thp: documentation: 'transparent_hugepage=' can also be specified on cmdline
[linux-2.6-block.git] / mm / hugetlb.c
CommitLineData
1da177e4
LT
1/*
2 * Generic hugetlb support.
3 * (C) William Irwin, April 2004
4 */
1da177e4
LT
5#include <linux/list.h>
6#include <linux/init.h>
7#include <linux/module.h>
8#include <linux/mm.h>
e1759c21 9#include <linux/seq_file.h>
1da177e4
LT
10#include <linux/sysctl.h>
11#include <linux/highmem.h>
cddb8a5c 12#include <linux/mmu_notifier.h>
1da177e4 13#include <linux/nodemask.h>
63551ae0 14#include <linux/pagemap.h>
5da7ca86 15#include <linux/mempolicy.h>
aea47ff3 16#include <linux/cpuset.h>
3935baa9 17#include <linux/mutex.h>
aa888a74 18#include <linux/bootmem.h>
a3437870 19#include <linux/sysfs.h>
5a0e3ad6 20#include <linux/slab.h>
0fe6e20b 21#include <linux/rmap.h>
fd6a03ed
NH
22#include <linux/swap.h>
23#include <linux/swapops.h>
d6606683 24
63551ae0
DG
25#include <asm/page.h>
26#include <asm/pgtable.h>
32f84528 27#include <linux/io.h>
63551ae0
DG
28
29#include <linux/hugetlb.h>
9a305230 30#include <linux/node.h>
7835e98b 31#include "internal.h"
1da177e4
LT
32
33const unsigned long hugetlb_zero = 0, hugetlb_infinity = ~0UL;
396faf03
MG
34static gfp_t htlb_alloc_mask = GFP_HIGHUSER;
35unsigned long hugepages_treat_as_movable;
a5516438 36
e5ff2159
AK
37static int max_hstate;
38unsigned int default_hstate_idx;
39struct hstate hstates[HUGE_MAX_HSTATE];
40
53ba51d2
JT
41__initdata LIST_HEAD(huge_boot_pages);
42
e5ff2159
AK
43/* for command line parsing */
44static struct hstate * __initdata parsed_hstate;
45static unsigned long __initdata default_hstate_max_huge_pages;
e11bfbfc 46static unsigned long __initdata default_hstate_size;
e5ff2159
AK
47
48#define for_each_hstate(h) \
49 for ((h) = hstates; (h) < &hstates[max_hstate]; (h)++)
396faf03 50
3935baa9
DG
51/*
52 * Protects updates to hugepage_freelists, nr_huge_pages, and free_huge_pages
53 */
54static DEFINE_SPINLOCK(hugetlb_lock);
0bd0f9fb 55
96822904
AW
56/*
57 * Region tracking -- allows tracking of reservations and instantiated pages
58 * across the pages in a mapping.
84afd99b
AW
59 *
60 * The region data structures are protected by a combination of the mmap_sem
61 * and the hugetlb_instantion_mutex. To access or modify a region the caller
62 * must either hold the mmap_sem for write, or the mmap_sem for read and
63 * the hugetlb_instantiation mutex:
64 *
32f84528 65 * down_write(&mm->mmap_sem);
84afd99b 66 * or
32f84528
CF
67 * down_read(&mm->mmap_sem);
68 * mutex_lock(&hugetlb_instantiation_mutex);
96822904
AW
69 */
70struct file_region {
71 struct list_head link;
72 long from;
73 long to;
74};
75
76static long region_add(struct list_head *head, long f, long t)
77{
78 struct file_region *rg, *nrg, *trg;
79
80 /* Locate the region we are either in or before. */
81 list_for_each_entry(rg, head, link)
82 if (f <= rg->to)
83 break;
84
85 /* Round our left edge to the current segment if it encloses us. */
86 if (f > rg->from)
87 f = rg->from;
88
89 /* Check for and consume any regions we now overlap with. */
90 nrg = rg;
91 list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
92 if (&rg->link == head)
93 break;
94 if (rg->from > t)
95 break;
96
97 /* If this area reaches higher then extend our area to
98 * include it completely. If this is not the first area
99 * which we intend to reuse, free it. */
100 if (rg->to > t)
101 t = rg->to;
102 if (rg != nrg) {
103 list_del(&rg->link);
104 kfree(rg);
105 }
106 }
107 nrg->from = f;
108 nrg->to = t;
109 return 0;
110}
111
112static long region_chg(struct list_head *head, long f, long t)
113{
114 struct file_region *rg, *nrg;
115 long chg = 0;
116
117 /* Locate the region we are before or in. */
118 list_for_each_entry(rg, head, link)
119 if (f <= rg->to)
120 break;
121
122 /* If we are below the current region then a new region is required.
123 * Subtle, allocate a new region at the position but make it zero
124 * size such that we can guarantee to record the reservation. */
125 if (&rg->link == head || t < rg->from) {
126 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
127 if (!nrg)
128 return -ENOMEM;
129 nrg->from = f;
130 nrg->to = f;
131 INIT_LIST_HEAD(&nrg->link);
132 list_add(&nrg->link, rg->link.prev);
133
134 return t - f;
135 }
136
137 /* Round our left edge to the current segment if it encloses us. */
138 if (f > rg->from)
139 f = rg->from;
140 chg = t - f;
141
142 /* Check for and consume any regions we now overlap with. */
143 list_for_each_entry(rg, rg->link.prev, link) {
144 if (&rg->link == head)
145 break;
146 if (rg->from > t)
147 return chg;
148
25985edc 149 /* We overlap with this area, if it extends further than
96822904
AW
150 * us then we must extend ourselves. Account for its
151 * existing reservation. */
152 if (rg->to > t) {
153 chg += rg->to - t;
154 t = rg->to;
155 }
156 chg -= rg->to - rg->from;
157 }
158 return chg;
159}
160
161static long region_truncate(struct list_head *head, long end)
162{
163 struct file_region *rg, *trg;
164 long chg = 0;
165
166 /* Locate the region we are either in or before. */
167 list_for_each_entry(rg, head, link)
168 if (end <= rg->to)
169 break;
170 if (&rg->link == head)
171 return 0;
172
173 /* If we are in the middle of a region then adjust it. */
174 if (end > rg->from) {
175 chg = rg->to - end;
176 rg->to = end;
177 rg = list_entry(rg->link.next, typeof(*rg), link);
178 }
179
180 /* Drop any remaining regions. */
181 list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
182 if (&rg->link == head)
183 break;
184 chg += rg->to - rg->from;
185 list_del(&rg->link);
186 kfree(rg);
187 }
188 return chg;
189}
190
84afd99b
AW
191static long region_count(struct list_head *head, long f, long t)
192{
193 struct file_region *rg;
194 long chg = 0;
195
196 /* Locate each segment we overlap with, and count that overlap. */
197 list_for_each_entry(rg, head, link) {
198 int seg_from;
199 int seg_to;
200
201 if (rg->to <= f)
202 continue;
203 if (rg->from >= t)
204 break;
205
206 seg_from = max(rg->from, f);
207 seg_to = min(rg->to, t);
208
209 chg += seg_to - seg_from;
210 }
211
212 return chg;
213}
214
e7c4b0bf
AW
215/*
216 * Convert the address within this vma to the page offset within
217 * the mapping, in pagecache page units; huge pages here.
218 */
a5516438
AK
219static pgoff_t vma_hugecache_offset(struct hstate *h,
220 struct vm_area_struct *vma, unsigned long address)
e7c4b0bf 221{
a5516438
AK
222 return ((address - vma->vm_start) >> huge_page_shift(h)) +
223 (vma->vm_pgoff >> huge_page_order(h));
e7c4b0bf
AW
224}
225
0fe6e20b
NH
226pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
227 unsigned long address)
228{
229 return vma_hugecache_offset(hstate_vma(vma), vma, address);
230}
231
08fba699
MG
232/*
233 * Return the size of the pages allocated when backing a VMA. In the majority
234 * cases this will be same size as used by the page table entries.
235 */
236unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
237{
238 struct hstate *hstate;
239
240 if (!is_vm_hugetlb_page(vma))
241 return PAGE_SIZE;
242
243 hstate = hstate_vma(vma);
244
245 return 1UL << (hstate->order + PAGE_SHIFT);
246}
f340ca0f 247EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
08fba699 248
3340289d
MG
249/*
250 * Return the page size being used by the MMU to back a VMA. In the majority
251 * of cases, the page size used by the kernel matches the MMU size. On
252 * architectures where it differs, an architecture-specific version of this
253 * function is required.
254 */
255#ifndef vma_mmu_pagesize
256unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
257{
258 return vma_kernel_pagesize(vma);
259}
260#endif
261
84afd99b
AW
262/*
263 * Flags for MAP_PRIVATE reservations. These are stored in the bottom
264 * bits of the reservation map pointer, which are always clear due to
265 * alignment.
266 */
267#define HPAGE_RESV_OWNER (1UL << 0)
268#define HPAGE_RESV_UNMAPPED (1UL << 1)
04f2cbe3 269#define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
84afd99b 270
a1e78772
MG
271/*
272 * These helpers are used to track how many pages are reserved for
273 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
274 * is guaranteed to have their future faults succeed.
275 *
276 * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
277 * the reserve counters are updated with the hugetlb_lock held. It is safe
278 * to reset the VMA at fork() time as it is not in use yet and there is no
279 * chance of the global counters getting corrupted as a result of the values.
84afd99b
AW
280 *
281 * The private mapping reservation is represented in a subtly different
282 * manner to a shared mapping. A shared mapping has a region map associated
283 * with the underlying file, this region map represents the backing file
284 * pages which have ever had a reservation assigned which this persists even
285 * after the page is instantiated. A private mapping has a region map
286 * associated with the original mmap which is attached to all VMAs which
287 * reference it, this region map represents those offsets which have consumed
288 * reservation ie. where pages have been instantiated.
a1e78772 289 */
e7c4b0bf
AW
290static unsigned long get_vma_private_data(struct vm_area_struct *vma)
291{
292 return (unsigned long)vma->vm_private_data;
293}
294
295static void set_vma_private_data(struct vm_area_struct *vma,
296 unsigned long value)
297{
298 vma->vm_private_data = (void *)value;
299}
300
84afd99b
AW
301struct resv_map {
302 struct kref refs;
303 struct list_head regions;
304};
305
2a4b3ded 306static struct resv_map *resv_map_alloc(void)
84afd99b
AW
307{
308 struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
309 if (!resv_map)
310 return NULL;
311
312 kref_init(&resv_map->refs);
313 INIT_LIST_HEAD(&resv_map->regions);
314
315 return resv_map;
316}
317
2a4b3ded 318static void resv_map_release(struct kref *ref)
84afd99b
AW
319{
320 struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
321
322 /* Clear out any active regions before we release the map. */
323 region_truncate(&resv_map->regions, 0);
324 kfree(resv_map);
325}
326
327static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
a1e78772
MG
328{
329 VM_BUG_ON(!is_vm_hugetlb_page(vma));
f83a275d 330 if (!(vma->vm_flags & VM_MAYSHARE))
84afd99b
AW
331 return (struct resv_map *)(get_vma_private_data(vma) &
332 ~HPAGE_RESV_MASK);
2a4b3ded 333 return NULL;
a1e78772
MG
334}
335
84afd99b 336static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
a1e78772
MG
337{
338 VM_BUG_ON(!is_vm_hugetlb_page(vma));
f83a275d 339 VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
a1e78772 340
84afd99b
AW
341 set_vma_private_data(vma, (get_vma_private_data(vma) &
342 HPAGE_RESV_MASK) | (unsigned long)map);
04f2cbe3
MG
343}
344
345static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
346{
04f2cbe3 347 VM_BUG_ON(!is_vm_hugetlb_page(vma));
f83a275d 348 VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
e7c4b0bf
AW
349
350 set_vma_private_data(vma, get_vma_private_data(vma) | flags);
04f2cbe3
MG
351}
352
353static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
354{
355 VM_BUG_ON(!is_vm_hugetlb_page(vma));
e7c4b0bf
AW
356
357 return (get_vma_private_data(vma) & flag) != 0;
a1e78772
MG
358}
359
360/* Decrement the reserved pages in the hugepage pool by one */
a5516438
AK
361static void decrement_hugepage_resv_vma(struct hstate *h,
362 struct vm_area_struct *vma)
a1e78772 363{
c37f9fb1
AW
364 if (vma->vm_flags & VM_NORESERVE)
365 return;
366
f83a275d 367 if (vma->vm_flags & VM_MAYSHARE) {
a1e78772 368 /* Shared mappings always use reserves */
a5516438 369 h->resv_huge_pages--;
84afd99b 370 } else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
a1e78772
MG
371 /*
372 * Only the process that called mmap() has reserves for
373 * private mappings.
374 */
a5516438 375 h->resv_huge_pages--;
a1e78772
MG
376 }
377}
378
04f2cbe3 379/* Reset counters to 0 and clear all HPAGE_RESV_* flags */
a1e78772
MG
380void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
381{
382 VM_BUG_ON(!is_vm_hugetlb_page(vma));
f83a275d 383 if (!(vma->vm_flags & VM_MAYSHARE))
a1e78772
MG
384 vma->vm_private_data = (void *)0;
385}
386
387/* Returns true if the VMA has associated reserve pages */
7f09ca51 388static int vma_has_reserves(struct vm_area_struct *vma)
a1e78772 389{
f83a275d 390 if (vma->vm_flags & VM_MAYSHARE)
7f09ca51
MG
391 return 1;
392 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER))
393 return 1;
394 return 0;
a1e78772
MG
395}
396
0ebabb41
NH
397static void copy_gigantic_page(struct page *dst, struct page *src)
398{
399 int i;
400 struct hstate *h = page_hstate(src);
401 struct page *dst_base = dst;
402 struct page *src_base = src;
403
404 for (i = 0; i < pages_per_huge_page(h); ) {
405 cond_resched();
406 copy_highpage(dst, src);
407
408 i++;
409 dst = mem_map_next(dst, dst_base, i);
410 src = mem_map_next(src, src_base, i);
411 }
412}
413
414void copy_huge_page(struct page *dst, struct page *src)
415{
416 int i;
417 struct hstate *h = page_hstate(src);
418
419 if (unlikely(pages_per_huge_page(h) > MAX_ORDER_NR_PAGES)) {
420 copy_gigantic_page(dst, src);
421 return;
422 }
423
424 might_sleep();
425 for (i = 0; i < pages_per_huge_page(h); i++) {
426 cond_resched();
427 copy_highpage(dst + i, src + i);
428 }
429}
430
a5516438 431static void enqueue_huge_page(struct hstate *h, struct page *page)
1da177e4
LT
432{
433 int nid = page_to_nid(page);
a5516438
AK
434 list_add(&page->lru, &h->hugepage_freelists[nid]);
435 h->free_huge_pages++;
436 h->free_huge_pages_node[nid]++;
1da177e4
LT
437}
438
bf50bab2
NH
439static struct page *dequeue_huge_page_node(struct hstate *h, int nid)
440{
441 struct page *page;
442
443 if (list_empty(&h->hugepage_freelists[nid]))
444 return NULL;
445 page = list_entry(h->hugepage_freelists[nid].next, struct page, lru);
446 list_del(&page->lru);
a9869b83 447 set_page_refcounted(page);
bf50bab2
NH
448 h->free_huge_pages--;
449 h->free_huge_pages_node[nid]--;
450 return page;
451}
452
a5516438
AK
453static struct page *dequeue_huge_page_vma(struct hstate *h,
454 struct vm_area_struct *vma,
04f2cbe3 455 unsigned long address, int avoid_reserve)
1da177e4 456{
1da177e4 457 struct page *page = NULL;
480eccf9 458 struct mempolicy *mpol;
19770b32 459 nodemask_t *nodemask;
c0ff7453 460 struct zonelist *zonelist;
dd1a239f
MG
461 struct zone *zone;
462 struct zoneref *z;
1da177e4 463
c0ff7453
MX
464 get_mems_allowed();
465 zonelist = huge_zonelist(vma, address,
466 htlb_alloc_mask, &mpol, &nodemask);
a1e78772
MG
467 /*
468 * A child process with MAP_PRIVATE mappings created by their parent
469 * have no page reserves. This check ensures that reservations are
470 * not "stolen". The child may still get SIGKILLed
471 */
7f09ca51 472 if (!vma_has_reserves(vma) &&
a5516438 473 h->free_huge_pages - h->resv_huge_pages == 0)
c0ff7453 474 goto err;
a1e78772 475
04f2cbe3 476 /* If reserves cannot be used, ensure enough pages are in the pool */
a5516438 477 if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
6eab04a8 478 goto err;
04f2cbe3 479
19770b32
MG
480 for_each_zone_zonelist_nodemask(zone, z, zonelist,
481 MAX_NR_ZONES - 1, nodemask) {
bf50bab2
NH
482 if (cpuset_zone_allowed_softwall(zone, htlb_alloc_mask)) {
483 page = dequeue_huge_page_node(h, zone_to_nid(zone));
484 if (page) {
485 if (!avoid_reserve)
486 decrement_hugepage_resv_vma(h, vma);
487 break;
488 }
3abf7afd 489 }
1da177e4 490 }
c0ff7453 491err:
52cd3b07 492 mpol_cond_put(mpol);
c0ff7453 493 put_mems_allowed();
1da177e4
LT
494 return page;
495}
496
a5516438 497static void update_and_free_page(struct hstate *h, struct page *page)
6af2acb6
AL
498{
499 int i;
a5516438 500
18229df5
AW
501 VM_BUG_ON(h->order >= MAX_ORDER);
502
a5516438
AK
503 h->nr_huge_pages--;
504 h->nr_huge_pages_node[page_to_nid(page)]--;
505 for (i = 0; i < pages_per_huge_page(h); i++) {
32f84528
CF
506 page[i].flags &= ~(1 << PG_locked | 1 << PG_error |
507 1 << PG_referenced | 1 << PG_dirty |
508 1 << PG_active | 1 << PG_reserved |
509 1 << PG_private | 1 << PG_writeback);
6af2acb6
AL
510 }
511 set_compound_page_dtor(page, NULL);
512 set_page_refcounted(page);
7f2e9525 513 arch_release_hugepage(page);
a5516438 514 __free_pages(page, huge_page_order(h));
6af2acb6
AL
515}
516
e5ff2159
AK
517struct hstate *size_to_hstate(unsigned long size)
518{
519 struct hstate *h;
520
521 for_each_hstate(h) {
522 if (huge_page_size(h) == size)
523 return h;
524 }
525 return NULL;
526}
527
27a85ef1
DG
528static void free_huge_page(struct page *page)
529{
a5516438
AK
530 /*
531 * Can't pass hstate in here because it is called from the
532 * compound page destructor.
533 */
e5ff2159 534 struct hstate *h = page_hstate(page);
7893d1d5 535 int nid = page_to_nid(page);
c79fb75e 536 struct address_space *mapping;
27a85ef1 537
c79fb75e 538 mapping = (struct address_space *) page_private(page);
e5df70ab 539 set_page_private(page, 0);
23be7468 540 page->mapping = NULL;
7893d1d5 541 BUG_ON(page_count(page));
0fe6e20b 542 BUG_ON(page_mapcount(page));
27a85ef1
DG
543 INIT_LIST_HEAD(&page->lru);
544
545 spin_lock(&hugetlb_lock);
aa888a74 546 if (h->surplus_huge_pages_node[nid] && huge_page_order(h) < MAX_ORDER) {
a5516438
AK
547 update_and_free_page(h, page);
548 h->surplus_huge_pages--;
549 h->surplus_huge_pages_node[nid]--;
7893d1d5 550 } else {
a5516438 551 enqueue_huge_page(h, page);
7893d1d5 552 }
27a85ef1 553 spin_unlock(&hugetlb_lock);
c79fb75e 554 if (mapping)
9a119c05 555 hugetlb_put_quota(mapping, 1);
27a85ef1
DG
556}
557
a5516438 558static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
b7ba30c6
AK
559{
560 set_compound_page_dtor(page, free_huge_page);
561 spin_lock(&hugetlb_lock);
a5516438
AK
562 h->nr_huge_pages++;
563 h->nr_huge_pages_node[nid]++;
b7ba30c6
AK
564 spin_unlock(&hugetlb_lock);
565 put_page(page); /* free it into the hugepage allocator */
566}
567
20a0307c
WF
568static void prep_compound_gigantic_page(struct page *page, unsigned long order)
569{
570 int i;
571 int nr_pages = 1 << order;
572 struct page *p = page + 1;
573
574 /* we rely on prep_new_huge_page to set the destructor */
575 set_compound_order(page, order);
576 __SetPageHead(page);
577 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
578 __SetPageTail(p);
58a84aa9 579 set_page_count(p, 0);
20a0307c
WF
580 p->first_page = page;
581 }
582}
583
584int PageHuge(struct page *page)
585{
586 compound_page_dtor *dtor;
587
588 if (!PageCompound(page))
589 return 0;
590
591 page = compound_head(page);
592 dtor = get_compound_page_dtor(page);
593
594 return dtor == free_huge_page;
595}
43131e14
NH
596EXPORT_SYMBOL_GPL(PageHuge);
597
a5516438 598static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid)
1da177e4 599{
1da177e4 600 struct page *page;
f96efd58 601
aa888a74
AK
602 if (h->order >= MAX_ORDER)
603 return NULL;
604
6484eb3e 605 page = alloc_pages_exact_node(nid,
551883ae
NA
606 htlb_alloc_mask|__GFP_COMP|__GFP_THISNODE|
607 __GFP_REPEAT|__GFP_NOWARN,
a5516438 608 huge_page_order(h));
1da177e4 609 if (page) {
7f2e9525 610 if (arch_prepare_hugepage(page)) {
caff3a2c 611 __free_pages(page, huge_page_order(h));
7b8ee84d 612 return NULL;
7f2e9525 613 }
a5516438 614 prep_new_huge_page(h, page, nid);
1da177e4 615 }
63b4613c
NA
616
617 return page;
618}
619
9a76db09 620/*
6ae11b27
LS
621 * common helper functions for hstate_next_node_to_{alloc|free}.
622 * We may have allocated or freed a huge page based on a different
623 * nodes_allowed previously, so h->next_node_to_{alloc|free} might
624 * be outside of *nodes_allowed. Ensure that we use an allowed
625 * node for alloc or free.
9a76db09 626 */
6ae11b27 627static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
9a76db09 628{
6ae11b27 629 nid = next_node(nid, *nodes_allowed);
9a76db09 630 if (nid == MAX_NUMNODES)
6ae11b27 631 nid = first_node(*nodes_allowed);
9a76db09
LS
632 VM_BUG_ON(nid >= MAX_NUMNODES);
633
634 return nid;
635}
636
6ae11b27
LS
637static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
638{
639 if (!node_isset(nid, *nodes_allowed))
640 nid = next_node_allowed(nid, nodes_allowed);
641 return nid;
642}
643
5ced66c9 644/*
6ae11b27
LS
645 * returns the previously saved node ["this node"] from which to
646 * allocate a persistent huge page for the pool and advance the
647 * next node from which to allocate, handling wrap at end of node
648 * mask.
5ced66c9 649 */
6ae11b27
LS
650static int hstate_next_node_to_alloc(struct hstate *h,
651 nodemask_t *nodes_allowed)
5ced66c9 652{
6ae11b27
LS
653 int nid;
654
655 VM_BUG_ON(!nodes_allowed);
656
657 nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
658 h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
9a76db09 659
9a76db09 660 return nid;
5ced66c9
AK
661}
662
6ae11b27 663static int alloc_fresh_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
63b4613c
NA
664{
665 struct page *page;
666 int start_nid;
667 int next_nid;
668 int ret = 0;
669
6ae11b27 670 start_nid = hstate_next_node_to_alloc(h, nodes_allowed);
e8c5c824 671 next_nid = start_nid;
63b4613c
NA
672
673 do {
e8c5c824 674 page = alloc_fresh_huge_page_node(h, next_nid);
9a76db09 675 if (page) {
63b4613c 676 ret = 1;
9a76db09
LS
677 break;
678 }
6ae11b27 679 next_nid = hstate_next_node_to_alloc(h, nodes_allowed);
9a76db09 680 } while (next_nid != start_nid);
63b4613c 681
3b116300
AL
682 if (ret)
683 count_vm_event(HTLB_BUDDY_PGALLOC);
684 else
685 count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
686
63b4613c 687 return ret;
1da177e4
LT
688}
689
e8c5c824 690/*
6ae11b27
LS
691 * helper for free_pool_huge_page() - return the previously saved
692 * node ["this node"] from which to free a huge page. Advance the
693 * next node id whether or not we find a free huge page to free so
694 * that the next attempt to free addresses the next node.
e8c5c824 695 */
6ae11b27 696static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
e8c5c824 697{
6ae11b27
LS
698 int nid;
699
700 VM_BUG_ON(!nodes_allowed);
701
702 nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
703 h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
9a76db09 704
9a76db09 705 return nid;
e8c5c824
LS
706}
707
708/*
709 * Free huge page from pool from next node to free.
710 * Attempt to keep persistent huge pages more or less
711 * balanced over allowed nodes.
712 * Called with hugetlb_lock locked.
713 */
6ae11b27
LS
714static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
715 bool acct_surplus)
e8c5c824
LS
716{
717 int start_nid;
718 int next_nid;
719 int ret = 0;
720
6ae11b27 721 start_nid = hstate_next_node_to_free(h, nodes_allowed);
e8c5c824
LS
722 next_nid = start_nid;
723
724 do {
685f3457
LS
725 /*
726 * If we're returning unused surplus pages, only examine
727 * nodes with surplus pages.
728 */
729 if ((!acct_surplus || h->surplus_huge_pages_node[next_nid]) &&
730 !list_empty(&h->hugepage_freelists[next_nid])) {
e8c5c824
LS
731 struct page *page =
732 list_entry(h->hugepage_freelists[next_nid].next,
733 struct page, lru);
734 list_del(&page->lru);
735 h->free_huge_pages--;
736 h->free_huge_pages_node[next_nid]--;
685f3457
LS
737 if (acct_surplus) {
738 h->surplus_huge_pages--;
739 h->surplus_huge_pages_node[next_nid]--;
740 }
e8c5c824
LS
741 update_and_free_page(h, page);
742 ret = 1;
9a76db09 743 break;
e8c5c824 744 }
6ae11b27 745 next_nid = hstate_next_node_to_free(h, nodes_allowed);
9a76db09 746 } while (next_nid != start_nid);
e8c5c824
LS
747
748 return ret;
749}
750
bf50bab2 751static struct page *alloc_buddy_huge_page(struct hstate *h, int nid)
7893d1d5
AL
752{
753 struct page *page;
bf50bab2 754 unsigned int r_nid;
7893d1d5 755
aa888a74
AK
756 if (h->order >= MAX_ORDER)
757 return NULL;
758
d1c3fb1f
NA
759 /*
760 * Assume we will successfully allocate the surplus page to
761 * prevent racing processes from causing the surplus to exceed
762 * overcommit
763 *
764 * This however introduces a different race, where a process B
765 * tries to grow the static hugepage pool while alloc_pages() is
766 * called by process A. B will only examine the per-node
767 * counters in determining if surplus huge pages can be
768 * converted to normal huge pages in adjust_pool_surplus(). A
769 * won't be able to increment the per-node counter, until the
770 * lock is dropped by B, but B doesn't drop hugetlb_lock until
771 * no more huge pages can be converted from surplus to normal
772 * state (and doesn't try to convert again). Thus, we have a
773 * case where a surplus huge page exists, the pool is grown, and
774 * the surplus huge page still exists after, even though it
775 * should just have been converted to a normal huge page. This
776 * does not leak memory, though, as the hugepage will be freed
777 * once it is out of use. It also does not allow the counters to
778 * go out of whack in adjust_pool_surplus() as we don't modify
779 * the node values until we've gotten the hugepage and only the
780 * per-node value is checked there.
781 */
782 spin_lock(&hugetlb_lock);
a5516438 783 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
d1c3fb1f
NA
784 spin_unlock(&hugetlb_lock);
785 return NULL;
786 } else {
a5516438
AK
787 h->nr_huge_pages++;
788 h->surplus_huge_pages++;
d1c3fb1f
NA
789 }
790 spin_unlock(&hugetlb_lock);
791
bf50bab2
NH
792 if (nid == NUMA_NO_NODE)
793 page = alloc_pages(htlb_alloc_mask|__GFP_COMP|
794 __GFP_REPEAT|__GFP_NOWARN,
795 huge_page_order(h));
796 else
797 page = alloc_pages_exact_node(nid,
798 htlb_alloc_mask|__GFP_COMP|__GFP_THISNODE|
799 __GFP_REPEAT|__GFP_NOWARN, huge_page_order(h));
d1c3fb1f 800
caff3a2c
GS
801 if (page && arch_prepare_hugepage(page)) {
802 __free_pages(page, huge_page_order(h));
ea5768c7 803 page = NULL;
caff3a2c
GS
804 }
805
d1c3fb1f 806 spin_lock(&hugetlb_lock);
7893d1d5 807 if (page) {
bf50bab2 808 r_nid = page_to_nid(page);
7893d1d5 809 set_compound_page_dtor(page, free_huge_page);
d1c3fb1f
NA
810 /*
811 * We incremented the global counters already
812 */
bf50bab2
NH
813 h->nr_huge_pages_node[r_nid]++;
814 h->surplus_huge_pages_node[r_nid]++;
3b116300 815 __count_vm_event(HTLB_BUDDY_PGALLOC);
d1c3fb1f 816 } else {
a5516438
AK
817 h->nr_huge_pages--;
818 h->surplus_huge_pages--;
3b116300 819 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
7893d1d5 820 }
d1c3fb1f 821 spin_unlock(&hugetlb_lock);
7893d1d5
AL
822
823 return page;
824}
825
bf50bab2
NH
826/*
827 * This allocation function is useful in the context where vma is irrelevant.
828 * E.g. soft-offlining uses this function because it only cares physical
829 * address of error page.
830 */
831struct page *alloc_huge_page_node(struct hstate *h, int nid)
832{
833 struct page *page;
834
835 spin_lock(&hugetlb_lock);
836 page = dequeue_huge_page_node(h, nid);
837 spin_unlock(&hugetlb_lock);
838
839 if (!page)
840 page = alloc_buddy_huge_page(h, nid);
841
842 return page;
843}
844
e4e574b7 845/*
25985edc 846 * Increase the hugetlb pool such that it can accommodate a reservation
e4e574b7
AL
847 * of size 'delta'.
848 */
a5516438 849static int gather_surplus_pages(struct hstate *h, int delta)
e4e574b7
AL
850{
851 struct list_head surplus_list;
852 struct page *page, *tmp;
853 int ret, i;
854 int needed, allocated;
28073b02 855 bool alloc_ok = true;
e4e574b7 856
a5516438 857 needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
ac09b3a1 858 if (needed <= 0) {
a5516438 859 h->resv_huge_pages += delta;
e4e574b7 860 return 0;
ac09b3a1 861 }
e4e574b7
AL
862
863 allocated = 0;
864 INIT_LIST_HEAD(&surplus_list);
865
866 ret = -ENOMEM;
867retry:
868 spin_unlock(&hugetlb_lock);
869 for (i = 0; i < needed; i++) {
bf50bab2 870 page = alloc_buddy_huge_page(h, NUMA_NO_NODE);
28073b02
HD
871 if (!page) {
872 alloc_ok = false;
873 break;
874 }
e4e574b7
AL
875 list_add(&page->lru, &surplus_list);
876 }
28073b02 877 allocated += i;
e4e574b7
AL
878
879 /*
880 * After retaking hugetlb_lock, we need to recalculate 'needed'
881 * because either resv_huge_pages or free_huge_pages may have changed.
882 */
883 spin_lock(&hugetlb_lock);
a5516438
AK
884 needed = (h->resv_huge_pages + delta) -
885 (h->free_huge_pages + allocated);
28073b02
HD
886 if (needed > 0) {
887 if (alloc_ok)
888 goto retry;
889 /*
890 * We were not able to allocate enough pages to
891 * satisfy the entire reservation so we free what
892 * we've allocated so far.
893 */
894 goto free;
895 }
e4e574b7
AL
896 /*
897 * The surplus_list now contains _at_least_ the number of extra pages
25985edc 898 * needed to accommodate the reservation. Add the appropriate number
e4e574b7 899 * of pages to the hugetlb pool and free the extras back to the buddy
ac09b3a1
AL
900 * allocator. Commit the entire reservation here to prevent another
901 * process from stealing the pages as they are added to the pool but
902 * before they are reserved.
e4e574b7
AL
903 */
904 needed += allocated;
a5516438 905 h->resv_huge_pages += delta;
e4e574b7 906 ret = 0;
a9869b83 907
19fc3f0a 908 /* Free the needed pages to the hugetlb pool */
e4e574b7 909 list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
19fc3f0a
AL
910 if ((--needed) < 0)
911 break;
e4e574b7 912 list_del(&page->lru);
a9869b83
NH
913 /*
914 * This page is now managed by the hugetlb allocator and has
915 * no users -- drop the buddy allocator's reference.
916 */
917 put_page_testzero(page);
918 VM_BUG_ON(page_count(page));
a5516438 919 enqueue_huge_page(h, page);
19fc3f0a 920 }
28073b02 921free:
b0365c8d 922 spin_unlock(&hugetlb_lock);
19fc3f0a
AL
923
924 /* Free unnecessary surplus pages to the buddy allocator */
925 if (!list_empty(&surplus_list)) {
19fc3f0a
AL
926 list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
927 list_del(&page->lru);
a9869b83 928 put_page(page);
af767cbd 929 }
e4e574b7 930 }
a9869b83 931 spin_lock(&hugetlb_lock);
e4e574b7
AL
932
933 return ret;
934}
935
936/*
937 * When releasing a hugetlb pool reservation, any surplus pages that were
938 * allocated to satisfy the reservation must be explicitly freed if they were
939 * never used.
685f3457 940 * Called with hugetlb_lock held.
e4e574b7 941 */
a5516438
AK
942static void return_unused_surplus_pages(struct hstate *h,
943 unsigned long unused_resv_pages)
e4e574b7 944{
e4e574b7
AL
945 unsigned long nr_pages;
946
ac09b3a1 947 /* Uncommit the reservation */
a5516438 948 h->resv_huge_pages -= unused_resv_pages;
ac09b3a1 949
aa888a74
AK
950 /* Cannot return gigantic pages currently */
951 if (h->order >= MAX_ORDER)
952 return;
953
a5516438 954 nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
e4e574b7 955
685f3457
LS
956 /*
957 * We want to release as many surplus pages as possible, spread
9b5e5d0f
LS
958 * evenly across all nodes with memory. Iterate across these nodes
959 * until we can no longer free unreserved surplus pages. This occurs
960 * when the nodes with surplus pages have no free pages.
961 * free_pool_huge_page() will balance the the freed pages across the
962 * on-line nodes with memory and will handle the hstate accounting.
685f3457
LS
963 */
964 while (nr_pages--) {
9b5e5d0f 965 if (!free_pool_huge_page(h, &node_states[N_HIGH_MEMORY], 1))
685f3457 966 break;
e4e574b7
AL
967 }
968}
969
c37f9fb1
AW
970/*
971 * Determine if the huge page at addr within the vma has an associated
972 * reservation. Where it does not we will need to logically increase
973 * reservation and actually increase quota before an allocation can occur.
974 * Where any new reservation would be required the reservation change is
975 * prepared, but not committed. Once the page has been quota'd allocated
976 * an instantiated the change should be committed via vma_commit_reservation.
977 * No action is required on failure.
978 */
e2f17d94 979static long vma_needs_reservation(struct hstate *h,
a5516438 980 struct vm_area_struct *vma, unsigned long addr)
c37f9fb1
AW
981{
982 struct address_space *mapping = vma->vm_file->f_mapping;
983 struct inode *inode = mapping->host;
984
f83a275d 985 if (vma->vm_flags & VM_MAYSHARE) {
a5516438 986 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
c37f9fb1
AW
987 return region_chg(&inode->i_mapping->private_list,
988 idx, idx + 1);
989
84afd99b
AW
990 } else if (!is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
991 return 1;
c37f9fb1 992
84afd99b 993 } else {
e2f17d94 994 long err;
a5516438 995 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
84afd99b
AW
996 struct resv_map *reservations = vma_resv_map(vma);
997
998 err = region_chg(&reservations->regions, idx, idx + 1);
999 if (err < 0)
1000 return err;
1001 return 0;
1002 }
c37f9fb1 1003}
a5516438
AK
1004static void vma_commit_reservation(struct hstate *h,
1005 struct vm_area_struct *vma, unsigned long addr)
c37f9fb1
AW
1006{
1007 struct address_space *mapping = vma->vm_file->f_mapping;
1008 struct inode *inode = mapping->host;
1009
f83a275d 1010 if (vma->vm_flags & VM_MAYSHARE) {
a5516438 1011 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
c37f9fb1 1012 region_add(&inode->i_mapping->private_list, idx, idx + 1);
84afd99b
AW
1013
1014 } else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
a5516438 1015 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
84afd99b
AW
1016 struct resv_map *reservations = vma_resv_map(vma);
1017
1018 /* Mark this page used in the map. */
1019 region_add(&reservations->regions, idx, idx + 1);
c37f9fb1
AW
1020 }
1021}
1022
a1e78772 1023static struct page *alloc_huge_page(struct vm_area_struct *vma,
04f2cbe3 1024 unsigned long addr, int avoid_reserve)
1da177e4 1025{
a5516438 1026 struct hstate *h = hstate_vma(vma);
348ea204 1027 struct page *page;
a1e78772
MG
1028 struct address_space *mapping = vma->vm_file->f_mapping;
1029 struct inode *inode = mapping->host;
e2f17d94 1030 long chg;
a1e78772
MG
1031
1032 /*
1033 * Processes that did not create the mapping will have no reserves and
1034 * will not have accounted against quota. Check that the quota can be
1035 * made before satisfying the allocation
c37f9fb1
AW
1036 * MAP_NORESERVE mappings may also need pages and quota allocated
1037 * if no reserve mapping overlaps.
a1e78772 1038 */
a5516438 1039 chg = vma_needs_reservation(h, vma, addr);
c37f9fb1 1040 if (chg < 0)
e0dcd8a0 1041 return ERR_PTR(-VM_FAULT_OOM);
c37f9fb1 1042 if (chg)
a1e78772 1043 if (hugetlb_get_quota(inode->i_mapping, chg))
e0dcd8a0 1044 return ERR_PTR(-VM_FAULT_SIGBUS);
1da177e4
LT
1045
1046 spin_lock(&hugetlb_lock);
a5516438 1047 page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve);
1da177e4 1048 spin_unlock(&hugetlb_lock);
b45b5bd6 1049
68842c9b 1050 if (!page) {
bf50bab2 1051 page = alloc_buddy_huge_page(h, NUMA_NO_NODE);
68842c9b 1052 if (!page) {
a1e78772 1053 hugetlb_put_quota(inode->i_mapping, chg);
4a6018f7 1054 return ERR_PTR(-VM_FAULT_SIGBUS);
68842c9b
KC
1055 }
1056 }
348ea204 1057
a1e78772 1058 set_page_private(page, (unsigned long) mapping);
90d8b7e6 1059
a5516438 1060 vma_commit_reservation(h, vma, addr);
c37f9fb1 1061
90d8b7e6 1062 return page;
b45b5bd6
DG
1063}
1064
91f47662 1065int __weak alloc_bootmem_huge_page(struct hstate *h)
aa888a74
AK
1066{
1067 struct huge_bootmem_page *m;
9b5e5d0f 1068 int nr_nodes = nodes_weight(node_states[N_HIGH_MEMORY]);
aa888a74
AK
1069
1070 while (nr_nodes) {
1071 void *addr;
1072
1073 addr = __alloc_bootmem_node_nopanic(
6ae11b27 1074 NODE_DATA(hstate_next_node_to_alloc(h,
9b5e5d0f 1075 &node_states[N_HIGH_MEMORY])),
aa888a74
AK
1076 huge_page_size(h), huge_page_size(h), 0);
1077
1078 if (addr) {
1079 /*
1080 * Use the beginning of the huge page to store the
1081 * huge_bootmem_page struct (until gather_bootmem
1082 * puts them into the mem_map).
1083 */
1084 m = addr;
91f47662 1085 goto found;
aa888a74 1086 }
aa888a74
AK
1087 nr_nodes--;
1088 }
1089 return 0;
1090
1091found:
1092 BUG_ON((unsigned long)virt_to_phys(m) & (huge_page_size(h) - 1));
1093 /* Put them into a private list first because mem_map is not up yet */
1094 list_add(&m->list, &huge_boot_pages);
1095 m->hstate = h;
1096 return 1;
1097}
1098
18229df5
AW
1099static void prep_compound_huge_page(struct page *page, int order)
1100{
1101 if (unlikely(order > (MAX_ORDER - 1)))
1102 prep_compound_gigantic_page(page, order);
1103 else
1104 prep_compound_page(page, order);
1105}
1106
aa888a74
AK
1107/* Put bootmem huge pages into the standard lists after mem_map is up */
1108static void __init gather_bootmem_prealloc(void)
1109{
1110 struct huge_bootmem_page *m;
1111
1112 list_for_each_entry(m, &huge_boot_pages, list) {
aa888a74 1113 struct hstate *h = m->hstate;
ee8f248d
BB
1114 struct page *page;
1115
1116#ifdef CONFIG_HIGHMEM
1117 page = pfn_to_page(m->phys >> PAGE_SHIFT);
1118 free_bootmem_late((unsigned long)m,
1119 sizeof(struct huge_bootmem_page));
1120#else
1121 page = virt_to_page(m);
1122#endif
aa888a74
AK
1123 __ClearPageReserved(page);
1124 WARN_ON(page_count(page) != 1);
18229df5 1125 prep_compound_huge_page(page, h->order);
aa888a74 1126 prep_new_huge_page(h, page, page_to_nid(page));
b0320c7b
RA
1127 /*
1128 * If we had gigantic hugepages allocated at boot time, we need
1129 * to restore the 'stolen' pages to totalram_pages in order to
1130 * fix confusing memory reports from free(1) and another
1131 * side-effects, like CommitLimit going negative.
1132 */
1133 if (h->order > (MAX_ORDER - 1))
1134 totalram_pages += 1 << h->order;
aa888a74
AK
1135 }
1136}
1137
8faa8b07 1138static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
1da177e4
LT
1139{
1140 unsigned long i;
a5516438 1141
e5ff2159 1142 for (i = 0; i < h->max_huge_pages; ++i) {
aa888a74
AK
1143 if (h->order >= MAX_ORDER) {
1144 if (!alloc_bootmem_huge_page(h))
1145 break;
9b5e5d0f
LS
1146 } else if (!alloc_fresh_huge_page(h,
1147 &node_states[N_HIGH_MEMORY]))
1da177e4 1148 break;
1da177e4 1149 }
8faa8b07 1150 h->max_huge_pages = i;
e5ff2159
AK
1151}
1152
1153static void __init hugetlb_init_hstates(void)
1154{
1155 struct hstate *h;
1156
1157 for_each_hstate(h) {
8faa8b07
AK
1158 /* oversize hugepages were init'ed in early boot */
1159 if (h->order < MAX_ORDER)
1160 hugetlb_hstate_alloc_pages(h);
e5ff2159
AK
1161 }
1162}
1163
4abd32db
AK
1164static char * __init memfmt(char *buf, unsigned long n)
1165{
1166 if (n >= (1UL << 30))
1167 sprintf(buf, "%lu GB", n >> 30);
1168 else if (n >= (1UL << 20))
1169 sprintf(buf, "%lu MB", n >> 20);
1170 else
1171 sprintf(buf, "%lu KB", n >> 10);
1172 return buf;
1173}
1174
e5ff2159
AK
1175static void __init report_hugepages(void)
1176{
1177 struct hstate *h;
1178
1179 for_each_hstate(h) {
4abd32db
AK
1180 char buf[32];
1181 printk(KERN_INFO "HugeTLB registered %s page size, "
1182 "pre-allocated %ld pages\n",
1183 memfmt(buf, huge_page_size(h)),
1184 h->free_huge_pages);
e5ff2159
AK
1185 }
1186}
1187
1da177e4 1188#ifdef CONFIG_HIGHMEM
6ae11b27
LS
1189static void try_to_free_low(struct hstate *h, unsigned long count,
1190 nodemask_t *nodes_allowed)
1da177e4 1191{
4415cc8d
CL
1192 int i;
1193
aa888a74
AK
1194 if (h->order >= MAX_ORDER)
1195 return;
1196
6ae11b27 1197 for_each_node_mask(i, *nodes_allowed) {
1da177e4 1198 struct page *page, *next;
a5516438
AK
1199 struct list_head *freel = &h->hugepage_freelists[i];
1200 list_for_each_entry_safe(page, next, freel, lru) {
1201 if (count >= h->nr_huge_pages)
6b0c880d 1202 return;
1da177e4
LT
1203 if (PageHighMem(page))
1204 continue;
1205 list_del(&page->lru);
e5ff2159 1206 update_and_free_page(h, page);
a5516438
AK
1207 h->free_huge_pages--;
1208 h->free_huge_pages_node[page_to_nid(page)]--;
1da177e4
LT
1209 }
1210 }
1211}
1212#else
6ae11b27
LS
1213static inline void try_to_free_low(struct hstate *h, unsigned long count,
1214 nodemask_t *nodes_allowed)
1da177e4
LT
1215{
1216}
1217#endif
1218
20a0307c
WF
1219/*
1220 * Increment or decrement surplus_huge_pages. Keep node-specific counters
1221 * balanced by operating on them in a round-robin fashion.
1222 * Returns 1 if an adjustment was made.
1223 */
6ae11b27
LS
1224static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
1225 int delta)
20a0307c 1226{
e8c5c824 1227 int start_nid, next_nid;
20a0307c
WF
1228 int ret = 0;
1229
1230 VM_BUG_ON(delta != -1 && delta != 1);
20a0307c 1231
e8c5c824 1232 if (delta < 0)
6ae11b27 1233 start_nid = hstate_next_node_to_alloc(h, nodes_allowed);
e8c5c824 1234 else
6ae11b27 1235 start_nid = hstate_next_node_to_free(h, nodes_allowed);
e8c5c824
LS
1236 next_nid = start_nid;
1237
1238 do {
1239 int nid = next_nid;
1240 if (delta < 0) {
e8c5c824
LS
1241 /*
1242 * To shrink on this node, there must be a surplus page
1243 */
9a76db09 1244 if (!h->surplus_huge_pages_node[nid]) {
6ae11b27
LS
1245 next_nid = hstate_next_node_to_alloc(h,
1246 nodes_allowed);
e8c5c824 1247 continue;
9a76db09 1248 }
e8c5c824
LS
1249 }
1250 if (delta > 0) {
e8c5c824
LS
1251 /*
1252 * Surplus cannot exceed the total number of pages
1253 */
1254 if (h->surplus_huge_pages_node[nid] >=
9a76db09 1255 h->nr_huge_pages_node[nid]) {
6ae11b27
LS
1256 next_nid = hstate_next_node_to_free(h,
1257 nodes_allowed);
e8c5c824 1258 continue;
9a76db09 1259 }
e8c5c824 1260 }
20a0307c
WF
1261
1262 h->surplus_huge_pages += delta;
1263 h->surplus_huge_pages_node[nid] += delta;
1264 ret = 1;
1265 break;
e8c5c824 1266 } while (next_nid != start_nid);
20a0307c 1267
20a0307c
WF
1268 return ret;
1269}
1270
a5516438 1271#define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
6ae11b27
LS
1272static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count,
1273 nodemask_t *nodes_allowed)
1da177e4 1274{
7893d1d5 1275 unsigned long min_count, ret;
1da177e4 1276
aa888a74
AK
1277 if (h->order >= MAX_ORDER)
1278 return h->max_huge_pages;
1279
7893d1d5
AL
1280 /*
1281 * Increase the pool size
1282 * First take pages out of surplus state. Then make up the
1283 * remaining difference by allocating fresh huge pages.
d1c3fb1f
NA
1284 *
1285 * We might race with alloc_buddy_huge_page() here and be unable
1286 * to convert a surplus huge page to a normal huge page. That is
1287 * not critical, though, it just means the overall size of the
1288 * pool might be one hugepage larger than it needs to be, but
1289 * within all the constraints specified by the sysctls.
7893d1d5 1290 */
1da177e4 1291 spin_lock(&hugetlb_lock);
a5516438 1292 while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
6ae11b27 1293 if (!adjust_pool_surplus(h, nodes_allowed, -1))
7893d1d5
AL
1294 break;
1295 }
1296
a5516438 1297 while (count > persistent_huge_pages(h)) {
7893d1d5
AL
1298 /*
1299 * If this allocation races such that we no longer need the
1300 * page, free_huge_page will handle it by freeing the page
1301 * and reducing the surplus.
1302 */
1303 spin_unlock(&hugetlb_lock);
6ae11b27 1304 ret = alloc_fresh_huge_page(h, nodes_allowed);
7893d1d5
AL
1305 spin_lock(&hugetlb_lock);
1306 if (!ret)
1307 goto out;
1308
536240f2
MG
1309 /* Bail for signals. Probably ctrl-c from user */
1310 if (signal_pending(current))
1311 goto out;
7893d1d5 1312 }
7893d1d5
AL
1313
1314 /*
1315 * Decrease the pool size
1316 * First return free pages to the buddy allocator (being careful
1317 * to keep enough around to satisfy reservations). Then place
1318 * pages into surplus state as needed so the pool will shrink
1319 * to the desired size as pages become free.
d1c3fb1f
NA
1320 *
1321 * By placing pages into the surplus state independent of the
1322 * overcommit value, we are allowing the surplus pool size to
1323 * exceed overcommit. There are few sane options here. Since
1324 * alloc_buddy_huge_page() is checking the global counter,
1325 * though, we'll note that we're not allowed to exceed surplus
1326 * and won't grow the pool anywhere else. Not until one of the
1327 * sysctls are changed, or the surplus pages go out of use.
7893d1d5 1328 */
a5516438 1329 min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
6b0c880d 1330 min_count = max(count, min_count);
6ae11b27 1331 try_to_free_low(h, min_count, nodes_allowed);
a5516438 1332 while (min_count < persistent_huge_pages(h)) {
6ae11b27 1333 if (!free_pool_huge_page(h, nodes_allowed, 0))
1da177e4 1334 break;
1da177e4 1335 }
a5516438 1336 while (count < persistent_huge_pages(h)) {
6ae11b27 1337 if (!adjust_pool_surplus(h, nodes_allowed, 1))
7893d1d5
AL
1338 break;
1339 }
1340out:
a5516438 1341 ret = persistent_huge_pages(h);
1da177e4 1342 spin_unlock(&hugetlb_lock);
7893d1d5 1343 return ret;
1da177e4
LT
1344}
1345
a3437870
NA
1346#define HSTATE_ATTR_RO(_name) \
1347 static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
1348
1349#define HSTATE_ATTR(_name) \
1350 static struct kobj_attribute _name##_attr = \
1351 __ATTR(_name, 0644, _name##_show, _name##_store)
1352
1353static struct kobject *hugepages_kobj;
1354static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
1355
9a305230
LS
1356static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
1357
1358static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
a3437870
NA
1359{
1360 int i;
9a305230 1361
a3437870 1362 for (i = 0; i < HUGE_MAX_HSTATE; i++)
9a305230
LS
1363 if (hstate_kobjs[i] == kobj) {
1364 if (nidp)
1365 *nidp = NUMA_NO_NODE;
a3437870 1366 return &hstates[i];
9a305230
LS
1367 }
1368
1369 return kobj_to_node_hstate(kobj, nidp);
a3437870
NA
1370}
1371
06808b08 1372static ssize_t nr_hugepages_show_common(struct kobject *kobj,
a3437870
NA
1373 struct kobj_attribute *attr, char *buf)
1374{
9a305230
LS
1375 struct hstate *h;
1376 unsigned long nr_huge_pages;
1377 int nid;
1378
1379 h = kobj_to_hstate(kobj, &nid);
1380 if (nid == NUMA_NO_NODE)
1381 nr_huge_pages = h->nr_huge_pages;
1382 else
1383 nr_huge_pages = h->nr_huge_pages_node[nid];
1384
1385 return sprintf(buf, "%lu\n", nr_huge_pages);
a3437870 1386}
adbe8726 1387
06808b08
LS
1388static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
1389 struct kobject *kobj, struct kobj_attribute *attr,
1390 const char *buf, size_t len)
a3437870
NA
1391{
1392 int err;
9a305230 1393 int nid;
06808b08 1394 unsigned long count;
9a305230 1395 struct hstate *h;
bad44b5b 1396 NODEMASK_ALLOC(nodemask_t, nodes_allowed, GFP_KERNEL | __GFP_NORETRY);
a3437870 1397
06808b08 1398 err = strict_strtoul(buf, 10, &count);
73ae31e5 1399 if (err)
adbe8726 1400 goto out;
a3437870 1401
9a305230 1402 h = kobj_to_hstate(kobj, &nid);
adbe8726
EM
1403 if (h->order >= MAX_ORDER) {
1404 err = -EINVAL;
1405 goto out;
1406 }
1407
9a305230
LS
1408 if (nid == NUMA_NO_NODE) {
1409 /*
1410 * global hstate attribute
1411 */
1412 if (!(obey_mempolicy &&
1413 init_nodemask_of_mempolicy(nodes_allowed))) {
1414 NODEMASK_FREE(nodes_allowed);
1415 nodes_allowed = &node_states[N_HIGH_MEMORY];
1416 }
1417 } else if (nodes_allowed) {
1418 /*
1419 * per node hstate attribute: adjust count to global,
1420 * but restrict alloc/free to the specified node.
1421 */
1422 count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
1423 init_nodemask_of_node(nodes_allowed, nid);
1424 } else
1425 nodes_allowed = &node_states[N_HIGH_MEMORY];
1426
06808b08 1427 h->max_huge_pages = set_max_huge_pages(h, count, nodes_allowed);
a3437870 1428
9b5e5d0f 1429 if (nodes_allowed != &node_states[N_HIGH_MEMORY])
06808b08
LS
1430 NODEMASK_FREE(nodes_allowed);
1431
1432 return len;
adbe8726
EM
1433out:
1434 NODEMASK_FREE(nodes_allowed);
1435 return err;
06808b08
LS
1436}
1437
1438static ssize_t nr_hugepages_show(struct kobject *kobj,
1439 struct kobj_attribute *attr, char *buf)
1440{
1441 return nr_hugepages_show_common(kobj, attr, buf);
1442}
1443
1444static ssize_t nr_hugepages_store(struct kobject *kobj,
1445 struct kobj_attribute *attr, const char *buf, size_t len)
1446{
1447 return nr_hugepages_store_common(false, kobj, attr, buf, len);
a3437870
NA
1448}
1449HSTATE_ATTR(nr_hugepages);
1450
06808b08
LS
1451#ifdef CONFIG_NUMA
1452
1453/*
1454 * hstate attribute for optionally mempolicy-based constraint on persistent
1455 * huge page alloc/free.
1456 */
1457static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
1458 struct kobj_attribute *attr, char *buf)
1459{
1460 return nr_hugepages_show_common(kobj, attr, buf);
1461}
1462
1463static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
1464 struct kobj_attribute *attr, const char *buf, size_t len)
1465{
1466 return nr_hugepages_store_common(true, kobj, attr, buf, len);
1467}
1468HSTATE_ATTR(nr_hugepages_mempolicy);
1469#endif
1470
1471
a3437870
NA
1472static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
1473 struct kobj_attribute *attr, char *buf)
1474{
9a305230 1475 struct hstate *h = kobj_to_hstate(kobj, NULL);
a3437870
NA
1476 return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
1477}
adbe8726 1478
a3437870
NA
1479static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
1480 struct kobj_attribute *attr, const char *buf, size_t count)
1481{
1482 int err;
1483 unsigned long input;
9a305230 1484 struct hstate *h = kobj_to_hstate(kobj, NULL);
a3437870 1485
adbe8726
EM
1486 if (h->order >= MAX_ORDER)
1487 return -EINVAL;
1488
a3437870
NA
1489 err = strict_strtoul(buf, 10, &input);
1490 if (err)
73ae31e5 1491 return err;
a3437870
NA
1492
1493 spin_lock(&hugetlb_lock);
1494 h->nr_overcommit_huge_pages = input;
1495 spin_unlock(&hugetlb_lock);
1496
1497 return count;
1498}
1499HSTATE_ATTR(nr_overcommit_hugepages);
1500
1501static ssize_t free_hugepages_show(struct kobject *kobj,
1502 struct kobj_attribute *attr, char *buf)
1503{
9a305230
LS
1504 struct hstate *h;
1505 unsigned long free_huge_pages;
1506 int nid;
1507
1508 h = kobj_to_hstate(kobj, &nid);
1509 if (nid == NUMA_NO_NODE)
1510 free_huge_pages = h->free_huge_pages;
1511 else
1512 free_huge_pages = h->free_huge_pages_node[nid];
1513
1514 return sprintf(buf, "%lu\n", free_huge_pages);
a3437870
NA
1515}
1516HSTATE_ATTR_RO(free_hugepages);
1517
1518static ssize_t resv_hugepages_show(struct kobject *kobj,
1519 struct kobj_attribute *attr, char *buf)
1520{
9a305230 1521 struct hstate *h = kobj_to_hstate(kobj, NULL);
a3437870
NA
1522 return sprintf(buf, "%lu\n", h->resv_huge_pages);
1523}
1524HSTATE_ATTR_RO(resv_hugepages);
1525
1526static ssize_t surplus_hugepages_show(struct kobject *kobj,
1527 struct kobj_attribute *attr, char *buf)
1528{
9a305230
LS
1529 struct hstate *h;
1530 unsigned long surplus_huge_pages;
1531 int nid;
1532
1533 h = kobj_to_hstate(kobj, &nid);
1534 if (nid == NUMA_NO_NODE)
1535 surplus_huge_pages = h->surplus_huge_pages;
1536 else
1537 surplus_huge_pages = h->surplus_huge_pages_node[nid];
1538
1539 return sprintf(buf, "%lu\n", surplus_huge_pages);
a3437870
NA
1540}
1541HSTATE_ATTR_RO(surplus_hugepages);
1542
1543static struct attribute *hstate_attrs[] = {
1544 &nr_hugepages_attr.attr,
1545 &nr_overcommit_hugepages_attr.attr,
1546 &free_hugepages_attr.attr,
1547 &resv_hugepages_attr.attr,
1548 &surplus_hugepages_attr.attr,
06808b08
LS
1549#ifdef CONFIG_NUMA
1550 &nr_hugepages_mempolicy_attr.attr,
1551#endif
a3437870
NA
1552 NULL,
1553};
1554
1555static struct attribute_group hstate_attr_group = {
1556 .attrs = hstate_attrs,
1557};
1558
094e9539
JM
1559static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
1560 struct kobject **hstate_kobjs,
1561 struct attribute_group *hstate_attr_group)
a3437870
NA
1562{
1563 int retval;
9a305230 1564 int hi = h - hstates;
a3437870 1565
9a305230
LS
1566 hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
1567 if (!hstate_kobjs[hi])
a3437870
NA
1568 return -ENOMEM;
1569
9a305230 1570 retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
a3437870 1571 if (retval)
9a305230 1572 kobject_put(hstate_kobjs[hi]);
a3437870
NA
1573
1574 return retval;
1575}
1576
1577static void __init hugetlb_sysfs_init(void)
1578{
1579 struct hstate *h;
1580 int err;
1581
1582 hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
1583 if (!hugepages_kobj)
1584 return;
1585
1586 for_each_hstate(h) {
9a305230
LS
1587 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
1588 hstate_kobjs, &hstate_attr_group);
a3437870
NA
1589 if (err)
1590 printk(KERN_ERR "Hugetlb: Unable to add hstate %s",
1591 h->name);
1592 }
1593}
1594
9a305230
LS
1595#ifdef CONFIG_NUMA
1596
1597/*
1598 * node_hstate/s - associate per node hstate attributes, via their kobjects,
10fbcf4c
KS
1599 * with node devices in node_devices[] using a parallel array. The array
1600 * index of a node device or _hstate == node id.
1601 * This is here to avoid any static dependency of the node device driver, in
9a305230
LS
1602 * the base kernel, on the hugetlb module.
1603 */
1604struct node_hstate {
1605 struct kobject *hugepages_kobj;
1606 struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
1607};
1608struct node_hstate node_hstates[MAX_NUMNODES];
1609
1610/*
10fbcf4c 1611 * A subset of global hstate attributes for node devices
9a305230
LS
1612 */
1613static struct attribute *per_node_hstate_attrs[] = {
1614 &nr_hugepages_attr.attr,
1615 &free_hugepages_attr.attr,
1616 &surplus_hugepages_attr.attr,
1617 NULL,
1618};
1619
1620static struct attribute_group per_node_hstate_attr_group = {
1621 .attrs = per_node_hstate_attrs,
1622};
1623
1624/*
10fbcf4c 1625 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
9a305230
LS
1626 * Returns node id via non-NULL nidp.
1627 */
1628static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
1629{
1630 int nid;
1631
1632 for (nid = 0; nid < nr_node_ids; nid++) {
1633 struct node_hstate *nhs = &node_hstates[nid];
1634 int i;
1635 for (i = 0; i < HUGE_MAX_HSTATE; i++)
1636 if (nhs->hstate_kobjs[i] == kobj) {
1637 if (nidp)
1638 *nidp = nid;
1639 return &hstates[i];
1640 }
1641 }
1642
1643 BUG();
1644 return NULL;
1645}
1646
1647/*
10fbcf4c 1648 * Unregister hstate attributes from a single node device.
9a305230
LS
1649 * No-op if no hstate attributes attached.
1650 */
1651void hugetlb_unregister_node(struct node *node)
1652{
1653 struct hstate *h;
10fbcf4c 1654 struct node_hstate *nhs = &node_hstates[node->dev.id];
9a305230
LS
1655
1656 if (!nhs->hugepages_kobj)
9b5e5d0f 1657 return; /* no hstate attributes */
9a305230
LS
1658
1659 for_each_hstate(h)
1660 if (nhs->hstate_kobjs[h - hstates]) {
1661 kobject_put(nhs->hstate_kobjs[h - hstates]);
1662 nhs->hstate_kobjs[h - hstates] = NULL;
1663 }
1664
1665 kobject_put(nhs->hugepages_kobj);
1666 nhs->hugepages_kobj = NULL;
1667}
1668
1669/*
10fbcf4c 1670 * hugetlb module exit: unregister hstate attributes from node devices
9a305230
LS
1671 * that have them.
1672 */
1673static void hugetlb_unregister_all_nodes(void)
1674{
1675 int nid;
1676
1677 /*
10fbcf4c 1678 * disable node device registrations.
9a305230
LS
1679 */
1680 register_hugetlbfs_with_node(NULL, NULL);
1681
1682 /*
1683 * remove hstate attributes from any nodes that have them.
1684 */
1685 for (nid = 0; nid < nr_node_ids; nid++)
1686 hugetlb_unregister_node(&node_devices[nid]);
1687}
1688
1689/*
10fbcf4c 1690 * Register hstate attributes for a single node device.
9a305230
LS
1691 * No-op if attributes already registered.
1692 */
1693void hugetlb_register_node(struct node *node)
1694{
1695 struct hstate *h;
10fbcf4c 1696 struct node_hstate *nhs = &node_hstates[node->dev.id];
9a305230
LS
1697 int err;
1698
1699 if (nhs->hugepages_kobj)
1700 return; /* already allocated */
1701
1702 nhs->hugepages_kobj = kobject_create_and_add("hugepages",
10fbcf4c 1703 &node->dev.kobj);
9a305230
LS
1704 if (!nhs->hugepages_kobj)
1705 return;
1706
1707 for_each_hstate(h) {
1708 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
1709 nhs->hstate_kobjs,
1710 &per_node_hstate_attr_group);
1711 if (err) {
1712 printk(KERN_ERR "Hugetlb: Unable to add hstate %s"
1713 " for node %d\n",
10fbcf4c 1714 h->name, node->dev.id);
9a305230
LS
1715 hugetlb_unregister_node(node);
1716 break;
1717 }
1718 }
1719}
1720
1721/*
9b5e5d0f 1722 * hugetlb init time: register hstate attributes for all registered node
10fbcf4c
KS
1723 * devices of nodes that have memory. All on-line nodes should have
1724 * registered their associated device by this time.
9a305230
LS
1725 */
1726static void hugetlb_register_all_nodes(void)
1727{
1728 int nid;
1729
9b5e5d0f 1730 for_each_node_state(nid, N_HIGH_MEMORY) {
9a305230 1731 struct node *node = &node_devices[nid];
10fbcf4c 1732 if (node->dev.id == nid)
9a305230
LS
1733 hugetlb_register_node(node);
1734 }
1735
1736 /*
10fbcf4c 1737 * Let the node device driver know we're here so it can
9a305230
LS
1738 * [un]register hstate attributes on node hotplug.
1739 */
1740 register_hugetlbfs_with_node(hugetlb_register_node,
1741 hugetlb_unregister_node);
1742}
1743#else /* !CONFIG_NUMA */
1744
1745static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
1746{
1747 BUG();
1748 if (nidp)
1749 *nidp = -1;
1750 return NULL;
1751}
1752
1753static void hugetlb_unregister_all_nodes(void) { }
1754
1755static void hugetlb_register_all_nodes(void) { }
1756
1757#endif
1758
a3437870
NA
1759static void __exit hugetlb_exit(void)
1760{
1761 struct hstate *h;
1762
9a305230
LS
1763 hugetlb_unregister_all_nodes();
1764
a3437870
NA
1765 for_each_hstate(h) {
1766 kobject_put(hstate_kobjs[h - hstates]);
1767 }
1768
1769 kobject_put(hugepages_kobj);
1770}
1771module_exit(hugetlb_exit);
1772
1773static int __init hugetlb_init(void)
1774{
0ef89d25
BH
1775 /* Some platform decide whether they support huge pages at boot
1776 * time. On these, such as powerpc, HPAGE_SHIFT is set to 0 when
1777 * there is no such support
1778 */
1779 if (HPAGE_SHIFT == 0)
1780 return 0;
a3437870 1781
e11bfbfc
NP
1782 if (!size_to_hstate(default_hstate_size)) {
1783 default_hstate_size = HPAGE_SIZE;
1784 if (!size_to_hstate(default_hstate_size))
1785 hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
a3437870 1786 }
e11bfbfc
NP
1787 default_hstate_idx = size_to_hstate(default_hstate_size) - hstates;
1788 if (default_hstate_max_huge_pages)
1789 default_hstate.max_huge_pages = default_hstate_max_huge_pages;
a3437870
NA
1790
1791 hugetlb_init_hstates();
1792
aa888a74
AK
1793 gather_bootmem_prealloc();
1794
a3437870
NA
1795 report_hugepages();
1796
1797 hugetlb_sysfs_init();
1798
9a305230
LS
1799 hugetlb_register_all_nodes();
1800
a3437870
NA
1801 return 0;
1802}
1803module_init(hugetlb_init);
1804
1805/* Should be called on processing a hugepagesz=... option */
1806void __init hugetlb_add_hstate(unsigned order)
1807{
1808 struct hstate *h;
8faa8b07
AK
1809 unsigned long i;
1810
a3437870
NA
1811 if (size_to_hstate(PAGE_SIZE << order)) {
1812 printk(KERN_WARNING "hugepagesz= specified twice, ignoring\n");
1813 return;
1814 }
1815 BUG_ON(max_hstate >= HUGE_MAX_HSTATE);
1816 BUG_ON(order == 0);
1817 h = &hstates[max_hstate++];
1818 h->order = order;
1819 h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
8faa8b07
AK
1820 h->nr_huge_pages = 0;
1821 h->free_huge_pages = 0;
1822 for (i = 0; i < MAX_NUMNODES; ++i)
1823 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
9b5e5d0f
LS
1824 h->next_nid_to_alloc = first_node(node_states[N_HIGH_MEMORY]);
1825 h->next_nid_to_free = first_node(node_states[N_HIGH_MEMORY]);
a3437870
NA
1826 snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
1827 huge_page_size(h)/1024);
8faa8b07 1828
a3437870
NA
1829 parsed_hstate = h;
1830}
1831
e11bfbfc 1832static int __init hugetlb_nrpages_setup(char *s)
a3437870
NA
1833{
1834 unsigned long *mhp;
8faa8b07 1835 static unsigned long *last_mhp;
a3437870
NA
1836
1837 /*
1838 * !max_hstate means we haven't parsed a hugepagesz= parameter yet,
1839 * so this hugepages= parameter goes to the "default hstate".
1840 */
1841 if (!max_hstate)
1842 mhp = &default_hstate_max_huge_pages;
1843 else
1844 mhp = &parsed_hstate->max_huge_pages;
1845
8faa8b07
AK
1846 if (mhp == last_mhp) {
1847 printk(KERN_WARNING "hugepages= specified twice without "
1848 "interleaving hugepagesz=, ignoring\n");
1849 return 1;
1850 }
1851
a3437870
NA
1852 if (sscanf(s, "%lu", mhp) <= 0)
1853 *mhp = 0;
1854
8faa8b07
AK
1855 /*
1856 * Global state is always initialized later in hugetlb_init.
1857 * But we need to allocate >= MAX_ORDER hstates here early to still
1858 * use the bootmem allocator.
1859 */
1860 if (max_hstate && parsed_hstate->order >= MAX_ORDER)
1861 hugetlb_hstate_alloc_pages(parsed_hstate);
1862
1863 last_mhp = mhp;
1864
a3437870
NA
1865 return 1;
1866}
e11bfbfc
NP
1867__setup("hugepages=", hugetlb_nrpages_setup);
1868
1869static int __init hugetlb_default_setup(char *s)
1870{
1871 default_hstate_size = memparse(s, &s);
1872 return 1;
1873}
1874__setup("default_hugepagesz=", hugetlb_default_setup);
a3437870 1875
8a213460
NA
1876static unsigned int cpuset_mems_nr(unsigned int *array)
1877{
1878 int node;
1879 unsigned int nr = 0;
1880
1881 for_each_node_mask(node, cpuset_current_mems_allowed)
1882 nr += array[node];
1883
1884 return nr;
1885}
1886
1887#ifdef CONFIG_SYSCTL
06808b08
LS
1888static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
1889 struct ctl_table *table, int write,
1890 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 1891{
e5ff2159
AK
1892 struct hstate *h = &default_hstate;
1893 unsigned long tmp;
08d4a246 1894 int ret;
e5ff2159 1895
c033a93c 1896 tmp = h->max_huge_pages;
e5ff2159 1897
adbe8726
EM
1898 if (write && h->order >= MAX_ORDER)
1899 return -EINVAL;
1900
e5ff2159
AK
1901 table->data = &tmp;
1902 table->maxlen = sizeof(unsigned long);
08d4a246
MH
1903 ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
1904 if (ret)
1905 goto out;
e5ff2159 1906
06808b08 1907 if (write) {
bad44b5b
DR
1908 NODEMASK_ALLOC(nodemask_t, nodes_allowed,
1909 GFP_KERNEL | __GFP_NORETRY);
06808b08
LS
1910 if (!(obey_mempolicy &&
1911 init_nodemask_of_mempolicy(nodes_allowed))) {
1912 NODEMASK_FREE(nodes_allowed);
1913 nodes_allowed = &node_states[N_HIGH_MEMORY];
1914 }
1915 h->max_huge_pages = set_max_huge_pages(h, tmp, nodes_allowed);
1916
1917 if (nodes_allowed != &node_states[N_HIGH_MEMORY])
1918 NODEMASK_FREE(nodes_allowed);
1919 }
08d4a246
MH
1920out:
1921 return ret;
1da177e4 1922}
396faf03 1923
06808b08
LS
1924int hugetlb_sysctl_handler(struct ctl_table *table, int write,
1925 void __user *buffer, size_t *length, loff_t *ppos)
1926{
1927
1928 return hugetlb_sysctl_handler_common(false, table, write,
1929 buffer, length, ppos);
1930}
1931
1932#ifdef CONFIG_NUMA
1933int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
1934 void __user *buffer, size_t *length, loff_t *ppos)
1935{
1936 return hugetlb_sysctl_handler_common(true, table, write,
1937 buffer, length, ppos);
1938}
1939#endif /* CONFIG_NUMA */
1940
396faf03 1941int hugetlb_treat_movable_handler(struct ctl_table *table, int write,
8d65af78 1942 void __user *buffer,
396faf03
MG
1943 size_t *length, loff_t *ppos)
1944{
8d65af78 1945 proc_dointvec(table, write, buffer, length, ppos);
396faf03
MG
1946 if (hugepages_treat_as_movable)
1947 htlb_alloc_mask = GFP_HIGHUSER_MOVABLE;
1948 else
1949 htlb_alloc_mask = GFP_HIGHUSER;
1950 return 0;
1951}
1952
a3d0c6aa 1953int hugetlb_overcommit_handler(struct ctl_table *table, int write,
8d65af78 1954 void __user *buffer,
a3d0c6aa
NA
1955 size_t *length, loff_t *ppos)
1956{
a5516438 1957 struct hstate *h = &default_hstate;
e5ff2159 1958 unsigned long tmp;
08d4a246 1959 int ret;
e5ff2159 1960
c033a93c 1961 tmp = h->nr_overcommit_huge_pages;
e5ff2159 1962
adbe8726
EM
1963 if (write && h->order >= MAX_ORDER)
1964 return -EINVAL;
1965
e5ff2159
AK
1966 table->data = &tmp;
1967 table->maxlen = sizeof(unsigned long);
08d4a246
MH
1968 ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
1969 if (ret)
1970 goto out;
e5ff2159
AK
1971
1972 if (write) {
1973 spin_lock(&hugetlb_lock);
1974 h->nr_overcommit_huge_pages = tmp;
1975 spin_unlock(&hugetlb_lock);
1976 }
08d4a246
MH
1977out:
1978 return ret;
a3d0c6aa
NA
1979}
1980
1da177e4
LT
1981#endif /* CONFIG_SYSCTL */
1982
e1759c21 1983void hugetlb_report_meminfo(struct seq_file *m)
1da177e4 1984{
a5516438 1985 struct hstate *h = &default_hstate;
e1759c21 1986 seq_printf(m,
4f98a2fe
RR
1987 "HugePages_Total: %5lu\n"
1988 "HugePages_Free: %5lu\n"
1989 "HugePages_Rsvd: %5lu\n"
1990 "HugePages_Surp: %5lu\n"
1991 "Hugepagesize: %8lu kB\n",
a5516438
AK
1992 h->nr_huge_pages,
1993 h->free_huge_pages,
1994 h->resv_huge_pages,
1995 h->surplus_huge_pages,
1996 1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
1da177e4
LT
1997}
1998
1999int hugetlb_report_node_meminfo(int nid, char *buf)
2000{
a5516438 2001 struct hstate *h = &default_hstate;
1da177e4
LT
2002 return sprintf(buf,
2003 "Node %d HugePages_Total: %5u\n"
a1de0919
NA
2004 "Node %d HugePages_Free: %5u\n"
2005 "Node %d HugePages_Surp: %5u\n",
a5516438
AK
2006 nid, h->nr_huge_pages_node[nid],
2007 nid, h->free_huge_pages_node[nid],
2008 nid, h->surplus_huge_pages_node[nid]);
1da177e4
LT
2009}
2010
1da177e4
LT
2011/* Return the number pages of memory we physically have, in PAGE_SIZE units. */
2012unsigned long hugetlb_total_pages(void)
2013{
a5516438
AK
2014 struct hstate *h = &default_hstate;
2015 return h->nr_huge_pages * pages_per_huge_page(h);
1da177e4 2016}
1da177e4 2017
a5516438 2018static int hugetlb_acct_memory(struct hstate *h, long delta)
fc1b8a73
MG
2019{
2020 int ret = -ENOMEM;
2021
2022 spin_lock(&hugetlb_lock);
2023 /*
2024 * When cpuset is configured, it breaks the strict hugetlb page
2025 * reservation as the accounting is done on a global variable. Such
2026 * reservation is completely rubbish in the presence of cpuset because
2027 * the reservation is not checked against page availability for the
2028 * current cpuset. Application can still potentially OOM'ed by kernel
2029 * with lack of free htlb page in cpuset that the task is in.
2030 * Attempt to enforce strict accounting with cpuset is almost
2031 * impossible (or too ugly) because cpuset is too fluid that
2032 * task or memory node can be dynamically moved between cpusets.
2033 *
2034 * The change of semantics for shared hugetlb mapping with cpuset is
2035 * undesirable. However, in order to preserve some of the semantics,
2036 * we fall back to check against current free page availability as
2037 * a best attempt and hopefully to minimize the impact of changing
2038 * semantics that cpuset has.
2039 */
2040 if (delta > 0) {
a5516438 2041 if (gather_surplus_pages(h, delta) < 0)
fc1b8a73
MG
2042 goto out;
2043
a5516438
AK
2044 if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
2045 return_unused_surplus_pages(h, delta);
fc1b8a73
MG
2046 goto out;
2047 }
2048 }
2049
2050 ret = 0;
2051 if (delta < 0)
a5516438 2052 return_unused_surplus_pages(h, (unsigned long) -delta);
fc1b8a73
MG
2053
2054out:
2055 spin_unlock(&hugetlb_lock);
2056 return ret;
2057}
2058
84afd99b
AW
2059static void hugetlb_vm_op_open(struct vm_area_struct *vma)
2060{
2061 struct resv_map *reservations = vma_resv_map(vma);
2062
2063 /*
2064 * This new VMA should share its siblings reservation map if present.
2065 * The VMA will only ever have a valid reservation map pointer where
2066 * it is being copied for another still existing VMA. As that VMA
25985edc 2067 * has a reference to the reservation map it cannot disappear until
84afd99b
AW
2068 * after this open call completes. It is therefore safe to take a
2069 * new reference here without additional locking.
2070 */
2071 if (reservations)
2072 kref_get(&reservations->refs);
2073}
2074
a1e78772
MG
2075static void hugetlb_vm_op_close(struct vm_area_struct *vma)
2076{
a5516438 2077 struct hstate *h = hstate_vma(vma);
84afd99b
AW
2078 struct resv_map *reservations = vma_resv_map(vma);
2079 unsigned long reserve;
2080 unsigned long start;
2081 unsigned long end;
2082
2083 if (reservations) {
a5516438
AK
2084 start = vma_hugecache_offset(h, vma, vma->vm_start);
2085 end = vma_hugecache_offset(h, vma, vma->vm_end);
84afd99b
AW
2086
2087 reserve = (end - start) -
2088 region_count(&reservations->regions, start, end);
2089
2090 kref_put(&reservations->refs, resv_map_release);
2091
7251ff78 2092 if (reserve) {
a5516438 2093 hugetlb_acct_memory(h, -reserve);
7251ff78
AL
2094 hugetlb_put_quota(vma->vm_file->f_mapping, reserve);
2095 }
84afd99b 2096 }
a1e78772
MG
2097}
2098
1da177e4
LT
2099/*
2100 * We cannot handle pagefaults against hugetlb pages at all. They cause
2101 * handle_mm_fault() to try to instantiate regular-sized pages in the
2102 * hugegpage VMA. do_page_fault() is supposed to trap this, so BUG is we get
2103 * this far.
2104 */
d0217ac0 2105static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1da177e4
LT
2106{
2107 BUG();
d0217ac0 2108 return 0;
1da177e4
LT
2109}
2110
f0f37e2f 2111const struct vm_operations_struct hugetlb_vm_ops = {
d0217ac0 2112 .fault = hugetlb_vm_op_fault,
84afd99b 2113 .open = hugetlb_vm_op_open,
a1e78772 2114 .close = hugetlb_vm_op_close,
1da177e4
LT
2115};
2116
1e8f889b
DG
2117static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
2118 int writable)
63551ae0
DG
2119{
2120 pte_t entry;
2121
1e8f889b 2122 if (writable) {
63551ae0
DG
2123 entry =
2124 pte_mkwrite(pte_mkdirty(mk_pte(page, vma->vm_page_prot)));
2125 } else {
7f2e9525 2126 entry = huge_pte_wrprotect(mk_pte(page, vma->vm_page_prot));
63551ae0
DG
2127 }
2128 entry = pte_mkyoung(entry);
2129 entry = pte_mkhuge(entry);
2130
2131 return entry;
2132}
2133
1e8f889b
DG
2134static void set_huge_ptep_writable(struct vm_area_struct *vma,
2135 unsigned long address, pte_t *ptep)
2136{
2137 pte_t entry;
2138
7f2e9525 2139 entry = pte_mkwrite(pte_mkdirty(huge_ptep_get(ptep)));
32f84528 2140 if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
4b3073e1 2141 update_mmu_cache(vma, address, ptep);
1e8f889b
DG
2142}
2143
2144
63551ae0
DG
2145int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
2146 struct vm_area_struct *vma)
2147{
2148 pte_t *src_pte, *dst_pte, entry;
2149 struct page *ptepage;
1c59827d 2150 unsigned long addr;
1e8f889b 2151 int cow;
a5516438
AK
2152 struct hstate *h = hstate_vma(vma);
2153 unsigned long sz = huge_page_size(h);
1e8f889b
DG
2154
2155 cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
63551ae0 2156
a5516438 2157 for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
c74df32c
HD
2158 src_pte = huge_pte_offset(src, addr);
2159 if (!src_pte)
2160 continue;
a5516438 2161 dst_pte = huge_pte_alloc(dst, addr, sz);
63551ae0
DG
2162 if (!dst_pte)
2163 goto nomem;
c5c99429
LW
2164
2165 /* If the pagetables are shared don't copy or take references */
2166 if (dst_pte == src_pte)
2167 continue;
2168
c74df32c 2169 spin_lock(&dst->page_table_lock);
46478758 2170 spin_lock_nested(&src->page_table_lock, SINGLE_DEPTH_NESTING);
7f2e9525 2171 if (!huge_pte_none(huge_ptep_get(src_pte))) {
1e8f889b 2172 if (cow)
7f2e9525
GS
2173 huge_ptep_set_wrprotect(src, addr, src_pte);
2174 entry = huge_ptep_get(src_pte);
1c59827d
HD
2175 ptepage = pte_page(entry);
2176 get_page(ptepage);
0fe6e20b 2177 page_dup_rmap(ptepage);
1c59827d
HD
2178 set_huge_pte_at(dst, addr, dst_pte, entry);
2179 }
2180 spin_unlock(&src->page_table_lock);
c74df32c 2181 spin_unlock(&dst->page_table_lock);
63551ae0
DG
2182 }
2183 return 0;
2184
2185nomem:
2186 return -ENOMEM;
2187}
2188
290408d4
NH
2189static int is_hugetlb_entry_migration(pte_t pte)
2190{
2191 swp_entry_t swp;
2192
2193 if (huge_pte_none(pte) || pte_present(pte))
2194 return 0;
2195 swp = pte_to_swp_entry(pte);
32f84528 2196 if (non_swap_entry(swp) && is_migration_entry(swp))
290408d4 2197 return 1;
32f84528 2198 else
290408d4
NH
2199 return 0;
2200}
2201
fd6a03ed
NH
2202static int is_hugetlb_entry_hwpoisoned(pte_t pte)
2203{
2204 swp_entry_t swp;
2205
2206 if (huge_pte_none(pte) || pte_present(pte))
2207 return 0;
2208 swp = pte_to_swp_entry(pte);
32f84528 2209 if (non_swap_entry(swp) && is_hwpoison_entry(swp))
fd6a03ed 2210 return 1;
32f84528 2211 else
fd6a03ed
NH
2212 return 0;
2213}
2214
502717f4 2215void __unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
04f2cbe3 2216 unsigned long end, struct page *ref_page)
63551ae0
DG
2217{
2218 struct mm_struct *mm = vma->vm_mm;
2219 unsigned long address;
c7546f8f 2220 pte_t *ptep;
63551ae0
DG
2221 pte_t pte;
2222 struct page *page;
fe1668ae 2223 struct page *tmp;
a5516438
AK
2224 struct hstate *h = hstate_vma(vma);
2225 unsigned long sz = huge_page_size(h);
2226
c0a499c2 2227 /*
3d48ae45 2228 * A page gathering list, protected by per file i_mmap_mutex. The
c0a499c2
CK
2229 * lock is used to avoid list corruption from multiple unmapping
2230 * of the same page since we are using page->lru.
2231 */
fe1668ae 2232 LIST_HEAD(page_list);
63551ae0
DG
2233
2234 WARN_ON(!is_vm_hugetlb_page(vma));
a5516438
AK
2235 BUG_ON(start & ~huge_page_mask(h));
2236 BUG_ON(end & ~huge_page_mask(h));
63551ae0 2237
cddb8a5c 2238 mmu_notifier_invalidate_range_start(mm, start, end);
508034a3 2239 spin_lock(&mm->page_table_lock);
a5516438 2240 for (address = start; address < end; address += sz) {
c7546f8f 2241 ptep = huge_pte_offset(mm, address);
4c887265 2242 if (!ptep)
c7546f8f
DG
2243 continue;
2244
39dde65c
CK
2245 if (huge_pmd_unshare(mm, &address, ptep))
2246 continue;
2247
04f2cbe3
MG
2248 /*
2249 * If a reference page is supplied, it is because a specific
2250 * page is being unmapped, not a range. Ensure the page we
2251 * are about to unmap is the actual page of interest.
2252 */
2253 if (ref_page) {
2254 pte = huge_ptep_get(ptep);
2255 if (huge_pte_none(pte))
2256 continue;
2257 page = pte_page(pte);
2258 if (page != ref_page)
2259 continue;
2260
2261 /*
2262 * Mark the VMA as having unmapped its page so that
2263 * future faults in this VMA will fail rather than
2264 * looking like data was lost
2265 */
2266 set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
2267 }
2268
c7546f8f 2269 pte = huge_ptep_get_and_clear(mm, address, ptep);
7f2e9525 2270 if (huge_pte_none(pte))
63551ae0 2271 continue;
c7546f8f 2272
fd6a03ed
NH
2273 /*
2274 * HWPoisoned hugepage is already unmapped and dropped reference
2275 */
2276 if (unlikely(is_hugetlb_entry_hwpoisoned(pte)))
2277 continue;
2278
63551ae0 2279 page = pte_page(pte);
6649a386
KC
2280 if (pte_dirty(pte))
2281 set_page_dirty(page);
fe1668ae 2282 list_add(&page->lru, &page_list);
63551ae0 2283 }
508034a3 2284 flush_tlb_range(vma, start, end);
cd2934a3 2285 spin_unlock(&mm->page_table_lock);
cddb8a5c 2286 mmu_notifier_invalidate_range_end(mm, start, end);
fe1668ae 2287 list_for_each_entry_safe(page, tmp, &page_list, lru) {
0fe6e20b 2288 page_remove_rmap(page);
fe1668ae
CK
2289 list_del(&page->lru);
2290 put_page(page);
2291 }
1da177e4 2292}
63551ae0 2293
502717f4 2294void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
04f2cbe3 2295 unsigned long end, struct page *ref_page)
502717f4 2296{
3d48ae45 2297 mutex_lock(&vma->vm_file->f_mapping->i_mmap_mutex);
a137e1cc 2298 __unmap_hugepage_range(vma, start, end, ref_page);
3d48ae45 2299 mutex_unlock(&vma->vm_file->f_mapping->i_mmap_mutex);
502717f4
CK
2300}
2301
04f2cbe3
MG
2302/*
2303 * This is called when the original mapper is failing to COW a MAP_PRIVATE
2304 * mappping it owns the reserve page for. The intention is to unmap the page
2305 * from other VMAs and let the children be SIGKILLed if they are faulting the
2306 * same region.
2307 */
2a4b3ded
HH
2308static int unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
2309 struct page *page, unsigned long address)
04f2cbe3 2310{
7526674d 2311 struct hstate *h = hstate_vma(vma);
04f2cbe3
MG
2312 struct vm_area_struct *iter_vma;
2313 struct address_space *mapping;
2314 struct prio_tree_iter iter;
2315 pgoff_t pgoff;
2316
2317 /*
2318 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
2319 * from page cache lookup which is in HPAGE_SIZE units.
2320 */
7526674d 2321 address = address & huge_page_mask(h);
0c176d52 2322 pgoff = vma_hugecache_offset(h, vma, address);
04f2cbe3
MG
2323 mapping = (struct address_space *)page_private(page);
2324
4eb2b1dc
MG
2325 /*
2326 * Take the mapping lock for the duration of the table walk. As
2327 * this mapping should be shared between all the VMAs,
2328 * __unmap_hugepage_range() is called as the lock is already held
2329 */
3d48ae45 2330 mutex_lock(&mapping->i_mmap_mutex);
04f2cbe3
MG
2331 vma_prio_tree_foreach(iter_vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
2332 /* Do not unmap the current VMA */
2333 if (iter_vma == vma)
2334 continue;
2335
2336 /*
2337 * Unmap the page from other VMAs without their own reserves.
2338 * They get marked to be SIGKILLed if they fault in these
2339 * areas. This is because a future no-page fault on this VMA
2340 * could insert a zeroed page instead of the data existing
2341 * from the time of fork. This would look like data corruption
2342 */
2343 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
4eb2b1dc 2344 __unmap_hugepage_range(iter_vma,
7526674d 2345 address, address + huge_page_size(h),
04f2cbe3
MG
2346 page);
2347 }
3d48ae45 2348 mutex_unlock(&mapping->i_mmap_mutex);
04f2cbe3
MG
2349
2350 return 1;
2351}
2352
0fe6e20b
NH
2353/*
2354 * Hugetlb_cow() should be called with page lock of the original hugepage held.
ef009b25
MH
2355 * Called with hugetlb_instantiation_mutex held and pte_page locked so we
2356 * cannot race with other handlers or page migration.
2357 * Keep the pte_same checks anyway to make transition from the mutex easier.
0fe6e20b 2358 */
1e8f889b 2359static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
04f2cbe3
MG
2360 unsigned long address, pte_t *ptep, pte_t pte,
2361 struct page *pagecache_page)
1e8f889b 2362{
a5516438 2363 struct hstate *h = hstate_vma(vma);
1e8f889b 2364 struct page *old_page, *new_page;
79ac6ba4 2365 int avoidcopy;
04f2cbe3 2366 int outside_reserve = 0;
1e8f889b
DG
2367
2368 old_page = pte_page(pte);
2369
04f2cbe3 2370retry_avoidcopy:
1e8f889b
DG
2371 /* If no-one else is actually using this page, avoid the copy
2372 * and just make the page writable */
0fe6e20b 2373 avoidcopy = (page_mapcount(old_page) == 1);
1e8f889b 2374 if (avoidcopy) {
56c9cfb1
NH
2375 if (PageAnon(old_page))
2376 page_move_anon_rmap(old_page, vma, address);
1e8f889b 2377 set_huge_ptep_writable(vma, address, ptep);
83c54070 2378 return 0;
1e8f889b
DG
2379 }
2380
04f2cbe3
MG
2381 /*
2382 * If the process that created a MAP_PRIVATE mapping is about to
2383 * perform a COW due to a shared page count, attempt to satisfy
2384 * the allocation without using the existing reserves. The pagecache
2385 * page is used to determine if the reserve at this address was
2386 * consumed or not. If reserves were used, a partial faulted mapping
2387 * at the time of fork() could consume its reserves on COW instead
2388 * of the full address range.
2389 */
f83a275d 2390 if (!(vma->vm_flags & VM_MAYSHARE) &&
04f2cbe3
MG
2391 is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
2392 old_page != pagecache_page)
2393 outside_reserve = 1;
2394
1e8f889b 2395 page_cache_get(old_page);
b76c8cfb
LW
2396
2397 /* Drop page_table_lock as buddy allocator may be called */
2398 spin_unlock(&mm->page_table_lock);
04f2cbe3 2399 new_page = alloc_huge_page(vma, address, outside_reserve);
1e8f889b 2400
2fc39cec 2401 if (IS_ERR(new_page)) {
1e8f889b 2402 page_cache_release(old_page);
04f2cbe3
MG
2403
2404 /*
2405 * If a process owning a MAP_PRIVATE mapping fails to COW,
2406 * it is due to references held by a child and an insufficient
2407 * huge page pool. To guarantee the original mappers
2408 * reliability, unmap the page from child processes. The child
2409 * may get SIGKILLed if it later faults.
2410 */
2411 if (outside_reserve) {
2412 BUG_ON(huge_pte_none(pte));
2413 if (unmap_ref_private(mm, vma, old_page, address)) {
2414 BUG_ON(page_count(old_page) != 1);
2415 BUG_ON(huge_pte_none(pte));
b76c8cfb 2416 spin_lock(&mm->page_table_lock);
a734bcc8
HD
2417 ptep = huge_pte_offset(mm, address & huge_page_mask(h));
2418 if (likely(pte_same(huge_ptep_get(ptep), pte)))
2419 goto retry_avoidcopy;
2420 /*
2421 * race occurs while re-acquiring page_table_lock, and
2422 * our job is done.
2423 */
2424 return 0;
04f2cbe3
MG
2425 }
2426 WARN_ON_ONCE(1);
2427 }
2428
b76c8cfb
LW
2429 /* Caller expects lock to be held */
2430 spin_lock(&mm->page_table_lock);
2fc39cec 2431 return -PTR_ERR(new_page);
1e8f889b
DG
2432 }
2433
0fe6e20b
NH
2434 /*
2435 * When the original hugepage is shared one, it does not have
2436 * anon_vma prepared.
2437 */
44e2aa93 2438 if (unlikely(anon_vma_prepare(vma))) {
ea4039a3
HD
2439 page_cache_release(new_page);
2440 page_cache_release(old_page);
44e2aa93
DN
2441 /* Caller expects lock to be held */
2442 spin_lock(&mm->page_table_lock);
0fe6e20b 2443 return VM_FAULT_OOM;
44e2aa93 2444 }
0fe6e20b 2445
47ad8475
AA
2446 copy_user_huge_page(new_page, old_page, address, vma,
2447 pages_per_huge_page(h));
0ed361de 2448 __SetPageUptodate(new_page);
1e8f889b 2449
b76c8cfb
LW
2450 /*
2451 * Retake the page_table_lock to check for racing updates
2452 * before the page tables are altered
2453 */
2454 spin_lock(&mm->page_table_lock);
a5516438 2455 ptep = huge_pte_offset(mm, address & huge_page_mask(h));
7f2e9525 2456 if (likely(pte_same(huge_ptep_get(ptep), pte))) {
1e8f889b 2457 /* Break COW */
3edd4fc9
DD
2458 mmu_notifier_invalidate_range_start(mm,
2459 address & huge_page_mask(h),
2460 (address & huge_page_mask(h)) + huge_page_size(h));
8fe627ec 2461 huge_ptep_clear_flush(vma, address, ptep);
1e8f889b
DG
2462 set_huge_pte_at(mm, address, ptep,
2463 make_huge_pte(vma, new_page, 1));
0fe6e20b 2464 page_remove_rmap(old_page);
cd67f0d2 2465 hugepage_add_new_anon_rmap(new_page, vma, address);
1e8f889b
DG
2466 /* Make the old page be freed below */
2467 new_page = old_page;
3edd4fc9
DD
2468 mmu_notifier_invalidate_range_end(mm,
2469 address & huge_page_mask(h),
2470 (address & huge_page_mask(h)) + huge_page_size(h));
1e8f889b
DG
2471 }
2472 page_cache_release(new_page);
2473 page_cache_release(old_page);
83c54070 2474 return 0;
1e8f889b
DG
2475}
2476
04f2cbe3 2477/* Return the pagecache page at a given address within a VMA */
a5516438
AK
2478static struct page *hugetlbfs_pagecache_page(struct hstate *h,
2479 struct vm_area_struct *vma, unsigned long address)
04f2cbe3
MG
2480{
2481 struct address_space *mapping;
e7c4b0bf 2482 pgoff_t idx;
04f2cbe3
MG
2483
2484 mapping = vma->vm_file->f_mapping;
a5516438 2485 idx = vma_hugecache_offset(h, vma, address);
04f2cbe3
MG
2486
2487 return find_lock_page(mapping, idx);
2488}
2489
3ae77f43
HD
2490/*
2491 * Return whether there is a pagecache page to back given address within VMA.
2492 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
2493 */
2494static bool hugetlbfs_pagecache_present(struct hstate *h,
2a15efc9
HD
2495 struct vm_area_struct *vma, unsigned long address)
2496{
2497 struct address_space *mapping;
2498 pgoff_t idx;
2499 struct page *page;
2500
2501 mapping = vma->vm_file->f_mapping;
2502 idx = vma_hugecache_offset(h, vma, address);
2503
2504 page = find_get_page(mapping, idx);
2505 if (page)
2506 put_page(page);
2507 return page != NULL;
2508}
2509
a1ed3dda 2510static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
788c7df4 2511 unsigned long address, pte_t *ptep, unsigned int flags)
ac9b9c66 2512{
a5516438 2513 struct hstate *h = hstate_vma(vma);
ac9b9c66 2514 int ret = VM_FAULT_SIGBUS;
409eb8c2 2515 int anon_rmap = 0;
e7c4b0bf 2516 pgoff_t idx;
4c887265 2517 unsigned long size;
4c887265
AL
2518 struct page *page;
2519 struct address_space *mapping;
1e8f889b 2520 pte_t new_pte;
4c887265 2521
04f2cbe3
MG
2522 /*
2523 * Currently, we are forced to kill the process in the event the
2524 * original mapper has unmapped pages from the child due to a failed
25985edc 2525 * COW. Warn that such a situation has occurred as it may not be obvious
04f2cbe3
MG
2526 */
2527 if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
2528 printk(KERN_WARNING
2529 "PID %d killed due to inadequate hugepage pool\n",
2530 current->pid);
2531 return ret;
2532 }
2533
4c887265 2534 mapping = vma->vm_file->f_mapping;
a5516438 2535 idx = vma_hugecache_offset(h, vma, address);
4c887265
AL
2536
2537 /*
2538 * Use page lock to guard against racing truncation
2539 * before we get page_table_lock.
2540 */
6bda666a
CL
2541retry:
2542 page = find_lock_page(mapping, idx);
2543 if (!page) {
a5516438 2544 size = i_size_read(mapping->host) >> huge_page_shift(h);
ebed4bfc
HD
2545 if (idx >= size)
2546 goto out;
04f2cbe3 2547 page = alloc_huge_page(vma, address, 0);
2fc39cec
AL
2548 if (IS_ERR(page)) {
2549 ret = -PTR_ERR(page);
6bda666a
CL
2550 goto out;
2551 }
47ad8475 2552 clear_huge_page(page, address, pages_per_huge_page(h));
0ed361de 2553 __SetPageUptodate(page);
ac9b9c66 2554
f83a275d 2555 if (vma->vm_flags & VM_MAYSHARE) {
6bda666a 2556 int err;
45c682a6 2557 struct inode *inode = mapping->host;
6bda666a
CL
2558
2559 err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
2560 if (err) {
2561 put_page(page);
6bda666a
CL
2562 if (err == -EEXIST)
2563 goto retry;
2564 goto out;
2565 }
45c682a6
KC
2566
2567 spin_lock(&inode->i_lock);
a5516438 2568 inode->i_blocks += blocks_per_huge_page(h);
45c682a6 2569 spin_unlock(&inode->i_lock);
23be7468 2570 } else {
6bda666a 2571 lock_page(page);
0fe6e20b
NH
2572 if (unlikely(anon_vma_prepare(vma))) {
2573 ret = VM_FAULT_OOM;
2574 goto backout_unlocked;
2575 }
409eb8c2 2576 anon_rmap = 1;
23be7468 2577 }
0fe6e20b 2578 } else {
998b4382
NH
2579 /*
2580 * If memory error occurs between mmap() and fault, some process
2581 * don't have hwpoisoned swap entry for errored virtual address.
2582 * So we need to block hugepage fault by PG_hwpoison bit check.
2583 */
2584 if (unlikely(PageHWPoison(page))) {
32f84528 2585 ret = VM_FAULT_HWPOISON |
aa50d3a7 2586 VM_FAULT_SET_HINDEX(h - hstates);
998b4382
NH
2587 goto backout_unlocked;
2588 }
6bda666a 2589 }
1e8f889b 2590
57303d80
AW
2591 /*
2592 * If we are going to COW a private mapping later, we examine the
2593 * pending reservations for this page now. This will ensure that
2594 * any allocations necessary to record that reservation occur outside
2595 * the spinlock.
2596 */
788c7df4 2597 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED))
2b26736c
AW
2598 if (vma_needs_reservation(h, vma, address) < 0) {
2599 ret = VM_FAULT_OOM;
2600 goto backout_unlocked;
2601 }
57303d80 2602
ac9b9c66 2603 spin_lock(&mm->page_table_lock);
a5516438 2604 size = i_size_read(mapping->host) >> huge_page_shift(h);
4c887265
AL
2605 if (idx >= size)
2606 goto backout;
2607
83c54070 2608 ret = 0;
7f2e9525 2609 if (!huge_pte_none(huge_ptep_get(ptep)))
4c887265
AL
2610 goto backout;
2611
409eb8c2
HD
2612 if (anon_rmap)
2613 hugepage_add_new_anon_rmap(page, vma, address);
2614 else
2615 page_dup_rmap(page);
1e8f889b
DG
2616 new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
2617 && (vma->vm_flags & VM_SHARED)));
2618 set_huge_pte_at(mm, address, ptep, new_pte);
2619
788c7df4 2620 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
1e8f889b 2621 /* Optimization, do the COW without a second fault */
04f2cbe3 2622 ret = hugetlb_cow(mm, vma, address, ptep, new_pte, page);
1e8f889b
DG
2623 }
2624
ac9b9c66 2625 spin_unlock(&mm->page_table_lock);
4c887265
AL
2626 unlock_page(page);
2627out:
ac9b9c66 2628 return ret;
4c887265
AL
2629
2630backout:
2631 spin_unlock(&mm->page_table_lock);
2b26736c 2632backout_unlocked:
4c887265
AL
2633 unlock_page(page);
2634 put_page(page);
2635 goto out;
ac9b9c66
HD
2636}
2637
86e5216f 2638int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
788c7df4 2639 unsigned long address, unsigned int flags)
86e5216f
AL
2640{
2641 pte_t *ptep;
2642 pte_t entry;
1e8f889b 2643 int ret;
0fe6e20b 2644 struct page *page = NULL;
57303d80 2645 struct page *pagecache_page = NULL;
3935baa9 2646 static DEFINE_MUTEX(hugetlb_instantiation_mutex);
a5516438 2647 struct hstate *h = hstate_vma(vma);
86e5216f 2648
1e16a539
KH
2649 address &= huge_page_mask(h);
2650
fd6a03ed
NH
2651 ptep = huge_pte_offset(mm, address);
2652 if (ptep) {
2653 entry = huge_ptep_get(ptep);
290408d4
NH
2654 if (unlikely(is_hugetlb_entry_migration(entry))) {
2655 migration_entry_wait(mm, (pmd_t *)ptep, address);
2656 return 0;
2657 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
32f84528 2658 return VM_FAULT_HWPOISON_LARGE |
aa50d3a7 2659 VM_FAULT_SET_HINDEX(h - hstates);
fd6a03ed
NH
2660 }
2661
a5516438 2662 ptep = huge_pte_alloc(mm, address, huge_page_size(h));
86e5216f
AL
2663 if (!ptep)
2664 return VM_FAULT_OOM;
2665
3935baa9
DG
2666 /*
2667 * Serialize hugepage allocation and instantiation, so that we don't
2668 * get spurious allocation failures if two CPUs race to instantiate
2669 * the same page in the page cache.
2670 */
2671 mutex_lock(&hugetlb_instantiation_mutex);
7f2e9525
GS
2672 entry = huge_ptep_get(ptep);
2673 if (huge_pte_none(entry)) {
788c7df4 2674 ret = hugetlb_no_page(mm, vma, address, ptep, flags);
b4d1d99f 2675 goto out_mutex;
3935baa9 2676 }
86e5216f 2677
83c54070 2678 ret = 0;
1e8f889b 2679
57303d80
AW
2680 /*
2681 * If we are going to COW the mapping later, we examine the pending
2682 * reservations for this page now. This will ensure that any
2683 * allocations necessary to record that reservation occur outside the
2684 * spinlock. For private mappings, we also lookup the pagecache
2685 * page now as it is used to determine if a reservation has been
2686 * consumed.
2687 */
788c7df4 2688 if ((flags & FAULT_FLAG_WRITE) && !pte_write(entry)) {
2b26736c
AW
2689 if (vma_needs_reservation(h, vma, address) < 0) {
2690 ret = VM_FAULT_OOM;
b4d1d99f 2691 goto out_mutex;
2b26736c 2692 }
57303d80 2693
f83a275d 2694 if (!(vma->vm_flags & VM_MAYSHARE))
57303d80
AW
2695 pagecache_page = hugetlbfs_pagecache_page(h,
2696 vma, address);
2697 }
2698
56c9cfb1
NH
2699 /*
2700 * hugetlb_cow() requires page locks of pte_page(entry) and
2701 * pagecache_page, so here we need take the former one
2702 * when page != pagecache_page or !pagecache_page.
2703 * Note that locking order is always pagecache_page -> page,
2704 * so no worry about deadlock.
2705 */
2706 page = pte_page(entry);
2707 if (page != pagecache_page)
0fe6e20b 2708 lock_page(page);
0fe6e20b 2709
1e8f889b
DG
2710 spin_lock(&mm->page_table_lock);
2711 /* Check for a racing update before calling hugetlb_cow */
b4d1d99f
DG
2712 if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
2713 goto out_page_table_lock;
2714
2715
788c7df4 2716 if (flags & FAULT_FLAG_WRITE) {
b4d1d99f 2717 if (!pte_write(entry)) {
57303d80
AW
2718 ret = hugetlb_cow(mm, vma, address, ptep, entry,
2719 pagecache_page);
b4d1d99f
DG
2720 goto out_page_table_lock;
2721 }
2722 entry = pte_mkdirty(entry);
2723 }
2724 entry = pte_mkyoung(entry);
788c7df4
HD
2725 if (huge_ptep_set_access_flags(vma, address, ptep, entry,
2726 flags & FAULT_FLAG_WRITE))
4b3073e1 2727 update_mmu_cache(vma, address, ptep);
b4d1d99f
DG
2728
2729out_page_table_lock:
1e8f889b 2730 spin_unlock(&mm->page_table_lock);
57303d80
AW
2731
2732 if (pagecache_page) {
2733 unlock_page(pagecache_page);
2734 put_page(pagecache_page);
2735 }
1f64d69c
DN
2736 if (page != pagecache_page)
2737 unlock_page(page);
57303d80 2738
b4d1d99f 2739out_mutex:
3935baa9 2740 mutex_unlock(&hugetlb_instantiation_mutex);
1e8f889b
DG
2741
2742 return ret;
86e5216f
AL
2743}
2744
ceb86879
AK
2745/* Can be overriden by architectures */
2746__attribute__((weak)) struct page *
2747follow_huge_pud(struct mm_struct *mm, unsigned long address,
2748 pud_t *pud, int write)
2749{
2750 BUG();
2751 return NULL;
2752}
2753
63551ae0
DG
2754int follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
2755 struct page **pages, struct vm_area_struct **vmas,
5b23dbe8 2756 unsigned long *position, int *length, int i,
2a15efc9 2757 unsigned int flags)
63551ae0 2758{
d5d4b0aa
CK
2759 unsigned long pfn_offset;
2760 unsigned long vaddr = *position;
63551ae0 2761 int remainder = *length;
a5516438 2762 struct hstate *h = hstate_vma(vma);
63551ae0 2763
1c59827d 2764 spin_lock(&mm->page_table_lock);
63551ae0 2765 while (vaddr < vma->vm_end && remainder) {
4c887265 2766 pte_t *pte;
2a15efc9 2767 int absent;
4c887265 2768 struct page *page;
63551ae0 2769
4c887265
AL
2770 /*
2771 * Some archs (sparc64, sh*) have multiple pte_ts to
2a15efc9 2772 * each hugepage. We have to make sure we get the
4c887265
AL
2773 * first, for the page indexing below to work.
2774 */
a5516438 2775 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h));
2a15efc9
HD
2776 absent = !pte || huge_pte_none(huge_ptep_get(pte));
2777
2778 /*
2779 * When coredumping, it suits get_dump_page if we just return
3ae77f43
HD
2780 * an error where there's an empty slot with no huge pagecache
2781 * to back it. This way, we avoid allocating a hugepage, and
2782 * the sparse dumpfile avoids allocating disk blocks, but its
2783 * huge holes still show up with zeroes where they need to be.
2a15efc9 2784 */
3ae77f43
HD
2785 if (absent && (flags & FOLL_DUMP) &&
2786 !hugetlbfs_pagecache_present(h, vma, vaddr)) {
2a15efc9
HD
2787 remainder = 0;
2788 break;
2789 }
63551ae0 2790
2a15efc9
HD
2791 if (absent ||
2792 ((flags & FOLL_WRITE) && !pte_write(huge_ptep_get(pte)))) {
4c887265 2793 int ret;
63551ae0 2794
4c887265 2795 spin_unlock(&mm->page_table_lock);
2a15efc9
HD
2796 ret = hugetlb_fault(mm, vma, vaddr,
2797 (flags & FOLL_WRITE) ? FAULT_FLAG_WRITE : 0);
4c887265 2798 spin_lock(&mm->page_table_lock);
a89182c7 2799 if (!(ret & VM_FAULT_ERROR))
4c887265 2800 continue;
63551ae0 2801
4c887265 2802 remainder = 0;
4c887265
AL
2803 break;
2804 }
2805
a5516438 2806 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
7f2e9525 2807 page = pte_page(huge_ptep_get(pte));
d5d4b0aa 2808same_page:
d6692183 2809 if (pages) {
2a15efc9 2810 pages[i] = mem_map_offset(page, pfn_offset);
4b2e38ad 2811 get_page(pages[i]);
d6692183 2812 }
63551ae0
DG
2813
2814 if (vmas)
2815 vmas[i] = vma;
2816
2817 vaddr += PAGE_SIZE;
d5d4b0aa 2818 ++pfn_offset;
63551ae0
DG
2819 --remainder;
2820 ++i;
d5d4b0aa 2821 if (vaddr < vma->vm_end && remainder &&
a5516438 2822 pfn_offset < pages_per_huge_page(h)) {
d5d4b0aa
CK
2823 /*
2824 * We use pfn_offset to avoid touching the pageframes
2825 * of this compound page.
2826 */
2827 goto same_page;
2828 }
63551ae0 2829 }
1c59827d 2830 spin_unlock(&mm->page_table_lock);
63551ae0
DG
2831 *length = remainder;
2832 *position = vaddr;
2833
2a15efc9 2834 return i ? i : -EFAULT;
63551ae0 2835}
8f860591
ZY
2836
2837void hugetlb_change_protection(struct vm_area_struct *vma,
2838 unsigned long address, unsigned long end, pgprot_t newprot)
2839{
2840 struct mm_struct *mm = vma->vm_mm;
2841 unsigned long start = address;
2842 pte_t *ptep;
2843 pte_t pte;
a5516438 2844 struct hstate *h = hstate_vma(vma);
8f860591
ZY
2845
2846 BUG_ON(address >= end);
2847 flush_cache_range(vma, address, end);
2848
3d48ae45 2849 mutex_lock(&vma->vm_file->f_mapping->i_mmap_mutex);
8f860591 2850 spin_lock(&mm->page_table_lock);
a5516438 2851 for (; address < end; address += huge_page_size(h)) {
8f860591
ZY
2852 ptep = huge_pte_offset(mm, address);
2853 if (!ptep)
2854 continue;
39dde65c
CK
2855 if (huge_pmd_unshare(mm, &address, ptep))
2856 continue;
7f2e9525 2857 if (!huge_pte_none(huge_ptep_get(ptep))) {
8f860591
ZY
2858 pte = huge_ptep_get_and_clear(mm, address, ptep);
2859 pte = pte_mkhuge(pte_modify(pte, newprot));
2860 set_huge_pte_at(mm, address, ptep, pte);
8f860591
ZY
2861 }
2862 }
2863 spin_unlock(&mm->page_table_lock);
3d48ae45 2864 mutex_unlock(&vma->vm_file->f_mapping->i_mmap_mutex);
8f860591
ZY
2865
2866 flush_tlb_range(vma, start, end);
2867}
2868
a1e78772
MG
2869int hugetlb_reserve_pages(struct inode *inode,
2870 long from, long to,
5a6fe125 2871 struct vm_area_struct *vma,
ca16d140 2872 vm_flags_t vm_flags)
e4e574b7 2873{
17c9d12e 2874 long ret, chg;
a5516438 2875 struct hstate *h = hstate_inode(inode);
e4e574b7 2876
17c9d12e
MG
2877 /*
2878 * Only apply hugepage reservation if asked. At fault time, an
2879 * attempt will be made for VM_NORESERVE to allocate a page
2880 * and filesystem quota without using reserves
2881 */
ca16d140 2882 if (vm_flags & VM_NORESERVE)
17c9d12e
MG
2883 return 0;
2884
a1e78772
MG
2885 /*
2886 * Shared mappings base their reservation on the number of pages that
2887 * are already allocated on behalf of the file. Private mappings need
2888 * to reserve the full area even if read-only as mprotect() may be
2889 * called to make the mapping read-write. Assume !vma is a shm mapping
2890 */
f83a275d 2891 if (!vma || vma->vm_flags & VM_MAYSHARE)
a1e78772 2892 chg = region_chg(&inode->i_mapping->private_list, from, to);
17c9d12e
MG
2893 else {
2894 struct resv_map *resv_map = resv_map_alloc();
2895 if (!resv_map)
2896 return -ENOMEM;
2897
a1e78772 2898 chg = to - from;
84afd99b 2899
17c9d12e
MG
2900 set_vma_resv_map(vma, resv_map);
2901 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
2902 }
2903
e4e574b7
AL
2904 if (chg < 0)
2905 return chg;
8a630112 2906
17c9d12e 2907 /* There must be enough filesystem quota for the mapping */
90d8b7e6
AL
2908 if (hugetlb_get_quota(inode->i_mapping, chg))
2909 return -ENOSPC;
5a6fe125
MG
2910
2911 /*
17c9d12e
MG
2912 * Check enough hugepages are available for the reservation.
2913 * Hand back the quota if there are not
5a6fe125 2914 */
a5516438 2915 ret = hugetlb_acct_memory(h, chg);
68842c9b
KC
2916 if (ret < 0) {
2917 hugetlb_put_quota(inode->i_mapping, chg);
a43a8c39 2918 return ret;
68842c9b 2919 }
17c9d12e
MG
2920
2921 /*
2922 * Account for the reservations made. Shared mappings record regions
2923 * that have reservations as they are shared by multiple VMAs.
2924 * When the last VMA disappears, the region map says how much
2925 * the reservation was and the page cache tells how much of
2926 * the reservation was consumed. Private mappings are per-VMA and
2927 * only the consumed reservations are tracked. When the VMA
2928 * disappears, the original reservation is the VMA size and the
2929 * consumed reservations are stored in the map. Hence, nothing
2930 * else has to be done for private mappings here
2931 */
f83a275d 2932 if (!vma || vma->vm_flags & VM_MAYSHARE)
a1e78772 2933 region_add(&inode->i_mapping->private_list, from, to);
a43a8c39
CK
2934 return 0;
2935}
2936
2937void hugetlb_unreserve_pages(struct inode *inode, long offset, long freed)
2938{
a5516438 2939 struct hstate *h = hstate_inode(inode);
a43a8c39 2940 long chg = region_truncate(&inode->i_mapping->private_list, offset);
45c682a6
KC
2941
2942 spin_lock(&inode->i_lock);
e4c6f8be 2943 inode->i_blocks -= (blocks_per_huge_page(h) * freed);
45c682a6
KC
2944 spin_unlock(&inode->i_lock);
2945
90d8b7e6 2946 hugetlb_put_quota(inode->i_mapping, (chg - freed));
a5516438 2947 hugetlb_acct_memory(h, -(chg - freed));
a43a8c39 2948}
93f70f90 2949
d5bd9106
AK
2950#ifdef CONFIG_MEMORY_FAILURE
2951
6de2b1aa
NH
2952/* Should be called in hugetlb_lock */
2953static int is_hugepage_on_freelist(struct page *hpage)
2954{
2955 struct page *page;
2956 struct page *tmp;
2957 struct hstate *h = page_hstate(hpage);
2958 int nid = page_to_nid(hpage);
2959
2960 list_for_each_entry_safe(page, tmp, &h->hugepage_freelists[nid], lru)
2961 if (page == hpage)
2962 return 1;
2963 return 0;
2964}
2965
93f70f90
NH
2966/*
2967 * This function is called from memory failure code.
2968 * Assume the caller holds page lock of the head page.
2969 */
6de2b1aa 2970int dequeue_hwpoisoned_huge_page(struct page *hpage)
93f70f90
NH
2971{
2972 struct hstate *h = page_hstate(hpage);
2973 int nid = page_to_nid(hpage);
6de2b1aa 2974 int ret = -EBUSY;
93f70f90
NH
2975
2976 spin_lock(&hugetlb_lock);
6de2b1aa
NH
2977 if (is_hugepage_on_freelist(hpage)) {
2978 list_del(&hpage->lru);
8c6c2ecb 2979 set_page_refcounted(hpage);
6de2b1aa
NH
2980 h->free_huge_pages--;
2981 h->free_huge_pages_node[nid]--;
2982 ret = 0;
2983 }
93f70f90 2984 spin_unlock(&hugetlb_lock);
6de2b1aa 2985 return ret;
93f70f90 2986}
6de2b1aa 2987#endif