ksm: treat unstable nid like in stable tree
[linux-2.6-block.git] / mm / ksm.c
CommitLineData
f8af4da3 1/*
31dbd01f
IE
2 * Memory merging support.
3 *
4 * This code enables dynamic sharing of identical pages found in different
5 * memory areas, even if they are not shared by fork()
6 *
36b2528d 7 * Copyright (C) 2008-2009 Red Hat, Inc.
31dbd01f
IE
8 * Authors:
9 * Izik Eidus
10 * Andrea Arcangeli
11 * Chris Wright
36b2528d 12 * Hugh Dickins
31dbd01f
IE
13 *
14 * This work is licensed under the terms of the GNU GPL, version 2.
f8af4da3
HD
15 */
16
17#include <linux/errno.h>
31dbd01f
IE
18#include <linux/mm.h>
19#include <linux/fs.h>
f8af4da3 20#include <linux/mman.h>
31dbd01f
IE
21#include <linux/sched.h>
22#include <linux/rwsem.h>
23#include <linux/pagemap.h>
24#include <linux/rmap.h>
25#include <linux/spinlock.h>
26#include <linux/jhash.h>
27#include <linux/delay.h>
28#include <linux/kthread.h>
29#include <linux/wait.h>
30#include <linux/slab.h>
31#include <linux/rbtree.h>
62b61f61 32#include <linux/memory.h>
31dbd01f 33#include <linux/mmu_notifier.h>
2c6854fd 34#include <linux/swap.h>
f8af4da3 35#include <linux/ksm.h>
4ca3a69b 36#include <linux/hashtable.h>
878aee7d 37#include <linux/freezer.h>
72788c38 38#include <linux/oom.h>
90bd6fd3 39#include <linux/numa.h>
f8af4da3 40
31dbd01f 41#include <asm/tlbflush.h>
73848b46 42#include "internal.h"
31dbd01f 43
e850dcf5
HD
44#ifdef CONFIG_NUMA
45#define NUMA(x) (x)
46#define DO_NUMA(x) do { (x); } while (0)
47#else
48#define NUMA(x) (0)
49#define DO_NUMA(x) do { } while (0)
50#endif
51
31dbd01f
IE
52/*
53 * A few notes about the KSM scanning process,
54 * to make it easier to understand the data structures below:
55 *
56 * In order to reduce excessive scanning, KSM sorts the memory pages by their
57 * contents into a data structure that holds pointers to the pages' locations.
58 *
59 * Since the contents of the pages may change at any moment, KSM cannot just
60 * insert the pages into a normal sorted tree and expect it to find anything.
61 * Therefore KSM uses two data structures - the stable and the unstable tree.
62 *
63 * The stable tree holds pointers to all the merged pages (ksm pages), sorted
64 * by their contents. Because each such page is write-protected, searching on
65 * this tree is fully assured to be working (except when pages are unmapped),
66 * and therefore this tree is called the stable tree.
67 *
68 * In addition to the stable tree, KSM uses a second data structure called the
69 * unstable tree: this tree holds pointers to pages which have been found to
70 * be "unchanged for a period of time". The unstable tree sorts these pages
71 * by their contents, but since they are not write-protected, KSM cannot rely
72 * upon the unstable tree to work correctly - the unstable tree is liable to
73 * be corrupted as its contents are modified, and so it is called unstable.
74 *
75 * KSM solves this problem by several techniques:
76 *
77 * 1) The unstable tree is flushed every time KSM completes scanning all
78 * memory areas, and then the tree is rebuilt again from the beginning.
79 * 2) KSM will only insert into the unstable tree, pages whose hash value
80 * has not changed since the previous scan of all memory areas.
81 * 3) The unstable tree is a RedBlack Tree - so its balancing is based on the
82 * colors of the nodes and not on their contents, assuring that even when
83 * the tree gets "corrupted" it won't get out of balance, so scanning time
84 * remains the same (also, searching and inserting nodes in an rbtree uses
85 * the same algorithm, so we have no overhead when we flush and rebuild).
86 * 4) KSM never flushes the stable tree, which means that even if it were to
87 * take 10 attempts to find a page in the unstable tree, once it is found,
88 * it is secured in the stable tree. (When we scan a new page, we first
89 * compare it against the stable tree, and then against the unstable tree.)
8fdb3dbf
HD
90 *
91 * If the merge_across_nodes tunable is unset, then KSM maintains multiple
92 * stable trees and multiple unstable trees: one of each for each NUMA node.
31dbd01f
IE
93 */
94
95/**
96 * struct mm_slot - ksm information per mm that is being scanned
97 * @link: link to the mm_slots hash list
98 * @mm_list: link into the mm_slots list, rooted in ksm_mm_head
6514d511 99 * @rmap_list: head for this mm_slot's singly-linked list of rmap_items
31dbd01f
IE
100 * @mm: the mm that this information is valid for
101 */
102struct mm_slot {
103 struct hlist_node link;
104 struct list_head mm_list;
6514d511 105 struct rmap_item *rmap_list;
31dbd01f
IE
106 struct mm_struct *mm;
107};
108
109/**
110 * struct ksm_scan - cursor for scanning
111 * @mm_slot: the current mm_slot we are scanning
112 * @address: the next address inside that to be scanned
6514d511 113 * @rmap_list: link to the next rmap to be scanned in the rmap_list
31dbd01f
IE
114 * @seqnr: count of completed full scans (needed when removing unstable node)
115 *
116 * There is only the one ksm_scan instance of this cursor structure.
117 */
118struct ksm_scan {
119 struct mm_slot *mm_slot;
120 unsigned long address;
6514d511 121 struct rmap_item **rmap_list;
31dbd01f
IE
122 unsigned long seqnr;
123};
124
7b6ba2c7
HD
125/**
126 * struct stable_node - node of the stable rbtree
127 * @node: rb node of this ksm page in the stable tree
4146d2d6
HD
128 * @head: (overlaying parent) &migrate_nodes indicates temporarily on that list
129 * @list: linked into migrate_nodes, pending placement in the proper node tree
7b6ba2c7 130 * @hlist: hlist head of rmap_items using this ksm page
4146d2d6
HD
131 * @kpfn: page frame number of this ksm page (perhaps temporarily on wrong nid)
132 * @nid: NUMA node id of stable tree in which linked (may not match kpfn)
7b6ba2c7
HD
133 */
134struct stable_node {
4146d2d6
HD
135 union {
136 struct rb_node node; /* when node of stable tree */
137 struct { /* when listed for migration */
138 struct list_head *head;
139 struct list_head list;
140 };
141 };
7b6ba2c7 142 struct hlist_head hlist;
62b61f61 143 unsigned long kpfn;
4146d2d6
HD
144#ifdef CONFIG_NUMA
145 int nid;
146#endif
7b6ba2c7
HD
147};
148
31dbd01f
IE
149/**
150 * struct rmap_item - reverse mapping item for virtual addresses
6514d511 151 * @rmap_list: next rmap_item in mm_slot's singly-linked rmap_list
db114b83 152 * @anon_vma: pointer to anon_vma for this mm,address, when in stable tree
31dbd01f
IE
153 * @mm: the memory structure this rmap_item is pointing into
154 * @address: the virtual address this rmap_item tracks (+ flags in low bits)
155 * @oldchecksum: previous checksum of the page at that virtual address
e850dcf5 156 * @nid: NUMA node id of unstable tree in which linked (may not match page)
7b6ba2c7
HD
157 * @node: rb node of this rmap_item in the unstable tree
158 * @head: pointer to stable_node heading this list in the stable tree
159 * @hlist: link into hlist of rmap_items hanging off that stable_node
31dbd01f
IE
160 */
161struct rmap_item {
6514d511 162 struct rmap_item *rmap_list;
db114b83 163 struct anon_vma *anon_vma; /* when stable */
31dbd01f
IE
164 struct mm_struct *mm;
165 unsigned long address; /* + low bits used for flags below */
7b6ba2c7 166 unsigned int oldchecksum; /* when unstable */
90bd6fd3 167#ifdef CONFIG_NUMA
e850dcf5 168 int nid;
90bd6fd3 169#endif
31dbd01f 170 union {
7b6ba2c7
HD
171 struct rb_node node; /* when node of unstable tree */
172 struct { /* when listed from stable tree */
173 struct stable_node *head;
174 struct hlist_node hlist;
175 };
31dbd01f
IE
176 };
177};
178
179#define SEQNR_MASK 0x0ff /* low bits of unstable tree seqnr */
7b6ba2c7
HD
180#define UNSTABLE_FLAG 0x100 /* is a node of the unstable tree */
181#define STABLE_FLAG 0x200 /* is listed from the stable tree */
31dbd01f
IE
182
183/* The stable and unstable tree heads */
90bd6fd3
PH
184static struct rb_root root_unstable_tree[MAX_NUMNODES];
185static struct rb_root root_stable_tree[MAX_NUMNODES];
31dbd01f 186
4146d2d6
HD
187/* Recently migrated nodes of stable tree, pending proper placement */
188static LIST_HEAD(migrate_nodes);
189
4ca3a69b
SL
190#define MM_SLOTS_HASH_BITS 10
191static DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);
31dbd01f
IE
192
193static struct mm_slot ksm_mm_head = {
194 .mm_list = LIST_HEAD_INIT(ksm_mm_head.mm_list),
195};
196static struct ksm_scan ksm_scan = {
197 .mm_slot = &ksm_mm_head,
198};
199
200static struct kmem_cache *rmap_item_cache;
7b6ba2c7 201static struct kmem_cache *stable_node_cache;
31dbd01f
IE
202static struct kmem_cache *mm_slot_cache;
203
204/* The number of nodes in the stable tree */
b4028260 205static unsigned long ksm_pages_shared;
31dbd01f 206
e178dfde 207/* The number of page slots additionally sharing those nodes */
b4028260 208static unsigned long ksm_pages_sharing;
31dbd01f 209
473b0ce4
HD
210/* The number of nodes in the unstable tree */
211static unsigned long ksm_pages_unshared;
212
213/* The number of rmap_items in use: to calculate pages_volatile */
214static unsigned long ksm_rmap_items;
215
31dbd01f 216/* Number of pages ksmd should scan in one batch */
2c6854fd 217static unsigned int ksm_thread_pages_to_scan = 100;
31dbd01f
IE
218
219/* Milliseconds ksmd should sleep between batches */
2ffd8679 220static unsigned int ksm_thread_sleep_millisecs = 20;
31dbd01f 221
e850dcf5 222#ifdef CONFIG_NUMA
90bd6fd3
PH
223/* Zeroed when merging across nodes is not allowed */
224static unsigned int ksm_merge_across_nodes = 1;
e850dcf5
HD
225#else
226#define ksm_merge_across_nodes 1U
227#endif
90bd6fd3 228
31dbd01f
IE
229#define KSM_RUN_STOP 0
230#define KSM_RUN_MERGE 1
231#define KSM_RUN_UNMERGE 2
ef4d43a8
HD
232#define KSM_RUN_OFFLINE 4
233static unsigned long ksm_run = KSM_RUN_STOP;
234static void wait_while_offlining(void);
31dbd01f
IE
235
236static DECLARE_WAIT_QUEUE_HEAD(ksm_thread_wait);
237static DEFINE_MUTEX(ksm_thread_mutex);
238static DEFINE_SPINLOCK(ksm_mmlist_lock);
239
240#define KSM_KMEM_CACHE(__struct, __flags) kmem_cache_create("ksm_"#__struct,\
241 sizeof(struct __struct), __alignof__(struct __struct),\
242 (__flags), NULL)
243
244static int __init ksm_slab_init(void)
245{
246 rmap_item_cache = KSM_KMEM_CACHE(rmap_item, 0);
247 if (!rmap_item_cache)
248 goto out;
249
7b6ba2c7
HD
250 stable_node_cache = KSM_KMEM_CACHE(stable_node, 0);
251 if (!stable_node_cache)
252 goto out_free1;
253
31dbd01f
IE
254 mm_slot_cache = KSM_KMEM_CACHE(mm_slot, 0);
255 if (!mm_slot_cache)
7b6ba2c7 256 goto out_free2;
31dbd01f
IE
257
258 return 0;
259
7b6ba2c7
HD
260out_free2:
261 kmem_cache_destroy(stable_node_cache);
262out_free1:
31dbd01f
IE
263 kmem_cache_destroy(rmap_item_cache);
264out:
265 return -ENOMEM;
266}
267
268static void __init ksm_slab_free(void)
269{
270 kmem_cache_destroy(mm_slot_cache);
7b6ba2c7 271 kmem_cache_destroy(stable_node_cache);
31dbd01f
IE
272 kmem_cache_destroy(rmap_item_cache);
273 mm_slot_cache = NULL;
274}
275
276static inline struct rmap_item *alloc_rmap_item(void)
277{
473b0ce4
HD
278 struct rmap_item *rmap_item;
279
280 rmap_item = kmem_cache_zalloc(rmap_item_cache, GFP_KERNEL);
281 if (rmap_item)
282 ksm_rmap_items++;
283 return rmap_item;
31dbd01f
IE
284}
285
286static inline void free_rmap_item(struct rmap_item *rmap_item)
287{
473b0ce4 288 ksm_rmap_items--;
31dbd01f
IE
289 rmap_item->mm = NULL; /* debug safety */
290 kmem_cache_free(rmap_item_cache, rmap_item);
291}
292
7b6ba2c7
HD
293static inline struct stable_node *alloc_stable_node(void)
294{
295 return kmem_cache_alloc(stable_node_cache, GFP_KERNEL);
296}
297
298static inline void free_stable_node(struct stable_node *stable_node)
299{
300 kmem_cache_free(stable_node_cache, stable_node);
301}
302
31dbd01f
IE
303static inline struct mm_slot *alloc_mm_slot(void)
304{
305 if (!mm_slot_cache) /* initialization failed */
306 return NULL;
307 return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
308}
309
310static inline void free_mm_slot(struct mm_slot *mm_slot)
311{
312 kmem_cache_free(mm_slot_cache, mm_slot);
313}
314
31dbd01f
IE
315static struct mm_slot *get_mm_slot(struct mm_struct *mm)
316{
31dbd01f 317 struct hlist_node *node;
4ca3a69b
SL
318 struct mm_slot *slot;
319
320 hash_for_each_possible(mm_slots_hash, slot, node, link, (unsigned long)mm)
321 if (slot->mm == mm)
322 return slot;
31dbd01f 323
31dbd01f
IE
324 return NULL;
325}
326
327static void insert_to_mm_slots_hash(struct mm_struct *mm,
328 struct mm_slot *mm_slot)
329{
31dbd01f 330 mm_slot->mm = mm;
4ca3a69b 331 hash_add(mm_slots_hash, &mm_slot->link, (unsigned long)mm);
31dbd01f
IE
332}
333
a913e182
HD
334/*
335 * ksmd, and unmerge_and_remove_all_rmap_items(), must not touch an mm's
336 * page tables after it has passed through ksm_exit() - which, if necessary,
337 * takes mmap_sem briefly to serialize against them. ksm_exit() does not set
338 * a special flag: they can just back out as soon as mm_users goes to zero.
339 * ksm_test_exit() is used throughout to make this test for exit: in some
340 * places for correctness, in some places just to avoid unnecessary work.
341 */
342static inline bool ksm_test_exit(struct mm_struct *mm)
343{
344 return atomic_read(&mm->mm_users) == 0;
345}
346
31dbd01f
IE
347/*
348 * We use break_ksm to break COW on a ksm page: it's a stripped down
349 *
350 * if (get_user_pages(current, mm, addr, 1, 1, 1, &page, NULL) == 1)
351 * put_page(page);
352 *
353 * but taking great care only to touch a ksm page, in a VM_MERGEABLE vma,
354 * in case the application has unmapped and remapped mm,addr meanwhile.
355 * Could a ksm page appear anywhere else? Actually yes, in a VM_PFNMAP
356 * mmap of /dev/mem or /dev/kmem, where we would not want to touch it.
357 */
d952b791 358static int break_ksm(struct vm_area_struct *vma, unsigned long addr)
31dbd01f
IE
359{
360 struct page *page;
d952b791 361 int ret = 0;
31dbd01f
IE
362
363 do {
364 cond_resched();
365 page = follow_page(vma, addr, FOLL_GET);
22eccdd7 366 if (IS_ERR_OR_NULL(page))
31dbd01f
IE
367 break;
368 if (PageKsm(page))
369 ret = handle_mm_fault(vma->vm_mm, vma, addr,
370 FAULT_FLAG_WRITE);
371 else
372 ret = VM_FAULT_WRITE;
373 put_page(page);
d952b791
HD
374 } while (!(ret & (VM_FAULT_WRITE | VM_FAULT_SIGBUS | VM_FAULT_OOM)));
375 /*
376 * We must loop because handle_mm_fault() may back out if there's
377 * any difficulty e.g. if pte accessed bit gets updated concurrently.
378 *
379 * VM_FAULT_WRITE is what we have been hoping for: it indicates that
380 * COW has been broken, even if the vma does not permit VM_WRITE;
381 * but note that a concurrent fault might break PageKsm for us.
382 *
383 * VM_FAULT_SIGBUS could occur if we race with truncation of the
384 * backing file, which also invalidates anonymous pages: that's
385 * okay, that truncation will have unmapped the PageKsm for us.
386 *
387 * VM_FAULT_OOM: at the time of writing (late July 2009), setting
388 * aside mem_cgroup limits, VM_FAULT_OOM would only be set if the
389 * current task has TIF_MEMDIE set, and will be OOM killed on return
390 * to user; and ksmd, having no mm, would never be chosen for that.
391 *
392 * But if the mm is in a limited mem_cgroup, then the fault may fail
393 * with VM_FAULT_OOM even if the current task is not TIF_MEMDIE; and
394 * even ksmd can fail in this way - though it's usually breaking ksm
395 * just to undo a merge it made a moment before, so unlikely to oom.
396 *
397 * That's a pity: we might therefore have more kernel pages allocated
398 * than we're counting as nodes in the stable tree; but ksm_do_scan
399 * will retry to break_cow on each pass, so should recover the page
400 * in due course. The important thing is to not let VM_MERGEABLE
401 * be cleared while any such pages might remain in the area.
402 */
403 return (ret & VM_FAULT_OOM) ? -ENOMEM : 0;
31dbd01f
IE
404}
405
ef694222
BL
406static struct vm_area_struct *find_mergeable_vma(struct mm_struct *mm,
407 unsigned long addr)
408{
409 struct vm_area_struct *vma;
410 if (ksm_test_exit(mm))
411 return NULL;
412 vma = find_vma(mm, addr);
413 if (!vma || vma->vm_start > addr)
414 return NULL;
415 if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
416 return NULL;
417 return vma;
418}
419
8dd3557a 420static void break_cow(struct rmap_item *rmap_item)
31dbd01f 421{
8dd3557a
HD
422 struct mm_struct *mm = rmap_item->mm;
423 unsigned long addr = rmap_item->address;
31dbd01f
IE
424 struct vm_area_struct *vma;
425
4035c07a
HD
426 /*
427 * It is not an accident that whenever we want to break COW
428 * to undo, we also need to drop a reference to the anon_vma.
429 */
9e60109f 430 put_anon_vma(rmap_item->anon_vma);
4035c07a 431
81464e30 432 down_read(&mm->mmap_sem);
ef694222
BL
433 vma = find_mergeable_vma(mm, addr);
434 if (vma)
435 break_ksm(vma, addr);
31dbd01f
IE
436 up_read(&mm->mmap_sem);
437}
438
29ad768c
AA
439static struct page *page_trans_compound_anon(struct page *page)
440{
441 if (PageTransCompound(page)) {
22e5c47e 442 struct page *head = compound_trans_head(page);
29ad768c 443 /*
22e5c47e
AA
444 * head may actually be splitted and freed from under
445 * us but it's ok here.
29ad768c 446 */
29ad768c
AA
447 if (PageAnon(head))
448 return head;
449 }
450 return NULL;
451}
452
31dbd01f
IE
453static struct page *get_mergeable_page(struct rmap_item *rmap_item)
454{
455 struct mm_struct *mm = rmap_item->mm;
456 unsigned long addr = rmap_item->address;
457 struct vm_area_struct *vma;
458 struct page *page;
459
460 down_read(&mm->mmap_sem);
ef694222
BL
461 vma = find_mergeable_vma(mm, addr);
462 if (!vma)
31dbd01f
IE
463 goto out;
464
465 page = follow_page(vma, addr, FOLL_GET);
22eccdd7 466 if (IS_ERR_OR_NULL(page))
31dbd01f 467 goto out;
29ad768c 468 if (PageAnon(page) || page_trans_compound_anon(page)) {
31dbd01f
IE
469 flush_anon_page(vma, page, addr);
470 flush_dcache_page(page);
471 } else {
472 put_page(page);
473out: page = NULL;
474 }
475 up_read(&mm->mmap_sem);
476 return page;
477}
478
90bd6fd3
PH
479/*
480 * This helper is used for getting right index into array of tree roots.
481 * When merge_across_nodes knob is set to 1, there are only two rb-trees for
482 * stable and unstable pages from all nodes with roots in index 0. Otherwise,
483 * every node has its own stable and unstable tree.
484 */
485static inline int get_kpfn_nid(unsigned long kpfn)
486{
e850dcf5 487 return ksm_merge_across_nodes ? 0 : pfn_to_nid(kpfn);
90bd6fd3
PH
488}
489
4035c07a
HD
490static void remove_node_from_stable_tree(struct stable_node *stable_node)
491{
492 struct rmap_item *rmap_item;
493 struct hlist_node *hlist;
494
495 hlist_for_each_entry(rmap_item, hlist, &stable_node->hlist, hlist) {
496 if (rmap_item->hlist.next)
497 ksm_pages_sharing--;
498 else
499 ksm_pages_shared--;
9e60109f 500 put_anon_vma(rmap_item->anon_vma);
4035c07a
HD
501 rmap_item->address &= PAGE_MASK;
502 cond_resched();
503 }
504
4146d2d6
HD
505 if (stable_node->head == &migrate_nodes)
506 list_del(&stable_node->list);
507 else
508 rb_erase(&stable_node->node,
509 &root_stable_tree[NUMA(stable_node->nid)]);
4035c07a
HD
510 free_stable_node(stable_node);
511}
512
513/*
514 * get_ksm_page: checks if the page indicated by the stable node
515 * is still its ksm page, despite having held no reference to it.
516 * In which case we can trust the content of the page, and it
517 * returns the gotten page; but if the page has now been zapped,
518 * remove the stale node from the stable tree and return NULL.
c8d6553b 519 * But beware, the stable node's page might be being migrated.
4035c07a
HD
520 *
521 * You would expect the stable_node to hold a reference to the ksm page.
522 * But if it increments the page's count, swapping out has to wait for
523 * ksmd to come around again before it can free the page, which may take
524 * seconds or even minutes: much too unresponsive. So instead we use a
525 * "keyhole reference": access to the ksm page from the stable node peeps
526 * out through its keyhole to see if that page still holds the right key,
527 * pointing back to this stable node. This relies on freeing a PageAnon
528 * page to reset its page->mapping to NULL, and relies on no other use of
529 * a page to put something that might look like our key in page->mapping.
4035c07a
HD
530 * is on its way to being freed; but it is an anomaly to bear in mind.
531 */
8fdb3dbf 532static struct page *get_ksm_page(struct stable_node *stable_node, bool lock_it)
4035c07a
HD
533{
534 struct page *page;
535 void *expected_mapping;
c8d6553b 536 unsigned long kpfn;
4035c07a 537
4035c07a
HD
538 expected_mapping = (void *)stable_node +
539 (PAGE_MAPPING_ANON | PAGE_MAPPING_KSM);
c8d6553b
HD
540again:
541 kpfn = ACCESS_ONCE(stable_node->kpfn);
542 page = pfn_to_page(kpfn);
543
544 /*
545 * page is computed from kpfn, so on most architectures reading
546 * page->mapping is naturally ordered after reading node->kpfn,
547 * but on Alpha we need to be more careful.
548 */
549 smp_read_barrier_depends();
550 if (ACCESS_ONCE(page->mapping) != expected_mapping)
4035c07a 551 goto stale;
c8d6553b
HD
552
553 /*
554 * We cannot do anything with the page while its refcount is 0.
555 * Usually 0 means free, or tail of a higher-order page: in which
556 * case this node is no longer referenced, and should be freed;
557 * however, it might mean that the page is under page_freeze_refs().
558 * The __remove_mapping() case is easy, again the node is now stale;
559 * but if page is swapcache in migrate_page_move_mapping(), it might
560 * still be our page, in which case it's essential to keep the node.
561 */
562 while (!get_page_unless_zero(page)) {
563 /*
564 * Another check for page->mapping != expected_mapping would
565 * work here too. We have chosen the !PageSwapCache test to
566 * optimize the common case, when the page is or is about to
567 * be freed: PageSwapCache is cleared (under spin_lock_irq)
568 * in the freeze_refs section of __remove_mapping(); but Anon
569 * page->mapping reset to NULL later, in free_pages_prepare().
570 */
571 if (!PageSwapCache(page))
572 goto stale;
573 cpu_relax();
574 }
575
576 if (ACCESS_ONCE(page->mapping) != expected_mapping) {
4035c07a
HD
577 put_page(page);
578 goto stale;
579 }
c8d6553b 580
8fdb3dbf 581 if (lock_it) {
8aafa6a4 582 lock_page(page);
c8d6553b 583 if (ACCESS_ONCE(page->mapping) != expected_mapping) {
8aafa6a4
HD
584 unlock_page(page);
585 put_page(page);
586 goto stale;
587 }
588 }
4035c07a 589 return page;
c8d6553b 590
4035c07a 591stale:
c8d6553b
HD
592 /*
593 * We come here from above when page->mapping or !PageSwapCache
594 * suggests that the node is stale; but it might be under migration.
595 * We need smp_rmb(), matching the smp_wmb() in ksm_migrate_page(),
596 * before checking whether node->kpfn has been changed.
597 */
598 smp_rmb();
599 if (ACCESS_ONCE(stable_node->kpfn) != kpfn)
600 goto again;
4035c07a
HD
601 remove_node_from_stable_tree(stable_node);
602 return NULL;
603}
604
31dbd01f
IE
605/*
606 * Removing rmap_item from stable or unstable tree.
607 * This function will clean the information from the stable/unstable tree.
608 */
609static void remove_rmap_item_from_tree(struct rmap_item *rmap_item)
610{
7b6ba2c7
HD
611 if (rmap_item->address & STABLE_FLAG) {
612 struct stable_node *stable_node;
5ad64688 613 struct page *page;
31dbd01f 614
7b6ba2c7 615 stable_node = rmap_item->head;
8aafa6a4 616 page = get_ksm_page(stable_node, true);
4035c07a
HD
617 if (!page)
618 goto out;
5ad64688 619
7b6ba2c7 620 hlist_del(&rmap_item->hlist);
4035c07a
HD
621 unlock_page(page);
622 put_page(page);
08beca44 623
4035c07a
HD
624 if (stable_node->hlist.first)
625 ksm_pages_sharing--;
626 else
7b6ba2c7 627 ksm_pages_shared--;
31dbd01f 628
9e60109f 629 put_anon_vma(rmap_item->anon_vma);
93d17715 630 rmap_item->address &= PAGE_MASK;
31dbd01f 631
7b6ba2c7 632 } else if (rmap_item->address & UNSTABLE_FLAG) {
31dbd01f
IE
633 unsigned char age;
634 /*
9ba69294 635 * Usually ksmd can and must skip the rb_erase, because
31dbd01f 636 * root_unstable_tree was already reset to RB_ROOT.
9ba69294
HD
637 * But be careful when an mm is exiting: do the rb_erase
638 * if this rmap_item was inserted by this scan, rather
639 * than left over from before.
31dbd01f
IE
640 */
641 age = (unsigned char)(ksm_scan.seqnr - rmap_item->address);
cd551f97 642 BUG_ON(age > 1);
31dbd01f 643 if (!age)
90bd6fd3 644 rb_erase(&rmap_item->node,
e850dcf5 645 &root_unstable_tree[NUMA(rmap_item->nid)]);
473b0ce4 646 ksm_pages_unshared--;
93d17715 647 rmap_item->address &= PAGE_MASK;
31dbd01f 648 }
4035c07a 649out:
31dbd01f
IE
650 cond_resched(); /* we're called from many long loops */
651}
652
31dbd01f 653static void remove_trailing_rmap_items(struct mm_slot *mm_slot,
6514d511 654 struct rmap_item **rmap_list)
31dbd01f 655{
6514d511
HD
656 while (*rmap_list) {
657 struct rmap_item *rmap_item = *rmap_list;
658 *rmap_list = rmap_item->rmap_list;
31dbd01f 659 remove_rmap_item_from_tree(rmap_item);
31dbd01f
IE
660 free_rmap_item(rmap_item);
661 }
662}
663
664/*
e850dcf5 665 * Though it's very tempting to unmerge rmap_items from stable tree rather
31dbd01f
IE
666 * than check every pte of a given vma, the locking doesn't quite work for
667 * that - an rmap_item is assigned to the stable tree after inserting ksm
668 * page and upping mmap_sem. Nor does it fit with the way we skip dup'ing
669 * rmap_items from parent to child at fork time (so as not to waste time
670 * if exit comes before the next scan reaches it).
81464e30
HD
671 *
672 * Similarly, although we'd like to remove rmap_items (so updating counts
673 * and freeing memory) when unmerging an area, it's easier to leave that
674 * to the next pass of ksmd - consider, for example, how ksmd might be
675 * in cmp_and_merge_page on one of the rmap_items we would be removing.
31dbd01f 676 */
d952b791
HD
677static int unmerge_ksm_pages(struct vm_area_struct *vma,
678 unsigned long start, unsigned long end)
31dbd01f
IE
679{
680 unsigned long addr;
d952b791 681 int err = 0;
31dbd01f 682
d952b791 683 for (addr = start; addr < end && !err; addr += PAGE_SIZE) {
9ba69294
HD
684 if (ksm_test_exit(vma->vm_mm))
685 break;
d952b791
HD
686 if (signal_pending(current))
687 err = -ERESTARTSYS;
688 else
689 err = break_ksm(vma, addr);
690 }
691 return err;
31dbd01f
IE
692}
693
2ffd8679
HD
694#ifdef CONFIG_SYSFS
695/*
696 * Only called through the sysfs control interface:
697 */
cbf86cfe
HD
698static int remove_stable_node(struct stable_node *stable_node)
699{
700 struct page *page;
701 int err;
702
703 page = get_ksm_page(stable_node, true);
704 if (!page) {
705 /*
706 * get_ksm_page did remove_node_from_stable_tree itself.
707 */
708 return 0;
709 }
710
8fdb3dbf
HD
711 if (WARN_ON_ONCE(page_mapped(page))) {
712 /*
713 * This should not happen: but if it does, just refuse to let
714 * merge_across_nodes be switched - there is no need to panic.
715 */
cbf86cfe 716 err = -EBUSY;
8fdb3dbf 717 } else {
cbf86cfe 718 /*
8fdb3dbf
HD
719 * The stable node did not yet appear stale to get_ksm_page(),
720 * since that allows for an unmapped ksm page to be recognized
721 * right up until it is freed; but the node is safe to remove.
cbf86cfe
HD
722 * This page might be in a pagevec waiting to be freed,
723 * or it might be PageSwapCache (perhaps under writeback),
724 * or it might have been removed from swapcache a moment ago.
725 */
726 set_page_stable_node(page, NULL);
727 remove_node_from_stable_tree(stable_node);
728 err = 0;
729 }
730
731 unlock_page(page);
732 put_page(page);
733 return err;
734}
735
736static int remove_all_stable_nodes(void)
737{
738 struct stable_node *stable_node;
4146d2d6 739 struct list_head *this, *next;
cbf86cfe
HD
740 int nid;
741 int err = 0;
742
743 for (nid = 0; nid < nr_node_ids; nid++) {
744 while (root_stable_tree[nid].rb_node) {
745 stable_node = rb_entry(root_stable_tree[nid].rb_node,
746 struct stable_node, node);
747 if (remove_stable_node(stable_node)) {
748 err = -EBUSY;
749 break; /* proceed to next nid */
750 }
751 cond_resched();
752 }
753 }
4146d2d6
HD
754 list_for_each_safe(this, next, &migrate_nodes) {
755 stable_node = list_entry(this, struct stable_node, list);
756 if (remove_stable_node(stable_node))
757 err = -EBUSY;
758 cond_resched();
759 }
cbf86cfe
HD
760 return err;
761}
762
d952b791 763static int unmerge_and_remove_all_rmap_items(void)
31dbd01f
IE
764{
765 struct mm_slot *mm_slot;
766 struct mm_struct *mm;
767 struct vm_area_struct *vma;
d952b791
HD
768 int err = 0;
769
770 spin_lock(&ksm_mmlist_lock);
9ba69294 771 ksm_scan.mm_slot = list_entry(ksm_mm_head.mm_list.next,
d952b791
HD
772 struct mm_slot, mm_list);
773 spin_unlock(&ksm_mmlist_lock);
31dbd01f 774
9ba69294
HD
775 for (mm_slot = ksm_scan.mm_slot;
776 mm_slot != &ksm_mm_head; mm_slot = ksm_scan.mm_slot) {
31dbd01f
IE
777 mm = mm_slot->mm;
778 down_read(&mm->mmap_sem);
779 for (vma = mm->mmap; vma; vma = vma->vm_next) {
9ba69294
HD
780 if (ksm_test_exit(mm))
781 break;
31dbd01f
IE
782 if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
783 continue;
d952b791
HD
784 err = unmerge_ksm_pages(vma,
785 vma->vm_start, vma->vm_end);
9ba69294
HD
786 if (err)
787 goto error;
31dbd01f 788 }
9ba69294 789
6514d511 790 remove_trailing_rmap_items(mm_slot, &mm_slot->rmap_list);
d952b791
HD
791
792 spin_lock(&ksm_mmlist_lock);
9ba69294 793 ksm_scan.mm_slot = list_entry(mm_slot->mm_list.next,
d952b791 794 struct mm_slot, mm_list);
9ba69294 795 if (ksm_test_exit(mm)) {
4ca3a69b 796 hash_del(&mm_slot->link);
9ba69294
HD
797 list_del(&mm_slot->mm_list);
798 spin_unlock(&ksm_mmlist_lock);
799
800 free_mm_slot(mm_slot);
801 clear_bit(MMF_VM_MERGEABLE, &mm->flags);
802 up_read(&mm->mmap_sem);
803 mmdrop(mm);
804 } else {
805 spin_unlock(&ksm_mmlist_lock);
806 up_read(&mm->mmap_sem);
807 }
31dbd01f
IE
808 }
809
cbf86cfe
HD
810 /* Clean up stable nodes, but don't worry if some are still busy */
811 remove_all_stable_nodes();
d952b791 812 ksm_scan.seqnr = 0;
9ba69294
HD
813 return 0;
814
815error:
816 up_read(&mm->mmap_sem);
31dbd01f 817 spin_lock(&ksm_mmlist_lock);
d952b791 818 ksm_scan.mm_slot = &ksm_mm_head;
31dbd01f 819 spin_unlock(&ksm_mmlist_lock);
d952b791 820 return err;
31dbd01f 821}
2ffd8679 822#endif /* CONFIG_SYSFS */
31dbd01f 823
31dbd01f
IE
824static u32 calc_checksum(struct page *page)
825{
826 u32 checksum;
9b04c5fe 827 void *addr = kmap_atomic(page);
31dbd01f 828 checksum = jhash2(addr, PAGE_SIZE / 4, 17);
9b04c5fe 829 kunmap_atomic(addr);
31dbd01f
IE
830 return checksum;
831}
832
833static int memcmp_pages(struct page *page1, struct page *page2)
834{
835 char *addr1, *addr2;
836 int ret;
837
9b04c5fe
CW
838 addr1 = kmap_atomic(page1);
839 addr2 = kmap_atomic(page2);
31dbd01f 840 ret = memcmp(addr1, addr2, PAGE_SIZE);
9b04c5fe
CW
841 kunmap_atomic(addr2);
842 kunmap_atomic(addr1);
31dbd01f
IE
843 return ret;
844}
845
846static inline int pages_identical(struct page *page1, struct page *page2)
847{
848 return !memcmp_pages(page1, page2);
849}
850
851static int write_protect_page(struct vm_area_struct *vma, struct page *page,
852 pte_t *orig_pte)
853{
854 struct mm_struct *mm = vma->vm_mm;
855 unsigned long addr;
856 pte_t *ptep;
857 spinlock_t *ptl;
858 int swapped;
859 int err = -EFAULT;
6bdb913f
HE
860 unsigned long mmun_start; /* For mmu_notifiers */
861 unsigned long mmun_end; /* For mmu_notifiers */
31dbd01f
IE
862
863 addr = page_address_in_vma(page, vma);
864 if (addr == -EFAULT)
865 goto out;
866
29ad768c 867 BUG_ON(PageTransCompound(page));
6bdb913f
HE
868
869 mmun_start = addr;
870 mmun_end = addr + PAGE_SIZE;
871 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
872
31dbd01f
IE
873 ptep = page_check_address(page, mm, addr, &ptl, 0);
874 if (!ptep)
6bdb913f 875 goto out_mn;
31dbd01f 876
4e31635c 877 if (pte_write(*ptep) || pte_dirty(*ptep)) {
31dbd01f
IE
878 pte_t entry;
879
880 swapped = PageSwapCache(page);
881 flush_cache_page(vma, addr, page_to_pfn(page));
882 /*
25985edc 883 * Ok this is tricky, when get_user_pages_fast() run it doesn't
31dbd01f
IE
884 * take any lock, therefore the check that we are going to make
885 * with the pagecount against the mapcount is racey and
886 * O_DIRECT can happen right after the check.
887 * So we clear the pte and flush the tlb before the check
888 * this assure us that no O_DIRECT can happen after the check
889 * or in the middle of the check.
890 */
891 entry = ptep_clear_flush(vma, addr, ptep);
892 /*
893 * Check that no O_DIRECT or similar I/O is in progress on the
894 * page
895 */
31e855ea 896 if (page_mapcount(page) + 1 + swapped != page_count(page)) {
cb532375 897 set_pte_at(mm, addr, ptep, entry);
31dbd01f
IE
898 goto out_unlock;
899 }
4e31635c
HD
900 if (pte_dirty(entry))
901 set_page_dirty(page);
902 entry = pte_mkclean(pte_wrprotect(entry));
31dbd01f
IE
903 set_pte_at_notify(mm, addr, ptep, entry);
904 }
905 *orig_pte = *ptep;
906 err = 0;
907
908out_unlock:
909 pte_unmap_unlock(ptep, ptl);
6bdb913f
HE
910out_mn:
911 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
31dbd01f
IE
912out:
913 return err;
914}
915
916/**
917 * replace_page - replace page in vma by new ksm page
8dd3557a
HD
918 * @vma: vma that holds the pte pointing to page
919 * @page: the page we are replacing by kpage
920 * @kpage: the ksm page we replace page by
31dbd01f
IE
921 * @orig_pte: the original value of the pte
922 *
923 * Returns 0 on success, -EFAULT on failure.
924 */
8dd3557a
HD
925static int replace_page(struct vm_area_struct *vma, struct page *page,
926 struct page *kpage, pte_t orig_pte)
31dbd01f
IE
927{
928 struct mm_struct *mm = vma->vm_mm;
31dbd01f
IE
929 pmd_t *pmd;
930 pte_t *ptep;
931 spinlock_t *ptl;
932 unsigned long addr;
31dbd01f 933 int err = -EFAULT;
6bdb913f
HE
934 unsigned long mmun_start; /* For mmu_notifiers */
935 unsigned long mmun_end; /* For mmu_notifiers */
31dbd01f 936
8dd3557a 937 addr = page_address_in_vma(page, vma);
31dbd01f
IE
938 if (addr == -EFAULT)
939 goto out;
940
6219049a
BL
941 pmd = mm_find_pmd(mm, addr);
942 if (!pmd)
31dbd01f 943 goto out;
29ad768c 944 BUG_ON(pmd_trans_huge(*pmd));
31dbd01f 945
6bdb913f
HE
946 mmun_start = addr;
947 mmun_end = addr + PAGE_SIZE;
948 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
949
31dbd01f
IE
950 ptep = pte_offset_map_lock(mm, pmd, addr, &ptl);
951 if (!pte_same(*ptep, orig_pte)) {
952 pte_unmap_unlock(ptep, ptl);
6bdb913f 953 goto out_mn;
31dbd01f
IE
954 }
955
8dd3557a 956 get_page(kpage);
5ad64688 957 page_add_anon_rmap(kpage, vma, addr);
31dbd01f
IE
958
959 flush_cache_page(vma, addr, pte_pfn(*ptep));
960 ptep_clear_flush(vma, addr, ptep);
8dd3557a 961 set_pte_at_notify(mm, addr, ptep, mk_pte(kpage, vma->vm_page_prot));
31dbd01f 962
8dd3557a 963 page_remove_rmap(page);
ae52a2ad
HD
964 if (!page_mapped(page))
965 try_to_free_swap(page);
8dd3557a 966 put_page(page);
31dbd01f
IE
967
968 pte_unmap_unlock(ptep, ptl);
969 err = 0;
6bdb913f
HE
970out_mn:
971 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
31dbd01f
IE
972out:
973 return err;
974}
975
29ad768c
AA
976static int page_trans_compound_anon_split(struct page *page)
977{
978 int ret = 0;
979 struct page *transhuge_head = page_trans_compound_anon(page);
980 if (transhuge_head) {
981 /* Get the reference on the head to split it. */
982 if (get_page_unless_zero(transhuge_head)) {
983 /*
984 * Recheck we got the reference while the head
985 * was still anonymous.
986 */
987 if (PageAnon(transhuge_head))
988 ret = split_huge_page(transhuge_head);
989 else
990 /*
991 * Retry later if split_huge_page run
992 * from under us.
993 */
994 ret = 1;
995 put_page(transhuge_head);
996 } else
997 /* Retry later if split_huge_page run from under us. */
998 ret = 1;
999 }
1000 return ret;
1001}
1002
31dbd01f
IE
1003/*
1004 * try_to_merge_one_page - take two pages and merge them into one
8dd3557a
HD
1005 * @vma: the vma that holds the pte pointing to page
1006 * @page: the PageAnon page that we want to replace with kpage
80e14822
HD
1007 * @kpage: the PageKsm page that we want to map instead of page,
1008 * or NULL the first time when we want to use page as kpage.
31dbd01f
IE
1009 *
1010 * This function returns 0 if the pages were merged, -EFAULT otherwise.
1011 */
1012static int try_to_merge_one_page(struct vm_area_struct *vma,
8dd3557a 1013 struct page *page, struct page *kpage)
31dbd01f
IE
1014{
1015 pte_t orig_pte = __pte(0);
1016 int err = -EFAULT;
1017
db114b83
HD
1018 if (page == kpage) /* ksm page forked */
1019 return 0;
1020
31dbd01f
IE
1021 if (!(vma->vm_flags & VM_MERGEABLE))
1022 goto out;
29ad768c
AA
1023 if (PageTransCompound(page) && page_trans_compound_anon_split(page))
1024 goto out;
1025 BUG_ON(PageTransCompound(page));
8dd3557a 1026 if (!PageAnon(page))
31dbd01f
IE
1027 goto out;
1028
31dbd01f
IE
1029 /*
1030 * We need the page lock to read a stable PageSwapCache in
1031 * write_protect_page(). We use trylock_page() instead of
1032 * lock_page() because we don't want to wait here - we
1033 * prefer to continue scanning and merging different pages,
1034 * then come back to this page when it is unlocked.
1035 */
8dd3557a 1036 if (!trylock_page(page))
31e855ea 1037 goto out;
31dbd01f
IE
1038 /*
1039 * If this anonymous page is mapped only here, its pte may need
1040 * to be write-protected. If it's mapped elsewhere, all of its
1041 * ptes are necessarily already write-protected. But in either
1042 * case, we need to lock and check page_count is not raised.
1043 */
80e14822
HD
1044 if (write_protect_page(vma, page, &orig_pte) == 0) {
1045 if (!kpage) {
1046 /*
1047 * While we hold page lock, upgrade page from
1048 * PageAnon+anon_vma to PageKsm+NULL stable_node:
1049 * stable_tree_insert() will update stable_node.
1050 */
1051 set_page_stable_node(page, NULL);
1052 mark_page_accessed(page);
1053 err = 0;
1054 } else if (pages_identical(page, kpage))
1055 err = replace_page(vma, page, kpage, orig_pte);
1056 }
31dbd01f 1057
80e14822 1058 if ((vma->vm_flags & VM_LOCKED) && kpage && !err) {
73848b46 1059 munlock_vma_page(page);
5ad64688
HD
1060 if (!PageMlocked(kpage)) {
1061 unlock_page(page);
5ad64688
HD
1062 lock_page(kpage);
1063 mlock_vma_page(kpage);
1064 page = kpage; /* for final unlock */
1065 }
1066 }
73848b46 1067
8dd3557a 1068 unlock_page(page);
31dbd01f
IE
1069out:
1070 return err;
1071}
1072
81464e30
HD
1073/*
1074 * try_to_merge_with_ksm_page - like try_to_merge_two_pages,
1075 * but no new kernel page is allocated: kpage must already be a ksm page.
8dd3557a
HD
1076 *
1077 * This function returns 0 if the pages were merged, -EFAULT otherwise.
81464e30 1078 */
8dd3557a
HD
1079static int try_to_merge_with_ksm_page(struct rmap_item *rmap_item,
1080 struct page *page, struct page *kpage)
81464e30 1081{
8dd3557a 1082 struct mm_struct *mm = rmap_item->mm;
81464e30
HD
1083 struct vm_area_struct *vma;
1084 int err = -EFAULT;
1085
8dd3557a
HD
1086 down_read(&mm->mmap_sem);
1087 if (ksm_test_exit(mm))
9ba69294 1088 goto out;
8dd3557a
HD
1089 vma = find_vma(mm, rmap_item->address);
1090 if (!vma || vma->vm_start > rmap_item->address)
81464e30
HD
1091 goto out;
1092
8dd3557a 1093 err = try_to_merge_one_page(vma, page, kpage);
db114b83
HD
1094 if (err)
1095 goto out;
1096
1097 /* Must get reference to anon_vma while still holding mmap_sem */
9e60109f
PZ
1098 rmap_item->anon_vma = vma->anon_vma;
1099 get_anon_vma(vma->anon_vma);
81464e30 1100out:
8dd3557a 1101 up_read(&mm->mmap_sem);
81464e30
HD
1102 return err;
1103}
1104
31dbd01f
IE
1105/*
1106 * try_to_merge_two_pages - take two identical pages and prepare them
1107 * to be merged into one page.
1108 *
8dd3557a
HD
1109 * This function returns the kpage if we successfully merged two identical
1110 * pages into one ksm page, NULL otherwise.
31dbd01f 1111 *
80e14822 1112 * Note that this function upgrades page to ksm page: if one of the pages
31dbd01f
IE
1113 * is already a ksm page, try_to_merge_with_ksm_page should be used.
1114 */
8dd3557a
HD
1115static struct page *try_to_merge_two_pages(struct rmap_item *rmap_item,
1116 struct page *page,
1117 struct rmap_item *tree_rmap_item,
1118 struct page *tree_page)
31dbd01f 1119{
80e14822 1120 int err;
31dbd01f 1121
80e14822 1122 err = try_to_merge_with_ksm_page(rmap_item, page, NULL);
31dbd01f 1123 if (!err) {
8dd3557a 1124 err = try_to_merge_with_ksm_page(tree_rmap_item,
80e14822 1125 tree_page, page);
31dbd01f 1126 /*
81464e30
HD
1127 * If that fails, we have a ksm page with only one pte
1128 * pointing to it: so break it.
31dbd01f 1129 */
4035c07a 1130 if (err)
8dd3557a 1131 break_cow(rmap_item);
31dbd01f 1132 }
80e14822 1133 return err ? NULL : page;
31dbd01f
IE
1134}
1135
31dbd01f 1136/*
8dd3557a 1137 * stable_tree_search - search for page inside the stable tree
31dbd01f
IE
1138 *
1139 * This function checks if there is a page inside the stable tree
1140 * with identical content to the page that we are scanning right now.
1141 *
7b6ba2c7 1142 * This function returns the stable tree node of identical content if found,
31dbd01f
IE
1143 * NULL otherwise.
1144 */
62b61f61 1145static struct page *stable_tree_search(struct page *page)
31dbd01f 1146{
90bd6fd3 1147 int nid;
4146d2d6
HD
1148 struct rb_node **new;
1149 struct rb_node *parent;
1150 struct stable_node *stable_node;
1151 struct stable_node *page_node;
31dbd01f 1152
4146d2d6
HD
1153 page_node = page_stable_node(page);
1154 if (page_node && page_node->head != &migrate_nodes) {
1155 /* ksm page forked */
08beca44 1156 get_page(page);
62b61f61 1157 return page;
08beca44
HD
1158 }
1159
90bd6fd3 1160 nid = get_kpfn_nid(page_to_pfn(page));
4146d2d6
HD
1161again:
1162 new = &root_stable_tree[nid].rb_node;
1163 parent = NULL;
90bd6fd3 1164
4146d2d6 1165 while (*new) {
4035c07a 1166 struct page *tree_page;
31dbd01f
IE
1167 int ret;
1168
08beca44 1169 cond_resched();
4146d2d6 1170 stable_node = rb_entry(*new, struct stable_node, node);
8aafa6a4 1171 tree_page = get_ksm_page(stable_node, false);
4035c07a
HD
1172 if (!tree_page)
1173 return NULL;
31dbd01f 1174
4035c07a 1175 ret = memcmp_pages(page, tree_page);
c8d6553b 1176 put_page(tree_page);
31dbd01f 1177
4146d2d6 1178 parent = *new;
c8d6553b 1179 if (ret < 0)
4146d2d6 1180 new = &parent->rb_left;
c8d6553b 1181 else if (ret > 0)
4146d2d6 1182 new = &parent->rb_right;
c8d6553b
HD
1183 else {
1184 /*
1185 * Lock and unlock the stable_node's page (which
1186 * might already have been migrated) so that page
1187 * migration is sure to notice its raised count.
1188 * It would be more elegant to return stable_node
1189 * than kpage, but that involves more changes.
1190 */
1191 tree_page = get_ksm_page(stable_node, true);
4146d2d6 1192 if (tree_page) {
c8d6553b 1193 unlock_page(tree_page);
4146d2d6
HD
1194 if (get_kpfn_nid(stable_node->kpfn) !=
1195 NUMA(stable_node->nid)) {
1196 put_page(tree_page);
1197 goto replace;
1198 }
1199 return tree_page;
1200 }
1201 /*
1202 * There is now a place for page_node, but the tree may
1203 * have been rebalanced, so re-evaluate parent and new.
1204 */
1205 if (page_node)
1206 goto again;
1207 return NULL;
c8d6553b 1208 }
31dbd01f
IE
1209 }
1210
4146d2d6
HD
1211 if (!page_node)
1212 return NULL;
1213
1214 list_del(&page_node->list);
1215 DO_NUMA(page_node->nid = nid);
1216 rb_link_node(&page_node->node, parent, new);
1217 rb_insert_color(&page_node->node, &root_stable_tree[nid]);
1218 get_page(page);
1219 return page;
1220
1221replace:
1222 if (page_node) {
1223 list_del(&page_node->list);
1224 DO_NUMA(page_node->nid = nid);
1225 rb_replace_node(&stable_node->node,
1226 &page_node->node, &root_stable_tree[nid]);
1227 get_page(page);
1228 } else {
1229 rb_erase(&stable_node->node, &root_stable_tree[nid]);
1230 page = NULL;
1231 }
1232 stable_node->head = &migrate_nodes;
1233 list_add(&stable_node->list, stable_node->head);
1234 return page;
31dbd01f
IE
1235}
1236
1237/*
e850dcf5 1238 * stable_tree_insert - insert stable tree node pointing to new ksm page
31dbd01f
IE
1239 * into the stable tree.
1240 *
7b6ba2c7
HD
1241 * This function returns the stable tree node just allocated on success,
1242 * NULL otherwise.
31dbd01f 1243 */
7b6ba2c7 1244static struct stable_node *stable_tree_insert(struct page *kpage)
31dbd01f 1245{
90bd6fd3
PH
1246 int nid;
1247 unsigned long kpfn;
1248 struct rb_node **new;
31dbd01f 1249 struct rb_node *parent = NULL;
7b6ba2c7 1250 struct stable_node *stable_node;
31dbd01f 1251
90bd6fd3
PH
1252 kpfn = page_to_pfn(kpage);
1253 nid = get_kpfn_nid(kpfn);
1254 new = &root_stable_tree[nid].rb_node;
1255
31dbd01f 1256 while (*new) {
4035c07a 1257 struct page *tree_page;
31dbd01f
IE
1258 int ret;
1259
08beca44 1260 cond_resched();
7b6ba2c7 1261 stable_node = rb_entry(*new, struct stable_node, node);
8aafa6a4 1262 tree_page = get_ksm_page(stable_node, false);
4035c07a
HD
1263 if (!tree_page)
1264 return NULL;
31dbd01f 1265
4035c07a
HD
1266 ret = memcmp_pages(kpage, tree_page);
1267 put_page(tree_page);
31dbd01f
IE
1268
1269 parent = *new;
1270 if (ret < 0)
1271 new = &parent->rb_left;
1272 else if (ret > 0)
1273 new = &parent->rb_right;
1274 else {
1275 /*
1276 * It is not a bug that stable_tree_search() didn't
1277 * find this node: because at that time our page was
1278 * not yet write-protected, so may have changed since.
1279 */
1280 return NULL;
1281 }
1282 }
1283
7b6ba2c7
HD
1284 stable_node = alloc_stable_node();
1285 if (!stable_node)
1286 return NULL;
31dbd01f 1287
7b6ba2c7 1288 INIT_HLIST_HEAD(&stable_node->hlist);
90bd6fd3 1289 stable_node->kpfn = kpfn;
08beca44 1290 set_page_stable_node(kpage, stable_node);
4146d2d6 1291 DO_NUMA(stable_node->nid = nid);
e850dcf5
HD
1292 rb_link_node(&stable_node->node, parent, new);
1293 rb_insert_color(&stable_node->node, &root_stable_tree[nid]);
08beca44 1294
7b6ba2c7 1295 return stable_node;
31dbd01f
IE
1296}
1297
1298/*
8dd3557a
HD
1299 * unstable_tree_search_insert - search for identical page,
1300 * else insert rmap_item into the unstable tree.
31dbd01f
IE
1301 *
1302 * This function searches for a page in the unstable tree identical to the
1303 * page currently being scanned; and if no identical page is found in the
1304 * tree, we insert rmap_item as a new object into the unstable tree.
1305 *
1306 * This function returns pointer to rmap_item found to be identical
1307 * to the currently scanned page, NULL otherwise.
1308 *
1309 * This function does both searching and inserting, because they share
1310 * the same walking algorithm in an rbtree.
1311 */
8dd3557a
HD
1312static
1313struct rmap_item *unstable_tree_search_insert(struct rmap_item *rmap_item,
1314 struct page *page,
1315 struct page **tree_pagep)
31dbd01f 1316{
90bd6fd3
PH
1317 struct rb_node **new;
1318 struct rb_root *root;
31dbd01f 1319 struct rb_node *parent = NULL;
90bd6fd3
PH
1320 int nid;
1321
1322 nid = get_kpfn_nid(page_to_pfn(page));
1323 root = &root_unstable_tree[nid];
1324 new = &root->rb_node;
31dbd01f
IE
1325
1326 while (*new) {
1327 struct rmap_item *tree_rmap_item;
8dd3557a 1328 struct page *tree_page;
31dbd01f
IE
1329 int ret;
1330
d178f27f 1331 cond_resched();
31dbd01f 1332 tree_rmap_item = rb_entry(*new, struct rmap_item, node);
8dd3557a 1333 tree_page = get_mergeable_page(tree_rmap_item);
22eccdd7 1334 if (IS_ERR_OR_NULL(tree_page))
31dbd01f
IE
1335 return NULL;
1336
1337 /*
8dd3557a 1338 * Don't substitute a ksm page for a forked page.
31dbd01f 1339 */
8dd3557a
HD
1340 if (page == tree_page) {
1341 put_page(tree_page);
31dbd01f
IE
1342 return NULL;
1343 }
1344
8dd3557a 1345 ret = memcmp_pages(page, tree_page);
31dbd01f
IE
1346
1347 parent = *new;
1348 if (ret < 0) {
8dd3557a 1349 put_page(tree_page);
31dbd01f
IE
1350 new = &parent->rb_left;
1351 } else if (ret > 0) {
8dd3557a 1352 put_page(tree_page);
31dbd01f 1353 new = &parent->rb_right;
b599cbdf
HD
1354 } else if (!ksm_merge_across_nodes &&
1355 page_to_nid(tree_page) != nid) {
1356 /*
1357 * If tree_page has been migrated to another NUMA node,
1358 * it will be flushed out and put in the right unstable
1359 * tree next time: only merge with it when across_nodes.
1360 */
1361 put_page(tree_page);
1362 return NULL;
31dbd01f 1363 } else {
8dd3557a 1364 *tree_pagep = tree_page;
31dbd01f
IE
1365 return tree_rmap_item;
1366 }
1367 }
1368
7b6ba2c7 1369 rmap_item->address |= UNSTABLE_FLAG;
31dbd01f 1370 rmap_item->address |= (ksm_scan.seqnr & SEQNR_MASK);
e850dcf5 1371 DO_NUMA(rmap_item->nid = nid);
31dbd01f 1372 rb_link_node(&rmap_item->node, parent, new);
90bd6fd3 1373 rb_insert_color(&rmap_item->node, root);
31dbd01f 1374
473b0ce4 1375 ksm_pages_unshared++;
31dbd01f
IE
1376 return NULL;
1377}
1378
1379/*
1380 * stable_tree_append - add another rmap_item to the linked list of
1381 * rmap_items hanging off a given node of the stable tree, all sharing
1382 * the same ksm page.
1383 */
1384static void stable_tree_append(struct rmap_item *rmap_item,
7b6ba2c7 1385 struct stable_node *stable_node)
31dbd01f 1386{
7b6ba2c7 1387 rmap_item->head = stable_node;
31dbd01f 1388 rmap_item->address |= STABLE_FLAG;
7b6ba2c7 1389 hlist_add_head(&rmap_item->hlist, &stable_node->hlist);
e178dfde 1390
7b6ba2c7
HD
1391 if (rmap_item->hlist.next)
1392 ksm_pages_sharing++;
1393 else
1394 ksm_pages_shared++;
31dbd01f
IE
1395}
1396
1397/*
81464e30
HD
1398 * cmp_and_merge_page - first see if page can be merged into the stable tree;
1399 * if not, compare checksum to previous and if it's the same, see if page can
1400 * be inserted into the unstable tree, or merged with a page already there and
1401 * both transferred to the stable tree.
31dbd01f
IE
1402 *
1403 * @page: the page that we are searching identical page to.
1404 * @rmap_item: the reverse mapping into the virtual address of this page
1405 */
1406static void cmp_and_merge_page(struct page *page, struct rmap_item *rmap_item)
1407{
31dbd01f 1408 struct rmap_item *tree_rmap_item;
8dd3557a 1409 struct page *tree_page = NULL;
7b6ba2c7 1410 struct stable_node *stable_node;
8dd3557a 1411 struct page *kpage;
31dbd01f
IE
1412 unsigned int checksum;
1413 int err;
1414
4146d2d6
HD
1415 stable_node = page_stable_node(page);
1416 if (stable_node) {
1417 if (stable_node->head != &migrate_nodes &&
1418 get_kpfn_nid(stable_node->kpfn) != NUMA(stable_node->nid)) {
1419 rb_erase(&stable_node->node,
1420 &root_stable_tree[NUMA(stable_node->nid)]);
1421 stable_node->head = &migrate_nodes;
1422 list_add(&stable_node->list, stable_node->head);
1423 }
1424 if (stable_node->head != &migrate_nodes &&
1425 rmap_item->head == stable_node)
1426 return;
1427 }
31dbd01f
IE
1428
1429 /* We first start with searching the page inside the stable tree */
62b61f61 1430 kpage = stable_tree_search(page);
4146d2d6
HD
1431 if (kpage == page && rmap_item->head == stable_node) {
1432 put_page(kpage);
1433 return;
1434 }
1435
1436 remove_rmap_item_from_tree(rmap_item);
1437
62b61f61 1438 if (kpage) {
08beca44 1439 err = try_to_merge_with_ksm_page(rmap_item, page, kpage);
31dbd01f
IE
1440 if (!err) {
1441 /*
1442 * The page was successfully merged:
1443 * add its rmap_item to the stable tree.
1444 */
5ad64688 1445 lock_page(kpage);
62b61f61 1446 stable_tree_append(rmap_item, page_stable_node(kpage));
5ad64688 1447 unlock_page(kpage);
31dbd01f 1448 }
8dd3557a 1449 put_page(kpage);
31dbd01f
IE
1450 return;
1451 }
1452
1453 /*
4035c07a
HD
1454 * If the hash value of the page has changed from the last time
1455 * we calculated it, this page is changing frequently: therefore we
1456 * don't want to insert it in the unstable tree, and we don't want
1457 * to waste our time searching for something identical to it there.
31dbd01f
IE
1458 */
1459 checksum = calc_checksum(page);
1460 if (rmap_item->oldchecksum != checksum) {
1461 rmap_item->oldchecksum = checksum;
1462 return;
1463 }
1464
8dd3557a
HD
1465 tree_rmap_item =
1466 unstable_tree_search_insert(rmap_item, page, &tree_page);
31dbd01f 1467 if (tree_rmap_item) {
8dd3557a
HD
1468 kpage = try_to_merge_two_pages(rmap_item, page,
1469 tree_rmap_item, tree_page);
1470 put_page(tree_page);
31dbd01f
IE
1471 /*
1472 * As soon as we merge this page, we want to remove the
1473 * rmap_item of the page we have merged with from the unstable
1474 * tree, and insert it instead as new node in the stable tree.
1475 */
8dd3557a 1476 if (kpage) {
93d17715 1477 remove_rmap_item_from_tree(tree_rmap_item);
473b0ce4 1478
5ad64688 1479 lock_page(kpage);
7b6ba2c7
HD
1480 stable_node = stable_tree_insert(kpage);
1481 if (stable_node) {
1482 stable_tree_append(tree_rmap_item, stable_node);
1483 stable_tree_append(rmap_item, stable_node);
1484 }
5ad64688 1485 unlock_page(kpage);
7b6ba2c7 1486
31dbd01f
IE
1487 /*
1488 * If we fail to insert the page into the stable tree,
1489 * we will have 2 virtual addresses that are pointing
1490 * to a ksm page left outside the stable tree,
1491 * in which case we need to break_cow on both.
1492 */
7b6ba2c7 1493 if (!stable_node) {
8dd3557a
HD
1494 break_cow(tree_rmap_item);
1495 break_cow(rmap_item);
31dbd01f
IE
1496 }
1497 }
31dbd01f
IE
1498 }
1499}
1500
1501static struct rmap_item *get_next_rmap_item(struct mm_slot *mm_slot,
6514d511 1502 struct rmap_item **rmap_list,
31dbd01f
IE
1503 unsigned long addr)
1504{
1505 struct rmap_item *rmap_item;
1506
6514d511
HD
1507 while (*rmap_list) {
1508 rmap_item = *rmap_list;
93d17715 1509 if ((rmap_item->address & PAGE_MASK) == addr)
31dbd01f 1510 return rmap_item;
31dbd01f
IE
1511 if (rmap_item->address > addr)
1512 break;
6514d511 1513 *rmap_list = rmap_item->rmap_list;
31dbd01f 1514 remove_rmap_item_from_tree(rmap_item);
31dbd01f
IE
1515 free_rmap_item(rmap_item);
1516 }
1517
1518 rmap_item = alloc_rmap_item();
1519 if (rmap_item) {
1520 /* It has already been zeroed */
1521 rmap_item->mm = mm_slot->mm;
1522 rmap_item->address = addr;
6514d511
HD
1523 rmap_item->rmap_list = *rmap_list;
1524 *rmap_list = rmap_item;
31dbd01f
IE
1525 }
1526 return rmap_item;
1527}
1528
1529static struct rmap_item *scan_get_next_rmap_item(struct page **page)
1530{
1531 struct mm_struct *mm;
1532 struct mm_slot *slot;
1533 struct vm_area_struct *vma;
1534 struct rmap_item *rmap_item;
90bd6fd3 1535 int nid;
31dbd01f
IE
1536
1537 if (list_empty(&ksm_mm_head.mm_list))
1538 return NULL;
1539
1540 slot = ksm_scan.mm_slot;
1541 if (slot == &ksm_mm_head) {
2919bfd0
HD
1542 /*
1543 * A number of pages can hang around indefinitely on per-cpu
1544 * pagevecs, raised page count preventing write_protect_page
1545 * from merging them. Though it doesn't really matter much,
1546 * it is puzzling to see some stuck in pages_volatile until
1547 * other activity jostles them out, and they also prevented
1548 * LTP's KSM test from succeeding deterministically; so drain
1549 * them here (here rather than on entry to ksm_do_scan(),
1550 * so we don't IPI too often when pages_to_scan is set low).
1551 */
1552 lru_add_drain_all();
1553
4146d2d6
HD
1554 /*
1555 * Whereas stale stable_nodes on the stable_tree itself
1556 * get pruned in the regular course of stable_tree_search(),
1557 * those moved out to the migrate_nodes list can accumulate:
1558 * so prune them once before each full scan.
1559 */
1560 if (!ksm_merge_across_nodes) {
1561 struct stable_node *stable_node;
1562 struct list_head *this, *next;
1563 struct page *page;
1564
1565 list_for_each_safe(this, next, &migrate_nodes) {
1566 stable_node = list_entry(this,
1567 struct stable_node, list);
1568 page = get_ksm_page(stable_node, false);
1569 if (page)
1570 put_page(page);
1571 cond_resched();
1572 }
1573 }
1574
90bd6fd3
PH
1575 for (nid = 0; nid < nr_node_ids; nid++)
1576 root_unstable_tree[nid] = RB_ROOT;
31dbd01f
IE
1577
1578 spin_lock(&ksm_mmlist_lock);
1579 slot = list_entry(slot->mm_list.next, struct mm_slot, mm_list);
1580 ksm_scan.mm_slot = slot;
1581 spin_unlock(&ksm_mmlist_lock);
2b472611
HD
1582 /*
1583 * Although we tested list_empty() above, a racing __ksm_exit
1584 * of the last mm on the list may have removed it since then.
1585 */
1586 if (slot == &ksm_mm_head)
1587 return NULL;
31dbd01f
IE
1588next_mm:
1589 ksm_scan.address = 0;
6514d511 1590 ksm_scan.rmap_list = &slot->rmap_list;
31dbd01f
IE
1591 }
1592
1593 mm = slot->mm;
1594 down_read(&mm->mmap_sem);
9ba69294
HD
1595 if (ksm_test_exit(mm))
1596 vma = NULL;
1597 else
1598 vma = find_vma(mm, ksm_scan.address);
1599
1600 for (; vma; vma = vma->vm_next) {
31dbd01f
IE
1601 if (!(vma->vm_flags & VM_MERGEABLE))
1602 continue;
1603 if (ksm_scan.address < vma->vm_start)
1604 ksm_scan.address = vma->vm_start;
1605 if (!vma->anon_vma)
1606 ksm_scan.address = vma->vm_end;
1607
1608 while (ksm_scan.address < vma->vm_end) {
9ba69294
HD
1609 if (ksm_test_exit(mm))
1610 break;
31dbd01f 1611 *page = follow_page(vma, ksm_scan.address, FOLL_GET);
21ae5b01
AA
1612 if (IS_ERR_OR_NULL(*page)) {
1613 ksm_scan.address += PAGE_SIZE;
1614 cond_resched();
1615 continue;
1616 }
29ad768c
AA
1617 if (PageAnon(*page) ||
1618 page_trans_compound_anon(*page)) {
31dbd01f
IE
1619 flush_anon_page(vma, *page, ksm_scan.address);
1620 flush_dcache_page(*page);
1621 rmap_item = get_next_rmap_item(slot,
6514d511 1622 ksm_scan.rmap_list, ksm_scan.address);
31dbd01f 1623 if (rmap_item) {
6514d511
HD
1624 ksm_scan.rmap_list =
1625 &rmap_item->rmap_list;
31dbd01f
IE
1626 ksm_scan.address += PAGE_SIZE;
1627 } else
1628 put_page(*page);
1629 up_read(&mm->mmap_sem);
1630 return rmap_item;
1631 }
21ae5b01 1632 put_page(*page);
31dbd01f
IE
1633 ksm_scan.address += PAGE_SIZE;
1634 cond_resched();
1635 }
1636 }
1637
9ba69294
HD
1638 if (ksm_test_exit(mm)) {
1639 ksm_scan.address = 0;
6514d511 1640 ksm_scan.rmap_list = &slot->rmap_list;
9ba69294 1641 }
31dbd01f
IE
1642 /*
1643 * Nuke all the rmap_items that are above this current rmap:
1644 * because there were no VM_MERGEABLE vmas with such addresses.
1645 */
6514d511 1646 remove_trailing_rmap_items(slot, ksm_scan.rmap_list);
31dbd01f
IE
1647
1648 spin_lock(&ksm_mmlist_lock);
cd551f97
HD
1649 ksm_scan.mm_slot = list_entry(slot->mm_list.next,
1650 struct mm_slot, mm_list);
1651 if (ksm_scan.address == 0) {
1652 /*
1653 * We've completed a full scan of all vmas, holding mmap_sem
1654 * throughout, and found no VM_MERGEABLE: so do the same as
1655 * __ksm_exit does to remove this mm from all our lists now.
9ba69294
HD
1656 * This applies either when cleaning up after __ksm_exit
1657 * (but beware: we can reach here even before __ksm_exit),
1658 * or when all VM_MERGEABLE areas have been unmapped (and
1659 * mmap_sem then protects against race with MADV_MERGEABLE).
cd551f97 1660 */
4ca3a69b 1661 hash_del(&slot->link);
cd551f97 1662 list_del(&slot->mm_list);
9ba69294
HD
1663 spin_unlock(&ksm_mmlist_lock);
1664
cd551f97
HD
1665 free_mm_slot(slot);
1666 clear_bit(MMF_VM_MERGEABLE, &mm->flags);
9ba69294
HD
1667 up_read(&mm->mmap_sem);
1668 mmdrop(mm);
1669 } else {
1670 spin_unlock(&ksm_mmlist_lock);
1671 up_read(&mm->mmap_sem);
cd551f97 1672 }
31dbd01f
IE
1673
1674 /* Repeat until we've completed scanning the whole list */
cd551f97 1675 slot = ksm_scan.mm_slot;
31dbd01f
IE
1676 if (slot != &ksm_mm_head)
1677 goto next_mm;
1678
31dbd01f
IE
1679 ksm_scan.seqnr++;
1680 return NULL;
1681}
1682
1683/**
1684 * ksm_do_scan - the ksm scanner main worker function.
1685 * @scan_npages - number of pages we want to scan before we return.
1686 */
1687static void ksm_do_scan(unsigned int scan_npages)
1688{
1689 struct rmap_item *rmap_item;
22eccdd7 1690 struct page *uninitialized_var(page);
31dbd01f 1691
878aee7d 1692 while (scan_npages-- && likely(!freezing(current))) {
31dbd01f
IE
1693 cond_resched();
1694 rmap_item = scan_get_next_rmap_item(&page);
1695 if (!rmap_item)
1696 return;
4146d2d6 1697 cmp_and_merge_page(page, rmap_item);
31dbd01f
IE
1698 put_page(page);
1699 }
1700}
1701
6e158384
HD
1702static int ksmd_should_run(void)
1703{
1704 return (ksm_run & KSM_RUN_MERGE) && !list_empty(&ksm_mm_head.mm_list);
1705}
1706
31dbd01f
IE
1707static int ksm_scan_thread(void *nothing)
1708{
878aee7d 1709 set_freezable();
339aa624 1710 set_user_nice(current, 5);
31dbd01f
IE
1711
1712 while (!kthread_should_stop()) {
6e158384 1713 mutex_lock(&ksm_thread_mutex);
ef4d43a8 1714 wait_while_offlining();
6e158384 1715 if (ksmd_should_run())
31dbd01f 1716 ksm_do_scan(ksm_thread_pages_to_scan);
6e158384
HD
1717 mutex_unlock(&ksm_thread_mutex);
1718
878aee7d
AA
1719 try_to_freeze();
1720
6e158384 1721 if (ksmd_should_run()) {
31dbd01f
IE
1722 schedule_timeout_interruptible(
1723 msecs_to_jiffies(ksm_thread_sleep_millisecs));
1724 } else {
878aee7d 1725 wait_event_freezable(ksm_thread_wait,
6e158384 1726 ksmd_should_run() || kthread_should_stop());
31dbd01f
IE
1727 }
1728 }
1729 return 0;
1730}
1731
f8af4da3
HD
1732int ksm_madvise(struct vm_area_struct *vma, unsigned long start,
1733 unsigned long end, int advice, unsigned long *vm_flags)
1734{
1735 struct mm_struct *mm = vma->vm_mm;
d952b791 1736 int err;
f8af4da3
HD
1737
1738 switch (advice) {
1739 case MADV_MERGEABLE:
1740 /*
1741 * Be somewhat over-protective for now!
1742 */
1743 if (*vm_flags & (VM_MERGEABLE | VM_SHARED | VM_MAYSHARE |
1744 VM_PFNMAP | VM_IO | VM_DONTEXPAND |
314e51b9 1745 VM_HUGETLB | VM_NONLINEAR | VM_MIXEDMAP))
f8af4da3
HD
1746 return 0; /* just ignore the advice */
1747
cc2383ec
KK
1748#ifdef VM_SAO
1749 if (*vm_flags & VM_SAO)
1750 return 0;
1751#endif
1752
d952b791
HD
1753 if (!test_bit(MMF_VM_MERGEABLE, &mm->flags)) {
1754 err = __ksm_enter(mm);
1755 if (err)
1756 return err;
1757 }
f8af4da3
HD
1758
1759 *vm_flags |= VM_MERGEABLE;
1760 break;
1761
1762 case MADV_UNMERGEABLE:
1763 if (!(*vm_flags & VM_MERGEABLE))
1764 return 0; /* just ignore the advice */
1765
d952b791
HD
1766 if (vma->anon_vma) {
1767 err = unmerge_ksm_pages(vma, start, end);
1768 if (err)
1769 return err;
1770 }
f8af4da3
HD
1771
1772 *vm_flags &= ~VM_MERGEABLE;
1773 break;
1774 }
1775
1776 return 0;
1777}
1778
1779int __ksm_enter(struct mm_struct *mm)
1780{
6e158384
HD
1781 struct mm_slot *mm_slot;
1782 int needs_wakeup;
1783
1784 mm_slot = alloc_mm_slot();
31dbd01f
IE
1785 if (!mm_slot)
1786 return -ENOMEM;
1787
6e158384
HD
1788 /* Check ksm_run too? Would need tighter locking */
1789 needs_wakeup = list_empty(&ksm_mm_head.mm_list);
1790
31dbd01f
IE
1791 spin_lock(&ksm_mmlist_lock);
1792 insert_to_mm_slots_hash(mm, mm_slot);
1793 /*
cbf86cfe
HD
1794 * When KSM_RUN_MERGE (or KSM_RUN_STOP),
1795 * insert just behind the scanning cursor, to let the area settle
31dbd01f
IE
1796 * down a little; when fork is followed by immediate exec, we don't
1797 * want ksmd to waste time setting up and tearing down an rmap_list.
cbf86cfe
HD
1798 *
1799 * But when KSM_RUN_UNMERGE, it's important to insert ahead of its
1800 * scanning cursor, otherwise KSM pages in newly forked mms will be
1801 * missed: then we might as well insert at the end of the list.
31dbd01f 1802 */
cbf86cfe
HD
1803 if (ksm_run & KSM_RUN_UNMERGE)
1804 list_add_tail(&mm_slot->mm_list, &ksm_mm_head.mm_list);
1805 else
1806 list_add_tail(&mm_slot->mm_list, &ksm_scan.mm_slot->mm_list);
31dbd01f
IE
1807 spin_unlock(&ksm_mmlist_lock);
1808
f8af4da3 1809 set_bit(MMF_VM_MERGEABLE, &mm->flags);
9ba69294 1810 atomic_inc(&mm->mm_count);
6e158384
HD
1811
1812 if (needs_wakeup)
1813 wake_up_interruptible(&ksm_thread_wait);
1814
f8af4da3
HD
1815 return 0;
1816}
1817
1c2fb7a4 1818void __ksm_exit(struct mm_struct *mm)
f8af4da3 1819{
cd551f97 1820 struct mm_slot *mm_slot;
9ba69294 1821 int easy_to_free = 0;
cd551f97 1822
31dbd01f 1823 /*
9ba69294
HD
1824 * This process is exiting: if it's straightforward (as is the
1825 * case when ksmd was never running), free mm_slot immediately.
1826 * But if it's at the cursor or has rmap_items linked to it, use
1827 * mmap_sem to synchronize with any break_cows before pagetables
1828 * are freed, and leave the mm_slot on the list for ksmd to free.
1829 * Beware: ksm may already have noticed it exiting and freed the slot.
31dbd01f 1830 */
9ba69294 1831
cd551f97
HD
1832 spin_lock(&ksm_mmlist_lock);
1833 mm_slot = get_mm_slot(mm);
9ba69294 1834 if (mm_slot && ksm_scan.mm_slot != mm_slot) {
6514d511 1835 if (!mm_slot->rmap_list) {
4ca3a69b 1836 hash_del(&mm_slot->link);
9ba69294
HD
1837 list_del(&mm_slot->mm_list);
1838 easy_to_free = 1;
1839 } else {
1840 list_move(&mm_slot->mm_list,
1841 &ksm_scan.mm_slot->mm_list);
1842 }
cd551f97 1843 }
cd551f97
HD
1844 spin_unlock(&ksm_mmlist_lock);
1845
9ba69294
HD
1846 if (easy_to_free) {
1847 free_mm_slot(mm_slot);
1848 clear_bit(MMF_VM_MERGEABLE, &mm->flags);
1849 mmdrop(mm);
1850 } else if (mm_slot) {
9ba69294
HD
1851 down_write(&mm->mmap_sem);
1852 up_write(&mm->mmap_sem);
9ba69294 1853 }
31dbd01f
IE
1854}
1855
cbf86cfe 1856struct page *ksm_might_need_to_copy(struct page *page,
5ad64688
HD
1857 struct vm_area_struct *vma, unsigned long address)
1858{
cbf86cfe 1859 struct anon_vma *anon_vma = page_anon_vma(page);
5ad64688
HD
1860 struct page *new_page;
1861
cbf86cfe
HD
1862 if (PageKsm(page)) {
1863 if (page_stable_node(page) &&
1864 !(ksm_run & KSM_RUN_UNMERGE))
1865 return page; /* no need to copy it */
1866 } else if (!anon_vma) {
1867 return page; /* no need to copy it */
1868 } else if (anon_vma->root == vma->anon_vma->root &&
1869 page->index == linear_page_index(vma, address)) {
1870 return page; /* still no need to copy it */
1871 }
1872 if (!PageUptodate(page))
1873 return page; /* let do_swap_page report the error */
1874
5ad64688
HD
1875 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
1876 if (new_page) {
1877 copy_user_highpage(new_page, page, address, vma);
1878
1879 SetPageDirty(new_page);
1880 __SetPageUptodate(new_page);
5ad64688 1881 __set_page_locked(new_page);
5ad64688
HD
1882 }
1883
5ad64688
HD
1884 return new_page;
1885}
1886
1887int page_referenced_ksm(struct page *page, struct mem_cgroup *memcg,
1888 unsigned long *vm_flags)
1889{
1890 struct stable_node *stable_node;
1891 struct rmap_item *rmap_item;
1892 struct hlist_node *hlist;
1893 unsigned int mapcount = page_mapcount(page);
1894 int referenced = 0;
db114b83 1895 int search_new_forks = 0;
5ad64688
HD
1896
1897 VM_BUG_ON(!PageKsm(page));
1898 VM_BUG_ON(!PageLocked(page));
1899
1900 stable_node = page_stable_node(page);
1901 if (!stable_node)
1902 return 0;
db114b83 1903again:
5ad64688 1904 hlist_for_each_entry(rmap_item, hlist, &stable_node->hlist, hlist) {
db114b83 1905 struct anon_vma *anon_vma = rmap_item->anon_vma;
5beb4930 1906 struct anon_vma_chain *vmac;
db114b83 1907 struct vm_area_struct *vma;
5ad64688 1908
b6b19f25 1909 anon_vma_lock_read(anon_vma);
bf181b9f
ML
1910 anon_vma_interval_tree_foreach(vmac, &anon_vma->rb_root,
1911 0, ULONG_MAX) {
5beb4930 1912 vma = vmac->vma;
db114b83
HD
1913 if (rmap_item->address < vma->vm_start ||
1914 rmap_item->address >= vma->vm_end)
1915 continue;
1916 /*
1917 * Initially we examine only the vma which covers this
1918 * rmap_item; but later, if there is still work to do,
1919 * we examine covering vmas in other mms: in case they
1920 * were forked from the original since ksmd passed.
1921 */
1922 if ((rmap_item->mm == vma->vm_mm) == search_new_forks)
1923 continue;
1924
1925 if (memcg && !mm_match_cgroup(vma->vm_mm, memcg))
1926 continue;
5ad64688 1927
db114b83 1928 referenced += page_referenced_one(page, vma,
5ad64688 1929 rmap_item->address, &mapcount, vm_flags);
db114b83
HD
1930 if (!search_new_forks || !mapcount)
1931 break;
1932 }
b6b19f25 1933 anon_vma_unlock_read(anon_vma);
5ad64688
HD
1934 if (!mapcount)
1935 goto out;
1936 }
db114b83
HD
1937 if (!search_new_forks++)
1938 goto again;
5ad64688 1939out:
5ad64688
HD
1940 return referenced;
1941}
1942
1943int try_to_unmap_ksm(struct page *page, enum ttu_flags flags)
1944{
1945 struct stable_node *stable_node;
1946 struct hlist_node *hlist;
1947 struct rmap_item *rmap_item;
1948 int ret = SWAP_AGAIN;
db114b83 1949 int search_new_forks = 0;
5ad64688
HD
1950
1951 VM_BUG_ON(!PageKsm(page));
1952 VM_BUG_ON(!PageLocked(page));
1953
1954 stable_node = page_stable_node(page);
1955 if (!stable_node)
1956 return SWAP_FAIL;
db114b83 1957again:
5ad64688 1958 hlist_for_each_entry(rmap_item, hlist, &stable_node->hlist, hlist) {
db114b83 1959 struct anon_vma *anon_vma = rmap_item->anon_vma;
5beb4930 1960 struct anon_vma_chain *vmac;
db114b83 1961 struct vm_area_struct *vma;
5ad64688 1962
b6b19f25 1963 anon_vma_lock_read(anon_vma);
bf181b9f
ML
1964 anon_vma_interval_tree_foreach(vmac, &anon_vma->rb_root,
1965 0, ULONG_MAX) {
5beb4930 1966 vma = vmac->vma;
db114b83
HD
1967 if (rmap_item->address < vma->vm_start ||
1968 rmap_item->address >= vma->vm_end)
1969 continue;
1970 /*
1971 * Initially we examine only the vma which covers this
1972 * rmap_item; but later, if there is still work to do,
1973 * we examine covering vmas in other mms: in case they
1974 * were forked from the original since ksmd passed.
1975 */
1976 if ((rmap_item->mm == vma->vm_mm) == search_new_forks)
1977 continue;
1978
1979 ret = try_to_unmap_one(page, vma,
1980 rmap_item->address, flags);
1981 if (ret != SWAP_AGAIN || !page_mapped(page)) {
b6b19f25 1982 anon_vma_unlock_read(anon_vma);
db114b83
HD
1983 goto out;
1984 }
1985 }
b6b19f25 1986 anon_vma_unlock_read(anon_vma);
5ad64688 1987 }
db114b83
HD
1988 if (!search_new_forks++)
1989 goto again;
5ad64688 1990out:
5ad64688
HD
1991 return ret;
1992}
1993
e9995ef9
HD
1994#ifdef CONFIG_MIGRATION
1995int rmap_walk_ksm(struct page *page, int (*rmap_one)(struct page *,
1996 struct vm_area_struct *, unsigned long, void *), void *arg)
1997{
1998 struct stable_node *stable_node;
1999 struct hlist_node *hlist;
2000 struct rmap_item *rmap_item;
2001 int ret = SWAP_AGAIN;
2002 int search_new_forks = 0;
2003
2004 VM_BUG_ON(!PageKsm(page));
2005 VM_BUG_ON(!PageLocked(page));
2006
2007 stable_node = page_stable_node(page);
2008 if (!stable_node)
2009 return ret;
2010again:
2011 hlist_for_each_entry(rmap_item, hlist, &stable_node->hlist, hlist) {
2012 struct anon_vma *anon_vma = rmap_item->anon_vma;
5beb4930 2013 struct anon_vma_chain *vmac;
e9995ef9
HD
2014 struct vm_area_struct *vma;
2015
b6b19f25 2016 anon_vma_lock_read(anon_vma);
bf181b9f
ML
2017 anon_vma_interval_tree_foreach(vmac, &anon_vma->rb_root,
2018 0, ULONG_MAX) {
5beb4930 2019 vma = vmac->vma;
e9995ef9
HD
2020 if (rmap_item->address < vma->vm_start ||
2021 rmap_item->address >= vma->vm_end)
2022 continue;
2023 /*
2024 * Initially we examine only the vma which covers this
2025 * rmap_item; but later, if there is still work to do,
2026 * we examine covering vmas in other mms: in case they
2027 * were forked from the original since ksmd passed.
2028 */
2029 if ((rmap_item->mm == vma->vm_mm) == search_new_forks)
2030 continue;
2031
2032 ret = rmap_one(page, vma, rmap_item->address, arg);
2033 if (ret != SWAP_AGAIN) {
b6b19f25 2034 anon_vma_unlock_read(anon_vma);
e9995ef9
HD
2035 goto out;
2036 }
2037 }
b6b19f25 2038 anon_vma_unlock_read(anon_vma);
e9995ef9
HD
2039 }
2040 if (!search_new_forks++)
2041 goto again;
2042out:
2043 return ret;
2044}
2045
2046void ksm_migrate_page(struct page *newpage, struct page *oldpage)
2047{
2048 struct stable_node *stable_node;
2049
2050 VM_BUG_ON(!PageLocked(oldpage));
2051 VM_BUG_ON(!PageLocked(newpage));
2052 VM_BUG_ON(newpage->mapping != oldpage->mapping);
2053
2054 stable_node = page_stable_node(newpage);
2055 if (stable_node) {
62b61f61
HD
2056 VM_BUG_ON(stable_node->kpfn != page_to_pfn(oldpage));
2057 stable_node->kpfn = page_to_pfn(newpage);
c8d6553b
HD
2058 /*
2059 * newpage->mapping was set in advance; now we need smp_wmb()
2060 * to make sure that the new stable_node->kpfn is visible
2061 * to get_ksm_page() before it can see that oldpage->mapping
2062 * has gone stale (or that PageSwapCache has been cleared).
2063 */
2064 smp_wmb();
2065 set_page_stable_node(oldpage, NULL);
e9995ef9
HD
2066 }
2067}
2068#endif /* CONFIG_MIGRATION */
2069
62b61f61 2070#ifdef CONFIG_MEMORY_HOTREMOVE
ef4d43a8
HD
2071static int just_wait(void *word)
2072{
2073 schedule();
2074 return 0;
2075}
2076
2077static void wait_while_offlining(void)
2078{
2079 while (ksm_run & KSM_RUN_OFFLINE) {
2080 mutex_unlock(&ksm_thread_mutex);
2081 wait_on_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE),
2082 just_wait, TASK_UNINTERRUPTIBLE);
2083 mutex_lock(&ksm_thread_mutex);
2084 }
2085}
2086
ee0ea59c
HD
2087static void ksm_check_stable_tree(unsigned long start_pfn,
2088 unsigned long end_pfn)
62b61f61 2089{
ee0ea59c 2090 struct stable_node *stable_node;
4146d2d6 2091 struct list_head *this, *next;
62b61f61 2092 struct rb_node *node;
90bd6fd3 2093 int nid;
62b61f61 2094
ee0ea59c
HD
2095 for (nid = 0; nid < nr_node_ids; nid++) {
2096 node = rb_first(&root_stable_tree[nid]);
2097 while (node) {
90bd6fd3
PH
2098 stable_node = rb_entry(node, struct stable_node, node);
2099 if (stable_node->kpfn >= start_pfn &&
ee0ea59c
HD
2100 stable_node->kpfn < end_pfn) {
2101 /*
2102 * Don't get_ksm_page, page has already gone:
2103 * which is why we keep kpfn instead of page*
2104 */
2105 remove_node_from_stable_tree(stable_node);
2106 node = rb_first(&root_stable_tree[nid]);
2107 } else
2108 node = rb_next(node);
2109 cond_resched();
90bd6fd3 2110 }
ee0ea59c 2111 }
4146d2d6
HD
2112 list_for_each_safe(this, next, &migrate_nodes) {
2113 stable_node = list_entry(this, struct stable_node, list);
2114 if (stable_node->kpfn >= start_pfn &&
2115 stable_node->kpfn < end_pfn)
2116 remove_node_from_stable_tree(stable_node);
2117 cond_resched();
2118 }
62b61f61
HD
2119}
2120
2121static int ksm_memory_callback(struct notifier_block *self,
2122 unsigned long action, void *arg)
2123{
2124 struct memory_notify *mn = arg;
62b61f61
HD
2125
2126 switch (action) {
2127 case MEM_GOING_OFFLINE:
2128 /*
ef4d43a8
HD
2129 * Prevent ksm_do_scan(), unmerge_and_remove_all_rmap_items()
2130 * and remove_all_stable_nodes() while memory is going offline:
2131 * it is unsafe for them to touch the stable tree at this time.
2132 * But unmerge_ksm_pages(), rmap lookups and other entry points
2133 * which do not need the ksm_thread_mutex are all safe.
62b61f61 2134 */
ef4d43a8
HD
2135 mutex_lock(&ksm_thread_mutex);
2136 ksm_run |= KSM_RUN_OFFLINE;
2137 mutex_unlock(&ksm_thread_mutex);
62b61f61
HD
2138 break;
2139
2140 case MEM_OFFLINE:
2141 /*
2142 * Most of the work is done by page migration; but there might
2143 * be a few stable_nodes left over, still pointing to struct
ee0ea59c
HD
2144 * pages which have been offlined: prune those from the tree,
2145 * otherwise get_ksm_page() might later try to access a
2146 * non-existent struct page.
62b61f61 2147 */
ee0ea59c
HD
2148 ksm_check_stable_tree(mn->start_pfn,
2149 mn->start_pfn + mn->nr_pages);
62b61f61
HD
2150 /* fallthrough */
2151
2152 case MEM_CANCEL_OFFLINE:
ef4d43a8
HD
2153 mutex_lock(&ksm_thread_mutex);
2154 ksm_run &= ~KSM_RUN_OFFLINE;
62b61f61 2155 mutex_unlock(&ksm_thread_mutex);
ef4d43a8
HD
2156
2157 smp_mb(); /* wake_up_bit advises this */
2158 wake_up_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE));
62b61f61
HD
2159 break;
2160 }
2161 return NOTIFY_OK;
2162}
ef4d43a8
HD
2163#else
2164static void wait_while_offlining(void)
2165{
2166}
62b61f61
HD
2167#endif /* CONFIG_MEMORY_HOTREMOVE */
2168
2ffd8679
HD
2169#ifdef CONFIG_SYSFS
2170/*
2171 * This all compiles without CONFIG_SYSFS, but is a waste of space.
2172 */
2173
31dbd01f
IE
2174#define KSM_ATTR_RO(_name) \
2175 static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
2176#define KSM_ATTR(_name) \
2177 static struct kobj_attribute _name##_attr = \
2178 __ATTR(_name, 0644, _name##_show, _name##_store)
2179
2180static ssize_t sleep_millisecs_show(struct kobject *kobj,
2181 struct kobj_attribute *attr, char *buf)
2182{
2183 return sprintf(buf, "%u\n", ksm_thread_sleep_millisecs);
2184}
2185
2186static ssize_t sleep_millisecs_store(struct kobject *kobj,
2187 struct kobj_attribute *attr,
2188 const char *buf, size_t count)
2189{
2190 unsigned long msecs;
2191 int err;
2192
2193 err = strict_strtoul(buf, 10, &msecs);
2194 if (err || msecs > UINT_MAX)
2195 return -EINVAL;
2196
2197 ksm_thread_sleep_millisecs = msecs;
2198
2199 return count;
2200}
2201KSM_ATTR(sleep_millisecs);
2202
2203static ssize_t pages_to_scan_show(struct kobject *kobj,
2204 struct kobj_attribute *attr, char *buf)
2205{
2206 return sprintf(buf, "%u\n", ksm_thread_pages_to_scan);
2207}
2208
2209static ssize_t pages_to_scan_store(struct kobject *kobj,
2210 struct kobj_attribute *attr,
2211 const char *buf, size_t count)
2212{
2213 int err;
2214 unsigned long nr_pages;
2215
2216 err = strict_strtoul(buf, 10, &nr_pages);
2217 if (err || nr_pages > UINT_MAX)
2218 return -EINVAL;
2219
2220 ksm_thread_pages_to_scan = nr_pages;
2221
2222 return count;
2223}
2224KSM_ATTR(pages_to_scan);
2225
2226static ssize_t run_show(struct kobject *kobj, struct kobj_attribute *attr,
2227 char *buf)
2228{
ef4d43a8 2229 return sprintf(buf, "%lu\n", ksm_run);
31dbd01f
IE
2230}
2231
2232static ssize_t run_store(struct kobject *kobj, struct kobj_attribute *attr,
2233 const char *buf, size_t count)
2234{
2235 int err;
2236 unsigned long flags;
2237
2238 err = strict_strtoul(buf, 10, &flags);
2239 if (err || flags > UINT_MAX)
2240 return -EINVAL;
2241 if (flags > KSM_RUN_UNMERGE)
2242 return -EINVAL;
2243
2244 /*
2245 * KSM_RUN_MERGE sets ksmd running, and 0 stops it running.
2246 * KSM_RUN_UNMERGE stops it running and unmerges all rmap_items,
d0f209f6
HD
2247 * breaking COW to free the pages_shared (but leaves mm_slots
2248 * on the list for when ksmd may be set running again).
31dbd01f
IE
2249 */
2250
2251 mutex_lock(&ksm_thread_mutex);
ef4d43a8 2252 wait_while_offlining();
31dbd01f
IE
2253 if (ksm_run != flags) {
2254 ksm_run = flags;
d952b791 2255 if (flags & KSM_RUN_UNMERGE) {
e1e12d2f 2256 set_current_oom_origin();
d952b791 2257 err = unmerge_and_remove_all_rmap_items();
e1e12d2f 2258 clear_current_oom_origin();
d952b791
HD
2259 if (err) {
2260 ksm_run = KSM_RUN_STOP;
2261 count = err;
2262 }
2263 }
31dbd01f
IE
2264 }
2265 mutex_unlock(&ksm_thread_mutex);
2266
2267 if (flags & KSM_RUN_MERGE)
2268 wake_up_interruptible(&ksm_thread_wait);
2269
2270 return count;
2271}
2272KSM_ATTR(run);
2273
90bd6fd3
PH
2274#ifdef CONFIG_NUMA
2275static ssize_t merge_across_nodes_show(struct kobject *kobj,
2276 struct kobj_attribute *attr, char *buf)
2277{
2278 return sprintf(buf, "%u\n", ksm_merge_across_nodes);
2279}
2280
2281static ssize_t merge_across_nodes_store(struct kobject *kobj,
2282 struct kobj_attribute *attr,
2283 const char *buf, size_t count)
2284{
2285 int err;
2286 unsigned long knob;
2287
2288 err = kstrtoul(buf, 10, &knob);
2289 if (err)
2290 return err;
2291 if (knob > 1)
2292 return -EINVAL;
2293
2294 mutex_lock(&ksm_thread_mutex);
ef4d43a8 2295 wait_while_offlining();
90bd6fd3 2296 if (ksm_merge_across_nodes != knob) {
cbf86cfe 2297 if (ksm_pages_shared || remove_all_stable_nodes())
90bd6fd3
PH
2298 err = -EBUSY;
2299 else
2300 ksm_merge_across_nodes = knob;
2301 }
2302 mutex_unlock(&ksm_thread_mutex);
2303
2304 return err ? err : count;
2305}
2306KSM_ATTR(merge_across_nodes);
2307#endif
2308
b4028260
HD
2309static ssize_t pages_shared_show(struct kobject *kobj,
2310 struct kobj_attribute *attr, char *buf)
2311{
2312 return sprintf(buf, "%lu\n", ksm_pages_shared);
2313}
2314KSM_ATTR_RO(pages_shared);
2315
2316static ssize_t pages_sharing_show(struct kobject *kobj,
2317 struct kobj_attribute *attr, char *buf)
2318{
e178dfde 2319 return sprintf(buf, "%lu\n", ksm_pages_sharing);
b4028260
HD
2320}
2321KSM_ATTR_RO(pages_sharing);
2322
473b0ce4
HD
2323static ssize_t pages_unshared_show(struct kobject *kobj,
2324 struct kobj_attribute *attr, char *buf)
2325{
2326 return sprintf(buf, "%lu\n", ksm_pages_unshared);
2327}
2328KSM_ATTR_RO(pages_unshared);
2329
2330static ssize_t pages_volatile_show(struct kobject *kobj,
2331 struct kobj_attribute *attr, char *buf)
2332{
2333 long ksm_pages_volatile;
2334
2335 ksm_pages_volatile = ksm_rmap_items - ksm_pages_shared
2336 - ksm_pages_sharing - ksm_pages_unshared;
2337 /*
2338 * It was not worth any locking to calculate that statistic,
2339 * but it might therefore sometimes be negative: conceal that.
2340 */
2341 if (ksm_pages_volatile < 0)
2342 ksm_pages_volatile = 0;
2343 return sprintf(buf, "%ld\n", ksm_pages_volatile);
2344}
2345KSM_ATTR_RO(pages_volatile);
2346
2347static ssize_t full_scans_show(struct kobject *kobj,
2348 struct kobj_attribute *attr, char *buf)
2349{
2350 return sprintf(buf, "%lu\n", ksm_scan.seqnr);
2351}
2352KSM_ATTR_RO(full_scans);
2353
31dbd01f
IE
2354static struct attribute *ksm_attrs[] = {
2355 &sleep_millisecs_attr.attr,
2356 &pages_to_scan_attr.attr,
2357 &run_attr.attr,
b4028260
HD
2358 &pages_shared_attr.attr,
2359 &pages_sharing_attr.attr,
473b0ce4
HD
2360 &pages_unshared_attr.attr,
2361 &pages_volatile_attr.attr,
2362 &full_scans_attr.attr,
90bd6fd3
PH
2363#ifdef CONFIG_NUMA
2364 &merge_across_nodes_attr.attr,
2365#endif
31dbd01f
IE
2366 NULL,
2367};
2368
2369static struct attribute_group ksm_attr_group = {
2370 .attrs = ksm_attrs,
2371 .name = "ksm",
2372};
2ffd8679 2373#endif /* CONFIG_SYSFS */
31dbd01f
IE
2374
2375static int __init ksm_init(void)
2376{
2377 struct task_struct *ksm_thread;
2378 int err;
90bd6fd3 2379 int nid;
31dbd01f
IE
2380
2381 err = ksm_slab_init();
2382 if (err)
2383 goto out;
2384
90bd6fd3
PH
2385 for (nid = 0; nid < nr_node_ids; nid++)
2386 root_stable_tree[nid] = RB_ROOT;
2387
31dbd01f
IE
2388 ksm_thread = kthread_run(ksm_scan_thread, NULL, "ksmd");
2389 if (IS_ERR(ksm_thread)) {
2390 printk(KERN_ERR "ksm: creating kthread failed\n");
2391 err = PTR_ERR(ksm_thread);
d9f8984c 2392 goto out_free;
31dbd01f
IE
2393 }
2394
2ffd8679 2395#ifdef CONFIG_SYSFS
31dbd01f
IE
2396 err = sysfs_create_group(mm_kobj, &ksm_attr_group);
2397 if (err) {
2398 printk(KERN_ERR "ksm: register sysfs failed\n");
2ffd8679 2399 kthread_stop(ksm_thread);
d9f8984c 2400 goto out_free;
31dbd01f 2401 }
c73602ad
HD
2402#else
2403 ksm_run = KSM_RUN_MERGE; /* no way for user to start it */
2404
2ffd8679 2405#endif /* CONFIG_SYSFS */
31dbd01f 2406
62b61f61 2407#ifdef CONFIG_MEMORY_HOTREMOVE
ef4d43a8 2408 /* There is no significance to this priority 100 */
62b61f61
HD
2409 hotplug_memory_notifier(ksm_memory_callback, 100);
2410#endif
31dbd01f
IE
2411 return 0;
2412
d9f8984c 2413out_free:
31dbd01f
IE
2414 ksm_slab_free();
2415out:
2416 return err;
f8af4da3 2417}
31dbd01f 2418module_init(ksm_init)