drm: rcar-du: add missing of_node_put
[linux-2.6-block.git] / mm / memblock.c
CommitLineData
95f72d1e
YL
1/*
2 * Procedures for maintaining information about logical memory blocks.
3 *
4 * Peter Bergner, IBM Corp. June 2001.
5 * Copyright (C) 2001 Peter Bergner.
6 *
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License
9 * as published by the Free Software Foundation; either version
10 * 2 of the License, or (at your option) any later version.
11 */
12
13#include <linux/kernel.h>
142b45a7 14#include <linux/slab.h>
95f72d1e
YL
15#include <linux/init.h>
16#include <linux/bitops.h>
449e8df3 17#include <linux/poison.h>
c196f76f 18#include <linux/pfn.h>
6d03b885 19#include <linux/debugfs.h>
514c6032 20#include <linux/kmemleak.h>
6d03b885 21#include <linux/seq_file.h>
95f72d1e
YL
22#include <linux/memblock.h>
23
c4c5ad6b 24#include <asm/sections.h>
26f09e9b
SS
25#include <linux/io.h>
26
27#include "internal.h"
79442ed1 28
3e039c5c
MR
29/**
30 * DOC: memblock overview
31 *
32 * Memblock is a method of managing memory regions during the early
33 * boot period when the usual kernel memory allocators are not up and
34 * running.
35 *
36 * Memblock views the system memory as collections of contiguous
37 * regions. There are several types of these collections:
38 *
39 * * ``memory`` - describes the physical memory available to the
40 * kernel; this may differ from the actual physical memory installed
41 * in the system, for instance when the memory is restricted with
42 * ``mem=`` command line parameter
43 * * ``reserved`` - describes the regions that were allocated
44 * * ``physmap`` - describes the actual physical memory regardless of
45 * the possible restrictions; the ``physmap`` type is only available
46 * on some architectures.
47 *
48 * Each region is represented by :c:type:`struct memblock_region` that
49 * defines the region extents, its attributes and NUMA node id on NUMA
50 * systems. Every memory type is described by the :c:type:`struct
51 * memblock_type` which contains an array of memory regions along with
52 * the allocator metadata. The memory types are nicely wrapped with
53 * :c:type:`struct memblock`. This structure is statically initialzed
54 * at build time. The region arrays for the "memory" and "reserved"
55 * types are initially sized to %INIT_MEMBLOCK_REGIONS and for the
56 * "physmap" type to %INIT_PHYSMEM_REGIONS.
57 * The :c:func:`memblock_allow_resize` enables automatic resizing of
58 * the region arrays during addition of new regions. This feature
59 * should be used with care so that memory allocated for the region
60 * array will not overlap with areas that should be reserved, for
61 * example initrd.
62 *
63 * The early architecture setup should tell memblock what the physical
64 * memory layout is by using :c:func:`memblock_add` or
65 * :c:func:`memblock_add_node` functions. The first function does not
66 * assign the region to a NUMA node and it is appropriate for UMA
67 * systems. Yet, it is possible to use it on NUMA systems as well and
68 * assign the region to a NUMA node later in the setup process using
69 * :c:func:`memblock_set_node`. The :c:func:`memblock_add_node`
70 * performs such an assignment directly.
71 *
72 * Once memblock is setup the memory can be allocated using either
73 * memblock or bootmem APIs.
74 *
75 * As the system boot progresses, the architecture specific
76 * :c:func:`mem_init` function frees all the memory to the buddy page
77 * allocator.
78 *
79 * If an architecure enables %CONFIG_ARCH_DISCARD_MEMBLOCK, the
80 * memblock data structures will be discarded after the system
81 * initialization compltes.
82 */
83
bda49a81
MR
84#ifndef CONFIG_NEED_MULTIPLE_NODES
85struct pglist_data __refdata contig_page_data;
86EXPORT_SYMBOL(contig_page_data);
87#endif
88
89unsigned long max_low_pfn;
90unsigned long min_low_pfn;
91unsigned long max_pfn;
92unsigned long long max_possible_pfn;
93
fe091c20
TH
94static struct memblock_region memblock_memory_init_regions[INIT_MEMBLOCK_REGIONS] __initdata_memblock;
95static struct memblock_region memblock_reserved_init_regions[INIT_MEMBLOCK_REGIONS] __initdata_memblock;
70210ed9
PH
96#ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
97static struct memblock_region memblock_physmem_init_regions[INIT_PHYSMEM_REGIONS] __initdata_memblock;
98#endif
fe091c20
TH
99
100struct memblock memblock __initdata_memblock = {
101 .memory.regions = memblock_memory_init_regions,
102 .memory.cnt = 1, /* empty dummy entry */
103 .memory.max = INIT_MEMBLOCK_REGIONS,
0262d9c8 104 .memory.name = "memory",
fe091c20
TH
105
106 .reserved.regions = memblock_reserved_init_regions,
107 .reserved.cnt = 1, /* empty dummy entry */
108 .reserved.max = INIT_MEMBLOCK_REGIONS,
0262d9c8 109 .reserved.name = "reserved",
fe091c20 110
70210ed9
PH
111#ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
112 .physmem.regions = memblock_physmem_init_regions,
113 .physmem.cnt = 1, /* empty dummy entry */
114 .physmem.max = INIT_PHYSMEM_REGIONS,
0262d9c8 115 .physmem.name = "physmem",
70210ed9
PH
116#endif
117
79442ed1 118 .bottom_up = false,
fe091c20
TH
119 .current_limit = MEMBLOCK_ALLOC_ANYWHERE,
120};
95f72d1e 121
10d06439 122int memblock_debug __initdata_memblock;
a3f5bafc 123static bool system_has_some_mirror __initdata_memblock = false;
1aadc056 124static int memblock_can_resize __initdata_memblock;
181eb394
GS
125static int memblock_memory_in_slab __initdata_memblock = 0;
126static int memblock_reserved_in_slab __initdata_memblock = 0;
95f72d1e 127
e1720fee 128enum memblock_flags __init_memblock choose_memblock_flags(void)
a3f5bafc
TL
129{
130 return system_has_some_mirror ? MEMBLOCK_MIRROR : MEMBLOCK_NONE;
131}
132
eb18f1b5
TH
133/* adjust *@size so that (@base + *@size) doesn't overflow, return new size */
134static inline phys_addr_t memblock_cap_size(phys_addr_t base, phys_addr_t *size)
135{
1c4bc43d 136 return *size = min(*size, PHYS_ADDR_MAX - base);
eb18f1b5
TH
137}
138
6ed311b2
BH
139/*
140 * Address comparison utilities
141 */
10d06439 142static unsigned long __init_memblock memblock_addrs_overlap(phys_addr_t base1, phys_addr_t size1,
2898cc4c 143 phys_addr_t base2, phys_addr_t size2)
95f72d1e
YL
144{
145 return ((base1 < (base2 + size2)) && (base2 < (base1 + size1)));
146}
147
95cf82ec 148bool __init_memblock memblock_overlaps_region(struct memblock_type *type,
2d7d3eb2 149 phys_addr_t base, phys_addr_t size)
6ed311b2
BH
150{
151 unsigned long i;
152
f14516fb
AK
153 for (i = 0; i < type->cnt; i++)
154 if (memblock_addrs_overlap(base, size, type->regions[i].base,
155 type->regions[i].size))
6ed311b2 156 break;
c5c5c9d1 157 return i < type->cnt;
6ed311b2
BH
158}
159
47cec443 160/**
79442ed1
TC
161 * __memblock_find_range_bottom_up - find free area utility in bottom-up
162 * @start: start of candidate range
47cec443
MR
163 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
164 * %MEMBLOCK_ALLOC_ACCESSIBLE
79442ed1
TC
165 * @size: size of free area to find
166 * @align: alignment of free area to find
b1154233 167 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
fc6daaf9 168 * @flags: pick from blocks based on memory attributes
79442ed1
TC
169 *
170 * Utility called from memblock_find_in_range_node(), find free area bottom-up.
171 *
47cec443 172 * Return:
79442ed1
TC
173 * Found address on success, 0 on failure.
174 */
175static phys_addr_t __init_memblock
176__memblock_find_range_bottom_up(phys_addr_t start, phys_addr_t end,
fc6daaf9 177 phys_addr_t size, phys_addr_t align, int nid,
e1720fee 178 enum memblock_flags flags)
79442ed1
TC
179{
180 phys_addr_t this_start, this_end, cand;
181 u64 i;
182
fc6daaf9 183 for_each_free_mem_range(i, nid, flags, &this_start, &this_end, NULL) {
79442ed1
TC
184 this_start = clamp(this_start, start, end);
185 this_end = clamp(this_end, start, end);
186
187 cand = round_up(this_start, align);
188 if (cand < this_end && this_end - cand >= size)
189 return cand;
190 }
191
192 return 0;
193}
194
7bd0b0f0 195/**
1402899e 196 * __memblock_find_range_top_down - find free area utility, in top-down
7bd0b0f0 197 * @start: start of candidate range
47cec443
MR
198 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
199 * %MEMBLOCK_ALLOC_ACCESSIBLE
7bd0b0f0
TH
200 * @size: size of free area to find
201 * @align: alignment of free area to find
b1154233 202 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
fc6daaf9 203 * @flags: pick from blocks based on memory attributes
7bd0b0f0 204 *
1402899e 205 * Utility called from memblock_find_in_range_node(), find free area top-down.
7bd0b0f0 206 *
47cec443 207 * Return:
79442ed1 208 * Found address on success, 0 on failure.
6ed311b2 209 */
1402899e
TC
210static phys_addr_t __init_memblock
211__memblock_find_range_top_down(phys_addr_t start, phys_addr_t end,
fc6daaf9 212 phys_addr_t size, phys_addr_t align, int nid,
e1720fee 213 enum memblock_flags flags)
f7210e6c
TC
214{
215 phys_addr_t this_start, this_end, cand;
216 u64 i;
217
fc6daaf9
TL
218 for_each_free_mem_range_reverse(i, nid, flags, &this_start, &this_end,
219 NULL) {
f7210e6c
TC
220 this_start = clamp(this_start, start, end);
221 this_end = clamp(this_end, start, end);
222
223 if (this_end < size)
224 continue;
225
226 cand = round_down(this_end - size, align);
227 if (cand >= this_start)
228 return cand;
229 }
1402899e 230
f7210e6c
TC
231 return 0;
232}
6ed311b2 233
1402899e
TC
234/**
235 * memblock_find_in_range_node - find free area in given range and node
1402899e
TC
236 * @size: size of free area to find
237 * @align: alignment of free area to find
87029ee9 238 * @start: start of candidate range
47cec443
MR
239 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
240 * %MEMBLOCK_ALLOC_ACCESSIBLE
b1154233 241 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
fc6daaf9 242 * @flags: pick from blocks based on memory attributes
1402899e
TC
243 *
244 * Find @size free area aligned to @align in the specified range and node.
245 *
79442ed1
TC
246 * When allocation direction is bottom-up, the @start should be greater
247 * than the end of the kernel image. Otherwise, it will be trimmed. The
248 * reason is that we want the bottom-up allocation just near the kernel
249 * image so it is highly likely that the allocated memory and the kernel
250 * will reside in the same node.
251 *
252 * If bottom-up allocation failed, will try to allocate memory top-down.
253 *
47cec443 254 * Return:
79442ed1 255 * Found address on success, 0 on failure.
1402899e 256 */
87029ee9
GS
257phys_addr_t __init_memblock memblock_find_in_range_node(phys_addr_t size,
258 phys_addr_t align, phys_addr_t start,
e1720fee
MR
259 phys_addr_t end, int nid,
260 enum memblock_flags flags)
1402899e 261{
0cfb8f0c 262 phys_addr_t kernel_end, ret;
79442ed1 263
1402899e 264 /* pump up @end */
fed84c78
QC
265 if (end == MEMBLOCK_ALLOC_ACCESSIBLE ||
266 end == MEMBLOCK_ALLOC_KASAN)
1402899e
TC
267 end = memblock.current_limit;
268
269 /* avoid allocating the first page */
270 start = max_t(phys_addr_t, start, PAGE_SIZE);
271 end = max(start, end);
79442ed1
TC
272 kernel_end = __pa_symbol(_end);
273
274 /*
275 * try bottom-up allocation only when bottom-up mode
276 * is set and @end is above the kernel image.
277 */
278 if (memblock_bottom_up() && end > kernel_end) {
279 phys_addr_t bottom_up_start;
280
281 /* make sure we will allocate above the kernel */
282 bottom_up_start = max(start, kernel_end);
283
284 /* ok, try bottom-up allocation first */
285 ret = __memblock_find_range_bottom_up(bottom_up_start, end,
fc6daaf9 286 size, align, nid, flags);
79442ed1
TC
287 if (ret)
288 return ret;
289
290 /*
291 * we always limit bottom-up allocation above the kernel,
292 * but top-down allocation doesn't have the limit, so
293 * retrying top-down allocation may succeed when bottom-up
294 * allocation failed.
295 *
296 * bottom-up allocation is expected to be fail very rarely,
297 * so we use WARN_ONCE() here to see the stack trace if
298 * fail happens.
299 */
e3d301ca
MH
300 WARN_ONCE(IS_ENABLED(CONFIG_MEMORY_HOTREMOVE),
301 "memblock: bottom-up allocation failed, memory hotremove may be affected\n");
79442ed1 302 }
1402899e 303
fc6daaf9
TL
304 return __memblock_find_range_top_down(start, end, size, align, nid,
305 flags);
1402899e
TC
306}
307
7bd0b0f0
TH
308/**
309 * memblock_find_in_range - find free area in given range
310 * @start: start of candidate range
47cec443
MR
311 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
312 * %MEMBLOCK_ALLOC_ACCESSIBLE
7bd0b0f0
TH
313 * @size: size of free area to find
314 * @align: alignment of free area to find
315 *
316 * Find @size free area aligned to @align in the specified range.
317 *
47cec443 318 * Return:
79442ed1 319 * Found address on success, 0 on failure.
fc769a8e 320 */
7bd0b0f0
TH
321phys_addr_t __init_memblock memblock_find_in_range(phys_addr_t start,
322 phys_addr_t end, phys_addr_t size,
323 phys_addr_t align)
6ed311b2 324{
a3f5bafc 325 phys_addr_t ret;
e1720fee 326 enum memblock_flags flags = choose_memblock_flags();
a3f5bafc
TL
327
328again:
329 ret = memblock_find_in_range_node(size, align, start, end,
330 NUMA_NO_NODE, flags);
331
332 if (!ret && (flags & MEMBLOCK_MIRROR)) {
333 pr_warn("Could not allocate %pap bytes of mirrored memory\n",
334 &size);
335 flags &= ~MEMBLOCK_MIRROR;
336 goto again;
337 }
338
339 return ret;
6ed311b2
BH
340}
341
10d06439 342static void __init_memblock memblock_remove_region(struct memblock_type *type, unsigned long r)
95f72d1e 343{
1440c4e2 344 type->total_size -= type->regions[r].size;
7c0caeb8
TH
345 memmove(&type->regions[r], &type->regions[r + 1],
346 (type->cnt - (r + 1)) * sizeof(type->regions[r]));
e3239ff9 347 type->cnt--;
95f72d1e 348
8f7a6605
BH
349 /* Special case for empty arrays */
350 if (type->cnt == 0) {
1440c4e2 351 WARN_ON(type->total_size != 0);
8f7a6605
BH
352 type->cnt = 1;
353 type->regions[0].base = 0;
354 type->regions[0].size = 0;
66a20757 355 type->regions[0].flags = 0;
7c0caeb8 356 memblock_set_region_node(&type->regions[0], MAX_NUMNODES);
8f7a6605 357 }
95f72d1e
YL
358}
359
354f17e1 360#ifdef CONFIG_ARCH_DISCARD_MEMBLOCK
3010f876 361/**
47cec443 362 * memblock_discard - discard memory and reserved arrays if they were allocated
3010f876
PT
363 */
364void __init memblock_discard(void)
5e270e25 365{
3010f876 366 phys_addr_t addr, size;
5e270e25 367
3010f876
PT
368 if (memblock.reserved.regions != memblock_reserved_init_regions) {
369 addr = __pa(memblock.reserved.regions);
370 size = PAGE_ALIGN(sizeof(struct memblock_region) *
371 memblock.reserved.max);
372 __memblock_free_late(addr, size);
373 }
5e270e25 374
91b540f9 375 if (memblock.memory.regions != memblock_memory_init_regions) {
3010f876
PT
376 addr = __pa(memblock.memory.regions);
377 size = PAGE_ALIGN(sizeof(struct memblock_region) *
378 memblock.memory.max);
379 __memblock_free_late(addr, size);
380 }
5e270e25 381}
5e270e25
PH
382#endif
383
48c3b583
GP
384/**
385 * memblock_double_array - double the size of the memblock regions array
386 * @type: memblock type of the regions array being doubled
387 * @new_area_start: starting address of memory range to avoid overlap with
388 * @new_area_size: size of memory range to avoid overlap with
389 *
390 * Double the size of the @type regions array. If memblock is being used to
391 * allocate memory for a new reserved regions array and there is a previously
47cec443 392 * allocated memory range [@new_area_start, @new_area_start + @new_area_size]
48c3b583
GP
393 * waiting to be reserved, ensure the memory used by the new array does
394 * not overlap.
395 *
47cec443 396 * Return:
48c3b583
GP
397 * 0 on success, -1 on failure.
398 */
399static int __init_memblock memblock_double_array(struct memblock_type *type,
400 phys_addr_t new_area_start,
401 phys_addr_t new_area_size)
142b45a7
BH
402{
403 struct memblock_region *new_array, *old_array;
29f67386 404 phys_addr_t old_alloc_size, new_alloc_size;
a36aab89 405 phys_addr_t old_size, new_size, addr, new_end;
142b45a7 406 int use_slab = slab_is_available();
181eb394 407 int *in_slab;
142b45a7
BH
408
409 /* We don't allow resizing until we know about the reserved regions
410 * of memory that aren't suitable for allocation
411 */
412 if (!memblock_can_resize)
413 return -1;
414
142b45a7
BH
415 /* Calculate new doubled size */
416 old_size = type->max * sizeof(struct memblock_region);
417 new_size = old_size << 1;
29f67386
YL
418 /*
419 * We need to allocated new one align to PAGE_SIZE,
420 * so we can free them completely later.
421 */
422 old_alloc_size = PAGE_ALIGN(old_size);
423 new_alloc_size = PAGE_ALIGN(new_size);
142b45a7 424
181eb394
GS
425 /* Retrieve the slab flag */
426 if (type == &memblock.memory)
427 in_slab = &memblock_memory_in_slab;
428 else
429 in_slab = &memblock_reserved_in_slab;
430
142b45a7
BH
431 /* Try to find some space for it.
432 *
433 * WARNING: We assume that either slab_is_available() and we use it or
fd07383b
AM
434 * we use MEMBLOCK for allocations. That means that this is unsafe to
435 * use when bootmem is currently active (unless bootmem itself is
436 * implemented on top of MEMBLOCK which isn't the case yet)
142b45a7
BH
437 *
438 * This should however not be an issue for now, as we currently only
fd07383b
AM
439 * call into MEMBLOCK while it's still active, or much later when slab
440 * is active for memory hotplug operations
142b45a7
BH
441 */
442 if (use_slab) {
443 new_array = kmalloc(new_size, GFP_KERNEL);
1f5026a7 444 addr = new_array ? __pa(new_array) : 0;
4e2f0775 445 } else {
48c3b583
GP
446 /* only exclude range when trying to double reserved.regions */
447 if (type != &memblock.reserved)
448 new_area_start = new_area_size = 0;
449
450 addr = memblock_find_in_range(new_area_start + new_area_size,
451 memblock.current_limit,
29f67386 452 new_alloc_size, PAGE_SIZE);
48c3b583
GP
453 if (!addr && new_area_size)
454 addr = memblock_find_in_range(0,
fd07383b
AM
455 min(new_area_start, memblock.current_limit),
456 new_alloc_size, PAGE_SIZE);
48c3b583 457
15674868 458 new_array = addr ? __va(addr) : NULL;
4e2f0775 459 }
1f5026a7 460 if (!addr) {
142b45a7 461 pr_err("memblock: Failed to double %s array from %ld to %ld entries !\n",
0262d9c8 462 type->name, type->max, type->max * 2);
142b45a7
BH
463 return -1;
464 }
142b45a7 465
a36aab89
MR
466 new_end = addr + new_size - 1;
467 memblock_dbg("memblock: %s is doubled to %ld at [%pa-%pa]",
468 type->name, type->max * 2, &addr, &new_end);
ea9e4376 469
fd07383b
AM
470 /*
471 * Found space, we now need to move the array over before we add the
472 * reserved region since it may be our reserved array itself that is
473 * full.
142b45a7
BH
474 */
475 memcpy(new_array, type->regions, old_size);
476 memset(new_array + type->max, 0, old_size);
477 old_array = type->regions;
478 type->regions = new_array;
479 type->max <<= 1;
480
fd07383b 481 /* Free old array. We needn't free it if the array is the static one */
181eb394
GS
482 if (*in_slab)
483 kfree(old_array);
484 else if (old_array != memblock_memory_init_regions &&
485 old_array != memblock_reserved_init_regions)
29f67386 486 memblock_free(__pa(old_array), old_alloc_size);
142b45a7 487
fd07383b
AM
488 /*
489 * Reserve the new array if that comes from the memblock. Otherwise, we
490 * needn't do it
181eb394
GS
491 */
492 if (!use_slab)
29f67386 493 BUG_ON(memblock_reserve(addr, new_alloc_size));
181eb394
GS
494
495 /* Update slab flag */
496 *in_slab = use_slab;
497
142b45a7
BH
498 return 0;
499}
500
784656f9
TH
501/**
502 * memblock_merge_regions - merge neighboring compatible regions
503 * @type: memblock type to scan
504 *
505 * Scan @type and merge neighboring compatible regions.
506 */
507static void __init_memblock memblock_merge_regions(struct memblock_type *type)
95f72d1e 508{
784656f9 509 int i = 0;
95f72d1e 510
784656f9
TH
511 /* cnt never goes below 1 */
512 while (i < type->cnt - 1) {
513 struct memblock_region *this = &type->regions[i];
514 struct memblock_region *next = &type->regions[i + 1];
95f72d1e 515
7c0caeb8
TH
516 if (this->base + this->size != next->base ||
517 memblock_get_region_node(this) !=
66a20757
TC
518 memblock_get_region_node(next) ||
519 this->flags != next->flags) {
784656f9
TH
520 BUG_ON(this->base + this->size > next->base);
521 i++;
522 continue;
8f7a6605
BH
523 }
524
784656f9 525 this->size += next->size;
c0232ae8
LF
526 /* move forward from next + 1, index of which is i + 2 */
527 memmove(next, next + 1, (type->cnt - (i + 2)) * sizeof(*next));
784656f9 528 type->cnt--;
95f72d1e 529 }
784656f9 530}
95f72d1e 531
784656f9
TH
532/**
533 * memblock_insert_region - insert new memblock region
209ff86d
TC
534 * @type: memblock type to insert into
535 * @idx: index for the insertion point
536 * @base: base address of the new region
537 * @size: size of the new region
538 * @nid: node id of the new region
66a20757 539 * @flags: flags of the new region
784656f9 540 *
47cec443 541 * Insert new memblock region [@base, @base + @size) into @type at @idx.
412d0008 542 * @type must already have extra room to accommodate the new region.
784656f9
TH
543 */
544static void __init_memblock memblock_insert_region(struct memblock_type *type,
545 int idx, phys_addr_t base,
66a20757 546 phys_addr_t size,
e1720fee
MR
547 int nid,
548 enum memblock_flags flags)
784656f9
TH
549{
550 struct memblock_region *rgn = &type->regions[idx];
551
552 BUG_ON(type->cnt >= type->max);
553 memmove(rgn + 1, rgn, (type->cnt - idx) * sizeof(*rgn));
554 rgn->base = base;
555 rgn->size = size;
66a20757 556 rgn->flags = flags;
7c0caeb8 557 memblock_set_region_node(rgn, nid);
784656f9 558 type->cnt++;
1440c4e2 559 type->total_size += size;
784656f9
TH
560}
561
562/**
f1af9d3a 563 * memblock_add_range - add new memblock region
784656f9
TH
564 * @type: memblock type to add new region into
565 * @base: base address of the new region
566 * @size: size of the new region
7fb0bc3f 567 * @nid: nid of the new region
66a20757 568 * @flags: flags of the new region
784656f9 569 *
47cec443 570 * Add new memblock region [@base, @base + @size) into @type. The new region
784656f9
TH
571 * is allowed to overlap with existing ones - overlaps don't affect already
572 * existing regions. @type is guaranteed to be minimal (all neighbouring
573 * compatible regions are merged) after the addition.
574 *
47cec443 575 * Return:
784656f9
TH
576 * 0 on success, -errno on failure.
577 */
f1af9d3a 578int __init_memblock memblock_add_range(struct memblock_type *type,
66a20757 579 phys_addr_t base, phys_addr_t size,
e1720fee 580 int nid, enum memblock_flags flags)
784656f9
TH
581{
582 bool insert = false;
eb18f1b5
TH
583 phys_addr_t obase = base;
584 phys_addr_t end = base + memblock_cap_size(base, &size);
8c9c1701
AK
585 int idx, nr_new;
586 struct memblock_region *rgn;
784656f9 587
b3dc627c
TH
588 if (!size)
589 return 0;
590
784656f9
TH
591 /* special case for empty array */
592 if (type->regions[0].size == 0) {
1440c4e2 593 WARN_ON(type->cnt != 1 || type->total_size);
8f7a6605
BH
594 type->regions[0].base = base;
595 type->regions[0].size = size;
66a20757 596 type->regions[0].flags = flags;
7fb0bc3f 597 memblock_set_region_node(&type->regions[0], nid);
1440c4e2 598 type->total_size = size;
8f7a6605 599 return 0;
95f72d1e 600 }
784656f9
TH
601repeat:
602 /*
603 * The following is executed twice. Once with %false @insert and
604 * then with %true. The first counts the number of regions needed
412d0008 605 * to accommodate the new area. The second actually inserts them.
142b45a7 606 */
784656f9
TH
607 base = obase;
608 nr_new = 0;
95f72d1e 609
66e8b438 610 for_each_memblock_type(idx, type, rgn) {
784656f9
TH
611 phys_addr_t rbase = rgn->base;
612 phys_addr_t rend = rbase + rgn->size;
613
614 if (rbase >= end)
95f72d1e 615 break;
784656f9
TH
616 if (rend <= base)
617 continue;
618 /*
619 * @rgn overlaps. If it separates the lower part of new
620 * area, insert that portion.
621 */
622 if (rbase > base) {
c0a29498
WY
623#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
624 WARN_ON(nid != memblock_get_region_node(rgn));
625#endif
4fcab5f4 626 WARN_ON(flags != rgn->flags);
784656f9
TH
627 nr_new++;
628 if (insert)
8c9c1701 629 memblock_insert_region(type, idx++, base,
66a20757
TC
630 rbase - base, nid,
631 flags);
95f72d1e 632 }
784656f9
TH
633 /* area below @rend is dealt with, forget about it */
634 base = min(rend, end);
95f72d1e 635 }
784656f9
TH
636
637 /* insert the remaining portion */
638 if (base < end) {
639 nr_new++;
640 if (insert)
8c9c1701 641 memblock_insert_region(type, idx, base, end - base,
66a20757 642 nid, flags);
95f72d1e 643 }
95f72d1e 644
ef3cc4db 645 if (!nr_new)
646 return 0;
647
784656f9
TH
648 /*
649 * If this was the first round, resize array and repeat for actual
650 * insertions; otherwise, merge and return.
142b45a7 651 */
784656f9
TH
652 if (!insert) {
653 while (type->cnt + nr_new > type->max)
48c3b583 654 if (memblock_double_array(type, obase, size) < 0)
784656f9
TH
655 return -ENOMEM;
656 insert = true;
657 goto repeat;
658 } else {
659 memblock_merge_regions(type);
660 return 0;
142b45a7 661 }
95f72d1e
YL
662}
663
48a833cc
MR
664/**
665 * memblock_add_node - add new memblock region within a NUMA node
666 * @base: base address of the new region
667 * @size: size of the new region
668 * @nid: nid of the new region
669 *
670 * Add new memblock region [@base, @base + @size) to the "memory"
671 * type. See memblock_add_range() description for mode details
672 *
673 * Return:
674 * 0 on success, -errno on failure.
675 */
7fb0bc3f
TH
676int __init_memblock memblock_add_node(phys_addr_t base, phys_addr_t size,
677 int nid)
678{
f1af9d3a 679 return memblock_add_range(&memblock.memory, base, size, nid, 0);
7fb0bc3f
TH
680}
681
48a833cc
MR
682/**
683 * memblock_add - add new memblock region
684 * @base: base address of the new region
685 * @size: size of the new region
686 *
687 * Add new memblock region [@base, @base + @size) to the "memory"
688 * type. See memblock_add_range() description for mode details
689 *
690 * Return:
691 * 0 on success, -errno on failure.
692 */
f705ac4b 693int __init_memblock memblock_add(phys_addr_t base, phys_addr_t size)
6a4055bc 694{
5d63f81c
MC
695 phys_addr_t end = base + size - 1;
696
697 memblock_dbg("memblock_add: [%pa-%pa] %pF\n",
698 &base, &end, (void *)_RET_IP_);
6a4055bc 699
f705ac4b 700 return memblock_add_range(&memblock.memory, base, size, MAX_NUMNODES, 0);
95f72d1e
YL
701}
702
6a9ceb31
TH
703/**
704 * memblock_isolate_range - isolate given range into disjoint memblocks
705 * @type: memblock type to isolate range for
706 * @base: base of range to isolate
707 * @size: size of range to isolate
708 * @start_rgn: out parameter for the start of isolated region
709 * @end_rgn: out parameter for the end of isolated region
710 *
711 * Walk @type and ensure that regions don't cross the boundaries defined by
47cec443 712 * [@base, @base + @size). Crossing regions are split at the boundaries,
6a9ceb31
TH
713 * which may create at most two more regions. The index of the first
714 * region inside the range is returned in *@start_rgn and end in *@end_rgn.
715 *
47cec443 716 * Return:
6a9ceb31
TH
717 * 0 on success, -errno on failure.
718 */
719static int __init_memblock memblock_isolate_range(struct memblock_type *type,
720 phys_addr_t base, phys_addr_t size,
721 int *start_rgn, int *end_rgn)
722{
eb18f1b5 723 phys_addr_t end = base + memblock_cap_size(base, &size);
8c9c1701
AK
724 int idx;
725 struct memblock_region *rgn;
6a9ceb31
TH
726
727 *start_rgn = *end_rgn = 0;
728
b3dc627c
TH
729 if (!size)
730 return 0;
731
6a9ceb31
TH
732 /* we'll create at most two more regions */
733 while (type->cnt + 2 > type->max)
48c3b583 734 if (memblock_double_array(type, base, size) < 0)
6a9ceb31
TH
735 return -ENOMEM;
736
66e8b438 737 for_each_memblock_type(idx, type, rgn) {
6a9ceb31
TH
738 phys_addr_t rbase = rgn->base;
739 phys_addr_t rend = rbase + rgn->size;
740
741 if (rbase >= end)
742 break;
743 if (rend <= base)
744 continue;
745
746 if (rbase < base) {
747 /*
748 * @rgn intersects from below. Split and continue
749 * to process the next region - the new top half.
750 */
751 rgn->base = base;
1440c4e2
TH
752 rgn->size -= base - rbase;
753 type->total_size -= base - rbase;
8c9c1701 754 memblock_insert_region(type, idx, rbase, base - rbase,
66a20757
TC
755 memblock_get_region_node(rgn),
756 rgn->flags);
6a9ceb31
TH
757 } else if (rend > end) {
758 /*
759 * @rgn intersects from above. Split and redo the
760 * current region - the new bottom half.
761 */
762 rgn->base = end;
1440c4e2
TH
763 rgn->size -= end - rbase;
764 type->total_size -= end - rbase;
8c9c1701 765 memblock_insert_region(type, idx--, rbase, end - rbase,
66a20757
TC
766 memblock_get_region_node(rgn),
767 rgn->flags);
6a9ceb31
TH
768 } else {
769 /* @rgn is fully contained, record it */
770 if (!*end_rgn)
8c9c1701
AK
771 *start_rgn = idx;
772 *end_rgn = idx + 1;
6a9ceb31
TH
773 }
774 }
775
776 return 0;
777}
6a9ceb31 778
35bd16a2 779static int __init_memblock memblock_remove_range(struct memblock_type *type,
f1af9d3a 780 phys_addr_t base, phys_addr_t size)
95f72d1e 781{
71936180
TH
782 int start_rgn, end_rgn;
783 int i, ret;
95f72d1e 784
71936180
TH
785 ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
786 if (ret)
787 return ret;
95f72d1e 788
71936180
TH
789 for (i = end_rgn - 1; i >= start_rgn; i--)
790 memblock_remove_region(type, i);
8f7a6605 791 return 0;
95f72d1e
YL
792}
793
581adcbe 794int __init_memblock memblock_remove(phys_addr_t base, phys_addr_t size)
95f72d1e 795{
25cf23d7
MK
796 phys_addr_t end = base + size - 1;
797
798 memblock_dbg("memblock_remove: [%pa-%pa] %pS\n",
799 &base, &end, (void *)_RET_IP_);
800
f1af9d3a 801 return memblock_remove_range(&memblock.memory, base, size);
95f72d1e
YL
802}
803
4d72868c
MR
804/**
805 * memblock_free - free boot memory block
806 * @base: phys starting address of the boot memory block
807 * @size: size of the boot memory block in bytes
808 *
809 * Free boot memory block previously allocated by memblock_alloc_xx() API.
810 * The freeing memory will not be released to the buddy allocator.
811 */
581adcbe 812int __init_memblock memblock_free(phys_addr_t base, phys_addr_t size)
95f72d1e 813{
5d63f81c
MC
814 phys_addr_t end = base + size - 1;
815
816 memblock_dbg(" memblock_free: [%pa-%pa] %pF\n",
817 &base, &end, (void *)_RET_IP_);
24aa0788 818
9099daed 819 kmemleak_free_part_phys(base, size);
f1af9d3a 820 return memblock_remove_range(&memblock.reserved, base, size);
95f72d1e
YL
821}
822
f705ac4b 823int __init_memblock memblock_reserve(phys_addr_t base, phys_addr_t size)
95f72d1e 824{
5d63f81c
MC
825 phys_addr_t end = base + size - 1;
826
827 memblock_dbg("memblock_reserve: [%pa-%pa] %pF\n",
828 &base, &end, (void *)_RET_IP_);
95f72d1e 829
f705ac4b 830 return memblock_add_range(&memblock.reserved, base, size, MAX_NUMNODES, 0);
95f72d1e
YL
831}
832
66b16edf 833/**
47cec443
MR
834 * memblock_setclr_flag - set or clear flag for a memory region
835 * @base: base address of the region
836 * @size: size of the region
837 * @set: set or clear the flag
838 * @flag: the flag to udpate
66b16edf 839 *
4308ce17 840 * This function isolates region [@base, @base + @size), and sets/clears flag
66b16edf 841 *
47cec443 842 * Return: 0 on success, -errno on failure.
66b16edf 843 */
4308ce17
TL
844static int __init_memblock memblock_setclr_flag(phys_addr_t base,
845 phys_addr_t size, int set, int flag)
66b16edf
TC
846{
847 struct memblock_type *type = &memblock.memory;
848 int i, ret, start_rgn, end_rgn;
849
850 ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
851 if (ret)
852 return ret;
853
854 for (i = start_rgn; i < end_rgn; i++)
4308ce17
TL
855 if (set)
856 memblock_set_region_flags(&type->regions[i], flag);
857 else
858 memblock_clear_region_flags(&type->regions[i], flag);
66b16edf
TC
859
860 memblock_merge_regions(type);
861 return 0;
862}
863
864/**
4308ce17 865 * memblock_mark_hotplug - Mark hotpluggable memory with flag MEMBLOCK_HOTPLUG.
66b16edf
TC
866 * @base: the base phys addr of the region
867 * @size: the size of the region
868 *
47cec443 869 * Return: 0 on success, -errno on failure.
4308ce17
TL
870 */
871int __init_memblock memblock_mark_hotplug(phys_addr_t base, phys_addr_t size)
872{
873 return memblock_setclr_flag(base, size, 1, MEMBLOCK_HOTPLUG);
874}
875
876/**
877 * memblock_clear_hotplug - Clear flag MEMBLOCK_HOTPLUG for a specified region.
878 * @base: the base phys addr of the region
879 * @size: the size of the region
66b16edf 880 *
47cec443 881 * Return: 0 on success, -errno on failure.
66b16edf
TC
882 */
883int __init_memblock memblock_clear_hotplug(phys_addr_t base, phys_addr_t size)
884{
4308ce17 885 return memblock_setclr_flag(base, size, 0, MEMBLOCK_HOTPLUG);
66b16edf
TC
886}
887
a3f5bafc
TL
888/**
889 * memblock_mark_mirror - Mark mirrored memory with flag MEMBLOCK_MIRROR.
890 * @base: the base phys addr of the region
891 * @size: the size of the region
892 *
47cec443 893 * Return: 0 on success, -errno on failure.
a3f5bafc
TL
894 */
895int __init_memblock memblock_mark_mirror(phys_addr_t base, phys_addr_t size)
896{
897 system_has_some_mirror = true;
898
899 return memblock_setclr_flag(base, size, 1, MEMBLOCK_MIRROR);
900}
901
bf3d3cc5
AB
902/**
903 * memblock_mark_nomap - Mark a memory region with flag MEMBLOCK_NOMAP.
904 * @base: the base phys addr of the region
905 * @size: the size of the region
906 *
47cec443 907 * Return: 0 on success, -errno on failure.
bf3d3cc5
AB
908 */
909int __init_memblock memblock_mark_nomap(phys_addr_t base, phys_addr_t size)
910{
911 return memblock_setclr_flag(base, size, 1, MEMBLOCK_NOMAP);
912}
a3f5bafc 913
4c546b8a
AT
914/**
915 * memblock_clear_nomap - Clear flag MEMBLOCK_NOMAP for a specified region.
916 * @base: the base phys addr of the region
917 * @size: the size of the region
918 *
47cec443 919 * Return: 0 on success, -errno on failure.
4c546b8a
AT
920 */
921int __init_memblock memblock_clear_nomap(phys_addr_t base, phys_addr_t size)
922{
923 return memblock_setclr_flag(base, size, 0, MEMBLOCK_NOMAP);
924}
925
8e7a7f86
RH
926/**
927 * __next_reserved_mem_region - next function for for_each_reserved_region()
928 * @idx: pointer to u64 loop variable
929 * @out_start: ptr to phys_addr_t for start address of the region, can be %NULL
930 * @out_end: ptr to phys_addr_t for end address of the region, can be %NULL
931 *
932 * Iterate over all reserved memory regions.
933 */
934void __init_memblock __next_reserved_mem_region(u64 *idx,
935 phys_addr_t *out_start,
936 phys_addr_t *out_end)
937{
567d117b 938 struct memblock_type *type = &memblock.reserved;
8e7a7f86 939
cd33a76b 940 if (*idx < type->cnt) {
567d117b 941 struct memblock_region *r = &type->regions[*idx];
8e7a7f86
RH
942 phys_addr_t base = r->base;
943 phys_addr_t size = r->size;
944
945 if (out_start)
946 *out_start = base;
947 if (out_end)
948 *out_end = base + size - 1;
949
950 *idx += 1;
951 return;
952 }
953
954 /* signal end of iteration */
955 *idx = ULLONG_MAX;
956}
957
35fd0808 958/**
f1af9d3a 959 * __next__mem_range - next function for for_each_free_mem_range() etc.
35fd0808 960 * @idx: pointer to u64 loop variable
b1154233 961 * @nid: node selector, %NUMA_NO_NODE for all nodes
fc6daaf9 962 * @flags: pick from blocks based on memory attributes
f1af9d3a
PH
963 * @type_a: pointer to memblock_type from where the range is taken
964 * @type_b: pointer to memblock_type which excludes memory from being taken
dad7557e
WL
965 * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL
966 * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL
967 * @out_nid: ptr to int for nid of the range, can be %NULL
35fd0808 968 *
f1af9d3a 969 * Find the first area from *@idx which matches @nid, fill the out
35fd0808 970 * parameters, and update *@idx for the next iteration. The lower 32bit of
f1af9d3a
PH
971 * *@idx contains index into type_a and the upper 32bit indexes the
972 * areas before each region in type_b. For example, if type_b regions
35fd0808
TH
973 * look like the following,
974 *
975 * 0:[0-16), 1:[32-48), 2:[128-130)
976 *
977 * The upper 32bit indexes the following regions.
978 *
979 * 0:[0-0), 1:[16-32), 2:[48-128), 3:[130-MAX)
980 *
981 * As both region arrays are sorted, the function advances the two indices
982 * in lockstep and returns each intersection.
983 */
e1720fee
MR
984void __init_memblock __next_mem_range(u64 *idx, int nid,
985 enum memblock_flags flags,
f1af9d3a
PH
986 struct memblock_type *type_a,
987 struct memblock_type *type_b,
988 phys_addr_t *out_start,
989 phys_addr_t *out_end, int *out_nid)
35fd0808 990{
f1af9d3a
PH
991 int idx_a = *idx & 0xffffffff;
992 int idx_b = *idx >> 32;
b1154233 993
f1af9d3a
PH
994 if (WARN_ONCE(nid == MAX_NUMNODES,
995 "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
560dca27 996 nid = NUMA_NO_NODE;
35fd0808 997
f1af9d3a
PH
998 for (; idx_a < type_a->cnt; idx_a++) {
999 struct memblock_region *m = &type_a->regions[idx_a];
1000
35fd0808
TH
1001 phys_addr_t m_start = m->base;
1002 phys_addr_t m_end = m->base + m->size;
f1af9d3a 1003 int m_nid = memblock_get_region_node(m);
35fd0808
TH
1004
1005 /* only memory regions are associated with nodes, check it */
f1af9d3a 1006 if (nid != NUMA_NO_NODE && nid != m_nid)
35fd0808
TH
1007 continue;
1008
0a313a99
XQ
1009 /* skip hotpluggable memory regions if needed */
1010 if (movable_node_is_enabled() && memblock_is_hotpluggable(m))
1011 continue;
1012
a3f5bafc
TL
1013 /* if we want mirror memory skip non-mirror memory regions */
1014 if ((flags & MEMBLOCK_MIRROR) && !memblock_is_mirror(m))
1015 continue;
1016
bf3d3cc5
AB
1017 /* skip nomap memory unless we were asked for it explicitly */
1018 if (!(flags & MEMBLOCK_NOMAP) && memblock_is_nomap(m))
1019 continue;
1020
f1af9d3a
PH
1021 if (!type_b) {
1022 if (out_start)
1023 *out_start = m_start;
1024 if (out_end)
1025 *out_end = m_end;
1026 if (out_nid)
1027 *out_nid = m_nid;
1028 idx_a++;
1029 *idx = (u32)idx_a | (u64)idx_b << 32;
1030 return;
1031 }
1032
1033 /* scan areas before each reservation */
1034 for (; idx_b < type_b->cnt + 1; idx_b++) {
1035 struct memblock_region *r;
1036 phys_addr_t r_start;
1037 phys_addr_t r_end;
1038
1039 r = &type_b->regions[idx_b];
1040 r_start = idx_b ? r[-1].base + r[-1].size : 0;
1041 r_end = idx_b < type_b->cnt ?
1c4bc43d 1042 r->base : PHYS_ADDR_MAX;
35fd0808 1043
f1af9d3a
PH
1044 /*
1045 * if idx_b advanced past idx_a,
1046 * break out to advance idx_a
1047 */
35fd0808
TH
1048 if (r_start >= m_end)
1049 break;
1050 /* if the two regions intersect, we're done */
1051 if (m_start < r_end) {
1052 if (out_start)
f1af9d3a
PH
1053 *out_start =
1054 max(m_start, r_start);
35fd0808
TH
1055 if (out_end)
1056 *out_end = min(m_end, r_end);
1057 if (out_nid)
f1af9d3a 1058 *out_nid = m_nid;
35fd0808 1059 /*
f1af9d3a
PH
1060 * The region which ends first is
1061 * advanced for the next iteration.
35fd0808
TH
1062 */
1063 if (m_end <= r_end)
f1af9d3a 1064 idx_a++;
35fd0808 1065 else
f1af9d3a
PH
1066 idx_b++;
1067 *idx = (u32)idx_a | (u64)idx_b << 32;
35fd0808
TH
1068 return;
1069 }
1070 }
1071 }
1072
1073 /* signal end of iteration */
1074 *idx = ULLONG_MAX;
1075}
1076
7bd0b0f0 1077/**
f1af9d3a
PH
1078 * __next_mem_range_rev - generic next function for for_each_*_range_rev()
1079 *
7bd0b0f0 1080 * @idx: pointer to u64 loop variable
ad5ea8cd 1081 * @nid: node selector, %NUMA_NO_NODE for all nodes
fc6daaf9 1082 * @flags: pick from blocks based on memory attributes
f1af9d3a
PH
1083 * @type_a: pointer to memblock_type from where the range is taken
1084 * @type_b: pointer to memblock_type which excludes memory from being taken
dad7557e
WL
1085 * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL
1086 * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL
1087 * @out_nid: ptr to int for nid of the range, can be %NULL
7bd0b0f0 1088 *
47cec443
MR
1089 * Finds the next range from type_a which is not marked as unsuitable
1090 * in type_b.
1091 *
f1af9d3a 1092 * Reverse of __next_mem_range().
7bd0b0f0 1093 */
e1720fee
MR
1094void __init_memblock __next_mem_range_rev(u64 *idx, int nid,
1095 enum memblock_flags flags,
f1af9d3a
PH
1096 struct memblock_type *type_a,
1097 struct memblock_type *type_b,
1098 phys_addr_t *out_start,
1099 phys_addr_t *out_end, int *out_nid)
7bd0b0f0 1100{
f1af9d3a
PH
1101 int idx_a = *idx & 0xffffffff;
1102 int idx_b = *idx >> 32;
b1154233 1103
560dca27
GS
1104 if (WARN_ONCE(nid == MAX_NUMNODES, "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
1105 nid = NUMA_NO_NODE;
7bd0b0f0
TH
1106
1107 if (*idx == (u64)ULLONG_MAX) {
f1af9d3a 1108 idx_a = type_a->cnt - 1;
e47608ab 1109 if (type_b != NULL)
1110 idx_b = type_b->cnt;
1111 else
1112 idx_b = 0;
7bd0b0f0
TH
1113 }
1114
f1af9d3a
PH
1115 for (; idx_a >= 0; idx_a--) {
1116 struct memblock_region *m = &type_a->regions[idx_a];
1117
7bd0b0f0
TH
1118 phys_addr_t m_start = m->base;
1119 phys_addr_t m_end = m->base + m->size;
f1af9d3a 1120 int m_nid = memblock_get_region_node(m);
7bd0b0f0
TH
1121
1122 /* only memory regions are associated with nodes, check it */
f1af9d3a 1123 if (nid != NUMA_NO_NODE && nid != m_nid)
7bd0b0f0
TH
1124 continue;
1125
55ac590c
TC
1126 /* skip hotpluggable memory regions if needed */
1127 if (movable_node_is_enabled() && memblock_is_hotpluggable(m))
1128 continue;
1129
a3f5bafc
TL
1130 /* if we want mirror memory skip non-mirror memory regions */
1131 if ((flags & MEMBLOCK_MIRROR) && !memblock_is_mirror(m))
1132 continue;
1133
bf3d3cc5
AB
1134 /* skip nomap memory unless we were asked for it explicitly */
1135 if (!(flags & MEMBLOCK_NOMAP) && memblock_is_nomap(m))
1136 continue;
1137
f1af9d3a
PH
1138 if (!type_b) {
1139 if (out_start)
1140 *out_start = m_start;
1141 if (out_end)
1142 *out_end = m_end;
1143 if (out_nid)
1144 *out_nid = m_nid;
fb399b48 1145 idx_a--;
f1af9d3a
PH
1146 *idx = (u32)idx_a | (u64)idx_b << 32;
1147 return;
1148 }
1149
1150 /* scan areas before each reservation */
1151 for (; idx_b >= 0; idx_b--) {
1152 struct memblock_region *r;
1153 phys_addr_t r_start;
1154 phys_addr_t r_end;
1155
1156 r = &type_b->regions[idx_b];
1157 r_start = idx_b ? r[-1].base + r[-1].size : 0;
1158 r_end = idx_b < type_b->cnt ?
1c4bc43d 1159 r->base : PHYS_ADDR_MAX;
f1af9d3a
PH
1160 /*
1161 * if idx_b advanced past idx_a,
1162 * break out to advance idx_a
1163 */
7bd0b0f0 1164
7bd0b0f0
TH
1165 if (r_end <= m_start)
1166 break;
1167 /* if the two regions intersect, we're done */
1168 if (m_end > r_start) {
1169 if (out_start)
1170 *out_start = max(m_start, r_start);
1171 if (out_end)
1172 *out_end = min(m_end, r_end);
1173 if (out_nid)
f1af9d3a 1174 *out_nid = m_nid;
7bd0b0f0 1175 if (m_start >= r_start)
f1af9d3a 1176 idx_a--;
7bd0b0f0 1177 else
f1af9d3a
PH
1178 idx_b--;
1179 *idx = (u32)idx_a | (u64)idx_b << 32;
7bd0b0f0
TH
1180 return;
1181 }
1182 }
1183 }
f1af9d3a 1184 /* signal end of iteration */
7bd0b0f0
TH
1185 *idx = ULLONG_MAX;
1186}
1187
7c0caeb8
TH
1188#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
1189/*
45e79815 1190 * Common iterator interface used to define for_each_mem_pfn_range().
7c0caeb8
TH
1191 */
1192void __init_memblock __next_mem_pfn_range(int *idx, int nid,
1193 unsigned long *out_start_pfn,
1194 unsigned long *out_end_pfn, int *out_nid)
1195{
1196 struct memblock_type *type = &memblock.memory;
1197 struct memblock_region *r;
1198
1199 while (++*idx < type->cnt) {
1200 r = &type->regions[*idx];
1201
1202 if (PFN_UP(r->base) >= PFN_DOWN(r->base + r->size))
1203 continue;
1204 if (nid == MAX_NUMNODES || nid == r->nid)
1205 break;
1206 }
1207 if (*idx >= type->cnt) {
1208 *idx = -1;
1209 return;
1210 }
1211
1212 if (out_start_pfn)
1213 *out_start_pfn = PFN_UP(r->base);
1214 if (out_end_pfn)
1215 *out_end_pfn = PFN_DOWN(r->base + r->size);
1216 if (out_nid)
1217 *out_nid = r->nid;
1218}
1219
1220/**
1221 * memblock_set_node - set node ID on memblock regions
1222 * @base: base of area to set node ID for
1223 * @size: size of area to set node ID for
e7e8de59 1224 * @type: memblock type to set node ID for
7c0caeb8
TH
1225 * @nid: node ID to set
1226 *
47cec443 1227 * Set the nid of memblock @type regions in [@base, @base + @size) to @nid.
7c0caeb8
TH
1228 * Regions which cross the area boundaries are split as necessary.
1229 *
47cec443 1230 * Return:
7c0caeb8
TH
1231 * 0 on success, -errno on failure.
1232 */
1233int __init_memblock memblock_set_node(phys_addr_t base, phys_addr_t size,
e7e8de59 1234 struct memblock_type *type, int nid)
7c0caeb8 1235{
6a9ceb31
TH
1236 int start_rgn, end_rgn;
1237 int i, ret;
7c0caeb8 1238
6a9ceb31
TH
1239 ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
1240 if (ret)
1241 return ret;
7c0caeb8 1242
6a9ceb31 1243 for (i = start_rgn; i < end_rgn; i++)
e9d24ad3 1244 memblock_set_region_node(&type->regions[i], nid);
7c0caeb8
TH
1245
1246 memblock_merge_regions(type);
1247 return 0;
1248}
1249#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
1250
2bfc2862
AM
1251static phys_addr_t __init memblock_alloc_range_nid(phys_addr_t size,
1252 phys_addr_t align, phys_addr_t start,
e1720fee
MR
1253 phys_addr_t end, int nid,
1254 enum memblock_flags flags)
95f72d1e 1255{
6ed311b2 1256 phys_addr_t found;
95f72d1e 1257
2f770806
MR
1258 if (!align) {
1259 /* Can't use WARNs this early in boot on powerpc */
1260 dump_stack();
1261 align = SMP_CACHE_BYTES;
1262 }
1263
fc6daaf9
TL
1264 found = memblock_find_in_range_node(size, align, start, end, nid,
1265 flags);
aedf95ea
CM
1266 if (found && !memblock_reserve(found, size)) {
1267 /*
1268 * The min_count is set to 0 so that memblock allocations are
1269 * never reported as leaks.
1270 */
9099daed 1271 kmemleak_alloc_phys(found, size, 0, 0);
6ed311b2 1272 return found;
aedf95ea 1273 }
6ed311b2 1274 return 0;
95f72d1e
YL
1275}
1276
2bfc2862 1277phys_addr_t __init memblock_alloc_range(phys_addr_t size, phys_addr_t align,
fc6daaf9 1278 phys_addr_t start, phys_addr_t end,
e1720fee 1279 enum memblock_flags flags)
2bfc2862 1280{
fc6daaf9
TL
1281 return memblock_alloc_range_nid(size, align, start, end, NUMA_NO_NODE,
1282 flags);
2bfc2862
AM
1283}
1284
b575454f 1285phys_addr_t __init memblock_alloc_base_nid(phys_addr_t size,
2bfc2862 1286 phys_addr_t align, phys_addr_t max_addr,
e1720fee 1287 int nid, enum memblock_flags flags)
2bfc2862 1288{
fc6daaf9 1289 return memblock_alloc_range_nid(size, align, 0, max_addr, nid, flags);
2bfc2862
AM
1290}
1291
9a8dd708 1292phys_addr_t __init memblock_phys_alloc_nid(phys_addr_t size, phys_addr_t align, int nid)
7bd0b0f0 1293{
e1720fee 1294 enum memblock_flags flags = choose_memblock_flags();
a3f5bafc
TL
1295 phys_addr_t ret;
1296
1297again:
1298 ret = memblock_alloc_base_nid(size, align, MEMBLOCK_ALLOC_ACCESSIBLE,
1299 nid, flags);
1300
1301 if (!ret && (flags & MEMBLOCK_MIRROR)) {
1302 flags &= ~MEMBLOCK_MIRROR;
1303 goto again;
1304 }
1305 return ret;
7bd0b0f0
TH
1306}
1307
1308phys_addr_t __init __memblock_alloc_base(phys_addr_t size, phys_addr_t align, phys_addr_t max_addr)
1309{
fc6daaf9
TL
1310 return memblock_alloc_base_nid(size, align, max_addr, NUMA_NO_NODE,
1311 MEMBLOCK_NONE);
7bd0b0f0
TH
1312}
1313
6ed311b2 1314phys_addr_t __init memblock_alloc_base(phys_addr_t size, phys_addr_t align, phys_addr_t max_addr)
95f72d1e 1315{
6ed311b2
BH
1316 phys_addr_t alloc;
1317
1318 alloc = __memblock_alloc_base(size, align, max_addr);
1319
1320 if (alloc == 0)
5d63f81c
MC
1321 panic("ERROR: Failed to allocate %pa bytes below %pa.\n",
1322 &size, &max_addr);
6ed311b2
BH
1323
1324 return alloc;
95f72d1e
YL
1325}
1326
9a8dd708 1327phys_addr_t __init memblock_phys_alloc(phys_addr_t size, phys_addr_t align)
95f72d1e 1328{
6ed311b2
BH
1329 return memblock_alloc_base(size, align, MEMBLOCK_ALLOC_ACCESSIBLE);
1330}
95f72d1e 1331
9a8dd708 1332phys_addr_t __init memblock_phys_alloc_try_nid(phys_addr_t size, phys_addr_t align, int nid)
9d1e2492 1333{
9a8dd708 1334 phys_addr_t res = memblock_phys_alloc_nid(size, align, nid);
9d1e2492
BH
1335
1336 if (res)
1337 return res;
15fb0972 1338 return memblock_alloc_base(size, align, MEMBLOCK_ALLOC_ACCESSIBLE);
95f72d1e
YL
1339}
1340
26f09e9b 1341/**
eb31d559 1342 * memblock_alloc_internal - allocate boot memory block
26f09e9b
SS
1343 * @size: size of memory block to be allocated in bytes
1344 * @align: alignment of the region and block's size
1345 * @min_addr: the lower bound of the memory region to allocate (phys address)
1346 * @max_addr: the upper bound of the memory region to allocate (phys address)
1347 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1348 *
1349 * The @min_addr limit is dropped if it can not be satisfied and the allocation
1350 * will fall back to memory below @min_addr. Also, allocation may fall back
1351 * to any node in the system if the specified node can not
1352 * hold the requested memory.
1353 *
1354 * The allocation is performed from memory region limited by
97ad1087 1355 * memblock.current_limit if @max_addr == %MEMBLOCK_ALLOC_ACCESSIBLE.
26f09e9b 1356 *
26f09e9b
SS
1357 * The phys address of allocated boot memory block is converted to virtual and
1358 * allocated memory is reset to 0.
1359 *
1360 * In addition, function sets the min_count to 0 using kmemleak_alloc for
1361 * allocated boot memory block, so that it is never reported as leaks.
1362 *
47cec443 1363 * Return:
26f09e9b
SS
1364 * Virtual address of allocated memory block on success, NULL on failure.
1365 */
eb31d559 1366static void * __init memblock_alloc_internal(
26f09e9b
SS
1367 phys_addr_t size, phys_addr_t align,
1368 phys_addr_t min_addr, phys_addr_t max_addr,
1369 int nid)
1370{
1371 phys_addr_t alloc;
1372 void *ptr;
e1720fee 1373 enum memblock_flags flags = choose_memblock_flags();
26f09e9b 1374
560dca27
GS
1375 if (WARN_ONCE(nid == MAX_NUMNODES, "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
1376 nid = NUMA_NO_NODE;
26f09e9b
SS
1377
1378 /*
1379 * Detect any accidental use of these APIs after slab is ready, as at
1380 * this moment memblock may be deinitialized already and its
c6ffc5ca 1381 * internal data may be destroyed (after execution of memblock_free_all)
26f09e9b
SS
1382 */
1383 if (WARN_ON_ONCE(slab_is_available()))
1384 return kzalloc_node(size, GFP_NOWAIT, nid);
1385
2f770806
MR
1386 if (!align) {
1387 dump_stack();
1388 align = SMP_CACHE_BYTES;
1389 }
1390
f544e14f
YL
1391 if (max_addr > memblock.current_limit)
1392 max_addr = memblock.current_limit;
26f09e9b
SS
1393again:
1394 alloc = memblock_find_in_range_node(size, align, min_addr, max_addr,
a3f5bafc 1395 nid, flags);
7d41c03e 1396 if (alloc && !memblock_reserve(alloc, size))
26f09e9b
SS
1397 goto done;
1398
1399 if (nid != NUMA_NO_NODE) {
1400 alloc = memblock_find_in_range_node(size, align, min_addr,
fc6daaf9 1401 max_addr, NUMA_NO_NODE,
a3f5bafc 1402 flags);
7d41c03e 1403 if (alloc && !memblock_reserve(alloc, size))
26f09e9b
SS
1404 goto done;
1405 }
1406
1407 if (min_addr) {
1408 min_addr = 0;
1409 goto again;
26f09e9b
SS
1410 }
1411
a3f5bafc
TL
1412 if (flags & MEMBLOCK_MIRROR) {
1413 flags &= ~MEMBLOCK_MIRROR;
1414 pr_warn("Could not allocate %pap bytes of mirrored memory\n",
1415 &size);
1416 goto again;
1417 }
1418
1419 return NULL;
26f09e9b 1420done:
26f09e9b 1421 ptr = phys_to_virt(alloc);
26f09e9b 1422
fed84c78
QC
1423 /* Skip kmemleak for kasan_init() due to high volume. */
1424 if (max_addr != MEMBLOCK_ALLOC_KASAN)
1425 /*
1426 * The min_count is set to 0 so that bootmem allocated
1427 * blocks are never reported as leaks. This is because many
1428 * of these blocks are only referred via the physical
1429 * address which is not looked up by kmemleak.
1430 */
1431 kmemleak_alloc(ptr, size, 0, 0);
26f09e9b
SS
1432
1433 return ptr;
26f09e9b
SS
1434}
1435
ea1f5f37 1436/**
eb31d559 1437 * memblock_alloc_try_nid_raw - allocate boot memory block without zeroing
ea1f5f37
PT
1438 * memory and without panicking
1439 * @size: size of memory block to be allocated in bytes
1440 * @align: alignment of the region and block's size
1441 * @min_addr: the lower bound of the memory region from where the allocation
1442 * is preferred (phys address)
1443 * @max_addr: the upper bound of the memory region from where the allocation
97ad1087 1444 * is preferred (phys address), or %MEMBLOCK_ALLOC_ACCESSIBLE to
ea1f5f37
PT
1445 * allocate only from memory limited by memblock.current_limit value
1446 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1447 *
1448 * Public function, provides additional debug information (including caller
1449 * info), if enabled. Does not zero allocated memory, does not panic if request
1450 * cannot be satisfied.
1451 *
47cec443 1452 * Return:
ea1f5f37
PT
1453 * Virtual address of allocated memory block on success, NULL on failure.
1454 */
eb31d559 1455void * __init memblock_alloc_try_nid_raw(
ea1f5f37
PT
1456 phys_addr_t size, phys_addr_t align,
1457 phys_addr_t min_addr, phys_addr_t max_addr,
1458 int nid)
1459{
1460 void *ptr;
1461
a36aab89
MR
1462 memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=%pa max_addr=%pa %pF\n",
1463 __func__, (u64)size, (u64)align, nid, &min_addr,
1464 &max_addr, (void *)_RET_IP_);
ea1f5f37 1465
eb31d559 1466 ptr = memblock_alloc_internal(size, align,
ea1f5f37 1467 min_addr, max_addr, nid);
ea1f5f37 1468 if (ptr && size > 0)
f682a97a
AD
1469 page_init_poison(ptr, size);
1470
ea1f5f37
PT
1471 return ptr;
1472}
1473
26f09e9b 1474/**
eb31d559 1475 * memblock_alloc_try_nid_nopanic - allocate boot memory block
26f09e9b
SS
1476 * @size: size of memory block to be allocated in bytes
1477 * @align: alignment of the region and block's size
1478 * @min_addr: the lower bound of the memory region from where the allocation
1479 * is preferred (phys address)
1480 * @max_addr: the upper bound of the memory region from where the allocation
97ad1087 1481 * is preferred (phys address), or %MEMBLOCK_ALLOC_ACCESSIBLE to
26f09e9b
SS
1482 * allocate only from memory limited by memblock.current_limit value
1483 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1484 *
ea1f5f37
PT
1485 * Public function, provides additional debug information (including caller
1486 * info), if enabled. This function zeroes the allocated memory.
26f09e9b 1487 *
47cec443 1488 * Return:
26f09e9b
SS
1489 * Virtual address of allocated memory block on success, NULL on failure.
1490 */
eb31d559 1491void * __init memblock_alloc_try_nid_nopanic(
26f09e9b
SS
1492 phys_addr_t size, phys_addr_t align,
1493 phys_addr_t min_addr, phys_addr_t max_addr,
1494 int nid)
1495{
ea1f5f37
PT
1496 void *ptr;
1497
a36aab89
MR
1498 memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=%pa max_addr=%pa %pF\n",
1499 __func__, (u64)size, (u64)align, nid, &min_addr,
1500 &max_addr, (void *)_RET_IP_);
ea1f5f37 1501
eb31d559 1502 ptr = memblock_alloc_internal(size, align,
ea1f5f37
PT
1503 min_addr, max_addr, nid);
1504 if (ptr)
1505 memset(ptr, 0, size);
1506 return ptr;
26f09e9b
SS
1507}
1508
1509/**
eb31d559 1510 * memblock_alloc_try_nid - allocate boot memory block with panicking
26f09e9b
SS
1511 * @size: size of memory block to be allocated in bytes
1512 * @align: alignment of the region and block's size
1513 * @min_addr: the lower bound of the memory region from where the allocation
1514 * is preferred (phys address)
1515 * @max_addr: the upper bound of the memory region from where the allocation
97ad1087 1516 * is preferred (phys address), or %MEMBLOCK_ALLOC_ACCESSIBLE to
26f09e9b
SS
1517 * allocate only from memory limited by memblock.current_limit value
1518 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1519 *
eb31d559 1520 * Public panicking version of memblock_alloc_try_nid_nopanic()
26f09e9b
SS
1521 * which provides debug information (including caller info), if enabled,
1522 * and panics if the request can not be satisfied.
1523 *
47cec443 1524 * Return:
26f09e9b
SS
1525 * Virtual address of allocated memory block on success, NULL on failure.
1526 */
eb31d559 1527void * __init memblock_alloc_try_nid(
26f09e9b
SS
1528 phys_addr_t size, phys_addr_t align,
1529 phys_addr_t min_addr, phys_addr_t max_addr,
1530 int nid)
1531{
1532 void *ptr;
1533
a36aab89
MR
1534 memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=%pa max_addr=%pa %pF\n",
1535 __func__, (u64)size, (u64)align, nid, &min_addr,
1536 &max_addr, (void *)_RET_IP_);
eb31d559 1537 ptr = memblock_alloc_internal(size, align,
26f09e9b 1538 min_addr, max_addr, nid);
ea1f5f37
PT
1539 if (ptr) {
1540 memset(ptr, 0, size);
26f09e9b 1541 return ptr;
ea1f5f37 1542 }
26f09e9b 1543
a36aab89
MR
1544 panic("%s: Failed to allocate %llu bytes align=0x%llx nid=%d from=%pa max_addr=%pa\n",
1545 __func__, (u64)size, (u64)align, nid, &min_addr, &max_addr);
26f09e9b
SS
1546 return NULL;
1547}
1548
48a833cc 1549/**
26f09e9b 1550 * __memblock_free_late - free bootmem block pages directly to buddy allocator
48a833cc 1551 * @base: phys starting address of the boot memory block
26f09e9b
SS
1552 * @size: size of the boot memory block in bytes
1553 *
1554 * This is only useful when the bootmem allocator has already been torn
1555 * down, but we are still initializing the system. Pages are released directly
1556 * to the buddy allocator, no bootmem metadata is updated because it is gone.
1557 */
1558void __init __memblock_free_late(phys_addr_t base, phys_addr_t size)
1559{
a36aab89 1560 phys_addr_t cursor, end;
26f09e9b 1561
a36aab89
MR
1562 end = base + size - 1;
1563 memblock_dbg("%s: [%pa-%pa] %pF\n",
1564 __func__, &base, &end, (void *)_RET_IP_);
9099daed 1565 kmemleak_free_part_phys(base, size);
26f09e9b
SS
1566 cursor = PFN_UP(base);
1567 end = PFN_DOWN(base + size);
1568
1569 for (; cursor < end; cursor++) {
7c2ee349 1570 memblock_free_pages(pfn_to_page(cursor), cursor, 0);
ca79b0c2 1571 totalram_pages_inc();
26f09e9b
SS
1572 }
1573}
9d1e2492
BH
1574
1575/*
1576 * Remaining API functions
1577 */
1578
1f1ffb8a 1579phys_addr_t __init_memblock memblock_phys_mem_size(void)
95f72d1e 1580{
1440c4e2 1581 return memblock.memory.total_size;
95f72d1e
YL
1582}
1583
8907de5d
SD
1584phys_addr_t __init_memblock memblock_reserved_size(void)
1585{
1586 return memblock.reserved.total_size;
1587}
1588
595ad9af
YL
1589phys_addr_t __init memblock_mem_size(unsigned long limit_pfn)
1590{
1591 unsigned long pages = 0;
1592 struct memblock_region *r;
1593 unsigned long start_pfn, end_pfn;
1594
1595 for_each_memblock(memory, r) {
1596 start_pfn = memblock_region_memory_base_pfn(r);
1597 end_pfn = memblock_region_memory_end_pfn(r);
1598 start_pfn = min_t(unsigned long, start_pfn, limit_pfn);
1599 end_pfn = min_t(unsigned long, end_pfn, limit_pfn);
1600 pages += end_pfn - start_pfn;
1601 }
1602
16763230 1603 return PFN_PHYS(pages);
595ad9af
YL
1604}
1605
0a93ebef
SR
1606/* lowest address */
1607phys_addr_t __init_memblock memblock_start_of_DRAM(void)
1608{
1609 return memblock.memory.regions[0].base;
1610}
1611
10d06439 1612phys_addr_t __init_memblock memblock_end_of_DRAM(void)
95f72d1e
YL
1613{
1614 int idx = memblock.memory.cnt - 1;
1615
e3239ff9 1616 return (memblock.memory.regions[idx].base + memblock.memory.regions[idx].size);
95f72d1e
YL
1617}
1618
a571d4eb 1619static phys_addr_t __init_memblock __find_max_addr(phys_addr_t limit)
95f72d1e 1620{
1c4bc43d 1621 phys_addr_t max_addr = PHYS_ADDR_MAX;
136199f0 1622 struct memblock_region *r;
95f72d1e 1623
a571d4eb
DC
1624 /*
1625 * translate the memory @limit size into the max address within one of
1626 * the memory memblock regions, if the @limit exceeds the total size
1c4bc43d 1627 * of those regions, max_addr will keep original value PHYS_ADDR_MAX
a571d4eb 1628 */
136199f0 1629 for_each_memblock(memory, r) {
c0ce8fef
TH
1630 if (limit <= r->size) {
1631 max_addr = r->base + limit;
1632 break;
95f72d1e 1633 }
c0ce8fef 1634 limit -= r->size;
95f72d1e 1635 }
c0ce8fef 1636
a571d4eb
DC
1637 return max_addr;
1638}
1639
1640void __init memblock_enforce_memory_limit(phys_addr_t limit)
1641{
1c4bc43d 1642 phys_addr_t max_addr = PHYS_ADDR_MAX;
a571d4eb
DC
1643
1644 if (!limit)
1645 return;
1646
1647 max_addr = __find_max_addr(limit);
1648
1649 /* @limit exceeds the total size of the memory, do nothing */
1c4bc43d 1650 if (max_addr == PHYS_ADDR_MAX)
a571d4eb
DC
1651 return;
1652
c0ce8fef 1653 /* truncate both memory and reserved regions */
f1af9d3a 1654 memblock_remove_range(&memblock.memory, max_addr,
1c4bc43d 1655 PHYS_ADDR_MAX);
f1af9d3a 1656 memblock_remove_range(&memblock.reserved, max_addr,
1c4bc43d 1657 PHYS_ADDR_MAX);
95f72d1e
YL
1658}
1659
c9ca9b4e
AT
1660void __init memblock_cap_memory_range(phys_addr_t base, phys_addr_t size)
1661{
1662 int start_rgn, end_rgn;
1663 int i, ret;
1664
1665 if (!size)
1666 return;
1667
1668 ret = memblock_isolate_range(&memblock.memory, base, size,
1669 &start_rgn, &end_rgn);
1670 if (ret)
1671 return;
1672
1673 /* remove all the MAP regions */
1674 for (i = memblock.memory.cnt - 1; i >= end_rgn; i--)
1675 if (!memblock_is_nomap(&memblock.memory.regions[i]))
1676 memblock_remove_region(&memblock.memory, i);
1677
1678 for (i = start_rgn - 1; i >= 0; i--)
1679 if (!memblock_is_nomap(&memblock.memory.regions[i]))
1680 memblock_remove_region(&memblock.memory, i);
1681
1682 /* truncate the reserved regions */
1683 memblock_remove_range(&memblock.reserved, 0, base);
1684 memblock_remove_range(&memblock.reserved,
1c4bc43d 1685 base + size, PHYS_ADDR_MAX);
c9ca9b4e
AT
1686}
1687
a571d4eb
DC
1688void __init memblock_mem_limit_remove_map(phys_addr_t limit)
1689{
a571d4eb 1690 phys_addr_t max_addr;
a571d4eb
DC
1691
1692 if (!limit)
1693 return;
1694
1695 max_addr = __find_max_addr(limit);
1696
1697 /* @limit exceeds the total size of the memory, do nothing */
1c4bc43d 1698 if (max_addr == PHYS_ADDR_MAX)
a571d4eb
DC
1699 return;
1700
c9ca9b4e 1701 memblock_cap_memory_range(0, max_addr);
a571d4eb
DC
1702}
1703
cd79481d 1704static int __init_memblock memblock_search(struct memblock_type *type, phys_addr_t addr)
72d4b0b4
BH
1705{
1706 unsigned int left = 0, right = type->cnt;
1707
1708 do {
1709 unsigned int mid = (right + left) / 2;
1710
1711 if (addr < type->regions[mid].base)
1712 right = mid;
1713 else if (addr >= (type->regions[mid].base +
1714 type->regions[mid].size))
1715 left = mid + 1;
1716 else
1717 return mid;
1718 } while (left < right);
1719 return -1;
1720}
1721
f5a222dc 1722bool __init_memblock memblock_is_reserved(phys_addr_t addr)
95f72d1e 1723{
72d4b0b4
BH
1724 return memblock_search(&memblock.reserved, addr) != -1;
1725}
95f72d1e 1726
b4ad0c7e 1727bool __init_memblock memblock_is_memory(phys_addr_t addr)
72d4b0b4
BH
1728{
1729 return memblock_search(&memblock.memory, addr) != -1;
1730}
1731
937f0c26 1732bool __init_memblock memblock_is_map_memory(phys_addr_t addr)
bf3d3cc5
AB
1733{
1734 int i = memblock_search(&memblock.memory, addr);
1735
1736 if (i == -1)
1737 return false;
1738 return !memblock_is_nomap(&memblock.memory.regions[i]);
1739}
1740
e76b63f8
YL
1741#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
1742int __init_memblock memblock_search_pfn_nid(unsigned long pfn,
1743 unsigned long *start_pfn, unsigned long *end_pfn)
1744{
1745 struct memblock_type *type = &memblock.memory;
16763230 1746 int mid = memblock_search(type, PFN_PHYS(pfn));
e76b63f8
YL
1747
1748 if (mid == -1)
1749 return -1;
1750
f7e2f7e8
FF
1751 *start_pfn = PFN_DOWN(type->regions[mid].base);
1752 *end_pfn = PFN_DOWN(type->regions[mid].base + type->regions[mid].size);
e76b63f8
YL
1753
1754 return type->regions[mid].nid;
1755}
1756#endif
1757
eab30949
SB
1758/**
1759 * memblock_is_region_memory - check if a region is a subset of memory
1760 * @base: base of region to check
1761 * @size: size of region to check
1762 *
47cec443 1763 * Check if the region [@base, @base + @size) is a subset of a memory block.
eab30949 1764 *
47cec443 1765 * Return:
eab30949
SB
1766 * 0 if false, non-zero if true
1767 */
937f0c26 1768bool __init_memblock memblock_is_region_memory(phys_addr_t base, phys_addr_t size)
72d4b0b4 1769{
abb65272 1770 int idx = memblock_search(&memblock.memory, base);
eb18f1b5 1771 phys_addr_t end = base + memblock_cap_size(base, &size);
72d4b0b4
BH
1772
1773 if (idx == -1)
937f0c26 1774 return false;
ef415ef4 1775 return (memblock.memory.regions[idx].base +
eb18f1b5 1776 memblock.memory.regions[idx].size) >= end;
95f72d1e
YL
1777}
1778
eab30949
SB
1779/**
1780 * memblock_is_region_reserved - check if a region intersects reserved memory
1781 * @base: base of region to check
1782 * @size: size of region to check
1783 *
47cec443
MR
1784 * Check if the region [@base, @base + @size) intersects a reserved
1785 * memory block.
eab30949 1786 *
47cec443 1787 * Return:
c5c5c9d1 1788 * True if they intersect, false if not.
eab30949 1789 */
c5c5c9d1 1790bool __init_memblock memblock_is_region_reserved(phys_addr_t base, phys_addr_t size)
95f72d1e 1791{
eb18f1b5 1792 memblock_cap_size(base, &size);
c5c5c9d1 1793 return memblock_overlaps_region(&memblock.reserved, base, size);
95f72d1e
YL
1794}
1795
6ede1fd3
YL
1796void __init_memblock memblock_trim_memory(phys_addr_t align)
1797{
6ede1fd3 1798 phys_addr_t start, end, orig_start, orig_end;
136199f0 1799 struct memblock_region *r;
6ede1fd3 1800
136199f0
EM
1801 for_each_memblock(memory, r) {
1802 orig_start = r->base;
1803 orig_end = r->base + r->size;
6ede1fd3
YL
1804 start = round_up(orig_start, align);
1805 end = round_down(orig_end, align);
1806
1807 if (start == orig_start && end == orig_end)
1808 continue;
1809
1810 if (start < end) {
136199f0
EM
1811 r->base = start;
1812 r->size = end - start;
6ede1fd3 1813 } else {
136199f0
EM
1814 memblock_remove_region(&memblock.memory,
1815 r - memblock.memory.regions);
1816 r--;
6ede1fd3
YL
1817 }
1818 }
1819}
e63075a3 1820
3661ca66 1821void __init_memblock memblock_set_current_limit(phys_addr_t limit)
e63075a3
BH
1822{
1823 memblock.current_limit = limit;
1824}
1825
fec51014
LA
1826phys_addr_t __init_memblock memblock_get_current_limit(void)
1827{
1828 return memblock.current_limit;
1829}
1830
0262d9c8 1831static void __init_memblock memblock_dump(struct memblock_type *type)
6ed311b2 1832{
5d63f81c 1833 phys_addr_t base, end, size;
e1720fee 1834 enum memblock_flags flags;
8c9c1701
AK
1835 int idx;
1836 struct memblock_region *rgn;
6ed311b2 1837
0262d9c8 1838 pr_info(" %s.cnt = 0x%lx\n", type->name, type->cnt);
6ed311b2 1839
66e8b438 1840 for_each_memblock_type(idx, type, rgn) {
7c0caeb8
TH
1841 char nid_buf[32] = "";
1842
1843 base = rgn->base;
1844 size = rgn->size;
5d63f81c 1845 end = base + size - 1;
66a20757 1846 flags = rgn->flags;
7c0caeb8
TH
1847#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
1848 if (memblock_get_region_node(rgn) != MAX_NUMNODES)
1849 snprintf(nid_buf, sizeof(nid_buf), " on node %d",
1850 memblock_get_region_node(rgn));
1851#endif
e1720fee 1852 pr_info(" %s[%#x]\t[%pa-%pa], %pa bytes%s flags: %#x\n",
0262d9c8 1853 type->name, idx, &base, &end, &size, nid_buf, flags);
6ed311b2
BH
1854 }
1855}
1856
4ff7b82f 1857void __init_memblock __memblock_dump_all(void)
6ed311b2 1858{
6ed311b2 1859 pr_info("MEMBLOCK configuration:\n");
5d63f81c
MC
1860 pr_info(" memory size = %pa reserved size = %pa\n",
1861 &memblock.memory.total_size,
1862 &memblock.reserved.total_size);
6ed311b2 1863
0262d9c8
HC
1864 memblock_dump(&memblock.memory);
1865 memblock_dump(&memblock.reserved);
409efd4c 1866#ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
0262d9c8 1867 memblock_dump(&memblock.physmem);
409efd4c 1868#endif
6ed311b2
BH
1869}
1870
1aadc056 1871void __init memblock_allow_resize(void)
6ed311b2 1872{
142b45a7 1873 memblock_can_resize = 1;
6ed311b2
BH
1874}
1875
6ed311b2
BH
1876static int __init early_memblock(char *p)
1877{
1878 if (p && strstr(p, "debug"))
1879 memblock_debug = 1;
1880 return 0;
1881}
1882early_param("memblock", early_memblock);
1883
bda49a81
MR
1884static void __init __free_pages_memory(unsigned long start, unsigned long end)
1885{
1886 int order;
1887
1888 while (start < end) {
1889 order = min(MAX_ORDER - 1UL, __ffs(start));
1890
1891 while (start + (1UL << order) > end)
1892 order--;
1893
1894 memblock_free_pages(pfn_to_page(start), start, order);
1895
1896 start += (1UL << order);
1897 }
1898}
1899
1900static unsigned long __init __free_memory_core(phys_addr_t start,
1901 phys_addr_t end)
1902{
1903 unsigned long start_pfn = PFN_UP(start);
1904 unsigned long end_pfn = min_t(unsigned long,
1905 PFN_DOWN(end), max_low_pfn);
1906
1907 if (start_pfn >= end_pfn)
1908 return 0;
1909
1910 __free_pages_memory(start_pfn, end_pfn);
1911
1912 return end_pfn - start_pfn;
1913}
1914
1915static unsigned long __init free_low_memory_core_early(void)
1916{
1917 unsigned long count = 0;
1918 phys_addr_t start, end;
1919 u64 i;
1920
1921 memblock_clear_hotplug(0, -1);
1922
1923 for_each_reserved_mem_region(i, &start, &end)
1924 reserve_bootmem_region(start, end);
1925
1926 /*
1927 * We need to use NUMA_NO_NODE instead of NODE_DATA(0)->node_id
1928 * because in some case like Node0 doesn't have RAM installed
1929 * low ram will be on Node1
1930 */
1931 for_each_free_mem_range(i, NUMA_NO_NODE, MEMBLOCK_NONE, &start, &end,
1932 NULL)
1933 count += __free_memory_core(start, end);
1934
1935 return count;
1936}
1937
1938static int reset_managed_pages_done __initdata;
1939
1940void reset_node_managed_pages(pg_data_t *pgdat)
1941{
1942 struct zone *z;
1943
1944 for (z = pgdat->node_zones; z < pgdat->node_zones + MAX_NR_ZONES; z++)
9705bea5 1945 atomic_long_set(&z->managed_pages, 0);
bda49a81
MR
1946}
1947
1948void __init reset_all_zones_managed_pages(void)
1949{
1950 struct pglist_data *pgdat;
1951
1952 if (reset_managed_pages_done)
1953 return;
1954
1955 for_each_online_pgdat(pgdat)
1956 reset_node_managed_pages(pgdat);
1957
1958 reset_managed_pages_done = 1;
1959}
1960
1961/**
1962 * memblock_free_all - release free pages to the buddy allocator
1963 *
1964 * Return: the number of pages actually released.
1965 */
1966unsigned long __init memblock_free_all(void)
1967{
1968 unsigned long pages;
1969
1970 reset_all_zones_managed_pages();
1971
1972 pages = free_low_memory_core_early();
ca79b0c2 1973 totalram_pages_add(pages);
bda49a81
MR
1974
1975 return pages;
1976}
1977
c378ddd5 1978#if defined(CONFIG_DEBUG_FS) && !defined(CONFIG_ARCH_DISCARD_MEMBLOCK)
6d03b885
BH
1979
1980static int memblock_debug_show(struct seq_file *m, void *private)
1981{
1982 struct memblock_type *type = m->private;
1983 struct memblock_region *reg;
1984 int i;
5d63f81c 1985 phys_addr_t end;
6d03b885
BH
1986
1987 for (i = 0; i < type->cnt; i++) {
1988 reg = &type->regions[i];
5d63f81c 1989 end = reg->base + reg->size - 1;
6d03b885 1990
5d63f81c
MC
1991 seq_printf(m, "%4d: ", i);
1992 seq_printf(m, "%pa..%pa\n", &reg->base, &end);
6d03b885
BH
1993 }
1994 return 0;
1995}
5ad35093 1996DEFINE_SHOW_ATTRIBUTE(memblock_debug);
6d03b885
BH
1997
1998static int __init memblock_init_debugfs(void)
1999{
2000 struct dentry *root = debugfs_create_dir("memblock", NULL);
2001 if (!root)
2002 return -ENXIO;
0825a6f9
JP
2003 debugfs_create_file("memory", 0444, root,
2004 &memblock.memory, &memblock_debug_fops);
2005 debugfs_create_file("reserved", 0444, root,
2006 &memblock.reserved, &memblock_debug_fops);
70210ed9 2007#ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
0825a6f9
JP
2008 debugfs_create_file("physmem", 0444, root,
2009 &memblock.physmem, &memblock_debug_fops);
70210ed9 2010#endif
6d03b885
BH
2011
2012 return 0;
2013}
2014__initcall(memblock_init_debugfs);
2015
2016#endif /* CONFIG_DEBUG_FS */