uncharge_swap(ent);
8c7c6e34 4090 }
7a81b88c
KH
4091}
4092
72835c86
JW
4093void mem_cgroup_commit_charge_swapin(struct page *page,
4094 struct mem_cgroup *memcg)
83aae4c7 4095{
72835c86 4096 __mem_cgroup_commit_charge_swapin(page, memcg,
41326c17 4097 MEM_CGROUP_CHARGE_TYPE_ANON);
83aae4c7
DN
4098}
4099
827a03d2
JW
4100int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
4101 gfp_t gfp_mask)
7a81b88c 4102{
827a03d2
JW
4103 struct mem_cgroup *memcg = NULL;
4104 enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
4105 int ret;
4106
f8d66542 4107 if (mem_cgroup_disabled())
827a03d2
JW
4108 return 0;
4109 if (PageCompound(page))
4110 return 0;
4111
827a03d2
JW
4112 if (!PageSwapCache(page))
4113 ret = mem_cgroup_charge_common(page, mm, gfp_mask, type);
4114 else { /* page is swapcache/shmem */
0435a2fd
JW
4115 ret = __mem_cgroup_try_charge_swapin(mm, page,
4116 gfp_mask, &memcg);
827a03d2
JW
4117 if (!ret)
4118 __mem_cgroup_commit_charge_swapin(page, memcg, type);
4119 }
4120 return ret;
7a81b88c
KH
4121}
4122
c0ff4b85 4123static void mem_cgroup_do_uncharge(struct mem_cgroup *memcg,
7ec99d62
JW
4124 unsigned int nr_pages,
4125 const enum charge_type ctype)
569b846d
KH
4126{
4127 struct memcg_batch_info *batch = NULL;
4128 bool uncharge_memsw = true;
7ec99d62 4129
569b846d
KH
4130 /* If swapout, usage of swap doesn't decrease */
4131 if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
4132 uncharge_memsw = false;
569b846d
KH
4133
4134 batch = &current->memcg_batch;
4135 /*
4136 * In usual, we do css_get() when we remember memcg pointer.
4137 * But in this case, we keep res->usage until end of a series of
4138 * uncharges. Then, it's ok to ignore memcg's refcnt.
4139 */
4140 if (!batch->memcg)
c0ff4b85 4141 batch->memcg = memcg;
3c11ecf4
KH
4142 /*
4143 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
25985edc 4144 * In those cases, all pages freed continuously can be expected to be in
3c11ecf4
KH
4145 * the same cgroup and we have chance to coalesce uncharges.
4146 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
4147 * because we want to do uncharge as soon as possible.
4148 */
4149
4150 if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
4151 goto direct_uncharge;
4152
7ec99d62 4153 if (nr_pages > 1)
ec168510
AA
4154 goto direct_uncharge;
4155
569b846d
KH
4156 /*
4157 * In typical case, batch->memcg == mem. This means we can
4158 * merge a series of uncharges to an uncharge of res_counter.
4159 * If not, we uncharge res_counter ony by one.
4160 */
c0ff4b85 4161 if (batch->memcg != memcg)
569b846d
KH
4162 goto direct_uncharge;
4163 /* remember freed charge and uncharge it later */
7ffd4ca7 4164 batch->nr_pages++;
569b846d 4165 if (uncharge_memsw)
7ffd4ca7 4166 batch->memsw_nr_pages++;
569b846d
KH
4167 return;
4168direct_uncharge:
c0ff4b85 4169 res_counter_uncharge(&memcg->res, nr_pages * PAGE_SIZE);
569b846d 4170 if (uncharge_memsw)
c0ff4b85
R
4171 res_counter_uncharge(&memcg->memsw, nr_pages * PAGE_SIZE);
4172 if (unlikely(batch->memcg != memcg))
4173 memcg_oom_recover(memcg);
569b846d 4174}
7a81b88c 4175
8a9f3ccd 4176/*
69029cd5 4177 * uncharge if !page_mapped(page)
8a9f3ccd 4178 */
8c7c6e34 4179static struct mem_cgroup *
0030f535
JW
4180__mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype,
4181 bool end_migration)
8a9f3ccd 4182{
c0ff4b85 4183 struct mem_cgroup *memcg = NULL;
7ec99d62
JW
4184 unsigned int nr_pages = 1;
4185 struct page_cgroup *pc;
b2402857 4186 bool anon;
8a9f3ccd 4187
f8d66542 4188 if (mem_cgroup_disabled())
8c7c6e34 4189 return NULL;
4077960e 4190
37c2ac78 4191 if (PageTransHuge(page)) {
7ec99d62 4192 nr_pages <<= compound_order(page);
37c2ac78
AA
4193 VM_BUG_ON(!PageTransHuge(page));
4194 }
8697d331 4195 /*
3c541e14 4196 * Check if our page_cgroup is valid
8697d331 4197 */
52d4b9ac 4198 pc = lookup_page_cgroup(page);
cfa44946 4199 if (unlikely(!PageCgroupUsed(pc)))
8c7c6e34 4200 return NULL;
b9c565d5 4201
52d4b9ac 4202 lock_page_cgroup(pc);
d13d1443 4203
c0ff4b85 4204 memcg = pc->mem_cgroup;
8c7c6e34 4205
d13d1443
KH
4206 if (!PageCgroupUsed(pc))
4207 goto unlock_out;
4208
b2402857
KH
4209 anon = PageAnon(page);
4210
d13d1443 4211 switch (ctype) {
41326c17 4212 case MEM_CGROUP_CHARGE_TYPE_ANON:
2ff76f11
KH
4213 /*
4214 * Generally PageAnon tells if it's the anon statistics to be
4215 * updated; but sometimes e.g. mem_cgroup_uncharge_page() is
4216 * used before page reached the stage of being marked PageAnon.
4217 */
b2402857
KH
4218 anon = true;
4219 /* fallthrough */
8a9478ca 4220 case MEM_CGROUP_CHARGE_TYPE_DROP:
ac39cf8c 4221 /* See mem_cgroup_prepare_migration() */
0030f535
JW
4222 if (page_mapped(page))
4223 goto unlock_out;
4224 /*
4225 * Pages under migration may not be uncharged. But
4226 * end_migration() /must/ be the one uncharging the
4227 * unused post-migration page and so it has to call
4228 * here with the migration bit still set. See the
4229 * res_counter handling below.
4230 */
4231 if (!end_migration && PageCgroupMigration(pc))
d13d1443
KH
4232 goto unlock_out;
4233 break;
4234 case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
4235 if (!PageAnon(page)) { /* Shared memory */
4236 if (page->mapping && !page_is_file_cache(page))
4237 goto unlock_out;
4238 } else if (page_mapped(page)) /* Anon */
4239 goto unlock_out;
4240 break;
4241 default:
4242 break;
52d4b9ac 4243 }
d13d1443 4244
b070e65c 4245 mem_cgroup_charge_statistics(memcg, page, anon, -nr_pages);
04046e1a 4246
52d4b9ac 4247 ClearPageCgroupUsed(pc);
544122e5
KH
4248 /*
4249 * pc->mem_cgroup is not cleared here. It will be accessed when it's
4250 * freed from LRU. This is safe because uncharged page is expected not
4251 * to be reused (freed soon). Exception is SwapCache, it's handled by
4252 * special functions.
4253 */
b9c565d5 4254
52d4b9ac 4255 unlock_page_cgroup(pc);
f75ca962 4256 /*
c0ff4b85 4257 * even after unlock, we have memcg->res.usage here and this memcg
4050377b 4258 * will never be freed, so it's safe to call css_get().
f75ca962 4259 */
c0ff4b85 4260 memcg_check_events(memcg, page);
f75ca962 4261 if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) {
c0ff4b85 4262 mem_cgroup_swap_statistics(memcg, true);
4050377b 4263 css_get(&memcg->css);
f75ca962 4264 }
0030f535
JW
4265 /*
4266 * Migration does not charge the res_counter for the
4267 * replacement page, so leave it alone when phasing out the
4268 * page that is unused after the migration.
4269 */
4270 if (!end_migration && !mem_cgroup_is_root(memcg))
c0ff4b85 4271 mem_cgroup_do_uncharge(memcg, nr_pages, ctype);
6d12e2d8 4272
c0ff4b85 4273 return memcg;
d13d1443
KH
4274
4275unlock_out:
4276 unlock_page_cgroup(pc);
8c7c6e34 4277 return NULL;
3c541e14
BS
4278}
4279
69029cd5
KH
4280void mem_cgroup_uncharge_page(struct page *page)
4281{
52d4b9ac
KH
4282 /* early check. */
4283 if (page_mapped(page))
4284 return;
40f23a21 4285 VM_BUG_ON(page->mapping && !PageAnon(page));
28ccddf7
JW
4286 /*
4287 * If the page is in swap cache, uncharge should be deferred
4288 * to the swap path, which also properly accounts swap usage
4289 * and handles memcg lifetime.
4290 *
4291 * Note that this check is not stable and reclaim may add the
4292 * page to swap cache at any time after this. However, if the
4293 * page is not in swap cache by the time page->mapcount hits
4294 * 0, there won't be any page table references to the swap
4295 * slot, and reclaim will free it and not actually write the
4296 * page to disk.
4297 */
0c59b89c
JW
4298 if (PageSwapCache(page))
4299 return;
0030f535 4300 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_ANON, false);
69029cd5
KH
4301}
4302
4303void mem_cgroup_uncharge_cache_page(struct page *page)
4304{
4305 VM_BUG_ON(page_mapped(page));
b7abea96 4306 VM_BUG_ON(page->mapping);
0030f535 4307 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE, false);
69029cd5
KH
4308}
4309
569b846d
KH
4310/*
4311 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
4312 * In that cases, pages are freed continuously and we can expect pages
4313 * are in the same memcg. All these calls itself limits the number of
4314 * pages freed at once, then uncharge_start/end() is called properly.
4315 * This may be called prural(2) times in a context,
4316 */
4317
4318void mem_cgroup_uncharge_start(void)
4319{
4320 current->memcg_batch.do_batch++;
4321 /* We can do nest. */
4322 if (current->memcg_batch.do_batch == 1) {
4323 current->memcg_batch.memcg = NULL;
7ffd4ca7
JW
4324 current->memcg_batch.nr_pages = 0;
4325 current->memcg_batch.memsw_nr_pages = 0;
569b846d
KH
4326 }
4327}
4328
4329void mem_cgroup_uncharge_end(void)
4330{
4331 struct memcg_batch_info *batch = &current->memcg_batch;
4332
4333 if (!batch->do_batch)
4334 return;
4335
4336 batch->do_batch--;
4337 if (batch->do_batch) /* If stacked, do nothing. */
4338 return;
4339
4340 if (!batch->memcg)
4341 return;
4342 /*
4343 * This "batch->memcg" is valid without any css_get/put etc...
4344 * bacause we hide charges behind us.
4345 */
7ffd4ca7
JW
4346 if (batch->nr_pages)
4347 res_counter_uncharge(&batch->memcg->res,
4348 batch->nr_pages * PAGE_SIZE);
4349 if (batch->memsw_nr_pages)
4350 res_counter_uncharge(&batch->memcg->memsw,
4351 batch->memsw_nr_pages * PAGE_SIZE);
3c11ecf4 4352 memcg_oom_recover(batch->memcg);
569b846d
KH
4353 /* forget this pointer (for sanity check) */
4354 batch->memcg = NULL;
4355}
4356
e767e056 4357#ifdef CONFIG_SWAP
8c7c6e34 4358/*
e767e056 4359 * called after __delete_from_swap_cache() and drop "page" account.
8c7c6e34
KH
4360 * memcg information is recorded to swap_cgroup of "ent"
4361 */
8a9478ca
KH
4362void
4363mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
8c7c6e34
KH
4364{
4365 struct mem_cgroup *memcg;
8a9478ca
KH
4366 int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;
4367
4368 if (!swapout) /* this was a swap cache but the swap is unused ! */
4369 ctype = MEM_CGROUP_CHARGE_TYPE_DROP;
4370
0030f535 4371 memcg = __mem_cgroup_uncharge_common(page, ctype, false);
8c7c6e34 4372
f75ca962
KH
4373 /*
4374 * record memcg information, if swapout && memcg != NULL,
4050377b 4375 * css_get() was called in uncharge().
f75ca962
KH
4376 */
4377 if (do_swap_account && swapout && memcg)
a3b2d692 4378 swap_cgroup_record(ent, css_id(&memcg->css));
8c7c6e34 4379}
e767e056 4380#endif
8c7c6e34 4381
c255a458 4382#ifdef CONFIG_MEMCG_SWAP
8c7c6e34
KH
4383/*
4384 * called from swap_entry_free(). remove record in swap_cgroup and
4385 * uncharge "memsw" account.
4386 */
4387void mem_cgroup_uncharge_swap(swp_entry_t ent)
d13d1443 4388{
8c7c6e34 4389 struct mem_cgroup *memcg;
a3b2d692 4390 unsigned short id;
8c7c6e34
KH
4391
4392 if (!do_swap_account)
4393 return;
4394
a3b2d692
KH
4395 id = swap_cgroup_record(ent, 0);
4396 rcu_read_lock();
4397 memcg = mem_cgroup_lookup(id);
8c7c6e34 4398 if (memcg) {
a3b2d692
KH
4399 /*
4400 * We uncharge this because swap is freed.
4401 * This memcg can be obsolete one. We avoid calling css_tryget
4402 */
0c3e73e8 4403 if (!mem_cgroup_is_root(memcg))
4e649152 4404 res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
0c3e73e8 4405 mem_cgroup_swap_statistics(memcg, false);
4050377b 4406 css_put(&memcg->css);
8c7c6e34 4407 }
a3b2d692 4408 rcu_read_unlock();
d13d1443 4409}
02491447
DN
4410
4411/**
4412 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
4413 * @entry: swap entry to be moved
4414 * @from: mem_cgroup which the entry is moved from
4415 * @to: mem_cgroup which the entry is moved to
4416 *
4417 * It succeeds only when the swap_cgroup's record for this entry is the same
4418 * as the mem_cgroup's id of @from.
4419 *
4420 * Returns 0 on success, -EINVAL on failure.
4421 *
4422 * The caller must have charged to @to, IOW, called res_counter_charge() about
4423 * both res and memsw, and called css_get().
4424 */
4425static int mem_cgroup_move_swap_account(swp_entry_t entry,
e91cbb42 4426 struct mem_cgroup *from, struct mem_cgroup *to)
02491447
DN
4427{
4428 unsigned short old_id, new_id;
4429
4430 old_id = css_id(&from->css);
4431 new_id = css_id(&to->css);
4432
4433 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
02491447 4434 mem_cgroup_swap_statistics(from, false);
483c30b5 4435 mem_cgroup_swap_statistics(to, true);
02491447 4436 /*
483c30b5
DN
4437 * This function is only called from task migration context now.
4438 * It postpones res_counter and refcount handling till the end
4439 * of task migration(mem_cgroup_clear_mc()) for performance
4050377b
LZ
4440 * improvement. But we cannot postpone css_get(to) because if
4441 * the process that has been moved to @to does swap-in, the
4442 * refcount of @to might be decreased to 0.
4443 *
4444 * We are in attach() phase, so the cgroup is guaranteed to be
4445 * alive, so we can just call css_get().
02491447 4446 */
4050377b 4447 css_get(&to->css);
02491447
DN
4448 return 0;
4449 }
4450 return -EINVAL;
4451}
4452#else
4453static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
e91cbb42 4454 struct mem_cgroup *from, struct mem_cgroup *to)
02491447
DN
4455{
4456 return -EINVAL;
4457}
8c7c6e34 4458#endif
d13d1443 4459
ae41be37 4460/*
01b1ae63
KH
4461 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
4462 * page belongs to.
ae41be37 4463 */
0030f535
JW
4464void mem_cgroup_prepare_migration(struct page *page, struct page *newpage,
4465 struct mem_cgroup **memcgp)
ae41be37 4466{
c0ff4b85 4467 struct mem_cgroup *memcg = NULL;
b32967ff 4468 unsigned int nr_pages = 1;
7ec99d62 4469 struct page_cgroup *pc;
ac39cf8c 4470 enum charge_type ctype;
8869b8f6 4471
72835c86 4472 *memcgp = NULL;
56039efa 4473
f8d66542 4474 if (mem_cgroup_disabled())
0030f535 4475 return;
4077960e 4476
b32967ff
MG
4477 if (PageTransHuge(page))
4478 nr_pages <<= compound_order(page);
4479
52d4b9ac
KH
4480 pc = lookup_page_cgroup(page);
4481 lock_page_cgroup(pc);
4482 if (PageCgroupUsed(pc)) {
c0ff4b85
R
4483 memcg = pc->mem_cgroup;
4484 css_get(&memcg->css);
ac39cf8c 4485 /*
4486 * At migrating an anonymous page, its mapcount goes down
4487 * to 0 and uncharge() will be called. But, even if it's fully
4488 * unmapped, migration may fail and this page has to be
4489 * charged again. We set MIGRATION flag here and delay uncharge
4490 * until end_migration() is called
4491 *
4492 * Corner Case Thinking
4493 * A)
4494 * When the old page was mapped as Anon and it's unmap-and-freed
4495 * while migration was ongoing.
4496 * If unmap finds the old page, uncharge() of it will be delayed
4497 * until end_migration(). If unmap finds a new page, it's
4498 * uncharged when it make mapcount to be 1->0. If unmap code
4499 * finds swap_migration_entry, the new page will not be mapped
4500 * and end_migration() will find it(mapcount==0).
4501 *
4502 * B)
4503 * When the old page was mapped but migraion fails, the kernel
4504 * remaps it. A charge for it is kept by MIGRATION flag even
4505 * if mapcount goes down to 0. We can do remap successfully
4506 * without charging it again.
4507 *
4508 * C)
4509 * The "old" page is under lock_page() until the end of
4510 * migration, so, the old page itself will not be swapped-out.
4511 * If the new page is swapped out before end_migraton, our
4512 * hook to usual swap-out path will catch the event.
4513 */
4514 if (PageAnon(page))
4515 SetPageCgroupMigration(pc);
e8589cc1 4516 }
52d4b9ac 4517 unlock_page_cgroup(pc);
ac39cf8c 4518 /*
4519 * If the page is not charged at this point,
4520 * we return here.
4521 */
c0ff4b85 4522 if (!memcg)
0030f535 4523 return;
01b1ae63 4524
72835c86 4525 *memcgp = memcg;
ac39cf8c 4526 /*
4527 * We charge new page before it's used/mapped. So, even if unlock_page()
4528 * is called before end_migration, we can catch all events on this new
4529 * page. In the case new page is migrated but not remapped, new page's
4530 * mapcount will be finally 0 and we call uncharge in end_migration().
4531 */
ac39cf8c 4532 if (PageAnon(page))
41326c17 4533 ctype = MEM_CGROUP_CHARGE_TYPE_ANON;
ac39cf8c 4534 else
62ba7442 4535 ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
0030f535
JW
4536 /*
4537 * The page is committed to the memcg, but it's not actually
4538 * charged to the res_counter since we plan on replacing the
4539 * old one and only one page is going to be left afterwards.
4540 */
b32967ff 4541 __mem_cgroup_commit_charge(memcg, newpage, nr_pages, ctype, false);
ae41be37 4542}
8869b8f6 4543
69029cd5 4544/* remove redundant charge if migration failed*/
c0ff4b85 4545void mem_cgroup_end_migration(struct mem_cgroup *memcg,
50de1dd9 4546 struct page *oldpage, struct page *newpage, bool migration_ok)
ae41be37 4547{
ac39cf8c 4548 struct page *used, *unused;
01b1ae63 4549 struct page_cgroup *pc;
b2402857 4550 bool anon;
01b1ae63 4551
c0ff4b85 4552 if (!memcg)
01b1ae63 4553 return;
b25ed609 4554
50de1dd9 4555 if (!migration_ok) {
ac39cf8c 4556 used = oldpage;
4557 unused = newpage;
01b1ae63 4558 } else {
ac39cf8c 4559 used = newpage;
01b1ae63
KH
4560 unused = oldpage;
4561 }
0030f535 4562 anon = PageAnon(used);
7d188958
JW
4563 __mem_cgroup_uncharge_common(unused,
4564 anon ? MEM_CGROUP_CHARGE_TYPE_ANON
4565 : MEM_CGROUP_CHARGE_TYPE_CACHE,
4566 true);
0030f535 4567 css_put(&memcg->css);
69029cd5 4568 /*
ac39cf8c 4569 * We disallowed uncharge of pages under migration because mapcount
4570 * of the page goes down to zero, temporarly.
4571 * Clear the flag and check the page should be charged.
01b1ae63 4572 */
ac39cf8c 4573 pc = lookup_page_cgroup(oldpage);
4574 lock_page_cgroup(pc);
4575 ClearPageCgroupMigration(pc);
4576 unlock_page_cgroup(pc);
ac39cf8c 4577
01b1ae63 4578 /*
ac39cf8c 4579 * If a page is a file cache, radix-tree replacement is very atomic
4580 * and we can skip this check. When it was an Anon page, its mapcount
4581 * goes down to 0. But because we added MIGRATION flage, it's not
4582 * uncharged yet. There are several case but page->mapcount check
4583 * and USED bit check in mem_cgroup_uncharge_page() will do enough
4584 * check. (see prepare_charge() also)
69029cd5 4585 */
b2402857 4586 if (anon)
ac39cf8c 4587 mem_cgroup_uncharge_page(used);
ae41be37 4588}
78fb7466 4589
ab936cbc
KH
4590/*
4591 * At replace page cache, newpage is not under any memcg but it's on
4592 * LRU. So, this function doesn't touch res_counter but handles LRU
4593 * in correct way. Both pages are locked so we cannot race with uncharge.
4594 */
4595void mem_cgroup_replace_page_cache(struct page *oldpage,
4596 struct page *newpage)
4597{
bde05d1c 4598 struct mem_cgroup *memcg = NULL;
ab936cbc 4599 struct page_cgroup *pc;
ab936cbc 4600 enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
ab936cbc
KH
4601
4602 if (mem_cgroup_disabled())
4603 return;
4604
4605 pc = lookup_page_cgroup(oldpage);
4606 /* fix accounting on old pages */
4607 lock_page_cgroup(pc);
bde05d1c
HD
4608 if (PageCgroupUsed(pc)) {
4609 memcg = pc->mem_cgroup;
b070e65c 4610 mem_cgroup_charge_statistics(memcg, oldpage, false, -1);
bde05d1c
HD
4611 ClearPageCgroupUsed(pc);
4612 }
ab936cbc
KH
4613 unlock_page_cgroup(pc);
4614
bde05d1c
HD
4615 /*
4616 * When called from shmem_replace_page(), in some cases the
4617 * oldpage has already been charged, and in some cases not.
4618 */
4619 if (!memcg)
4620 return;
ab936cbc
KH
4621 /*
4622 * Even if newpage->mapping was NULL before starting replacement,
4623 * the newpage may be on LRU(or pagevec for LRU) already. We lock
4624 * LRU while we overwrite pc->mem_cgroup.
4625 */
ce587e65 4626 __mem_cgroup_commit_charge(memcg, newpage, 1, type, true);
ab936cbc
KH
4627}
4628
f212ad7c
DN
4629#ifdef CONFIG_DEBUG_VM
4630static struct page_cgroup *lookup_page_cgroup_used(struct page *page)
4631{
4632 struct page_cgroup *pc;
4633
4634 pc = lookup_page_cgroup(page);
cfa44946
JW
4635 /*
4636 * Can be NULL while feeding pages into the page allocator for
4637 * the first time, i.e. during boot or memory hotplug;
4638 * or when mem_cgroup_disabled().
4639 */
f212ad7c
DN
4640 if (likely(pc) && PageCgroupUsed(pc))
4641 return pc;
4642 return NULL;
4643}
4644
4645bool mem_cgroup_bad_page_check(struct page *page)
4646{
4647 if (mem_cgroup_disabled())
4648 return false;
4649
4650 return lookup_page_cgroup_used(page) != NULL;
4651}
4652
4653void mem_cgroup_print_bad_page(struct page *page)
4654{
4655 struct page_cgroup *pc;
4656
4657 pc = lookup_page_cgroup_used(page);
4658 if (pc) {
d045197f
AM
4659 pr_alert("pc:%p pc->flags:%lx pc->mem_cgroup:%p\n",
4660 pc, pc->flags, pc->mem_cgroup);
f212ad7c
DN
4661 }
4662}
4663#endif
4664
d38d2a75 4665static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
8c7c6e34 4666 unsigned long long val)
628f4235 4667{
81d39c20 4668 int retry_count;
3c11ecf4 4669 u64 memswlimit, memlimit;
628f4235 4670 int ret = 0;
81d39c20
KH
4671 int children = mem_cgroup_count_children(memcg);
4672 u64 curusage, oldusage;
3c11ecf4 4673 int enlarge;
81d39c20
KH
4674
4675 /*
4676 * For keeping hierarchical_reclaim simple, how long we should retry
4677 * is depends on callers. We set our retry-count to be function
4678 * of # of children which we should visit in this loop.
4679 */
4680 retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;
4681
4682 oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
628f4235 4683
3c11ecf4 4684 enlarge = 0;
8c7c6e34 4685 while (retry_count) {
628f4235
KH
4686 if (signal_pending(current)) {
4687 ret = -EINTR;
4688 break;
4689 }
8c7c6e34
KH
4690 /*
4691 * Rather than hide all in some function, I do this in
4692 * open coded manner. You see what this really does.
aaad153e 4693 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
8c7c6e34
KH
4694 */
4695 mutex_lock(&set_limit_mutex);
4696 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
4697 if (memswlimit < val) {
4698 ret = -EINVAL;
4699 mutex_unlock(&set_limit_mutex);
628f4235
KH
4700 break;
4701 }
3c11ecf4
KH
4702
4703 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
4704 if (memlimit < val)
4705 enlarge = 1;
4706
8c7c6e34 4707 ret = res_counter_set_limit(&memcg->res, val);
22a668d7
KH
4708 if (!ret) {
4709 if (memswlimit == val)
4710 memcg->memsw_is_minimum = true;
4711 else
4712 memcg->memsw_is_minimum = false;
4713 }
8c7c6e34
KH
4714 mutex_unlock(&set_limit_mutex);
4715
4716 if (!ret)
4717 break;
4718
5660048c
JW
4719 mem_cgroup_reclaim(memcg, GFP_KERNEL,
4720 MEM_CGROUP_RECLAIM_SHRINK);
81d39c20
KH
4721 curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
4722 /* Usage is reduced ? */
f894ffa8 4723 if (curusage >= oldusage)
81d39c20
KH
4724 retry_count--;
4725 else
4726 oldusage = curusage;
8c7c6e34 4727 }
3c11ecf4
KH
4728 if (!ret && enlarge)
4729 memcg_oom_recover(memcg);
14797e23 4730
8c7c6e34
KH
4731 return ret;
4732}
4733
338c8431
LZ
4734static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
4735 unsigned long long val)
8c7c6e34 4736{
81d39c20 4737 int retry_count;
3c11ecf4 4738 u64 memlimit, memswlimit, oldusage, curusage;
81d39c20
KH
4739 int children = mem_cgroup_count_children(memcg);
4740 int ret = -EBUSY;
3c11ecf4 4741 int enlarge = 0;
8c7c6e34 4742
81d39c20 4743 /* see mem_cgroup_resize_res_limit */
f894ffa8 4744 retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
81d39c20 4745 oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
8c7c6e34
KH
4746 while (retry_count) {
4747 if (signal_pending(current)) {
4748 ret = -EINTR;
4749 break;
4750 }
4751 /*
4752 * Rather than hide all in some function, I do this in
4753 * open coded manner. You see what this really does.
aaad153e 4754 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
8c7c6e34
KH
4755 */
4756 mutex_lock(&set_limit_mutex);
4757 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
4758 if (memlimit > val) {
4759 ret = -EINVAL;
4760 mutex_unlock(&set_limit_mutex);
4761 break;
4762 }
3c11ecf4
KH
4763 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
4764 if (memswlimit < val)
4765 enlarge = 1;
8c7c6e34 4766 ret = res_counter_set_limit(&memcg->memsw, val);
22a668d7
KH
4767 if (!ret) {
4768 if (memlimit == val)
4769 memcg->memsw_is_minimum = true;
4770 else
4771 memcg->memsw_is_minimum = false;
4772 }
8c7c6e34
KH
4773 mutex_unlock(&set_limit_mutex);
4774
4775 if (!ret)
4776 break;
4777
5660048c
JW
4778 mem_cgroup_reclaim(memcg, GFP_KERNEL,
4779 MEM_CGROUP_RECLAIM_NOSWAP |
4780 MEM_CGROUP_RECLAIM_SHRINK);
8c7c6e34 4781 curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
81d39c20 4782 /* Usage is reduced ? */
8c7c6e34 4783 if (curusage >= oldusage)
628f4235 4784 retry_count--;
81d39c20
KH
4785 else
4786 oldusage = curusage;
628f4235 4787 }
3c11ecf4
KH
4788 if (!ret && enlarge)
4789 memcg_oom_recover(memcg);
628f4235
KH
4790 return ret;
4791}
4792
0608f43d
AM
4793unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
4794 gfp_t gfp_mask,
4795 unsigned long *total_scanned)
4796{
4797 unsigned long nr_reclaimed = 0;
4798 struct mem_cgroup_per_zone *mz, *next_mz = NULL;
4799 unsigned long reclaimed;
4800 int loop = 0;
4801 struct mem_cgroup_tree_per_zone *mctz;
4802 unsigned long long excess;
4803 unsigned long nr_scanned;
4804
4805 if (order > 0)
4806 return 0;
4807
4808 mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
4809 /*
4810 * This loop can run a while, specially if mem_cgroup's continuously
4811 * keep exceeding their soft limit and putting the system under
4812 * pressure
4813 */
4814 do {
4815 if (next_mz)
4816 mz = next_mz;
4817 else
4818 mz = mem_cgroup_largest_soft_limit_node(mctz);
4819 if (!mz)
4820 break;
4821
4822 nr_scanned = 0;
4823 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
4824 gfp_mask, &nr_scanned);
4825 nr_reclaimed += reclaimed;
4826 *total_scanned += nr_scanned;
4827 spin_lock(&mctz->lock);
4828
4829 /*
4830 * If we failed to reclaim anything from this memory cgroup
4831 * it is time to move on to the next cgroup
4832 */
4833 next_mz = NULL;
4834 if (!reclaimed) {
4835 do {
4836 /*
4837 * Loop until we find yet another one.
4838 *
4839 * By the time we get the soft_limit lock
4840 * again, someone might have aded the
4841 * group back on the RB tree. Iterate to
4842 * make sure we get a different mem.
4843 * mem_cgroup_largest_soft_limit_node returns
4844 * NULL if no other cgroup is present on
4845 * the tree
4846 */
4847 next_mz =
4848 __mem_cgroup_largest_soft_limit_node(mctz);
4849 if (next_mz == mz)
4850 css_put(&next_mz->memcg->css);
4851 else /* next_mz == NULL or other memcg */
4852 break;
4853 } while (1);
4854 }
4855 __mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
4856 excess = res_counter_soft_limit_excess(&mz->memcg->res);
4857 /*
4858 * One school of thought says that we should not add
4859 * back the node to the tree if reclaim returns 0.
4860 * But our reclaim could return 0, simply because due
4861 * to priority we are exposing a smaller subset of
4862 * memory to reclaim from. Consider this as a longer
4863 * term TODO.
4864 */
4865 /* If excess == 0, no tree ops */
4866 __mem_cgroup_insert_exceeded(mz->memcg, mz, mctz, excess);
4867 spin_unlock(&mctz->lock);
4868 css_put(&mz->memcg->css);
4869 loop++;
4870 /*
4871 * Could not reclaim anything and there are no more
4872 * mem cgroups to try or we seem to be looping without
4873 * reclaiming anything.
4874 */
4875 if (!nr_reclaimed &&
4876 (next_mz == NULL ||
4877 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
4878 break;
4879 } while (!nr_reclaimed);
4880 if (next_mz)
4881 css_put(&next_mz->memcg->css);
4882 return nr_reclaimed;
4883}
4884
2ef37d3f
MH
4885/**
4886 * mem_cgroup_force_empty_list - clears LRU of a group
4887 * @memcg: group to clear
4888 * @node: NUMA node
4889 * @zid: zone id
4890 * @lru: lru to to clear
4891 *
3c935d18 4892 * Traverse a specified page_cgroup list and try to drop them all. This doesn't
2ef37d3f
MH
4893 * reclaim the pages page themselves - pages are moved to the parent (or root)
4894 * group.
cc847582 4895 */
2ef37d3f 4896static void mem_cgroup_force_empty_list(struct mem_cgroup *memcg,
08e552c6 4897 int node, int zid, enum lru_list lru)
cc847582 4898{
bea8c150 4899 struct lruvec *lruvec;
2ef37d3f 4900 unsigned long flags;
072c56c1 4901 struct list_head *list;
925b7673
JW
4902 struct page *busy;
4903 struct zone *zone;
072c56c1 4904
08e552c6 4905 zone = &NODE_DATA(node)->node_zones[zid];
bea8c150
HD
4906 lruvec = mem_cgroup_zone_lruvec(zone, memcg);
4907 list = &lruvec->lists[lru];
cc847582 4908
f817ed48 4909 busy = NULL;
2ef37d3f 4910 do {
925b7673 4911 struct page_cgroup *pc;
5564e88b
JW
4912 struct page *page;
4913
08e552c6 4914 spin_lock_irqsave(&zone->lru_lock, flags);
f817ed48 4915 if (list_empty(list)) {
08e552c6 4916 spin_unlock_irqrestore(&zone->lru_lock, flags);
52d4b9ac 4917 break;
f817ed48 4918 }
925b7673
JW
4919 page = list_entry(list->prev, struct page, lru);
4920 if (busy == page) {
4921 list_move(&page->lru, list);
648bcc77 4922 busy = NULL;
08e552c6 4923 spin_unlock_irqrestore(&zone->lru_lock, flags);
f817ed48
KH
4924 continue;
4925 }
08e552c6 4926 spin_unlock_irqrestore(&zone->lru_lock, flags);
f817ed48 4927
925b7673 4928 pc = lookup_page_cgroup(page);
5564e88b 4929
3c935d18 4930 if (mem_cgroup_move_parent(page, pc, memcg)) {
f817ed48 4931 /* found lock contention or "pc" is obsolete. */
925b7673 4932 busy = page;
f817ed48
KH
4933 cond_resched();
4934 } else
4935 busy = NULL;
2ef37d3f 4936 } while (!list_empty(list));
cc847582
KH
4937}
4938
4939/*
c26251f9
MH
4940 * make mem_cgroup's charge to be 0 if there is no task by moving
4941 * all the charges and pages to the parent.
cc847582 4942 * This enables deleting this mem_cgroup.
c26251f9
MH
4943 *
4944 * Caller is responsible for holding css reference on the memcg.
cc847582 4945 */
ab5196c2 4946static void mem_cgroup_reparent_charges(struct mem_cgroup *memcg)
cc847582 4947{
c26251f9 4948 int node, zid;
bea207c8 4949 u64 usage;
f817ed48 4950
fce66477 4951 do {
52d4b9ac
KH
4952 /* This is for making all *used* pages to be on LRU. */
4953 lru_add_drain_all();
c0ff4b85 4954 drain_all_stock_sync(memcg);
c0ff4b85 4955 mem_cgroup_start_move(memcg);
31aaea4a 4956 for_each_node_state(node, N_MEMORY) {
2ef37d3f 4957 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
f156ab93
HD
4958 enum lru_list lru;
4959 for_each_lru(lru) {
2ef37d3f 4960 mem_cgroup_force_empty_list(memcg,
f156ab93 4961 node, zid, lru);
f817ed48 4962 }
1ecaab2b 4963 }
f817ed48 4964 }
c0ff4b85
R
4965 mem_cgroup_end_move(memcg);
4966 memcg_oom_recover(memcg);
52d4b9ac 4967 cond_resched();
f817ed48 4968
2ef37d3f 4969 /*
bea207c8
GC
4970 * Kernel memory may not necessarily be trackable to a specific
4971 * process. So they are not migrated, and therefore we can't
4972 * expect their value to drop to 0 here.
4973 * Having res filled up with kmem only is enough.
4974 *
2ef37d3f
MH
4975 * This is a safety check because mem_cgroup_force_empty_list
4976 * could have raced with mem_cgroup_replace_page_cache callers
4977 * so the lru seemed empty but the page could have been added
4978 * right after the check. RES_USAGE should be safe as we always
4979 * charge before adding to the LRU.
4980 */
bea207c8
GC
4981 usage = res_counter_read_u64(&memcg->res, RES_USAGE) -
4982 res_counter_read_u64(&memcg->kmem, RES_USAGE);
4983 } while (usage > 0);
c26251f9
MH
4984}
4985
b5f99b53
GC
4986/*
4987 * This mainly exists for tests during the setting of set of use_hierarchy.
4988 * Since this is the very setting we are changing, the current hierarchy value
4989 * is meaningless
4990 */
4991static inline bool __memcg_has_children(struct mem_cgroup *memcg)
4992{
492eb21b 4993 struct cgroup_subsys_state *pos;
b5f99b53
GC
4994
4995 /* bounce at first found */
492eb21b 4996 css_for_each_child(pos, &memcg->css)
b5f99b53
GC
4997 return true;
4998 return false;
4999}
5000
5001/*
0999821b
GC
5002 * Must be called with memcg_create_mutex held, unless the cgroup is guaranteed
5003 * to be already dead (as in mem_cgroup_force_empty, for instance). This is
b5f99b53
GC
5004 * from mem_cgroup_count_children(), in the sense that we don't really care how
5005 * many children we have; we only need to know if we have any. It also counts
5006 * any memcg without hierarchy as infertile.
5007 */
5008static inline bool memcg_has_children(struct mem_cgroup *memcg)
5009{
5010 return memcg->use_hierarchy && __memcg_has_children(memcg);
5011}
5012
c26251f9
MH
5013/*
5014 * Reclaims as many pages from the given memcg as possible and moves
5015 * the rest to the parent.
5016 *
5017 * Caller is responsible for holding css reference for memcg.
5018 */
5019static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
5020{
5021 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
5022 struct cgroup *cgrp = memcg->css.cgroup;
f817ed48 5023
c1e862c1 5024 /* returns EBUSY if there is a task or if we come here twice. */
c26251f9
MH
5025 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
5026 return -EBUSY;
5027
c1e862c1
KH
5028 /* we call try-to-free pages for make this cgroup empty */
5029 lru_add_drain_all();
f817ed48 5030 /* try to free all pages in this cgroup */
569530fb 5031 while (nr_retries && res_counter_read_u64(&memcg->res, RES_USAGE) > 0) {
f817ed48 5032 int progress;
c1e862c1 5033
c26251f9
MH
5034 if (signal_pending(current))
5035 return -EINTR;
5036
c0ff4b85 5037 progress = try_to_free_mem_cgroup_pages(memcg, GFP_KERNEL,
185efc0f 5038 false);
c1e862c1 5039 if (!progress) {
f817ed48 5040 nr_retries--;
c1e862c1 5041 /* maybe some writeback is necessary */
8aa7e847 5042 congestion_wait(BLK_RW_ASYNC, HZ/10);
c1e862c1 5043 }
f817ed48
KH
5044
5045 }
08e552c6 5046 lru_add_drain();
ab5196c2
MH
5047 mem_cgroup_reparent_charges(memcg);
5048
5049 return 0;
cc847582
KH
5050}
5051
182446d0
TH
5052static int mem_cgroup_force_empty_write(struct cgroup_subsys_state *css,
5053 unsigned int event)
c1e862c1 5054{
182446d0 5055 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
c26251f9 5056
d8423011
MH
5057 if (mem_cgroup_is_root(memcg))
5058 return -EINVAL;
c33bd835 5059 return mem_cgroup_force_empty(memcg);
c1e862c1
KH
5060}
5061
182446d0
TH
5062static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
5063 struct cftype *cft)
18f59ea7 5064{
182446d0 5065 return mem_cgroup_from_css(css)->use_hierarchy;
18f59ea7
BS
5066}
5067
182446d0
TH
5068static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
5069 struct cftype *cft, u64 val)
18f59ea7
BS
5070{
5071 int retval = 0;
182446d0 5072 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
63876986 5073 struct mem_cgroup *parent_memcg = mem_cgroup_from_css(css_parent(&memcg->css));
18f59ea7 5074
0999821b 5075 mutex_lock(&memcg_create_mutex);
567fb435
GC
5076
5077 if (memcg->use_hierarchy == val)
5078 goto out;
5079
18f59ea7 5080 /*
af901ca1 5081 * If parent's use_hierarchy is set, we can't make any modifications
18f59ea7
BS
5082 * in the child subtrees. If it is unset, then the change can
5083 * occur, provided the current cgroup has no children.
5084 *
5085 * For the root cgroup, parent_mem is NULL, we allow value to be
5086 * set if there are no children.
5087 */
c0ff4b85 5088 if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
18f59ea7 5089 (val == 1 || val == 0)) {
b5f99b53 5090 if (!__memcg_has_children(memcg))
c0ff4b85 5091 memcg->use_hierarchy = val;
18f59ea7
BS
5092 else
5093 retval = -EBUSY;
5094 } else
5095 retval = -EINVAL;
567fb435
GC
5096
5097out:
0999821b 5098 mutex_unlock(&memcg_create_mutex);
18f59ea7
BS
5099
5100 return retval;
5101}
5102
0c3e73e8 5103
c0ff4b85 5104static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup *memcg,
7a159cc9 5105 enum mem_cgroup_stat_index idx)
0c3e73e8 5106{
7d74b06f 5107 struct mem_cgroup *iter;
7a159cc9 5108 long val = 0;
0c3e73e8 5109
7a159cc9 5110 /* Per-cpu values can be negative, use a signed accumulator */
c0ff4b85 5111 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f
KH
5112 val += mem_cgroup_read_stat(iter, idx);
5113
5114 if (val < 0) /* race ? */
5115 val = 0;
5116 return val;
0c3e73e8
BS
5117}
5118
c0ff4b85 5119static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
104f3928 5120{
7d74b06f 5121 u64 val;
104f3928 5122
c0ff4b85 5123 if (!mem_cgroup_is_root(memcg)) {
104f3928 5124 if (!swap)
65c64ce8 5125 return res_counter_read_u64(&memcg->res, RES_USAGE);
104f3928 5126 else
65c64ce8 5127 return res_counter_read_u64(&memcg->memsw, RES_USAGE);
104f3928
KS
5128 }
5129
b070e65c
DR
5130 /*
5131 * Transparent hugepages are still accounted for in MEM_CGROUP_STAT_RSS
5132 * as well as in MEM_CGROUP_STAT_RSS_HUGE.
5133 */
c0ff4b85
R
5134 val = mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_CACHE);
5135 val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_RSS);
104f3928 5136
7d74b06f 5137 if (swap)
bff6bb83 5138 val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_SWAP);
104f3928
KS
5139
5140 return val << PAGE_SHIFT;
5141}
5142
182446d0
TH
5143static ssize_t mem_cgroup_read(struct cgroup_subsys_state *css,
5144 struct cftype *cft, struct file *file,
5145 char __user *buf, size_t nbytes, loff_t *ppos)
8cdea7c0 5146{
182446d0 5147 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
af36f906 5148 char str[64];
104f3928 5149 u64 val;
86ae53e1
GC
5150 int name, len;
5151 enum res_type type;
8c7c6e34
KH
5152
5153 type = MEMFILE_TYPE(cft->private);
5154 name = MEMFILE_ATTR(cft->private);
af36f906 5155
8c7c6e34
KH
5156 switch (type) {
5157 case _MEM:
104f3928 5158 if (name == RES_USAGE)
c0ff4b85 5159 val = mem_cgroup_usage(memcg, false);
104f3928 5160 else
c0ff4b85 5161 val = res_counter_read_u64(&memcg->res, name);
8c7c6e34
KH
5162 break;
5163 case _MEMSWAP:
104f3928 5164 if (name == RES_USAGE)
c0ff4b85 5165 val = mem_cgroup_usage(memcg, true);
104f3928 5166 else
c0ff4b85 5167 val = res_counter_read_u64(&memcg->memsw, name);
8c7c6e34 5168 break;
510fc4e1
GC
5169 case _KMEM:
5170 val = res_counter_read_u64(&memcg->kmem, name);
5171 break;
8c7c6e34
KH
5172 default:
5173 BUG();
8c7c6e34 5174 }
af36f906
TH
5175
5176 len = scnprintf(str, sizeof(str), "%llu\n", (unsigned long long)val);
5177 return simple_read_from_buffer(buf, nbytes, ppos, str, len);
8cdea7c0 5178}
510fc4e1 5179
182446d0 5180static int memcg_update_kmem_limit(struct cgroup_subsys_state *css, u64 val)
510fc4e1
GC
5181{
5182 int ret = -EINVAL;
5183#ifdef CONFIG_MEMCG_KMEM
182446d0 5184 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
510fc4e1
GC
5185 /*
5186 * For simplicity, we won't allow this to be disabled. It also can't
5187 * be changed if the cgroup has children already, or if tasks had
5188 * already joined.
5189 *
5190 * If tasks join before we set the limit, a person looking at
5191 * kmem.usage_in_bytes will have no way to determine when it took
5192 * place, which makes the value quite meaningless.
5193 *
5194 * After it first became limited, changes in the value of the limit are
5195 * of course permitted.
510fc4e1 5196 */
0999821b 5197 mutex_lock(&memcg_create_mutex);
510fc4e1 5198 mutex_lock(&set_limit_mutex);
6de5a8bf 5199 if (!memcg->kmem_account_flags && val != RES_COUNTER_MAX) {
182446d0 5200 if (cgroup_task_count(css->cgroup) || memcg_has_children(memcg)) {
510fc4e1
GC
5201 ret = -EBUSY;
5202 goto out;
5203 }
5204 ret = res_counter_set_limit(&memcg->kmem, val);
5205 VM_BUG_ON(ret);
5206
55007d84
GC
5207 ret = memcg_update_cache_sizes(memcg);
5208 if (ret) {
6de5a8bf 5209 res_counter_set_limit(&memcg->kmem, RES_COUNTER_MAX);
55007d84
GC
5210 goto out;
5211 }
692e89ab
GC
5212 static_key_slow_inc(&memcg_kmem_enabled_key);
5213 /*
5214 * setting the active bit after the inc will guarantee no one
5215 * starts accounting before all call sites are patched
5216 */
5217 memcg_kmem_set_active(memcg);
510fc4e1
GC
5218 } else
5219 ret = res_counter_set_limit(&memcg->kmem, val);
5220out:
5221 mutex_unlock(&set_limit_mutex);
0999821b 5222 mutex_unlock(&memcg_create_mutex);
510fc4e1
GC
5223#endif
5224 return ret;
5225}
5226
6d043990 5227#ifdef CONFIG_MEMCG_KMEM
55007d84 5228static int memcg_propagate_kmem(struct mem_cgroup *memcg)
510fc4e1 5229{
55007d84 5230 int ret = 0;
510fc4e1
GC
5231 struct mem_cgroup *parent = parent_mem_cgroup(memcg);
5232 if (!parent)
55007d84
GC
5233 goto out;
5234
510fc4e1 5235 memcg->kmem_account_flags = parent->kmem_account_flags;
a8964b9b
GC
5236 /*
5237 * When that happen, we need to disable the static branch only on those
5238 * memcgs that enabled it. To achieve this, we would be forced to
5239 * complicate the code by keeping track of which memcgs were the ones
5240 * that actually enabled limits, and which ones got it from its
5241 * parents.
5242 *
5243 * It is a lot simpler just to do static_key_slow_inc() on every child
5244 * that is accounted.
5245 */
55007d84
GC
5246 if (!memcg_kmem_is_active(memcg))
5247 goto out;
5248
5249 /*
10d5ebf4
LZ
5250 * __mem_cgroup_free() will issue static_key_slow_dec() because this
5251 * memcg is active already. If the later initialization fails then the
5252 * cgroup core triggers the cleanup so we do not have to do it here.
55007d84 5253 */
55007d84
GC
5254 static_key_slow_inc(&memcg_kmem_enabled_key);
5255
5256 mutex_lock(&set_limit_mutex);
425c598d 5257 memcg_stop_kmem_account();
55007d84 5258 ret = memcg_update_cache_sizes(memcg);
425c598d 5259 memcg_resume_kmem_account();
55007d84 5260 mutex_unlock(&set_limit_mutex);
55007d84
GC
5261out:
5262 return ret;
510fc4e1 5263}
6d043990 5264#endif /* CONFIG_MEMCG_KMEM */
510fc4e1 5265
628f4235
KH
5266/*
5267 * The user of this function is...
5268 * RES_LIMIT.
5269 */
182446d0 5270static int mem_cgroup_write(struct cgroup_subsys_state *css, struct cftype *cft,
856c13aa 5271 const char *buffer)
8cdea7c0 5272{
182446d0 5273 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
86ae53e1
GC
5274 enum res_type type;
5275 int name;
628f4235
KH
5276 unsigned long long val;
5277 int ret;
5278
8c7c6e34
KH
5279 type = MEMFILE_TYPE(cft->private);
5280 name = MEMFILE_ATTR(cft->private);
af36f906 5281
8c7c6e34 5282 switch (name) {
628f4235 5283 case RES_LIMIT:
4b3bde4c
BS
5284 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
5285 ret = -EINVAL;
5286 break;
5287 }
628f4235
KH
5288 /* This function does all necessary parse...reuse it */
5289 ret = res_counter_memparse_write_strategy(buffer, &val);
8c7c6e34
KH
5290 if (ret)
5291 break;
5292 if (type == _MEM)
628f4235 5293 ret = mem_cgroup_resize_limit(memcg, val);
510fc4e1 5294 else if (type == _MEMSWAP)
8c7c6e34 5295 ret = mem_cgroup_resize_memsw_limit(memcg, val);
510fc4e1 5296 else if (type == _KMEM)
182446d0 5297 ret = memcg_update_kmem_limit(css, val);
510fc4e1
GC
5298 else
5299 return -EINVAL;
628f4235 5300 break;
296c81d8
BS
5301 case RES_SOFT_LIMIT:
5302 ret = res_counter_memparse_write_strategy(buffer, &val);
5303 if (ret)
5304 break;
5305 /*
5306 * For memsw, soft limits are hard to implement in terms
5307 * of semantics, for now, we support soft limits for
5308 * control without swap
5309 */
5310 if (type == _MEM)
5311 ret = res_counter_set_soft_limit(&memcg->res, val);
5312 else
5313 ret = -EINVAL;
5314 break;
628f4235
KH
5315 default:
5316 ret = -EINVAL; /* should be BUG() ? */
5317 break;
5318 }
5319 return ret;
8cdea7c0
BS
5320}
5321
fee7b548
KH
5322static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
5323 unsigned long long *mem_limit, unsigned long long *memsw_limit)
5324{
fee7b548
KH
5325 unsigned long long min_limit, min_memsw_limit, tmp;
5326
5327 min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
5328 min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
fee7b548
KH
5329 if (!memcg->use_hierarchy)
5330 goto out;
5331
63876986
TH
5332 while (css_parent(&memcg->css)) {
5333 memcg = mem_cgroup_from_css(css_parent(&memcg->css));
fee7b548
KH
5334 if (!memcg->use_hierarchy)
5335 break;
5336 tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
5337 min_limit = min(min_limit, tmp);
5338 tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
5339 min_memsw_limit = min(min_memsw_limit, tmp);
5340 }
5341out:
5342 *mem_limit = min_limit;
5343 *memsw_limit = min_memsw_limit;
fee7b548
KH
5344}
5345
182446d0 5346static int mem_cgroup_reset(struct cgroup_subsys_state *css, unsigned int event)
c84872e1 5347{
182446d0 5348 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
86ae53e1
GC
5349 int name;
5350 enum res_type type;
c84872e1 5351
8c7c6e34
KH
5352 type = MEMFILE_TYPE(event);
5353 name = MEMFILE_ATTR(event);
af36f906 5354
8c7c6e34 5355 switch (name) {
29f2a4da 5356 case RES_MAX_USAGE:
8c7c6e34 5357 if (type == _MEM)
c0ff4b85 5358 res_counter_reset_max(&memcg->res);
510fc4e1 5359 else if (type == _MEMSWAP)
c0ff4b85 5360 res_counter_reset_max(&memcg->memsw);
510fc4e1
GC
5361 else if (type == _KMEM)
5362 res_counter_reset_max(&memcg->kmem);
5363 else
5364 return -EINVAL;
29f2a4da
PE
5365 break;
5366 case RES_FAILCNT:
8c7c6e34 5367 if (type == _MEM)
c0ff4b85 5368 res_counter_reset_failcnt(&memcg->res);
510fc4e1 5369 else if (type == _MEMSWAP)
c0ff4b85 5370 res_counter_reset_failcnt(&memcg->memsw);
510fc4e1
GC
5371 else if (type == _KMEM)
5372 res_counter_reset_failcnt(&memcg->kmem);
5373 else
5374 return -EINVAL;
29f2a4da
PE
5375 break;
5376 }
f64c3f54 5377
85cc59db 5378 return 0;
c84872e1
PE
5379}
5380
182446d0 5381static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
7dc74be0
DN
5382 struct cftype *cft)
5383{
182446d0 5384 return mem_cgroup_from_css(css)->move_charge_at_immigrate;
7dc74be0
DN
5385}
5386
02491447 5387#ifdef CONFIG_MMU
182446d0 5388static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
7dc74be0
DN
5389 struct cftype *cft, u64 val)
5390{
182446d0 5391 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
7dc74be0
DN
5392
5393 if (val >= (1 << NR_MOVE_TYPE))
5394 return -EINVAL;
ee5e8472 5395
7dc74be0 5396 /*
ee5e8472
GC
5397 * No kind of locking is needed in here, because ->can_attach() will
5398 * check this value once in the beginning of the process, and then carry
5399 * on with stale data. This means that changes to this value will only
5400 * affect task migrations starting after the change.
7dc74be0 5401 */
c0ff4b85 5402 memcg->move_charge_at_immigrate = val;
7dc74be0
DN
5403 return 0;
5404}
02491447 5405#else
182446d0 5406static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
02491447
DN
5407 struct cftype *cft, u64 val)
5408{
5409 return -ENOSYS;
5410}
5411#endif
7dc74be0 5412
406eb0c9 5413#ifdef CONFIG_NUMA
182446d0
TH
5414static int memcg_numa_stat_show(struct cgroup_subsys_state *css,
5415 struct cftype *cft, struct seq_file *m)
406eb0c9
YH
5416{
5417 int nid;
5418 unsigned long total_nr, file_nr, anon_nr, unevictable_nr;
5419 unsigned long node_nr;
182446d0 5420 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
406eb0c9 5421
d79154bb 5422 total_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL);
406eb0c9 5423 seq_printf(m, "total=%lu", total_nr);
31aaea4a 5424 for_each_node_state(nid, N_MEMORY) {
d79154bb 5425 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL);
406eb0c9
YH
5426 seq_printf(m, " N%d=%lu", nid, node_nr);
5427 }
5428 seq_putc(m, '\n');
5429
d79154bb 5430 file_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_FILE);
406eb0c9 5431 seq_printf(m, "file=%lu", file_nr);
31aaea4a 5432 for_each_node_state(nid, N_MEMORY) {
d79154bb 5433 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
bb2a0de9 5434 LRU_ALL_FILE);
406eb0c9
YH
5435 seq_printf(m, " N%d=%lu", nid, node_nr);
5436 }
5437 seq_putc(m, '\n');
5438
d79154bb 5439 anon_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_ANON);
406eb0c9 5440 seq_printf(m, "anon=%lu", anon_nr);
31aaea4a 5441 for_each_node_state(nid, N_MEMORY) {
d79154bb 5442 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
bb2a0de9 5443 LRU_ALL_ANON);
406eb0c9
YH
5444 seq_printf(m, " N%d=%lu", nid, node_nr);
5445 }
5446 seq_putc(m, '\n');
5447
d79154bb 5448 unevictable_nr = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_UNEVICTABLE));
406eb0c9 5449 seq_printf(m, "unevictable=%lu", unevictable_nr);
31aaea4a 5450 for_each_node_state(nid, N_MEMORY) {
d79154bb 5451 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
bb2a0de9 5452 BIT(LRU_UNEVICTABLE));
406eb0c9
YH
5453 seq_printf(m, " N%d=%lu", nid, node_nr);
5454 }
5455 seq_putc(m, '\n');
5456 return 0;
5457}
5458#endif /* CONFIG_NUMA */
5459
af7c4b0e
JW
5460static inline void mem_cgroup_lru_names_not_uptodate(void)
5461{
5462 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
5463}
5464
182446d0 5465static int memcg_stat_show(struct cgroup_subsys_state *css, struct cftype *cft,
78ccf5b5 5466 struct seq_file *m)
d2ceb9b7 5467{
182446d0 5468 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
af7c4b0e
JW
5469 struct mem_cgroup *mi;
5470 unsigned int i;
406eb0c9 5471
af7c4b0e 5472 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
bff6bb83 5473 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1dd3a273 5474 continue;
af7c4b0e
JW
5475 seq_printf(m, "%s %ld\n", mem_cgroup_stat_names[i],
5476 mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
1dd3a273 5477 }
7b854121 5478
af7c4b0e
JW
5479 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
5480 seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
5481 mem_cgroup_read_events(memcg, i));
5482
5483 for (i = 0; i < NR_LRU_LISTS; i++)
5484 seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
5485 mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);
5486
14067bb3 5487 /* Hierarchical information */
fee7b548
KH
5488 {
5489 unsigned long long limit, memsw_limit;
d79154bb 5490 memcg_get_hierarchical_limit(memcg, &limit, &memsw_limit);
78ccf5b5 5491 seq_printf(m, "hierarchical_memory_limit %llu\n", limit);
fee7b548 5492 if (do_swap_account)
78ccf5b5
JW
5493 seq_printf(m, "hierarchical_memsw_limit %llu\n",
5494 memsw_limit);
fee7b548 5495 }
7f016ee8 5496
af7c4b0e
JW
5497 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
5498 long long val = 0;
5499
bff6bb83 5500 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1dd3a273 5501 continue;
af7c4b0e
JW
5502 for_each_mem_cgroup_tree(mi, memcg)
5503 val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
5504 seq_printf(m, "total_%s %lld\n", mem_cgroup_stat_names[i], val);
5505 }
5506
5507 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
5508 unsigned long long val = 0;
5509
5510 for_each_mem_cgroup_tree(mi, memcg)
5511 val += mem_cgroup_read_events(mi, i);
5512 seq_printf(m, "total_%s %llu\n",
5513 mem_cgroup_events_names[i], val);
5514 }
5515
5516 for (i = 0; i < NR_LRU_LISTS; i++) {
5517 unsigned long long val = 0;
5518
5519 for_each_mem_cgroup_tree(mi, memcg)
5520 val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
5521 seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
1dd3a273 5522 }
14067bb3 5523
7f016ee8 5524#ifdef CONFIG_DEBUG_VM
7f016ee8
KM
5525 {
5526 int nid, zid;
5527 struct mem_cgroup_per_zone *mz;
89abfab1 5528 struct zone_reclaim_stat *rstat;
7f016ee8
KM
5529 unsigned long recent_rotated[2] = {0, 0};
5530 unsigned long recent_scanned[2] = {0, 0};
5531
5532 for_each_online_node(nid)
5533 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
d79154bb 5534 mz = mem_cgroup_zoneinfo(memcg, nid, zid);
89abfab1 5535 rstat = &mz->lruvec.reclaim_stat;
7f016ee8 5536
89abfab1
HD
5537 recent_rotated[0] += rstat->recent_rotated[0];
5538 recent_rotated[1] += rstat->recent_rotated[1];
5539 recent_scanned[0] += rstat->recent_scanned[0];
5540 recent_scanned[1] += rstat->recent_scanned[1];
7f016ee8 5541 }
78ccf5b5
JW
5542 seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
5543 seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
5544 seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
5545 seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
7f016ee8
KM
5546 }
5547#endif
5548
d2ceb9b7
KH
5549 return 0;
5550}
5551
182446d0
TH
5552static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
5553 struct cftype *cft)
a7885eb8 5554{
182446d0 5555 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
a7885eb8 5556
1f4c025b 5557 return mem_cgroup_swappiness(memcg);
a7885eb8
KM
5558}
5559
182446d0
TH
5560static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
5561 struct cftype *cft, u64 val)
a7885eb8 5562{
182446d0 5563 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
63876986 5564 struct mem_cgroup *parent = mem_cgroup_from_css(css_parent(&memcg->css));
a7885eb8 5565
63876986 5566 if (val > 100 || !parent)
a7885eb8
KM
5567 return -EINVAL;
5568
0999821b 5569 mutex_lock(&memcg_create_mutex);
068b38c1 5570
a7885eb8 5571 /* If under hierarchy, only empty-root can set this value */
b5f99b53 5572 if ((parent->use_hierarchy) || memcg_has_children(memcg)) {
0999821b 5573 mutex_unlock(&memcg_create_mutex);
a7885eb8 5574 return -EINVAL;
068b38c1 5575 }
a7885eb8 5576
a7885eb8 5577 memcg->swappiness = val;
a7885eb8 5578
0999821b 5579 mutex_unlock(&memcg_create_mutex);
068b38c1 5580
a7885eb8
KM
5581 return 0;
5582}
5583
2e72b634
KS
5584static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
5585{
5586 struct mem_cgroup_threshold_ary *t;
5587 u64 usage;
5588 int i;
5589
5590 rcu_read_lock();
5591 if (!swap)
2c488db2 5592 t = rcu_dereference(memcg->thresholds.primary);
2e72b634 5593 else
2c488db2 5594 t = rcu_dereference(memcg->memsw_thresholds.primary);
2e72b634
KS
5595
5596 if (!t)
5597 goto unlock;
5598
5599 usage = mem_cgroup_usage(memcg, swap);
5600
5601 /*
748dad36 5602 * current_threshold points to threshold just below or equal to usage.
2e72b634
KS
5603 * If it's not true, a threshold was crossed after last
5604 * call of __mem_cgroup_threshold().
5605 */
5407a562 5606 i = t->current_threshold;
2e72b634
KS
5607
5608 /*
5609 * Iterate backward over array of thresholds starting from
5610 * current_threshold and check if a threshold is crossed.
5611 * If none of thresholds below usage is crossed, we read
5612 * only one element of the array here.
5613 */
5614 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
5615 eventfd_signal(t->entries[i].eventfd, 1);
5616
5617 /* i = current_threshold + 1 */
5618 i++;
5619
5620 /*
5621 * Iterate forward over array of thresholds starting from
5622 * current_threshold+1 and check if a threshold is crossed.
5623 * If none of thresholds above usage is crossed, we read
5624 * only one element of the array here.
5625 */
5626 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
5627 eventfd_signal(t->entries[i].eventfd, 1);
5628
5629 /* Update current_threshold */
5407a562 5630 t->current_threshold = i - 1;
2e72b634
KS
5631unlock:
5632 rcu_read_unlock();
5633}
5634
5635static void mem_cgroup_threshold(struct mem_cgroup *memcg)
5636{
ad4ca5f4
KS
5637 while (memcg) {
5638 __mem_cgroup_threshold(memcg, false);
5639 if (do_swap_account)
5640 __mem_cgroup_threshold(memcg, true);
5641
5642 memcg = parent_mem_cgroup(memcg);
5643 }
2e72b634
KS
5644}
5645
5646static int compare_thresholds(const void *a, const void *b)
5647{
5648 const struct mem_cgroup_threshold *_a = a;
5649 const struct mem_cgroup_threshold *_b = b;
5650
2bff24a3
GT
5651 if (_a->threshold > _b->threshold)
5652 return 1;
5653
5654 if (_a->threshold < _b->threshold)
5655 return -1;
5656
5657 return 0;
2e72b634
KS
5658}
5659
c0ff4b85 5660static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
9490ff27
KH
5661{
5662 struct mem_cgroup_eventfd_list *ev;
5663
c0ff4b85 5664 list_for_each_entry(ev, &memcg->oom_notify, list)
9490ff27
KH
5665 eventfd_signal(ev->eventfd, 1);
5666 return 0;
5667}
5668
c0ff4b85 5669static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
9490ff27 5670{
7d74b06f
KH
5671 struct mem_cgroup *iter;
5672
c0ff4b85 5673 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f 5674 mem_cgroup_oom_notify_cb(iter);
9490ff27
KH
5675}
5676
81eeaf04 5677static int mem_cgroup_usage_register_event(struct cgroup_subsys_state *css,
9490ff27 5678 struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
2e72b634 5679{
81eeaf04 5680 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
2c488db2
KS
5681 struct mem_cgroup_thresholds *thresholds;
5682 struct mem_cgroup_threshold_ary *new;
86ae53e1 5683 enum res_type type = MEMFILE_TYPE(cft->private);
2e72b634 5684 u64 threshold, usage;
2c488db2 5685 int i, size, ret;
2e72b634
KS
5686
5687 ret = res_counter_memparse_write_strategy(args, &threshold);
5688 if (ret)
5689 return ret;
5690
5691 mutex_lock(&memcg->thresholds_lock);
2c488db2 5692
2e72b634 5693 if (type == _MEM)
2c488db2 5694 thresholds = &memcg->thresholds;
2e72b634 5695 else if (type == _MEMSWAP)
2c488db2 5696 thresholds = &memcg->memsw_thresholds;
2e72b634
KS
5697 else
5698 BUG();
5699
5700 usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
5701
5702 /* Check if a threshold crossed before adding a new one */
2c488db2 5703 if (thresholds->primary)
2e72b634
KS
5704 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
5705
2c488db2 5706 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
2e72b634
KS
5707
5708 /* Allocate memory for new array of thresholds */
2c488db2 5709 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
2e72b634 5710 GFP_KERNEL);
2c488db2 5711 if (!new) {
2e72b634
KS
5712 ret = -ENOMEM;
5713 goto unlock;
5714 }
2c488db2 5715 new->size = size;
2e72b634
KS
5716
5717 /* Copy thresholds (if any) to new array */
2c488db2
KS
5718 if (thresholds->primary) {
5719 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
2e72b634 5720 sizeof(struct mem_cgroup_threshold));
2c488db2
KS
5721 }
5722
2e72b634 5723 /* Add new threshold */
2c488db2
KS
5724 new->entries[size - 1].eventfd = eventfd;
5725 new->entries[size - 1].threshold = threshold;
2e72b634
KS
5726
5727 /* Sort thresholds. Registering of new threshold isn't time-critical */
2c488db2 5728 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
2e72b634
KS
5729 compare_thresholds, NULL);
5730
5731 /* Find current threshold */
2c488db2 5732 new->current_threshold = -1;
2e72b634 5733 for (i = 0; i < size; i++) {
748dad36 5734 if (new->entries[i].threshold <= usage) {
2e72b634 5735 /*
2c488db2
KS
5736 * new->current_threshold will not be used until
5737 * rcu_assign_pointer(), so it's safe to increment
2e72b634
KS
5738 * it here.
5739 */
2c488db2 5740 ++new->current_threshold;
748dad36
SZ
5741 } else
5742 break;
2e72b634
KS
5743 }
5744
2c488db2
KS
5745 /* Free old spare buffer and save old primary buffer as spare */
5746 kfree(thresholds->spare);
5747 thresholds->spare = thresholds->primary;
5748
5749 rcu_assign_pointer(thresholds->primary, new);
2e72b634 5750
907860ed 5751 /* To be sure that nobody uses thresholds */
2e72b634
KS
5752 synchronize_rcu();
5753
2e72b634
KS
5754unlock:
5755 mutex_unlock(&memcg->thresholds_lock);
5756
5757 return ret;
5758}
5759
81eeaf04 5760static void mem_cgroup_usage_unregister_event(struct cgroup_subsys_state *css,
9490ff27 5761 struct cftype *cft, struct eventfd_ctx *eventfd)
2e72b634 5762{
81eeaf04 5763 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
2c488db2
KS
5764 struct mem_cgroup_thresholds *thresholds;
5765 struct mem_cgroup_threshold_ary *new;
86ae53e1 5766 enum res_type type = MEMFILE_TYPE(cft->private);
2e72b634 5767 u64 usage;
2c488db2 5768 int i, j, size;
2e72b634
KS
5769
5770 mutex_lock(&memcg->thresholds_lock);
5771 if (type == _MEM)
2c488db2 5772 thresholds = &memcg->thresholds;
2e72b634 5773 else if (type == _MEMSWAP)
2c488db2 5774 thresholds = &memcg->memsw_thresholds;
2e72b634
KS
5775 else
5776 BUG();
5777
371528ca
AV
5778 if (!thresholds->primary)
5779 goto unlock;
5780
2e72b634
KS
5781 usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
5782
5783 /* Check if a threshold crossed before removing */
5784 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
5785
5786 /* Calculate new number of threshold */
2c488db2
KS
5787 size = 0;
5788 for (i = 0; i < thresholds->primary->size; i++) {
5789 if (thresholds->primary->entries[i].eventfd != eventfd)
2e72b634
KS
5790 size++;
5791 }
5792
2c488db2 5793 new = thresholds->spare;
907860ed 5794
2e72b634
KS
5795 /* Set thresholds array to NULL if we don't have thresholds */
5796 if (!size) {
2c488db2
KS
5797 kfree(new);
5798 new = NULL;
907860ed 5799 goto swap_buffers;
2e72b634
KS
5800 }
5801
2c488db2 5802 new->size = size;
2e72b634
KS
5803
5804 /* Copy thresholds and find current threshold */
2c488db2
KS
5805 new->current_threshold = -1;
5806 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
5807 if (thresholds->primary->entries[i].eventfd == eventfd)
2e72b634
KS
5808 continue;
5809
2c488db2 5810 new->entries[j] = thresholds->primary->entries[i];
748dad36 5811 if (new->entries[j].threshold <= usage) {
2e72b634 5812 /*
2c488db2 5813 * new->current_threshold will not be used
2e72b634
KS
5814 * until rcu_assign_pointer(), so it's safe to increment
5815 * it here.
5816 */
2c488db2 5817 ++new->current_threshold;
2e72b634
KS
5818 }
5819 j++;
5820 }
5821
907860ed 5822swap_buffers:
2c488db2
KS
5823 /* Swap primary and spare array */
5824 thresholds->spare = thresholds->primary;
8c757763
SZ
5825 /* If all events are unregistered, free the spare array */
5826 if (!new) {
5827 kfree(thresholds->spare);
5828 thresholds->spare = NULL;
5829 }
5830
2c488db2 5831 rcu_assign_pointer(thresholds->primary, new);
2e72b634 5832
907860ed 5833 /* To be sure that nobody uses thresholds */
2e72b634 5834 synchronize_rcu();
371528ca 5835unlock:
2e72b634 5836 mutex_unlock(&memcg->thresholds_lock);
2e72b634 5837}
c1e862c1 5838
81eeaf04 5839static int mem_cgroup_oom_register_event(struct cgroup_subsys_state *css,
9490ff27
KH
5840 struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
5841{
81eeaf04 5842 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
9490ff27 5843 struct mem_cgroup_eventfd_list *event;
86ae53e1 5844 enum res_type type = MEMFILE_TYPE(cft->private);
9490ff27
KH
5845
5846 BUG_ON(type != _OOM_TYPE);
5847 event = kmalloc(sizeof(*event), GFP_KERNEL);
5848 if (!event)
5849 return -ENOMEM;
5850
1af8efe9 5851 spin_lock(&memcg_oom_lock);
9490ff27
KH
5852
5853 event->eventfd = eventfd;
5854 list_add(&event->list, &memcg->oom_notify);
5855
5856 /* already in OOM ? */
79dfdacc 5857 if (atomic_read(&memcg->under_oom))
9490ff27 5858 eventfd_signal(eventfd, 1);
1af8efe9 5859 spin_unlock(&memcg_oom_lock);
9490ff27
KH
5860
5861 return 0;
5862}
5863
81eeaf04 5864static void mem_cgroup_oom_unregister_event(struct cgroup_subsys_state *css,
9490ff27
KH
5865 struct cftype *cft, struct eventfd_ctx *eventfd)
5866{
81eeaf04 5867 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
9490ff27 5868 struct mem_cgroup_eventfd_list *ev, *tmp;
86ae53e1 5869 enum res_type type = MEMFILE_TYPE(cft->private);
9490ff27
KH
5870
5871 BUG_ON(type != _OOM_TYPE);
5872
1af8efe9 5873 spin_lock(&memcg_oom_lock);
9490ff27 5874
c0ff4b85 5875 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
9490ff27
KH
5876 if (ev->eventfd == eventfd) {
5877 list_del(&ev->list);
5878 kfree(ev);
5879 }
5880 }
5881
1af8efe9 5882 spin_unlock(&memcg_oom_lock);
9490ff27
KH
5883}
5884
182446d0 5885static int mem_cgroup_oom_control_read(struct cgroup_subsys_state *css,
3c11ecf4
KH
5886 struct cftype *cft, struct cgroup_map_cb *cb)
5887{
182446d0 5888 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3c11ecf4 5889
c0ff4b85 5890 cb->fill(cb, "oom_kill_disable", memcg->oom_kill_disable);
3c11ecf4 5891
c0ff4b85 5892 if (atomic_read(&memcg->under_oom))
3c11ecf4
KH
5893 cb->fill(cb, "under_oom", 1);
5894 else
5895 cb->fill(cb, "under_oom", 0);
5896 return 0;
5897}
5898
182446d0 5899static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
3c11ecf4
KH
5900 struct cftype *cft, u64 val)
5901{
182446d0 5902 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
63876986 5903 struct mem_cgroup *parent = mem_cgroup_from_css(css_parent(&memcg->css));
3c11ecf4
KH
5904
5905 /* cannot set to root cgroup and only 0 and 1 are allowed */
63876986 5906 if (!parent || !((val == 0) || (val == 1)))
3c11ecf4
KH
5907 return -EINVAL;
5908
0999821b 5909 mutex_lock(&memcg_create_mutex);
3c11ecf4 5910 /* oom-kill-disable is a flag for subhierarchy. */
b5f99b53 5911 if ((parent->use_hierarchy) || memcg_has_children(memcg)) {
0999821b 5912 mutex_unlock(&memcg_create_mutex);
3c11ecf4
KH
5913 return -EINVAL;
5914 }
c0ff4b85 5915 memcg->oom_kill_disable = val;
4d845ebf 5916 if (!val)
c0ff4b85 5917 memcg_oom_recover(memcg);
0999821b 5918 mutex_unlock(&memcg_create_mutex);
3c11ecf4
KH
5919 return 0;
5920}
5921
c255a458 5922#ifdef CONFIG_MEMCG_KMEM
cbe128e3 5923static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
e5671dfa 5924{
55007d84
GC
5925 int ret;
5926
2633d7a0 5927 memcg->kmemcg_id = -1;
55007d84
GC
5928 ret = memcg_propagate_kmem(memcg);
5929 if (ret)
5930 return ret;
2633d7a0 5931
1d62e436 5932 return mem_cgroup_sockets_init(memcg, ss);
573b400d 5933}
e5671dfa 5934
10d5ebf4 5935static void memcg_destroy_kmem(struct mem_cgroup *memcg)
d1a4c0b3 5936{
1d62e436 5937 mem_cgroup_sockets_destroy(memcg);
10d5ebf4
LZ
5938}
5939
5940static void kmem_cgroup_css_offline(struct mem_cgroup *memcg)
5941{
5942 if (!memcg_kmem_is_active(memcg))
5943 return;
5944
5945 /*
5946 * kmem charges can outlive the cgroup. In the case of slab
5947 * pages, for instance, a page contain objects from various
5948 * processes. As we prevent from taking a reference for every
5949 * such allocation we have to be careful when doing uncharge
5950 * (see memcg_uncharge_kmem) and here during offlining.
5951 *
5952 * The idea is that that only the _last_ uncharge which sees
5953 * the dead memcg will drop the last reference. An additional
5954 * reference is taken here before the group is marked dead
5955 * which is then paired with css_put during uncharge resp. here.
5956 *
5957 * Although this might sound strange as this path is called from
5958 * css_offline() when the referencemight have dropped down to 0
5959 * and shouldn't be incremented anymore (css_tryget would fail)
5960 * we do not have other options because of the kmem allocations
5961 * lifetime.
5962 */
5963 css_get(&memcg->css);
7de37682
GC
5964
5965 memcg_kmem_mark_dead(memcg);
5966
5967 if (res_counter_read_u64(&memcg->kmem, RES_USAGE) != 0)
5968 return;
5969
7de37682 5970 if (memcg_kmem_test_and_clear_dead(memcg))
10d5ebf4 5971 css_put(&memcg->css);
d1a4c0b3 5972}
e5671dfa 5973#else
cbe128e3 5974static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
e5671dfa
GC
5975{
5976 return 0;
5977}
d1a4c0b3 5978
10d5ebf4
LZ
5979static void memcg_destroy_kmem(struct mem_cgroup *memcg)
5980{
5981}
5982
5983static void kmem_cgroup_css_offline(struct mem_cgroup *memcg)
d1a4c0b3
GC
5984{
5985}
e5671dfa
GC
5986#endif
5987
8cdea7c0
BS
5988static struct cftype mem_cgroup_files[] = {
5989 {
0eea1030 5990 .name = "usage_in_bytes",
8c7c6e34 5991 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
af36f906 5992 .read = mem_cgroup_read,
9490ff27
KH
5993 .register_event = mem_cgroup_usage_register_event,
5994 .unregister_event = mem_cgroup_usage_unregister_event,
8cdea7c0 5995 },
c84872e1
PE
5996 {
5997 .name = "max_usage_in_bytes",
8c7c6e34 5998 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
29f2a4da 5999 .trigger = mem_cgroup_reset,
af36f906 6000 .read = mem_cgroup_read,
c84872e1 6001 },
8cdea7c0 6002 {
0eea1030 6003 .name = "limit_in_bytes",
8c7c6e34 6004 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
856c13aa 6005 .write_string = mem_cgroup_write,
af36f906 6006 .read = mem_cgroup_read,
8cdea7c0 6007 },
296c81d8
BS
6008 {
6009 .name = "soft_limit_in_bytes",
6010 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
6011 .write_string = mem_cgroup_write,
af36f906 6012 .read = mem_cgroup_read,
296c81d8 6013 },
8cdea7c0
BS
6014 {
6015 .name = "failcnt",
8c7c6e34 6016 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
29f2a4da 6017 .trigger = mem_cgroup_reset,
af36f906 6018 .read = mem_cgroup_read,
8cdea7c0 6019 },
d2ceb9b7
KH
6020 {
6021 .name = "stat",
ab215884 6022 .read_seq_string = memcg_stat_show,
d2ceb9b7 6023 },
c1e862c1
KH
6024 {
6025 .name = "force_empty",
6026 .trigger = mem_cgroup_force_empty_write,
6027 },
18f59ea7
BS
6028 {
6029 .name = "use_hierarchy",
f00baae7 6030 .flags = CFTYPE_INSANE,
18f59ea7
BS
6031 .write_u64 = mem_cgroup_hierarchy_write,
6032 .read_u64 = mem_cgroup_hierarchy_read,
6033 },
a7885eb8
KM
6034 {
6035 .name = "swappiness",
6036 .read_u64 = mem_cgroup_swappiness_read,
6037 .write_u64 = mem_cgroup_swappiness_write,
6038 },
7dc74be0
DN
6039 {
6040 .name = "move_charge_at_immigrate",
6041 .read_u64 = mem_cgroup_move_charge_read,
6042 .write_u64 = mem_cgroup_move_charge_write,
6043 },
9490ff27
KH
6044 {
6045 .name = "oom_control",
3c11ecf4
KH
6046 .read_map = mem_cgroup_oom_control_read,
6047 .write_u64 = mem_cgroup_oom_control_write,
9490ff27
KH
6048 .register_event = mem_cgroup_oom_register_event,
6049 .unregister_event = mem_cgroup_oom_unregister_event,
6050 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
6051 },
70ddf637
AV
6052 {
6053 .name = "pressure_level",
6054 .register_event = vmpressure_register_event,
6055 .unregister_event = vmpressure_unregister_event,
6056 },
406eb0c9
YH
6057#ifdef CONFIG_NUMA
6058 {
6059 .name = "numa_stat",
ab215884 6060 .read_seq_string = memcg_numa_stat_show,
406eb0c9
YH
6061 },
6062#endif
510fc4e1
GC
6063#ifdef CONFIG_MEMCG_KMEM
6064 {
6065 .name = "kmem.limit_in_bytes",
6066 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
6067 .write_string = mem_cgroup_write,
6068 .read = mem_cgroup_read,
6069 },
6070 {
6071 .name = "kmem.usage_in_bytes",
6072 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
6073 .read = mem_cgroup_read,
6074 },
6075 {
6076 .name = "kmem.failcnt",
6077 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
6078 .trigger = mem_cgroup_reset,
6079 .read = mem_cgroup_read,
6080 },
6081 {
6082 .name = "kmem.max_usage_in_bytes",
6083 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
6084 .trigger = mem_cgroup_reset,
6085 .read = mem_cgroup_read,
6086 },
749c5415
GC
6087#ifdef CONFIG_SLABINFO
6088 {
6089 .name = "kmem.slabinfo",
6090 .read_seq_string = mem_cgroup_slabinfo_read,
6091 },
6092#endif
8c7c6e34 6093#endif
6bc10349 6094 { }, /* terminate */
af36f906 6095};
8c7c6e34 6096
2d11085e
MH
6097#ifdef CONFIG_MEMCG_SWAP
6098static struct cftype memsw_cgroup_files[] = {
6099 {
6100 .name = "memsw.usage_in_bytes",
6101 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
6102 .read = mem_cgroup_read,
6103 .register_event = mem_cgroup_usage_register_event,
6104 .unregister_event = mem_cgroup_usage_unregister_event,
6105 },
6106 {
6107 .name = "memsw.max_usage_in_bytes",
6108 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
6109 .trigger = mem_cgroup_reset,
6110 .read = mem_cgroup_read,
6111 },
6112 {
6113 .name = "memsw.limit_in_bytes",
6114 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
6115 .write_string = mem_cgroup_write,
6116 .read = mem_cgroup_read,
6117 },
6118 {
6119 .name = "memsw.failcnt",
6120 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
6121 .trigger = mem_cgroup_reset,
6122 .read = mem_cgroup_read,
6123 },
6124 { }, /* terminate */
6125};
6126#endif
c0ff4b85 6127static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
6d12e2d8
KH
6128{
6129 struct mem_cgroup_per_node *pn;
1ecaab2b 6130 struct mem_cgroup_per_zone *mz;
41e3355d 6131 int zone, tmp = node;
1ecaab2b
KH
6132 /*
6133 * This routine is called against possible nodes.
6134 * But it's BUG to call kmalloc() against offline node.
6135 *
6136 * TODO: this routine can waste much memory for nodes which will
6137 * never be onlined. It's better to use memory hotplug callback
6138 * function.
6139 */
41e3355d
KH
6140 if (!node_state(node, N_NORMAL_MEMORY))
6141 tmp = -1;
17295c88 6142 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
6d12e2d8
KH
6143 if (!pn)
6144 return 1;
1ecaab2b 6145
1ecaab2b
KH
6146 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
6147 mz = &pn->zoneinfo[zone];
bea8c150 6148 lruvec_init(&mz->lruvec);
bb4cc1a8
AM
6149 mz->usage_in_excess = 0;
6150 mz->on_tree = false;
d79154bb 6151 mz->memcg = memcg;
1ecaab2b 6152 }
54f72fe0 6153 memcg->nodeinfo[node] = pn;
6d12e2d8
KH
6154 return 0;
6155}
6156
c0ff4b85 6157static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
1ecaab2b 6158{
54f72fe0 6159 kfree(memcg->nodeinfo[node]);
1ecaab2b
KH
6160}
6161
33327948
KH
6162static struct mem_cgroup *mem_cgroup_alloc(void)
6163{
d79154bb 6164 struct mem_cgroup *memcg;
45cf7ebd 6165 size_t size = memcg_size();
33327948 6166
45cf7ebd 6167 /* Can be very big if nr_node_ids is very big */
c8dad2bb 6168 if (size < PAGE_SIZE)
d79154bb 6169 memcg = kzalloc(size, GFP_KERNEL);
33327948 6170 else
d79154bb 6171 memcg = vzalloc(size);
33327948 6172
d79154bb 6173 if (!memcg)
e7bbcdf3
DC
6174 return NULL;
6175
d79154bb
HD
6176 memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
6177 if (!memcg->stat)
d2e61b8d 6178 goto out_free;
d79154bb
HD
6179 spin_lock_init(&memcg->pcp_counter_lock);
6180 return memcg;
d2e61b8d
DC
6181
6182out_free:
6183 if (size < PAGE_SIZE)
d79154bb 6184 kfree(memcg);
d2e61b8d 6185 else
d79154bb 6186 vfree(memcg);
d2e61b8d 6187 return NULL;
33327948
KH
6188}
6189
59927fb9 6190/*
c8b2a36f
GC
6191 * At destroying mem_cgroup, references from swap_cgroup can remain.
6192 * (scanning all at force_empty is too costly...)
6193 *
6194 * Instead of clearing all references at force_empty, we remember
6195 * the number of reference from swap_cgroup and free mem_cgroup when
6196 * it goes down to 0.
6197 *
6198 * Removal of cgroup itself succeeds regardless of refs from swap.
59927fb9 6199 */
c8b2a36f
GC
6200
6201static void __mem_cgroup_free(struct mem_cgroup *memcg)
59927fb9 6202{
c8b2a36f 6203 int node;
45cf7ebd 6204 size_t size = memcg_size();
59927fb9 6205
bb4cc1a8 6206 mem_cgroup_remove_from_trees(memcg);
c8b2a36f
GC
6207 free_css_id(&mem_cgroup_subsys, &memcg->css);
6208
6209 for_each_node(node)
6210 free_mem_cgroup_per_zone_info(memcg, node);
6211
6212 free_percpu(memcg->stat);
6213
3f134619
GC
6214 /*
6215 * We need to make sure that (at least for now), the jump label
6216 * destruction code runs outside of the cgroup lock. This is because
6217 * get_online_cpus(), which is called from the static_branch update,
6218 * can't be called inside the cgroup_lock. cpusets are the ones
6219 * enforcing this dependency, so if they ever change, we might as well.
6220 *
6221 * schedule_work() will guarantee this happens. Be careful if you need
6222 * to move this code around, and make sure it is outside
6223 * the cgroup_lock.
6224 */
a8964b9b 6225 disarm_static_keys(memcg);
3afe36b1
GC
6226 if (size < PAGE_SIZE)
6227 kfree(memcg);
6228 else
6229 vfree(memcg);
59927fb9 6230}
3afe36b1 6231
7bcc1bb1
DN
6232/*
6233 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
6234 */
e1aab161 6235struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
7bcc1bb1 6236{
c0ff4b85 6237 if (!memcg->res.parent)
7bcc1bb1 6238 return NULL;
c0ff4b85 6239 return mem_cgroup_from_res_counter(memcg->res.parent, res);
7bcc1bb1 6240}
e1aab161 6241EXPORT_SYMBOL(parent_mem_cgroup);
33327948 6242
bb4cc1a8
AM
6243static void __init mem_cgroup_soft_limit_tree_init(void)
6244{
6245 struct mem_cgroup_tree_per_node *rtpn;
6246 struct mem_cgroup_tree_per_zone *rtpz;
6247 int tmp, node, zone;
6248
6249 for_each_node(node) {
6250 tmp = node;
6251 if (!node_state(node, N_NORMAL_MEMORY))
6252 tmp = -1;
6253 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
6254 BUG_ON(!rtpn);
6255
6256 soft_limit_tree.rb_tree_per_node[node] = rtpn;
6257
6258 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
6259 rtpz = &rtpn->rb_tree_per_zone[zone];
6260 rtpz->rb_root = RB_ROOT;
6261 spin_lock_init(&rtpz->lock);
6262 }
6263 }
6264}
6265
0eb253e2 6266static struct cgroup_subsys_state * __ref
eb95419b 6267mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
8cdea7c0 6268{
d142e3e6 6269 struct mem_cgroup *memcg;
04046e1a 6270 long error = -ENOMEM;
6d12e2d8 6271 int node;
8cdea7c0 6272
c0ff4b85
R
6273 memcg = mem_cgroup_alloc();
6274 if (!memcg)
04046e1a 6275 return ERR_PTR(error);
78fb7466 6276
3ed28fa1 6277 for_each_node(node)
c0ff4b85 6278 if (alloc_mem_cgroup_per_zone_info(memcg, node))
6d12e2d8 6279 goto free_out;
f64c3f54 6280
c077719b 6281 /* root ? */
eb95419b 6282 if (parent_css == NULL) {
a41c58a6 6283 root_mem_cgroup = memcg;
d142e3e6
GC
6284 res_counter_init(&memcg->res, NULL);
6285 res_counter_init(&memcg->memsw, NULL);
6286 res_counter_init(&memcg->kmem, NULL);
18f59ea7 6287 }
28dbc4b6 6288
d142e3e6
GC
6289 memcg->last_scanned_node = MAX_NUMNODES;
6290 INIT_LIST_HEAD(&memcg->oom_notify);
d142e3e6
GC
6291 memcg->move_charge_at_immigrate = 0;
6292 mutex_init(&memcg->thresholds_lock);
6293 spin_lock_init(&memcg->move_lock);
70ddf637 6294 vmpressure_init(&memcg->vmpressure);
d142e3e6
GC
6295
6296 return &memcg->css;
6297
6298free_out:
6299 __mem_cgroup_free(memcg);
6300 return ERR_PTR(error);
6301}
6302
6303static int
eb95419b 6304mem_cgroup_css_online(struct cgroup_subsys_state *css)
d142e3e6 6305{
eb95419b
TH
6306 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6307 struct mem_cgroup *parent = mem_cgroup_from_css(css_parent(css));
d142e3e6
GC
6308 int error = 0;
6309
63876986 6310 if (!parent)
d142e3e6
GC
6311 return 0;
6312
0999821b 6313 mutex_lock(&memcg_create_mutex);
d142e3e6
GC
6314
6315 memcg->use_hierarchy = parent->use_hierarchy;
6316 memcg->oom_kill_disable = parent->oom_kill_disable;
6317 memcg->swappiness = mem_cgroup_swappiness(parent);
6318
6319 if (parent->use_hierarchy) {
c0ff4b85
R
6320 res_counter_init(&memcg->res, &parent->res);
6321 res_counter_init(&memcg->memsw, &parent->memsw);
510fc4e1 6322 res_counter_init(&memcg->kmem, &parent->kmem);
55007d84 6323
7bcc1bb1 6324 /*
8d76a979
LZ
6325 * No need to take a reference to the parent because cgroup
6326 * core guarantees its existence.
7bcc1bb1 6327 */
18f59ea7 6328 } else {
c0ff4b85
R
6329 res_counter_init(&memcg->res, NULL);
6330 res_counter_init(&memcg->memsw, NULL);
510fc4e1 6331 res_counter_init(&memcg->kmem, NULL);
8c7f6edb
TH
6332 /*
6333 * Deeper hierachy with use_hierarchy == false doesn't make
6334 * much sense so let cgroup subsystem know about this
6335 * unfortunate state in our controller.
6336 */
d142e3e6 6337 if (parent != root_mem_cgroup)
8c7f6edb 6338 mem_cgroup_subsys.broken_hierarchy = true;
18f59ea7 6339 }
cbe128e3
GC
6340
6341 error = memcg_init_kmem(memcg, &mem_cgroup_subsys);
0999821b 6342 mutex_unlock(&memcg_create_mutex);
d142e3e6 6343 return error;
8cdea7c0
BS
6344}
6345
5f578161
MH
6346/*
6347 * Announce all parents that a group from their hierarchy is gone.
6348 */
6349static void mem_cgroup_invalidate_reclaim_iterators(struct mem_cgroup *memcg)
6350{
6351 struct mem_cgroup *parent = memcg;
6352
6353 while ((parent = parent_mem_cgroup(parent)))
519ebea3 6354 mem_cgroup_iter_invalidate(parent);
5f578161
MH
6355
6356 /*
6357 * if the root memcg is not hierarchical we have to check it
6358 * explicitely.
6359 */
6360 if (!root_mem_cgroup->use_hierarchy)
519ebea3 6361 mem_cgroup_iter_invalidate(root_mem_cgroup);
5f578161
MH
6362}
6363
eb95419b 6364static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
df878fb0 6365{
eb95419b 6366 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
ec64f515 6367
10d5ebf4
LZ
6368 kmem_cgroup_css_offline(memcg);
6369
5f578161 6370 mem_cgroup_invalidate_reclaim_iterators(memcg);
ab5196c2 6371 mem_cgroup_reparent_charges(memcg);
1f458cbf 6372 mem_cgroup_destroy_all_caches(memcg);
33cb876e 6373 vmpressure_cleanup(&memcg->vmpressure);
df878fb0
KH
6374}
6375
eb95419b 6376static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
8cdea7c0 6377{
eb95419b 6378 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
c268e994 6379
10d5ebf4 6380 memcg_destroy_kmem(memcg);
465939a1 6381 __mem_cgroup_free(memcg);
8cdea7c0
BS
6382}
6383
02491447 6384#ifdef CONFIG_MMU
7dc74be0 6385/* Handlers for move charge at task migration. */
854ffa8d
DN
6386#define PRECHARGE_COUNT_AT_ONCE 256
6387static int mem_cgroup_do_precharge(unsigned long count)
7dc74be0 6388{
854ffa8d
DN
6389 int ret = 0;
6390 int batch_count = PRECHARGE_COUNT_AT_ONCE;
c0ff4b85 6391 struct mem_cgroup *memcg = mc.to;
4ffef5fe 6392
c0ff4b85 6393 if (mem_cgroup_is_root(memcg)) {
854ffa8d
DN
6394 mc.precharge += count;
6395 /* we don't need css_get for root */
6396 return ret;
6397 }
6398 /* try to charge at once */
6399 if (count > 1) {
6400 struct res_counter *dummy;
6401 /*
c0ff4b85 6402 * "memcg" cannot be under rmdir() because we've already checked
854ffa8d
DN
6403 * by cgroup_lock_live_cgroup() that it is not removed and we
6404 * are still under the same cgroup_mutex. So we can postpone
6405 * css_get().
6406 */
c0ff4b85 6407 if (res_counter_charge(&memcg->res, PAGE_SIZE * count, &dummy))
854ffa8d 6408 goto one_by_one;
c0ff4b85 6409 if (do_swap_account && res_counter_charge(&memcg->memsw,
854ffa8d 6410 PAGE_SIZE * count, &dummy)) {
c0ff4b85 6411 res_counter_uncharge(&memcg->res, PAGE_SIZE * count);
854ffa8d
DN
6412 goto one_by_one;
6413 }
6414 mc.precharge += count;
854ffa8d
DN
6415 return ret;
6416 }
6417one_by_one:
6418 /* fall back to one by one charge */
6419 while (count--) {
6420 if (signal_pending(current)) {
6421 ret = -EINTR;
6422 break;
6423 }
6424 if (!batch_count--) {
6425 batch_count = PRECHARGE_COUNT_AT_ONCE;
6426 cond_resched();
6427 }
c0ff4b85
R
6428 ret = __mem_cgroup_try_charge(NULL,
6429 GFP_KERNEL, 1, &memcg, false);
38c5d72f 6430 if (ret)
854ffa8d 6431 /* mem_cgroup_clear_mc() will do uncharge later */
38c5d72f 6432 return ret;
854ffa8d
DN
6433 mc.precharge++;
6434 }
4ffef5fe
DN
6435 return ret;
6436}
6437
6438/**
8d32ff84 6439 * get_mctgt_type - get target type of moving charge
4ffef5fe
DN
6440 * @vma: the vma the pte to be checked belongs
6441 * @addr: the address corresponding to the pte to be checked
6442 * @ptent: the pte to be checked
02491447 6443 * @target: the pointer the target page or swap ent will be stored(can be NULL)
4ffef5fe
DN
6444 *
6445 * Returns
6446 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
6447 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
6448 * move charge. if @target is not NULL, the page is stored in target->page
6449 * with extra refcnt got(Callers should handle it).
02491447
DN
6450 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
6451 * target for charge migration. if @target is not NULL, the entry is stored
6452 * in target->ent.
4ffef5fe
DN
6453 *
6454 * Called with pte lock held.
6455 */
4ffef5fe
DN
6456union mc_target {
6457 struct page *page;
02491447 6458 swp_entry_t ent;
4ffef5fe
DN
6459};
6460
4ffef5fe 6461enum mc_target_type {
8d32ff84 6462 MC_TARGET_NONE = 0,
4ffef5fe 6463 MC_TARGET_PAGE,
02491447 6464 MC_TARGET_SWAP,
4ffef5fe
DN
6465};
6466
90254a65
DN
6467static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
6468 unsigned long addr, pte_t ptent)
4ffef5fe 6469{
90254a65 6470 struct page *page = vm_normal_page(vma, addr, ptent);
4ffef5fe 6471
90254a65
DN
6472 if (!page || !page_mapped(page))
6473 return NULL;
6474 if (PageAnon(page)) {
6475 /* we don't move shared anon */
4b91355e 6476 if (!move_anon())
90254a65 6477 return NULL;
87946a72
DN
6478 } else if (!move_file())
6479 /* we ignore mapcount for file pages */
90254a65
DN
6480 return NULL;
6481 if (!get_page_unless_zero(page))
6482 return NULL;
6483
6484 return page;
6485}
6486
4b91355e 6487#ifdef CONFIG_SWAP
90254a65
DN
6488static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
6489 unsigned long addr, pte_t ptent, swp_entry_t *entry)
6490{
90254a65
DN
6491 struct page *page = NULL;
6492 swp_entry_t ent = pte_to_swp_entry(ptent);
6493
6494 if (!move_anon() || non_swap_entry(ent))
6495 return NULL;
4b91355e
KH
6496 /*
6497 * Because lookup_swap_cache() updates some statistics counter,
6498 * we call find_get_page() with swapper_space directly.
6499 */
33806f06 6500 page = find_get_page(swap_address_space(ent), ent.val);
90254a65
DN
6501 if (do_swap_account)
6502 entry->val = ent.val;
6503
6504 return page;
6505}
4b91355e
KH
6506#else
6507static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
6508 unsigned long addr, pte_t ptent, swp_entry_t *entry)
6509{
6510 return NULL;
6511}
6512#endif
90254a65 6513
87946a72
DN
6514static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
6515 unsigned long addr, pte_t ptent, swp_entry_t *entry)
6516{
6517 struct page *page = NULL;
87946a72
DN
6518 struct address_space *mapping;
6519 pgoff_t pgoff;
6520
6521 if (!vma->vm_file) /* anonymous vma */
6522 return NULL;
6523 if (!move_file())
6524 return NULL;
6525
87946a72
DN
6526 mapping = vma->vm_file->f_mapping;
6527 if (pte_none(ptent))
6528 pgoff = linear_page_index(vma, addr);
6529 else /* pte_file(ptent) is true */
6530 pgoff = pte_to_pgoff(ptent);
6531
6532 /* page is moved even if it's not RSS of this task(page-faulted). */
aa3b1895
HD
6533 page = find_get_page(mapping, pgoff);
6534
6535#ifdef CONFIG_SWAP
6536 /* shmem/tmpfs may report page out on swap: account for that too. */
6537 if (radix_tree_exceptional_entry(page)) {
6538 swp_entry_t swap = radix_to_swp_entry(page);
87946a72 6539 if (do_swap_account)
aa3b1895 6540 *entry = swap;
33806f06 6541 page = find_get_page(swap_address_space(swap), swap.val);
87946a72 6542 }
aa3b1895 6543#endif
87946a72
DN
6544 return page;
6545}
6546
8d32ff84 6547static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
90254a65
DN
6548 unsigned long addr, pte_t ptent, union mc_target *target)
6549{
6550 struct page *page = NULL;
6551 struct page_cgroup *pc;
8d32ff84 6552 enum mc_target_type ret = MC_TARGET_NONE;
90254a65
DN
6553 swp_entry_t ent = { .val = 0 };
6554
6555 if (pte_present(ptent))
6556 page = mc_handle_present_pte(vma, addr, ptent);
6557 else if (is_swap_pte(ptent))
6558 page = mc_handle_swap_pte(vma, addr, ptent, &ent);
87946a72
DN
6559 else if (pte_none(ptent) || pte_file(ptent))
6560 page = mc_handle_file_pte(vma, addr, ptent, &ent);
90254a65
DN
6561
6562 if (!page && !ent.val)
8d32ff84 6563 return ret;
02491447
DN
6564 if (page) {
6565 pc = lookup_page_cgroup(page);
6566 /*
6567 * Do only loose check w/o page_cgroup lock.
6568 * mem_cgroup_move_account() checks the pc is valid or not under
6569 * the lock.
6570 */
6571 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
6572 ret = MC_TARGET_PAGE;
6573 if (target)
6574 target->page = page;
6575 }
6576 if (!ret || !target)
6577 put_page(page);
6578 }
90254a65
DN
6579 /* There is a swap entry and a page doesn't exist or isn't charged */
6580 if (ent.val && !ret &&
9fb4b7cc 6581 css_id(&mc.from->css) == lookup_swap_cgroup_id(ent)) {
7f0f1546
KH
6582 ret = MC_TARGET_SWAP;
6583 if (target)
6584 target->ent = ent;
4ffef5fe 6585 }
4ffef5fe
DN
6586 return ret;
6587}
6588
12724850
NH
6589#ifdef CONFIG_TRANSPARENT_HUGEPAGE
6590/*
6591 * We don't consider swapping or file mapped pages because THP does not
6592 * support them for now.
6593 * Caller should make sure that pmd_trans_huge(pmd) is true.
6594 */
6595static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
6596 unsigned long addr, pmd_t pmd, union mc_target *target)
6597{
6598 struct page *page = NULL;
6599 struct page_cgroup *pc;
6600 enum mc_target_type ret = MC_TARGET_NONE;
6601
6602 page = pmd_page(pmd);
6603 VM_BUG_ON(!page || !PageHead(page));
6604 if (!move_anon())
6605 return ret;
6606 pc = lookup_page_cgroup(page);
6607 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
6608 ret = MC_TARGET_PAGE;
6609 if (target) {
6610 get_page(page);
6611 target->page = page;
6612 }
6613 }
6614 return ret;
6615}
6616#else
6617static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
6618 unsigned long addr, pmd_t pmd, union mc_target *target)
6619{
6620 return MC_TARGET_NONE;
6621}
6622#endif
6623
4ffef5fe
DN
6624static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
6625 unsigned long addr, unsigned long end,
6626 struct mm_walk *walk)
6627{
6628 struct vm_area_struct *vma = walk->private;
6629 pte_t *pte;
6630 spinlock_t *ptl;
6631
12724850
NH
6632 if (pmd_trans_huge_lock(pmd, vma) == 1) {
6633 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
6634 mc.precharge += HPAGE_PMD_NR;
6635 spin_unlock(&vma->vm_mm->page_table_lock);
1a5a9906 6636 return 0;
12724850 6637 }
03319327 6638
45f83cef
AA
6639 if (pmd_trans_unstable(pmd))
6640 return 0;
4ffef5fe
DN
6641 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
6642 for (; addr != end; pte++, addr += PAGE_SIZE)
8d32ff84 6643 if (get_mctgt_type(vma, addr, *pte, NULL))
4ffef5fe
DN
6644 mc.precharge++; /* increment precharge temporarily */
6645 pte_unmap_unlock(pte - 1, ptl);
6646 cond_resched();
6647
7dc74be0
DN
6648 return 0;
6649}
6650
4ffef5fe
DN
6651static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
6652{
6653 unsigned long precharge;
6654 struct vm_area_struct *vma;
6655
dfe076b0 6656 down_read(&mm->mmap_sem);
4ffef5fe
DN
6657 for (vma = mm->mmap; vma; vma = vma->vm_next) {
6658 struct mm_walk mem_cgroup_count_precharge_walk = {
6659 .pmd_entry = mem_cgroup_count_precharge_pte_range,
6660 .mm = mm,
6661 .private = vma,
6662 };
6663 if (is_vm_hugetlb_page(vma))
6664 continue;
4ffef5fe
DN
6665 walk_page_range(vma->vm_start, vma->vm_end,
6666 &mem_cgroup_count_precharge_walk);
6667 }
dfe076b0 6668 up_read(&mm->mmap_sem);
4ffef5fe
DN
6669
6670 precharge = mc.precharge;
6671 mc.precharge = 0;
6672
6673 return precharge;
6674}
6675
4ffef5fe
DN
6676static int mem_cgroup_precharge_mc(struct mm_struct *mm)
6677{
dfe076b0
DN
6678 unsigned long precharge = mem_cgroup_count_precharge(mm);
6679
6680 VM_BUG_ON(mc.moving_task);
6681 mc.moving_task = current;
6682 return mem_cgroup_do_precharge(precharge);
4ffef5fe
DN
6683}
6684
dfe076b0
DN
6685/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
6686static void __mem_cgroup_clear_mc(void)
4ffef5fe 6687{
2bd9bb20
KH
6688 struct mem_cgroup *from = mc.from;
6689 struct mem_cgroup *to = mc.to;
4050377b 6690 int i;
2bd9bb20 6691
4ffef5fe 6692 /* we must uncharge all the leftover precharges from mc.to */
854ffa8d
DN
6693 if (mc.precharge) {
6694 __mem_cgroup_cancel_charge(mc.to, mc.precharge);
6695 mc.precharge = 0;
6696 }
6697 /*
6698 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
6699 * we must uncharge here.
6700 */
6701 if (mc.moved_charge) {
6702 __mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
6703 mc.moved_charge = 0;
4ffef5fe 6704 }
483c30b5
DN
6705 /* we must fixup refcnts and charges */
6706 if (mc.moved_swap) {
483c30b5
DN
6707 /* uncharge swap account from the old cgroup */
6708 if (!mem_cgroup_is_root(mc.from))
6709 res_counter_uncharge(&mc.from->memsw,
6710 PAGE_SIZE * mc.moved_swap);
4050377b
LZ
6711
6712 for (i = 0; i < mc.moved_swap; i++)
6713 css_put(&mc.from->css);
483c30b5
DN
6714
6715 if (!mem_cgroup_is_root(mc.to)) {
6716 /*
6717 * we charged both to->res and to->memsw, so we should
6718 * uncharge to->res.
6719 */
6720 res_counter_uncharge(&mc.to->res,
6721 PAGE_SIZE * mc.moved_swap);
483c30b5 6722 }
4050377b 6723 /* we've already done css_get(mc.to) */
483c30b5
DN
6724 mc.moved_swap = 0;
6725 }
dfe076b0
DN
6726 memcg_oom_recover(from);
6727 memcg_oom_recover(to);
6728 wake_up_all(&mc.waitq);
6729}
6730
6731static void mem_cgroup_clear_mc(void)
6732{
6733 struct mem_cgroup *from = mc.from;
6734
6735 /*
6736 * we must clear moving_task before waking up waiters at the end of
6737 * task migration.
6738 */
6739 mc.moving_task = NULL;
6740 __mem_cgroup_clear_mc();
2bd9bb20 6741 spin_lock(&mc.lock);
4ffef5fe
DN
6742 mc.from = NULL;
6743 mc.to = NULL;
2bd9bb20 6744 spin_unlock(&mc.lock);
32047e2a 6745 mem_cgroup_end_move(from);
4ffef5fe
DN
6746}
6747
eb95419b 6748static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
761b3ef5 6749 struct cgroup_taskset *tset)
7dc74be0 6750{
2f7ee569 6751 struct task_struct *p = cgroup_taskset_first(tset);
7dc74be0 6752 int ret = 0;
eb95419b 6753 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
ee5e8472 6754 unsigned long move_charge_at_immigrate;
7dc74be0 6755
ee5e8472
GC
6756 /*
6757 * We are now commited to this value whatever it is. Changes in this
6758 * tunable will only affect upcoming migrations, not the current one.
6759 * So we need to save it, and keep it going.
6760 */
6761 move_charge_at_immigrate = memcg->move_charge_at_immigrate;
6762 if (move_charge_at_immigrate) {
7dc74be0
DN
6763 struct mm_struct *mm;
6764 struct mem_cgroup *from = mem_cgroup_from_task(p);
6765
c0ff4b85 6766 VM_BUG_ON(from == memcg);
7dc74be0
DN
6767
6768 mm = get_task_mm(p);
6769 if (!mm)
6770 return 0;
7dc74be0 6771 /* We move charges only when we move a owner of the mm */
4ffef5fe
DN
6772 if (mm->owner == p) {
6773 VM_BUG_ON(mc.from);
6774 VM_BUG_ON(mc.to);
6775 VM_BUG_ON(mc.precharge);
854ffa8d 6776 VM_BUG_ON(mc.moved_charge);
483c30b5 6777 VM_BUG_ON(mc.moved_swap);
32047e2a 6778 mem_cgroup_start_move(from);
2bd9bb20 6779 spin_lock(&mc.lock);
4ffef5fe 6780 mc.from = from;
c0ff4b85 6781 mc.to = memcg;
ee5e8472 6782 mc.immigrate_flags = move_charge_at_immigrate;
2bd9bb20 6783 spin_unlock(&mc.lock);
dfe076b0 6784 /* We set mc.moving_task later */
4ffef5fe
DN
6785
6786 ret = mem_cgroup_precharge_mc(mm);
6787 if (ret)
6788 mem_cgroup_clear_mc();
dfe076b0
DN
6789 }
6790 mmput(mm);
7dc74be0
DN
6791 }
6792 return ret;
6793}
6794
eb95419b 6795static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
761b3ef5 6796 struct cgroup_taskset *tset)
7dc74be0 6797{
4ffef5fe 6798 mem_cgroup_clear_mc();
7dc74be0
DN
6799}
6800
4ffef5fe
DN
6801static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
6802 unsigned long addr, unsigned long end,
6803 struct mm_walk *walk)
7dc74be0 6804{
4ffef5fe
DN
6805 int ret = 0;
6806 struct vm_area_struct *vma = walk->private;
6807 pte_t *pte;
6808 spinlock_t *ptl;
12724850
NH
6809 enum mc_target_type target_type;
6810 union mc_target target;
6811 struct page *page;
6812 struct page_cgroup *pc;
4ffef5fe 6813
12724850
NH
6814 /*
6815 * We don't take compound_lock() here but no race with splitting thp
6816 * happens because:
6817 * - if pmd_trans_huge_lock() returns 1, the relevant thp is not
6818 * under splitting, which means there's no concurrent thp split,
6819 * - if another thread runs into split_huge_page() just after we
6820 * entered this if-block, the thread must wait for page table lock
6821 * to be unlocked in __split_huge_page_splitting(), where the main
6822 * part of thp split is not executed yet.
6823 */
6824 if (pmd_trans_huge_lock(pmd, vma) == 1) {
62ade86a 6825 if (mc.precharge < HPAGE_PMD_NR) {
12724850
NH
6826 spin_unlock(&vma->vm_mm->page_table_lock);
6827 return 0;
6828 }
6829 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
6830 if (target_type == MC_TARGET_PAGE) {
6831 page = target.page;
6832 if (!isolate_lru_page(page)) {
6833 pc = lookup_page_cgroup(page);
6834 if (!mem_cgroup_move_account(page, HPAGE_PMD_NR,
2f3479b1 6835 pc, mc.from, mc.to)) {
12724850
NH
6836 mc.precharge -= HPAGE_PMD_NR;
6837 mc.moved_charge += HPAGE_PMD_NR;
6838 }
6839 putback_lru_page(page);
6840 }
6841 put_page(page);
6842 }
6843 spin_unlock(&vma->vm_mm->page_table_lock);
1a5a9906 6844 return 0;
12724850
NH
6845 }
6846
45f83cef
AA
6847 if (pmd_trans_unstable(pmd))
6848 return 0;
4ffef5fe
DN
6849retry:
6850 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
6851 for (; addr != end; addr += PAGE_SIZE) {
6852 pte_t ptent = *(pte++);
02491447 6853 swp_entry_t ent;
4ffef5fe
DN
6854
6855 if (!mc.precharge)
6856 break;
6857
8d32ff84 6858 switch (get_mctgt_type(vma, addr, ptent, &target)) {
4ffef5fe
DN
6859 case MC_TARGET_PAGE:
6860 page = target.page;
6861 if (isolate_lru_page(page))
6862 goto put;
6863 pc = lookup_page_cgroup(page);
7ec99d62 6864 if (!mem_cgroup_move_account(page, 1, pc,
2f3479b1 6865 mc.from, mc.to)) {
4ffef5fe 6866 mc.precharge--;
854ffa8d
DN
6867 /* we uncharge from mc.from later. */
6868 mc.moved_charge++;
4ffef5fe
DN
6869 }
6870 putback_lru_page(page);
8d32ff84 6871put: /* get_mctgt_type() gets the page */
4ffef5fe
DN
6872 put_page(page);
6873 break;
02491447
DN
6874 case MC_TARGET_SWAP:
6875 ent = target.ent;
e91cbb42 6876 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
02491447 6877 mc.precharge--;
483c30b5
DN
6878 /* we fixup refcnts and charges later. */
6879 mc.moved_swap++;
6880 }
02491447 6881 break;
4ffef5fe
DN
6882 default:
6883 break;
6884 }
6885 }
6886 pte_unmap_unlock(pte - 1, ptl);
6887 cond_resched();
6888
6889 if (addr != end) {
6890 /*
6891 * We have consumed all precharges we got in can_attach().
6892 * We try charge one by one, but don't do any additional
6893 * charges to mc.to if we have failed in charge once in attach()
6894 * phase.
6895 */
854ffa8d 6896 ret = mem_cgroup_do_precharge(1);
4ffef5fe
DN
6897 if (!ret)
6898 goto retry;
6899 }
6900
6901 return ret;
6902}
6903
6904static void mem_cgroup_move_charge(struct mm_struct *mm)
6905{
6906 struct vm_area_struct *vma;
6907
6908 lru_add_drain_all();
dfe076b0
DN
6909retry:
6910 if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
6911 /*
6912 * Someone who are holding the mmap_sem might be waiting in
6913 * waitq. So we cancel all extra charges, wake up all waiters,
6914 * and retry. Because we cancel precharges, we might not be able
6915 * to move enough charges, but moving charge is a best-effort
6916 * feature anyway, so it wouldn't be a big problem.
6917 */
6918 __mem_cgroup_clear_mc();
6919 cond_resched();
6920 goto retry;
6921 }
4ffef5fe
DN
6922 for (vma = mm->mmap; vma; vma = vma->vm_next) {
6923 int ret;
6924 struct mm_walk mem_cgroup_move_charge_walk = {
6925 .pmd_entry = mem_cgroup_move_charge_pte_range,
6926 .mm = mm,
6927 .private = vma,
6928 };
6929 if (is_vm_hugetlb_page(vma))
6930 continue;
4ffef5fe
DN
6931 ret = walk_page_range(vma->vm_start, vma->vm_end,
6932 &mem_cgroup_move_charge_walk);
6933 if (ret)
6934 /*
6935 * means we have consumed all precharges and failed in
6936 * doing additional charge. Just abandon here.
6937 */
6938 break;
6939 }
dfe076b0 6940 up_read(&mm->mmap_sem);
7dc74be0
DN
6941}
6942
eb95419b 6943static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
761b3ef5 6944 struct cgroup_taskset *tset)
67e465a7 6945{
2f7ee569 6946 struct task_struct *p = cgroup_taskset_first(tset);
a433658c 6947 struct mm_struct *mm = get_task_mm(p);
dfe076b0 6948
dfe076b0 6949 if (mm) {
a433658c
KM
6950 if (mc.to)
6951 mem_cgroup_move_charge(mm);
dfe076b0
DN
6952 mmput(mm);
6953 }
a433658c
KM
6954 if (mc.to)
6955 mem_cgroup_clear_mc();
67e465a7 6956}
5cfb80a7 6957#else /* !CONFIG_MMU */
eb95419b 6958static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
761b3ef5 6959 struct cgroup_taskset *tset)
5cfb80a7
DN
6960{
6961 return 0;
6962}
eb95419b 6963static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
761b3ef5 6964 struct cgroup_taskset *tset)
5cfb80a7
DN
6965{
6966}
eb95419b 6967static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
761b3ef5 6968 struct cgroup_taskset *tset)
5cfb80a7
DN
6969{
6970}
6971#endif
67e465a7 6972
f00baae7
TH
6973/*
6974 * Cgroup retains root cgroups across [un]mount cycles making it necessary
6975 * to verify sane_behavior flag on each mount attempt.
6976 */
eb95419b 6977static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
f00baae7
TH
6978{
6979 /*
6980 * use_hierarchy is forced with sane_behavior. cgroup core
6981 * guarantees that @root doesn't have any children, so turning it
6982 * on for the root memcg is enough.
6983 */
eb95419b
TH
6984 if (cgroup_sane_behavior(root_css->cgroup))
6985 mem_cgroup_from_css(root_css)->use_hierarchy = true;
f00baae7
TH
6986}
6987
8cdea7c0
BS
6988struct cgroup_subsys mem_cgroup_subsys = {
6989 .name = "memory",
6990 .subsys_id = mem_cgroup_subsys_id,
92fb9748 6991 .css_alloc = mem_cgroup_css_alloc,
d142e3e6 6992 .css_online = mem_cgroup_css_online,
92fb9748
TH
6993 .css_offline = mem_cgroup_css_offline,
6994 .css_free = mem_cgroup_css_free,
7dc74be0
DN
6995 .can_attach = mem_cgroup_can_attach,
6996 .cancel_attach = mem_cgroup_cancel_attach,
67e465a7 6997 .attach = mem_cgroup_move_task,
f00baae7 6998 .bind = mem_cgroup_bind,
6bc10349 6999 .base_cftypes = mem_cgroup_files,
6d12e2d8 7000 .early_init = 0,
04046e1a 7001 .use_id = 1,
8cdea7c0 7002};
c077719b 7003
c255a458 7004#ifdef CONFIG_MEMCG_SWAP
a42c390c
MH
7005static int __init enable_swap_account(char *s)
7006{
a2c8990a 7007 if (!strcmp(s, "1"))
a42c390c 7008 really_do_swap_account = 1;
a2c8990a 7009 else if (!strcmp(s, "0"))
a42c390c
MH
7010 really_do_swap_account = 0;
7011 return 1;
7012}
a2c8990a 7013__setup("swapaccount=", enable_swap_account);
c077719b 7014
2d11085e
MH
7015static void __init memsw_file_init(void)
7016{
6acc8b02
MH
7017 WARN_ON(cgroup_add_cftypes(&mem_cgroup_subsys, memsw_cgroup_files));
7018}
7019
7020static void __init enable_swap_cgroup(void)
7021{
7022 if (!mem_cgroup_disabled() && really_do_swap_account) {
7023 do_swap_account = 1;
7024 memsw_file_init();
7025 }
2d11085e 7026}
6acc8b02 7027
2d11085e 7028#else
6acc8b02 7029static void __init enable_swap_cgroup(void)
2d11085e
MH
7030{
7031}
c077719b 7032#endif
2d11085e
MH
7033
7034/*
1081312f
MH
7035 * subsys_initcall() for memory controller.
7036 *
7037 * Some parts like hotcpu_notifier() have to be initialized from this context
7038 * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically
7039 * everything that doesn't depend on a specific mem_cgroup structure should
7040 * be initialized from here.
2d11085e
MH
7041 */
7042static int __init mem_cgroup_init(void)
7043{
7044 hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
6acc8b02 7045 enable_swap_cgroup();
bb4cc1a8 7046 mem_cgroup_soft_limit_tree_init();
e4777496 7047 memcg_stock_init();
2d11085e
MH
7048 return 0;
7049}
7050subsys_initcall(mem_cgroup_init);