drm: rcar-du: add missing of_node_put
[linux-2.6-block.git] / mm / ksm.c
CommitLineData
f8af4da3 1/*
31dbd01f
IE
2 * Memory merging support.
3 *
4 * This code enables dynamic sharing of identical pages found in different
5 * memory areas, even if they are not shared by fork()
6 *
36b2528d 7 * Copyright (C) 2008-2009 Red Hat, Inc.
31dbd01f
IE
8 * Authors:
9 * Izik Eidus
10 * Andrea Arcangeli
11 * Chris Wright
36b2528d 12 * Hugh Dickins
31dbd01f
IE
13 *
14 * This work is licensed under the terms of the GNU GPL, version 2.
f8af4da3
HD
15 */
16
17#include <linux/errno.h>
31dbd01f
IE
18#include <linux/mm.h>
19#include <linux/fs.h>
f8af4da3 20#include <linux/mman.h>
31dbd01f 21#include <linux/sched.h>
6e84f315 22#include <linux/sched/mm.h>
f7ccbae4 23#include <linux/sched/coredump.h>
31dbd01f
IE
24#include <linux/rwsem.h>
25#include <linux/pagemap.h>
26#include <linux/rmap.h>
27#include <linux/spinlock.h>
59e1a2f4 28#include <linux/xxhash.h>
31dbd01f
IE
29#include <linux/delay.h>
30#include <linux/kthread.h>
31#include <linux/wait.h>
32#include <linux/slab.h>
33#include <linux/rbtree.h>
62b61f61 34#include <linux/memory.h>
31dbd01f 35#include <linux/mmu_notifier.h>
2c6854fd 36#include <linux/swap.h>
f8af4da3 37#include <linux/ksm.h>
4ca3a69b 38#include <linux/hashtable.h>
878aee7d 39#include <linux/freezer.h>
72788c38 40#include <linux/oom.h>
90bd6fd3 41#include <linux/numa.h>
f8af4da3 42
31dbd01f 43#include <asm/tlbflush.h>
73848b46 44#include "internal.h"
31dbd01f 45
e850dcf5
HD
46#ifdef CONFIG_NUMA
47#define NUMA(x) (x)
48#define DO_NUMA(x) do { (x); } while (0)
49#else
50#define NUMA(x) (0)
51#define DO_NUMA(x) do { } while (0)
52#endif
53
5a2ca3ef
MR
54/**
55 * DOC: Overview
56 *
31dbd01f
IE
57 * A few notes about the KSM scanning process,
58 * to make it easier to understand the data structures below:
59 *
60 * In order to reduce excessive scanning, KSM sorts the memory pages by their
61 * contents into a data structure that holds pointers to the pages' locations.
62 *
63 * Since the contents of the pages may change at any moment, KSM cannot just
64 * insert the pages into a normal sorted tree and expect it to find anything.
65 * Therefore KSM uses two data structures - the stable and the unstable tree.
66 *
67 * The stable tree holds pointers to all the merged pages (ksm pages), sorted
68 * by their contents. Because each such page is write-protected, searching on
69 * this tree is fully assured to be working (except when pages are unmapped),
70 * and therefore this tree is called the stable tree.
71 *
5a2ca3ef
MR
72 * The stable tree node includes information required for reverse
73 * mapping from a KSM page to virtual addresses that map this page.
74 *
75 * In order to avoid large latencies of the rmap walks on KSM pages,
76 * KSM maintains two types of nodes in the stable tree:
77 *
78 * * the regular nodes that keep the reverse mapping structures in a
79 * linked list
80 * * the "chains" that link nodes ("dups") that represent the same
81 * write protected memory content, but each "dup" corresponds to a
82 * different KSM page copy of that content
83 *
84 * Internally, the regular nodes, "dups" and "chains" are represented
85 * using the same :c:type:`struct stable_node` structure.
86 *
31dbd01f
IE
87 * In addition to the stable tree, KSM uses a second data structure called the
88 * unstable tree: this tree holds pointers to pages which have been found to
89 * be "unchanged for a period of time". The unstable tree sorts these pages
90 * by their contents, but since they are not write-protected, KSM cannot rely
91 * upon the unstable tree to work correctly - the unstable tree is liable to
92 * be corrupted as its contents are modified, and so it is called unstable.
93 *
94 * KSM solves this problem by several techniques:
95 *
96 * 1) The unstable tree is flushed every time KSM completes scanning all
97 * memory areas, and then the tree is rebuilt again from the beginning.
98 * 2) KSM will only insert into the unstable tree, pages whose hash value
99 * has not changed since the previous scan of all memory areas.
100 * 3) The unstable tree is a RedBlack Tree - so its balancing is based on the
101 * colors of the nodes and not on their contents, assuring that even when
102 * the tree gets "corrupted" it won't get out of balance, so scanning time
103 * remains the same (also, searching and inserting nodes in an rbtree uses
104 * the same algorithm, so we have no overhead when we flush and rebuild).
105 * 4) KSM never flushes the stable tree, which means that even if it were to
106 * take 10 attempts to find a page in the unstable tree, once it is found,
107 * it is secured in the stable tree. (When we scan a new page, we first
108 * compare it against the stable tree, and then against the unstable tree.)
8fdb3dbf
HD
109 *
110 * If the merge_across_nodes tunable is unset, then KSM maintains multiple
111 * stable trees and multiple unstable trees: one of each for each NUMA node.
31dbd01f
IE
112 */
113
114/**
115 * struct mm_slot - ksm information per mm that is being scanned
116 * @link: link to the mm_slots hash list
117 * @mm_list: link into the mm_slots list, rooted in ksm_mm_head
6514d511 118 * @rmap_list: head for this mm_slot's singly-linked list of rmap_items
31dbd01f
IE
119 * @mm: the mm that this information is valid for
120 */
121struct mm_slot {
122 struct hlist_node link;
123 struct list_head mm_list;
6514d511 124 struct rmap_item *rmap_list;
31dbd01f
IE
125 struct mm_struct *mm;
126};
127
128/**
129 * struct ksm_scan - cursor for scanning
130 * @mm_slot: the current mm_slot we are scanning
131 * @address: the next address inside that to be scanned
6514d511 132 * @rmap_list: link to the next rmap to be scanned in the rmap_list
31dbd01f
IE
133 * @seqnr: count of completed full scans (needed when removing unstable node)
134 *
135 * There is only the one ksm_scan instance of this cursor structure.
136 */
137struct ksm_scan {
138 struct mm_slot *mm_slot;
139 unsigned long address;
6514d511 140 struct rmap_item **rmap_list;
31dbd01f
IE
141 unsigned long seqnr;
142};
143
7b6ba2c7
HD
144/**
145 * struct stable_node - node of the stable rbtree
146 * @node: rb node of this ksm page in the stable tree
4146d2d6 147 * @head: (overlaying parent) &migrate_nodes indicates temporarily on that list
2c653d0e 148 * @hlist_dup: linked into the stable_node->hlist with a stable_node chain
4146d2d6 149 * @list: linked into migrate_nodes, pending placement in the proper node tree
7b6ba2c7 150 * @hlist: hlist head of rmap_items using this ksm page
4146d2d6 151 * @kpfn: page frame number of this ksm page (perhaps temporarily on wrong nid)
2c653d0e
AA
152 * @chain_prune_time: time of the last full garbage collection
153 * @rmap_hlist_len: number of rmap_item entries in hlist or STABLE_NODE_CHAIN
4146d2d6 154 * @nid: NUMA node id of stable tree in which linked (may not match kpfn)
7b6ba2c7
HD
155 */
156struct stable_node {
4146d2d6
HD
157 union {
158 struct rb_node node; /* when node of stable tree */
159 struct { /* when listed for migration */
160 struct list_head *head;
2c653d0e
AA
161 struct {
162 struct hlist_node hlist_dup;
163 struct list_head list;
164 };
4146d2d6
HD
165 };
166 };
7b6ba2c7 167 struct hlist_head hlist;
2c653d0e
AA
168 union {
169 unsigned long kpfn;
170 unsigned long chain_prune_time;
171 };
172 /*
173 * STABLE_NODE_CHAIN can be any negative number in
174 * rmap_hlist_len negative range, but better not -1 to be able
175 * to reliably detect underflows.
176 */
177#define STABLE_NODE_CHAIN -1024
178 int rmap_hlist_len;
4146d2d6
HD
179#ifdef CONFIG_NUMA
180 int nid;
181#endif
7b6ba2c7
HD
182};
183
31dbd01f
IE
184/**
185 * struct rmap_item - reverse mapping item for virtual addresses
6514d511 186 * @rmap_list: next rmap_item in mm_slot's singly-linked rmap_list
db114b83 187 * @anon_vma: pointer to anon_vma for this mm,address, when in stable tree
bc56620b 188 * @nid: NUMA node id of unstable tree in which linked (may not match page)
31dbd01f
IE
189 * @mm: the memory structure this rmap_item is pointing into
190 * @address: the virtual address this rmap_item tracks (+ flags in low bits)
191 * @oldchecksum: previous checksum of the page at that virtual address
7b6ba2c7
HD
192 * @node: rb node of this rmap_item in the unstable tree
193 * @head: pointer to stable_node heading this list in the stable tree
194 * @hlist: link into hlist of rmap_items hanging off that stable_node
31dbd01f
IE
195 */
196struct rmap_item {
6514d511 197 struct rmap_item *rmap_list;
bc56620b
HD
198 union {
199 struct anon_vma *anon_vma; /* when stable */
200#ifdef CONFIG_NUMA
201 int nid; /* when node of unstable tree */
202#endif
203 };
31dbd01f
IE
204 struct mm_struct *mm;
205 unsigned long address; /* + low bits used for flags below */
7b6ba2c7 206 unsigned int oldchecksum; /* when unstable */
31dbd01f 207 union {
7b6ba2c7
HD
208 struct rb_node node; /* when node of unstable tree */
209 struct { /* when listed from stable tree */
210 struct stable_node *head;
211 struct hlist_node hlist;
212 };
31dbd01f
IE
213 };
214};
215
216#define SEQNR_MASK 0x0ff /* low bits of unstable tree seqnr */
7b6ba2c7
HD
217#define UNSTABLE_FLAG 0x100 /* is a node of the unstable tree */
218#define STABLE_FLAG 0x200 /* is listed from the stable tree */
1105a2fc
JH
219#define KSM_FLAG_MASK (SEQNR_MASK|UNSTABLE_FLAG|STABLE_FLAG)
220 /* to mask all the flags */
31dbd01f
IE
221
222/* The stable and unstable tree heads */
ef53d16c
HD
223static struct rb_root one_stable_tree[1] = { RB_ROOT };
224static struct rb_root one_unstable_tree[1] = { RB_ROOT };
225static struct rb_root *root_stable_tree = one_stable_tree;
226static struct rb_root *root_unstable_tree = one_unstable_tree;
31dbd01f 227
4146d2d6
HD
228/* Recently migrated nodes of stable tree, pending proper placement */
229static LIST_HEAD(migrate_nodes);
2c653d0e 230#define STABLE_NODE_DUP_HEAD ((struct list_head *)&migrate_nodes.prev)
4146d2d6 231
4ca3a69b
SL
232#define MM_SLOTS_HASH_BITS 10
233static DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);
31dbd01f
IE
234
235static struct mm_slot ksm_mm_head = {
236 .mm_list = LIST_HEAD_INIT(ksm_mm_head.mm_list),
237};
238static struct ksm_scan ksm_scan = {
239 .mm_slot = &ksm_mm_head,
240};
241
242static struct kmem_cache *rmap_item_cache;
7b6ba2c7 243static struct kmem_cache *stable_node_cache;
31dbd01f
IE
244static struct kmem_cache *mm_slot_cache;
245
246/* The number of nodes in the stable tree */
b4028260 247static unsigned long ksm_pages_shared;
31dbd01f 248
e178dfde 249/* The number of page slots additionally sharing those nodes */
b4028260 250static unsigned long ksm_pages_sharing;
31dbd01f 251
473b0ce4
HD
252/* The number of nodes in the unstable tree */
253static unsigned long ksm_pages_unshared;
254
255/* The number of rmap_items in use: to calculate pages_volatile */
256static unsigned long ksm_rmap_items;
257
2c653d0e
AA
258/* The number of stable_node chains */
259static unsigned long ksm_stable_node_chains;
260
261/* The number of stable_node dups linked to the stable_node chains */
262static unsigned long ksm_stable_node_dups;
263
264/* Delay in pruning stale stable_node_dups in the stable_node_chains */
265static int ksm_stable_node_chains_prune_millisecs = 2000;
266
267/* Maximum number of page slots sharing a stable node */
268static int ksm_max_page_sharing = 256;
269
31dbd01f 270/* Number of pages ksmd should scan in one batch */
2c6854fd 271static unsigned int ksm_thread_pages_to_scan = 100;
31dbd01f
IE
272
273/* Milliseconds ksmd should sleep between batches */
2ffd8679 274static unsigned int ksm_thread_sleep_millisecs = 20;
31dbd01f 275
e86c59b1
CI
276/* Checksum of an empty (zeroed) page */
277static unsigned int zero_checksum __read_mostly;
278
279/* Whether to merge empty (zeroed) pages with actual zero pages */
280static bool ksm_use_zero_pages __read_mostly;
281
e850dcf5 282#ifdef CONFIG_NUMA
90bd6fd3
PH
283/* Zeroed when merging across nodes is not allowed */
284static unsigned int ksm_merge_across_nodes = 1;
ef53d16c 285static int ksm_nr_node_ids = 1;
e850dcf5
HD
286#else
287#define ksm_merge_across_nodes 1U
ef53d16c 288#define ksm_nr_node_ids 1
e850dcf5 289#endif
90bd6fd3 290
31dbd01f
IE
291#define KSM_RUN_STOP 0
292#define KSM_RUN_MERGE 1
293#define KSM_RUN_UNMERGE 2
ef4d43a8
HD
294#define KSM_RUN_OFFLINE 4
295static unsigned long ksm_run = KSM_RUN_STOP;
296static void wait_while_offlining(void);
31dbd01f
IE
297
298static DECLARE_WAIT_QUEUE_HEAD(ksm_thread_wait);
fcf9a0ef 299static DECLARE_WAIT_QUEUE_HEAD(ksm_iter_wait);
31dbd01f
IE
300static DEFINE_MUTEX(ksm_thread_mutex);
301static DEFINE_SPINLOCK(ksm_mmlist_lock);
302
303#define KSM_KMEM_CACHE(__struct, __flags) kmem_cache_create("ksm_"#__struct,\
304 sizeof(struct __struct), __alignof__(struct __struct),\
305 (__flags), NULL)
306
307static int __init ksm_slab_init(void)
308{
309 rmap_item_cache = KSM_KMEM_CACHE(rmap_item, 0);
310 if (!rmap_item_cache)
311 goto out;
312
7b6ba2c7
HD
313 stable_node_cache = KSM_KMEM_CACHE(stable_node, 0);
314 if (!stable_node_cache)
315 goto out_free1;
316
31dbd01f
IE
317 mm_slot_cache = KSM_KMEM_CACHE(mm_slot, 0);
318 if (!mm_slot_cache)
7b6ba2c7 319 goto out_free2;
31dbd01f
IE
320
321 return 0;
322
7b6ba2c7
HD
323out_free2:
324 kmem_cache_destroy(stable_node_cache);
325out_free1:
31dbd01f
IE
326 kmem_cache_destroy(rmap_item_cache);
327out:
328 return -ENOMEM;
329}
330
331static void __init ksm_slab_free(void)
332{
333 kmem_cache_destroy(mm_slot_cache);
7b6ba2c7 334 kmem_cache_destroy(stable_node_cache);
31dbd01f
IE
335 kmem_cache_destroy(rmap_item_cache);
336 mm_slot_cache = NULL;
337}
338
2c653d0e
AA
339static __always_inline bool is_stable_node_chain(struct stable_node *chain)
340{
341 return chain->rmap_hlist_len == STABLE_NODE_CHAIN;
342}
343
344static __always_inline bool is_stable_node_dup(struct stable_node *dup)
345{
346 return dup->head == STABLE_NODE_DUP_HEAD;
347}
348
349static inline void stable_node_chain_add_dup(struct stable_node *dup,
350 struct stable_node *chain)
351{
352 VM_BUG_ON(is_stable_node_dup(dup));
353 dup->head = STABLE_NODE_DUP_HEAD;
354 VM_BUG_ON(!is_stable_node_chain(chain));
355 hlist_add_head(&dup->hlist_dup, &chain->hlist);
356 ksm_stable_node_dups++;
357}
358
359static inline void __stable_node_dup_del(struct stable_node *dup)
360{
b4fecc67 361 VM_BUG_ON(!is_stable_node_dup(dup));
2c653d0e
AA
362 hlist_del(&dup->hlist_dup);
363 ksm_stable_node_dups--;
364}
365
366static inline void stable_node_dup_del(struct stable_node *dup)
367{
368 VM_BUG_ON(is_stable_node_chain(dup));
369 if (is_stable_node_dup(dup))
370 __stable_node_dup_del(dup);
371 else
372 rb_erase(&dup->node, root_stable_tree + NUMA(dup->nid));
373#ifdef CONFIG_DEBUG_VM
374 dup->head = NULL;
375#endif
376}
377
31dbd01f
IE
378static inline struct rmap_item *alloc_rmap_item(void)
379{
473b0ce4
HD
380 struct rmap_item *rmap_item;
381
5b398e41 382 rmap_item = kmem_cache_zalloc(rmap_item_cache, GFP_KERNEL |
383 __GFP_NORETRY | __GFP_NOWARN);
473b0ce4
HD
384 if (rmap_item)
385 ksm_rmap_items++;
386 return rmap_item;
31dbd01f
IE
387}
388
389static inline void free_rmap_item(struct rmap_item *rmap_item)
390{
473b0ce4 391 ksm_rmap_items--;
31dbd01f
IE
392 rmap_item->mm = NULL; /* debug safety */
393 kmem_cache_free(rmap_item_cache, rmap_item);
394}
395
7b6ba2c7
HD
396static inline struct stable_node *alloc_stable_node(void)
397{
6213055f 398 /*
399 * The allocation can take too long with GFP_KERNEL when memory is under
400 * pressure, which may lead to hung task warnings. Adding __GFP_HIGH
401 * grants access to memory reserves, helping to avoid this problem.
402 */
403 return kmem_cache_alloc(stable_node_cache, GFP_KERNEL | __GFP_HIGH);
7b6ba2c7
HD
404}
405
406static inline void free_stable_node(struct stable_node *stable_node)
407{
2c653d0e
AA
408 VM_BUG_ON(stable_node->rmap_hlist_len &&
409 !is_stable_node_chain(stable_node));
7b6ba2c7
HD
410 kmem_cache_free(stable_node_cache, stable_node);
411}
412
31dbd01f
IE
413static inline struct mm_slot *alloc_mm_slot(void)
414{
415 if (!mm_slot_cache) /* initialization failed */
416 return NULL;
417 return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
418}
419
420static inline void free_mm_slot(struct mm_slot *mm_slot)
421{
422 kmem_cache_free(mm_slot_cache, mm_slot);
423}
424
31dbd01f
IE
425static struct mm_slot *get_mm_slot(struct mm_struct *mm)
426{
4ca3a69b
SL
427 struct mm_slot *slot;
428
b67bfe0d 429 hash_for_each_possible(mm_slots_hash, slot, link, (unsigned long)mm)
4ca3a69b
SL
430 if (slot->mm == mm)
431 return slot;
31dbd01f 432
31dbd01f
IE
433 return NULL;
434}
435
436static void insert_to_mm_slots_hash(struct mm_struct *mm,
437 struct mm_slot *mm_slot)
438{
31dbd01f 439 mm_slot->mm = mm;
4ca3a69b 440 hash_add(mm_slots_hash, &mm_slot->link, (unsigned long)mm);
31dbd01f
IE
441}
442
a913e182
HD
443/*
444 * ksmd, and unmerge_and_remove_all_rmap_items(), must not touch an mm's
445 * page tables after it has passed through ksm_exit() - which, if necessary,
446 * takes mmap_sem briefly to serialize against them. ksm_exit() does not set
447 * a special flag: they can just back out as soon as mm_users goes to zero.
448 * ksm_test_exit() is used throughout to make this test for exit: in some
449 * places for correctness, in some places just to avoid unnecessary work.
450 */
451static inline bool ksm_test_exit(struct mm_struct *mm)
452{
453 return atomic_read(&mm->mm_users) == 0;
454}
455
31dbd01f
IE
456/*
457 * We use break_ksm to break COW on a ksm page: it's a stripped down
458 *
d4edcf0d 459 * if (get_user_pages(addr, 1, 1, 1, &page, NULL) == 1)
31dbd01f
IE
460 * put_page(page);
461 *
462 * but taking great care only to touch a ksm page, in a VM_MERGEABLE vma,
463 * in case the application has unmapped and remapped mm,addr meanwhile.
464 * Could a ksm page appear anywhere else? Actually yes, in a VM_PFNMAP
465 * mmap of /dev/mem or /dev/kmem, where we would not want to touch it.
1b2ee126
DH
466 *
467 * FAULT_FLAG/FOLL_REMOTE are because we do this outside the context
468 * of the process that owns 'vma'. We also do not want to enforce
469 * protection keys here anyway.
31dbd01f 470 */
d952b791 471static int break_ksm(struct vm_area_struct *vma, unsigned long addr)
31dbd01f
IE
472{
473 struct page *page;
50a7ca3c 474 vm_fault_t ret = 0;
31dbd01f
IE
475
476 do {
477 cond_resched();
1b2ee126
DH
478 page = follow_page(vma, addr,
479 FOLL_GET | FOLL_MIGRATION | FOLL_REMOTE);
22eccdd7 480 if (IS_ERR_OR_NULL(page))
31dbd01f
IE
481 break;
482 if (PageKsm(page))
dcddffd4
KS
483 ret = handle_mm_fault(vma, addr,
484 FAULT_FLAG_WRITE | FAULT_FLAG_REMOTE);
31dbd01f
IE
485 else
486 ret = VM_FAULT_WRITE;
487 put_page(page);
33692f27 488 } while (!(ret & (VM_FAULT_WRITE | VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | VM_FAULT_OOM)));
d952b791
HD
489 /*
490 * We must loop because handle_mm_fault() may back out if there's
491 * any difficulty e.g. if pte accessed bit gets updated concurrently.
492 *
493 * VM_FAULT_WRITE is what we have been hoping for: it indicates that
494 * COW has been broken, even if the vma does not permit VM_WRITE;
495 * but note that a concurrent fault might break PageKsm for us.
496 *
497 * VM_FAULT_SIGBUS could occur if we race with truncation of the
498 * backing file, which also invalidates anonymous pages: that's
499 * okay, that truncation will have unmapped the PageKsm for us.
500 *
501 * VM_FAULT_OOM: at the time of writing (late July 2009), setting
502 * aside mem_cgroup limits, VM_FAULT_OOM would only be set if the
503 * current task has TIF_MEMDIE set, and will be OOM killed on return
504 * to user; and ksmd, having no mm, would never be chosen for that.
505 *
506 * But if the mm is in a limited mem_cgroup, then the fault may fail
507 * with VM_FAULT_OOM even if the current task is not TIF_MEMDIE; and
508 * even ksmd can fail in this way - though it's usually breaking ksm
509 * just to undo a merge it made a moment before, so unlikely to oom.
510 *
511 * That's a pity: we might therefore have more kernel pages allocated
512 * than we're counting as nodes in the stable tree; but ksm_do_scan
513 * will retry to break_cow on each pass, so should recover the page
514 * in due course. The important thing is to not let VM_MERGEABLE
515 * be cleared while any such pages might remain in the area.
516 */
517 return (ret & VM_FAULT_OOM) ? -ENOMEM : 0;
31dbd01f
IE
518}
519
ef694222
BL
520static struct vm_area_struct *find_mergeable_vma(struct mm_struct *mm,
521 unsigned long addr)
522{
523 struct vm_area_struct *vma;
524 if (ksm_test_exit(mm))
525 return NULL;
526 vma = find_vma(mm, addr);
527 if (!vma || vma->vm_start > addr)
528 return NULL;
529 if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
530 return NULL;
531 return vma;
532}
533
8dd3557a 534static void break_cow(struct rmap_item *rmap_item)
31dbd01f 535{
8dd3557a
HD
536 struct mm_struct *mm = rmap_item->mm;
537 unsigned long addr = rmap_item->address;
31dbd01f
IE
538 struct vm_area_struct *vma;
539
4035c07a
HD
540 /*
541 * It is not an accident that whenever we want to break COW
542 * to undo, we also need to drop a reference to the anon_vma.
543 */
9e60109f 544 put_anon_vma(rmap_item->anon_vma);
4035c07a 545
81464e30 546 down_read(&mm->mmap_sem);
ef694222
BL
547 vma = find_mergeable_vma(mm, addr);
548 if (vma)
549 break_ksm(vma, addr);
31dbd01f
IE
550 up_read(&mm->mmap_sem);
551}
552
553static struct page *get_mergeable_page(struct rmap_item *rmap_item)
554{
555 struct mm_struct *mm = rmap_item->mm;
556 unsigned long addr = rmap_item->address;
557 struct vm_area_struct *vma;
558 struct page *page;
559
560 down_read(&mm->mmap_sem);
ef694222
BL
561 vma = find_mergeable_vma(mm, addr);
562 if (!vma)
31dbd01f
IE
563 goto out;
564
565 page = follow_page(vma, addr, FOLL_GET);
22eccdd7 566 if (IS_ERR_OR_NULL(page))
31dbd01f 567 goto out;
f765f540 568 if (PageAnon(page)) {
31dbd01f
IE
569 flush_anon_page(vma, page, addr);
570 flush_dcache_page(page);
571 } else {
572 put_page(page);
c8f95ed1
AA
573out:
574 page = NULL;
31dbd01f
IE
575 }
576 up_read(&mm->mmap_sem);
577 return page;
578}
579
90bd6fd3
PH
580/*
581 * This helper is used for getting right index into array of tree roots.
582 * When merge_across_nodes knob is set to 1, there are only two rb-trees for
583 * stable and unstable pages from all nodes with roots in index 0. Otherwise,
584 * every node has its own stable and unstable tree.
585 */
586static inline int get_kpfn_nid(unsigned long kpfn)
587{
d8fc16a8 588 return ksm_merge_across_nodes ? 0 : NUMA(pfn_to_nid(kpfn));
90bd6fd3
PH
589}
590
2c653d0e
AA
591static struct stable_node *alloc_stable_node_chain(struct stable_node *dup,
592 struct rb_root *root)
593{
594 struct stable_node *chain = alloc_stable_node();
595 VM_BUG_ON(is_stable_node_chain(dup));
596 if (likely(chain)) {
597 INIT_HLIST_HEAD(&chain->hlist);
598 chain->chain_prune_time = jiffies;
599 chain->rmap_hlist_len = STABLE_NODE_CHAIN;
600#if defined (CONFIG_DEBUG_VM) && defined(CONFIG_NUMA)
601 chain->nid = -1; /* debug */
602#endif
603 ksm_stable_node_chains++;
604
605 /*
606 * Put the stable node chain in the first dimension of
607 * the stable tree and at the same time remove the old
608 * stable node.
609 */
610 rb_replace_node(&dup->node, &chain->node, root);
611
612 /*
613 * Move the old stable node to the second dimension
614 * queued in the hlist_dup. The invariant is that all
615 * dup stable_nodes in the chain->hlist point to pages
616 * that are wrprotected and have the exact same
617 * content.
618 */
619 stable_node_chain_add_dup(dup, chain);
620 }
621 return chain;
622}
623
624static inline void free_stable_node_chain(struct stable_node *chain,
625 struct rb_root *root)
626{
627 rb_erase(&chain->node, root);
628 free_stable_node(chain);
629 ksm_stable_node_chains--;
630}
631
4035c07a
HD
632static void remove_node_from_stable_tree(struct stable_node *stable_node)
633{
634 struct rmap_item *rmap_item;
4035c07a 635
2c653d0e
AA
636 /* check it's not STABLE_NODE_CHAIN or negative */
637 BUG_ON(stable_node->rmap_hlist_len < 0);
638
b67bfe0d 639 hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) {
4035c07a
HD
640 if (rmap_item->hlist.next)
641 ksm_pages_sharing--;
642 else
643 ksm_pages_shared--;
2c653d0e
AA
644 VM_BUG_ON(stable_node->rmap_hlist_len <= 0);
645 stable_node->rmap_hlist_len--;
9e60109f 646 put_anon_vma(rmap_item->anon_vma);
4035c07a
HD
647 rmap_item->address &= PAGE_MASK;
648 cond_resched();
649 }
650
2c653d0e
AA
651 /*
652 * We need the second aligned pointer of the migrate_nodes
653 * list_head to stay clear from the rb_parent_color union
654 * (aligned and different than any node) and also different
655 * from &migrate_nodes. This will verify that future list.h changes
815f0ddb 656 * don't break STABLE_NODE_DUP_HEAD. Only recent gcc can handle it.
2c653d0e 657 */
815f0ddb 658#if defined(GCC_VERSION) && GCC_VERSION >= 40903
2c653d0e
AA
659 BUILD_BUG_ON(STABLE_NODE_DUP_HEAD <= &migrate_nodes);
660 BUILD_BUG_ON(STABLE_NODE_DUP_HEAD >= &migrate_nodes + 1);
661#endif
662
4146d2d6
HD
663 if (stable_node->head == &migrate_nodes)
664 list_del(&stable_node->list);
665 else
2c653d0e 666 stable_node_dup_del(stable_node);
4035c07a
HD
667 free_stable_node(stable_node);
668}
669
670/*
671 * get_ksm_page: checks if the page indicated by the stable node
672 * is still its ksm page, despite having held no reference to it.
673 * In which case we can trust the content of the page, and it
674 * returns the gotten page; but if the page has now been zapped,
675 * remove the stale node from the stable tree and return NULL.
c8d6553b 676 * But beware, the stable node's page might be being migrated.
4035c07a
HD
677 *
678 * You would expect the stable_node to hold a reference to the ksm page.
679 * But if it increments the page's count, swapping out has to wait for
680 * ksmd to come around again before it can free the page, which may take
681 * seconds or even minutes: much too unresponsive. So instead we use a
682 * "keyhole reference": access to the ksm page from the stable node peeps
683 * out through its keyhole to see if that page still holds the right key,
684 * pointing back to this stable node. This relies on freeing a PageAnon
685 * page to reset its page->mapping to NULL, and relies on no other use of
686 * a page to put something that might look like our key in page->mapping.
4035c07a
HD
687 * is on its way to being freed; but it is an anomaly to bear in mind.
688 */
8fdb3dbf 689static struct page *get_ksm_page(struct stable_node *stable_node, bool lock_it)
4035c07a
HD
690{
691 struct page *page;
692 void *expected_mapping;
c8d6553b 693 unsigned long kpfn;
4035c07a 694
bda807d4
MK
695 expected_mapping = (void *)((unsigned long)stable_node |
696 PAGE_MAPPING_KSM);
c8d6553b 697again:
08df4774 698 kpfn = READ_ONCE(stable_node->kpfn); /* Address dependency. */
c8d6553b 699 page = pfn_to_page(kpfn);
4db0c3c2 700 if (READ_ONCE(page->mapping) != expected_mapping)
4035c07a 701 goto stale;
c8d6553b
HD
702
703 /*
704 * We cannot do anything with the page while its refcount is 0.
705 * Usually 0 means free, or tail of a higher-order page: in which
706 * case this node is no longer referenced, and should be freed;
1c4c3b99 707 * however, it might mean that the page is under page_ref_freeze().
c8d6553b
HD
708 * The __remove_mapping() case is easy, again the node is now stale;
709 * but if page is swapcache in migrate_page_move_mapping(), it might
710 * still be our page, in which case it's essential to keep the node.
711 */
712 while (!get_page_unless_zero(page)) {
713 /*
714 * Another check for page->mapping != expected_mapping would
715 * work here too. We have chosen the !PageSwapCache test to
716 * optimize the common case, when the page is or is about to
717 * be freed: PageSwapCache is cleared (under spin_lock_irq)
1c4c3b99 718 * in the ref_freeze section of __remove_mapping(); but Anon
c8d6553b
HD
719 * page->mapping reset to NULL later, in free_pages_prepare().
720 */
721 if (!PageSwapCache(page))
722 goto stale;
723 cpu_relax();
724 }
725
4db0c3c2 726 if (READ_ONCE(page->mapping) != expected_mapping) {
4035c07a
HD
727 put_page(page);
728 goto stale;
729 }
c8d6553b 730
8fdb3dbf 731 if (lock_it) {
8aafa6a4 732 lock_page(page);
4db0c3c2 733 if (READ_ONCE(page->mapping) != expected_mapping) {
8aafa6a4
HD
734 unlock_page(page);
735 put_page(page);
736 goto stale;
737 }
738 }
4035c07a 739 return page;
c8d6553b 740
4035c07a 741stale:
c8d6553b
HD
742 /*
743 * We come here from above when page->mapping or !PageSwapCache
744 * suggests that the node is stale; but it might be under migration.
745 * We need smp_rmb(), matching the smp_wmb() in ksm_migrate_page(),
746 * before checking whether node->kpfn has been changed.
747 */
748 smp_rmb();
4db0c3c2 749 if (READ_ONCE(stable_node->kpfn) != kpfn)
c8d6553b 750 goto again;
4035c07a
HD
751 remove_node_from_stable_tree(stable_node);
752 return NULL;
753}
754
31dbd01f
IE
755/*
756 * Removing rmap_item from stable or unstable tree.
757 * This function will clean the information from the stable/unstable tree.
758 */
759static void remove_rmap_item_from_tree(struct rmap_item *rmap_item)
760{
7b6ba2c7
HD
761 if (rmap_item->address & STABLE_FLAG) {
762 struct stable_node *stable_node;
5ad64688 763 struct page *page;
31dbd01f 764
7b6ba2c7 765 stable_node = rmap_item->head;
8aafa6a4 766 page = get_ksm_page(stable_node, true);
4035c07a
HD
767 if (!page)
768 goto out;
5ad64688 769
7b6ba2c7 770 hlist_del(&rmap_item->hlist);
4035c07a
HD
771 unlock_page(page);
772 put_page(page);
08beca44 773
98666f8a 774 if (!hlist_empty(&stable_node->hlist))
4035c07a
HD
775 ksm_pages_sharing--;
776 else
7b6ba2c7 777 ksm_pages_shared--;
2c653d0e
AA
778 VM_BUG_ON(stable_node->rmap_hlist_len <= 0);
779 stable_node->rmap_hlist_len--;
31dbd01f 780
9e60109f 781 put_anon_vma(rmap_item->anon_vma);
93d17715 782 rmap_item->address &= PAGE_MASK;
31dbd01f 783
7b6ba2c7 784 } else if (rmap_item->address & UNSTABLE_FLAG) {
31dbd01f
IE
785 unsigned char age;
786 /*
9ba69294 787 * Usually ksmd can and must skip the rb_erase, because
31dbd01f 788 * root_unstable_tree was already reset to RB_ROOT.
9ba69294
HD
789 * But be careful when an mm is exiting: do the rb_erase
790 * if this rmap_item was inserted by this scan, rather
791 * than left over from before.
31dbd01f
IE
792 */
793 age = (unsigned char)(ksm_scan.seqnr - rmap_item->address);
cd551f97 794 BUG_ON(age > 1);
31dbd01f 795 if (!age)
90bd6fd3 796 rb_erase(&rmap_item->node,
ef53d16c 797 root_unstable_tree + NUMA(rmap_item->nid));
473b0ce4 798 ksm_pages_unshared--;
93d17715 799 rmap_item->address &= PAGE_MASK;
31dbd01f 800 }
4035c07a 801out:
31dbd01f
IE
802 cond_resched(); /* we're called from many long loops */
803}
804
31dbd01f 805static void remove_trailing_rmap_items(struct mm_slot *mm_slot,
6514d511 806 struct rmap_item **rmap_list)
31dbd01f 807{
6514d511
HD
808 while (*rmap_list) {
809 struct rmap_item *rmap_item = *rmap_list;
810 *rmap_list = rmap_item->rmap_list;
31dbd01f 811 remove_rmap_item_from_tree(rmap_item);
31dbd01f
IE
812 free_rmap_item(rmap_item);
813 }
814}
815
816/*
e850dcf5 817 * Though it's very tempting to unmerge rmap_items from stable tree rather
31dbd01f
IE
818 * than check every pte of a given vma, the locking doesn't quite work for
819 * that - an rmap_item is assigned to the stable tree after inserting ksm
820 * page and upping mmap_sem. Nor does it fit with the way we skip dup'ing
821 * rmap_items from parent to child at fork time (so as not to waste time
822 * if exit comes before the next scan reaches it).
81464e30
HD
823 *
824 * Similarly, although we'd like to remove rmap_items (so updating counts
825 * and freeing memory) when unmerging an area, it's easier to leave that
826 * to the next pass of ksmd - consider, for example, how ksmd might be
827 * in cmp_and_merge_page on one of the rmap_items we would be removing.
31dbd01f 828 */
d952b791
HD
829static int unmerge_ksm_pages(struct vm_area_struct *vma,
830 unsigned long start, unsigned long end)
31dbd01f
IE
831{
832 unsigned long addr;
d952b791 833 int err = 0;
31dbd01f 834
d952b791 835 for (addr = start; addr < end && !err; addr += PAGE_SIZE) {
9ba69294
HD
836 if (ksm_test_exit(vma->vm_mm))
837 break;
d952b791
HD
838 if (signal_pending(current))
839 err = -ERESTARTSYS;
840 else
841 err = break_ksm(vma, addr);
842 }
843 return err;
31dbd01f
IE
844}
845
88484826
MR
846static inline struct stable_node *page_stable_node(struct page *page)
847{
848 return PageKsm(page) ? page_rmapping(page) : NULL;
849}
850
851static inline void set_page_stable_node(struct page *page,
852 struct stable_node *stable_node)
853{
854 page->mapping = (void *)((unsigned long)stable_node | PAGE_MAPPING_KSM);
855}
856
2ffd8679
HD
857#ifdef CONFIG_SYSFS
858/*
859 * Only called through the sysfs control interface:
860 */
cbf86cfe
HD
861static int remove_stable_node(struct stable_node *stable_node)
862{
863 struct page *page;
864 int err;
865
866 page = get_ksm_page(stable_node, true);
867 if (!page) {
868 /*
869 * get_ksm_page did remove_node_from_stable_tree itself.
870 */
871 return 0;
872 }
873
8fdb3dbf
HD
874 if (WARN_ON_ONCE(page_mapped(page))) {
875 /*
876 * This should not happen: but if it does, just refuse to let
877 * merge_across_nodes be switched - there is no need to panic.
878 */
cbf86cfe 879 err = -EBUSY;
8fdb3dbf 880 } else {
cbf86cfe 881 /*
8fdb3dbf
HD
882 * The stable node did not yet appear stale to get_ksm_page(),
883 * since that allows for an unmapped ksm page to be recognized
884 * right up until it is freed; but the node is safe to remove.
cbf86cfe
HD
885 * This page might be in a pagevec waiting to be freed,
886 * or it might be PageSwapCache (perhaps under writeback),
887 * or it might have been removed from swapcache a moment ago.
888 */
889 set_page_stable_node(page, NULL);
890 remove_node_from_stable_tree(stable_node);
891 err = 0;
892 }
893
894 unlock_page(page);
895 put_page(page);
896 return err;
897}
898
2c653d0e
AA
899static int remove_stable_node_chain(struct stable_node *stable_node,
900 struct rb_root *root)
901{
902 struct stable_node *dup;
903 struct hlist_node *hlist_safe;
904
905 if (!is_stable_node_chain(stable_node)) {
906 VM_BUG_ON(is_stable_node_dup(stable_node));
907 if (remove_stable_node(stable_node))
908 return true;
909 else
910 return false;
911 }
912
913 hlist_for_each_entry_safe(dup, hlist_safe,
914 &stable_node->hlist, hlist_dup) {
915 VM_BUG_ON(!is_stable_node_dup(dup));
916 if (remove_stable_node(dup))
917 return true;
918 }
919 BUG_ON(!hlist_empty(&stable_node->hlist));
920 free_stable_node_chain(stable_node, root);
921 return false;
922}
923
cbf86cfe
HD
924static int remove_all_stable_nodes(void)
925{
03640418 926 struct stable_node *stable_node, *next;
cbf86cfe
HD
927 int nid;
928 int err = 0;
929
ef53d16c 930 for (nid = 0; nid < ksm_nr_node_ids; nid++) {
cbf86cfe
HD
931 while (root_stable_tree[nid].rb_node) {
932 stable_node = rb_entry(root_stable_tree[nid].rb_node,
933 struct stable_node, node);
2c653d0e
AA
934 if (remove_stable_node_chain(stable_node,
935 root_stable_tree + nid)) {
cbf86cfe
HD
936 err = -EBUSY;
937 break; /* proceed to next nid */
938 }
939 cond_resched();
940 }
941 }
03640418 942 list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) {
4146d2d6
HD
943 if (remove_stable_node(stable_node))
944 err = -EBUSY;
945 cond_resched();
946 }
cbf86cfe
HD
947 return err;
948}
949
d952b791 950static int unmerge_and_remove_all_rmap_items(void)
31dbd01f
IE
951{
952 struct mm_slot *mm_slot;
953 struct mm_struct *mm;
954 struct vm_area_struct *vma;
d952b791
HD
955 int err = 0;
956
957 spin_lock(&ksm_mmlist_lock);
9ba69294 958 ksm_scan.mm_slot = list_entry(ksm_mm_head.mm_list.next,
d952b791
HD
959 struct mm_slot, mm_list);
960 spin_unlock(&ksm_mmlist_lock);
31dbd01f 961
9ba69294
HD
962 for (mm_slot = ksm_scan.mm_slot;
963 mm_slot != &ksm_mm_head; mm_slot = ksm_scan.mm_slot) {
31dbd01f
IE
964 mm = mm_slot->mm;
965 down_read(&mm->mmap_sem);
966 for (vma = mm->mmap; vma; vma = vma->vm_next) {
9ba69294
HD
967 if (ksm_test_exit(mm))
968 break;
31dbd01f
IE
969 if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
970 continue;
d952b791
HD
971 err = unmerge_ksm_pages(vma,
972 vma->vm_start, vma->vm_end);
9ba69294
HD
973 if (err)
974 goto error;
31dbd01f 975 }
9ba69294 976
6514d511 977 remove_trailing_rmap_items(mm_slot, &mm_slot->rmap_list);
7496fea9 978 up_read(&mm->mmap_sem);
d952b791
HD
979
980 spin_lock(&ksm_mmlist_lock);
9ba69294 981 ksm_scan.mm_slot = list_entry(mm_slot->mm_list.next,
d952b791 982 struct mm_slot, mm_list);
9ba69294 983 if (ksm_test_exit(mm)) {
4ca3a69b 984 hash_del(&mm_slot->link);
9ba69294
HD
985 list_del(&mm_slot->mm_list);
986 spin_unlock(&ksm_mmlist_lock);
987
988 free_mm_slot(mm_slot);
989 clear_bit(MMF_VM_MERGEABLE, &mm->flags);
9ba69294 990 mmdrop(mm);
7496fea9 991 } else
9ba69294 992 spin_unlock(&ksm_mmlist_lock);
31dbd01f
IE
993 }
994
cbf86cfe
HD
995 /* Clean up stable nodes, but don't worry if some are still busy */
996 remove_all_stable_nodes();
d952b791 997 ksm_scan.seqnr = 0;
9ba69294
HD
998 return 0;
999
1000error:
1001 up_read(&mm->mmap_sem);
31dbd01f 1002 spin_lock(&ksm_mmlist_lock);
d952b791 1003 ksm_scan.mm_slot = &ksm_mm_head;
31dbd01f 1004 spin_unlock(&ksm_mmlist_lock);
d952b791 1005 return err;
31dbd01f 1006}
2ffd8679 1007#endif /* CONFIG_SYSFS */
31dbd01f 1008
31dbd01f
IE
1009static u32 calc_checksum(struct page *page)
1010{
1011 u32 checksum;
9b04c5fe 1012 void *addr = kmap_atomic(page);
59e1a2f4 1013 checksum = xxhash(addr, PAGE_SIZE, 0);
9b04c5fe 1014 kunmap_atomic(addr);
31dbd01f
IE
1015 return checksum;
1016}
1017
1018static int memcmp_pages(struct page *page1, struct page *page2)
1019{
1020 char *addr1, *addr2;
1021 int ret;
1022
9b04c5fe
CW
1023 addr1 = kmap_atomic(page1);
1024 addr2 = kmap_atomic(page2);
31dbd01f 1025 ret = memcmp(addr1, addr2, PAGE_SIZE);
9b04c5fe
CW
1026 kunmap_atomic(addr2);
1027 kunmap_atomic(addr1);
31dbd01f
IE
1028 return ret;
1029}
1030
1031static inline int pages_identical(struct page *page1, struct page *page2)
1032{
1033 return !memcmp_pages(page1, page2);
1034}
1035
1036static int write_protect_page(struct vm_area_struct *vma, struct page *page,
1037 pte_t *orig_pte)
1038{
1039 struct mm_struct *mm = vma->vm_mm;
36eaff33
KS
1040 struct page_vma_mapped_walk pvmw = {
1041 .page = page,
1042 .vma = vma,
1043 };
31dbd01f
IE
1044 int swapped;
1045 int err = -EFAULT;
ac46d4f3 1046 struct mmu_notifier_range range;
31dbd01f 1047
36eaff33
KS
1048 pvmw.address = page_address_in_vma(page, vma);
1049 if (pvmw.address == -EFAULT)
31dbd01f
IE
1050 goto out;
1051
29ad768c 1052 BUG_ON(PageTransCompound(page));
6bdb913f 1053
ac46d4f3
JG
1054 mmu_notifier_range_init(&range, mm, pvmw.address,
1055 pvmw.address + PAGE_SIZE);
1056 mmu_notifier_invalidate_range_start(&range);
6bdb913f 1057
36eaff33 1058 if (!page_vma_mapped_walk(&pvmw))
6bdb913f 1059 goto out_mn;
36eaff33
KS
1060 if (WARN_ONCE(!pvmw.pte, "Unexpected PMD mapping?"))
1061 goto out_unlock;
31dbd01f 1062
595cd8f2 1063 if (pte_write(*pvmw.pte) || pte_dirty(*pvmw.pte) ||
b3a81d08
MK
1064 (pte_protnone(*pvmw.pte) && pte_savedwrite(*pvmw.pte)) ||
1065 mm_tlb_flush_pending(mm)) {
31dbd01f
IE
1066 pte_t entry;
1067
1068 swapped = PageSwapCache(page);
36eaff33 1069 flush_cache_page(vma, pvmw.address, page_to_pfn(page));
31dbd01f 1070 /*
25985edc 1071 * Ok this is tricky, when get_user_pages_fast() run it doesn't
31dbd01f
IE
1072 * take any lock, therefore the check that we are going to make
1073 * with the pagecount against the mapcount is racey and
1074 * O_DIRECT can happen right after the check.
1075 * So we clear the pte and flush the tlb before the check
1076 * this assure us that no O_DIRECT can happen after the check
1077 * or in the middle of the check.
0f10851e
JG
1078 *
1079 * No need to notify as we are downgrading page table to read
1080 * only not changing it to point to a new page.
1081 *
ad56b738 1082 * See Documentation/vm/mmu_notifier.rst
31dbd01f 1083 */
0f10851e 1084 entry = ptep_clear_flush(vma, pvmw.address, pvmw.pte);
31dbd01f
IE
1085 /*
1086 * Check that no O_DIRECT or similar I/O is in progress on the
1087 * page
1088 */
31e855ea 1089 if (page_mapcount(page) + 1 + swapped != page_count(page)) {
36eaff33 1090 set_pte_at(mm, pvmw.address, pvmw.pte, entry);
31dbd01f
IE
1091 goto out_unlock;
1092 }
4e31635c
HD
1093 if (pte_dirty(entry))
1094 set_page_dirty(page);
595cd8f2
AK
1095
1096 if (pte_protnone(entry))
1097 entry = pte_mkclean(pte_clear_savedwrite(entry));
1098 else
1099 entry = pte_mkclean(pte_wrprotect(entry));
36eaff33 1100 set_pte_at_notify(mm, pvmw.address, pvmw.pte, entry);
31dbd01f 1101 }
36eaff33 1102 *orig_pte = *pvmw.pte;
31dbd01f
IE
1103 err = 0;
1104
1105out_unlock:
36eaff33 1106 page_vma_mapped_walk_done(&pvmw);
6bdb913f 1107out_mn:
ac46d4f3 1108 mmu_notifier_invalidate_range_end(&range);
31dbd01f
IE
1109out:
1110 return err;
1111}
1112
1113/**
1114 * replace_page - replace page in vma by new ksm page
8dd3557a
HD
1115 * @vma: vma that holds the pte pointing to page
1116 * @page: the page we are replacing by kpage
1117 * @kpage: the ksm page we replace page by
31dbd01f
IE
1118 * @orig_pte: the original value of the pte
1119 *
1120 * Returns 0 on success, -EFAULT on failure.
1121 */
8dd3557a
HD
1122static int replace_page(struct vm_area_struct *vma, struct page *page,
1123 struct page *kpage, pte_t orig_pte)
31dbd01f
IE
1124{
1125 struct mm_struct *mm = vma->vm_mm;
31dbd01f
IE
1126 pmd_t *pmd;
1127 pte_t *ptep;
e86c59b1 1128 pte_t newpte;
31dbd01f
IE
1129 spinlock_t *ptl;
1130 unsigned long addr;
31dbd01f 1131 int err = -EFAULT;
ac46d4f3 1132 struct mmu_notifier_range range;
31dbd01f 1133
8dd3557a 1134 addr = page_address_in_vma(page, vma);
31dbd01f
IE
1135 if (addr == -EFAULT)
1136 goto out;
1137
6219049a
BL
1138 pmd = mm_find_pmd(mm, addr);
1139 if (!pmd)
31dbd01f 1140 goto out;
31dbd01f 1141
ac46d4f3
JG
1142 mmu_notifier_range_init(&range, mm, addr, addr + PAGE_SIZE);
1143 mmu_notifier_invalidate_range_start(&range);
6bdb913f 1144
31dbd01f
IE
1145 ptep = pte_offset_map_lock(mm, pmd, addr, &ptl);
1146 if (!pte_same(*ptep, orig_pte)) {
1147 pte_unmap_unlock(ptep, ptl);
6bdb913f 1148 goto out_mn;
31dbd01f
IE
1149 }
1150
e86c59b1
CI
1151 /*
1152 * No need to check ksm_use_zero_pages here: we can only have a
1153 * zero_page here if ksm_use_zero_pages was enabled alreaady.
1154 */
1155 if (!is_zero_pfn(page_to_pfn(kpage))) {
1156 get_page(kpage);
1157 page_add_anon_rmap(kpage, vma, addr, false);
1158 newpte = mk_pte(kpage, vma->vm_page_prot);
1159 } else {
1160 newpte = pte_mkspecial(pfn_pte(page_to_pfn(kpage),
1161 vma->vm_page_prot));
a38c015f
CI
1162 /*
1163 * We're replacing an anonymous page with a zero page, which is
1164 * not anonymous. We need to do proper accounting otherwise we
1165 * will get wrong values in /proc, and a BUG message in dmesg
1166 * when tearing down the mm.
1167 */
1168 dec_mm_counter(mm, MM_ANONPAGES);
e86c59b1 1169 }
31dbd01f
IE
1170
1171 flush_cache_page(vma, addr, pte_pfn(*ptep));
0f10851e
JG
1172 /*
1173 * No need to notify as we are replacing a read only page with another
1174 * read only page with the same content.
1175 *
ad56b738 1176 * See Documentation/vm/mmu_notifier.rst
0f10851e
JG
1177 */
1178 ptep_clear_flush(vma, addr, ptep);
e86c59b1 1179 set_pte_at_notify(mm, addr, ptep, newpte);
31dbd01f 1180
d281ee61 1181 page_remove_rmap(page, false);
ae52a2ad
HD
1182 if (!page_mapped(page))
1183 try_to_free_swap(page);
8dd3557a 1184 put_page(page);
31dbd01f
IE
1185
1186 pte_unmap_unlock(ptep, ptl);
1187 err = 0;
6bdb913f 1188out_mn:
ac46d4f3 1189 mmu_notifier_invalidate_range_end(&range);
31dbd01f
IE
1190out:
1191 return err;
1192}
1193
1194/*
1195 * try_to_merge_one_page - take two pages and merge them into one
8dd3557a
HD
1196 * @vma: the vma that holds the pte pointing to page
1197 * @page: the PageAnon page that we want to replace with kpage
80e14822
HD
1198 * @kpage: the PageKsm page that we want to map instead of page,
1199 * or NULL the first time when we want to use page as kpage.
31dbd01f
IE
1200 *
1201 * This function returns 0 if the pages were merged, -EFAULT otherwise.
1202 */
1203static int try_to_merge_one_page(struct vm_area_struct *vma,
8dd3557a 1204 struct page *page, struct page *kpage)
31dbd01f
IE
1205{
1206 pte_t orig_pte = __pte(0);
1207 int err = -EFAULT;
1208
db114b83
HD
1209 if (page == kpage) /* ksm page forked */
1210 return 0;
1211
8dd3557a 1212 if (!PageAnon(page))
31dbd01f
IE
1213 goto out;
1214
31dbd01f
IE
1215 /*
1216 * We need the page lock to read a stable PageSwapCache in
1217 * write_protect_page(). We use trylock_page() instead of
1218 * lock_page() because we don't want to wait here - we
1219 * prefer to continue scanning and merging different pages,
1220 * then come back to this page when it is unlocked.
1221 */
8dd3557a 1222 if (!trylock_page(page))
31e855ea 1223 goto out;
f765f540
KS
1224
1225 if (PageTransCompound(page)) {
a7306c34 1226 if (split_huge_page(page))
f765f540
KS
1227 goto out_unlock;
1228 }
1229
31dbd01f
IE
1230 /*
1231 * If this anonymous page is mapped only here, its pte may need
1232 * to be write-protected. If it's mapped elsewhere, all of its
1233 * ptes are necessarily already write-protected. But in either
1234 * case, we need to lock and check page_count is not raised.
1235 */
80e14822
HD
1236 if (write_protect_page(vma, page, &orig_pte) == 0) {
1237 if (!kpage) {
1238 /*
1239 * While we hold page lock, upgrade page from
1240 * PageAnon+anon_vma to PageKsm+NULL stable_node:
1241 * stable_tree_insert() will update stable_node.
1242 */
1243 set_page_stable_node(page, NULL);
1244 mark_page_accessed(page);
337ed7eb
MK
1245 /*
1246 * Page reclaim just frees a clean page with no dirty
1247 * ptes: make sure that the ksm page would be swapped.
1248 */
1249 if (!PageDirty(page))
1250 SetPageDirty(page);
80e14822
HD
1251 err = 0;
1252 } else if (pages_identical(page, kpage))
1253 err = replace_page(vma, page, kpage, orig_pte);
1254 }
31dbd01f 1255
80e14822 1256 if ((vma->vm_flags & VM_LOCKED) && kpage && !err) {
73848b46 1257 munlock_vma_page(page);
5ad64688
HD
1258 if (!PageMlocked(kpage)) {
1259 unlock_page(page);
5ad64688
HD
1260 lock_page(kpage);
1261 mlock_vma_page(kpage);
1262 page = kpage; /* for final unlock */
1263 }
1264 }
73848b46 1265
f765f540 1266out_unlock:
8dd3557a 1267 unlock_page(page);
31dbd01f
IE
1268out:
1269 return err;
1270}
1271
81464e30
HD
1272/*
1273 * try_to_merge_with_ksm_page - like try_to_merge_two_pages,
1274 * but no new kernel page is allocated: kpage must already be a ksm page.
8dd3557a
HD
1275 *
1276 * This function returns 0 if the pages were merged, -EFAULT otherwise.
81464e30 1277 */
8dd3557a
HD
1278static int try_to_merge_with_ksm_page(struct rmap_item *rmap_item,
1279 struct page *page, struct page *kpage)
81464e30 1280{
8dd3557a 1281 struct mm_struct *mm = rmap_item->mm;
81464e30
HD
1282 struct vm_area_struct *vma;
1283 int err = -EFAULT;
1284
8dd3557a 1285 down_read(&mm->mmap_sem);
85c6e8dd
AA
1286 vma = find_mergeable_vma(mm, rmap_item->address);
1287 if (!vma)
81464e30
HD
1288 goto out;
1289
8dd3557a 1290 err = try_to_merge_one_page(vma, page, kpage);
db114b83
HD
1291 if (err)
1292 goto out;
1293
bc56620b
HD
1294 /* Unstable nid is in union with stable anon_vma: remove first */
1295 remove_rmap_item_from_tree(rmap_item);
1296
db114b83 1297 /* Must get reference to anon_vma while still holding mmap_sem */
9e60109f
PZ
1298 rmap_item->anon_vma = vma->anon_vma;
1299 get_anon_vma(vma->anon_vma);
81464e30 1300out:
8dd3557a 1301 up_read(&mm->mmap_sem);
81464e30
HD
1302 return err;
1303}
1304
31dbd01f
IE
1305/*
1306 * try_to_merge_two_pages - take two identical pages and prepare them
1307 * to be merged into one page.
1308 *
8dd3557a
HD
1309 * This function returns the kpage if we successfully merged two identical
1310 * pages into one ksm page, NULL otherwise.
31dbd01f 1311 *
80e14822 1312 * Note that this function upgrades page to ksm page: if one of the pages
31dbd01f
IE
1313 * is already a ksm page, try_to_merge_with_ksm_page should be used.
1314 */
8dd3557a
HD
1315static struct page *try_to_merge_two_pages(struct rmap_item *rmap_item,
1316 struct page *page,
1317 struct rmap_item *tree_rmap_item,
1318 struct page *tree_page)
31dbd01f 1319{
80e14822 1320 int err;
31dbd01f 1321
80e14822 1322 err = try_to_merge_with_ksm_page(rmap_item, page, NULL);
31dbd01f 1323 if (!err) {
8dd3557a 1324 err = try_to_merge_with_ksm_page(tree_rmap_item,
80e14822 1325 tree_page, page);
31dbd01f 1326 /*
81464e30
HD
1327 * If that fails, we have a ksm page with only one pte
1328 * pointing to it: so break it.
31dbd01f 1329 */
4035c07a 1330 if (err)
8dd3557a 1331 break_cow(rmap_item);
31dbd01f 1332 }
80e14822 1333 return err ? NULL : page;
31dbd01f
IE
1334}
1335
2c653d0e
AA
1336static __always_inline
1337bool __is_page_sharing_candidate(struct stable_node *stable_node, int offset)
1338{
1339 VM_BUG_ON(stable_node->rmap_hlist_len < 0);
1340 /*
1341 * Check that at least one mapping still exists, otherwise
1342 * there's no much point to merge and share with this
1343 * stable_node, as the underlying tree_page of the other
1344 * sharer is going to be freed soon.
1345 */
1346 return stable_node->rmap_hlist_len &&
1347 stable_node->rmap_hlist_len + offset < ksm_max_page_sharing;
1348}
1349
1350static __always_inline
1351bool is_page_sharing_candidate(struct stable_node *stable_node)
1352{
1353 return __is_page_sharing_candidate(stable_node, 0);
1354}
1355
c01f0b54
CIK
1356static struct page *stable_node_dup(struct stable_node **_stable_node_dup,
1357 struct stable_node **_stable_node,
1358 struct rb_root *root,
1359 bool prune_stale_stable_nodes)
2c653d0e 1360{
b4fecc67 1361 struct stable_node *dup, *found = NULL, *stable_node = *_stable_node;
2c653d0e 1362 struct hlist_node *hlist_safe;
8dc5ffcd 1363 struct page *_tree_page, *tree_page = NULL;
2c653d0e
AA
1364 int nr = 0;
1365 int found_rmap_hlist_len;
1366
1367 if (!prune_stale_stable_nodes ||
1368 time_before(jiffies, stable_node->chain_prune_time +
1369 msecs_to_jiffies(
1370 ksm_stable_node_chains_prune_millisecs)))
1371 prune_stale_stable_nodes = false;
1372 else
1373 stable_node->chain_prune_time = jiffies;
1374
1375 hlist_for_each_entry_safe(dup, hlist_safe,
1376 &stable_node->hlist, hlist_dup) {
1377 cond_resched();
1378 /*
1379 * We must walk all stable_node_dup to prune the stale
1380 * stable nodes during lookup.
1381 *
1382 * get_ksm_page can drop the nodes from the
1383 * stable_node->hlist if they point to freed pages
1384 * (that's why we do a _safe walk). The "dup"
1385 * stable_node parameter itself will be freed from
1386 * under us if it returns NULL.
1387 */
1388 _tree_page = get_ksm_page(dup, false);
1389 if (!_tree_page)
1390 continue;
1391 nr += 1;
1392 if (is_page_sharing_candidate(dup)) {
1393 if (!found ||
1394 dup->rmap_hlist_len > found_rmap_hlist_len) {
1395 if (found)
8dc5ffcd 1396 put_page(tree_page);
2c653d0e
AA
1397 found = dup;
1398 found_rmap_hlist_len = found->rmap_hlist_len;
8dc5ffcd 1399 tree_page = _tree_page;
2c653d0e 1400
8dc5ffcd 1401 /* skip put_page for found dup */
2c653d0e
AA
1402 if (!prune_stale_stable_nodes)
1403 break;
2c653d0e
AA
1404 continue;
1405 }
1406 }
1407 put_page(_tree_page);
1408 }
1409
80b18dfa
AA
1410 if (found) {
1411 /*
1412 * nr is counting all dups in the chain only if
1413 * prune_stale_stable_nodes is true, otherwise we may
1414 * break the loop at nr == 1 even if there are
1415 * multiple entries.
1416 */
1417 if (prune_stale_stable_nodes && nr == 1) {
2c653d0e
AA
1418 /*
1419 * If there's not just one entry it would
1420 * corrupt memory, better BUG_ON. In KSM
1421 * context with no lock held it's not even
1422 * fatal.
1423 */
1424 BUG_ON(stable_node->hlist.first->next);
1425
1426 /*
1427 * There's just one entry and it is below the
1428 * deduplication limit so drop the chain.
1429 */
1430 rb_replace_node(&stable_node->node, &found->node,
1431 root);
1432 free_stable_node(stable_node);
1433 ksm_stable_node_chains--;
1434 ksm_stable_node_dups--;
b4fecc67 1435 /*
0ba1d0f7
AA
1436 * NOTE: the caller depends on the stable_node
1437 * to be equal to stable_node_dup if the chain
1438 * was collapsed.
b4fecc67 1439 */
0ba1d0f7
AA
1440 *_stable_node = found;
1441 /*
1442 * Just for robustneess as stable_node is
1443 * otherwise left as a stable pointer, the
1444 * compiler shall optimize it away at build
1445 * time.
1446 */
1447 stable_node = NULL;
80b18dfa
AA
1448 } else if (stable_node->hlist.first != &found->hlist_dup &&
1449 __is_page_sharing_candidate(found, 1)) {
2c653d0e 1450 /*
80b18dfa
AA
1451 * If the found stable_node dup can accept one
1452 * more future merge (in addition to the one
1453 * that is underway) and is not at the head of
1454 * the chain, put it there so next search will
1455 * be quicker in the !prune_stale_stable_nodes
1456 * case.
1457 *
1458 * NOTE: it would be inaccurate to use nr > 1
1459 * instead of checking the hlist.first pointer
1460 * directly, because in the
1461 * prune_stale_stable_nodes case "nr" isn't
1462 * the position of the found dup in the chain,
1463 * but the total number of dups in the chain.
2c653d0e
AA
1464 */
1465 hlist_del(&found->hlist_dup);
1466 hlist_add_head(&found->hlist_dup,
1467 &stable_node->hlist);
1468 }
1469 }
1470
8dc5ffcd
AA
1471 *_stable_node_dup = found;
1472 return tree_page;
2c653d0e
AA
1473}
1474
1475static struct stable_node *stable_node_dup_any(struct stable_node *stable_node,
1476 struct rb_root *root)
1477{
1478 if (!is_stable_node_chain(stable_node))
1479 return stable_node;
1480 if (hlist_empty(&stable_node->hlist)) {
1481 free_stable_node_chain(stable_node, root);
1482 return NULL;
1483 }
1484 return hlist_entry(stable_node->hlist.first,
1485 typeof(*stable_node), hlist_dup);
1486}
1487
8dc5ffcd
AA
1488/*
1489 * Like for get_ksm_page, this function can free the *_stable_node and
1490 * *_stable_node_dup if the returned tree_page is NULL.
1491 *
1492 * It can also free and overwrite *_stable_node with the found
1493 * stable_node_dup if the chain is collapsed (in which case
1494 * *_stable_node will be equal to *_stable_node_dup like if the chain
1495 * never existed). It's up to the caller to verify tree_page is not
1496 * NULL before dereferencing *_stable_node or *_stable_node_dup.
1497 *
1498 * *_stable_node_dup is really a second output parameter of this
1499 * function and will be overwritten in all cases, the caller doesn't
1500 * need to initialize it.
1501 */
1502static struct page *__stable_node_chain(struct stable_node **_stable_node_dup,
1503 struct stable_node **_stable_node,
1504 struct rb_root *root,
1505 bool prune_stale_stable_nodes)
2c653d0e 1506{
b4fecc67 1507 struct stable_node *stable_node = *_stable_node;
2c653d0e
AA
1508 if (!is_stable_node_chain(stable_node)) {
1509 if (is_page_sharing_candidate(stable_node)) {
8dc5ffcd
AA
1510 *_stable_node_dup = stable_node;
1511 return get_ksm_page(stable_node, false);
2c653d0e 1512 }
8dc5ffcd
AA
1513 /*
1514 * _stable_node_dup set to NULL means the stable_node
1515 * reached the ksm_max_page_sharing limit.
1516 */
1517 *_stable_node_dup = NULL;
2c653d0e
AA
1518 return NULL;
1519 }
8dc5ffcd 1520 return stable_node_dup(_stable_node_dup, _stable_node, root,
2c653d0e
AA
1521 prune_stale_stable_nodes);
1522}
1523
8dc5ffcd
AA
1524static __always_inline struct page *chain_prune(struct stable_node **s_n_d,
1525 struct stable_node **s_n,
1526 struct rb_root *root)
2c653d0e 1527{
8dc5ffcd 1528 return __stable_node_chain(s_n_d, s_n, root, true);
2c653d0e
AA
1529}
1530
8dc5ffcd
AA
1531static __always_inline struct page *chain(struct stable_node **s_n_d,
1532 struct stable_node *s_n,
1533 struct rb_root *root)
2c653d0e 1534{
8dc5ffcd
AA
1535 struct stable_node *old_stable_node = s_n;
1536 struct page *tree_page;
1537
1538 tree_page = __stable_node_chain(s_n_d, &s_n, root, false);
1539 /* not pruning dups so s_n cannot have changed */
1540 VM_BUG_ON(s_n != old_stable_node);
1541 return tree_page;
2c653d0e
AA
1542}
1543
31dbd01f 1544/*
8dd3557a 1545 * stable_tree_search - search for page inside the stable tree
31dbd01f
IE
1546 *
1547 * This function checks if there is a page inside the stable tree
1548 * with identical content to the page that we are scanning right now.
1549 *
7b6ba2c7 1550 * This function returns the stable tree node of identical content if found,
31dbd01f
IE
1551 * NULL otherwise.
1552 */
62b61f61 1553static struct page *stable_tree_search(struct page *page)
31dbd01f 1554{
90bd6fd3 1555 int nid;
ef53d16c 1556 struct rb_root *root;
4146d2d6
HD
1557 struct rb_node **new;
1558 struct rb_node *parent;
2c653d0e 1559 struct stable_node *stable_node, *stable_node_dup, *stable_node_any;
4146d2d6 1560 struct stable_node *page_node;
31dbd01f 1561
4146d2d6
HD
1562 page_node = page_stable_node(page);
1563 if (page_node && page_node->head != &migrate_nodes) {
1564 /* ksm page forked */
08beca44 1565 get_page(page);
62b61f61 1566 return page;
08beca44
HD
1567 }
1568
90bd6fd3 1569 nid = get_kpfn_nid(page_to_pfn(page));
ef53d16c 1570 root = root_stable_tree + nid;
4146d2d6 1571again:
ef53d16c 1572 new = &root->rb_node;
4146d2d6 1573 parent = NULL;
90bd6fd3 1574
4146d2d6 1575 while (*new) {
4035c07a 1576 struct page *tree_page;
31dbd01f
IE
1577 int ret;
1578
08beca44 1579 cond_resched();
4146d2d6 1580 stable_node = rb_entry(*new, struct stable_node, node);
2c653d0e 1581 stable_node_any = NULL;
8dc5ffcd 1582 tree_page = chain_prune(&stable_node_dup, &stable_node, root);
b4fecc67
AA
1583 /*
1584 * NOTE: stable_node may have been freed by
1585 * chain_prune() if the returned stable_node_dup is
1586 * not NULL. stable_node_dup may have been inserted in
1587 * the rbtree instead as a regular stable_node (in
1588 * order to collapse the stable_node chain if a single
0ba1d0f7
AA
1589 * stable_node dup was found in it). In such case the
1590 * stable_node is overwritten by the calleee to point
1591 * to the stable_node_dup that was collapsed in the
1592 * stable rbtree and stable_node will be equal to
1593 * stable_node_dup like if the chain never existed.
b4fecc67 1594 */
2c653d0e
AA
1595 if (!stable_node_dup) {
1596 /*
1597 * Either all stable_node dups were full in
1598 * this stable_node chain, or this chain was
1599 * empty and should be rb_erased.
1600 */
1601 stable_node_any = stable_node_dup_any(stable_node,
1602 root);
1603 if (!stable_node_any) {
1604 /* rb_erase just run */
1605 goto again;
1606 }
1607 /*
1608 * Take any of the stable_node dups page of
1609 * this stable_node chain to let the tree walk
1610 * continue. All KSM pages belonging to the
1611 * stable_node dups in a stable_node chain
1612 * have the same content and they're
1613 * wrprotected at all times. Any will work
1614 * fine to continue the walk.
1615 */
1616 tree_page = get_ksm_page(stable_node_any, false);
1617 }
1618 VM_BUG_ON(!stable_node_dup ^ !!stable_node_any);
f2e5ff85
AA
1619 if (!tree_page) {
1620 /*
1621 * If we walked over a stale stable_node,
1622 * get_ksm_page() will call rb_erase() and it
1623 * may rebalance the tree from under us. So
1624 * restart the search from scratch. Returning
1625 * NULL would be safe too, but we'd generate
1626 * false negative insertions just because some
1627 * stable_node was stale.
1628 */
1629 goto again;
1630 }
31dbd01f 1631
4035c07a 1632 ret = memcmp_pages(page, tree_page);
c8d6553b 1633 put_page(tree_page);
31dbd01f 1634
4146d2d6 1635 parent = *new;
c8d6553b 1636 if (ret < 0)
4146d2d6 1637 new = &parent->rb_left;
c8d6553b 1638 else if (ret > 0)
4146d2d6 1639 new = &parent->rb_right;
c8d6553b 1640 else {
2c653d0e
AA
1641 if (page_node) {
1642 VM_BUG_ON(page_node->head != &migrate_nodes);
1643 /*
1644 * Test if the migrated page should be merged
1645 * into a stable node dup. If the mapcount is
1646 * 1 we can migrate it with another KSM page
1647 * without adding it to the chain.
1648 */
1649 if (page_mapcount(page) > 1)
1650 goto chain_append;
1651 }
1652
1653 if (!stable_node_dup) {
1654 /*
1655 * If the stable_node is a chain and
1656 * we got a payload match in memcmp
1657 * but we cannot merge the scanned
1658 * page in any of the existing
1659 * stable_node dups because they're
1660 * all full, we need to wait the
1661 * scanned page to find itself a match
1662 * in the unstable tree to create a
1663 * brand new KSM page to add later to
1664 * the dups of this stable_node.
1665 */
1666 return NULL;
1667 }
1668
c8d6553b
HD
1669 /*
1670 * Lock and unlock the stable_node's page (which
1671 * might already have been migrated) so that page
1672 * migration is sure to notice its raised count.
1673 * It would be more elegant to return stable_node
1674 * than kpage, but that involves more changes.
1675 */
2c653d0e
AA
1676 tree_page = get_ksm_page(stable_node_dup, true);
1677 if (unlikely(!tree_page))
1678 /*
1679 * The tree may have been rebalanced,
1680 * so re-evaluate parent and new.
1681 */
4146d2d6 1682 goto again;
2c653d0e
AA
1683 unlock_page(tree_page);
1684
1685 if (get_kpfn_nid(stable_node_dup->kpfn) !=
1686 NUMA(stable_node_dup->nid)) {
1687 put_page(tree_page);
1688 goto replace;
1689 }
1690 return tree_page;
c8d6553b 1691 }
31dbd01f
IE
1692 }
1693
4146d2d6
HD
1694 if (!page_node)
1695 return NULL;
1696
1697 list_del(&page_node->list);
1698 DO_NUMA(page_node->nid = nid);
1699 rb_link_node(&page_node->node, parent, new);
ef53d16c 1700 rb_insert_color(&page_node->node, root);
2c653d0e
AA
1701out:
1702 if (is_page_sharing_candidate(page_node)) {
1703 get_page(page);
1704 return page;
1705 } else
1706 return NULL;
4146d2d6
HD
1707
1708replace:
b4fecc67
AA
1709 /*
1710 * If stable_node was a chain and chain_prune collapsed it,
0ba1d0f7
AA
1711 * stable_node has been updated to be the new regular
1712 * stable_node. A collapse of the chain is indistinguishable
1713 * from the case there was no chain in the stable
1714 * rbtree. Otherwise stable_node is the chain and
1715 * stable_node_dup is the dup to replace.
b4fecc67 1716 */
0ba1d0f7 1717 if (stable_node_dup == stable_node) {
b4fecc67
AA
1718 VM_BUG_ON(is_stable_node_chain(stable_node_dup));
1719 VM_BUG_ON(is_stable_node_dup(stable_node_dup));
2c653d0e
AA
1720 /* there is no chain */
1721 if (page_node) {
1722 VM_BUG_ON(page_node->head != &migrate_nodes);
1723 list_del(&page_node->list);
1724 DO_NUMA(page_node->nid = nid);
b4fecc67
AA
1725 rb_replace_node(&stable_node_dup->node,
1726 &page_node->node,
2c653d0e
AA
1727 root);
1728 if (is_page_sharing_candidate(page_node))
1729 get_page(page);
1730 else
1731 page = NULL;
1732 } else {
b4fecc67 1733 rb_erase(&stable_node_dup->node, root);
2c653d0e
AA
1734 page = NULL;
1735 }
4146d2d6 1736 } else {
2c653d0e
AA
1737 VM_BUG_ON(!is_stable_node_chain(stable_node));
1738 __stable_node_dup_del(stable_node_dup);
1739 if (page_node) {
1740 VM_BUG_ON(page_node->head != &migrate_nodes);
1741 list_del(&page_node->list);
1742 DO_NUMA(page_node->nid = nid);
1743 stable_node_chain_add_dup(page_node, stable_node);
1744 if (is_page_sharing_candidate(page_node))
1745 get_page(page);
1746 else
1747 page = NULL;
1748 } else {
1749 page = NULL;
1750 }
4146d2d6 1751 }
2c653d0e
AA
1752 stable_node_dup->head = &migrate_nodes;
1753 list_add(&stable_node_dup->list, stable_node_dup->head);
4146d2d6 1754 return page;
2c653d0e
AA
1755
1756chain_append:
1757 /* stable_node_dup could be null if it reached the limit */
1758 if (!stable_node_dup)
1759 stable_node_dup = stable_node_any;
b4fecc67
AA
1760 /*
1761 * If stable_node was a chain and chain_prune collapsed it,
0ba1d0f7
AA
1762 * stable_node has been updated to be the new regular
1763 * stable_node. A collapse of the chain is indistinguishable
1764 * from the case there was no chain in the stable
1765 * rbtree. Otherwise stable_node is the chain and
1766 * stable_node_dup is the dup to replace.
b4fecc67 1767 */
0ba1d0f7 1768 if (stable_node_dup == stable_node) {
b4fecc67
AA
1769 VM_BUG_ON(is_stable_node_chain(stable_node_dup));
1770 VM_BUG_ON(is_stable_node_dup(stable_node_dup));
2c653d0e
AA
1771 /* chain is missing so create it */
1772 stable_node = alloc_stable_node_chain(stable_node_dup,
1773 root);
1774 if (!stable_node)
1775 return NULL;
1776 }
1777 /*
1778 * Add this stable_node dup that was
1779 * migrated to the stable_node chain
1780 * of the current nid for this page
1781 * content.
1782 */
b4fecc67
AA
1783 VM_BUG_ON(!is_stable_node_chain(stable_node));
1784 VM_BUG_ON(!is_stable_node_dup(stable_node_dup));
2c653d0e
AA
1785 VM_BUG_ON(page_node->head != &migrate_nodes);
1786 list_del(&page_node->list);
1787 DO_NUMA(page_node->nid = nid);
1788 stable_node_chain_add_dup(page_node, stable_node);
1789 goto out;
31dbd01f
IE
1790}
1791
1792/*
e850dcf5 1793 * stable_tree_insert - insert stable tree node pointing to new ksm page
31dbd01f
IE
1794 * into the stable tree.
1795 *
7b6ba2c7
HD
1796 * This function returns the stable tree node just allocated on success,
1797 * NULL otherwise.
31dbd01f 1798 */
7b6ba2c7 1799static struct stable_node *stable_tree_insert(struct page *kpage)
31dbd01f 1800{
90bd6fd3
PH
1801 int nid;
1802 unsigned long kpfn;
ef53d16c 1803 struct rb_root *root;
90bd6fd3 1804 struct rb_node **new;
f2e5ff85 1805 struct rb_node *parent;
2c653d0e
AA
1806 struct stable_node *stable_node, *stable_node_dup, *stable_node_any;
1807 bool need_chain = false;
31dbd01f 1808
90bd6fd3
PH
1809 kpfn = page_to_pfn(kpage);
1810 nid = get_kpfn_nid(kpfn);
ef53d16c 1811 root = root_stable_tree + nid;
f2e5ff85
AA
1812again:
1813 parent = NULL;
ef53d16c 1814 new = &root->rb_node;
90bd6fd3 1815
31dbd01f 1816 while (*new) {
4035c07a 1817 struct page *tree_page;
31dbd01f
IE
1818 int ret;
1819
08beca44 1820 cond_resched();
7b6ba2c7 1821 stable_node = rb_entry(*new, struct stable_node, node);
2c653d0e 1822 stable_node_any = NULL;
8dc5ffcd 1823 tree_page = chain(&stable_node_dup, stable_node, root);
2c653d0e
AA
1824 if (!stable_node_dup) {
1825 /*
1826 * Either all stable_node dups were full in
1827 * this stable_node chain, or this chain was
1828 * empty and should be rb_erased.
1829 */
1830 stable_node_any = stable_node_dup_any(stable_node,
1831 root);
1832 if (!stable_node_any) {
1833 /* rb_erase just run */
1834 goto again;
1835 }
1836 /*
1837 * Take any of the stable_node dups page of
1838 * this stable_node chain to let the tree walk
1839 * continue. All KSM pages belonging to the
1840 * stable_node dups in a stable_node chain
1841 * have the same content and they're
1842 * wrprotected at all times. Any will work
1843 * fine to continue the walk.
1844 */
1845 tree_page = get_ksm_page(stable_node_any, false);
1846 }
1847 VM_BUG_ON(!stable_node_dup ^ !!stable_node_any);
f2e5ff85
AA
1848 if (!tree_page) {
1849 /*
1850 * If we walked over a stale stable_node,
1851 * get_ksm_page() will call rb_erase() and it
1852 * may rebalance the tree from under us. So
1853 * restart the search from scratch. Returning
1854 * NULL would be safe too, but we'd generate
1855 * false negative insertions just because some
1856 * stable_node was stale.
1857 */
1858 goto again;
1859 }
31dbd01f 1860
4035c07a
HD
1861 ret = memcmp_pages(kpage, tree_page);
1862 put_page(tree_page);
31dbd01f
IE
1863
1864 parent = *new;
1865 if (ret < 0)
1866 new = &parent->rb_left;
1867 else if (ret > 0)
1868 new = &parent->rb_right;
1869 else {
2c653d0e
AA
1870 need_chain = true;
1871 break;
31dbd01f
IE
1872 }
1873 }
1874
2c653d0e
AA
1875 stable_node_dup = alloc_stable_node();
1876 if (!stable_node_dup)
7b6ba2c7 1877 return NULL;
31dbd01f 1878
2c653d0e
AA
1879 INIT_HLIST_HEAD(&stable_node_dup->hlist);
1880 stable_node_dup->kpfn = kpfn;
1881 set_page_stable_node(kpage, stable_node_dup);
1882 stable_node_dup->rmap_hlist_len = 0;
1883 DO_NUMA(stable_node_dup->nid = nid);
1884 if (!need_chain) {
1885 rb_link_node(&stable_node_dup->node, parent, new);
1886 rb_insert_color(&stable_node_dup->node, root);
1887 } else {
1888 if (!is_stable_node_chain(stable_node)) {
1889 struct stable_node *orig = stable_node;
1890 /* chain is missing so create it */
1891 stable_node = alloc_stable_node_chain(orig, root);
1892 if (!stable_node) {
1893 free_stable_node(stable_node_dup);
1894 return NULL;
1895 }
1896 }
1897 stable_node_chain_add_dup(stable_node_dup, stable_node);
1898 }
08beca44 1899
2c653d0e 1900 return stable_node_dup;
31dbd01f
IE
1901}
1902
1903/*
8dd3557a
HD
1904 * unstable_tree_search_insert - search for identical page,
1905 * else insert rmap_item into the unstable tree.
31dbd01f
IE
1906 *
1907 * This function searches for a page in the unstable tree identical to the
1908 * page currently being scanned; and if no identical page is found in the
1909 * tree, we insert rmap_item as a new object into the unstable tree.
1910 *
1911 * This function returns pointer to rmap_item found to be identical
1912 * to the currently scanned page, NULL otherwise.
1913 *
1914 * This function does both searching and inserting, because they share
1915 * the same walking algorithm in an rbtree.
1916 */
8dd3557a
HD
1917static
1918struct rmap_item *unstable_tree_search_insert(struct rmap_item *rmap_item,
1919 struct page *page,
1920 struct page **tree_pagep)
31dbd01f 1921{
90bd6fd3
PH
1922 struct rb_node **new;
1923 struct rb_root *root;
31dbd01f 1924 struct rb_node *parent = NULL;
90bd6fd3
PH
1925 int nid;
1926
1927 nid = get_kpfn_nid(page_to_pfn(page));
ef53d16c 1928 root = root_unstable_tree + nid;
90bd6fd3 1929 new = &root->rb_node;
31dbd01f
IE
1930
1931 while (*new) {
1932 struct rmap_item *tree_rmap_item;
8dd3557a 1933 struct page *tree_page;
31dbd01f
IE
1934 int ret;
1935
d178f27f 1936 cond_resched();
31dbd01f 1937 tree_rmap_item = rb_entry(*new, struct rmap_item, node);
8dd3557a 1938 tree_page = get_mergeable_page(tree_rmap_item);
c8f95ed1 1939 if (!tree_page)
31dbd01f
IE
1940 return NULL;
1941
1942 /*
8dd3557a 1943 * Don't substitute a ksm page for a forked page.
31dbd01f 1944 */
8dd3557a
HD
1945 if (page == tree_page) {
1946 put_page(tree_page);
31dbd01f
IE
1947 return NULL;
1948 }
1949
8dd3557a 1950 ret = memcmp_pages(page, tree_page);
31dbd01f
IE
1951
1952 parent = *new;
1953 if (ret < 0) {
8dd3557a 1954 put_page(tree_page);
31dbd01f
IE
1955 new = &parent->rb_left;
1956 } else if (ret > 0) {
8dd3557a 1957 put_page(tree_page);
31dbd01f 1958 new = &parent->rb_right;
b599cbdf
HD
1959 } else if (!ksm_merge_across_nodes &&
1960 page_to_nid(tree_page) != nid) {
1961 /*
1962 * If tree_page has been migrated to another NUMA node,
1963 * it will be flushed out and put in the right unstable
1964 * tree next time: only merge with it when across_nodes.
1965 */
1966 put_page(tree_page);
1967 return NULL;
31dbd01f 1968 } else {
8dd3557a 1969 *tree_pagep = tree_page;
31dbd01f
IE
1970 return tree_rmap_item;
1971 }
1972 }
1973
7b6ba2c7 1974 rmap_item->address |= UNSTABLE_FLAG;
31dbd01f 1975 rmap_item->address |= (ksm_scan.seqnr & SEQNR_MASK);
e850dcf5 1976 DO_NUMA(rmap_item->nid = nid);
31dbd01f 1977 rb_link_node(&rmap_item->node, parent, new);
90bd6fd3 1978 rb_insert_color(&rmap_item->node, root);
31dbd01f 1979
473b0ce4 1980 ksm_pages_unshared++;
31dbd01f
IE
1981 return NULL;
1982}
1983
1984/*
1985 * stable_tree_append - add another rmap_item to the linked list of
1986 * rmap_items hanging off a given node of the stable tree, all sharing
1987 * the same ksm page.
1988 */
1989static void stable_tree_append(struct rmap_item *rmap_item,
2c653d0e
AA
1990 struct stable_node *stable_node,
1991 bool max_page_sharing_bypass)
31dbd01f 1992{
2c653d0e
AA
1993 /*
1994 * rmap won't find this mapping if we don't insert the
1995 * rmap_item in the right stable_node
1996 * duplicate. page_migration could break later if rmap breaks,
1997 * so we can as well crash here. We really need to check for
1998 * rmap_hlist_len == STABLE_NODE_CHAIN, but we can as well check
1999 * for other negative values as an undeflow if detected here
2000 * for the first time (and not when decreasing rmap_hlist_len)
2001 * would be sign of memory corruption in the stable_node.
2002 */
2003 BUG_ON(stable_node->rmap_hlist_len < 0);
2004
2005 stable_node->rmap_hlist_len++;
2006 if (!max_page_sharing_bypass)
2007 /* possibly non fatal but unexpected overflow, only warn */
2008 WARN_ON_ONCE(stable_node->rmap_hlist_len >
2009 ksm_max_page_sharing);
2010
7b6ba2c7 2011 rmap_item->head = stable_node;
31dbd01f 2012 rmap_item->address |= STABLE_FLAG;
7b6ba2c7 2013 hlist_add_head(&rmap_item->hlist, &stable_node->hlist);
e178dfde 2014
7b6ba2c7
HD
2015 if (rmap_item->hlist.next)
2016 ksm_pages_sharing++;
2017 else
2018 ksm_pages_shared++;
31dbd01f
IE
2019}
2020
2021/*
81464e30
HD
2022 * cmp_and_merge_page - first see if page can be merged into the stable tree;
2023 * if not, compare checksum to previous and if it's the same, see if page can
2024 * be inserted into the unstable tree, or merged with a page already there and
2025 * both transferred to the stable tree.
31dbd01f
IE
2026 *
2027 * @page: the page that we are searching identical page to.
2028 * @rmap_item: the reverse mapping into the virtual address of this page
2029 */
2030static void cmp_and_merge_page(struct page *page, struct rmap_item *rmap_item)
2031{
4b22927f 2032 struct mm_struct *mm = rmap_item->mm;
31dbd01f 2033 struct rmap_item *tree_rmap_item;
8dd3557a 2034 struct page *tree_page = NULL;
7b6ba2c7 2035 struct stable_node *stable_node;
8dd3557a 2036 struct page *kpage;
31dbd01f
IE
2037 unsigned int checksum;
2038 int err;
2c653d0e 2039 bool max_page_sharing_bypass = false;
31dbd01f 2040
4146d2d6
HD
2041 stable_node = page_stable_node(page);
2042 if (stable_node) {
2043 if (stable_node->head != &migrate_nodes &&
2c653d0e
AA
2044 get_kpfn_nid(READ_ONCE(stable_node->kpfn)) !=
2045 NUMA(stable_node->nid)) {
2046 stable_node_dup_del(stable_node);
4146d2d6
HD
2047 stable_node->head = &migrate_nodes;
2048 list_add(&stable_node->list, stable_node->head);
2049 }
2050 if (stable_node->head != &migrate_nodes &&
2051 rmap_item->head == stable_node)
2052 return;
2c653d0e
AA
2053 /*
2054 * If it's a KSM fork, allow it to go over the sharing limit
2055 * without warnings.
2056 */
2057 if (!is_page_sharing_candidate(stable_node))
2058 max_page_sharing_bypass = true;
4146d2d6 2059 }
31dbd01f
IE
2060
2061 /* We first start with searching the page inside the stable tree */
62b61f61 2062 kpage = stable_tree_search(page);
4146d2d6
HD
2063 if (kpage == page && rmap_item->head == stable_node) {
2064 put_page(kpage);
2065 return;
2066 }
2067
2068 remove_rmap_item_from_tree(rmap_item);
2069
62b61f61 2070 if (kpage) {
08beca44 2071 err = try_to_merge_with_ksm_page(rmap_item, page, kpage);
31dbd01f
IE
2072 if (!err) {
2073 /*
2074 * The page was successfully merged:
2075 * add its rmap_item to the stable tree.
2076 */
5ad64688 2077 lock_page(kpage);
2c653d0e
AA
2078 stable_tree_append(rmap_item, page_stable_node(kpage),
2079 max_page_sharing_bypass);
5ad64688 2080 unlock_page(kpage);
31dbd01f 2081 }
8dd3557a 2082 put_page(kpage);
31dbd01f
IE
2083 return;
2084 }
2085
2086 /*
4035c07a
HD
2087 * If the hash value of the page has changed from the last time
2088 * we calculated it, this page is changing frequently: therefore we
2089 * don't want to insert it in the unstable tree, and we don't want
2090 * to waste our time searching for something identical to it there.
31dbd01f
IE
2091 */
2092 checksum = calc_checksum(page);
2093 if (rmap_item->oldchecksum != checksum) {
2094 rmap_item->oldchecksum = checksum;
2095 return;
2096 }
2097
e86c59b1
CI
2098 /*
2099 * Same checksum as an empty page. We attempt to merge it with the
2100 * appropriate zero page if the user enabled this via sysfs.
2101 */
2102 if (ksm_use_zero_pages && (checksum == zero_checksum)) {
2103 struct vm_area_struct *vma;
2104
4b22927f
KT
2105 down_read(&mm->mmap_sem);
2106 vma = find_mergeable_vma(mm, rmap_item->address);
e86c59b1
CI
2107 err = try_to_merge_one_page(vma, page,
2108 ZERO_PAGE(rmap_item->address));
4b22927f 2109 up_read(&mm->mmap_sem);
e86c59b1
CI
2110 /*
2111 * In case of failure, the page was not really empty, so we
2112 * need to continue. Otherwise we're done.
2113 */
2114 if (!err)
2115 return;
2116 }
8dd3557a
HD
2117 tree_rmap_item =
2118 unstable_tree_search_insert(rmap_item, page, &tree_page);
31dbd01f 2119 if (tree_rmap_item) {
77da2ba0
CI
2120 bool split;
2121
8dd3557a
HD
2122 kpage = try_to_merge_two_pages(rmap_item, page,
2123 tree_rmap_item, tree_page);
77da2ba0
CI
2124 /*
2125 * If both pages we tried to merge belong to the same compound
2126 * page, then we actually ended up increasing the reference
2127 * count of the same compound page twice, and split_huge_page
2128 * failed.
2129 * Here we set a flag if that happened, and we use it later to
2130 * try split_huge_page again. Since we call put_page right
2131 * afterwards, the reference count will be correct and
2132 * split_huge_page should succeed.
2133 */
2134 split = PageTransCompound(page)
2135 && compound_head(page) == compound_head(tree_page);
8dd3557a 2136 put_page(tree_page);
8dd3557a 2137 if (kpage) {
bc56620b
HD
2138 /*
2139 * The pages were successfully merged: insert new
2140 * node in the stable tree and add both rmap_items.
2141 */
5ad64688 2142 lock_page(kpage);
7b6ba2c7
HD
2143 stable_node = stable_tree_insert(kpage);
2144 if (stable_node) {
2c653d0e
AA
2145 stable_tree_append(tree_rmap_item, stable_node,
2146 false);
2147 stable_tree_append(rmap_item, stable_node,
2148 false);
7b6ba2c7 2149 }
5ad64688 2150 unlock_page(kpage);
7b6ba2c7 2151
31dbd01f
IE
2152 /*
2153 * If we fail to insert the page into the stable tree,
2154 * we will have 2 virtual addresses that are pointing
2155 * to a ksm page left outside the stable tree,
2156 * in which case we need to break_cow on both.
2157 */
7b6ba2c7 2158 if (!stable_node) {
8dd3557a
HD
2159 break_cow(tree_rmap_item);
2160 break_cow(rmap_item);
31dbd01f 2161 }
77da2ba0
CI
2162 } else if (split) {
2163 /*
2164 * We are here if we tried to merge two pages and
2165 * failed because they both belonged to the same
2166 * compound page. We will split the page now, but no
2167 * merging will take place.
2168 * We do not want to add the cost of a full lock; if
2169 * the page is locked, it is better to skip it and
2170 * perhaps try again later.
2171 */
2172 if (!trylock_page(page))
2173 return;
2174 split_huge_page(page);
2175 unlock_page(page);
31dbd01f 2176 }
31dbd01f
IE
2177 }
2178}
2179
2180static struct rmap_item *get_next_rmap_item(struct mm_slot *mm_slot,
6514d511 2181 struct rmap_item **rmap_list,
31dbd01f
IE
2182 unsigned long addr)
2183{
2184 struct rmap_item *rmap_item;
2185
6514d511
HD
2186 while (*rmap_list) {
2187 rmap_item = *rmap_list;
93d17715 2188 if ((rmap_item->address & PAGE_MASK) == addr)
31dbd01f 2189 return rmap_item;
31dbd01f
IE
2190 if (rmap_item->address > addr)
2191 break;
6514d511 2192 *rmap_list = rmap_item->rmap_list;
31dbd01f 2193 remove_rmap_item_from_tree(rmap_item);
31dbd01f
IE
2194 free_rmap_item(rmap_item);
2195 }
2196
2197 rmap_item = alloc_rmap_item();
2198 if (rmap_item) {
2199 /* It has already been zeroed */
2200 rmap_item->mm = mm_slot->mm;
2201 rmap_item->address = addr;
6514d511
HD
2202 rmap_item->rmap_list = *rmap_list;
2203 *rmap_list = rmap_item;
31dbd01f
IE
2204 }
2205 return rmap_item;
2206}
2207
2208static struct rmap_item *scan_get_next_rmap_item(struct page **page)
2209{
2210 struct mm_struct *mm;
2211 struct mm_slot *slot;
2212 struct vm_area_struct *vma;
2213 struct rmap_item *rmap_item;
90bd6fd3 2214 int nid;
31dbd01f
IE
2215
2216 if (list_empty(&ksm_mm_head.mm_list))
2217 return NULL;
2218
2219 slot = ksm_scan.mm_slot;
2220 if (slot == &ksm_mm_head) {
2919bfd0
HD
2221 /*
2222 * A number of pages can hang around indefinitely on per-cpu
2223 * pagevecs, raised page count preventing write_protect_page
2224 * from merging them. Though it doesn't really matter much,
2225 * it is puzzling to see some stuck in pages_volatile until
2226 * other activity jostles them out, and they also prevented
2227 * LTP's KSM test from succeeding deterministically; so drain
2228 * them here (here rather than on entry to ksm_do_scan(),
2229 * so we don't IPI too often when pages_to_scan is set low).
2230 */
2231 lru_add_drain_all();
2232
4146d2d6
HD
2233 /*
2234 * Whereas stale stable_nodes on the stable_tree itself
2235 * get pruned in the regular course of stable_tree_search(),
2236 * those moved out to the migrate_nodes list can accumulate:
2237 * so prune them once before each full scan.
2238 */
2239 if (!ksm_merge_across_nodes) {
03640418 2240 struct stable_node *stable_node, *next;
4146d2d6
HD
2241 struct page *page;
2242
03640418
GT
2243 list_for_each_entry_safe(stable_node, next,
2244 &migrate_nodes, list) {
4146d2d6
HD
2245 page = get_ksm_page(stable_node, false);
2246 if (page)
2247 put_page(page);
2248 cond_resched();
2249 }
2250 }
2251
ef53d16c 2252 for (nid = 0; nid < ksm_nr_node_ids; nid++)
90bd6fd3 2253 root_unstable_tree[nid] = RB_ROOT;
31dbd01f
IE
2254
2255 spin_lock(&ksm_mmlist_lock);
2256 slot = list_entry(slot->mm_list.next, struct mm_slot, mm_list);
2257 ksm_scan.mm_slot = slot;
2258 spin_unlock(&ksm_mmlist_lock);
2b472611
HD
2259 /*
2260 * Although we tested list_empty() above, a racing __ksm_exit
2261 * of the last mm on the list may have removed it since then.
2262 */
2263 if (slot == &ksm_mm_head)
2264 return NULL;
31dbd01f
IE
2265next_mm:
2266 ksm_scan.address = 0;
6514d511 2267 ksm_scan.rmap_list = &slot->rmap_list;
31dbd01f
IE
2268 }
2269
2270 mm = slot->mm;
2271 down_read(&mm->mmap_sem);
9ba69294
HD
2272 if (ksm_test_exit(mm))
2273 vma = NULL;
2274 else
2275 vma = find_vma(mm, ksm_scan.address);
2276
2277 for (; vma; vma = vma->vm_next) {
31dbd01f
IE
2278 if (!(vma->vm_flags & VM_MERGEABLE))
2279 continue;
2280 if (ksm_scan.address < vma->vm_start)
2281 ksm_scan.address = vma->vm_start;
2282 if (!vma->anon_vma)
2283 ksm_scan.address = vma->vm_end;
2284
2285 while (ksm_scan.address < vma->vm_end) {
9ba69294
HD
2286 if (ksm_test_exit(mm))
2287 break;
31dbd01f 2288 *page = follow_page(vma, ksm_scan.address, FOLL_GET);
21ae5b01
AA
2289 if (IS_ERR_OR_NULL(*page)) {
2290 ksm_scan.address += PAGE_SIZE;
2291 cond_resched();
2292 continue;
2293 }
f765f540 2294 if (PageAnon(*page)) {
31dbd01f
IE
2295 flush_anon_page(vma, *page, ksm_scan.address);
2296 flush_dcache_page(*page);
2297 rmap_item = get_next_rmap_item(slot,
6514d511 2298 ksm_scan.rmap_list, ksm_scan.address);
31dbd01f 2299 if (rmap_item) {
6514d511
HD
2300 ksm_scan.rmap_list =
2301 &rmap_item->rmap_list;
31dbd01f
IE
2302 ksm_scan.address += PAGE_SIZE;
2303 } else
2304 put_page(*page);
2305 up_read(&mm->mmap_sem);
2306 return rmap_item;
2307 }
21ae5b01 2308 put_page(*page);
31dbd01f
IE
2309 ksm_scan.address += PAGE_SIZE;
2310 cond_resched();
2311 }
2312 }
2313
9ba69294
HD
2314 if (ksm_test_exit(mm)) {
2315 ksm_scan.address = 0;
6514d511 2316 ksm_scan.rmap_list = &slot->rmap_list;
9ba69294 2317 }
31dbd01f
IE
2318 /*
2319 * Nuke all the rmap_items that are above this current rmap:
2320 * because there were no VM_MERGEABLE vmas with such addresses.
2321 */
6514d511 2322 remove_trailing_rmap_items(slot, ksm_scan.rmap_list);
31dbd01f
IE
2323
2324 spin_lock(&ksm_mmlist_lock);
cd551f97
HD
2325 ksm_scan.mm_slot = list_entry(slot->mm_list.next,
2326 struct mm_slot, mm_list);
2327 if (ksm_scan.address == 0) {
2328 /*
2329 * We've completed a full scan of all vmas, holding mmap_sem
2330 * throughout, and found no VM_MERGEABLE: so do the same as
2331 * __ksm_exit does to remove this mm from all our lists now.
9ba69294
HD
2332 * This applies either when cleaning up after __ksm_exit
2333 * (but beware: we can reach here even before __ksm_exit),
2334 * or when all VM_MERGEABLE areas have been unmapped (and
2335 * mmap_sem then protects against race with MADV_MERGEABLE).
cd551f97 2336 */
4ca3a69b 2337 hash_del(&slot->link);
cd551f97 2338 list_del(&slot->mm_list);
9ba69294
HD
2339 spin_unlock(&ksm_mmlist_lock);
2340
cd551f97
HD
2341 free_mm_slot(slot);
2342 clear_bit(MMF_VM_MERGEABLE, &mm->flags);
9ba69294
HD
2343 up_read(&mm->mmap_sem);
2344 mmdrop(mm);
2345 } else {
9ba69294 2346 up_read(&mm->mmap_sem);
7496fea9
ZC
2347 /*
2348 * up_read(&mm->mmap_sem) first because after
2349 * spin_unlock(&ksm_mmlist_lock) run, the "mm" may
2350 * already have been freed under us by __ksm_exit()
2351 * because the "mm_slot" is still hashed and
2352 * ksm_scan.mm_slot doesn't point to it anymore.
2353 */
2354 spin_unlock(&ksm_mmlist_lock);
cd551f97 2355 }
31dbd01f
IE
2356
2357 /* Repeat until we've completed scanning the whole list */
cd551f97 2358 slot = ksm_scan.mm_slot;
31dbd01f
IE
2359 if (slot != &ksm_mm_head)
2360 goto next_mm;
2361
31dbd01f
IE
2362 ksm_scan.seqnr++;
2363 return NULL;
2364}
2365
2366/**
2367 * ksm_do_scan - the ksm scanner main worker function.
b7701a5f 2368 * @scan_npages: number of pages we want to scan before we return.
31dbd01f
IE
2369 */
2370static void ksm_do_scan(unsigned int scan_npages)
2371{
2372 struct rmap_item *rmap_item;
22eccdd7 2373 struct page *uninitialized_var(page);
31dbd01f 2374
878aee7d 2375 while (scan_npages-- && likely(!freezing(current))) {
31dbd01f
IE
2376 cond_resched();
2377 rmap_item = scan_get_next_rmap_item(&page);
2378 if (!rmap_item)
2379 return;
4146d2d6 2380 cmp_and_merge_page(page, rmap_item);
31dbd01f
IE
2381 put_page(page);
2382 }
2383}
2384
6e158384
HD
2385static int ksmd_should_run(void)
2386{
2387 return (ksm_run & KSM_RUN_MERGE) && !list_empty(&ksm_mm_head.mm_list);
2388}
2389
31dbd01f
IE
2390static int ksm_scan_thread(void *nothing)
2391{
fcf9a0ef
KT
2392 unsigned int sleep_ms;
2393
878aee7d 2394 set_freezable();
339aa624 2395 set_user_nice(current, 5);
31dbd01f
IE
2396
2397 while (!kthread_should_stop()) {
6e158384 2398 mutex_lock(&ksm_thread_mutex);
ef4d43a8 2399 wait_while_offlining();
6e158384 2400 if (ksmd_should_run())
31dbd01f 2401 ksm_do_scan(ksm_thread_pages_to_scan);
6e158384
HD
2402 mutex_unlock(&ksm_thread_mutex);
2403
878aee7d
AA
2404 try_to_freeze();
2405
6e158384 2406 if (ksmd_should_run()) {
fcf9a0ef
KT
2407 sleep_ms = READ_ONCE(ksm_thread_sleep_millisecs);
2408 wait_event_interruptible_timeout(ksm_iter_wait,
2409 sleep_ms != READ_ONCE(ksm_thread_sleep_millisecs),
2410 msecs_to_jiffies(sleep_ms));
31dbd01f 2411 } else {
878aee7d 2412 wait_event_freezable(ksm_thread_wait,
6e158384 2413 ksmd_should_run() || kthread_should_stop());
31dbd01f
IE
2414 }
2415 }
2416 return 0;
2417}
2418
f8af4da3
HD
2419int ksm_madvise(struct vm_area_struct *vma, unsigned long start,
2420 unsigned long end, int advice, unsigned long *vm_flags)
2421{
2422 struct mm_struct *mm = vma->vm_mm;
d952b791 2423 int err;
f8af4da3
HD
2424
2425 switch (advice) {
2426 case MADV_MERGEABLE:
2427 /*
2428 * Be somewhat over-protective for now!
2429 */
2430 if (*vm_flags & (VM_MERGEABLE | VM_SHARED | VM_MAYSHARE |
2431 VM_PFNMAP | VM_IO | VM_DONTEXPAND |
0661a336 2432 VM_HUGETLB | VM_MIXEDMAP))
f8af4da3
HD
2433 return 0; /* just ignore the advice */
2434
e1fb4a08
DJ
2435 if (vma_is_dax(vma))
2436 return 0;
2437
cc2383ec
KK
2438#ifdef VM_SAO
2439 if (*vm_flags & VM_SAO)
2440 return 0;
2441#endif
74a04967
KA
2442#ifdef VM_SPARC_ADI
2443 if (*vm_flags & VM_SPARC_ADI)
2444 return 0;
2445#endif
cc2383ec 2446
d952b791
HD
2447 if (!test_bit(MMF_VM_MERGEABLE, &mm->flags)) {
2448 err = __ksm_enter(mm);
2449 if (err)
2450 return err;
2451 }
f8af4da3
HD
2452
2453 *vm_flags |= VM_MERGEABLE;
2454 break;
2455
2456 case MADV_UNMERGEABLE:
2457 if (!(*vm_flags & VM_MERGEABLE))
2458 return 0; /* just ignore the advice */
2459
d952b791
HD
2460 if (vma->anon_vma) {
2461 err = unmerge_ksm_pages(vma, start, end);
2462 if (err)
2463 return err;
2464 }
f8af4da3
HD
2465
2466 *vm_flags &= ~VM_MERGEABLE;
2467 break;
2468 }
2469
2470 return 0;
2471}
2472
2473int __ksm_enter(struct mm_struct *mm)
2474{
6e158384
HD
2475 struct mm_slot *mm_slot;
2476 int needs_wakeup;
2477
2478 mm_slot = alloc_mm_slot();
31dbd01f
IE
2479 if (!mm_slot)
2480 return -ENOMEM;
2481
6e158384
HD
2482 /* Check ksm_run too? Would need tighter locking */
2483 needs_wakeup = list_empty(&ksm_mm_head.mm_list);
2484
31dbd01f
IE
2485 spin_lock(&ksm_mmlist_lock);
2486 insert_to_mm_slots_hash(mm, mm_slot);
2487 /*
cbf86cfe
HD
2488 * When KSM_RUN_MERGE (or KSM_RUN_STOP),
2489 * insert just behind the scanning cursor, to let the area settle
31dbd01f
IE
2490 * down a little; when fork is followed by immediate exec, we don't
2491 * want ksmd to waste time setting up and tearing down an rmap_list.
cbf86cfe
HD
2492 *
2493 * But when KSM_RUN_UNMERGE, it's important to insert ahead of its
2494 * scanning cursor, otherwise KSM pages in newly forked mms will be
2495 * missed: then we might as well insert at the end of the list.
31dbd01f 2496 */
cbf86cfe
HD
2497 if (ksm_run & KSM_RUN_UNMERGE)
2498 list_add_tail(&mm_slot->mm_list, &ksm_mm_head.mm_list);
2499 else
2500 list_add_tail(&mm_slot->mm_list, &ksm_scan.mm_slot->mm_list);
31dbd01f
IE
2501 spin_unlock(&ksm_mmlist_lock);
2502
f8af4da3 2503 set_bit(MMF_VM_MERGEABLE, &mm->flags);
f1f10076 2504 mmgrab(mm);
6e158384
HD
2505
2506 if (needs_wakeup)
2507 wake_up_interruptible(&ksm_thread_wait);
2508
f8af4da3
HD
2509 return 0;
2510}
2511
1c2fb7a4 2512void __ksm_exit(struct mm_struct *mm)
f8af4da3 2513{
cd551f97 2514 struct mm_slot *mm_slot;
9ba69294 2515 int easy_to_free = 0;
cd551f97 2516
31dbd01f 2517 /*
9ba69294
HD
2518 * This process is exiting: if it's straightforward (as is the
2519 * case when ksmd was never running), free mm_slot immediately.
2520 * But if it's at the cursor or has rmap_items linked to it, use
2521 * mmap_sem to synchronize with any break_cows before pagetables
2522 * are freed, and leave the mm_slot on the list for ksmd to free.
2523 * Beware: ksm may already have noticed it exiting and freed the slot.
31dbd01f 2524 */
9ba69294 2525
cd551f97
HD
2526 spin_lock(&ksm_mmlist_lock);
2527 mm_slot = get_mm_slot(mm);
9ba69294 2528 if (mm_slot && ksm_scan.mm_slot != mm_slot) {
6514d511 2529 if (!mm_slot->rmap_list) {
4ca3a69b 2530 hash_del(&mm_slot->link);
9ba69294
HD
2531 list_del(&mm_slot->mm_list);
2532 easy_to_free = 1;
2533 } else {
2534 list_move(&mm_slot->mm_list,
2535 &ksm_scan.mm_slot->mm_list);
2536 }
cd551f97 2537 }
cd551f97
HD
2538 spin_unlock(&ksm_mmlist_lock);
2539
9ba69294
HD
2540 if (easy_to_free) {
2541 free_mm_slot(mm_slot);
2542 clear_bit(MMF_VM_MERGEABLE, &mm->flags);
2543 mmdrop(mm);
2544 } else if (mm_slot) {
9ba69294
HD
2545 down_write(&mm->mmap_sem);
2546 up_write(&mm->mmap_sem);
9ba69294 2547 }
31dbd01f
IE
2548}
2549
cbf86cfe 2550struct page *ksm_might_need_to_copy(struct page *page,
5ad64688
HD
2551 struct vm_area_struct *vma, unsigned long address)
2552{
cbf86cfe 2553 struct anon_vma *anon_vma = page_anon_vma(page);
5ad64688
HD
2554 struct page *new_page;
2555
cbf86cfe
HD
2556 if (PageKsm(page)) {
2557 if (page_stable_node(page) &&
2558 !(ksm_run & KSM_RUN_UNMERGE))
2559 return page; /* no need to copy it */
2560 } else if (!anon_vma) {
2561 return page; /* no need to copy it */
2562 } else if (anon_vma->root == vma->anon_vma->root &&
2563 page->index == linear_page_index(vma, address)) {
2564 return page; /* still no need to copy it */
2565 }
2566 if (!PageUptodate(page))
2567 return page; /* let do_swap_page report the error */
2568
5ad64688
HD
2569 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
2570 if (new_page) {
2571 copy_user_highpage(new_page, page, address, vma);
2572
2573 SetPageDirty(new_page);
2574 __SetPageUptodate(new_page);
48c935ad 2575 __SetPageLocked(new_page);
5ad64688
HD
2576 }
2577
5ad64688
HD
2578 return new_page;
2579}
2580
1df631ae 2581void rmap_walk_ksm(struct page *page, struct rmap_walk_control *rwc)
e9995ef9
HD
2582{
2583 struct stable_node *stable_node;
e9995ef9 2584 struct rmap_item *rmap_item;
e9995ef9
HD
2585 int search_new_forks = 0;
2586
309381fe 2587 VM_BUG_ON_PAGE(!PageKsm(page), page);
9f32624b
JK
2588
2589 /*
2590 * Rely on the page lock to protect against concurrent modifications
2591 * to that page's node of the stable tree.
2592 */
309381fe 2593 VM_BUG_ON_PAGE(!PageLocked(page), page);
e9995ef9
HD
2594
2595 stable_node = page_stable_node(page);
2596 if (!stable_node)
1df631ae 2597 return;
e9995ef9 2598again:
b67bfe0d 2599 hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) {
e9995ef9 2600 struct anon_vma *anon_vma = rmap_item->anon_vma;
5beb4930 2601 struct anon_vma_chain *vmac;
e9995ef9
HD
2602 struct vm_area_struct *vma;
2603
ad12695f 2604 cond_resched();
b6b19f25 2605 anon_vma_lock_read(anon_vma);
bf181b9f
ML
2606 anon_vma_interval_tree_foreach(vmac, &anon_vma->rb_root,
2607 0, ULONG_MAX) {
1105a2fc
JH
2608 unsigned long addr;
2609
ad12695f 2610 cond_resched();
5beb4930 2611 vma = vmac->vma;
1105a2fc
JH
2612
2613 /* Ignore the stable/unstable/sqnr flags */
2614 addr = rmap_item->address & ~KSM_FLAG_MASK;
2615
2616 if (addr < vma->vm_start || addr >= vma->vm_end)
e9995ef9
HD
2617 continue;
2618 /*
2619 * Initially we examine only the vma which covers this
2620 * rmap_item; but later, if there is still work to do,
2621 * we examine covering vmas in other mms: in case they
2622 * were forked from the original since ksmd passed.
2623 */
2624 if ((rmap_item->mm == vma->vm_mm) == search_new_forks)
2625 continue;
2626
0dd1c7bb
JK
2627 if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
2628 continue;
2629
1105a2fc 2630 if (!rwc->rmap_one(page, vma, addr, rwc->arg)) {
b6b19f25 2631 anon_vma_unlock_read(anon_vma);
1df631ae 2632 return;
e9995ef9 2633 }
0dd1c7bb
JK
2634 if (rwc->done && rwc->done(page)) {
2635 anon_vma_unlock_read(anon_vma);
1df631ae 2636 return;
0dd1c7bb 2637 }
e9995ef9 2638 }
b6b19f25 2639 anon_vma_unlock_read(anon_vma);
e9995ef9
HD
2640 }
2641 if (!search_new_forks++)
2642 goto again;
e9995ef9
HD
2643}
2644
52629506 2645#ifdef CONFIG_MIGRATION
e9995ef9
HD
2646void ksm_migrate_page(struct page *newpage, struct page *oldpage)
2647{
2648 struct stable_node *stable_node;
2649
309381fe
SL
2650 VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
2651 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
2652 VM_BUG_ON_PAGE(newpage->mapping != oldpage->mapping, newpage);
e9995ef9
HD
2653
2654 stable_node = page_stable_node(newpage);
2655 if (stable_node) {
309381fe 2656 VM_BUG_ON_PAGE(stable_node->kpfn != page_to_pfn(oldpage), oldpage);
62b61f61 2657 stable_node->kpfn = page_to_pfn(newpage);
c8d6553b
HD
2658 /*
2659 * newpage->mapping was set in advance; now we need smp_wmb()
2660 * to make sure that the new stable_node->kpfn is visible
2661 * to get_ksm_page() before it can see that oldpage->mapping
2662 * has gone stale (or that PageSwapCache has been cleared).
2663 */
2664 smp_wmb();
2665 set_page_stable_node(oldpage, NULL);
e9995ef9
HD
2666 }
2667}
2668#endif /* CONFIG_MIGRATION */
2669
62b61f61 2670#ifdef CONFIG_MEMORY_HOTREMOVE
ef4d43a8
HD
2671static void wait_while_offlining(void)
2672{
2673 while (ksm_run & KSM_RUN_OFFLINE) {
2674 mutex_unlock(&ksm_thread_mutex);
2675 wait_on_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE),
74316201 2676 TASK_UNINTERRUPTIBLE);
ef4d43a8
HD
2677 mutex_lock(&ksm_thread_mutex);
2678 }
2679}
2680
2c653d0e
AA
2681static bool stable_node_dup_remove_range(struct stable_node *stable_node,
2682 unsigned long start_pfn,
2683 unsigned long end_pfn)
2684{
2685 if (stable_node->kpfn >= start_pfn &&
2686 stable_node->kpfn < end_pfn) {
2687 /*
2688 * Don't get_ksm_page, page has already gone:
2689 * which is why we keep kpfn instead of page*
2690 */
2691 remove_node_from_stable_tree(stable_node);
2692 return true;
2693 }
2694 return false;
2695}
2696
2697static bool stable_node_chain_remove_range(struct stable_node *stable_node,
2698 unsigned long start_pfn,
2699 unsigned long end_pfn,
2700 struct rb_root *root)
2701{
2702 struct stable_node *dup;
2703 struct hlist_node *hlist_safe;
2704
2705 if (!is_stable_node_chain(stable_node)) {
2706 VM_BUG_ON(is_stable_node_dup(stable_node));
2707 return stable_node_dup_remove_range(stable_node, start_pfn,
2708 end_pfn);
2709 }
2710
2711 hlist_for_each_entry_safe(dup, hlist_safe,
2712 &stable_node->hlist, hlist_dup) {
2713 VM_BUG_ON(!is_stable_node_dup(dup));
2714 stable_node_dup_remove_range(dup, start_pfn, end_pfn);
2715 }
2716 if (hlist_empty(&stable_node->hlist)) {
2717 free_stable_node_chain(stable_node, root);
2718 return true; /* notify caller that tree was rebalanced */
2719 } else
2720 return false;
2721}
2722
ee0ea59c
HD
2723static void ksm_check_stable_tree(unsigned long start_pfn,
2724 unsigned long end_pfn)
62b61f61 2725{
03640418 2726 struct stable_node *stable_node, *next;
62b61f61 2727 struct rb_node *node;
90bd6fd3 2728 int nid;
62b61f61 2729
ef53d16c
HD
2730 for (nid = 0; nid < ksm_nr_node_ids; nid++) {
2731 node = rb_first(root_stable_tree + nid);
ee0ea59c 2732 while (node) {
90bd6fd3 2733 stable_node = rb_entry(node, struct stable_node, node);
2c653d0e
AA
2734 if (stable_node_chain_remove_range(stable_node,
2735 start_pfn, end_pfn,
2736 root_stable_tree +
2737 nid))
ef53d16c 2738 node = rb_first(root_stable_tree + nid);
2c653d0e 2739 else
ee0ea59c
HD
2740 node = rb_next(node);
2741 cond_resched();
90bd6fd3 2742 }
ee0ea59c 2743 }
03640418 2744 list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) {
4146d2d6
HD
2745 if (stable_node->kpfn >= start_pfn &&
2746 stable_node->kpfn < end_pfn)
2747 remove_node_from_stable_tree(stable_node);
2748 cond_resched();
2749 }
62b61f61
HD
2750}
2751
2752static int ksm_memory_callback(struct notifier_block *self,
2753 unsigned long action, void *arg)
2754{
2755 struct memory_notify *mn = arg;
62b61f61
HD
2756
2757 switch (action) {
2758 case MEM_GOING_OFFLINE:
2759 /*
ef4d43a8
HD
2760 * Prevent ksm_do_scan(), unmerge_and_remove_all_rmap_items()
2761 * and remove_all_stable_nodes() while memory is going offline:
2762 * it is unsafe for them to touch the stable tree at this time.
2763 * But unmerge_ksm_pages(), rmap lookups and other entry points
2764 * which do not need the ksm_thread_mutex are all safe.
62b61f61 2765 */
ef4d43a8
HD
2766 mutex_lock(&ksm_thread_mutex);
2767 ksm_run |= KSM_RUN_OFFLINE;
2768 mutex_unlock(&ksm_thread_mutex);
62b61f61
HD
2769 break;
2770
2771 case MEM_OFFLINE:
2772 /*
2773 * Most of the work is done by page migration; but there might
2774 * be a few stable_nodes left over, still pointing to struct
ee0ea59c
HD
2775 * pages which have been offlined: prune those from the tree,
2776 * otherwise get_ksm_page() might later try to access a
2777 * non-existent struct page.
62b61f61 2778 */
ee0ea59c
HD
2779 ksm_check_stable_tree(mn->start_pfn,
2780 mn->start_pfn + mn->nr_pages);
62b61f61
HD
2781 /* fallthrough */
2782
2783 case MEM_CANCEL_OFFLINE:
ef4d43a8
HD
2784 mutex_lock(&ksm_thread_mutex);
2785 ksm_run &= ~KSM_RUN_OFFLINE;
62b61f61 2786 mutex_unlock(&ksm_thread_mutex);
ef4d43a8
HD
2787
2788 smp_mb(); /* wake_up_bit advises this */
2789 wake_up_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE));
62b61f61
HD
2790 break;
2791 }
2792 return NOTIFY_OK;
2793}
ef4d43a8
HD
2794#else
2795static void wait_while_offlining(void)
2796{
2797}
62b61f61
HD
2798#endif /* CONFIG_MEMORY_HOTREMOVE */
2799
2ffd8679
HD
2800#ifdef CONFIG_SYSFS
2801/*
2802 * This all compiles without CONFIG_SYSFS, but is a waste of space.
2803 */
2804
31dbd01f
IE
2805#define KSM_ATTR_RO(_name) \
2806 static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
2807#define KSM_ATTR(_name) \
2808 static struct kobj_attribute _name##_attr = \
2809 __ATTR(_name, 0644, _name##_show, _name##_store)
2810
2811static ssize_t sleep_millisecs_show(struct kobject *kobj,
2812 struct kobj_attribute *attr, char *buf)
2813{
2814 return sprintf(buf, "%u\n", ksm_thread_sleep_millisecs);
2815}
2816
2817static ssize_t sleep_millisecs_store(struct kobject *kobj,
2818 struct kobj_attribute *attr,
2819 const char *buf, size_t count)
2820{
2821 unsigned long msecs;
2822 int err;
2823
3dbb95f7 2824 err = kstrtoul(buf, 10, &msecs);
31dbd01f
IE
2825 if (err || msecs > UINT_MAX)
2826 return -EINVAL;
2827
2828 ksm_thread_sleep_millisecs = msecs;
fcf9a0ef 2829 wake_up_interruptible(&ksm_iter_wait);
31dbd01f
IE
2830
2831 return count;
2832}
2833KSM_ATTR(sleep_millisecs);
2834
2835static ssize_t pages_to_scan_show(struct kobject *kobj,
2836 struct kobj_attribute *attr, char *buf)
2837{
2838 return sprintf(buf, "%u\n", ksm_thread_pages_to_scan);
2839}
2840
2841static ssize_t pages_to_scan_store(struct kobject *kobj,
2842 struct kobj_attribute *attr,
2843 const char *buf, size_t count)
2844{
2845 int err;
2846 unsigned long nr_pages;
2847
3dbb95f7 2848 err = kstrtoul(buf, 10, &nr_pages);
31dbd01f
IE
2849 if (err || nr_pages > UINT_MAX)
2850 return -EINVAL;
2851
2852 ksm_thread_pages_to_scan = nr_pages;
2853
2854 return count;
2855}
2856KSM_ATTR(pages_to_scan);
2857
2858static ssize_t run_show(struct kobject *kobj, struct kobj_attribute *attr,
2859 char *buf)
2860{
ef4d43a8 2861 return sprintf(buf, "%lu\n", ksm_run);
31dbd01f
IE
2862}
2863
2864static ssize_t run_store(struct kobject *kobj, struct kobj_attribute *attr,
2865 const char *buf, size_t count)
2866{
2867 int err;
2868 unsigned long flags;
2869
3dbb95f7 2870 err = kstrtoul(buf, 10, &flags);
31dbd01f
IE
2871 if (err || flags > UINT_MAX)
2872 return -EINVAL;
2873 if (flags > KSM_RUN_UNMERGE)
2874 return -EINVAL;
2875
2876 /*
2877 * KSM_RUN_MERGE sets ksmd running, and 0 stops it running.
2878 * KSM_RUN_UNMERGE stops it running and unmerges all rmap_items,
d0f209f6
HD
2879 * breaking COW to free the pages_shared (but leaves mm_slots
2880 * on the list for when ksmd may be set running again).
31dbd01f
IE
2881 */
2882
2883 mutex_lock(&ksm_thread_mutex);
ef4d43a8 2884 wait_while_offlining();
31dbd01f
IE
2885 if (ksm_run != flags) {
2886 ksm_run = flags;
d952b791 2887 if (flags & KSM_RUN_UNMERGE) {
e1e12d2f 2888 set_current_oom_origin();
d952b791 2889 err = unmerge_and_remove_all_rmap_items();
e1e12d2f 2890 clear_current_oom_origin();
d952b791
HD
2891 if (err) {
2892 ksm_run = KSM_RUN_STOP;
2893 count = err;
2894 }
2895 }
31dbd01f
IE
2896 }
2897 mutex_unlock(&ksm_thread_mutex);
2898
2899 if (flags & KSM_RUN_MERGE)
2900 wake_up_interruptible(&ksm_thread_wait);
2901
2902 return count;
2903}
2904KSM_ATTR(run);
2905
90bd6fd3
PH
2906#ifdef CONFIG_NUMA
2907static ssize_t merge_across_nodes_show(struct kobject *kobj,
2908 struct kobj_attribute *attr, char *buf)
2909{
2910 return sprintf(buf, "%u\n", ksm_merge_across_nodes);
2911}
2912
2913static ssize_t merge_across_nodes_store(struct kobject *kobj,
2914 struct kobj_attribute *attr,
2915 const char *buf, size_t count)
2916{
2917 int err;
2918 unsigned long knob;
2919
2920 err = kstrtoul(buf, 10, &knob);
2921 if (err)
2922 return err;
2923 if (knob > 1)
2924 return -EINVAL;
2925
2926 mutex_lock(&ksm_thread_mutex);
ef4d43a8 2927 wait_while_offlining();
90bd6fd3 2928 if (ksm_merge_across_nodes != knob) {
cbf86cfe 2929 if (ksm_pages_shared || remove_all_stable_nodes())
90bd6fd3 2930 err = -EBUSY;
ef53d16c
HD
2931 else if (root_stable_tree == one_stable_tree) {
2932 struct rb_root *buf;
2933 /*
2934 * This is the first time that we switch away from the
2935 * default of merging across nodes: must now allocate
2936 * a buffer to hold as many roots as may be needed.
2937 * Allocate stable and unstable together:
2938 * MAXSMP NODES_SHIFT 10 will use 16kB.
2939 */
bafe1e14
JP
2940 buf = kcalloc(nr_node_ids + nr_node_ids, sizeof(*buf),
2941 GFP_KERNEL);
ef53d16c
HD
2942 /* Let us assume that RB_ROOT is NULL is zero */
2943 if (!buf)
2944 err = -ENOMEM;
2945 else {
2946 root_stable_tree = buf;
2947 root_unstable_tree = buf + nr_node_ids;
2948 /* Stable tree is empty but not the unstable */
2949 root_unstable_tree[0] = one_unstable_tree[0];
2950 }
2951 }
2952 if (!err) {
90bd6fd3 2953 ksm_merge_across_nodes = knob;
ef53d16c
HD
2954 ksm_nr_node_ids = knob ? 1 : nr_node_ids;
2955 }
90bd6fd3
PH
2956 }
2957 mutex_unlock(&ksm_thread_mutex);
2958
2959 return err ? err : count;
2960}
2961KSM_ATTR(merge_across_nodes);
2962#endif
2963
e86c59b1
CI
2964static ssize_t use_zero_pages_show(struct kobject *kobj,
2965 struct kobj_attribute *attr, char *buf)
2966{
2967 return sprintf(buf, "%u\n", ksm_use_zero_pages);
2968}
2969static ssize_t use_zero_pages_store(struct kobject *kobj,
2970 struct kobj_attribute *attr,
2971 const char *buf, size_t count)
2972{
2973 int err;
2974 bool value;
2975
2976 err = kstrtobool(buf, &value);
2977 if (err)
2978 return -EINVAL;
2979
2980 ksm_use_zero_pages = value;
2981
2982 return count;
2983}
2984KSM_ATTR(use_zero_pages);
2985
2c653d0e
AA
2986static ssize_t max_page_sharing_show(struct kobject *kobj,
2987 struct kobj_attribute *attr, char *buf)
2988{
2989 return sprintf(buf, "%u\n", ksm_max_page_sharing);
2990}
2991
2992static ssize_t max_page_sharing_store(struct kobject *kobj,
2993 struct kobj_attribute *attr,
2994 const char *buf, size_t count)
2995{
2996 int err;
2997 int knob;
2998
2999 err = kstrtoint(buf, 10, &knob);
3000 if (err)
3001 return err;
3002 /*
3003 * When a KSM page is created it is shared by 2 mappings. This
3004 * being a signed comparison, it implicitly verifies it's not
3005 * negative.
3006 */
3007 if (knob < 2)
3008 return -EINVAL;
3009
3010 if (READ_ONCE(ksm_max_page_sharing) == knob)
3011 return count;
3012
3013 mutex_lock(&ksm_thread_mutex);
3014 wait_while_offlining();
3015 if (ksm_max_page_sharing != knob) {
3016 if (ksm_pages_shared || remove_all_stable_nodes())
3017 err = -EBUSY;
3018 else
3019 ksm_max_page_sharing = knob;
3020 }
3021 mutex_unlock(&ksm_thread_mutex);
3022
3023 return err ? err : count;
3024}
3025KSM_ATTR(max_page_sharing);
3026
b4028260
HD
3027static ssize_t pages_shared_show(struct kobject *kobj,
3028 struct kobj_attribute *attr, char *buf)
3029{
3030 return sprintf(buf, "%lu\n", ksm_pages_shared);
3031}
3032KSM_ATTR_RO(pages_shared);
3033
3034static ssize_t pages_sharing_show(struct kobject *kobj,
3035 struct kobj_attribute *attr, char *buf)
3036{
e178dfde 3037 return sprintf(buf, "%lu\n", ksm_pages_sharing);
b4028260
HD
3038}
3039KSM_ATTR_RO(pages_sharing);
3040
473b0ce4
HD
3041static ssize_t pages_unshared_show(struct kobject *kobj,
3042 struct kobj_attribute *attr, char *buf)
3043{
3044 return sprintf(buf, "%lu\n", ksm_pages_unshared);
3045}
3046KSM_ATTR_RO(pages_unshared);
3047
3048static ssize_t pages_volatile_show(struct kobject *kobj,
3049 struct kobj_attribute *attr, char *buf)
3050{
3051 long ksm_pages_volatile;
3052
3053 ksm_pages_volatile = ksm_rmap_items - ksm_pages_shared
3054 - ksm_pages_sharing - ksm_pages_unshared;
3055 /*
3056 * It was not worth any locking to calculate that statistic,
3057 * but it might therefore sometimes be negative: conceal that.
3058 */
3059 if (ksm_pages_volatile < 0)
3060 ksm_pages_volatile = 0;
3061 return sprintf(buf, "%ld\n", ksm_pages_volatile);
3062}
3063KSM_ATTR_RO(pages_volatile);
3064
2c653d0e
AA
3065static ssize_t stable_node_dups_show(struct kobject *kobj,
3066 struct kobj_attribute *attr, char *buf)
3067{
3068 return sprintf(buf, "%lu\n", ksm_stable_node_dups);
3069}
3070KSM_ATTR_RO(stable_node_dups);
3071
3072static ssize_t stable_node_chains_show(struct kobject *kobj,
3073 struct kobj_attribute *attr, char *buf)
3074{
3075 return sprintf(buf, "%lu\n", ksm_stable_node_chains);
3076}
3077KSM_ATTR_RO(stable_node_chains);
3078
3079static ssize_t
3080stable_node_chains_prune_millisecs_show(struct kobject *kobj,
3081 struct kobj_attribute *attr,
3082 char *buf)
3083{
3084 return sprintf(buf, "%u\n", ksm_stable_node_chains_prune_millisecs);
3085}
3086
3087static ssize_t
3088stable_node_chains_prune_millisecs_store(struct kobject *kobj,
3089 struct kobj_attribute *attr,
3090 const char *buf, size_t count)
3091{
3092 unsigned long msecs;
3093 int err;
3094
3095 err = kstrtoul(buf, 10, &msecs);
3096 if (err || msecs > UINT_MAX)
3097 return -EINVAL;
3098
3099 ksm_stable_node_chains_prune_millisecs = msecs;
3100
3101 return count;
3102}
3103KSM_ATTR(stable_node_chains_prune_millisecs);
3104
473b0ce4
HD
3105static ssize_t full_scans_show(struct kobject *kobj,
3106 struct kobj_attribute *attr, char *buf)
3107{
3108 return sprintf(buf, "%lu\n", ksm_scan.seqnr);
3109}
3110KSM_ATTR_RO(full_scans);
3111
31dbd01f
IE
3112static struct attribute *ksm_attrs[] = {
3113 &sleep_millisecs_attr.attr,
3114 &pages_to_scan_attr.attr,
3115 &run_attr.attr,
b4028260
HD
3116 &pages_shared_attr.attr,
3117 &pages_sharing_attr.attr,
473b0ce4
HD
3118 &pages_unshared_attr.attr,
3119 &pages_volatile_attr.attr,
3120 &full_scans_attr.attr,
90bd6fd3
PH
3121#ifdef CONFIG_NUMA
3122 &merge_across_nodes_attr.attr,
3123#endif
2c653d0e
AA
3124 &max_page_sharing_attr.attr,
3125 &stable_node_chains_attr.attr,
3126 &stable_node_dups_attr.attr,
3127 &stable_node_chains_prune_millisecs_attr.attr,
e86c59b1 3128 &use_zero_pages_attr.attr,
31dbd01f
IE
3129 NULL,
3130};
3131
f907c26a 3132static const struct attribute_group ksm_attr_group = {
31dbd01f
IE
3133 .attrs = ksm_attrs,
3134 .name = "ksm",
3135};
2ffd8679 3136#endif /* CONFIG_SYSFS */
31dbd01f
IE
3137
3138static int __init ksm_init(void)
3139{
3140 struct task_struct *ksm_thread;
3141 int err;
3142
e86c59b1
CI
3143 /* The correct value depends on page size and endianness */
3144 zero_checksum = calc_checksum(ZERO_PAGE(0));
3145 /* Default to false for backwards compatibility */
3146 ksm_use_zero_pages = false;
3147
31dbd01f
IE
3148 err = ksm_slab_init();
3149 if (err)
3150 goto out;
3151
31dbd01f
IE
3152 ksm_thread = kthread_run(ksm_scan_thread, NULL, "ksmd");
3153 if (IS_ERR(ksm_thread)) {
25acde31 3154 pr_err("ksm: creating kthread failed\n");
31dbd01f 3155 err = PTR_ERR(ksm_thread);
d9f8984c 3156 goto out_free;
31dbd01f
IE
3157 }
3158
2ffd8679 3159#ifdef CONFIG_SYSFS
31dbd01f
IE
3160 err = sysfs_create_group(mm_kobj, &ksm_attr_group);
3161 if (err) {
25acde31 3162 pr_err("ksm: register sysfs failed\n");
2ffd8679 3163 kthread_stop(ksm_thread);
d9f8984c 3164 goto out_free;
31dbd01f 3165 }
c73602ad
HD
3166#else
3167 ksm_run = KSM_RUN_MERGE; /* no way for user to start it */
3168
2ffd8679 3169#endif /* CONFIG_SYSFS */
31dbd01f 3170
62b61f61 3171#ifdef CONFIG_MEMORY_HOTREMOVE
ef4d43a8 3172 /* There is no significance to this priority 100 */
62b61f61
HD
3173 hotplug_memory_notifier(ksm_memory_callback, 100);
3174#endif
31dbd01f
IE
3175 return 0;
3176
d9f8984c 3177out_free:
31dbd01f
IE
3178 ksm_slab_free();
3179out:
3180 return err;
f8af4da3 3181}
a64fb3cd 3182subsys_initcall(ksm_init);