HWPOISON, hugetlb: detect hwpoison in hugetlb code
[linux-2.6-block.git] / mm / hugetlb.c
CommitLineData
1da177e4
LT
1/*
2 * Generic hugetlb support.
3 * (C) William Irwin, April 2004
4 */
1da177e4
LT
5#include <linux/list.h>
6#include <linux/init.h>
7#include <linux/module.h>
8#include <linux/mm.h>
e1759c21 9#include <linux/seq_file.h>
1da177e4
LT
10#include <linux/sysctl.h>
11#include <linux/highmem.h>
cddb8a5c 12#include <linux/mmu_notifier.h>
1da177e4 13#include <linux/nodemask.h>
63551ae0 14#include <linux/pagemap.h>
5da7ca86 15#include <linux/mempolicy.h>
aea47ff3 16#include <linux/cpuset.h>
3935baa9 17#include <linux/mutex.h>
aa888a74 18#include <linux/bootmem.h>
a3437870 19#include <linux/sysfs.h>
5a0e3ad6 20#include <linux/slab.h>
0fe6e20b 21#include <linux/rmap.h>
fd6a03ed
NH
22#include <linux/swap.h>
23#include <linux/swapops.h>
d6606683 24
63551ae0
DG
25#include <asm/page.h>
26#include <asm/pgtable.h>
78a34ae2 27#include <asm/io.h>
63551ae0
DG
28
29#include <linux/hugetlb.h>
9a305230 30#include <linux/node.h>
7835e98b 31#include "internal.h"
1da177e4
LT
32
33const unsigned long hugetlb_zero = 0, hugetlb_infinity = ~0UL;
396faf03
MG
34static gfp_t htlb_alloc_mask = GFP_HIGHUSER;
35unsigned long hugepages_treat_as_movable;
a5516438 36
e5ff2159
AK
37static int max_hstate;
38unsigned int default_hstate_idx;
39struct hstate hstates[HUGE_MAX_HSTATE];
40
53ba51d2
JT
41__initdata LIST_HEAD(huge_boot_pages);
42
e5ff2159
AK
43/* for command line parsing */
44static struct hstate * __initdata parsed_hstate;
45static unsigned long __initdata default_hstate_max_huge_pages;
e11bfbfc 46static unsigned long __initdata default_hstate_size;
e5ff2159
AK
47
48#define for_each_hstate(h) \
49 for ((h) = hstates; (h) < &hstates[max_hstate]; (h)++)
396faf03 50
3935baa9
DG
51/*
52 * Protects updates to hugepage_freelists, nr_huge_pages, and free_huge_pages
53 */
54static DEFINE_SPINLOCK(hugetlb_lock);
0bd0f9fb 55
96822904
AW
56/*
57 * Region tracking -- allows tracking of reservations and instantiated pages
58 * across the pages in a mapping.
84afd99b
AW
59 *
60 * The region data structures are protected by a combination of the mmap_sem
61 * and the hugetlb_instantion_mutex. To access or modify a region the caller
62 * must either hold the mmap_sem for write, or the mmap_sem for read and
63 * the hugetlb_instantiation mutex:
64 *
65 * down_write(&mm->mmap_sem);
66 * or
67 * down_read(&mm->mmap_sem);
68 * mutex_lock(&hugetlb_instantiation_mutex);
96822904
AW
69 */
70struct file_region {
71 struct list_head link;
72 long from;
73 long to;
74};
75
76static long region_add(struct list_head *head, long f, long t)
77{
78 struct file_region *rg, *nrg, *trg;
79
80 /* Locate the region we are either in or before. */
81 list_for_each_entry(rg, head, link)
82 if (f <= rg->to)
83 break;
84
85 /* Round our left edge to the current segment if it encloses us. */
86 if (f > rg->from)
87 f = rg->from;
88
89 /* Check for and consume any regions we now overlap with. */
90 nrg = rg;
91 list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
92 if (&rg->link == head)
93 break;
94 if (rg->from > t)
95 break;
96
97 /* If this area reaches higher then extend our area to
98 * include it completely. If this is not the first area
99 * which we intend to reuse, free it. */
100 if (rg->to > t)
101 t = rg->to;
102 if (rg != nrg) {
103 list_del(&rg->link);
104 kfree(rg);
105 }
106 }
107 nrg->from = f;
108 nrg->to = t;
109 return 0;
110}
111
112static long region_chg(struct list_head *head, long f, long t)
113{
114 struct file_region *rg, *nrg;
115 long chg = 0;
116
117 /* Locate the region we are before or in. */
118 list_for_each_entry(rg, head, link)
119 if (f <= rg->to)
120 break;
121
122 /* If we are below the current region then a new region is required.
123 * Subtle, allocate a new region at the position but make it zero
124 * size such that we can guarantee to record the reservation. */
125 if (&rg->link == head || t < rg->from) {
126 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
127 if (!nrg)
128 return -ENOMEM;
129 nrg->from = f;
130 nrg->to = f;
131 INIT_LIST_HEAD(&nrg->link);
132 list_add(&nrg->link, rg->link.prev);
133
134 return t - f;
135 }
136
137 /* Round our left edge to the current segment if it encloses us. */
138 if (f > rg->from)
139 f = rg->from;
140 chg = t - f;
141
142 /* Check for and consume any regions we now overlap with. */
143 list_for_each_entry(rg, rg->link.prev, link) {
144 if (&rg->link == head)
145 break;
146 if (rg->from > t)
147 return chg;
148
149 /* We overlap with this area, if it extends futher than
150 * us then we must extend ourselves. Account for its
151 * existing reservation. */
152 if (rg->to > t) {
153 chg += rg->to - t;
154 t = rg->to;
155 }
156 chg -= rg->to - rg->from;
157 }
158 return chg;
159}
160
161static long region_truncate(struct list_head *head, long end)
162{
163 struct file_region *rg, *trg;
164 long chg = 0;
165
166 /* Locate the region we are either in or before. */
167 list_for_each_entry(rg, head, link)
168 if (end <= rg->to)
169 break;
170 if (&rg->link == head)
171 return 0;
172
173 /* If we are in the middle of a region then adjust it. */
174 if (end > rg->from) {
175 chg = rg->to - end;
176 rg->to = end;
177 rg = list_entry(rg->link.next, typeof(*rg), link);
178 }
179
180 /* Drop any remaining regions. */
181 list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
182 if (&rg->link == head)
183 break;
184 chg += rg->to - rg->from;
185 list_del(&rg->link);
186 kfree(rg);
187 }
188 return chg;
189}
190
84afd99b
AW
191static long region_count(struct list_head *head, long f, long t)
192{
193 struct file_region *rg;
194 long chg = 0;
195
196 /* Locate each segment we overlap with, and count that overlap. */
197 list_for_each_entry(rg, head, link) {
198 int seg_from;
199 int seg_to;
200
201 if (rg->to <= f)
202 continue;
203 if (rg->from >= t)
204 break;
205
206 seg_from = max(rg->from, f);
207 seg_to = min(rg->to, t);
208
209 chg += seg_to - seg_from;
210 }
211
212 return chg;
213}
214
e7c4b0bf
AW
215/*
216 * Convert the address within this vma to the page offset within
217 * the mapping, in pagecache page units; huge pages here.
218 */
a5516438
AK
219static pgoff_t vma_hugecache_offset(struct hstate *h,
220 struct vm_area_struct *vma, unsigned long address)
e7c4b0bf 221{
a5516438
AK
222 return ((address - vma->vm_start) >> huge_page_shift(h)) +
223 (vma->vm_pgoff >> huge_page_order(h));
e7c4b0bf
AW
224}
225
0fe6e20b
NH
226pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
227 unsigned long address)
228{
229 return vma_hugecache_offset(hstate_vma(vma), vma, address);
230}
231
08fba699
MG
232/*
233 * Return the size of the pages allocated when backing a VMA. In the majority
234 * cases this will be same size as used by the page table entries.
235 */
236unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
237{
238 struct hstate *hstate;
239
240 if (!is_vm_hugetlb_page(vma))
241 return PAGE_SIZE;
242
243 hstate = hstate_vma(vma);
244
245 return 1UL << (hstate->order + PAGE_SHIFT);
246}
f340ca0f 247EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
08fba699 248
3340289d
MG
249/*
250 * Return the page size being used by the MMU to back a VMA. In the majority
251 * of cases, the page size used by the kernel matches the MMU size. On
252 * architectures where it differs, an architecture-specific version of this
253 * function is required.
254 */
255#ifndef vma_mmu_pagesize
256unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
257{
258 return vma_kernel_pagesize(vma);
259}
260#endif
261
84afd99b
AW
262/*
263 * Flags for MAP_PRIVATE reservations. These are stored in the bottom
264 * bits of the reservation map pointer, which are always clear due to
265 * alignment.
266 */
267#define HPAGE_RESV_OWNER (1UL << 0)
268#define HPAGE_RESV_UNMAPPED (1UL << 1)
04f2cbe3 269#define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
84afd99b 270
a1e78772
MG
271/*
272 * These helpers are used to track how many pages are reserved for
273 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
274 * is guaranteed to have their future faults succeed.
275 *
276 * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
277 * the reserve counters are updated with the hugetlb_lock held. It is safe
278 * to reset the VMA at fork() time as it is not in use yet and there is no
279 * chance of the global counters getting corrupted as a result of the values.
84afd99b
AW
280 *
281 * The private mapping reservation is represented in a subtly different
282 * manner to a shared mapping. A shared mapping has a region map associated
283 * with the underlying file, this region map represents the backing file
284 * pages which have ever had a reservation assigned which this persists even
285 * after the page is instantiated. A private mapping has a region map
286 * associated with the original mmap which is attached to all VMAs which
287 * reference it, this region map represents those offsets which have consumed
288 * reservation ie. where pages have been instantiated.
a1e78772 289 */
e7c4b0bf
AW
290static unsigned long get_vma_private_data(struct vm_area_struct *vma)
291{
292 return (unsigned long)vma->vm_private_data;
293}
294
295static void set_vma_private_data(struct vm_area_struct *vma,
296 unsigned long value)
297{
298 vma->vm_private_data = (void *)value;
299}
300
84afd99b
AW
301struct resv_map {
302 struct kref refs;
303 struct list_head regions;
304};
305
2a4b3ded 306static struct resv_map *resv_map_alloc(void)
84afd99b
AW
307{
308 struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
309 if (!resv_map)
310 return NULL;
311
312 kref_init(&resv_map->refs);
313 INIT_LIST_HEAD(&resv_map->regions);
314
315 return resv_map;
316}
317
2a4b3ded 318static void resv_map_release(struct kref *ref)
84afd99b
AW
319{
320 struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
321
322 /* Clear out any active regions before we release the map. */
323 region_truncate(&resv_map->regions, 0);
324 kfree(resv_map);
325}
326
327static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
a1e78772
MG
328{
329 VM_BUG_ON(!is_vm_hugetlb_page(vma));
f83a275d 330 if (!(vma->vm_flags & VM_MAYSHARE))
84afd99b
AW
331 return (struct resv_map *)(get_vma_private_data(vma) &
332 ~HPAGE_RESV_MASK);
2a4b3ded 333 return NULL;
a1e78772
MG
334}
335
84afd99b 336static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
a1e78772
MG
337{
338 VM_BUG_ON(!is_vm_hugetlb_page(vma));
f83a275d 339 VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
a1e78772 340
84afd99b
AW
341 set_vma_private_data(vma, (get_vma_private_data(vma) &
342 HPAGE_RESV_MASK) | (unsigned long)map);
04f2cbe3
MG
343}
344
345static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
346{
04f2cbe3 347 VM_BUG_ON(!is_vm_hugetlb_page(vma));
f83a275d 348 VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
e7c4b0bf
AW
349
350 set_vma_private_data(vma, get_vma_private_data(vma) | flags);
04f2cbe3
MG
351}
352
353static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
354{
355 VM_BUG_ON(!is_vm_hugetlb_page(vma));
e7c4b0bf
AW
356
357 return (get_vma_private_data(vma) & flag) != 0;
a1e78772
MG
358}
359
360/* Decrement the reserved pages in the hugepage pool by one */
a5516438
AK
361static void decrement_hugepage_resv_vma(struct hstate *h,
362 struct vm_area_struct *vma)
a1e78772 363{
c37f9fb1
AW
364 if (vma->vm_flags & VM_NORESERVE)
365 return;
366
f83a275d 367 if (vma->vm_flags & VM_MAYSHARE) {
a1e78772 368 /* Shared mappings always use reserves */
a5516438 369 h->resv_huge_pages--;
84afd99b 370 } else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
a1e78772
MG
371 /*
372 * Only the process that called mmap() has reserves for
373 * private mappings.
374 */
a5516438 375 h->resv_huge_pages--;
a1e78772
MG
376 }
377}
378
04f2cbe3 379/* Reset counters to 0 and clear all HPAGE_RESV_* flags */
a1e78772
MG
380void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
381{
382 VM_BUG_ON(!is_vm_hugetlb_page(vma));
f83a275d 383 if (!(vma->vm_flags & VM_MAYSHARE))
a1e78772
MG
384 vma->vm_private_data = (void *)0;
385}
386
387/* Returns true if the VMA has associated reserve pages */
7f09ca51 388static int vma_has_reserves(struct vm_area_struct *vma)
a1e78772 389{
f83a275d 390 if (vma->vm_flags & VM_MAYSHARE)
7f09ca51
MG
391 return 1;
392 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER))
393 return 1;
394 return 0;
a1e78772
MG
395}
396
69d177c2
AW
397static void clear_gigantic_page(struct page *page,
398 unsigned long addr, unsigned long sz)
399{
400 int i;
401 struct page *p = page;
402
403 might_sleep();
404 for (i = 0; i < sz/PAGE_SIZE; i++, p = mem_map_next(p, page, i)) {
405 cond_resched();
406 clear_user_highpage(p, addr + i * PAGE_SIZE);
407 }
408}
a5516438
AK
409static void clear_huge_page(struct page *page,
410 unsigned long addr, unsigned long sz)
79ac6ba4
DG
411{
412 int i;
413
74dbdd23 414 if (unlikely(sz/PAGE_SIZE > MAX_ORDER_NR_PAGES)) {
ebdd4aea
HE
415 clear_gigantic_page(page, addr, sz);
416 return;
417 }
69d177c2 418
79ac6ba4 419 might_sleep();
a5516438 420 for (i = 0; i < sz/PAGE_SIZE; i++) {
79ac6ba4 421 cond_resched();
281e0e3b 422 clear_user_highpage(page + i, addr + i * PAGE_SIZE);
79ac6ba4
DG
423 }
424}
425
69d177c2
AW
426static void copy_gigantic_page(struct page *dst, struct page *src,
427 unsigned long addr, struct vm_area_struct *vma)
428{
429 int i;
430 struct hstate *h = hstate_vma(vma);
431 struct page *dst_base = dst;
432 struct page *src_base = src;
433 might_sleep();
434 for (i = 0; i < pages_per_huge_page(h); ) {
435 cond_resched();
436 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
437
438 i++;
439 dst = mem_map_next(dst, dst_base, i);
440 src = mem_map_next(src, src_base, i);
441 }
442}
79ac6ba4 443static void copy_huge_page(struct page *dst, struct page *src,
9de455b2 444 unsigned long addr, struct vm_area_struct *vma)
79ac6ba4
DG
445{
446 int i;
a5516438 447 struct hstate *h = hstate_vma(vma);
79ac6ba4 448
ebdd4aea
HE
449 if (unlikely(pages_per_huge_page(h) > MAX_ORDER_NR_PAGES)) {
450 copy_gigantic_page(dst, src, addr, vma);
451 return;
452 }
69d177c2 453
79ac6ba4 454 might_sleep();
a5516438 455 for (i = 0; i < pages_per_huge_page(h); i++) {
79ac6ba4 456 cond_resched();
9de455b2 457 copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
79ac6ba4
DG
458 }
459}
460
a5516438 461static void enqueue_huge_page(struct hstate *h, struct page *page)
1da177e4
LT
462{
463 int nid = page_to_nid(page);
a5516438
AK
464 list_add(&page->lru, &h->hugepage_freelists[nid]);
465 h->free_huge_pages++;
466 h->free_huge_pages_node[nid]++;
1da177e4
LT
467}
468
a5516438
AK
469static struct page *dequeue_huge_page_vma(struct hstate *h,
470 struct vm_area_struct *vma,
04f2cbe3 471 unsigned long address, int avoid_reserve)
1da177e4 472{
31a5c6e4 473 int nid;
1da177e4 474 struct page *page = NULL;
480eccf9 475 struct mempolicy *mpol;
19770b32 476 nodemask_t *nodemask;
c0ff7453 477 struct zonelist *zonelist;
dd1a239f
MG
478 struct zone *zone;
479 struct zoneref *z;
1da177e4 480
c0ff7453
MX
481 get_mems_allowed();
482 zonelist = huge_zonelist(vma, address,
483 htlb_alloc_mask, &mpol, &nodemask);
a1e78772
MG
484 /*
485 * A child process with MAP_PRIVATE mappings created by their parent
486 * have no page reserves. This check ensures that reservations are
487 * not "stolen". The child may still get SIGKILLed
488 */
7f09ca51 489 if (!vma_has_reserves(vma) &&
a5516438 490 h->free_huge_pages - h->resv_huge_pages == 0)
c0ff7453 491 goto err;
a1e78772 492
04f2cbe3 493 /* If reserves cannot be used, ensure enough pages are in the pool */
a5516438 494 if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
c0ff7453 495 goto err;;
04f2cbe3 496
19770b32
MG
497 for_each_zone_zonelist_nodemask(zone, z, zonelist,
498 MAX_NR_ZONES - 1, nodemask) {
54a6eb5c
MG
499 nid = zone_to_nid(zone);
500 if (cpuset_zone_allowed_softwall(zone, htlb_alloc_mask) &&
a5516438
AK
501 !list_empty(&h->hugepage_freelists[nid])) {
502 page = list_entry(h->hugepage_freelists[nid].next,
3abf7afd
AM
503 struct page, lru);
504 list_del(&page->lru);
a5516438
AK
505 h->free_huge_pages--;
506 h->free_huge_pages_node[nid]--;
04f2cbe3
MG
507
508 if (!avoid_reserve)
a5516438 509 decrement_hugepage_resv_vma(h, vma);
a1e78772 510
5ab3ee7b 511 break;
3abf7afd 512 }
1da177e4 513 }
c0ff7453 514err:
52cd3b07 515 mpol_cond_put(mpol);
c0ff7453 516 put_mems_allowed();
1da177e4
LT
517 return page;
518}
519
a5516438 520static void update_and_free_page(struct hstate *h, struct page *page)
6af2acb6
AL
521{
522 int i;
a5516438 523
18229df5
AW
524 VM_BUG_ON(h->order >= MAX_ORDER);
525
a5516438
AK
526 h->nr_huge_pages--;
527 h->nr_huge_pages_node[page_to_nid(page)]--;
528 for (i = 0; i < pages_per_huge_page(h); i++) {
6af2acb6
AL
529 page[i].flags &= ~(1 << PG_locked | 1 << PG_error | 1 << PG_referenced |
530 1 << PG_dirty | 1 << PG_active | 1 << PG_reserved |
531 1 << PG_private | 1<< PG_writeback);
532 }
533 set_compound_page_dtor(page, NULL);
534 set_page_refcounted(page);
7f2e9525 535 arch_release_hugepage(page);
a5516438 536 __free_pages(page, huge_page_order(h));
6af2acb6
AL
537}
538
e5ff2159
AK
539struct hstate *size_to_hstate(unsigned long size)
540{
541 struct hstate *h;
542
543 for_each_hstate(h) {
544 if (huge_page_size(h) == size)
545 return h;
546 }
547 return NULL;
548}
549
27a85ef1
DG
550static void free_huge_page(struct page *page)
551{
a5516438
AK
552 /*
553 * Can't pass hstate in here because it is called from the
554 * compound page destructor.
555 */
e5ff2159 556 struct hstate *h = page_hstate(page);
7893d1d5 557 int nid = page_to_nid(page);
c79fb75e 558 struct address_space *mapping;
27a85ef1 559
c79fb75e 560 mapping = (struct address_space *) page_private(page);
e5df70ab 561 set_page_private(page, 0);
23be7468 562 page->mapping = NULL;
7893d1d5 563 BUG_ON(page_count(page));
0fe6e20b 564 BUG_ON(page_mapcount(page));
27a85ef1
DG
565 INIT_LIST_HEAD(&page->lru);
566
567 spin_lock(&hugetlb_lock);
aa888a74 568 if (h->surplus_huge_pages_node[nid] && huge_page_order(h) < MAX_ORDER) {
a5516438
AK
569 update_and_free_page(h, page);
570 h->surplus_huge_pages--;
571 h->surplus_huge_pages_node[nid]--;
7893d1d5 572 } else {
a5516438 573 enqueue_huge_page(h, page);
7893d1d5 574 }
27a85ef1 575 spin_unlock(&hugetlb_lock);
c79fb75e 576 if (mapping)
9a119c05 577 hugetlb_put_quota(mapping, 1);
27a85ef1
DG
578}
579
a5516438 580static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
b7ba30c6
AK
581{
582 set_compound_page_dtor(page, free_huge_page);
583 spin_lock(&hugetlb_lock);
a5516438
AK
584 h->nr_huge_pages++;
585 h->nr_huge_pages_node[nid]++;
b7ba30c6
AK
586 spin_unlock(&hugetlb_lock);
587 put_page(page); /* free it into the hugepage allocator */
588}
589
20a0307c
WF
590static void prep_compound_gigantic_page(struct page *page, unsigned long order)
591{
592 int i;
593 int nr_pages = 1 << order;
594 struct page *p = page + 1;
595
596 /* we rely on prep_new_huge_page to set the destructor */
597 set_compound_order(page, order);
598 __SetPageHead(page);
599 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
600 __SetPageTail(p);
601 p->first_page = page;
602 }
603}
604
605int PageHuge(struct page *page)
606{
607 compound_page_dtor *dtor;
608
609 if (!PageCompound(page))
610 return 0;
611
612 page = compound_head(page);
613 dtor = get_compound_page_dtor(page);
614
615 return dtor == free_huge_page;
616}
617
a5516438 618static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid)
1da177e4 619{
1da177e4 620 struct page *page;
f96efd58 621
aa888a74
AK
622 if (h->order >= MAX_ORDER)
623 return NULL;
624
6484eb3e 625 page = alloc_pages_exact_node(nid,
551883ae
NA
626 htlb_alloc_mask|__GFP_COMP|__GFP_THISNODE|
627 __GFP_REPEAT|__GFP_NOWARN,
a5516438 628 huge_page_order(h));
1da177e4 629 if (page) {
7f2e9525 630 if (arch_prepare_hugepage(page)) {
caff3a2c 631 __free_pages(page, huge_page_order(h));
7b8ee84d 632 return NULL;
7f2e9525 633 }
a5516438 634 prep_new_huge_page(h, page, nid);
1da177e4 635 }
63b4613c
NA
636
637 return page;
638}
639
9a76db09 640/*
6ae11b27
LS
641 * common helper functions for hstate_next_node_to_{alloc|free}.
642 * We may have allocated or freed a huge page based on a different
643 * nodes_allowed previously, so h->next_node_to_{alloc|free} might
644 * be outside of *nodes_allowed. Ensure that we use an allowed
645 * node for alloc or free.
9a76db09 646 */
6ae11b27 647static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
9a76db09 648{
6ae11b27 649 nid = next_node(nid, *nodes_allowed);
9a76db09 650 if (nid == MAX_NUMNODES)
6ae11b27 651 nid = first_node(*nodes_allowed);
9a76db09
LS
652 VM_BUG_ON(nid >= MAX_NUMNODES);
653
654 return nid;
655}
656
6ae11b27
LS
657static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
658{
659 if (!node_isset(nid, *nodes_allowed))
660 nid = next_node_allowed(nid, nodes_allowed);
661 return nid;
662}
663
5ced66c9 664/*
6ae11b27
LS
665 * returns the previously saved node ["this node"] from which to
666 * allocate a persistent huge page for the pool and advance the
667 * next node from which to allocate, handling wrap at end of node
668 * mask.
5ced66c9 669 */
6ae11b27
LS
670static int hstate_next_node_to_alloc(struct hstate *h,
671 nodemask_t *nodes_allowed)
5ced66c9 672{
6ae11b27
LS
673 int nid;
674
675 VM_BUG_ON(!nodes_allowed);
676
677 nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
678 h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
9a76db09 679
9a76db09 680 return nid;
5ced66c9
AK
681}
682
6ae11b27 683static int alloc_fresh_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
63b4613c
NA
684{
685 struct page *page;
686 int start_nid;
687 int next_nid;
688 int ret = 0;
689
6ae11b27 690 start_nid = hstate_next_node_to_alloc(h, nodes_allowed);
e8c5c824 691 next_nid = start_nid;
63b4613c
NA
692
693 do {
e8c5c824 694 page = alloc_fresh_huge_page_node(h, next_nid);
9a76db09 695 if (page) {
63b4613c 696 ret = 1;
9a76db09
LS
697 break;
698 }
6ae11b27 699 next_nid = hstate_next_node_to_alloc(h, nodes_allowed);
9a76db09 700 } while (next_nid != start_nid);
63b4613c 701
3b116300
AL
702 if (ret)
703 count_vm_event(HTLB_BUDDY_PGALLOC);
704 else
705 count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
706
63b4613c 707 return ret;
1da177e4
LT
708}
709
e8c5c824 710/*
6ae11b27
LS
711 * helper for free_pool_huge_page() - return the previously saved
712 * node ["this node"] from which to free a huge page. Advance the
713 * next node id whether or not we find a free huge page to free so
714 * that the next attempt to free addresses the next node.
e8c5c824 715 */
6ae11b27 716static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
e8c5c824 717{
6ae11b27
LS
718 int nid;
719
720 VM_BUG_ON(!nodes_allowed);
721
722 nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
723 h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
9a76db09 724
9a76db09 725 return nid;
e8c5c824
LS
726}
727
728/*
729 * Free huge page from pool from next node to free.
730 * Attempt to keep persistent huge pages more or less
731 * balanced over allowed nodes.
732 * Called with hugetlb_lock locked.
733 */
6ae11b27
LS
734static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
735 bool acct_surplus)
e8c5c824
LS
736{
737 int start_nid;
738 int next_nid;
739 int ret = 0;
740
6ae11b27 741 start_nid = hstate_next_node_to_free(h, nodes_allowed);
e8c5c824
LS
742 next_nid = start_nid;
743
744 do {
685f3457
LS
745 /*
746 * If we're returning unused surplus pages, only examine
747 * nodes with surplus pages.
748 */
749 if ((!acct_surplus || h->surplus_huge_pages_node[next_nid]) &&
750 !list_empty(&h->hugepage_freelists[next_nid])) {
e8c5c824
LS
751 struct page *page =
752 list_entry(h->hugepage_freelists[next_nid].next,
753 struct page, lru);
754 list_del(&page->lru);
755 h->free_huge_pages--;
756 h->free_huge_pages_node[next_nid]--;
685f3457
LS
757 if (acct_surplus) {
758 h->surplus_huge_pages--;
759 h->surplus_huge_pages_node[next_nid]--;
760 }
e8c5c824
LS
761 update_and_free_page(h, page);
762 ret = 1;
9a76db09 763 break;
e8c5c824 764 }
6ae11b27 765 next_nid = hstate_next_node_to_free(h, nodes_allowed);
9a76db09 766 } while (next_nid != start_nid);
e8c5c824
LS
767
768 return ret;
769}
770
a5516438
AK
771static struct page *alloc_buddy_huge_page(struct hstate *h,
772 struct vm_area_struct *vma, unsigned long address)
7893d1d5
AL
773{
774 struct page *page;
d1c3fb1f 775 unsigned int nid;
7893d1d5 776
aa888a74
AK
777 if (h->order >= MAX_ORDER)
778 return NULL;
779
d1c3fb1f
NA
780 /*
781 * Assume we will successfully allocate the surplus page to
782 * prevent racing processes from causing the surplus to exceed
783 * overcommit
784 *
785 * This however introduces a different race, where a process B
786 * tries to grow the static hugepage pool while alloc_pages() is
787 * called by process A. B will only examine the per-node
788 * counters in determining if surplus huge pages can be
789 * converted to normal huge pages in adjust_pool_surplus(). A
790 * won't be able to increment the per-node counter, until the
791 * lock is dropped by B, but B doesn't drop hugetlb_lock until
792 * no more huge pages can be converted from surplus to normal
793 * state (and doesn't try to convert again). Thus, we have a
794 * case where a surplus huge page exists, the pool is grown, and
795 * the surplus huge page still exists after, even though it
796 * should just have been converted to a normal huge page. This
797 * does not leak memory, though, as the hugepage will be freed
798 * once it is out of use. It also does not allow the counters to
799 * go out of whack in adjust_pool_surplus() as we don't modify
800 * the node values until we've gotten the hugepage and only the
801 * per-node value is checked there.
802 */
803 spin_lock(&hugetlb_lock);
a5516438 804 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
d1c3fb1f
NA
805 spin_unlock(&hugetlb_lock);
806 return NULL;
807 } else {
a5516438
AK
808 h->nr_huge_pages++;
809 h->surplus_huge_pages++;
d1c3fb1f
NA
810 }
811 spin_unlock(&hugetlb_lock);
812
551883ae
NA
813 page = alloc_pages(htlb_alloc_mask|__GFP_COMP|
814 __GFP_REPEAT|__GFP_NOWARN,
a5516438 815 huge_page_order(h));
d1c3fb1f 816
caff3a2c
GS
817 if (page && arch_prepare_hugepage(page)) {
818 __free_pages(page, huge_page_order(h));
819 return NULL;
820 }
821
d1c3fb1f 822 spin_lock(&hugetlb_lock);
7893d1d5 823 if (page) {
2668db91
AL
824 /*
825 * This page is now managed by the hugetlb allocator and has
826 * no users -- drop the buddy allocator's reference.
827 */
828 put_page_testzero(page);
829 VM_BUG_ON(page_count(page));
d1c3fb1f 830 nid = page_to_nid(page);
7893d1d5 831 set_compound_page_dtor(page, free_huge_page);
d1c3fb1f
NA
832 /*
833 * We incremented the global counters already
834 */
a5516438
AK
835 h->nr_huge_pages_node[nid]++;
836 h->surplus_huge_pages_node[nid]++;
3b116300 837 __count_vm_event(HTLB_BUDDY_PGALLOC);
d1c3fb1f 838 } else {
a5516438
AK
839 h->nr_huge_pages--;
840 h->surplus_huge_pages--;
3b116300 841 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
7893d1d5 842 }
d1c3fb1f 843 spin_unlock(&hugetlb_lock);
7893d1d5
AL
844
845 return page;
846}
847
e4e574b7
AL
848/*
849 * Increase the hugetlb pool such that it can accomodate a reservation
850 * of size 'delta'.
851 */
a5516438 852static int gather_surplus_pages(struct hstate *h, int delta)
e4e574b7
AL
853{
854 struct list_head surplus_list;
855 struct page *page, *tmp;
856 int ret, i;
857 int needed, allocated;
858
a5516438 859 needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
ac09b3a1 860 if (needed <= 0) {
a5516438 861 h->resv_huge_pages += delta;
e4e574b7 862 return 0;
ac09b3a1 863 }
e4e574b7
AL
864
865 allocated = 0;
866 INIT_LIST_HEAD(&surplus_list);
867
868 ret = -ENOMEM;
869retry:
870 spin_unlock(&hugetlb_lock);
871 for (i = 0; i < needed; i++) {
a5516438 872 page = alloc_buddy_huge_page(h, NULL, 0);
e4e574b7
AL
873 if (!page) {
874 /*
875 * We were not able to allocate enough pages to
876 * satisfy the entire reservation so we free what
877 * we've allocated so far.
878 */
879 spin_lock(&hugetlb_lock);
880 needed = 0;
881 goto free;
882 }
883
884 list_add(&page->lru, &surplus_list);
885 }
886 allocated += needed;
887
888 /*
889 * After retaking hugetlb_lock, we need to recalculate 'needed'
890 * because either resv_huge_pages or free_huge_pages may have changed.
891 */
892 spin_lock(&hugetlb_lock);
a5516438
AK
893 needed = (h->resv_huge_pages + delta) -
894 (h->free_huge_pages + allocated);
e4e574b7
AL
895 if (needed > 0)
896 goto retry;
897
898 /*
899 * The surplus_list now contains _at_least_ the number of extra pages
900 * needed to accomodate the reservation. Add the appropriate number
901 * of pages to the hugetlb pool and free the extras back to the buddy
ac09b3a1
AL
902 * allocator. Commit the entire reservation here to prevent another
903 * process from stealing the pages as they are added to the pool but
904 * before they are reserved.
e4e574b7
AL
905 */
906 needed += allocated;
a5516438 907 h->resv_huge_pages += delta;
e4e574b7
AL
908 ret = 0;
909free:
19fc3f0a 910 /* Free the needed pages to the hugetlb pool */
e4e574b7 911 list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
19fc3f0a
AL
912 if ((--needed) < 0)
913 break;
e4e574b7 914 list_del(&page->lru);
a5516438 915 enqueue_huge_page(h, page);
19fc3f0a
AL
916 }
917
918 /* Free unnecessary surplus pages to the buddy allocator */
919 if (!list_empty(&surplus_list)) {
920 spin_unlock(&hugetlb_lock);
921 list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
922 list_del(&page->lru);
af767cbd 923 /*
2668db91
AL
924 * The page has a reference count of zero already, so
925 * call free_huge_page directly instead of using
926 * put_page. This must be done with hugetlb_lock
af767cbd
AL
927 * unlocked which is safe because free_huge_page takes
928 * hugetlb_lock before deciding how to free the page.
929 */
2668db91 930 free_huge_page(page);
af767cbd 931 }
19fc3f0a 932 spin_lock(&hugetlb_lock);
e4e574b7
AL
933 }
934
935 return ret;
936}
937
938/*
939 * When releasing a hugetlb pool reservation, any surplus pages that were
940 * allocated to satisfy the reservation must be explicitly freed if they were
941 * never used.
685f3457 942 * Called with hugetlb_lock held.
e4e574b7 943 */
a5516438
AK
944static void return_unused_surplus_pages(struct hstate *h,
945 unsigned long unused_resv_pages)
e4e574b7 946{
e4e574b7
AL
947 unsigned long nr_pages;
948
ac09b3a1 949 /* Uncommit the reservation */
a5516438 950 h->resv_huge_pages -= unused_resv_pages;
ac09b3a1 951
aa888a74
AK
952 /* Cannot return gigantic pages currently */
953 if (h->order >= MAX_ORDER)
954 return;
955
a5516438 956 nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
e4e574b7 957
685f3457
LS
958 /*
959 * We want to release as many surplus pages as possible, spread
9b5e5d0f
LS
960 * evenly across all nodes with memory. Iterate across these nodes
961 * until we can no longer free unreserved surplus pages. This occurs
962 * when the nodes with surplus pages have no free pages.
963 * free_pool_huge_page() will balance the the freed pages across the
964 * on-line nodes with memory and will handle the hstate accounting.
685f3457
LS
965 */
966 while (nr_pages--) {
9b5e5d0f 967 if (!free_pool_huge_page(h, &node_states[N_HIGH_MEMORY], 1))
685f3457 968 break;
e4e574b7
AL
969 }
970}
971
c37f9fb1
AW
972/*
973 * Determine if the huge page at addr within the vma has an associated
974 * reservation. Where it does not we will need to logically increase
975 * reservation and actually increase quota before an allocation can occur.
976 * Where any new reservation would be required the reservation change is
977 * prepared, but not committed. Once the page has been quota'd allocated
978 * an instantiated the change should be committed via vma_commit_reservation.
979 * No action is required on failure.
980 */
e2f17d94 981static long vma_needs_reservation(struct hstate *h,
a5516438 982 struct vm_area_struct *vma, unsigned long addr)
c37f9fb1
AW
983{
984 struct address_space *mapping = vma->vm_file->f_mapping;
985 struct inode *inode = mapping->host;
986
f83a275d 987 if (vma->vm_flags & VM_MAYSHARE) {
a5516438 988 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
c37f9fb1
AW
989 return region_chg(&inode->i_mapping->private_list,
990 idx, idx + 1);
991
84afd99b
AW
992 } else if (!is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
993 return 1;
c37f9fb1 994
84afd99b 995 } else {
e2f17d94 996 long err;
a5516438 997 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
84afd99b
AW
998 struct resv_map *reservations = vma_resv_map(vma);
999
1000 err = region_chg(&reservations->regions, idx, idx + 1);
1001 if (err < 0)
1002 return err;
1003 return 0;
1004 }
c37f9fb1 1005}
a5516438
AK
1006static void vma_commit_reservation(struct hstate *h,
1007 struct vm_area_struct *vma, unsigned long addr)
c37f9fb1
AW
1008{
1009 struct address_space *mapping = vma->vm_file->f_mapping;
1010 struct inode *inode = mapping->host;
1011
f83a275d 1012 if (vma->vm_flags & VM_MAYSHARE) {
a5516438 1013 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
c37f9fb1 1014 region_add(&inode->i_mapping->private_list, idx, idx + 1);
84afd99b
AW
1015
1016 } else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
a5516438 1017 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
84afd99b
AW
1018 struct resv_map *reservations = vma_resv_map(vma);
1019
1020 /* Mark this page used in the map. */
1021 region_add(&reservations->regions, idx, idx + 1);
c37f9fb1
AW
1022 }
1023}
1024
a1e78772 1025static struct page *alloc_huge_page(struct vm_area_struct *vma,
04f2cbe3 1026 unsigned long addr, int avoid_reserve)
1da177e4 1027{
a5516438 1028 struct hstate *h = hstate_vma(vma);
348ea204 1029 struct page *page;
a1e78772
MG
1030 struct address_space *mapping = vma->vm_file->f_mapping;
1031 struct inode *inode = mapping->host;
e2f17d94 1032 long chg;
a1e78772
MG
1033
1034 /*
1035 * Processes that did not create the mapping will have no reserves and
1036 * will not have accounted against quota. Check that the quota can be
1037 * made before satisfying the allocation
c37f9fb1
AW
1038 * MAP_NORESERVE mappings may also need pages and quota allocated
1039 * if no reserve mapping overlaps.
a1e78772 1040 */
a5516438 1041 chg = vma_needs_reservation(h, vma, addr);
c37f9fb1
AW
1042 if (chg < 0)
1043 return ERR_PTR(chg);
1044 if (chg)
a1e78772
MG
1045 if (hugetlb_get_quota(inode->i_mapping, chg))
1046 return ERR_PTR(-ENOSPC);
1da177e4
LT
1047
1048 spin_lock(&hugetlb_lock);
a5516438 1049 page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve);
1da177e4 1050 spin_unlock(&hugetlb_lock);
b45b5bd6 1051
68842c9b 1052 if (!page) {
a5516438 1053 page = alloc_buddy_huge_page(h, vma, addr);
68842c9b 1054 if (!page) {
a1e78772 1055 hugetlb_put_quota(inode->i_mapping, chg);
4a6018f7 1056 return ERR_PTR(-VM_FAULT_SIGBUS);
68842c9b
KC
1057 }
1058 }
348ea204 1059
a1e78772
MG
1060 set_page_refcounted(page);
1061 set_page_private(page, (unsigned long) mapping);
90d8b7e6 1062
a5516438 1063 vma_commit_reservation(h, vma, addr);
c37f9fb1 1064
90d8b7e6 1065 return page;
b45b5bd6
DG
1066}
1067
91f47662 1068int __weak alloc_bootmem_huge_page(struct hstate *h)
aa888a74
AK
1069{
1070 struct huge_bootmem_page *m;
9b5e5d0f 1071 int nr_nodes = nodes_weight(node_states[N_HIGH_MEMORY]);
aa888a74
AK
1072
1073 while (nr_nodes) {
1074 void *addr;
1075
1076 addr = __alloc_bootmem_node_nopanic(
6ae11b27 1077 NODE_DATA(hstate_next_node_to_alloc(h,
9b5e5d0f 1078 &node_states[N_HIGH_MEMORY])),
aa888a74
AK
1079 huge_page_size(h), huge_page_size(h), 0);
1080
1081 if (addr) {
1082 /*
1083 * Use the beginning of the huge page to store the
1084 * huge_bootmem_page struct (until gather_bootmem
1085 * puts them into the mem_map).
1086 */
1087 m = addr;
91f47662 1088 goto found;
aa888a74 1089 }
aa888a74
AK
1090 nr_nodes--;
1091 }
1092 return 0;
1093
1094found:
1095 BUG_ON((unsigned long)virt_to_phys(m) & (huge_page_size(h) - 1));
1096 /* Put them into a private list first because mem_map is not up yet */
1097 list_add(&m->list, &huge_boot_pages);
1098 m->hstate = h;
1099 return 1;
1100}
1101
18229df5
AW
1102static void prep_compound_huge_page(struct page *page, int order)
1103{
1104 if (unlikely(order > (MAX_ORDER - 1)))
1105 prep_compound_gigantic_page(page, order);
1106 else
1107 prep_compound_page(page, order);
1108}
1109
aa888a74
AK
1110/* Put bootmem huge pages into the standard lists after mem_map is up */
1111static void __init gather_bootmem_prealloc(void)
1112{
1113 struct huge_bootmem_page *m;
1114
1115 list_for_each_entry(m, &huge_boot_pages, list) {
1116 struct page *page = virt_to_page(m);
1117 struct hstate *h = m->hstate;
1118 __ClearPageReserved(page);
1119 WARN_ON(page_count(page) != 1);
18229df5 1120 prep_compound_huge_page(page, h->order);
aa888a74
AK
1121 prep_new_huge_page(h, page, page_to_nid(page));
1122 }
1123}
1124
8faa8b07 1125static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
1da177e4
LT
1126{
1127 unsigned long i;
a5516438 1128
e5ff2159 1129 for (i = 0; i < h->max_huge_pages; ++i) {
aa888a74
AK
1130 if (h->order >= MAX_ORDER) {
1131 if (!alloc_bootmem_huge_page(h))
1132 break;
9b5e5d0f
LS
1133 } else if (!alloc_fresh_huge_page(h,
1134 &node_states[N_HIGH_MEMORY]))
1da177e4 1135 break;
1da177e4 1136 }
8faa8b07 1137 h->max_huge_pages = i;
e5ff2159
AK
1138}
1139
1140static void __init hugetlb_init_hstates(void)
1141{
1142 struct hstate *h;
1143
1144 for_each_hstate(h) {
8faa8b07
AK
1145 /* oversize hugepages were init'ed in early boot */
1146 if (h->order < MAX_ORDER)
1147 hugetlb_hstate_alloc_pages(h);
e5ff2159
AK
1148 }
1149}
1150
4abd32db
AK
1151static char * __init memfmt(char *buf, unsigned long n)
1152{
1153 if (n >= (1UL << 30))
1154 sprintf(buf, "%lu GB", n >> 30);
1155 else if (n >= (1UL << 20))
1156 sprintf(buf, "%lu MB", n >> 20);
1157 else
1158 sprintf(buf, "%lu KB", n >> 10);
1159 return buf;
1160}
1161
e5ff2159
AK
1162static void __init report_hugepages(void)
1163{
1164 struct hstate *h;
1165
1166 for_each_hstate(h) {
4abd32db
AK
1167 char buf[32];
1168 printk(KERN_INFO "HugeTLB registered %s page size, "
1169 "pre-allocated %ld pages\n",
1170 memfmt(buf, huge_page_size(h)),
1171 h->free_huge_pages);
e5ff2159
AK
1172 }
1173}
1174
1da177e4 1175#ifdef CONFIG_HIGHMEM
6ae11b27
LS
1176static void try_to_free_low(struct hstate *h, unsigned long count,
1177 nodemask_t *nodes_allowed)
1da177e4 1178{
4415cc8d
CL
1179 int i;
1180
aa888a74
AK
1181 if (h->order >= MAX_ORDER)
1182 return;
1183
6ae11b27 1184 for_each_node_mask(i, *nodes_allowed) {
1da177e4 1185 struct page *page, *next;
a5516438
AK
1186 struct list_head *freel = &h->hugepage_freelists[i];
1187 list_for_each_entry_safe(page, next, freel, lru) {
1188 if (count >= h->nr_huge_pages)
6b0c880d 1189 return;
1da177e4
LT
1190 if (PageHighMem(page))
1191 continue;
1192 list_del(&page->lru);
e5ff2159 1193 update_and_free_page(h, page);
a5516438
AK
1194 h->free_huge_pages--;
1195 h->free_huge_pages_node[page_to_nid(page)]--;
1da177e4
LT
1196 }
1197 }
1198}
1199#else
6ae11b27
LS
1200static inline void try_to_free_low(struct hstate *h, unsigned long count,
1201 nodemask_t *nodes_allowed)
1da177e4
LT
1202{
1203}
1204#endif
1205
20a0307c
WF
1206/*
1207 * Increment or decrement surplus_huge_pages. Keep node-specific counters
1208 * balanced by operating on them in a round-robin fashion.
1209 * Returns 1 if an adjustment was made.
1210 */
6ae11b27
LS
1211static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
1212 int delta)
20a0307c 1213{
e8c5c824 1214 int start_nid, next_nid;
20a0307c
WF
1215 int ret = 0;
1216
1217 VM_BUG_ON(delta != -1 && delta != 1);
20a0307c 1218
e8c5c824 1219 if (delta < 0)
6ae11b27 1220 start_nid = hstate_next_node_to_alloc(h, nodes_allowed);
e8c5c824 1221 else
6ae11b27 1222 start_nid = hstate_next_node_to_free(h, nodes_allowed);
e8c5c824
LS
1223 next_nid = start_nid;
1224
1225 do {
1226 int nid = next_nid;
1227 if (delta < 0) {
e8c5c824
LS
1228 /*
1229 * To shrink on this node, there must be a surplus page
1230 */
9a76db09 1231 if (!h->surplus_huge_pages_node[nid]) {
6ae11b27
LS
1232 next_nid = hstate_next_node_to_alloc(h,
1233 nodes_allowed);
e8c5c824 1234 continue;
9a76db09 1235 }
e8c5c824
LS
1236 }
1237 if (delta > 0) {
e8c5c824
LS
1238 /*
1239 * Surplus cannot exceed the total number of pages
1240 */
1241 if (h->surplus_huge_pages_node[nid] >=
9a76db09 1242 h->nr_huge_pages_node[nid]) {
6ae11b27
LS
1243 next_nid = hstate_next_node_to_free(h,
1244 nodes_allowed);
e8c5c824 1245 continue;
9a76db09 1246 }
e8c5c824 1247 }
20a0307c
WF
1248
1249 h->surplus_huge_pages += delta;
1250 h->surplus_huge_pages_node[nid] += delta;
1251 ret = 1;
1252 break;
e8c5c824 1253 } while (next_nid != start_nid);
20a0307c 1254
20a0307c
WF
1255 return ret;
1256}
1257
a5516438 1258#define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
6ae11b27
LS
1259static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count,
1260 nodemask_t *nodes_allowed)
1da177e4 1261{
7893d1d5 1262 unsigned long min_count, ret;
1da177e4 1263
aa888a74
AK
1264 if (h->order >= MAX_ORDER)
1265 return h->max_huge_pages;
1266
7893d1d5
AL
1267 /*
1268 * Increase the pool size
1269 * First take pages out of surplus state. Then make up the
1270 * remaining difference by allocating fresh huge pages.
d1c3fb1f
NA
1271 *
1272 * We might race with alloc_buddy_huge_page() here and be unable
1273 * to convert a surplus huge page to a normal huge page. That is
1274 * not critical, though, it just means the overall size of the
1275 * pool might be one hugepage larger than it needs to be, but
1276 * within all the constraints specified by the sysctls.
7893d1d5 1277 */
1da177e4 1278 spin_lock(&hugetlb_lock);
a5516438 1279 while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
6ae11b27 1280 if (!adjust_pool_surplus(h, nodes_allowed, -1))
7893d1d5
AL
1281 break;
1282 }
1283
a5516438 1284 while (count > persistent_huge_pages(h)) {
7893d1d5
AL
1285 /*
1286 * If this allocation races such that we no longer need the
1287 * page, free_huge_page will handle it by freeing the page
1288 * and reducing the surplus.
1289 */
1290 spin_unlock(&hugetlb_lock);
6ae11b27 1291 ret = alloc_fresh_huge_page(h, nodes_allowed);
7893d1d5
AL
1292 spin_lock(&hugetlb_lock);
1293 if (!ret)
1294 goto out;
1295
536240f2
MG
1296 /* Bail for signals. Probably ctrl-c from user */
1297 if (signal_pending(current))
1298 goto out;
7893d1d5 1299 }
7893d1d5
AL
1300
1301 /*
1302 * Decrease the pool size
1303 * First return free pages to the buddy allocator (being careful
1304 * to keep enough around to satisfy reservations). Then place
1305 * pages into surplus state as needed so the pool will shrink
1306 * to the desired size as pages become free.
d1c3fb1f
NA
1307 *
1308 * By placing pages into the surplus state independent of the
1309 * overcommit value, we are allowing the surplus pool size to
1310 * exceed overcommit. There are few sane options here. Since
1311 * alloc_buddy_huge_page() is checking the global counter,
1312 * though, we'll note that we're not allowed to exceed surplus
1313 * and won't grow the pool anywhere else. Not until one of the
1314 * sysctls are changed, or the surplus pages go out of use.
7893d1d5 1315 */
a5516438 1316 min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
6b0c880d 1317 min_count = max(count, min_count);
6ae11b27 1318 try_to_free_low(h, min_count, nodes_allowed);
a5516438 1319 while (min_count < persistent_huge_pages(h)) {
6ae11b27 1320 if (!free_pool_huge_page(h, nodes_allowed, 0))
1da177e4 1321 break;
1da177e4 1322 }
a5516438 1323 while (count < persistent_huge_pages(h)) {
6ae11b27 1324 if (!adjust_pool_surplus(h, nodes_allowed, 1))
7893d1d5
AL
1325 break;
1326 }
1327out:
a5516438 1328 ret = persistent_huge_pages(h);
1da177e4 1329 spin_unlock(&hugetlb_lock);
7893d1d5 1330 return ret;
1da177e4
LT
1331}
1332
a3437870
NA
1333#define HSTATE_ATTR_RO(_name) \
1334 static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
1335
1336#define HSTATE_ATTR(_name) \
1337 static struct kobj_attribute _name##_attr = \
1338 __ATTR(_name, 0644, _name##_show, _name##_store)
1339
1340static struct kobject *hugepages_kobj;
1341static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
1342
9a305230
LS
1343static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
1344
1345static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
a3437870
NA
1346{
1347 int i;
9a305230 1348
a3437870 1349 for (i = 0; i < HUGE_MAX_HSTATE; i++)
9a305230
LS
1350 if (hstate_kobjs[i] == kobj) {
1351 if (nidp)
1352 *nidp = NUMA_NO_NODE;
a3437870 1353 return &hstates[i];
9a305230
LS
1354 }
1355
1356 return kobj_to_node_hstate(kobj, nidp);
a3437870
NA
1357}
1358
06808b08 1359static ssize_t nr_hugepages_show_common(struct kobject *kobj,
a3437870
NA
1360 struct kobj_attribute *attr, char *buf)
1361{
9a305230
LS
1362 struct hstate *h;
1363 unsigned long nr_huge_pages;
1364 int nid;
1365
1366 h = kobj_to_hstate(kobj, &nid);
1367 if (nid == NUMA_NO_NODE)
1368 nr_huge_pages = h->nr_huge_pages;
1369 else
1370 nr_huge_pages = h->nr_huge_pages_node[nid];
1371
1372 return sprintf(buf, "%lu\n", nr_huge_pages);
a3437870 1373}
06808b08
LS
1374static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
1375 struct kobject *kobj, struct kobj_attribute *attr,
1376 const char *buf, size_t len)
a3437870
NA
1377{
1378 int err;
9a305230 1379 int nid;
06808b08 1380 unsigned long count;
9a305230 1381 struct hstate *h;
bad44b5b 1382 NODEMASK_ALLOC(nodemask_t, nodes_allowed, GFP_KERNEL | __GFP_NORETRY);
a3437870 1383
06808b08 1384 err = strict_strtoul(buf, 10, &count);
a3437870
NA
1385 if (err)
1386 return 0;
1387
9a305230
LS
1388 h = kobj_to_hstate(kobj, &nid);
1389 if (nid == NUMA_NO_NODE) {
1390 /*
1391 * global hstate attribute
1392 */
1393 if (!(obey_mempolicy &&
1394 init_nodemask_of_mempolicy(nodes_allowed))) {
1395 NODEMASK_FREE(nodes_allowed);
1396 nodes_allowed = &node_states[N_HIGH_MEMORY];
1397 }
1398 } else if (nodes_allowed) {
1399 /*
1400 * per node hstate attribute: adjust count to global,
1401 * but restrict alloc/free to the specified node.
1402 */
1403 count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
1404 init_nodemask_of_node(nodes_allowed, nid);
1405 } else
1406 nodes_allowed = &node_states[N_HIGH_MEMORY];
1407
06808b08 1408 h->max_huge_pages = set_max_huge_pages(h, count, nodes_allowed);
a3437870 1409
9b5e5d0f 1410 if (nodes_allowed != &node_states[N_HIGH_MEMORY])
06808b08
LS
1411 NODEMASK_FREE(nodes_allowed);
1412
1413 return len;
1414}
1415
1416static ssize_t nr_hugepages_show(struct kobject *kobj,
1417 struct kobj_attribute *attr, char *buf)
1418{
1419 return nr_hugepages_show_common(kobj, attr, buf);
1420}
1421
1422static ssize_t nr_hugepages_store(struct kobject *kobj,
1423 struct kobj_attribute *attr, const char *buf, size_t len)
1424{
1425 return nr_hugepages_store_common(false, kobj, attr, buf, len);
a3437870
NA
1426}
1427HSTATE_ATTR(nr_hugepages);
1428
06808b08
LS
1429#ifdef CONFIG_NUMA
1430
1431/*
1432 * hstate attribute for optionally mempolicy-based constraint on persistent
1433 * huge page alloc/free.
1434 */
1435static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
1436 struct kobj_attribute *attr, char *buf)
1437{
1438 return nr_hugepages_show_common(kobj, attr, buf);
1439}
1440
1441static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
1442 struct kobj_attribute *attr, const char *buf, size_t len)
1443{
1444 return nr_hugepages_store_common(true, kobj, attr, buf, len);
1445}
1446HSTATE_ATTR(nr_hugepages_mempolicy);
1447#endif
1448
1449
a3437870
NA
1450static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
1451 struct kobj_attribute *attr, char *buf)
1452{
9a305230 1453 struct hstate *h = kobj_to_hstate(kobj, NULL);
a3437870
NA
1454 return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
1455}
1456static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
1457 struct kobj_attribute *attr, const char *buf, size_t count)
1458{
1459 int err;
1460 unsigned long input;
9a305230 1461 struct hstate *h = kobj_to_hstate(kobj, NULL);
a3437870
NA
1462
1463 err = strict_strtoul(buf, 10, &input);
1464 if (err)
1465 return 0;
1466
1467 spin_lock(&hugetlb_lock);
1468 h->nr_overcommit_huge_pages = input;
1469 spin_unlock(&hugetlb_lock);
1470
1471 return count;
1472}
1473HSTATE_ATTR(nr_overcommit_hugepages);
1474
1475static ssize_t free_hugepages_show(struct kobject *kobj,
1476 struct kobj_attribute *attr, char *buf)
1477{
9a305230
LS
1478 struct hstate *h;
1479 unsigned long free_huge_pages;
1480 int nid;
1481
1482 h = kobj_to_hstate(kobj, &nid);
1483 if (nid == NUMA_NO_NODE)
1484 free_huge_pages = h->free_huge_pages;
1485 else
1486 free_huge_pages = h->free_huge_pages_node[nid];
1487
1488 return sprintf(buf, "%lu\n", free_huge_pages);
a3437870
NA
1489}
1490HSTATE_ATTR_RO(free_hugepages);
1491
1492static ssize_t resv_hugepages_show(struct kobject *kobj,
1493 struct kobj_attribute *attr, char *buf)
1494{
9a305230 1495 struct hstate *h = kobj_to_hstate(kobj, NULL);
a3437870
NA
1496 return sprintf(buf, "%lu\n", h->resv_huge_pages);
1497}
1498HSTATE_ATTR_RO(resv_hugepages);
1499
1500static ssize_t surplus_hugepages_show(struct kobject *kobj,
1501 struct kobj_attribute *attr, char *buf)
1502{
9a305230
LS
1503 struct hstate *h;
1504 unsigned long surplus_huge_pages;
1505 int nid;
1506
1507 h = kobj_to_hstate(kobj, &nid);
1508 if (nid == NUMA_NO_NODE)
1509 surplus_huge_pages = h->surplus_huge_pages;
1510 else
1511 surplus_huge_pages = h->surplus_huge_pages_node[nid];
1512
1513 return sprintf(buf, "%lu\n", surplus_huge_pages);
a3437870
NA
1514}
1515HSTATE_ATTR_RO(surplus_hugepages);
1516
1517static struct attribute *hstate_attrs[] = {
1518 &nr_hugepages_attr.attr,
1519 &nr_overcommit_hugepages_attr.attr,
1520 &free_hugepages_attr.attr,
1521 &resv_hugepages_attr.attr,
1522 &surplus_hugepages_attr.attr,
06808b08
LS
1523#ifdef CONFIG_NUMA
1524 &nr_hugepages_mempolicy_attr.attr,
1525#endif
a3437870
NA
1526 NULL,
1527};
1528
1529static struct attribute_group hstate_attr_group = {
1530 .attrs = hstate_attrs,
1531};
1532
094e9539
JM
1533static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
1534 struct kobject **hstate_kobjs,
1535 struct attribute_group *hstate_attr_group)
a3437870
NA
1536{
1537 int retval;
9a305230 1538 int hi = h - hstates;
a3437870 1539
9a305230
LS
1540 hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
1541 if (!hstate_kobjs[hi])
a3437870
NA
1542 return -ENOMEM;
1543
9a305230 1544 retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
a3437870 1545 if (retval)
9a305230 1546 kobject_put(hstate_kobjs[hi]);
a3437870
NA
1547
1548 return retval;
1549}
1550
1551static void __init hugetlb_sysfs_init(void)
1552{
1553 struct hstate *h;
1554 int err;
1555
1556 hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
1557 if (!hugepages_kobj)
1558 return;
1559
1560 for_each_hstate(h) {
9a305230
LS
1561 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
1562 hstate_kobjs, &hstate_attr_group);
a3437870
NA
1563 if (err)
1564 printk(KERN_ERR "Hugetlb: Unable to add hstate %s",
1565 h->name);
1566 }
1567}
1568
9a305230
LS
1569#ifdef CONFIG_NUMA
1570
1571/*
1572 * node_hstate/s - associate per node hstate attributes, via their kobjects,
1573 * with node sysdevs in node_devices[] using a parallel array. The array
1574 * index of a node sysdev or _hstate == node id.
1575 * This is here to avoid any static dependency of the node sysdev driver, in
1576 * the base kernel, on the hugetlb module.
1577 */
1578struct node_hstate {
1579 struct kobject *hugepages_kobj;
1580 struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
1581};
1582struct node_hstate node_hstates[MAX_NUMNODES];
1583
1584/*
1585 * A subset of global hstate attributes for node sysdevs
1586 */
1587static struct attribute *per_node_hstate_attrs[] = {
1588 &nr_hugepages_attr.attr,
1589 &free_hugepages_attr.attr,
1590 &surplus_hugepages_attr.attr,
1591 NULL,
1592};
1593
1594static struct attribute_group per_node_hstate_attr_group = {
1595 .attrs = per_node_hstate_attrs,
1596};
1597
1598/*
1599 * kobj_to_node_hstate - lookup global hstate for node sysdev hstate attr kobj.
1600 * Returns node id via non-NULL nidp.
1601 */
1602static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
1603{
1604 int nid;
1605
1606 for (nid = 0; nid < nr_node_ids; nid++) {
1607 struct node_hstate *nhs = &node_hstates[nid];
1608 int i;
1609 for (i = 0; i < HUGE_MAX_HSTATE; i++)
1610 if (nhs->hstate_kobjs[i] == kobj) {
1611 if (nidp)
1612 *nidp = nid;
1613 return &hstates[i];
1614 }
1615 }
1616
1617 BUG();
1618 return NULL;
1619}
1620
1621/*
1622 * Unregister hstate attributes from a single node sysdev.
1623 * No-op if no hstate attributes attached.
1624 */
1625void hugetlb_unregister_node(struct node *node)
1626{
1627 struct hstate *h;
1628 struct node_hstate *nhs = &node_hstates[node->sysdev.id];
1629
1630 if (!nhs->hugepages_kobj)
9b5e5d0f 1631 return; /* no hstate attributes */
9a305230
LS
1632
1633 for_each_hstate(h)
1634 if (nhs->hstate_kobjs[h - hstates]) {
1635 kobject_put(nhs->hstate_kobjs[h - hstates]);
1636 nhs->hstate_kobjs[h - hstates] = NULL;
1637 }
1638
1639 kobject_put(nhs->hugepages_kobj);
1640 nhs->hugepages_kobj = NULL;
1641}
1642
1643/*
1644 * hugetlb module exit: unregister hstate attributes from node sysdevs
1645 * that have them.
1646 */
1647static void hugetlb_unregister_all_nodes(void)
1648{
1649 int nid;
1650
1651 /*
1652 * disable node sysdev registrations.
1653 */
1654 register_hugetlbfs_with_node(NULL, NULL);
1655
1656 /*
1657 * remove hstate attributes from any nodes that have them.
1658 */
1659 for (nid = 0; nid < nr_node_ids; nid++)
1660 hugetlb_unregister_node(&node_devices[nid]);
1661}
1662
1663/*
1664 * Register hstate attributes for a single node sysdev.
1665 * No-op if attributes already registered.
1666 */
1667void hugetlb_register_node(struct node *node)
1668{
1669 struct hstate *h;
1670 struct node_hstate *nhs = &node_hstates[node->sysdev.id];
1671 int err;
1672
1673 if (nhs->hugepages_kobj)
1674 return; /* already allocated */
1675
1676 nhs->hugepages_kobj = kobject_create_and_add("hugepages",
1677 &node->sysdev.kobj);
1678 if (!nhs->hugepages_kobj)
1679 return;
1680
1681 for_each_hstate(h) {
1682 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
1683 nhs->hstate_kobjs,
1684 &per_node_hstate_attr_group);
1685 if (err) {
1686 printk(KERN_ERR "Hugetlb: Unable to add hstate %s"
1687 " for node %d\n",
1688 h->name, node->sysdev.id);
1689 hugetlb_unregister_node(node);
1690 break;
1691 }
1692 }
1693}
1694
1695/*
9b5e5d0f
LS
1696 * hugetlb init time: register hstate attributes for all registered node
1697 * sysdevs of nodes that have memory. All on-line nodes should have
1698 * registered their associated sysdev by this time.
9a305230
LS
1699 */
1700static void hugetlb_register_all_nodes(void)
1701{
1702 int nid;
1703
9b5e5d0f 1704 for_each_node_state(nid, N_HIGH_MEMORY) {
9a305230
LS
1705 struct node *node = &node_devices[nid];
1706 if (node->sysdev.id == nid)
1707 hugetlb_register_node(node);
1708 }
1709
1710 /*
1711 * Let the node sysdev driver know we're here so it can
1712 * [un]register hstate attributes on node hotplug.
1713 */
1714 register_hugetlbfs_with_node(hugetlb_register_node,
1715 hugetlb_unregister_node);
1716}
1717#else /* !CONFIG_NUMA */
1718
1719static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
1720{
1721 BUG();
1722 if (nidp)
1723 *nidp = -1;
1724 return NULL;
1725}
1726
1727static void hugetlb_unregister_all_nodes(void) { }
1728
1729static void hugetlb_register_all_nodes(void) { }
1730
1731#endif
1732
a3437870
NA
1733static void __exit hugetlb_exit(void)
1734{
1735 struct hstate *h;
1736
9a305230
LS
1737 hugetlb_unregister_all_nodes();
1738
a3437870
NA
1739 for_each_hstate(h) {
1740 kobject_put(hstate_kobjs[h - hstates]);
1741 }
1742
1743 kobject_put(hugepages_kobj);
1744}
1745module_exit(hugetlb_exit);
1746
1747static int __init hugetlb_init(void)
1748{
0ef89d25
BH
1749 /* Some platform decide whether they support huge pages at boot
1750 * time. On these, such as powerpc, HPAGE_SHIFT is set to 0 when
1751 * there is no such support
1752 */
1753 if (HPAGE_SHIFT == 0)
1754 return 0;
a3437870 1755
e11bfbfc
NP
1756 if (!size_to_hstate(default_hstate_size)) {
1757 default_hstate_size = HPAGE_SIZE;
1758 if (!size_to_hstate(default_hstate_size))
1759 hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
a3437870 1760 }
e11bfbfc
NP
1761 default_hstate_idx = size_to_hstate(default_hstate_size) - hstates;
1762 if (default_hstate_max_huge_pages)
1763 default_hstate.max_huge_pages = default_hstate_max_huge_pages;
a3437870
NA
1764
1765 hugetlb_init_hstates();
1766
aa888a74
AK
1767 gather_bootmem_prealloc();
1768
a3437870
NA
1769 report_hugepages();
1770
1771 hugetlb_sysfs_init();
1772
9a305230
LS
1773 hugetlb_register_all_nodes();
1774
a3437870
NA
1775 return 0;
1776}
1777module_init(hugetlb_init);
1778
1779/* Should be called on processing a hugepagesz=... option */
1780void __init hugetlb_add_hstate(unsigned order)
1781{
1782 struct hstate *h;
8faa8b07
AK
1783 unsigned long i;
1784
a3437870
NA
1785 if (size_to_hstate(PAGE_SIZE << order)) {
1786 printk(KERN_WARNING "hugepagesz= specified twice, ignoring\n");
1787 return;
1788 }
1789 BUG_ON(max_hstate >= HUGE_MAX_HSTATE);
1790 BUG_ON(order == 0);
1791 h = &hstates[max_hstate++];
1792 h->order = order;
1793 h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
8faa8b07
AK
1794 h->nr_huge_pages = 0;
1795 h->free_huge_pages = 0;
1796 for (i = 0; i < MAX_NUMNODES; ++i)
1797 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
9b5e5d0f
LS
1798 h->next_nid_to_alloc = first_node(node_states[N_HIGH_MEMORY]);
1799 h->next_nid_to_free = first_node(node_states[N_HIGH_MEMORY]);
a3437870
NA
1800 snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
1801 huge_page_size(h)/1024);
8faa8b07 1802
a3437870
NA
1803 parsed_hstate = h;
1804}
1805
e11bfbfc 1806static int __init hugetlb_nrpages_setup(char *s)
a3437870
NA
1807{
1808 unsigned long *mhp;
8faa8b07 1809 static unsigned long *last_mhp;
a3437870
NA
1810
1811 /*
1812 * !max_hstate means we haven't parsed a hugepagesz= parameter yet,
1813 * so this hugepages= parameter goes to the "default hstate".
1814 */
1815 if (!max_hstate)
1816 mhp = &default_hstate_max_huge_pages;
1817 else
1818 mhp = &parsed_hstate->max_huge_pages;
1819
8faa8b07
AK
1820 if (mhp == last_mhp) {
1821 printk(KERN_WARNING "hugepages= specified twice without "
1822 "interleaving hugepagesz=, ignoring\n");
1823 return 1;
1824 }
1825
a3437870
NA
1826 if (sscanf(s, "%lu", mhp) <= 0)
1827 *mhp = 0;
1828
8faa8b07
AK
1829 /*
1830 * Global state is always initialized later in hugetlb_init.
1831 * But we need to allocate >= MAX_ORDER hstates here early to still
1832 * use the bootmem allocator.
1833 */
1834 if (max_hstate && parsed_hstate->order >= MAX_ORDER)
1835 hugetlb_hstate_alloc_pages(parsed_hstate);
1836
1837 last_mhp = mhp;
1838
a3437870
NA
1839 return 1;
1840}
e11bfbfc
NP
1841__setup("hugepages=", hugetlb_nrpages_setup);
1842
1843static int __init hugetlb_default_setup(char *s)
1844{
1845 default_hstate_size = memparse(s, &s);
1846 return 1;
1847}
1848__setup("default_hugepagesz=", hugetlb_default_setup);
a3437870 1849
8a213460
NA
1850static unsigned int cpuset_mems_nr(unsigned int *array)
1851{
1852 int node;
1853 unsigned int nr = 0;
1854
1855 for_each_node_mask(node, cpuset_current_mems_allowed)
1856 nr += array[node];
1857
1858 return nr;
1859}
1860
1861#ifdef CONFIG_SYSCTL
06808b08
LS
1862static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
1863 struct ctl_table *table, int write,
1864 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 1865{
e5ff2159
AK
1866 struct hstate *h = &default_hstate;
1867 unsigned long tmp;
1868
1869 if (!write)
1870 tmp = h->max_huge_pages;
1871
1872 table->data = &tmp;
1873 table->maxlen = sizeof(unsigned long);
8d65af78 1874 proc_doulongvec_minmax(table, write, buffer, length, ppos);
e5ff2159 1875
06808b08 1876 if (write) {
bad44b5b
DR
1877 NODEMASK_ALLOC(nodemask_t, nodes_allowed,
1878 GFP_KERNEL | __GFP_NORETRY);
06808b08
LS
1879 if (!(obey_mempolicy &&
1880 init_nodemask_of_mempolicy(nodes_allowed))) {
1881 NODEMASK_FREE(nodes_allowed);
1882 nodes_allowed = &node_states[N_HIGH_MEMORY];
1883 }
1884 h->max_huge_pages = set_max_huge_pages(h, tmp, nodes_allowed);
1885
1886 if (nodes_allowed != &node_states[N_HIGH_MEMORY])
1887 NODEMASK_FREE(nodes_allowed);
1888 }
e5ff2159 1889
1da177e4
LT
1890 return 0;
1891}
396faf03 1892
06808b08
LS
1893int hugetlb_sysctl_handler(struct ctl_table *table, int write,
1894 void __user *buffer, size_t *length, loff_t *ppos)
1895{
1896
1897 return hugetlb_sysctl_handler_common(false, table, write,
1898 buffer, length, ppos);
1899}
1900
1901#ifdef CONFIG_NUMA
1902int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
1903 void __user *buffer, size_t *length, loff_t *ppos)
1904{
1905 return hugetlb_sysctl_handler_common(true, table, write,
1906 buffer, length, ppos);
1907}
1908#endif /* CONFIG_NUMA */
1909
396faf03 1910int hugetlb_treat_movable_handler(struct ctl_table *table, int write,
8d65af78 1911 void __user *buffer,
396faf03
MG
1912 size_t *length, loff_t *ppos)
1913{
8d65af78 1914 proc_dointvec(table, write, buffer, length, ppos);
396faf03
MG
1915 if (hugepages_treat_as_movable)
1916 htlb_alloc_mask = GFP_HIGHUSER_MOVABLE;
1917 else
1918 htlb_alloc_mask = GFP_HIGHUSER;
1919 return 0;
1920}
1921
a3d0c6aa 1922int hugetlb_overcommit_handler(struct ctl_table *table, int write,
8d65af78 1923 void __user *buffer,
a3d0c6aa
NA
1924 size_t *length, loff_t *ppos)
1925{
a5516438 1926 struct hstate *h = &default_hstate;
e5ff2159
AK
1927 unsigned long tmp;
1928
1929 if (!write)
1930 tmp = h->nr_overcommit_huge_pages;
1931
1932 table->data = &tmp;
1933 table->maxlen = sizeof(unsigned long);
8d65af78 1934 proc_doulongvec_minmax(table, write, buffer, length, ppos);
e5ff2159
AK
1935
1936 if (write) {
1937 spin_lock(&hugetlb_lock);
1938 h->nr_overcommit_huge_pages = tmp;
1939 spin_unlock(&hugetlb_lock);
1940 }
1941
a3d0c6aa
NA
1942 return 0;
1943}
1944
1da177e4
LT
1945#endif /* CONFIG_SYSCTL */
1946
e1759c21 1947void hugetlb_report_meminfo(struct seq_file *m)
1da177e4 1948{
a5516438 1949 struct hstate *h = &default_hstate;
e1759c21 1950 seq_printf(m,
4f98a2fe
RR
1951 "HugePages_Total: %5lu\n"
1952 "HugePages_Free: %5lu\n"
1953 "HugePages_Rsvd: %5lu\n"
1954 "HugePages_Surp: %5lu\n"
1955 "Hugepagesize: %8lu kB\n",
a5516438
AK
1956 h->nr_huge_pages,
1957 h->free_huge_pages,
1958 h->resv_huge_pages,
1959 h->surplus_huge_pages,
1960 1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
1da177e4
LT
1961}
1962
1963int hugetlb_report_node_meminfo(int nid, char *buf)
1964{
a5516438 1965 struct hstate *h = &default_hstate;
1da177e4
LT
1966 return sprintf(buf,
1967 "Node %d HugePages_Total: %5u\n"
a1de0919
NA
1968 "Node %d HugePages_Free: %5u\n"
1969 "Node %d HugePages_Surp: %5u\n",
a5516438
AK
1970 nid, h->nr_huge_pages_node[nid],
1971 nid, h->free_huge_pages_node[nid],
1972 nid, h->surplus_huge_pages_node[nid]);
1da177e4
LT
1973}
1974
1da177e4
LT
1975/* Return the number pages of memory we physically have, in PAGE_SIZE units. */
1976unsigned long hugetlb_total_pages(void)
1977{
a5516438
AK
1978 struct hstate *h = &default_hstate;
1979 return h->nr_huge_pages * pages_per_huge_page(h);
1da177e4 1980}
1da177e4 1981
a5516438 1982static int hugetlb_acct_memory(struct hstate *h, long delta)
fc1b8a73
MG
1983{
1984 int ret = -ENOMEM;
1985
1986 spin_lock(&hugetlb_lock);
1987 /*
1988 * When cpuset is configured, it breaks the strict hugetlb page
1989 * reservation as the accounting is done on a global variable. Such
1990 * reservation is completely rubbish in the presence of cpuset because
1991 * the reservation is not checked against page availability for the
1992 * current cpuset. Application can still potentially OOM'ed by kernel
1993 * with lack of free htlb page in cpuset that the task is in.
1994 * Attempt to enforce strict accounting with cpuset is almost
1995 * impossible (or too ugly) because cpuset is too fluid that
1996 * task or memory node can be dynamically moved between cpusets.
1997 *
1998 * The change of semantics for shared hugetlb mapping with cpuset is
1999 * undesirable. However, in order to preserve some of the semantics,
2000 * we fall back to check against current free page availability as
2001 * a best attempt and hopefully to minimize the impact of changing
2002 * semantics that cpuset has.
2003 */
2004 if (delta > 0) {
a5516438 2005 if (gather_surplus_pages(h, delta) < 0)
fc1b8a73
MG
2006 goto out;
2007
a5516438
AK
2008 if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
2009 return_unused_surplus_pages(h, delta);
fc1b8a73
MG
2010 goto out;
2011 }
2012 }
2013
2014 ret = 0;
2015 if (delta < 0)
a5516438 2016 return_unused_surplus_pages(h, (unsigned long) -delta);
fc1b8a73
MG
2017
2018out:
2019 spin_unlock(&hugetlb_lock);
2020 return ret;
2021}
2022
84afd99b
AW
2023static void hugetlb_vm_op_open(struct vm_area_struct *vma)
2024{
2025 struct resv_map *reservations = vma_resv_map(vma);
2026
2027 /*
2028 * This new VMA should share its siblings reservation map if present.
2029 * The VMA will only ever have a valid reservation map pointer where
2030 * it is being copied for another still existing VMA. As that VMA
2031 * has a reference to the reservation map it cannot dissappear until
2032 * after this open call completes. It is therefore safe to take a
2033 * new reference here without additional locking.
2034 */
2035 if (reservations)
2036 kref_get(&reservations->refs);
2037}
2038
a1e78772
MG
2039static void hugetlb_vm_op_close(struct vm_area_struct *vma)
2040{
a5516438 2041 struct hstate *h = hstate_vma(vma);
84afd99b
AW
2042 struct resv_map *reservations = vma_resv_map(vma);
2043 unsigned long reserve;
2044 unsigned long start;
2045 unsigned long end;
2046
2047 if (reservations) {
a5516438
AK
2048 start = vma_hugecache_offset(h, vma, vma->vm_start);
2049 end = vma_hugecache_offset(h, vma, vma->vm_end);
84afd99b
AW
2050
2051 reserve = (end - start) -
2052 region_count(&reservations->regions, start, end);
2053
2054 kref_put(&reservations->refs, resv_map_release);
2055
7251ff78 2056 if (reserve) {
a5516438 2057 hugetlb_acct_memory(h, -reserve);
7251ff78
AL
2058 hugetlb_put_quota(vma->vm_file->f_mapping, reserve);
2059 }
84afd99b 2060 }
a1e78772
MG
2061}
2062
1da177e4
LT
2063/*
2064 * We cannot handle pagefaults against hugetlb pages at all. They cause
2065 * handle_mm_fault() to try to instantiate regular-sized pages in the
2066 * hugegpage VMA. do_page_fault() is supposed to trap this, so BUG is we get
2067 * this far.
2068 */
d0217ac0 2069static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1da177e4
LT
2070{
2071 BUG();
d0217ac0 2072 return 0;
1da177e4
LT
2073}
2074
f0f37e2f 2075const struct vm_operations_struct hugetlb_vm_ops = {
d0217ac0 2076 .fault = hugetlb_vm_op_fault,
84afd99b 2077 .open = hugetlb_vm_op_open,
a1e78772 2078 .close = hugetlb_vm_op_close,
1da177e4
LT
2079};
2080
1e8f889b
DG
2081static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
2082 int writable)
63551ae0
DG
2083{
2084 pte_t entry;
2085
1e8f889b 2086 if (writable) {
63551ae0
DG
2087 entry =
2088 pte_mkwrite(pte_mkdirty(mk_pte(page, vma->vm_page_prot)));
2089 } else {
7f2e9525 2090 entry = huge_pte_wrprotect(mk_pte(page, vma->vm_page_prot));
63551ae0
DG
2091 }
2092 entry = pte_mkyoung(entry);
2093 entry = pte_mkhuge(entry);
2094
2095 return entry;
2096}
2097
1e8f889b
DG
2098static void set_huge_ptep_writable(struct vm_area_struct *vma,
2099 unsigned long address, pte_t *ptep)
2100{
2101 pte_t entry;
2102
7f2e9525
GS
2103 entry = pte_mkwrite(pte_mkdirty(huge_ptep_get(ptep)));
2104 if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1)) {
4b3073e1 2105 update_mmu_cache(vma, address, ptep);
8dab5241 2106 }
1e8f889b
DG
2107}
2108
2109
63551ae0
DG
2110int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
2111 struct vm_area_struct *vma)
2112{
2113 pte_t *src_pte, *dst_pte, entry;
2114 struct page *ptepage;
1c59827d 2115 unsigned long addr;
1e8f889b 2116 int cow;
a5516438
AK
2117 struct hstate *h = hstate_vma(vma);
2118 unsigned long sz = huge_page_size(h);
1e8f889b
DG
2119
2120 cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
63551ae0 2121
a5516438 2122 for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
c74df32c
HD
2123 src_pte = huge_pte_offset(src, addr);
2124 if (!src_pte)
2125 continue;
a5516438 2126 dst_pte = huge_pte_alloc(dst, addr, sz);
63551ae0
DG
2127 if (!dst_pte)
2128 goto nomem;
c5c99429
LW
2129
2130 /* If the pagetables are shared don't copy or take references */
2131 if (dst_pte == src_pte)
2132 continue;
2133
c74df32c 2134 spin_lock(&dst->page_table_lock);
46478758 2135 spin_lock_nested(&src->page_table_lock, SINGLE_DEPTH_NESTING);
7f2e9525 2136 if (!huge_pte_none(huge_ptep_get(src_pte))) {
1e8f889b 2137 if (cow)
7f2e9525
GS
2138 huge_ptep_set_wrprotect(src, addr, src_pte);
2139 entry = huge_ptep_get(src_pte);
1c59827d
HD
2140 ptepage = pte_page(entry);
2141 get_page(ptepage);
0fe6e20b 2142 page_dup_rmap(ptepage);
1c59827d
HD
2143 set_huge_pte_at(dst, addr, dst_pte, entry);
2144 }
2145 spin_unlock(&src->page_table_lock);
c74df32c 2146 spin_unlock(&dst->page_table_lock);
63551ae0
DG
2147 }
2148 return 0;
2149
2150nomem:
2151 return -ENOMEM;
2152}
2153
fd6a03ed
NH
2154static int is_hugetlb_entry_hwpoisoned(pte_t pte)
2155{
2156 swp_entry_t swp;
2157
2158 if (huge_pte_none(pte) || pte_present(pte))
2159 return 0;
2160 swp = pte_to_swp_entry(pte);
2161 if (non_swap_entry(swp) && is_hwpoison_entry(swp)) {
2162 return 1;
2163 } else
2164 return 0;
2165}
2166
502717f4 2167void __unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
04f2cbe3 2168 unsigned long end, struct page *ref_page)
63551ae0
DG
2169{
2170 struct mm_struct *mm = vma->vm_mm;
2171 unsigned long address;
c7546f8f 2172 pte_t *ptep;
63551ae0
DG
2173 pte_t pte;
2174 struct page *page;
fe1668ae 2175 struct page *tmp;
a5516438
AK
2176 struct hstate *h = hstate_vma(vma);
2177 unsigned long sz = huge_page_size(h);
2178
c0a499c2
CK
2179 /*
2180 * A page gathering list, protected by per file i_mmap_lock. The
2181 * lock is used to avoid list corruption from multiple unmapping
2182 * of the same page since we are using page->lru.
2183 */
fe1668ae 2184 LIST_HEAD(page_list);
63551ae0
DG
2185
2186 WARN_ON(!is_vm_hugetlb_page(vma));
a5516438
AK
2187 BUG_ON(start & ~huge_page_mask(h));
2188 BUG_ON(end & ~huge_page_mask(h));
63551ae0 2189
cddb8a5c 2190 mmu_notifier_invalidate_range_start(mm, start, end);
508034a3 2191 spin_lock(&mm->page_table_lock);
a5516438 2192 for (address = start; address < end; address += sz) {
c7546f8f 2193 ptep = huge_pte_offset(mm, address);
4c887265 2194 if (!ptep)
c7546f8f
DG
2195 continue;
2196
39dde65c
CK
2197 if (huge_pmd_unshare(mm, &address, ptep))
2198 continue;
2199
04f2cbe3
MG
2200 /*
2201 * If a reference page is supplied, it is because a specific
2202 * page is being unmapped, not a range. Ensure the page we
2203 * are about to unmap is the actual page of interest.
2204 */
2205 if (ref_page) {
2206 pte = huge_ptep_get(ptep);
2207 if (huge_pte_none(pte))
2208 continue;
2209 page = pte_page(pte);
2210 if (page != ref_page)
2211 continue;
2212
2213 /*
2214 * Mark the VMA as having unmapped its page so that
2215 * future faults in this VMA will fail rather than
2216 * looking like data was lost
2217 */
2218 set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
2219 }
2220
c7546f8f 2221 pte = huge_ptep_get_and_clear(mm, address, ptep);
7f2e9525 2222 if (huge_pte_none(pte))
63551ae0 2223 continue;
c7546f8f 2224
fd6a03ed
NH
2225 /*
2226 * HWPoisoned hugepage is already unmapped and dropped reference
2227 */
2228 if (unlikely(is_hugetlb_entry_hwpoisoned(pte)))
2229 continue;
2230
63551ae0 2231 page = pte_page(pte);
6649a386
KC
2232 if (pte_dirty(pte))
2233 set_page_dirty(page);
fe1668ae 2234 list_add(&page->lru, &page_list);
63551ae0 2235 }
1da177e4 2236 spin_unlock(&mm->page_table_lock);
508034a3 2237 flush_tlb_range(vma, start, end);
cddb8a5c 2238 mmu_notifier_invalidate_range_end(mm, start, end);
fe1668ae 2239 list_for_each_entry_safe(page, tmp, &page_list, lru) {
0fe6e20b 2240 page_remove_rmap(page);
fe1668ae
CK
2241 list_del(&page->lru);
2242 put_page(page);
2243 }
1da177e4 2244}
63551ae0 2245
502717f4 2246void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
04f2cbe3 2247 unsigned long end, struct page *ref_page)
502717f4 2248{
a137e1cc
AK
2249 spin_lock(&vma->vm_file->f_mapping->i_mmap_lock);
2250 __unmap_hugepage_range(vma, start, end, ref_page);
2251 spin_unlock(&vma->vm_file->f_mapping->i_mmap_lock);
502717f4
CK
2252}
2253
04f2cbe3
MG
2254/*
2255 * This is called when the original mapper is failing to COW a MAP_PRIVATE
2256 * mappping it owns the reserve page for. The intention is to unmap the page
2257 * from other VMAs and let the children be SIGKILLed if they are faulting the
2258 * same region.
2259 */
2a4b3ded
HH
2260static int unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
2261 struct page *page, unsigned long address)
04f2cbe3 2262{
7526674d 2263 struct hstate *h = hstate_vma(vma);
04f2cbe3
MG
2264 struct vm_area_struct *iter_vma;
2265 struct address_space *mapping;
2266 struct prio_tree_iter iter;
2267 pgoff_t pgoff;
2268
2269 /*
2270 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
2271 * from page cache lookup which is in HPAGE_SIZE units.
2272 */
7526674d 2273 address = address & huge_page_mask(h);
04f2cbe3
MG
2274 pgoff = ((address - vma->vm_start) >> PAGE_SHIFT)
2275 + (vma->vm_pgoff >> PAGE_SHIFT);
2276 mapping = (struct address_space *)page_private(page);
2277
4eb2b1dc
MG
2278 /*
2279 * Take the mapping lock for the duration of the table walk. As
2280 * this mapping should be shared between all the VMAs,
2281 * __unmap_hugepage_range() is called as the lock is already held
2282 */
2283 spin_lock(&mapping->i_mmap_lock);
04f2cbe3
MG
2284 vma_prio_tree_foreach(iter_vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
2285 /* Do not unmap the current VMA */
2286 if (iter_vma == vma)
2287 continue;
2288
2289 /*
2290 * Unmap the page from other VMAs without their own reserves.
2291 * They get marked to be SIGKILLed if they fault in these
2292 * areas. This is because a future no-page fault on this VMA
2293 * could insert a zeroed page instead of the data existing
2294 * from the time of fork. This would look like data corruption
2295 */
2296 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
4eb2b1dc 2297 __unmap_hugepage_range(iter_vma,
7526674d 2298 address, address + huge_page_size(h),
04f2cbe3
MG
2299 page);
2300 }
4eb2b1dc 2301 spin_unlock(&mapping->i_mmap_lock);
04f2cbe3
MG
2302
2303 return 1;
2304}
2305
0fe6e20b
NH
2306/*
2307 * Hugetlb_cow() should be called with page lock of the original hugepage held.
2308 */
1e8f889b 2309static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
04f2cbe3
MG
2310 unsigned long address, pte_t *ptep, pte_t pte,
2311 struct page *pagecache_page)
1e8f889b 2312{
a5516438 2313 struct hstate *h = hstate_vma(vma);
1e8f889b 2314 struct page *old_page, *new_page;
79ac6ba4 2315 int avoidcopy;
04f2cbe3 2316 int outside_reserve = 0;
1e8f889b
DG
2317
2318 old_page = pte_page(pte);
2319
04f2cbe3 2320retry_avoidcopy:
1e8f889b
DG
2321 /* If no-one else is actually using this page, avoid the copy
2322 * and just make the page writable */
0fe6e20b 2323 avoidcopy = (page_mapcount(old_page) == 1);
1e8f889b 2324 if (avoidcopy) {
0fe6e20b
NH
2325 if (!trylock_page(old_page))
2326 if (PageAnon(old_page))
2327 page_move_anon_rmap(old_page, vma, address);
1e8f889b 2328 set_huge_ptep_writable(vma, address, ptep);
83c54070 2329 return 0;
1e8f889b
DG
2330 }
2331
04f2cbe3
MG
2332 /*
2333 * If the process that created a MAP_PRIVATE mapping is about to
2334 * perform a COW due to a shared page count, attempt to satisfy
2335 * the allocation without using the existing reserves. The pagecache
2336 * page is used to determine if the reserve at this address was
2337 * consumed or not. If reserves were used, a partial faulted mapping
2338 * at the time of fork() could consume its reserves on COW instead
2339 * of the full address range.
2340 */
f83a275d 2341 if (!(vma->vm_flags & VM_MAYSHARE) &&
04f2cbe3
MG
2342 is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
2343 old_page != pagecache_page)
2344 outside_reserve = 1;
2345
1e8f889b 2346 page_cache_get(old_page);
b76c8cfb
LW
2347
2348 /* Drop page_table_lock as buddy allocator may be called */
2349 spin_unlock(&mm->page_table_lock);
04f2cbe3 2350 new_page = alloc_huge_page(vma, address, outside_reserve);
1e8f889b 2351
2fc39cec 2352 if (IS_ERR(new_page)) {
1e8f889b 2353 page_cache_release(old_page);
04f2cbe3
MG
2354
2355 /*
2356 * If a process owning a MAP_PRIVATE mapping fails to COW,
2357 * it is due to references held by a child and an insufficient
2358 * huge page pool. To guarantee the original mappers
2359 * reliability, unmap the page from child processes. The child
2360 * may get SIGKILLed if it later faults.
2361 */
2362 if (outside_reserve) {
2363 BUG_ON(huge_pte_none(pte));
2364 if (unmap_ref_private(mm, vma, old_page, address)) {
2365 BUG_ON(page_count(old_page) != 1);
2366 BUG_ON(huge_pte_none(pte));
b76c8cfb 2367 spin_lock(&mm->page_table_lock);
04f2cbe3
MG
2368 goto retry_avoidcopy;
2369 }
2370 WARN_ON_ONCE(1);
2371 }
2372
b76c8cfb
LW
2373 /* Caller expects lock to be held */
2374 spin_lock(&mm->page_table_lock);
2fc39cec 2375 return -PTR_ERR(new_page);
1e8f889b
DG
2376 }
2377
0fe6e20b
NH
2378 /*
2379 * When the original hugepage is shared one, it does not have
2380 * anon_vma prepared.
2381 */
2382 if (unlikely(anon_vma_prepare(vma)))
2383 return VM_FAULT_OOM;
2384
9de455b2 2385 copy_huge_page(new_page, old_page, address, vma);
0ed361de 2386 __SetPageUptodate(new_page);
1e8f889b 2387
b76c8cfb
LW
2388 /*
2389 * Retake the page_table_lock to check for racing updates
2390 * before the page tables are altered
2391 */
2392 spin_lock(&mm->page_table_lock);
a5516438 2393 ptep = huge_pte_offset(mm, address & huge_page_mask(h));
7f2e9525 2394 if (likely(pte_same(huge_ptep_get(ptep), pte))) {
1e8f889b 2395 /* Break COW */
8fe627ec 2396 huge_ptep_clear_flush(vma, address, ptep);
1e8f889b
DG
2397 set_huge_pte_at(mm, address, ptep,
2398 make_huge_pte(vma, new_page, 1));
0fe6e20b
NH
2399 page_remove_rmap(old_page);
2400 hugepage_add_anon_rmap(new_page, vma, address);
1e8f889b
DG
2401 /* Make the old page be freed below */
2402 new_page = old_page;
2403 }
2404 page_cache_release(new_page);
2405 page_cache_release(old_page);
83c54070 2406 return 0;
1e8f889b
DG
2407}
2408
04f2cbe3 2409/* Return the pagecache page at a given address within a VMA */
a5516438
AK
2410static struct page *hugetlbfs_pagecache_page(struct hstate *h,
2411 struct vm_area_struct *vma, unsigned long address)
04f2cbe3
MG
2412{
2413 struct address_space *mapping;
e7c4b0bf 2414 pgoff_t idx;
04f2cbe3
MG
2415
2416 mapping = vma->vm_file->f_mapping;
a5516438 2417 idx = vma_hugecache_offset(h, vma, address);
04f2cbe3
MG
2418
2419 return find_lock_page(mapping, idx);
2420}
2421
3ae77f43
HD
2422/*
2423 * Return whether there is a pagecache page to back given address within VMA.
2424 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
2425 */
2426static bool hugetlbfs_pagecache_present(struct hstate *h,
2a15efc9
HD
2427 struct vm_area_struct *vma, unsigned long address)
2428{
2429 struct address_space *mapping;
2430 pgoff_t idx;
2431 struct page *page;
2432
2433 mapping = vma->vm_file->f_mapping;
2434 idx = vma_hugecache_offset(h, vma, address);
2435
2436 page = find_get_page(mapping, idx);
2437 if (page)
2438 put_page(page);
2439 return page != NULL;
2440}
2441
a1ed3dda 2442static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
788c7df4 2443 unsigned long address, pte_t *ptep, unsigned int flags)
ac9b9c66 2444{
a5516438 2445 struct hstate *h = hstate_vma(vma);
ac9b9c66 2446 int ret = VM_FAULT_SIGBUS;
e7c4b0bf 2447 pgoff_t idx;
4c887265 2448 unsigned long size;
4c887265
AL
2449 struct page *page;
2450 struct address_space *mapping;
1e8f889b 2451 pte_t new_pte;
4c887265 2452
04f2cbe3
MG
2453 /*
2454 * Currently, we are forced to kill the process in the event the
2455 * original mapper has unmapped pages from the child due to a failed
2456 * COW. Warn that such a situation has occured as it may not be obvious
2457 */
2458 if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
2459 printk(KERN_WARNING
2460 "PID %d killed due to inadequate hugepage pool\n",
2461 current->pid);
2462 return ret;
2463 }
2464
4c887265 2465 mapping = vma->vm_file->f_mapping;
a5516438 2466 idx = vma_hugecache_offset(h, vma, address);
4c887265
AL
2467
2468 /*
2469 * Use page lock to guard against racing truncation
2470 * before we get page_table_lock.
2471 */
6bda666a
CL
2472retry:
2473 page = find_lock_page(mapping, idx);
2474 if (!page) {
a5516438 2475 size = i_size_read(mapping->host) >> huge_page_shift(h);
ebed4bfc
HD
2476 if (idx >= size)
2477 goto out;
04f2cbe3 2478 page = alloc_huge_page(vma, address, 0);
2fc39cec
AL
2479 if (IS_ERR(page)) {
2480 ret = -PTR_ERR(page);
6bda666a
CL
2481 goto out;
2482 }
a5516438 2483 clear_huge_page(page, address, huge_page_size(h));
0ed361de 2484 __SetPageUptodate(page);
ac9b9c66 2485
f83a275d 2486 if (vma->vm_flags & VM_MAYSHARE) {
6bda666a 2487 int err;
45c682a6 2488 struct inode *inode = mapping->host;
6bda666a
CL
2489
2490 err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
2491 if (err) {
2492 put_page(page);
6bda666a
CL
2493 if (err == -EEXIST)
2494 goto retry;
2495 goto out;
2496 }
45c682a6
KC
2497
2498 spin_lock(&inode->i_lock);
a5516438 2499 inode->i_blocks += blocks_per_huge_page(h);
45c682a6 2500 spin_unlock(&inode->i_lock);
0fe6e20b 2501 page_dup_rmap(page);
23be7468 2502 } else {
6bda666a 2503 lock_page(page);
0fe6e20b
NH
2504 if (unlikely(anon_vma_prepare(vma))) {
2505 ret = VM_FAULT_OOM;
2506 goto backout_unlocked;
2507 }
2508 hugepage_add_new_anon_rmap(page, vma, address);
23be7468 2509 }
0fe6e20b
NH
2510 } else {
2511 page_dup_rmap(page);
6bda666a 2512 }
1e8f889b 2513
fd6a03ed
NH
2514 /*
2515 * Since memory error handler replaces pte into hwpoison swap entry
2516 * at the time of error handling, a process which reserved but not have
2517 * the mapping to the error hugepage does not have hwpoison swap entry.
2518 * So we need to block accesses from such a process by checking
2519 * PG_hwpoison bit here.
2520 */
2521 if (unlikely(PageHWPoison(page))) {
2522 ret = VM_FAULT_HWPOISON;
2523 goto backout_unlocked;
2524 }
2525
57303d80
AW
2526 /*
2527 * If we are going to COW a private mapping later, we examine the
2528 * pending reservations for this page now. This will ensure that
2529 * any allocations necessary to record that reservation occur outside
2530 * the spinlock.
2531 */
788c7df4 2532 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED))
2b26736c
AW
2533 if (vma_needs_reservation(h, vma, address) < 0) {
2534 ret = VM_FAULT_OOM;
2535 goto backout_unlocked;
2536 }
57303d80 2537
ac9b9c66 2538 spin_lock(&mm->page_table_lock);
a5516438 2539 size = i_size_read(mapping->host) >> huge_page_shift(h);
4c887265
AL
2540 if (idx >= size)
2541 goto backout;
2542
83c54070 2543 ret = 0;
7f2e9525 2544 if (!huge_pte_none(huge_ptep_get(ptep)))
4c887265
AL
2545 goto backout;
2546
1e8f889b
DG
2547 new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
2548 && (vma->vm_flags & VM_SHARED)));
2549 set_huge_pte_at(mm, address, ptep, new_pte);
2550
788c7df4 2551 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
1e8f889b 2552 /* Optimization, do the COW without a second fault */
04f2cbe3 2553 ret = hugetlb_cow(mm, vma, address, ptep, new_pte, page);
1e8f889b
DG
2554 }
2555
ac9b9c66 2556 spin_unlock(&mm->page_table_lock);
4c887265
AL
2557 unlock_page(page);
2558out:
ac9b9c66 2559 return ret;
4c887265
AL
2560
2561backout:
2562 spin_unlock(&mm->page_table_lock);
2b26736c 2563backout_unlocked:
4c887265
AL
2564 unlock_page(page);
2565 put_page(page);
2566 goto out;
ac9b9c66
HD
2567}
2568
86e5216f 2569int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
788c7df4 2570 unsigned long address, unsigned int flags)
86e5216f
AL
2571{
2572 pte_t *ptep;
2573 pte_t entry;
1e8f889b 2574 int ret;
0fe6e20b 2575 struct page *page = NULL;
57303d80 2576 struct page *pagecache_page = NULL;
3935baa9 2577 static DEFINE_MUTEX(hugetlb_instantiation_mutex);
a5516438 2578 struct hstate *h = hstate_vma(vma);
86e5216f 2579
fd6a03ed
NH
2580 ptep = huge_pte_offset(mm, address);
2581 if (ptep) {
2582 entry = huge_ptep_get(ptep);
2583 if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
2584 return VM_FAULT_HWPOISON;
2585 }
2586
a5516438 2587 ptep = huge_pte_alloc(mm, address, huge_page_size(h));
86e5216f
AL
2588 if (!ptep)
2589 return VM_FAULT_OOM;
2590
3935baa9
DG
2591 /*
2592 * Serialize hugepage allocation and instantiation, so that we don't
2593 * get spurious allocation failures if two CPUs race to instantiate
2594 * the same page in the page cache.
2595 */
2596 mutex_lock(&hugetlb_instantiation_mutex);
7f2e9525
GS
2597 entry = huge_ptep_get(ptep);
2598 if (huge_pte_none(entry)) {
788c7df4 2599 ret = hugetlb_no_page(mm, vma, address, ptep, flags);
b4d1d99f 2600 goto out_mutex;
3935baa9 2601 }
86e5216f 2602
83c54070 2603 ret = 0;
1e8f889b 2604
57303d80
AW
2605 /*
2606 * If we are going to COW the mapping later, we examine the pending
2607 * reservations for this page now. This will ensure that any
2608 * allocations necessary to record that reservation occur outside the
2609 * spinlock. For private mappings, we also lookup the pagecache
2610 * page now as it is used to determine if a reservation has been
2611 * consumed.
2612 */
788c7df4 2613 if ((flags & FAULT_FLAG_WRITE) && !pte_write(entry)) {
2b26736c
AW
2614 if (vma_needs_reservation(h, vma, address) < 0) {
2615 ret = VM_FAULT_OOM;
b4d1d99f 2616 goto out_mutex;
2b26736c 2617 }
57303d80 2618
f83a275d 2619 if (!(vma->vm_flags & VM_MAYSHARE))
57303d80
AW
2620 pagecache_page = hugetlbfs_pagecache_page(h,
2621 vma, address);
2622 }
2623
0fe6e20b
NH
2624 if (!pagecache_page) {
2625 page = pte_page(entry);
2626 lock_page(page);
2627 }
2628
1e8f889b
DG
2629 spin_lock(&mm->page_table_lock);
2630 /* Check for a racing update before calling hugetlb_cow */
b4d1d99f
DG
2631 if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
2632 goto out_page_table_lock;
2633
2634
788c7df4 2635 if (flags & FAULT_FLAG_WRITE) {
b4d1d99f 2636 if (!pte_write(entry)) {
57303d80
AW
2637 ret = hugetlb_cow(mm, vma, address, ptep, entry,
2638 pagecache_page);
b4d1d99f
DG
2639 goto out_page_table_lock;
2640 }
2641 entry = pte_mkdirty(entry);
2642 }
2643 entry = pte_mkyoung(entry);
788c7df4
HD
2644 if (huge_ptep_set_access_flags(vma, address, ptep, entry,
2645 flags & FAULT_FLAG_WRITE))
4b3073e1 2646 update_mmu_cache(vma, address, ptep);
b4d1d99f
DG
2647
2648out_page_table_lock:
1e8f889b 2649 spin_unlock(&mm->page_table_lock);
57303d80
AW
2650
2651 if (pagecache_page) {
2652 unlock_page(pagecache_page);
2653 put_page(pagecache_page);
0fe6e20b
NH
2654 } else {
2655 unlock_page(page);
57303d80
AW
2656 }
2657
b4d1d99f 2658out_mutex:
3935baa9 2659 mutex_unlock(&hugetlb_instantiation_mutex);
1e8f889b
DG
2660
2661 return ret;
86e5216f
AL
2662}
2663
ceb86879
AK
2664/* Can be overriden by architectures */
2665__attribute__((weak)) struct page *
2666follow_huge_pud(struct mm_struct *mm, unsigned long address,
2667 pud_t *pud, int write)
2668{
2669 BUG();
2670 return NULL;
2671}
2672
63551ae0
DG
2673int follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
2674 struct page **pages, struct vm_area_struct **vmas,
5b23dbe8 2675 unsigned long *position, int *length, int i,
2a15efc9 2676 unsigned int flags)
63551ae0 2677{
d5d4b0aa
CK
2678 unsigned long pfn_offset;
2679 unsigned long vaddr = *position;
63551ae0 2680 int remainder = *length;
a5516438 2681 struct hstate *h = hstate_vma(vma);
63551ae0 2682
1c59827d 2683 spin_lock(&mm->page_table_lock);
63551ae0 2684 while (vaddr < vma->vm_end && remainder) {
4c887265 2685 pte_t *pte;
2a15efc9 2686 int absent;
4c887265 2687 struct page *page;
63551ae0 2688
4c887265
AL
2689 /*
2690 * Some archs (sparc64, sh*) have multiple pte_ts to
2a15efc9 2691 * each hugepage. We have to make sure we get the
4c887265
AL
2692 * first, for the page indexing below to work.
2693 */
a5516438 2694 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h));
2a15efc9
HD
2695 absent = !pte || huge_pte_none(huge_ptep_get(pte));
2696
2697 /*
2698 * When coredumping, it suits get_dump_page if we just return
3ae77f43
HD
2699 * an error where there's an empty slot with no huge pagecache
2700 * to back it. This way, we avoid allocating a hugepage, and
2701 * the sparse dumpfile avoids allocating disk blocks, but its
2702 * huge holes still show up with zeroes where they need to be.
2a15efc9 2703 */
3ae77f43
HD
2704 if (absent && (flags & FOLL_DUMP) &&
2705 !hugetlbfs_pagecache_present(h, vma, vaddr)) {
2a15efc9
HD
2706 remainder = 0;
2707 break;
2708 }
63551ae0 2709
2a15efc9
HD
2710 if (absent ||
2711 ((flags & FOLL_WRITE) && !pte_write(huge_ptep_get(pte)))) {
4c887265 2712 int ret;
63551ae0 2713
4c887265 2714 spin_unlock(&mm->page_table_lock);
2a15efc9
HD
2715 ret = hugetlb_fault(mm, vma, vaddr,
2716 (flags & FOLL_WRITE) ? FAULT_FLAG_WRITE : 0);
4c887265 2717 spin_lock(&mm->page_table_lock);
a89182c7 2718 if (!(ret & VM_FAULT_ERROR))
4c887265 2719 continue;
63551ae0 2720
4c887265 2721 remainder = 0;
4c887265
AL
2722 break;
2723 }
2724
a5516438 2725 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
7f2e9525 2726 page = pte_page(huge_ptep_get(pte));
d5d4b0aa 2727same_page:
d6692183 2728 if (pages) {
2a15efc9 2729 pages[i] = mem_map_offset(page, pfn_offset);
4b2e38ad 2730 get_page(pages[i]);
d6692183 2731 }
63551ae0
DG
2732
2733 if (vmas)
2734 vmas[i] = vma;
2735
2736 vaddr += PAGE_SIZE;
d5d4b0aa 2737 ++pfn_offset;
63551ae0
DG
2738 --remainder;
2739 ++i;
d5d4b0aa 2740 if (vaddr < vma->vm_end && remainder &&
a5516438 2741 pfn_offset < pages_per_huge_page(h)) {
d5d4b0aa
CK
2742 /*
2743 * We use pfn_offset to avoid touching the pageframes
2744 * of this compound page.
2745 */
2746 goto same_page;
2747 }
63551ae0 2748 }
1c59827d 2749 spin_unlock(&mm->page_table_lock);
63551ae0
DG
2750 *length = remainder;
2751 *position = vaddr;
2752
2a15efc9 2753 return i ? i : -EFAULT;
63551ae0 2754}
8f860591
ZY
2755
2756void hugetlb_change_protection(struct vm_area_struct *vma,
2757 unsigned long address, unsigned long end, pgprot_t newprot)
2758{
2759 struct mm_struct *mm = vma->vm_mm;
2760 unsigned long start = address;
2761 pte_t *ptep;
2762 pte_t pte;
a5516438 2763 struct hstate *h = hstate_vma(vma);
8f860591
ZY
2764
2765 BUG_ON(address >= end);
2766 flush_cache_range(vma, address, end);
2767
39dde65c 2768 spin_lock(&vma->vm_file->f_mapping->i_mmap_lock);
8f860591 2769 spin_lock(&mm->page_table_lock);
a5516438 2770 for (; address < end; address += huge_page_size(h)) {
8f860591
ZY
2771 ptep = huge_pte_offset(mm, address);
2772 if (!ptep)
2773 continue;
39dde65c
CK
2774 if (huge_pmd_unshare(mm, &address, ptep))
2775 continue;
7f2e9525 2776 if (!huge_pte_none(huge_ptep_get(ptep))) {
8f860591
ZY
2777 pte = huge_ptep_get_and_clear(mm, address, ptep);
2778 pte = pte_mkhuge(pte_modify(pte, newprot));
2779 set_huge_pte_at(mm, address, ptep, pte);
8f860591
ZY
2780 }
2781 }
2782 spin_unlock(&mm->page_table_lock);
39dde65c 2783 spin_unlock(&vma->vm_file->f_mapping->i_mmap_lock);
8f860591
ZY
2784
2785 flush_tlb_range(vma, start, end);
2786}
2787
a1e78772
MG
2788int hugetlb_reserve_pages(struct inode *inode,
2789 long from, long to,
5a6fe125
MG
2790 struct vm_area_struct *vma,
2791 int acctflag)
e4e574b7 2792{
17c9d12e 2793 long ret, chg;
a5516438 2794 struct hstate *h = hstate_inode(inode);
e4e574b7 2795
17c9d12e
MG
2796 /*
2797 * Only apply hugepage reservation if asked. At fault time, an
2798 * attempt will be made for VM_NORESERVE to allocate a page
2799 * and filesystem quota without using reserves
2800 */
2801 if (acctflag & VM_NORESERVE)
2802 return 0;
2803
a1e78772
MG
2804 /*
2805 * Shared mappings base their reservation on the number of pages that
2806 * are already allocated on behalf of the file. Private mappings need
2807 * to reserve the full area even if read-only as mprotect() may be
2808 * called to make the mapping read-write. Assume !vma is a shm mapping
2809 */
f83a275d 2810 if (!vma || vma->vm_flags & VM_MAYSHARE)
a1e78772 2811 chg = region_chg(&inode->i_mapping->private_list, from, to);
17c9d12e
MG
2812 else {
2813 struct resv_map *resv_map = resv_map_alloc();
2814 if (!resv_map)
2815 return -ENOMEM;
2816
a1e78772 2817 chg = to - from;
84afd99b 2818
17c9d12e
MG
2819 set_vma_resv_map(vma, resv_map);
2820 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
2821 }
2822
e4e574b7
AL
2823 if (chg < 0)
2824 return chg;
8a630112 2825
17c9d12e 2826 /* There must be enough filesystem quota for the mapping */
90d8b7e6
AL
2827 if (hugetlb_get_quota(inode->i_mapping, chg))
2828 return -ENOSPC;
5a6fe125
MG
2829
2830 /*
17c9d12e
MG
2831 * Check enough hugepages are available for the reservation.
2832 * Hand back the quota if there are not
5a6fe125 2833 */
a5516438 2834 ret = hugetlb_acct_memory(h, chg);
68842c9b
KC
2835 if (ret < 0) {
2836 hugetlb_put_quota(inode->i_mapping, chg);
a43a8c39 2837 return ret;
68842c9b 2838 }
17c9d12e
MG
2839
2840 /*
2841 * Account for the reservations made. Shared mappings record regions
2842 * that have reservations as they are shared by multiple VMAs.
2843 * When the last VMA disappears, the region map says how much
2844 * the reservation was and the page cache tells how much of
2845 * the reservation was consumed. Private mappings are per-VMA and
2846 * only the consumed reservations are tracked. When the VMA
2847 * disappears, the original reservation is the VMA size and the
2848 * consumed reservations are stored in the map. Hence, nothing
2849 * else has to be done for private mappings here
2850 */
f83a275d 2851 if (!vma || vma->vm_flags & VM_MAYSHARE)
a1e78772 2852 region_add(&inode->i_mapping->private_list, from, to);
a43a8c39
CK
2853 return 0;
2854}
2855
2856void hugetlb_unreserve_pages(struct inode *inode, long offset, long freed)
2857{
a5516438 2858 struct hstate *h = hstate_inode(inode);
a43a8c39 2859 long chg = region_truncate(&inode->i_mapping->private_list, offset);
45c682a6
KC
2860
2861 spin_lock(&inode->i_lock);
e4c6f8be 2862 inode->i_blocks -= (blocks_per_huge_page(h) * freed);
45c682a6
KC
2863 spin_unlock(&inode->i_lock);
2864
90d8b7e6 2865 hugetlb_put_quota(inode->i_mapping, (chg - freed));
a5516438 2866 hugetlb_acct_memory(h, -(chg - freed));
a43a8c39 2867}
93f70f90
NH
2868
2869/*
2870 * This function is called from memory failure code.
2871 * Assume the caller holds page lock of the head page.
2872 */
2873void __isolate_hwpoisoned_huge_page(struct page *hpage)
2874{
2875 struct hstate *h = page_hstate(hpage);
2876 int nid = page_to_nid(hpage);
2877
2878 spin_lock(&hugetlb_lock);
2879 list_del(&hpage->lru);
2880 h->free_huge_pages--;
2881 h->free_huge_pages_node[nid]--;
2882 spin_unlock(&hugetlb_lock);
2883}