x86/mm: memblock: switch to use NUMA_NO_NODE
[linux-2.6-block.git] / mm / memblock.c
CommitLineData
95f72d1e
YL
1/*
2 * Procedures for maintaining information about logical memory blocks.
3 *
4 * Peter Bergner, IBM Corp. June 2001.
5 * Copyright (C) 2001 Peter Bergner.
6 *
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License
9 * as published by the Free Software Foundation; either version
10 * 2 of the License, or (at your option) any later version.
11 */
12
13#include <linux/kernel.h>
142b45a7 14#include <linux/slab.h>
95f72d1e
YL
15#include <linux/init.h>
16#include <linux/bitops.h>
449e8df3 17#include <linux/poison.h>
c196f76f 18#include <linux/pfn.h>
6d03b885
BH
19#include <linux/debugfs.h>
20#include <linux/seq_file.h>
95f72d1e
YL
21#include <linux/memblock.h>
22
79442ed1 23#include <asm-generic/sections.h>
26f09e9b
SS
24#include <linux/io.h>
25
26#include "internal.h"
79442ed1 27
fe091c20
TH
28static struct memblock_region memblock_memory_init_regions[INIT_MEMBLOCK_REGIONS] __initdata_memblock;
29static struct memblock_region memblock_reserved_init_regions[INIT_MEMBLOCK_REGIONS] __initdata_memblock;
30
31struct memblock memblock __initdata_memblock = {
32 .memory.regions = memblock_memory_init_regions,
33 .memory.cnt = 1, /* empty dummy entry */
34 .memory.max = INIT_MEMBLOCK_REGIONS,
35
36 .reserved.regions = memblock_reserved_init_regions,
37 .reserved.cnt = 1, /* empty dummy entry */
38 .reserved.max = INIT_MEMBLOCK_REGIONS,
39
79442ed1 40 .bottom_up = false,
fe091c20
TH
41 .current_limit = MEMBLOCK_ALLOC_ANYWHERE,
42};
95f72d1e 43
10d06439 44int memblock_debug __initdata_memblock;
55ac590c
TC
45#ifdef CONFIG_MOVABLE_NODE
46bool movable_node_enabled __initdata_memblock = false;
47#endif
1aadc056 48static int memblock_can_resize __initdata_memblock;
181eb394
GS
49static int memblock_memory_in_slab __initdata_memblock = 0;
50static int memblock_reserved_in_slab __initdata_memblock = 0;
95f72d1e 51
142b45a7 52/* inline so we don't get a warning when pr_debug is compiled out */
c2233116
RP
53static __init_memblock const char *
54memblock_type_name(struct memblock_type *type)
142b45a7
BH
55{
56 if (type == &memblock.memory)
57 return "memory";
58 else if (type == &memblock.reserved)
59 return "reserved";
60 else
61 return "unknown";
62}
63
eb18f1b5
TH
64/* adjust *@size so that (@base + *@size) doesn't overflow, return new size */
65static inline phys_addr_t memblock_cap_size(phys_addr_t base, phys_addr_t *size)
66{
67 return *size = min(*size, (phys_addr_t)ULLONG_MAX - base);
68}
69
6ed311b2
BH
70/*
71 * Address comparison utilities
72 */
10d06439 73static unsigned long __init_memblock memblock_addrs_overlap(phys_addr_t base1, phys_addr_t size1,
2898cc4c 74 phys_addr_t base2, phys_addr_t size2)
95f72d1e
YL
75{
76 return ((base1 < (base2 + size2)) && (base2 < (base1 + size1)));
77}
78
2d7d3eb2
HS
79static long __init_memblock memblock_overlaps_region(struct memblock_type *type,
80 phys_addr_t base, phys_addr_t size)
6ed311b2
BH
81{
82 unsigned long i;
83
84 for (i = 0; i < type->cnt; i++) {
85 phys_addr_t rgnbase = type->regions[i].base;
86 phys_addr_t rgnsize = type->regions[i].size;
87 if (memblock_addrs_overlap(base, size, rgnbase, rgnsize))
88 break;
89 }
90
91 return (i < type->cnt) ? i : -1;
92}
93
79442ed1
TC
94/*
95 * __memblock_find_range_bottom_up - find free area utility in bottom-up
96 * @start: start of candidate range
97 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_{ANYWHERE|ACCESSIBLE}
98 * @size: size of free area to find
99 * @align: alignment of free area to find
b1154233 100 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
79442ed1
TC
101 *
102 * Utility called from memblock_find_in_range_node(), find free area bottom-up.
103 *
104 * RETURNS:
105 * Found address on success, 0 on failure.
106 */
107static phys_addr_t __init_memblock
108__memblock_find_range_bottom_up(phys_addr_t start, phys_addr_t end,
109 phys_addr_t size, phys_addr_t align, int nid)
110{
111 phys_addr_t this_start, this_end, cand;
112 u64 i;
113
114 for_each_free_mem_range(i, nid, &this_start, &this_end, NULL) {
115 this_start = clamp(this_start, start, end);
116 this_end = clamp(this_end, start, end);
117
118 cand = round_up(this_start, align);
119 if (cand < this_end && this_end - cand >= size)
120 return cand;
121 }
122
123 return 0;
124}
125
7bd0b0f0 126/**
1402899e 127 * __memblock_find_range_top_down - find free area utility, in top-down
7bd0b0f0
TH
128 * @start: start of candidate range
129 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_{ANYWHERE|ACCESSIBLE}
130 * @size: size of free area to find
131 * @align: alignment of free area to find
b1154233 132 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
7bd0b0f0 133 *
1402899e 134 * Utility called from memblock_find_in_range_node(), find free area top-down.
7bd0b0f0
TH
135 *
136 * RETURNS:
79442ed1 137 * Found address on success, 0 on failure.
6ed311b2 138 */
1402899e
TC
139static phys_addr_t __init_memblock
140__memblock_find_range_top_down(phys_addr_t start, phys_addr_t end,
141 phys_addr_t size, phys_addr_t align, int nid)
f7210e6c
TC
142{
143 phys_addr_t this_start, this_end, cand;
144 u64 i;
145
f7210e6c
TC
146 for_each_free_mem_range_reverse(i, nid, &this_start, &this_end, NULL) {
147 this_start = clamp(this_start, start, end);
148 this_end = clamp(this_end, start, end);
149
150 if (this_end < size)
151 continue;
152
153 cand = round_down(this_end - size, align);
154 if (cand >= this_start)
155 return cand;
156 }
1402899e 157
f7210e6c
TC
158 return 0;
159}
6ed311b2 160
1402899e
TC
161/**
162 * memblock_find_in_range_node - find free area in given range and node
1402899e
TC
163 * @size: size of free area to find
164 * @align: alignment of free area to find
87029ee9
GS
165 * @start: start of candidate range
166 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_{ANYWHERE|ACCESSIBLE}
b1154233 167 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1402899e
TC
168 *
169 * Find @size free area aligned to @align in the specified range and node.
170 *
79442ed1
TC
171 * When allocation direction is bottom-up, the @start should be greater
172 * than the end of the kernel image. Otherwise, it will be trimmed. The
173 * reason is that we want the bottom-up allocation just near the kernel
174 * image so it is highly likely that the allocated memory and the kernel
175 * will reside in the same node.
176 *
177 * If bottom-up allocation failed, will try to allocate memory top-down.
178 *
1402899e 179 * RETURNS:
79442ed1 180 * Found address on success, 0 on failure.
1402899e 181 */
87029ee9
GS
182phys_addr_t __init_memblock memblock_find_in_range_node(phys_addr_t size,
183 phys_addr_t align, phys_addr_t start,
184 phys_addr_t end, int nid)
1402899e 185{
79442ed1
TC
186 int ret;
187 phys_addr_t kernel_end;
188
1402899e
TC
189 /* pump up @end */
190 if (end == MEMBLOCK_ALLOC_ACCESSIBLE)
191 end = memblock.current_limit;
192
193 /* avoid allocating the first page */
194 start = max_t(phys_addr_t, start, PAGE_SIZE);
195 end = max(start, end);
79442ed1
TC
196 kernel_end = __pa_symbol(_end);
197
198 /*
199 * try bottom-up allocation only when bottom-up mode
200 * is set and @end is above the kernel image.
201 */
202 if (memblock_bottom_up() && end > kernel_end) {
203 phys_addr_t bottom_up_start;
204
205 /* make sure we will allocate above the kernel */
206 bottom_up_start = max(start, kernel_end);
207
208 /* ok, try bottom-up allocation first */
209 ret = __memblock_find_range_bottom_up(bottom_up_start, end,
210 size, align, nid);
211 if (ret)
212 return ret;
213
214 /*
215 * we always limit bottom-up allocation above the kernel,
216 * but top-down allocation doesn't have the limit, so
217 * retrying top-down allocation may succeed when bottom-up
218 * allocation failed.
219 *
220 * bottom-up allocation is expected to be fail very rarely,
221 * so we use WARN_ONCE() here to see the stack trace if
222 * fail happens.
223 */
224 WARN_ONCE(1, "memblock: bottom-up allocation failed, "
225 "memory hotunplug may be affected\n");
226 }
1402899e
TC
227
228 return __memblock_find_range_top_down(start, end, size, align, nid);
229}
230
7bd0b0f0
TH
231/**
232 * memblock_find_in_range - find free area in given range
233 * @start: start of candidate range
234 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_{ANYWHERE|ACCESSIBLE}
235 * @size: size of free area to find
236 * @align: alignment of free area to find
237 *
238 * Find @size free area aligned to @align in the specified range.
239 *
240 * RETURNS:
79442ed1 241 * Found address on success, 0 on failure.
fc769a8e 242 */
7bd0b0f0
TH
243phys_addr_t __init_memblock memblock_find_in_range(phys_addr_t start,
244 phys_addr_t end, phys_addr_t size,
245 phys_addr_t align)
6ed311b2 246{
87029ee9 247 return memblock_find_in_range_node(size, align, start, end,
b1154233 248 NUMA_NO_NODE);
6ed311b2
BH
249}
250
10d06439 251static void __init_memblock memblock_remove_region(struct memblock_type *type, unsigned long r)
95f72d1e 252{
1440c4e2 253 type->total_size -= type->regions[r].size;
7c0caeb8
TH
254 memmove(&type->regions[r], &type->regions[r + 1],
255 (type->cnt - (r + 1)) * sizeof(type->regions[r]));
e3239ff9 256 type->cnt--;
95f72d1e 257
8f7a6605
BH
258 /* Special case for empty arrays */
259 if (type->cnt == 0) {
1440c4e2 260 WARN_ON(type->total_size != 0);
8f7a6605
BH
261 type->cnt = 1;
262 type->regions[0].base = 0;
263 type->regions[0].size = 0;
66a20757 264 type->regions[0].flags = 0;
7c0caeb8 265 memblock_set_region_node(&type->regions[0], MAX_NUMNODES);
8f7a6605 266 }
95f72d1e
YL
267}
268
29f67386
YL
269phys_addr_t __init_memblock get_allocated_memblock_reserved_regions_info(
270 phys_addr_t *addr)
271{
272 if (memblock.reserved.regions == memblock_reserved_init_regions)
273 return 0;
274
fd615c4e
GS
275 /*
276 * Don't allow nobootmem allocator to free reserved memory regions
277 * array if
278 * - CONFIG_DEBUG_FS is enabled;
279 * - CONFIG_ARCH_DISCARD_MEMBLOCK is not enabled;
280 * - reserved memory regions array have been resized during boot.
281 * Otherwise debug_fs entry "sys/kernel/debug/memblock/reserved"
282 * will show garbage instead of state of memory reservations.
283 */
284 if (IS_ENABLED(CONFIG_DEBUG_FS) &&
285 !IS_ENABLED(CONFIG_ARCH_DISCARD_MEMBLOCK))
286 return 0;
287
29f67386
YL
288 *addr = __pa(memblock.reserved.regions);
289
290 return PAGE_ALIGN(sizeof(struct memblock_region) *
291 memblock.reserved.max);
292}
293
48c3b583
GP
294/**
295 * memblock_double_array - double the size of the memblock regions array
296 * @type: memblock type of the regions array being doubled
297 * @new_area_start: starting address of memory range to avoid overlap with
298 * @new_area_size: size of memory range to avoid overlap with
299 *
300 * Double the size of the @type regions array. If memblock is being used to
301 * allocate memory for a new reserved regions array and there is a previously
302 * allocated memory range [@new_area_start,@new_area_start+@new_area_size]
303 * waiting to be reserved, ensure the memory used by the new array does
304 * not overlap.
305 *
306 * RETURNS:
307 * 0 on success, -1 on failure.
308 */
309static int __init_memblock memblock_double_array(struct memblock_type *type,
310 phys_addr_t new_area_start,
311 phys_addr_t new_area_size)
142b45a7
BH
312{
313 struct memblock_region *new_array, *old_array;
29f67386 314 phys_addr_t old_alloc_size, new_alloc_size;
142b45a7
BH
315 phys_addr_t old_size, new_size, addr;
316 int use_slab = slab_is_available();
181eb394 317 int *in_slab;
142b45a7
BH
318
319 /* We don't allow resizing until we know about the reserved regions
320 * of memory that aren't suitable for allocation
321 */
322 if (!memblock_can_resize)
323 return -1;
324
142b45a7
BH
325 /* Calculate new doubled size */
326 old_size = type->max * sizeof(struct memblock_region);
327 new_size = old_size << 1;
29f67386
YL
328 /*
329 * We need to allocated new one align to PAGE_SIZE,
330 * so we can free them completely later.
331 */
332 old_alloc_size = PAGE_ALIGN(old_size);
333 new_alloc_size = PAGE_ALIGN(new_size);
142b45a7 334
181eb394
GS
335 /* Retrieve the slab flag */
336 if (type == &memblock.memory)
337 in_slab = &memblock_memory_in_slab;
338 else
339 in_slab = &memblock_reserved_in_slab;
340
142b45a7
BH
341 /* Try to find some space for it.
342 *
343 * WARNING: We assume that either slab_is_available() and we use it or
fd07383b
AM
344 * we use MEMBLOCK for allocations. That means that this is unsafe to
345 * use when bootmem is currently active (unless bootmem itself is
346 * implemented on top of MEMBLOCK which isn't the case yet)
142b45a7
BH
347 *
348 * This should however not be an issue for now, as we currently only
fd07383b
AM
349 * call into MEMBLOCK while it's still active, or much later when slab
350 * is active for memory hotplug operations
142b45a7
BH
351 */
352 if (use_slab) {
353 new_array = kmalloc(new_size, GFP_KERNEL);
1f5026a7 354 addr = new_array ? __pa(new_array) : 0;
4e2f0775 355 } else {
48c3b583
GP
356 /* only exclude range when trying to double reserved.regions */
357 if (type != &memblock.reserved)
358 new_area_start = new_area_size = 0;
359
360 addr = memblock_find_in_range(new_area_start + new_area_size,
361 memblock.current_limit,
29f67386 362 new_alloc_size, PAGE_SIZE);
48c3b583
GP
363 if (!addr && new_area_size)
364 addr = memblock_find_in_range(0,
fd07383b
AM
365 min(new_area_start, memblock.current_limit),
366 new_alloc_size, PAGE_SIZE);
48c3b583 367
15674868 368 new_array = addr ? __va(addr) : NULL;
4e2f0775 369 }
1f5026a7 370 if (!addr) {
142b45a7
BH
371 pr_err("memblock: Failed to double %s array from %ld to %ld entries !\n",
372 memblock_type_name(type), type->max, type->max * 2);
373 return -1;
374 }
142b45a7 375
fd07383b
AM
376 memblock_dbg("memblock: %s is doubled to %ld at [%#010llx-%#010llx]",
377 memblock_type_name(type), type->max * 2, (u64)addr,
378 (u64)addr + new_size - 1);
ea9e4376 379
fd07383b
AM
380 /*
381 * Found space, we now need to move the array over before we add the
382 * reserved region since it may be our reserved array itself that is
383 * full.
142b45a7
BH
384 */
385 memcpy(new_array, type->regions, old_size);
386 memset(new_array + type->max, 0, old_size);
387 old_array = type->regions;
388 type->regions = new_array;
389 type->max <<= 1;
390
fd07383b 391 /* Free old array. We needn't free it if the array is the static one */
181eb394
GS
392 if (*in_slab)
393 kfree(old_array);
394 else if (old_array != memblock_memory_init_regions &&
395 old_array != memblock_reserved_init_regions)
29f67386 396 memblock_free(__pa(old_array), old_alloc_size);
142b45a7 397
fd07383b
AM
398 /*
399 * Reserve the new array if that comes from the memblock. Otherwise, we
400 * needn't do it
181eb394
GS
401 */
402 if (!use_slab)
29f67386 403 BUG_ON(memblock_reserve(addr, new_alloc_size));
181eb394
GS
404
405 /* Update slab flag */
406 *in_slab = use_slab;
407
142b45a7
BH
408 return 0;
409}
410
784656f9
TH
411/**
412 * memblock_merge_regions - merge neighboring compatible regions
413 * @type: memblock type to scan
414 *
415 * Scan @type and merge neighboring compatible regions.
416 */
417static void __init_memblock memblock_merge_regions(struct memblock_type *type)
95f72d1e 418{
784656f9 419 int i = 0;
95f72d1e 420
784656f9
TH
421 /* cnt never goes below 1 */
422 while (i < type->cnt - 1) {
423 struct memblock_region *this = &type->regions[i];
424 struct memblock_region *next = &type->regions[i + 1];
95f72d1e 425
7c0caeb8
TH
426 if (this->base + this->size != next->base ||
427 memblock_get_region_node(this) !=
66a20757
TC
428 memblock_get_region_node(next) ||
429 this->flags != next->flags) {
784656f9
TH
430 BUG_ON(this->base + this->size > next->base);
431 i++;
432 continue;
8f7a6605
BH
433 }
434
784656f9 435 this->size += next->size;
c0232ae8
LF
436 /* move forward from next + 1, index of which is i + 2 */
437 memmove(next, next + 1, (type->cnt - (i + 2)) * sizeof(*next));
784656f9 438 type->cnt--;
95f72d1e 439 }
784656f9 440}
95f72d1e 441
784656f9
TH
442/**
443 * memblock_insert_region - insert new memblock region
209ff86d
TC
444 * @type: memblock type to insert into
445 * @idx: index for the insertion point
446 * @base: base address of the new region
447 * @size: size of the new region
448 * @nid: node id of the new region
66a20757 449 * @flags: flags of the new region
784656f9
TH
450 *
451 * Insert new memblock region [@base,@base+@size) into @type at @idx.
452 * @type must already have extra room to accomodate the new region.
453 */
454static void __init_memblock memblock_insert_region(struct memblock_type *type,
455 int idx, phys_addr_t base,
66a20757
TC
456 phys_addr_t size,
457 int nid, unsigned long flags)
784656f9
TH
458{
459 struct memblock_region *rgn = &type->regions[idx];
460
461 BUG_ON(type->cnt >= type->max);
462 memmove(rgn + 1, rgn, (type->cnt - idx) * sizeof(*rgn));
463 rgn->base = base;
464 rgn->size = size;
66a20757 465 rgn->flags = flags;
7c0caeb8 466 memblock_set_region_node(rgn, nid);
784656f9 467 type->cnt++;
1440c4e2 468 type->total_size += size;
784656f9
TH
469}
470
471/**
472 * memblock_add_region - add new memblock region
473 * @type: memblock type to add new region into
474 * @base: base address of the new region
475 * @size: size of the new region
7fb0bc3f 476 * @nid: nid of the new region
66a20757 477 * @flags: flags of the new region
784656f9
TH
478 *
479 * Add new memblock region [@base,@base+@size) into @type. The new region
480 * is allowed to overlap with existing ones - overlaps don't affect already
481 * existing regions. @type is guaranteed to be minimal (all neighbouring
482 * compatible regions are merged) after the addition.
483 *
484 * RETURNS:
485 * 0 on success, -errno on failure.
486 */
581adcbe 487static int __init_memblock memblock_add_region(struct memblock_type *type,
66a20757
TC
488 phys_addr_t base, phys_addr_t size,
489 int nid, unsigned long flags)
784656f9
TH
490{
491 bool insert = false;
eb18f1b5
TH
492 phys_addr_t obase = base;
493 phys_addr_t end = base + memblock_cap_size(base, &size);
784656f9
TH
494 int i, nr_new;
495
b3dc627c
TH
496 if (!size)
497 return 0;
498
784656f9
TH
499 /* special case for empty array */
500 if (type->regions[0].size == 0) {
1440c4e2 501 WARN_ON(type->cnt != 1 || type->total_size);
8f7a6605
BH
502 type->regions[0].base = base;
503 type->regions[0].size = size;
66a20757 504 type->regions[0].flags = flags;
7fb0bc3f 505 memblock_set_region_node(&type->regions[0], nid);
1440c4e2 506 type->total_size = size;
8f7a6605 507 return 0;
95f72d1e 508 }
784656f9
TH
509repeat:
510 /*
511 * The following is executed twice. Once with %false @insert and
512 * then with %true. The first counts the number of regions needed
513 * to accomodate the new area. The second actually inserts them.
142b45a7 514 */
784656f9
TH
515 base = obase;
516 nr_new = 0;
95f72d1e 517
784656f9
TH
518 for (i = 0; i < type->cnt; i++) {
519 struct memblock_region *rgn = &type->regions[i];
520 phys_addr_t rbase = rgn->base;
521 phys_addr_t rend = rbase + rgn->size;
522
523 if (rbase >= end)
95f72d1e 524 break;
784656f9
TH
525 if (rend <= base)
526 continue;
527 /*
528 * @rgn overlaps. If it separates the lower part of new
529 * area, insert that portion.
530 */
531 if (rbase > base) {
532 nr_new++;
533 if (insert)
534 memblock_insert_region(type, i++, base,
66a20757
TC
535 rbase - base, nid,
536 flags);
95f72d1e 537 }
784656f9
TH
538 /* area below @rend is dealt with, forget about it */
539 base = min(rend, end);
95f72d1e 540 }
784656f9
TH
541
542 /* insert the remaining portion */
543 if (base < end) {
544 nr_new++;
545 if (insert)
66a20757
TC
546 memblock_insert_region(type, i, base, end - base,
547 nid, flags);
95f72d1e 548 }
95f72d1e 549
784656f9
TH
550 /*
551 * If this was the first round, resize array and repeat for actual
552 * insertions; otherwise, merge and return.
142b45a7 553 */
784656f9
TH
554 if (!insert) {
555 while (type->cnt + nr_new > type->max)
48c3b583 556 if (memblock_double_array(type, obase, size) < 0)
784656f9
TH
557 return -ENOMEM;
558 insert = true;
559 goto repeat;
560 } else {
561 memblock_merge_regions(type);
562 return 0;
142b45a7 563 }
95f72d1e
YL
564}
565
7fb0bc3f
TH
566int __init_memblock memblock_add_node(phys_addr_t base, phys_addr_t size,
567 int nid)
568{
66a20757 569 return memblock_add_region(&memblock.memory, base, size, nid, 0);
7fb0bc3f
TH
570}
571
581adcbe 572int __init_memblock memblock_add(phys_addr_t base, phys_addr_t size)
95f72d1e 573{
66a20757
TC
574 return memblock_add_region(&memblock.memory, base, size,
575 MAX_NUMNODES, 0);
95f72d1e
YL
576}
577
6a9ceb31
TH
578/**
579 * memblock_isolate_range - isolate given range into disjoint memblocks
580 * @type: memblock type to isolate range for
581 * @base: base of range to isolate
582 * @size: size of range to isolate
583 * @start_rgn: out parameter for the start of isolated region
584 * @end_rgn: out parameter for the end of isolated region
585 *
586 * Walk @type and ensure that regions don't cross the boundaries defined by
587 * [@base,@base+@size). Crossing regions are split at the boundaries,
588 * which may create at most two more regions. The index of the first
589 * region inside the range is returned in *@start_rgn and end in *@end_rgn.
590 *
591 * RETURNS:
592 * 0 on success, -errno on failure.
593 */
594static int __init_memblock memblock_isolate_range(struct memblock_type *type,
595 phys_addr_t base, phys_addr_t size,
596 int *start_rgn, int *end_rgn)
597{
eb18f1b5 598 phys_addr_t end = base + memblock_cap_size(base, &size);
6a9ceb31
TH
599 int i;
600
601 *start_rgn = *end_rgn = 0;
602
b3dc627c
TH
603 if (!size)
604 return 0;
605
6a9ceb31
TH
606 /* we'll create at most two more regions */
607 while (type->cnt + 2 > type->max)
48c3b583 608 if (memblock_double_array(type, base, size) < 0)
6a9ceb31
TH
609 return -ENOMEM;
610
611 for (i = 0; i < type->cnt; i++) {
612 struct memblock_region *rgn = &type->regions[i];
613 phys_addr_t rbase = rgn->base;
614 phys_addr_t rend = rbase + rgn->size;
615
616 if (rbase >= end)
617 break;
618 if (rend <= base)
619 continue;
620
621 if (rbase < base) {
622 /*
623 * @rgn intersects from below. Split and continue
624 * to process the next region - the new top half.
625 */
626 rgn->base = base;
1440c4e2
TH
627 rgn->size -= base - rbase;
628 type->total_size -= base - rbase;
6a9ceb31 629 memblock_insert_region(type, i, rbase, base - rbase,
66a20757
TC
630 memblock_get_region_node(rgn),
631 rgn->flags);
6a9ceb31
TH
632 } else if (rend > end) {
633 /*
634 * @rgn intersects from above. Split and redo the
635 * current region - the new bottom half.
636 */
637 rgn->base = end;
1440c4e2
TH
638 rgn->size -= end - rbase;
639 type->total_size -= end - rbase;
6a9ceb31 640 memblock_insert_region(type, i--, rbase, end - rbase,
66a20757
TC
641 memblock_get_region_node(rgn),
642 rgn->flags);
6a9ceb31
TH
643 } else {
644 /* @rgn is fully contained, record it */
645 if (!*end_rgn)
646 *start_rgn = i;
647 *end_rgn = i + 1;
648 }
649 }
650
651 return 0;
652}
6a9ceb31 653
581adcbe
TH
654static int __init_memblock __memblock_remove(struct memblock_type *type,
655 phys_addr_t base, phys_addr_t size)
95f72d1e 656{
71936180
TH
657 int start_rgn, end_rgn;
658 int i, ret;
95f72d1e 659
71936180
TH
660 ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
661 if (ret)
662 return ret;
95f72d1e 663
71936180
TH
664 for (i = end_rgn - 1; i >= start_rgn; i--)
665 memblock_remove_region(type, i);
8f7a6605 666 return 0;
95f72d1e
YL
667}
668
581adcbe 669int __init_memblock memblock_remove(phys_addr_t base, phys_addr_t size)
95f72d1e
YL
670{
671 return __memblock_remove(&memblock.memory, base, size);
672}
673
581adcbe 674int __init_memblock memblock_free(phys_addr_t base, phys_addr_t size)
95f72d1e 675{
24aa0788 676 memblock_dbg(" memblock_free: [%#016llx-%#016llx] %pF\n",
a150439c 677 (unsigned long long)base,
931d13f5 678 (unsigned long long)base + size - 1,
a150439c 679 (void *)_RET_IP_);
24aa0788 680
95f72d1e
YL
681 return __memblock_remove(&memblock.reserved, base, size);
682}
683
66a20757
TC
684static int __init_memblock memblock_reserve_region(phys_addr_t base,
685 phys_addr_t size,
686 int nid,
687 unsigned long flags)
95f72d1e 688{
e3239ff9 689 struct memblock_type *_rgn = &memblock.reserved;
95f72d1e 690
66a20757 691 memblock_dbg("memblock_reserve: [%#016llx-%#016llx] flags %#02lx %pF\n",
a150439c 692 (unsigned long long)base,
931d13f5 693 (unsigned long long)base + size - 1,
66a20757
TC
694 flags, (void *)_RET_IP_);
695
696 return memblock_add_region(_rgn, base, size, nid, flags);
697}
95f72d1e 698
66a20757
TC
699int __init_memblock memblock_reserve(phys_addr_t base, phys_addr_t size)
700{
701 return memblock_reserve_region(base, size, MAX_NUMNODES, 0);
95f72d1e
YL
702}
703
66b16edf
TC
704/**
705 * memblock_mark_hotplug - Mark hotpluggable memory with flag MEMBLOCK_HOTPLUG.
706 * @base: the base phys addr of the region
707 * @size: the size of the region
708 *
709 * This function isolates region [@base, @base + @size), and mark it with flag
710 * MEMBLOCK_HOTPLUG.
711 *
712 * Return 0 on succees, -errno on failure.
713 */
714int __init_memblock memblock_mark_hotplug(phys_addr_t base, phys_addr_t size)
715{
716 struct memblock_type *type = &memblock.memory;
717 int i, ret, start_rgn, end_rgn;
718
719 ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
720 if (ret)
721 return ret;
722
723 for (i = start_rgn; i < end_rgn; i++)
724 memblock_set_region_flags(&type->regions[i], MEMBLOCK_HOTPLUG);
725
726 memblock_merge_regions(type);
727 return 0;
728}
729
730/**
731 * memblock_clear_hotplug - Clear flag MEMBLOCK_HOTPLUG for a specified region.
732 * @base: the base phys addr of the region
733 * @size: the size of the region
734 *
735 * This function isolates region [@base, @base + @size), and clear flag
736 * MEMBLOCK_HOTPLUG for the isolated regions.
737 *
738 * Return 0 on succees, -errno on failure.
739 */
740int __init_memblock memblock_clear_hotplug(phys_addr_t base, phys_addr_t size)
741{
742 struct memblock_type *type = &memblock.memory;
743 int i, ret, start_rgn, end_rgn;
744
745 ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
746 if (ret)
747 return ret;
748
749 for (i = start_rgn; i < end_rgn; i++)
750 memblock_clear_region_flags(&type->regions[i],
751 MEMBLOCK_HOTPLUG);
752
753 memblock_merge_regions(type);
754 return 0;
755}
756
35fd0808
TH
757/**
758 * __next_free_mem_range - next function for for_each_free_mem_range()
759 * @idx: pointer to u64 loop variable
b1154233 760 * @nid: node selector, %NUMA_NO_NODE for all nodes
dad7557e
WL
761 * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL
762 * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL
763 * @out_nid: ptr to int for nid of the range, can be %NULL
35fd0808
TH
764 *
765 * Find the first free area from *@idx which matches @nid, fill the out
766 * parameters, and update *@idx for the next iteration. The lower 32bit of
767 * *@idx contains index into memory region and the upper 32bit indexes the
768 * areas before each reserved region. For example, if reserved regions
769 * look like the following,
770 *
771 * 0:[0-16), 1:[32-48), 2:[128-130)
772 *
773 * The upper 32bit indexes the following regions.
774 *
775 * 0:[0-0), 1:[16-32), 2:[48-128), 3:[130-MAX)
776 *
777 * As both region arrays are sorted, the function advances the two indices
778 * in lockstep and returns each intersection.
779 */
780void __init_memblock __next_free_mem_range(u64 *idx, int nid,
781 phys_addr_t *out_start,
782 phys_addr_t *out_end, int *out_nid)
783{
784 struct memblock_type *mem = &memblock.memory;
785 struct memblock_type *rsv = &memblock.reserved;
786 int mi = *idx & 0xffffffff;
787 int ri = *idx >> 32;
b1154233
GS
788 bool check_node = (nid != NUMA_NO_NODE) && (nid != MAX_NUMNODES);
789
790 if (nid == MAX_NUMNODES)
26f09e9b 791 pr_warn_once("%s: Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n",
b1154233 792 __func__);
35fd0808
TH
793
794 for ( ; mi < mem->cnt; mi++) {
795 struct memblock_region *m = &mem->regions[mi];
796 phys_addr_t m_start = m->base;
797 phys_addr_t m_end = m->base + m->size;
798
799 /* only memory regions are associated with nodes, check it */
b1154233 800 if (check_node && nid != memblock_get_region_node(m))
35fd0808
TH
801 continue;
802
803 /* scan areas before each reservation for intersection */
804 for ( ; ri < rsv->cnt + 1; ri++) {
805 struct memblock_region *r = &rsv->regions[ri];
806 phys_addr_t r_start = ri ? r[-1].base + r[-1].size : 0;
807 phys_addr_t r_end = ri < rsv->cnt ? r->base : ULLONG_MAX;
808
809 /* if ri advanced past mi, break out to advance mi */
810 if (r_start >= m_end)
811 break;
812 /* if the two regions intersect, we're done */
813 if (m_start < r_end) {
814 if (out_start)
815 *out_start = max(m_start, r_start);
816 if (out_end)
817 *out_end = min(m_end, r_end);
818 if (out_nid)
819 *out_nid = memblock_get_region_node(m);
820 /*
821 * The region which ends first is advanced
822 * for the next iteration.
823 */
824 if (m_end <= r_end)
825 mi++;
826 else
827 ri++;
828 *idx = (u32)mi | (u64)ri << 32;
829 return;
830 }
831 }
832 }
833
834 /* signal end of iteration */
835 *idx = ULLONG_MAX;
836}
837
7bd0b0f0
TH
838/**
839 * __next_free_mem_range_rev - next function for for_each_free_mem_range_reverse()
840 * @idx: pointer to u64 loop variable
b1154233 841 * @nid: nid: node selector, %NUMA_NO_NODE for all nodes
dad7557e
WL
842 * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL
843 * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL
844 * @out_nid: ptr to int for nid of the range, can be %NULL
7bd0b0f0
TH
845 *
846 * Reverse of __next_free_mem_range().
55ac590c
TC
847 *
848 * Linux kernel cannot migrate pages used by itself. Memory hotplug users won't
849 * be able to hot-remove hotpluggable memory used by the kernel. So this
850 * function skip hotpluggable regions if needed when allocating memory for the
851 * kernel.
7bd0b0f0
TH
852 */
853void __init_memblock __next_free_mem_range_rev(u64 *idx, int nid,
854 phys_addr_t *out_start,
855 phys_addr_t *out_end, int *out_nid)
856{
857 struct memblock_type *mem = &memblock.memory;
858 struct memblock_type *rsv = &memblock.reserved;
859 int mi = *idx & 0xffffffff;
860 int ri = *idx >> 32;
b1154233
GS
861 bool check_node = (nid != NUMA_NO_NODE) && (nid != MAX_NUMNODES);
862
863 if (nid == MAX_NUMNODES)
26f09e9b 864 pr_warn_once("%s: Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n",
b1154233 865 __func__);
7bd0b0f0
TH
866
867 if (*idx == (u64)ULLONG_MAX) {
868 mi = mem->cnt - 1;
869 ri = rsv->cnt;
870 }
871
872 for ( ; mi >= 0; mi--) {
873 struct memblock_region *m = &mem->regions[mi];
874 phys_addr_t m_start = m->base;
875 phys_addr_t m_end = m->base + m->size;
876
877 /* only memory regions are associated with nodes, check it */
b1154233 878 if (check_node && nid != memblock_get_region_node(m))
7bd0b0f0
TH
879 continue;
880
55ac590c
TC
881 /* skip hotpluggable memory regions if needed */
882 if (movable_node_is_enabled() && memblock_is_hotpluggable(m))
883 continue;
884
7bd0b0f0
TH
885 /* scan areas before each reservation for intersection */
886 for ( ; ri >= 0; ri--) {
887 struct memblock_region *r = &rsv->regions[ri];
888 phys_addr_t r_start = ri ? r[-1].base + r[-1].size : 0;
889 phys_addr_t r_end = ri < rsv->cnt ? r->base : ULLONG_MAX;
890
891 /* if ri advanced past mi, break out to advance mi */
892 if (r_end <= m_start)
893 break;
894 /* if the two regions intersect, we're done */
895 if (m_end > r_start) {
896 if (out_start)
897 *out_start = max(m_start, r_start);
898 if (out_end)
899 *out_end = min(m_end, r_end);
900 if (out_nid)
901 *out_nid = memblock_get_region_node(m);
902
903 if (m_start >= r_start)
904 mi--;
905 else
906 ri--;
907 *idx = (u32)mi | (u64)ri << 32;
908 return;
909 }
910 }
911 }
912
913 *idx = ULLONG_MAX;
914}
915
7c0caeb8
TH
916#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
917/*
918 * Common iterator interface used to define for_each_mem_range().
919 */
920void __init_memblock __next_mem_pfn_range(int *idx, int nid,
921 unsigned long *out_start_pfn,
922 unsigned long *out_end_pfn, int *out_nid)
923{
924 struct memblock_type *type = &memblock.memory;
925 struct memblock_region *r;
926
927 while (++*idx < type->cnt) {
928 r = &type->regions[*idx];
929
930 if (PFN_UP(r->base) >= PFN_DOWN(r->base + r->size))
931 continue;
932 if (nid == MAX_NUMNODES || nid == r->nid)
933 break;
934 }
935 if (*idx >= type->cnt) {
936 *idx = -1;
937 return;
938 }
939
940 if (out_start_pfn)
941 *out_start_pfn = PFN_UP(r->base);
942 if (out_end_pfn)
943 *out_end_pfn = PFN_DOWN(r->base + r->size);
944 if (out_nid)
945 *out_nid = r->nid;
946}
947
948/**
949 * memblock_set_node - set node ID on memblock regions
950 * @base: base of area to set node ID for
951 * @size: size of area to set node ID for
e7e8de59 952 * @type: memblock type to set node ID for
7c0caeb8
TH
953 * @nid: node ID to set
954 *
e7e8de59 955 * Set the nid of memblock @type regions in [@base,@base+@size) to @nid.
7c0caeb8
TH
956 * Regions which cross the area boundaries are split as necessary.
957 *
958 * RETURNS:
959 * 0 on success, -errno on failure.
960 */
961int __init_memblock memblock_set_node(phys_addr_t base, phys_addr_t size,
e7e8de59 962 struct memblock_type *type, int nid)
7c0caeb8 963{
6a9ceb31
TH
964 int start_rgn, end_rgn;
965 int i, ret;
7c0caeb8 966
6a9ceb31
TH
967 ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
968 if (ret)
969 return ret;
7c0caeb8 970
6a9ceb31 971 for (i = start_rgn; i < end_rgn; i++)
e9d24ad3 972 memblock_set_region_node(&type->regions[i], nid);
7c0caeb8
TH
973
974 memblock_merge_regions(type);
975 return 0;
976}
977#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
978
7bd0b0f0
TH
979static phys_addr_t __init memblock_alloc_base_nid(phys_addr_t size,
980 phys_addr_t align, phys_addr_t max_addr,
981 int nid)
95f72d1e 982{
6ed311b2 983 phys_addr_t found;
95f72d1e 984
79f40fab
GS
985 if (!align)
986 align = SMP_CACHE_BYTES;
94f3d3af 987
847854f5
TH
988 /* align @size to avoid excessive fragmentation on reserved array */
989 size = round_up(size, align);
990
87029ee9 991 found = memblock_find_in_range_node(size, align, 0, max_addr, nid);
9c8c27e2 992 if (found && !memblock_reserve(found, size))
6ed311b2 993 return found;
95f72d1e 994
6ed311b2 995 return 0;
95f72d1e
YL
996}
997
7bd0b0f0
TH
998phys_addr_t __init memblock_alloc_nid(phys_addr_t size, phys_addr_t align, int nid)
999{
1000 return memblock_alloc_base_nid(size, align, MEMBLOCK_ALLOC_ACCESSIBLE, nid);
1001}
1002
1003phys_addr_t __init __memblock_alloc_base(phys_addr_t size, phys_addr_t align, phys_addr_t max_addr)
1004{
b1154233 1005 return memblock_alloc_base_nid(size, align, max_addr, NUMA_NO_NODE);
7bd0b0f0
TH
1006}
1007
6ed311b2 1008phys_addr_t __init memblock_alloc_base(phys_addr_t size, phys_addr_t align, phys_addr_t max_addr)
95f72d1e 1009{
6ed311b2
BH
1010 phys_addr_t alloc;
1011
1012 alloc = __memblock_alloc_base(size, align, max_addr);
1013
1014 if (alloc == 0)
1015 panic("ERROR: Failed to allocate 0x%llx bytes below 0x%llx.\n",
1016 (unsigned long long) size, (unsigned long long) max_addr);
1017
1018 return alloc;
95f72d1e
YL
1019}
1020
6ed311b2 1021phys_addr_t __init memblock_alloc(phys_addr_t size, phys_addr_t align)
95f72d1e 1022{
6ed311b2
BH
1023 return memblock_alloc_base(size, align, MEMBLOCK_ALLOC_ACCESSIBLE);
1024}
95f72d1e 1025
9d1e2492
BH
1026phys_addr_t __init memblock_alloc_try_nid(phys_addr_t size, phys_addr_t align, int nid)
1027{
1028 phys_addr_t res = memblock_alloc_nid(size, align, nid);
1029
1030 if (res)
1031 return res;
15fb0972 1032 return memblock_alloc_base(size, align, MEMBLOCK_ALLOC_ACCESSIBLE);
95f72d1e
YL
1033}
1034
26f09e9b
SS
1035/**
1036 * memblock_virt_alloc_internal - allocate boot memory block
1037 * @size: size of memory block to be allocated in bytes
1038 * @align: alignment of the region and block's size
1039 * @min_addr: the lower bound of the memory region to allocate (phys address)
1040 * @max_addr: the upper bound of the memory region to allocate (phys address)
1041 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1042 *
1043 * The @min_addr limit is dropped if it can not be satisfied and the allocation
1044 * will fall back to memory below @min_addr. Also, allocation may fall back
1045 * to any node in the system if the specified node can not
1046 * hold the requested memory.
1047 *
1048 * The allocation is performed from memory region limited by
1049 * memblock.current_limit if @max_addr == %BOOTMEM_ALLOC_ACCESSIBLE.
1050 *
1051 * The memory block is aligned on SMP_CACHE_BYTES if @align == 0.
1052 *
1053 * The phys address of allocated boot memory block is converted to virtual and
1054 * allocated memory is reset to 0.
1055 *
1056 * In addition, function sets the min_count to 0 using kmemleak_alloc for
1057 * allocated boot memory block, so that it is never reported as leaks.
1058 *
1059 * RETURNS:
1060 * Virtual address of allocated memory block on success, NULL on failure.
1061 */
1062static void * __init memblock_virt_alloc_internal(
1063 phys_addr_t size, phys_addr_t align,
1064 phys_addr_t min_addr, phys_addr_t max_addr,
1065 int nid)
1066{
1067 phys_addr_t alloc;
1068 void *ptr;
1069
1070 if (nid == MAX_NUMNODES)
1071 pr_warn("%s: usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE\n",
1072 __func__);
1073
1074 /*
1075 * Detect any accidental use of these APIs after slab is ready, as at
1076 * this moment memblock may be deinitialized already and its
1077 * internal data may be destroyed (after execution of free_all_bootmem)
1078 */
1079 if (WARN_ON_ONCE(slab_is_available()))
1080 return kzalloc_node(size, GFP_NOWAIT, nid);
1081
1082 if (!align)
1083 align = SMP_CACHE_BYTES;
1084
1085 /* align @size to avoid excessive fragmentation on reserved array */
1086 size = round_up(size, align);
1087
1088again:
1089 alloc = memblock_find_in_range_node(size, align, min_addr, max_addr,
1090 nid);
1091 if (alloc)
1092 goto done;
1093
1094 if (nid != NUMA_NO_NODE) {
1095 alloc = memblock_find_in_range_node(size, align, min_addr,
1096 max_addr, NUMA_NO_NODE);
1097 if (alloc)
1098 goto done;
1099 }
1100
1101 if (min_addr) {
1102 min_addr = 0;
1103 goto again;
1104 } else {
1105 goto error;
1106 }
1107
1108done:
1109 memblock_reserve(alloc, size);
1110 ptr = phys_to_virt(alloc);
1111 memset(ptr, 0, size);
1112
1113 /*
1114 * The min_count is set to 0 so that bootmem allocated blocks
1115 * are never reported as leaks. This is because many of these blocks
1116 * are only referred via the physical address which is not
1117 * looked up by kmemleak.
1118 */
1119 kmemleak_alloc(ptr, size, 0, 0);
1120
1121 return ptr;
1122
1123error:
1124 return NULL;
1125}
1126
1127/**
1128 * memblock_virt_alloc_try_nid_nopanic - allocate boot memory block
1129 * @size: size of memory block to be allocated in bytes
1130 * @align: alignment of the region and block's size
1131 * @min_addr: the lower bound of the memory region from where the allocation
1132 * is preferred (phys address)
1133 * @max_addr: the upper bound of the memory region from where the allocation
1134 * is preferred (phys address), or %BOOTMEM_ALLOC_ACCESSIBLE to
1135 * allocate only from memory limited by memblock.current_limit value
1136 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1137 *
1138 * Public version of _memblock_virt_alloc_try_nid_nopanic() which provides
1139 * additional debug information (including caller info), if enabled.
1140 *
1141 * RETURNS:
1142 * Virtual address of allocated memory block on success, NULL on failure.
1143 */
1144void * __init memblock_virt_alloc_try_nid_nopanic(
1145 phys_addr_t size, phys_addr_t align,
1146 phys_addr_t min_addr, phys_addr_t max_addr,
1147 int nid)
1148{
1149 memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=0x%llx max_addr=0x%llx %pF\n",
1150 __func__, (u64)size, (u64)align, nid, (u64)min_addr,
1151 (u64)max_addr, (void *)_RET_IP_);
1152 return memblock_virt_alloc_internal(size, align, min_addr,
1153 max_addr, nid);
1154}
1155
1156/**
1157 * memblock_virt_alloc_try_nid - allocate boot memory block with panicking
1158 * @size: size of memory block to be allocated in bytes
1159 * @align: alignment of the region and block's size
1160 * @min_addr: the lower bound of the memory region from where the allocation
1161 * is preferred (phys address)
1162 * @max_addr: the upper bound of the memory region from where the allocation
1163 * is preferred (phys address), or %BOOTMEM_ALLOC_ACCESSIBLE to
1164 * allocate only from memory limited by memblock.current_limit value
1165 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1166 *
1167 * Public panicking version of _memblock_virt_alloc_try_nid_nopanic()
1168 * which provides debug information (including caller info), if enabled,
1169 * and panics if the request can not be satisfied.
1170 *
1171 * RETURNS:
1172 * Virtual address of allocated memory block on success, NULL on failure.
1173 */
1174void * __init memblock_virt_alloc_try_nid(
1175 phys_addr_t size, phys_addr_t align,
1176 phys_addr_t min_addr, phys_addr_t max_addr,
1177 int nid)
1178{
1179 void *ptr;
1180
1181 memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=0x%llx max_addr=0x%llx %pF\n",
1182 __func__, (u64)size, (u64)align, nid, (u64)min_addr,
1183 (u64)max_addr, (void *)_RET_IP_);
1184 ptr = memblock_virt_alloc_internal(size, align,
1185 min_addr, max_addr, nid);
1186 if (ptr)
1187 return ptr;
1188
1189 panic("%s: Failed to allocate %llu bytes align=0x%llx nid=%d from=0x%llx max_addr=0x%llx\n",
1190 __func__, (u64)size, (u64)align, nid, (u64)min_addr,
1191 (u64)max_addr);
1192 return NULL;
1193}
1194
1195/**
1196 * __memblock_free_early - free boot memory block
1197 * @base: phys starting address of the boot memory block
1198 * @size: size of the boot memory block in bytes
1199 *
1200 * Free boot memory block previously allocated by memblock_virt_alloc_xx() API.
1201 * The freeing memory will not be released to the buddy allocator.
1202 */
1203void __init __memblock_free_early(phys_addr_t base, phys_addr_t size)
1204{
1205 memblock_dbg("%s: [%#016llx-%#016llx] %pF\n",
1206 __func__, (u64)base, (u64)base + size - 1,
1207 (void *)_RET_IP_);
1208 kmemleak_free_part(__va(base), size);
1209 __memblock_remove(&memblock.reserved, base, size);
1210}
1211
1212/*
1213 * __memblock_free_late - free bootmem block pages directly to buddy allocator
1214 * @addr: phys starting address of the boot memory block
1215 * @size: size of the boot memory block in bytes
1216 *
1217 * This is only useful when the bootmem allocator has already been torn
1218 * down, but we are still initializing the system. Pages are released directly
1219 * to the buddy allocator, no bootmem metadata is updated because it is gone.
1220 */
1221void __init __memblock_free_late(phys_addr_t base, phys_addr_t size)
1222{
1223 u64 cursor, end;
1224
1225 memblock_dbg("%s: [%#016llx-%#016llx] %pF\n",
1226 __func__, (u64)base, (u64)base + size - 1,
1227 (void *)_RET_IP_);
1228 kmemleak_free_part(__va(base), size);
1229 cursor = PFN_UP(base);
1230 end = PFN_DOWN(base + size);
1231
1232 for (; cursor < end; cursor++) {
1233 __free_pages_bootmem(pfn_to_page(cursor), 0);
1234 totalram_pages++;
1235 }
1236}
9d1e2492
BH
1237
1238/*
1239 * Remaining API functions
1240 */
1241
2898cc4c 1242phys_addr_t __init memblock_phys_mem_size(void)
95f72d1e 1243{
1440c4e2 1244 return memblock.memory.total_size;
95f72d1e
YL
1245}
1246
595ad9af
YL
1247phys_addr_t __init memblock_mem_size(unsigned long limit_pfn)
1248{
1249 unsigned long pages = 0;
1250 struct memblock_region *r;
1251 unsigned long start_pfn, end_pfn;
1252
1253 for_each_memblock(memory, r) {
1254 start_pfn = memblock_region_memory_base_pfn(r);
1255 end_pfn = memblock_region_memory_end_pfn(r);
1256 start_pfn = min_t(unsigned long, start_pfn, limit_pfn);
1257 end_pfn = min_t(unsigned long, end_pfn, limit_pfn);
1258 pages += end_pfn - start_pfn;
1259 }
1260
1261 return (phys_addr_t)pages << PAGE_SHIFT;
1262}
1263
0a93ebef
SR
1264/* lowest address */
1265phys_addr_t __init_memblock memblock_start_of_DRAM(void)
1266{
1267 return memblock.memory.regions[0].base;
1268}
1269
10d06439 1270phys_addr_t __init_memblock memblock_end_of_DRAM(void)
95f72d1e
YL
1271{
1272 int idx = memblock.memory.cnt - 1;
1273
e3239ff9 1274 return (memblock.memory.regions[idx].base + memblock.memory.regions[idx].size);
95f72d1e
YL
1275}
1276
c0ce8fef 1277void __init memblock_enforce_memory_limit(phys_addr_t limit)
95f72d1e
YL
1278{
1279 unsigned long i;
c0ce8fef 1280 phys_addr_t max_addr = (phys_addr_t)ULLONG_MAX;
95f72d1e 1281
c0ce8fef 1282 if (!limit)
95f72d1e
YL
1283 return;
1284
c0ce8fef 1285 /* find out max address */
95f72d1e 1286 for (i = 0; i < memblock.memory.cnt; i++) {
c0ce8fef 1287 struct memblock_region *r = &memblock.memory.regions[i];
95f72d1e 1288
c0ce8fef
TH
1289 if (limit <= r->size) {
1290 max_addr = r->base + limit;
1291 break;
95f72d1e 1292 }
c0ce8fef 1293 limit -= r->size;
95f72d1e 1294 }
c0ce8fef
TH
1295
1296 /* truncate both memory and reserved regions */
1297 __memblock_remove(&memblock.memory, max_addr, (phys_addr_t)ULLONG_MAX);
1298 __memblock_remove(&memblock.reserved, max_addr, (phys_addr_t)ULLONG_MAX);
95f72d1e
YL
1299}
1300
cd79481d 1301static int __init_memblock memblock_search(struct memblock_type *type, phys_addr_t addr)
72d4b0b4
BH
1302{
1303 unsigned int left = 0, right = type->cnt;
1304
1305 do {
1306 unsigned int mid = (right + left) / 2;
1307
1308 if (addr < type->regions[mid].base)
1309 right = mid;
1310 else if (addr >= (type->regions[mid].base +
1311 type->regions[mid].size))
1312 left = mid + 1;
1313 else
1314 return mid;
1315 } while (left < right);
1316 return -1;
1317}
1318
2898cc4c 1319int __init memblock_is_reserved(phys_addr_t addr)
95f72d1e 1320{
72d4b0b4
BH
1321 return memblock_search(&memblock.reserved, addr) != -1;
1322}
95f72d1e 1323
3661ca66 1324int __init_memblock memblock_is_memory(phys_addr_t addr)
72d4b0b4
BH
1325{
1326 return memblock_search(&memblock.memory, addr) != -1;
1327}
1328
e76b63f8
YL
1329#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
1330int __init_memblock memblock_search_pfn_nid(unsigned long pfn,
1331 unsigned long *start_pfn, unsigned long *end_pfn)
1332{
1333 struct memblock_type *type = &memblock.memory;
1334 int mid = memblock_search(type, (phys_addr_t)pfn << PAGE_SHIFT);
1335
1336 if (mid == -1)
1337 return -1;
1338
1339 *start_pfn = type->regions[mid].base >> PAGE_SHIFT;
1340 *end_pfn = (type->regions[mid].base + type->regions[mid].size)
1341 >> PAGE_SHIFT;
1342
1343 return type->regions[mid].nid;
1344}
1345#endif
1346
eab30949
SB
1347/**
1348 * memblock_is_region_memory - check if a region is a subset of memory
1349 * @base: base of region to check
1350 * @size: size of region to check
1351 *
1352 * Check if the region [@base, @base+@size) is a subset of a memory block.
1353 *
1354 * RETURNS:
1355 * 0 if false, non-zero if true
1356 */
3661ca66 1357int __init_memblock memblock_is_region_memory(phys_addr_t base, phys_addr_t size)
72d4b0b4 1358{
abb65272 1359 int idx = memblock_search(&memblock.memory, base);
eb18f1b5 1360 phys_addr_t end = base + memblock_cap_size(base, &size);
72d4b0b4
BH
1361
1362 if (idx == -1)
1363 return 0;
abb65272
TV
1364 return memblock.memory.regions[idx].base <= base &&
1365 (memblock.memory.regions[idx].base +
eb18f1b5 1366 memblock.memory.regions[idx].size) >= end;
95f72d1e
YL
1367}
1368
eab30949
SB
1369/**
1370 * memblock_is_region_reserved - check if a region intersects reserved memory
1371 * @base: base of region to check
1372 * @size: size of region to check
1373 *
1374 * Check if the region [@base, @base+@size) intersects a reserved memory block.
1375 *
1376 * RETURNS:
1377 * 0 if false, non-zero if true
1378 */
10d06439 1379int __init_memblock memblock_is_region_reserved(phys_addr_t base, phys_addr_t size)
95f72d1e 1380{
eb18f1b5 1381 memblock_cap_size(base, &size);
f1c2c19c 1382 return memblock_overlaps_region(&memblock.reserved, base, size) >= 0;
95f72d1e
YL
1383}
1384
6ede1fd3
YL
1385void __init_memblock memblock_trim_memory(phys_addr_t align)
1386{
1387 int i;
1388 phys_addr_t start, end, orig_start, orig_end;
1389 struct memblock_type *mem = &memblock.memory;
1390
1391 for (i = 0; i < mem->cnt; i++) {
1392 orig_start = mem->regions[i].base;
1393 orig_end = mem->regions[i].base + mem->regions[i].size;
1394 start = round_up(orig_start, align);
1395 end = round_down(orig_end, align);
1396
1397 if (start == orig_start && end == orig_end)
1398 continue;
1399
1400 if (start < end) {
1401 mem->regions[i].base = start;
1402 mem->regions[i].size = end - start;
1403 } else {
1404 memblock_remove_region(mem, i);
1405 i--;
1406 }
1407 }
1408}
e63075a3 1409
3661ca66 1410void __init_memblock memblock_set_current_limit(phys_addr_t limit)
e63075a3
BH
1411{
1412 memblock.current_limit = limit;
1413}
1414
7c0caeb8 1415static void __init_memblock memblock_dump(struct memblock_type *type, char *name)
6ed311b2
BH
1416{
1417 unsigned long long base, size;
66a20757 1418 unsigned long flags;
6ed311b2
BH
1419 int i;
1420
7c0caeb8 1421 pr_info(" %s.cnt = 0x%lx\n", name, type->cnt);
6ed311b2 1422
7c0caeb8
TH
1423 for (i = 0; i < type->cnt; i++) {
1424 struct memblock_region *rgn = &type->regions[i];
1425 char nid_buf[32] = "";
1426
1427 base = rgn->base;
1428 size = rgn->size;
66a20757 1429 flags = rgn->flags;
7c0caeb8
TH
1430#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
1431 if (memblock_get_region_node(rgn) != MAX_NUMNODES)
1432 snprintf(nid_buf, sizeof(nid_buf), " on node %d",
1433 memblock_get_region_node(rgn));
1434#endif
66a20757
TC
1435 pr_info(" %s[%#x]\t[%#016llx-%#016llx], %#llx bytes%s flags: %#lx\n",
1436 name, i, base, base + size - 1, size, nid_buf, flags);
6ed311b2
BH
1437 }
1438}
1439
4ff7b82f 1440void __init_memblock __memblock_dump_all(void)
6ed311b2 1441{
6ed311b2 1442 pr_info("MEMBLOCK configuration:\n");
1440c4e2
TH
1443 pr_info(" memory size = %#llx reserved size = %#llx\n",
1444 (unsigned long long)memblock.memory.total_size,
1445 (unsigned long long)memblock.reserved.total_size);
6ed311b2
BH
1446
1447 memblock_dump(&memblock.memory, "memory");
1448 memblock_dump(&memblock.reserved, "reserved");
1449}
1450
1aadc056 1451void __init memblock_allow_resize(void)
6ed311b2 1452{
142b45a7 1453 memblock_can_resize = 1;
6ed311b2
BH
1454}
1455
6ed311b2
BH
1456static int __init early_memblock(char *p)
1457{
1458 if (p && strstr(p, "debug"))
1459 memblock_debug = 1;
1460 return 0;
1461}
1462early_param("memblock", early_memblock);
1463
c378ddd5 1464#if defined(CONFIG_DEBUG_FS) && !defined(CONFIG_ARCH_DISCARD_MEMBLOCK)
6d03b885
BH
1465
1466static int memblock_debug_show(struct seq_file *m, void *private)
1467{
1468 struct memblock_type *type = m->private;
1469 struct memblock_region *reg;
1470 int i;
1471
1472 for (i = 0; i < type->cnt; i++) {
1473 reg = &type->regions[i];
1474 seq_printf(m, "%4d: ", i);
1475 if (sizeof(phys_addr_t) == 4)
1476 seq_printf(m, "0x%08lx..0x%08lx\n",
1477 (unsigned long)reg->base,
1478 (unsigned long)(reg->base + reg->size - 1));
1479 else
1480 seq_printf(m, "0x%016llx..0x%016llx\n",
1481 (unsigned long long)reg->base,
1482 (unsigned long long)(reg->base + reg->size - 1));
1483
1484 }
1485 return 0;
1486}
1487
1488static int memblock_debug_open(struct inode *inode, struct file *file)
1489{
1490 return single_open(file, memblock_debug_show, inode->i_private);
1491}
1492
1493static const struct file_operations memblock_debug_fops = {
1494 .open = memblock_debug_open,
1495 .read = seq_read,
1496 .llseek = seq_lseek,
1497 .release = single_release,
1498};
1499
1500static int __init memblock_init_debugfs(void)
1501{
1502 struct dentry *root = debugfs_create_dir("memblock", NULL);
1503 if (!root)
1504 return -ENXIO;
1505 debugfs_create_file("memory", S_IRUGO, root, &memblock.memory, &memblock_debug_fops);
1506 debugfs_create_file("reserved", S_IRUGO, root, &memblock.reserved, &memblock_debug_fops);
1507
1508 return 0;
1509}
1510__initcall(memblock_init_debugfs);
1511
1512#endif /* CONFIG_DEBUG_FS */