kmemleak: Do no create the clean-up thread during kmemleak_disable()
[linux-2.6-block.git] / mm / kmemleak.c
CommitLineData
3c7b4e6b
CM
1/*
2 * mm/kmemleak.c
3 *
4 * Copyright (C) 2008 ARM Limited
5 * Written by Catalin Marinas <catalin.marinas@arm.com>
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software
18 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
19 *
20 *
21 * For more information on the algorithm and kmemleak usage, please see
22 * Documentation/kmemleak.txt.
23 *
24 * Notes on locking
25 * ----------------
26 *
27 * The following locks and mutexes are used by kmemleak:
28 *
29 * - kmemleak_lock (rwlock): protects the object_list modifications and
30 * accesses to the object_tree_root. The object_list is the main list
31 * holding the metadata (struct kmemleak_object) for the allocated memory
32 * blocks. The object_tree_root is a priority search tree used to look-up
33 * metadata based on a pointer to the corresponding memory block. The
34 * kmemleak_object structures are added to the object_list and
35 * object_tree_root in the create_object() function called from the
36 * kmemleak_alloc() callback and removed in delete_object() called from the
37 * kmemleak_free() callback
38 * - kmemleak_object.lock (spinlock): protects a kmemleak_object. Accesses to
39 * the metadata (e.g. count) are protected by this lock. Note that some
40 * members of this structure may be protected by other means (atomic or
41 * kmemleak_lock). This lock is also held when scanning the corresponding
42 * memory block to avoid the kernel freeing it via the kmemleak_free()
43 * callback. This is less heavyweight than holding a global lock like
44 * kmemleak_lock during scanning
45 * - scan_mutex (mutex): ensures that only one thread may scan the memory for
46 * unreferenced objects at a time. The gray_list contains the objects which
47 * are already referenced or marked as false positives and need to be
48 * scanned. This list is only modified during a scanning episode when the
49 * scan_mutex is held. At the end of a scan, the gray_list is always empty.
50 * Note that the kmemleak_object.use_count is incremented when an object is
4698c1f2
CM
51 * added to the gray_list and therefore cannot be freed. This mutex also
52 * prevents multiple users of the "kmemleak" debugfs file together with
53 * modifications to the memory scanning parameters including the scan_thread
54 * pointer
3c7b4e6b
CM
55 *
56 * The kmemleak_object structures have a use_count incremented or decremented
57 * using the get_object()/put_object() functions. When the use_count becomes
58 * 0, this count can no longer be incremented and put_object() schedules the
59 * kmemleak_object freeing via an RCU callback. All calls to the get_object()
60 * function must be protected by rcu_read_lock() to avoid accessing a freed
61 * structure.
62 */
63
ae281064
JP
64#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
65
3c7b4e6b
CM
66#include <linux/init.h>
67#include <linux/kernel.h>
68#include <linux/list.h>
69#include <linux/sched.h>
70#include <linux/jiffies.h>
71#include <linux/delay.h>
72#include <linux/module.h>
73#include <linux/kthread.h>
74#include <linux/prio_tree.h>
75#include <linux/gfp.h>
76#include <linux/fs.h>
77#include <linux/debugfs.h>
78#include <linux/seq_file.h>
79#include <linux/cpumask.h>
80#include <linux/spinlock.h>
81#include <linux/mutex.h>
82#include <linux/rcupdate.h>
83#include <linux/stacktrace.h>
84#include <linux/cache.h>
85#include <linux/percpu.h>
86#include <linux/hardirq.h>
87#include <linux/mmzone.h>
88#include <linux/slab.h>
89#include <linux/thread_info.h>
90#include <linux/err.h>
91#include <linux/uaccess.h>
92#include <linux/string.h>
93#include <linux/nodemask.h>
94#include <linux/mm.h>
179a8100 95#include <linux/workqueue.h>
3c7b4e6b
CM
96
97#include <asm/sections.h>
98#include <asm/processor.h>
99#include <asm/atomic.h>
100
8e019366 101#include <linux/kmemcheck.h>
3c7b4e6b
CM
102#include <linux/kmemleak.h>
103
104/*
105 * Kmemleak configuration and common defines.
106 */
107#define MAX_TRACE 16 /* stack trace length */
3c7b4e6b 108#define MSECS_MIN_AGE 5000 /* minimum object age for reporting */
3c7b4e6b
CM
109#define SECS_FIRST_SCAN 60 /* delay before the first scan */
110#define SECS_SCAN_WAIT 600 /* subsequent auto scanning delay */
2587362e 111#define GRAY_LIST_PASSES 25 /* maximum number of gray list scans */
af98603d 112#define MAX_SCAN_SIZE 4096 /* maximum size of a scanned block */
3c7b4e6b
CM
113
114#define BYTES_PER_POINTER sizeof(void *)
115
216c04b0
CM
116/* GFP bitmask for kmemleak internal allocations */
117#define GFP_KMEMLEAK_MASK (GFP_KERNEL | GFP_ATOMIC)
118
3c7b4e6b
CM
119/* scanning area inside a memory block */
120struct kmemleak_scan_area {
121 struct hlist_node node;
122 unsigned long offset;
123 size_t length;
124};
125
126/*
127 * Structure holding the metadata for each allocated memory block.
128 * Modifications to such objects should be made while holding the
129 * object->lock. Insertions or deletions from object_list, gray_list or
130 * tree_node are already protected by the corresponding locks or mutex (see
131 * the notes on locking above). These objects are reference-counted
132 * (use_count) and freed using the RCU mechanism.
133 */
134struct kmemleak_object {
135 spinlock_t lock;
136 unsigned long flags; /* object status flags */
137 struct list_head object_list;
138 struct list_head gray_list;
139 struct prio_tree_node tree_node;
140 struct rcu_head rcu; /* object_list lockless traversal */
141 /* object usage count; object freed when use_count == 0 */
142 atomic_t use_count;
143 unsigned long pointer;
144 size_t size;
145 /* minimum number of a pointers found before it is considered leak */
146 int min_count;
147 /* the total number of pointers found pointing to this object */
148 int count;
149 /* memory ranges to be scanned inside an object (empty for all) */
150 struct hlist_head area_list;
151 unsigned long trace[MAX_TRACE];
152 unsigned int trace_len;
153 unsigned long jiffies; /* creation timestamp */
154 pid_t pid; /* pid of the current task */
155 char comm[TASK_COMM_LEN]; /* executable name */
156};
157
158/* flag representing the memory block allocation status */
159#define OBJECT_ALLOCATED (1 << 0)
160/* flag set after the first reporting of an unreference object */
161#define OBJECT_REPORTED (1 << 1)
162/* flag set to not scan the object */
163#define OBJECT_NO_SCAN (1 << 2)
2587362e
CM
164/* flag set on newly allocated objects */
165#define OBJECT_NEW (1 << 3)
3c7b4e6b 166
0494e082
SS
167/* number of bytes to print per line; must be 16 or 32 */
168#define HEX_ROW_SIZE 16
169/* number of bytes to print at a time (1, 2, 4, 8) */
170#define HEX_GROUP_SIZE 1
171/* include ASCII after the hex output */
172#define HEX_ASCII 1
173/* max number of lines to be printed */
174#define HEX_MAX_LINES 2
175
3c7b4e6b
CM
176/* the list of all allocated objects */
177static LIST_HEAD(object_list);
178/* the list of gray-colored objects (see color_gray comment below) */
179static LIST_HEAD(gray_list);
180/* prio search tree for object boundaries */
181static struct prio_tree_root object_tree_root;
182/* rw_lock protecting the access to object_list and prio_tree_root */
183static DEFINE_RWLOCK(kmemleak_lock);
184
185/* allocation caches for kmemleak internal data */
186static struct kmem_cache *object_cache;
187static struct kmem_cache *scan_area_cache;
188
189/* set if tracing memory operations is enabled */
190static atomic_t kmemleak_enabled = ATOMIC_INIT(0);
191/* set in the late_initcall if there were no errors */
192static atomic_t kmemleak_initialized = ATOMIC_INIT(0);
193/* enables or disables early logging of the memory operations */
194static atomic_t kmemleak_early_log = ATOMIC_INIT(1);
195/* set if a fata kmemleak error has occurred */
196static atomic_t kmemleak_error = ATOMIC_INIT(0);
197
198/* minimum and maximum address that may be valid pointers */
199static unsigned long min_addr = ULONG_MAX;
200static unsigned long max_addr;
201
3c7b4e6b 202static struct task_struct *scan_thread;
acf4968e 203/* used to avoid reporting of recently allocated objects */
3c7b4e6b 204static unsigned long jiffies_min_age;
acf4968e 205static unsigned long jiffies_last_scan;
3c7b4e6b
CM
206/* delay between automatic memory scannings */
207static signed long jiffies_scan_wait;
208/* enables or disables the task stacks scanning */
e0a2a160 209static int kmemleak_stack_scan = 1;
4698c1f2 210/* protects the memory scanning, parameters and debug/kmemleak file access */
3c7b4e6b 211static DEFINE_MUTEX(scan_mutex);
3c7b4e6b 212
3c7b4e6b 213/*
2030117d 214 * Early object allocation/freeing logging. Kmemleak is initialized after the
3c7b4e6b 215 * kernel allocator. However, both the kernel allocator and kmemleak may
2030117d 216 * allocate memory blocks which need to be tracked. Kmemleak defines an
3c7b4e6b
CM
217 * arbitrary buffer to hold the allocation/freeing information before it is
218 * fully initialized.
219 */
220
221/* kmemleak operation type for early logging */
222enum {
223 KMEMLEAK_ALLOC,
224 KMEMLEAK_FREE,
53238a60 225 KMEMLEAK_FREE_PART,
3c7b4e6b
CM
226 KMEMLEAK_NOT_LEAK,
227 KMEMLEAK_IGNORE,
228 KMEMLEAK_SCAN_AREA,
229 KMEMLEAK_NO_SCAN
230};
231
232/*
233 * Structure holding the information passed to kmemleak callbacks during the
234 * early logging.
235 */
236struct early_log {
237 int op_type; /* kmemleak operation type */
238 const void *ptr; /* allocated/freed memory block */
239 size_t size; /* memory block size */
240 int min_count; /* minimum reference count */
241 unsigned long offset; /* scan area offset */
242 size_t length; /* scan area length */
fd678967
CM
243 unsigned long trace[MAX_TRACE]; /* stack trace */
244 unsigned int trace_len; /* stack trace length */
3c7b4e6b
CM
245};
246
247/* early logging buffer and current position */
a6186d89
CM
248static struct early_log
249 early_log[CONFIG_DEBUG_KMEMLEAK_EARLY_LOG_SIZE] __initdata;
250static int crt_early_log __initdata;
3c7b4e6b
CM
251
252static void kmemleak_disable(void);
253
254/*
255 * Print a warning and dump the stack trace.
256 */
257#define kmemleak_warn(x...) do { \
258 pr_warning(x); \
259 dump_stack(); \
260} while (0)
261
262/*
263 * Macro invoked when a serious kmemleak condition occured and cannot be
2030117d 264 * recovered from. Kmemleak will be disabled and further allocation/freeing
3c7b4e6b
CM
265 * tracing no longer available.
266 */
000814f4 267#define kmemleak_stop(x...) do { \
3c7b4e6b
CM
268 kmemleak_warn(x); \
269 kmemleak_disable(); \
270} while (0)
271
0494e082
SS
272/*
273 * Printing of the objects hex dump to the seq file. The number of lines to be
274 * printed is limited to HEX_MAX_LINES to prevent seq file spamming. The
275 * actual number of printed bytes depends on HEX_ROW_SIZE. It must be called
276 * with the object->lock held.
277 */
278static void hex_dump_object(struct seq_file *seq,
279 struct kmemleak_object *object)
280{
281 const u8 *ptr = (const u8 *)object->pointer;
282 int i, len, remaining;
283 unsigned char linebuf[HEX_ROW_SIZE * 5];
284
285 /* limit the number of lines to HEX_MAX_LINES */
286 remaining = len =
287 min(object->size, (size_t)(HEX_MAX_LINES * HEX_ROW_SIZE));
288
289 seq_printf(seq, " hex dump (first %d bytes):\n", len);
290 for (i = 0; i < len; i += HEX_ROW_SIZE) {
291 int linelen = min(remaining, HEX_ROW_SIZE);
292
293 remaining -= HEX_ROW_SIZE;
294 hex_dump_to_buffer(ptr + i, linelen, HEX_ROW_SIZE,
295 HEX_GROUP_SIZE, linebuf, sizeof(linebuf),
296 HEX_ASCII);
297 seq_printf(seq, " %s\n", linebuf);
298 }
299}
300
3c7b4e6b
CM
301/*
302 * Object colors, encoded with count and min_count:
303 * - white - orphan object, not enough references to it (count < min_count)
304 * - gray - not orphan, not marked as false positive (min_count == 0) or
305 * sufficient references to it (count >= min_count)
306 * - black - ignore, it doesn't contain references (e.g. text section)
307 * (min_count == -1). No function defined for this color.
308 * Newly created objects don't have any color assigned (object->count == -1)
309 * before the next memory scan when they become white.
310 */
311static int color_white(const struct kmemleak_object *object)
312{
313 return object->count != -1 && object->count < object->min_count;
314}
315
316static int color_gray(const struct kmemleak_object *object)
317{
318 return object->min_count != -1 && object->count >= object->min_count;
319}
320
2587362e
CM
321static int color_black(const struct kmemleak_object *object)
322{
323 return object->min_count == -1;
324}
325
3c7b4e6b
CM
326/*
327 * Objects are considered unreferenced only if their color is white, they have
328 * not be deleted and have a minimum age to avoid false positives caused by
329 * pointers temporarily stored in CPU registers.
330 */
331static int unreferenced_object(struct kmemleak_object *object)
332{
333 return (object->flags & OBJECT_ALLOCATED) && color_white(object) &&
acf4968e
CM
334 time_before_eq(object->jiffies + jiffies_min_age,
335 jiffies_last_scan);
3c7b4e6b
CM
336}
337
338/*
bab4a34a
CM
339 * Printing of the unreferenced objects information to the seq file. The
340 * print_unreferenced function must be called with the object->lock held.
3c7b4e6b 341 */
3c7b4e6b
CM
342static void print_unreferenced(struct seq_file *seq,
343 struct kmemleak_object *object)
344{
345 int i;
346
bab4a34a
CM
347 seq_printf(seq, "unreferenced object 0x%08lx (size %zu):\n",
348 object->pointer, object->size);
349 seq_printf(seq, " comm \"%s\", pid %d, jiffies %lu\n",
350 object->comm, object->pid, object->jiffies);
0494e082 351 hex_dump_object(seq, object);
bab4a34a 352 seq_printf(seq, " backtrace:\n");
3c7b4e6b
CM
353
354 for (i = 0; i < object->trace_len; i++) {
355 void *ptr = (void *)object->trace[i];
bab4a34a 356 seq_printf(seq, " [<%p>] %pS\n", ptr, ptr);
3c7b4e6b
CM
357 }
358}
359
360/*
361 * Print the kmemleak_object information. This function is used mainly for
362 * debugging special cases when kmemleak operations. It must be called with
363 * the object->lock held.
364 */
365static void dump_object_info(struct kmemleak_object *object)
366{
367 struct stack_trace trace;
368
369 trace.nr_entries = object->trace_len;
370 trace.entries = object->trace;
371
ae281064 372 pr_notice("Object 0x%08lx (size %zu):\n",
3c7b4e6b
CM
373 object->tree_node.start, object->size);
374 pr_notice(" comm \"%s\", pid %d, jiffies %lu\n",
375 object->comm, object->pid, object->jiffies);
376 pr_notice(" min_count = %d\n", object->min_count);
377 pr_notice(" count = %d\n", object->count);
189d84ed 378 pr_notice(" flags = 0x%lx\n", object->flags);
3c7b4e6b
CM
379 pr_notice(" backtrace:\n");
380 print_stack_trace(&trace, 4);
381}
382
383/*
384 * Look-up a memory block metadata (kmemleak_object) in the priority search
385 * tree based on a pointer value. If alias is 0, only values pointing to the
386 * beginning of the memory block are allowed. The kmemleak_lock must be held
387 * when calling this function.
388 */
389static struct kmemleak_object *lookup_object(unsigned long ptr, int alias)
390{
391 struct prio_tree_node *node;
392 struct prio_tree_iter iter;
393 struct kmemleak_object *object;
394
395 prio_tree_iter_init(&iter, &object_tree_root, ptr, ptr);
396 node = prio_tree_next(&iter);
397 if (node) {
398 object = prio_tree_entry(node, struct kmemleak_object,
399 tree_node);
400 if (!alias && object->pointer != ptr) {
ae281064 401 kmemleak_warn("Found object by alias");
3c7b4e6b
CM
402 object = NULL;
403 }
404 } else
405 object = NULL;
406
407 return object;
408}
409
410/*
411 * Increment the object use_count. Return 1 if successful or 0 otherwise. Note
412 * that once an object's use_count reached 0, the RCU freeing was already
413 * registered and the object should no longer be used. This function must be
414 * called under the protection of rcu_read_lock().
415 */
416static int get_object(struct kmemleak_object *object)
417{
418 return atomic_inc_not_zero(&object->use_count);
419}
420
421/*
422 * RCU callback to free a kmemleak_object.
423 */
424static void free_object_rcu(struct rcu_head *rcu)
425{
426 struct hlist_node *elem, *tmp;
427 struct kmemleak_scan_area *area;
428 struct kmemleak_object *object =
429 container_of(rcu, struct kmemleak_object, rcu);
430
431 /*
432 * Once use_count is 0 (guaranteed by put_object), there is no other
433 * code accessing this object, hence no need for locking.
434 */
435 hlist_for_each_entry_safe(area, elem, tmp, &object->area_list, node) {
436 hlist_del(elem);
437 kmem_cache_free(scan_area_cache, area);
438 }
439 kmem_cache_free(object_cache, object);
440}
441
442/*
443 * Decrement the object use_count. Once the count is 0, free the object using
444 * an RCU callback. Since put_object() may be called via the kmemleak_free() ->
445 * delete_object() path, the delayed RCU freeing ensures that there is no
446 * recursive call to the kernel allocator. Lock-less RCU object_list traversal
447 * is also possible.
448 */
449static void put_object(struct kmemleak_object *object)
450{
451 if (!atomic_dec_and_test(&object->use_count))
452 return;
453
454 /* should only get here after delete_object was called */
455 WARN_ON(object->flags & OBJECT_ALLOCATED);
456
457 call_rcu(&object->rcu, free_object_rcu);
458}
459
460/*
461 * Look up an object in the prio search tree and increase its use_count.
462 */
463static struct kmemleak_object *find_and_get_object(unsigned long ptr, int alias)
464{
465 unsigned long flags;
466 struct kmemleak_object *object = NULL;
467
468 rcu_read_lock();
469 read_lock_irqsave(&kmemleak_lock, flags);
470 if (ptr >= min_addr && ptr < max_addr)
471 object = lookup_object(ptr, alias);
472 read_unlock_irqrestore(&kmemleak_lock, flags);
473
474 /* check whether the object is still available */
475 if (object && !get_object(object))
476 object = NULL;
477 rcu_read_unlock();
478
479 return object;
480}
481
fd678967
CM
482/*
483 * Save stack trace to the given array of MAX_TRACE size.
484 */
485static int __save_stack_trace(unsigned long *trace)
486{
487 struct stack_trace stack_trace;
488
489 stack_trace.max_entries = MAX_TRACE;
490 stack_trace.nr_entries = 0;
491 stack_trace.entries = trace;
492 stack_trace.skip = 2;
493 save_stack_trace(&stack_trace);
494
495 return stack_trace.nr_entries;
496}
497
3c7b4e6b
CM
498/*
499 * Create the metadata (struct kmemleak_object) corresponding to an allocated
500 * memory block and add it to the object_list and object_tree_root.
501 */
fd678967
CM
502static struct kmemleak_object *create_object(unsigned long ptr, size_t size,
503 int min_count, gfp_t gfp)
3c7b4e6b
CM
504{
505 unsigned long flags;
506 struct kmemleak_object *object;
507 struct prio_tree_node *node;
3c7b4e6b 508
216c04b0 509 object = kmem_cache_alloc(object_cache, gfp & GFP_KMEMLEAK_MASK);
3c7b4e6b 510 if (!object) {
ae281064 511 kmemleak_stop("Cannot allocate a kmemleak_object structure\n");
fd678967 512 return NULL;
3c7b4e6b
CM
513 }
514
515 INIT_LIST_HEAD(&object->object_list);
516 INIT_LIST_HEAD(&object->gray_list);
517 INIT_HLIST_HEAD(&object->area_list);
518 spin_lock_init(&object->lock);
519 atomic_set(&object->use_count, 1);
2587362e 520 object->flags = OBJECT_ALLOCATED | OBJECT_NEW;
3c7b4e6b
CM
521 object->pointer = ptr;
522 object->size = size;
523 object->min_count = min_count;
524 object->count = -1; /* no color initially */
525 object->jiffies = jiffies;
526
527 /* task information */
528 if (in_irq()) {
529 object->pid = 0;
530 strncpy(object->comm, "hardirq", sizeof(object->comm));
531 } else if (in_softirq()) {
532 object->pid = 0;
533 strncpy(object->comm, "softirq", sizeof(object->comm));
534 } else {
535 object->pid = current->pid;
536 /*
537 * There is a small chance of a race with set_task_comm(),
538 * however using get_task_comm() here may cause locking
539 * dependency issues with current->alloc_lock. In the worst
540 * case, the command line is not correct.
541 */
542 strncpy(object->comm, current->comm, sizeof(object->comm));
543 }
544
545 /* kernel backtrace */
fd678967 546 object->trace_len = __save_stack_trace(object->trace);
3c7b4e6b
CM
547
548 INIT_PRIO_TREE_NODE(&object->tree_node);
549 object->tree_node.start = ptr;
550 object->tree_node.last = ptr + size - 1;
551
552 write_lock_irqsave(&kmemleak_lock, flags);
553 min_addr = min(min_addr, ptr);
554 max_addr = max(max_addr, ptr + size);
555 node = prio_tree_insert(&object_tree_root, &object->tree_node);
556 /*
557 * The code calling the kernel does not yet have the pointer to the
558 * memory block to be able to free it. However, we still hold the
559 * kmemleak_lock here in case parts of the kernel started freeing
560 * random memory blocks.
561 */
562 if (node != &object->tree_node) {
563 unsigned long flags;
564
ae281064
JP
565 kmemleak_stop("Cannot insert 0x%lx into the object search tree "
566 "(already existing)\n", ptr);
3c7b4e6b
CM
567 object = lookup_object(ptr, 1);
568 spin_lock_irqsave(&object->lock, flags);
569 dump_object_info(object);
570 spin_unlock_irqrestore(&object->lock, flags);
571
572 goto out;
573 }
574 list_add_tail_rcu(&object->object_list, &object_list);
575out:
576 write_unlock_irqrestore(&kmemleak_lock, flags);
fd678967 577 return object;
3c7b4e6b
CM
578}
579
580/*
581 * Remove the metadata (struct kmemleak_object) for a memory block from the
582 * object_list and object_tree_root and decrement its use_count.
583 */
53238a60 584static void __delete_object(struct kmemleak_object *object)
3c7b4e6b
CM
585{
586 unsigned long flags;
3c7b4e6b
CM
587
588 write_lock_irqsave(&kmemleak_lock, flags);
3c7b4e6b
CM
589 prio_tree_remove(&object_tree_root, &object->tree_node);
590 list_del_rcu(&object->object_list);
591 write_unlock_irqrestore(&kmemleak_lock, flags);
592
593 WARN_ON(!(object->flags & OBJECT_ALLOCATED));
53238a60 594 WARN_ON(atomic_read(&object->use_count) < 2);
3c7b4e6b
CM
595
596 /*
597 * Locking here also ensures that the corresponding memory block
598 * cannot be freed when it is being scanned.
599 */
600 spin_lock_irqsave(&object->lock, flags);
3c7b4e6b
CM
601 object->flags &= ~OBJECT_ALLOCATED;
602 spin_unlock_irqrestore(&object->lock, flags);
603 put_object(object);
604}
605
53238a60
CM
606/*
607 * Look up the metadata (struct kmemleak_object) corresponding to ptr and
608 * delete it.
609 */
610static void delete_object_full(unsigned long ptr)
611{
612 struct kmemleak_object *object;
613
614 object = find_and_get_object(ptr, 0);
615 if (!object) {
616#ifdef DEBUG
617 kmemleak_warn("Freeing unknown object at 0x%08lx\n",
618 ptr);
619#endif
620 return;
621 }
622 __delete_object(object);
623 put_object(object);
624}
625
626/*
627 * Look up the metadata (struct kmemleak_object) corresponding to ptr and
628 * delete it. If the memory block is partially freed, the function may create
629 * additional metadata for the remaining parts of the block.
630 */
631static void delete_object_part(unsigned long ptr, size_t size)
632{
633 struct kmemleak_object *object;
634 unsigned long start, end;
635
636 object = find_and_get_object(ptr, 1);
637 if (!object) {
638#ifdef DEBUG
639 kmemleak_warn("Partially freeing unknown object at 0x%08lx "
640 "(size %zu)\n", ptr, size);
641#endif
642 return;
643 }
644 __delete_object(object);
645
646 /*
647 * Create one or two objects that may result from the memory block
648 * split. Note that partial freeing is only done by free_bootmem() and
649 * this happens before kmemleak_init() is called. The path below is
650 * only executed during early log recording in kmemleak_init(), so
651 * GFP_KERNEL is enough.
652 */
653 start = object->pointer;
654 end = object->pointer + object->size;
655 if (ptr > start)
656 create_object(start, ptr - start, object->min_count,
657 GFP_KERNEL);
658 if (ptr + size < end)
659 create_object(ptr + size, end - ptr - size, object->min_count,
660 GFP_KERNEL);
661
662 put_object(object);
663}
3c7b4e6b
CM
664/*
665 * Make a object permanently as gray-colored so that it can no longer be
666 * reported as a leak. This is used in general to mark a false positive.
667 */
668static void make_gray_object(unsigned long ptr)
669{
670 unsigned long flags;
671 struct kmemleak_object *object;
672
673 object = find_and_get_object(ptr, 0);
674 if (!object) {
ae281064 675 kmemleak_warn("Graying unknown object at 0x%08lx\n", ptr);
3c7b4e6b
CM
676 return;
677 }
678
679 spin_lock_irqsave(&object->lock, flags);
680 object->min_count = 0;
681 spin_unlock_irqrestore(&object->lock, flags);
682 put_object(object);
683}
684
685/*
686 * Mark the object as black-colored so that it is ignored from scans and
687 * reporting.
688 */
689static void make_black_object(unsigned long ptr)
690{
691 unsigned long flags;
692 struct kmemleak_object *object;
693
694 object = find_and_get_object(ptr, 0);
695 if (!object) {
ae281064 696 kmemleak_warn("Blacking unknown object at 0x%08lx\n", ptr);
3c7b4e6b
CM
697 return;
698 }
699
700 spin_lock_irqsave(&object->lock, flags);
701 object->min_count = -1;
af98603d 702 object->flags |= OBJECT_NO_SCAN;
3c7b4e6b
CM
703 spin_unlock_irqrestore(&object->lock, flags);
704 put_object(object);
705}
706
707/*
708 * Add a scanning area to the object. If at least one such area is added,
709 * kmemleak will only scan these ranges rather than the whole memory block.
710 */
711static void add_scan_area(unsigned long ptr, unsigned long offset,
712 size_t length, gfp_t gfp)
713{
714 unsigned long flags;
715 struct kmemleak_object *object;
716 struct kmemleak_scan_area *area;
717
718 object = find_and_get_object(ptr, 0);
719 if (!object) {
ae281064
JP
720 kmemleak_warn("Adding scan area to unknown object at 0x%08lx\n",
721 ptr);
3c7b4e6b
CM
722 return;
723 }
724
216c04b0 725 area = kmem_cache_alloc(scan_area_cache, gfp & GFP_KMEMLEAK_MASK);
3c7b4e6b 726 if (!area) {
ae281064 727 kmemleak_warn("Cannot allocate a scan area\n");
3c7b4e6b
CM
728 goto out;
729 }
730
731 spin_lock_irqsave(&object->lock, flags);
732 if (offset + length > object->size) {
ae281064 733 kmemleak_warn("Scan area larger than object 0x%08lx\n", ptr);
3c7b4e6b
CM
734 dump_object_info(object);
735 kmem_cache_free(scan_area_cache, area);
736 goto out_unlock;
737 }
738
739 INIT_HLIST_NODE(&area->node);
740 area->offset = offset;
741 area->length = length;
742
743 hlist_add_head(&area->node, &object->area_list);
744out_unlock:
745 spin_unlock_irqrestore(&object->lock, flags);
746out:
747 put_object(object);
748}
749
750/*
751 * Set the OBJECT_NO_SCAN flag for the object corresponding to the give
752 * pointer. Such object will not be scanned by kmemleak but references to it
753 * are searched.
754 */
755static void object_no_scan(unsigned long ptr)
756{
757 unsigned long flags;
758 struct kmemleak_object *object;
759
760 object = find_and_get_object(ptr, 0);
761 if (!object) {
ae281064 762 kmemleak_warn("Not scanning unknown object at 0x%08lx\n", ptr);
3c7b4e6b
CM
763 return;
764 }
765
766 spin_lock_irqsave(&object->lock, flags);
767 object->flags |= OBJECT_NO_SCAN;
768 spin_unlock_irqrestore(&object->lock, flags);
769 put_object(object);
770}
771
772/*
773 * Log an early kmemleak_* call to the early_log buffer. These calls will be
774 * processed later once kmemleak is fully initialized.
775 */
a6186d89
CM
776static void __init log_early(int op_type, const void *ptr, size_t size,
777 int min_count, unsigned long offset, size_t length)
3c7b4e6b
CM
778{
779 unsigned long flags;
780 struct early_log *log;
781
782 if (crt_early_log >= ARRAY_SIZE(early_log)) {
a9d9058a
CM
783 pr_warning("Early log buffer exceeded\n");
784 kmemleak_disable();
3c7b4e6b
CM
785 return;
786 }
787
788 /*
789 * There is no need for locking since the kernel is still in UP mode
790 * at this stage. Disabling the IRQs is enough.
791 */
792 local_irq_save(flags);
793 log = &early_log[crt_early_log];
794 log->op_type = op_type;
795 log->ptr = ptr;
796 log->size = size;
797 log->min_count = min_count;
798 log->offset = offset;
799 log->length = length;
fd678967
CM
800 if (op_type == KMEMLEAK_ALLOC)
801 log->trace_len = __save_stack_trace(log->trace);
3c7b4e6b
CM
802 crt_early_log++;
803 local_irq_restore(flags);
804}
805
fd678967
CM
806/*
807 * Log an early allocated block and populate the stack trace.
808 */
809static void early_alloc(struct early_log *log)
810{
811 struct kmemleak_object *object;
812 unsigned long flags;
813 int i;
814
815 if (!atomic_read(&kmemleak_enabled) || !log->ptr || IS_ERR(log->ptr))
816 return;
817
818 /*
819 * RCU locking needed to ensure object is not freed via put_object().
820 */
821 rcu_read_lock();
822 object = create_object((unsigned long)log->ptr, log->size,
823 log->min_count, GFP_KERNEL);
824 spin_lock_irqsave(&object->lock, flags);
825 for (i = 0; i < log->trace_len; i++)
826 object->trace[i] = log->trace[i];
827 object->trace_len = log->trace_len;
828 spin_unlock_irqrestore(&object->lock, flags);
829 rcu_read_unlock();
830}
831
3c7b4e6b
CM
832/*
833 * Memory allocation function callback. This function is called from the
834 * kernel allocators when a new block is allocated (kmem_cache_alloc, kmalloc,
835 * vmalloc etc.).
836 */
a6186d89
CM
837void __ref kmemleak_alloc(const void *ptr, size_t size, int min_count,
838 gfp_t gfp)
3c7b4e6b
CM
839{
840 pr_debug("%s(0x%p, %zu, %d)\n", __func__, ptr, size, min_count);
841
842 if (atomic_read(&kmemleak_enabled) && ptr && !IS_ERR(ptr))
843 create_object((unsigned long)ptr, size, min_count, gfp);
844 else if (atomic_read(&kmemleak_early_log))
845 log_early(KMEMLEAK_ALLOC, ptr, size, min_count, 0, 0);
846}
847EXPORT_SYMBOL_GPL(kmemleak_alloc);
848
849/*
850 * Memory freeing function callback. This function is called from the kernel
851 * allocators when a block is freed (kmem_cache_free, kfree, vfree etc.).
852 */
a6186d89 853void __ref kmemleak_free(const void *ptr)
3c7b4e6b
CM
854{
855 pr_debug("%s(0x%p)\n", __func__, ptr);
856
857 if (atomic_read(&kmemleak_enabled) && ptr && !IS_ERR(ptr))
53238a60 858 delete_object_full((unsigned long)ptr);
3c7b4e6b
CM
859 else if (atomic_read(&kmemleak_early_log))
860 log_early(KMEMLEAK_FREE, ptr, 0, 0, 0, 0);
861}
862EXPORT_SYMBOL_GPL(kmemleak_free);
863
53238a60
CM
864/*
865 * Partial memory freeing function callback. This function is usually called
866 * from bootmem allocator when (part of) a memory block is freed.
867 */
a6186d89 868void __ref kmemleak_free_part(const void *ptr, size_t size)
53238a60
CM
869{
870 pr_debug("%s(0x%p)\n", __func__, ptr);
871
872 if (atomic_read(&kmemleak_enabled) && ptr && !IS_ERR(ptr))
873 delete_object_part((unsigned long)ptr, size);
874 else if (atomic_read(&kmemleak_early_log))
875 log_early(KMEMLEAK_FREE_PART, ptr, size, 0, 0, 0);
876}
877EXPORT_SYMBOL_GPL(kmemleak_free_part);
878
3c7b4e6b
CM
879/*
880 * Mark an already allocated memory block as a false positive. This will cause
881 * the block to no longer be reported as leak and always be scanned.
882 */
a6186d89 883void __ref kmemleak_not_leak(const void *ptr)
3c7b4e6b
CM
884{
885 pr_debug("%s(0x%p)\n", __func__, ptr);
886
887 if (atomic_read(&kmemleak_enabled) && ptr && !IS_ERR(ptr))
888 make_gray_object((unsigned long)ptr);
889 else if (atomic_read(&kmemleak_early_log))
890 log_early(KMEMLEAK_NOT_LEAK, ptr, 0, 0, 0, 0);
891}
892EXPORT_SYMBOL(kmemleak_not_leak);
893
894/*
895 * Ignore a memory block. This is usually done when it is known that the
896 * corresponding block is not a leak and does not contain any references to
897 * other allocated memory blocks.
898 */
a6186d89 899void __ref kmemleak_ignore(const void *ptr)
3c7b4e6b
CM
900{
901 pr_debug("%s(0x%p)\n", __func__, ptr);
902
903 if (atomic_read(&kmemleak_enabled) && ptr && !IS_ERR(ptr))
904 make_black_object((unsigned long)ptr);
905 else if (atomic_read(&kmemleak_early_log))
906 log_early(KMEMLEAK_IGNORE, ptr, 0, 0, 0, 0);
907}
908EXPORT_SYMBOL(kmemleak_ignore);
909
910/*
911 * Limit the range to be scanned in an allocated memory block.
912 */
a6186d89
CM
913void __ref kmemleak_scan_area(const void *ptr, unsigned long offset,
914 size_t length, gfp_t gfp)
3c7b4e6b
CM
915{
916 pr_debug("%s(0x%p)\n", __func__, ptr);
917
918 if (atomic_read(&kmemleak_enabled) && ptr && !IS_ERR(ptr))
919 add_scan_area((unsigned long)ptr, offset, length, gfp);
920 else if (atomic_read(&kmemleak_early_log))
921 log_early(KMEMLEAK_SCAN_AREA, ptr, 0, 0, offset, length);
922}
923EXPORT_SYMBOL(kmemleak_scan_area);
924
925/*
926 * Inform kmemleak not to scan the given memory block.
927 */
a6186d89 928void __ref kmemleak_no_scan(const void *ptr)
3c7b4e6b
CM
929{
930 pr_debug("%s(0x%p)\n", __func__, ptr);
931
932 if (atomic_read(&kmemleak_enabled) && ptr && !IS_ERR(ptr))
933 object_no_scan((unsigned long)ptr);
934 else if (atomic_read(&kmemleak_early_log))
935 log_early(KMEMLEAK_NO_SCAN, ptr, 0, 0, 0, 0);
936}
937EXPORT_SYMBOL(kmemleak_no_scan);
938
3c7b4e6b
CM
939/*
940 * Memory scanning is a long process and it needs to be interruptable. This
941 * function checks whether such interrupt condition occured.
942 */
943static int scan_should_stop(void)
944{
945 if (!atomic_read(&kmemleak_enabled))
946 return 1;
947
948 /*
949 * This function may be called from either process or kthread context,
950 * hence the need to check for both stop conditions.
951 */
952 if (current->mm)
953 return signal_pending(current);
954 else
955 return kthread_should_stop();
956
957 return 0;
958}
959
960/*
961 * Scan a memory block (exclusive range) for valid pointers and add those
962 * found to the gray list.
963 */
964static void scan_block(void *_start, void *_end,
4b8a9674 965 struct kmemleak_object *scanned, int allow_resched)
3c7b4e6b
CM
966{
967 unsigned long *ptr;
968 unsigned long *start = PTR_ALIGN(_start, BYTES_PER_POINTER);
969 unsigned long *end = _end - (BYTES_PER_POINTER - 1);
970
971 for (ptr = start; ptr < end; ptr++) {
3c7b4e6b 972 struct kmemleak_object *object;
8e019366
PE
973 unsigned long flags;
974 unsigned long pointer;
3c7b4e6b 975
4b8a9674
CM
976 if (allow_resched)
977 cond_resched();
3c7b4e6b
CM
978 if (scan_should_stop())
979 break;
980
8e019366
PE
981 /* don't scan uninitialized memory */
982 if (!kmemcheck_is_obj_initialized((unsigned long)ptr,
983 BYTES_PER_POINTER))
984 continue;
985
986 pointer = *ptr;
987
3c7b4e6b
CM
988 object = find_and_get_object(pointer, 1);
989 if (!object)
990 continue;
991 if (object == scanned) {
992 /* self referenced, ignore */
993 put_object(object);
994 continue;
995 }
996
997 /*
998 * Avoid the lockdep recursive warning on object->lock being
999 * previously acquired in scan_object(). These locks are
1000 * enclosed by scan_mutex.
1001 */
1002 spin_lock_irqsave_nested(&object->lock, flags,
1003 SINGLE_DEPTH_NESTING);
1004 if (!color_white(object)) {
1005 /* non-orphan, ignored or new */
1006 spin_unlock_irqrestore(&object->lock, flags);
1007 put_object(object);
1008 continue;
1009 }
1010
1011 /*
1012 * Increase the object's reference count (number of pointers
1013 * to the memory block). If this count reaches the required
1014 * minimum, the object's color will become gray and it will be
1015 * added to the gray_list.
1016 */
1017 object->count++;
1018 if (color_gray(object))
1019 list_add_tail(&object->gray_list, &gray_list);
1020 else
1021 put_object(object);
1022 spin_unlock_irqrestore(&object->lock, flags);
1023 }
1024}
1025
1026/*
1027 * Scan a memory block corresponding to a kmemleak_object. A condition is
1028 * that object->use_count >= 1.
1029 */
1030static void scan_object(struct kmemleak_object *object)
1031{
1032 struct kmemleak_scan_area *area;
1033 struct hlist_node *elem;
1034 unsigned long flags;
1035
1036 /*
1037 * Once the object->lock is aquired, the corresponding memory block
1038 * cannot be freed (the same lock is aquired in delete_object).
1039 */
1040 spin_lock_irqsave(&object->lock, flags);
1041 if (object->flags & OBJECT_NO_SCAN)
1042 goto out;
1043 if (!(object->flags & OBJECT_ALLOCATED))
1044 /* already freed object */
1045 goto out;
af98603d
CM
1046 if (hlist_empty(&object->area_list)) {
1047 void *start = (void *)object->pointer;
1048 void *end = (void *)(object->pointer + object->size);
1049
1050 while (start < end && (object->flags & OBJECT_ALLOCATED) &&
1051 !(object->flags & OBJECT_NO_SCAN)) {
1052 scan_block(start, min(start + MAX_SCAN_SIZE, end),
1053 object, 0);
1054 start += MAX_SCAN_SIZE;
1055
1056 spin_unlock_irqrestore(&object->lock, flags);
1057 cond_resched();
1058 spin_lock_irqsave(&object->lock, flags);
1059 }
1060 } else
3c7b4e6b
CM
1061 hlist_for_each_entry(area, elem, &object->area_list, node)
1062 scan_block((void *)(object->pointer + area->offset),
1063 (void *)(object->pointer + area->offset
4b8a9674 1064 + area->length), object, 0);
3c7b4e6b
CM
1065out:
1066 spin_unlock_irqrestore(&object->lock, flags);
1067}
1068
1069/*
1070 * Scan data sections and all the referenced memory blocks allocated via the
1071 * kernel's standard allocators. This function must be called with the
1072 * scan_mutex held.
1073 */
1074static void kmemleak_scan(void)
1075{
1076 unsigned long flags;
1077 struct kmemleak_object *object, *tmp;
3c7b4e6b 1078 int i;
4698c1f2 1079 int new_leaks = 0;
2587362e 1080 int gray_list_pass = 0;
3c7b4e6b 1081
acf4968e
CM
1082 jiffies_last_scan = jiffies;
1083
3c7b4e6b
CM
1084 /* prepare the kmemleak_object's */
1085 rcu_read_lock();
1086 list_for_each_entry_rcu(object, &object_list, object_list) {
1087 spin_lock_irqsave(&object->lock, flags);
1088#ifdef DEBUG
1089 /*
1090 * With a few exceptions there should be a maximum of
1091 * 1 reference to any object at this point.
1092 */
1093 if (atomic_read(&object->use_count) > 1) {
ae281064 1094 pr_debug("object->use_count = %d\n",
3c7b4e6b
CM
1095 atomic_read(&object->use_count));
1096 dump_object_info(object);
1097 }
1098#endif
1099 /* reset the reference count (whiten the object) */
1100 object->count = 0;
2587362e 1101 object->flags &= ~OBJECT_NEW;
3c7b4e6b
CM
1102 if (color_gray(object) && get_object(object))
1103 list_add_tail(&object->gray_list, &gray_list);
1104
1105 spin_unlock_irqrestore(&object->lock, flags);
1106 }
1107 rcu_read_unlock();
1108
1109 /* data/bss scanning */
4b8a9674
CM
1110 scan_block(_sdata, _edata, NULL, 1);
1111 scan_block(__bss_start, __bss_stop, NULL, 1);
3c7b4e6b
CM
1112
1113#ifdef CONFIG_SMP
1114 /* per-cpu sections scanning */
1115 for_each_possible_cpu(i)
1116 scan_block(__per_cpu_start + per_cpu_offset(i),
4b8a9674 1117 __per_cpu_end + per_cpu_offset(i), NULL, 1);
3c7b4e6b
CM
1118#endif
1119
1120 /*
1121 * Struct page scanning for each node. The code below is not yet safe
1122 * with MEMORY_HOTPLUG.
1123 */
1124 for_each_online_node(i) {
1125 pg_data_t *pgdat = NODE_DATA(i);
1126 unsigned long start_pfn = pgdat->node_start_pfn;
1127 unsigned long end_pfn = start_pfn + pgdat->node_spanned_pages;
1128 unsigned long pfn;
1129
1130 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
1131 struct page *page;
1132
1133 if (!pfn_valid(pfn))
1134 continue;
1135 page = pfn_to_page(pfn);
1136 /* only scan if page is in use */
1137 if (page_count(page) == 0)
1138 continue;
4b8a9674 1139 scan_block(page, page + 1, NULL, 1);
3c7b4e6b
CM
1140 }
1141 }
1142
1143 /*
43ed5d6e 1144 * Scanning the task stacks (may introduce false negatives).
3c7b4e6b
CM
1145 */
1146 if (kmemleak_stack_scan) {
43ed5d6e
CM
1147 struct task_struct *p, *g;
1148
3c7b4e6b 1149 read_lock(&tasklist_lock);
43ed5d6e
CM
1150 do_each_thread(g, p) {
1151 scan_block(task_stack_page(p), task_stack_page(p) +
1152 THREAD_SIZE, NULL, 0);
1153 } while_each_thread(g, p);
3c7b4e6b
CM
1154 read_unlock(&tasklist_lock);
1155 }
1156
1157 /*
1158 * Scan the objects already referenced from the sections scanned
1159 * above. More objects will be referenced and, if there are no memory
1160 * leaks, all the objects will be scanned. The list traversal is safe
1161 * for both tail additions and removals from inside the loop. The
1162 * kmemleak objects cannot be freed from outside the loop because their
1163 * use_count was increased.
1164 */
2587362e 1165repeat:
3c7b4e6b
CM
1166 object = list_entry(gray_list.next, typeof(*object), gray_list);
1167 while (&object->gray_list != &gray_list) {
57d81f6f 1168 cond_resched();
3c7b4e6b
CM
1169
1170 /* may add new objects to the list */
1171 if (!scan_should_stop())
1172 scan_object(object);
1173
1174 tmp = list_entry(object->gray_list.next, typeof(*object),
1175 gray_list);
1176
1177 /* remove the object from the list and release it */
1178 list_del(&object->gray_list);
1179 put_object(object);
1180
1181 object = tmp;
1182 }
2587362e
CM
1183
1184 if (scan_should_stop() || ++gray_list_pass >= GRAY_LIST_PASSES)
1185 goto scan_end;
1186
1187 /*
1188 * Check for new objects allocated during this scanning and add them
1189 * to the gray list.
1190 */
1191 rcu_read_lock();
1192 list_for_each_entry_rcu(object, &object_list, object_list) {
1193 spin_lock_irqsave(&object->lock, flags);
1194 if ((object->flags & OBJECT_NEW) && !color_black(object) &&
1195 get_object(object)) {
1196 object->flags &= ~OBJECT_NEW;
1197 list_add_tail(&object->gray_list, &gray_list);
1198 }
1199 spin_unlock_irqrestore(&object->lock, flags);
1200 }
1201 rcu_read_unlock();
1202
1203 if (!list_empty(&gray_list))
1204 goto repeat;
1205
1206scan_end:
3c7b4e6b 1207 WARN_ON(!list_empty(&gray_list));
4698c1f2 1208
17bb9e0d 1209 /*
2587362e
CM
1210 * If scanning was stopped or new objects were being allocated at a
1211 * higher rate than gray list scanning, do not report any new
1212 * unreferenced objects.
17bb9e0d 1213 */
2587362e 1214 if (scan_should_stop() || gray_list_pass >= GRAY_LIST_PASSES)
17bb9e0d
CM
1215 return;
1216
4698c1f2
CM
1217 /*
1218 * Scanning result reporting.
1219 */
1220 rcu_read_lock();
1221 list_for_each_entry_rcu(object, &object_list, object_list) {
1222 spin_lock_irqsave(&object->lock, flags);
1223 if (unreferenced_object(object) &&
1224 !(object->flags & OBJECT_REPORTED)) {
1225 object->flags |= OBJECT_REPORTED;
1226 new_leaks++;
1227 }
1228 spin_unlock_irqrestore(&object->lock, flags);
1229 }
1230 rcu_read_unlock();
1231
1232 if (new_leaks)
1233 pr_info("%d new suspected memory leaks (see "
1234 "/sys/kernel/debug/kmemleak)\n", new_leaks);
1235
3c7b4e6b
CM
1236}
1237
1238/*
1239 * Thread function performing automatic memory scanning. Unreferenced objects
1240 * at the end of a memory scan are reported but only the first time.
1241 */
1242static int kmemleak_scan_thread(void *arg)
1243{
1244 static int first_run = 1;
1245
ae281064 1246 pr_info("Automatic memory scanning thread started\n");
bf2a76b3 1247 set_user_nice(current, 10);
3c7b4e6b
CM
1248
1249 /*
1250 * Wait before the first scan to allow the system to fully initialize.
1251 */
1252 if (first_run) {
1253 first_run = 0;
1254 ssleep(SECS_FIRST_SCAN);
1255 }
1256
1257 while (!kthread_should_stop()) {
3c7b4e6b
CM
1258 signed long timeout = jiffies_scan_wait;
1259
1260 mutex_lock(&scan_mutex);
3c7b4e6b 1261 kmemleak_scan();
3c7b4e6b 1262 mutex_unlock(&scan_mutex);
4698c1f2 1263
3c7b4e6b
CM
1264 /* wait before the next scan */
1265 while (timeout && !kthread_should_stop())
1266 timeout = schedule_timeout_interruptible(timeout);
1267 }
1268
ae281064 1269 pr_info("Automatic memory scanning thread ended\n");
3c7b4e6b
CM
1270
1271 return 0;
1272}
1273
1274/*
1275 * Start the automatic memory scanning thread. This function must be called
4698c1f2 1276 * with the scan_mutex held.
3c7b4e6b
CM
1277 */
1278void start_scan_thread(void)
1279{
1280 if (scan_thread)
1281 return;
1282 scan_thread = kthread_run(kmemleak_scan_thread, NULL, "kmemleak");
1283 if (IS_ERR(scan_thread)) {
ae281064 1284 pr_warning("Failed to create the scan thread\n");
3c7b4e6b
CM
1285 scan_thread = NULL;
1286 }
1287}
1288
1289/*
1290 * Stop the automatic memory scanning thread. This function must be called
4698c1f2 1291 * with the scan_mutex held.
3c7b4e6b
CM
1292 */
1293void stop_scan_thread(void)
1294{
1295 if (scan_thread) {
1296 kthread_stop(scan_thread);
1297 scan_thread = NULL;
1298 }
1299}
1300
1301/*
1302 * Iterate over the object_list and return the first valid object at or after
1303 * the required position with its use_count incremented. The function triggers
1304 * a memory scanning when the pos argument points to the first position.
1305 */
1306static void *kmemleak_seq_start(struct seq_file *seq, loff_t *pos)
1307{
1308 struct kmemleak_object *object;
1309 loff_t n = *pos;
b87324d0
CM
1310 int err;
1311
1312 err = mutex_lock_interruptible(&scan_mutex);
1313 if (err < 0)
1314 return ERR_PTR(err);
3c7b4e6b 1315
3c7b4e6b
CM
1316 rcu_read_lock();
1317 list_for_each_entry_rcu(object, &object_list, object_list) {
1318 if (n-- > 0)
1319 continue;
1320 if (get_object(object))
1321 goto out;
1322 }
1323 object = NULL;
1324out:
3c7b4e6b
CM
1325 return object;
1326}
1327
1328/*
1329 * Return the next object in the object_list. The function decrements the
1330 * use_count of the previous object and increases that of the next one.
1331 */
1332static void *kmemleak_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1333{
1334 struct kmemleak_object *prev_obj = v;
1335 struct kmemleak_object *next_obj = NULL;
1336 struct list_head *n = &prev_obj->object_list;
1337
1338 ++(*pos);
3c7b4e6b 1339
3c7b4e6b
CM
1340 list_for_each_continue_rcu(n, &object_list) {
1341 next_obj = list_entry(n, struct kmemleak_object, object_list);
1342 if (get_object(next_obj))
1343 break;
1344 }
288c857d 1345
3c7b4e6b
CM
1346 put_object(prev_obj);
1347 return next_obj;
1348}
1349
1350/*
1351 * Decrement the use_count of the last object required, if any.
1352 */
1353static void kmemleak_seq_stop(struct seq_file *seq, void *v)
1354{
b87324d0
CM
1355 if (!IS_ERR(v)) {
1356 /*
1357 * kmemleak_seq_start may return ERR_PTR if the scan_mutex
1358 * waiting was interrupted, so only release it if !IS_ERR.
1359 */
f5886c7f 1360 rcu_read_unlock();
b87324d0
CM
1361 mutex_unlock(&scan_mutex);
1362 if (v)
1363 put_object(v);
1364 }
3c7b4e6b
CM
1365}
1366
1367/*
1368 * Print the information for an unreferenced object to the seq file.
1369 */
1370static int kmemleak_seq_show(struct seq_file *seq, void *v)
1371{
1372 struct kmemleak_object *object = v;
1373 unsigned long flags;
1374
1375 spin_lock_irqsave(&object->lock, flags);
288c857d 1376 if ((object->flags & OBJECT_REPORTED) && unreferenced_object(object))
17bb9e0d 1377 print_unreferenced(seq, object);
3c7b4e6b
CM
1378 spin_unlock_irqrestore(&object->lock, flags);
1379 return 0;
1380}
1381
1382static const struct seq_operations kmemleak_seq_ops = {
1383 .start = kmemleak_seq_start,
1384 .next = kmemleak_seq_next,
1385 .stop = kmemleak_seq_stop,
1386 .show = kmemleak_seq_show,
1387};
1388
1389static int kmemleak_open(struct inode *inode, struct file *file)
1390{
3c7b4e6b
CM
1391 if (!atomic_read(&kmemleak_enabled))
1392 return -EBUSY;
1393
b87324d0 1394 return seq_open(file, &kmemleak_seq_ops);
3c7b4e6b
CM
1395}
1396
1397static int kmemleak_release(struct inode *inode, struct file *file)
1398{
b87324d0 1399 return seq_release(inode, file);
3c7b4e6b
CM
1400}
1401
189d84ed
CM
1402static int dump_str_object_info(const char *str)
1403{
1404 unsigned long flags;
1405 struct kmemleak_object *object;
1406 unsigned long addr;
1407
1408 addr= simple_strtoul(str, NULL, 0);
1409 object = find_and_get_object(addr, 0);
1410 if (!object) {
1411 pr_info("Unknown object at 0x%08lx\n", addr);
1412 return -EINVAL;
1413 }
1414
1415 spin_lock_irqsave(&object->lock, flags);
1416 dump_object_info(object);
1417 spin_unlock_irqrestore(&object->lock, flags);
1418
1419 put_object(object);
1420 return 0;
1421}
1422
3c7b4e6b
CM
1423/*
1424 * File write operation to configure kmemleak at run-time. The following
1425 * commands can be written to the /sys/kernel/debug/kmemleak file:
1426 * off - disable kmemleak (irreversible)
1427 * stack=on - enable the task stacks scanning
1428 * stack=off - disable the tasks stacks scanning
1429 * scan=on - start the automatic memory scanning thread
1430 * scan=off - stop the automatic memory scanning thread
1431 * scan=... - set the automatic memory scanning period in seconds (0 to
1432 * disable it)
4698c1f2 1433 * scan - trigger a memory scan
189d84ed 1434 * dump=... - dump information about the object found at the given address
3c7b4e6b
CM
1435 */
1436static ssize_t kmemleak_write(struct file *file, const char __user *user_buf,
1437 size_t size, loff_t *ppos)
1438{
1439 char buf[64];
1440 int buf_size;
b87324d0 1441 int ret;
3c7b4e6b
CM
1442
1443 buf_size = min(size, (sizeof(buf) - 1));
1444 if (strncpy_from_user(buf, user_buf, buf_size) < 0)
1445 return -EFAULT;
1446 buf[buf_size] = 0;
1447
b87324d0
CM
1448 ret = mutex_lock_interruptible(&scan_mutex);
1449 if (ret < 0)
1450 return ret;
1451
3c7b4e6b
CM
1452 if (strncmp(buf, "off", 3) == 0)
1453 kmemleak_disable();
1454 else if (strncmp(buf, "stack=on", 8) == 0)
1455 kmemleak_stack_scan = 1;
1456 else if (strncmp(buf, "stack=off", 9) == 0)
1457 kmemleak_stack_scan = 0;
1458 else if (strncmp(buf, "scan=on", 7) == 0)
1459 start_scan_thread();
1460 else if (strncmp(buf, "scan=off", 8) == 0)
1461 stop_scan_thread();
1462 else if (strncmp(buf, "scan=", 5) == 0) {
1463 unsigned long secs;
3c7b4e6b 1464
b87324d0
CM
1465 ret = strict_strtoul(buf + 5, 0, &secs);
1466 if (ret < 0)
1467 goto out;
3c7b4e6b
CM
1468 stop_scan_thread();
1469 if (secs) {
1470 jiffies_scan_wait = msecs_to_jiffies(secs * 1000);
1471 start_scan_thread();
1472 }
4698c1f2
CM
1473 } else if (strncmp(buf, "scan", 4) == 0)
1474 kmemleak_scan();
189d84ed
CM
1475 else if (strncmp(buf, "dump=", 5) == 0)
1476 ret = dump_str_object_info(buf + 5);
4698c1f2 1477 else
b87324d0
CM
1478 ret = -EINVAL;
1479
1480out:
1481 mutex_unlock(&scan_mutex);
1482 if (ret < 0)
1483 return ret;
3c7b4e6b
CM
1484
1485 /* ignore the rest of the buffer, only one command at a time */
1486 *ppos += size;
1487 return size;
1488}
1489
1490static const struct file_operations kmemleak_fops = {
1491 .owner = THIS_MODULE,
1492 .open = kmemleak_open,
1493 .read = seq_read,
1494 .write = kmemleak_write,
1495 .llseek = seq_lseek,
1496 .release = kmemleak_release,
1497};
1498
1499/*
1500 * Perform the freeing of the kmemleak internal objects after waiting for any
1501 * current memory scan to complete.
1502 */
179a8100 1503static void kmemleak_do_cleanup(struct work_struct *work)
3c7b4e6b
CM
1504{
1505 struct kmemleak_object *object;
1506
4698c1f2 1507 mutex_lock(&scan_mutex);
3c7b4e6b 1508 stop_scan_thread();
3c7b4e6b 1509
3c7b4e6b
CM
1510 rcu_read_lock();
1511 list_for_each_entry_rcu(object, &object_list, object_list)
53238a60 1512 delete_object_full(object->pointer);
3c7b4e6b
CM
1513 rcu_read_unlock();
1514 mutex_unlock(&scan_mutex);
3c7b4e6b
CM
1515}
1516
179a8100 1517static DECLARE_WORK(cleanup_work, kmemleak_do_cleanup);
3c7b4e6b
CM
1518
1519/*
1520 * Disable kmemleak. No memory allocation/freeing will be traced once this
1521 * function is called. Disabling kmemleak is an irreversible operation.
1522 */
1523static void kmemleak_disable(void)
1524{
1525 /* atomically check whether it was already invoked */
1526 if (atomic_cmpxchg(&kmemleak_error, 0, 1))
1527 return;
1528
1529 /* stop any memory operation tracing */
1530 atomic_set(&kmemleak_early_log, 0);
1531 atomic_set(&kmemleak_enabled, 0);
1532
1533 /* check whether it is too early for a kernel thread */
1534 if (atomic_read(&kmemleak_initialized))
179a8100 1535 schedule_work(&cleanup_work);
3c7b4e6b
CM
1536
1537 pr_info("Kernel memory leak detector disabled\n");
1538}
1539
1540/*
1541 * Allow boot-time kmemleak disabling (enabled by default).
1542 */
1543static int kmemleak_boot_config(char *str)
1544{
1545 if (!str)
1546 return -EINVAL;
1547 if (strcmp(str, "off") == 0)
1548 kmemleak_disable();
1549 else if (strcmp(str, "on") != 0)
1550 return -EINVAL;
1551 return 0;
1552}
1553early_param("kmemleak", kmemleak_boot_config);
1554
1555/*
2030117d 1556 * Kmemleak initialization.
3c7b4e6b
CM
1557 */
1558void __init kmemleak_init(void)
1559{
1560 int i;
1561 unsigned long flags;
1562
3c7b4e6b
CM
1563 jiffies_min_age = msecs_to_jiffies(MSECS_MIN_AGE);
1564 jiffies_scan_wait = msecs_to_jiffies(SECS_SCAN_WAIT * 1000);
1565
1566 object_cache = KMEM_CACHE(kmemleak_object, SLAB_NOLEAKTRACE);
1567 scan_area_cache = KMEM_CACHE(kmemleak_scan_area, SLAB_NOLEAKTRACE);
1568 INIT_PRIO_TREE_ROOT(&object_tree_root);
1569
1570 /* the kernel is still in UP mode, so disabling the IRQs is enough */
1571 local_irq_save(flags);
1572 if (!atomic_read(&kmemleak_error)) {
1573 atomic_set(&kmemleak_enabled, 1);
1574 atomic_set(&kmemleak_early_log, 0);
1575 }
1576 local_irq_restore(flags);
1577
1578 /*
1579 * This is the point where tracking allocations is safe. Automatic
1580 * scanning is started during the late initcall. Add the early logged
1581 * callbacks to the kmemleak infrastructure.
1582 */
1583 for (i = 0; i < crt_early_log; i++) {
1584 struct early_log *log = &early_log[i];
1585
1586 switch (log->op_type) {
1587 case KMEMLEAK_ALLOC:
fd678967 1588 early_alloc(log);
3c7b4e6b
CM
1589 break;
1590 case KMEMLEAK_FREE:
1591 kmemleak_free(log->ptr);
1592 break;
53238a60
CM
1593 case KMEMLEAK_FREE_PART:
1594 kmemleak_free_part(log->ptr, log->size);
1595 break;
3c7b4e6b
CM
1596 case KMEMLEAK_NOT_LEAK:
1597 kmemleak_not_leak(log->ptr);
1598 break;
1599 case KMEMLEAK_IGNORE:
1600 kmemleak_ignore(log->ptr);
1601 break;
1602 case KMEMLEAK_SCAN_AREA:
1603 kmemleak_scan_area(log->ptr, log->offset, log->length,
1604 GFP_KERNEL);
1605 break;
1606 case KMEMLEAK_NO_SCAN:
1607 kmemleak_no_scan(log->ptr);
1608 break;
1609 default:
1610 WARN_ON(1);
1611 }
1612 }
1613}
1614
1615/*
1616 * Late initialization function.
1617 */
1618static int __init kmemleak_late_init(void)
1619{
1620 struct dentry *dentry;
1621
1622 atomic_set(&kmemleak_initialized, 1);
1623
1624 if (atomic_read(&kmemleak_error)) {
1625 /*
1626 * Some error occured and kmemleak was disabled. There is a
1627 * small chance that kmemleak_disable() was called immediately
1628 * after setting kmemleak_initialized and we may end up with
1629 * two clean-up threads but serialized by scan_mutex.
1630 */
179a8100 1631 schedule_work(&cleanup_work);
3c7b4e6b
CM
1632 return -ENOMEM;
1633 }
1634
1635 dentry = debugfs_create_file("kmemleak", S_IRUGO, NULL, NULL,
1636 &kmemleak_fops);
1637 if (!dentry)
ae281064 1638 pr_warning("Failed to create the debugfs kmemleak file\n");
4698c1f2 1639 mutex_lock(&scan_mutex);
3c7b4e6b 1640 start_scan_thread();
4698c1f2 1641 mutex_unlock(&scan_mutex);
3c7b4e6b
CM
1642
1643 pr_info("Kernel memory leak detector initialized\n");
1644
1645 return 0;
1646}
1647late_initcall(kmemleak_late_init);