[PATCH] balance_pdgat() cleanup
[linux-2.6-block.git] / mm / hugetlb.c
CommitLineData
1da177e4
LT
1/*
2 * Generic hugetlb support.
3 * (C) William Irwin, April 2004
4 */
5#include <linux/gfp.h>
6#include <linux/list.h>
7#include <linux/init.h>
8#include <linux/module.h>
9#include <linux/mm.h>
1da177e4
LT
10#include <linux/sysctl.h>
11#include <linux/highmem.h>
12#include <linux/nodemask.h>
63551ae0 13#include <linux/pagemap.h>
5da7ca86 14#include <linux/mempolicy.h>
aea47ff3 15#include <linux/cpuset.h>
3935baa9 16#include <linux/mutex.h>
5da7ca86 17
63551ae0
DG
18#include <asm/page.h>
19#include <asm/pgtable.h>
20
21#include <linux/hugetlb.h>
7835e98b 22#include "internal.h"
1da177e4
LT
23
24const unsigned long hugetlb_zero = 0, hugetlb_infinity = ~0UL;
a43a8c39 25static unsigned long nr_huge_pages, free_huge_pages, resv_huge_pages;
1da177e4
LT
26unsigned long max_huge_pages;
27static struct list_head hugepage_freelists[MAX_NUMNODES];
28static unsigned int nr_huge_pages_node[MAX_NUMNODES];
29static unsigned int free_huge_pages_node[MAX_NUMNODES];
3935baa9
DG
30/*
31 * Protects updates to hugepage_freelists, nr_huge_pages, and free_huge_pages
32 */
33static DEFINE_SPINLOCK(hugetlb_lock);
0bd0f9fb 34
79ac6ba4
DG
35static void clear_huge_page(struct page *page, unsigned long addr)
36{
37 int i;
38
39 might_sleep();
40 for (i = 0; i < (HPAGE_SIZE/PAGE_SIZE); i++) {
41 cond_resched();
42 clear_user_highpage(page + i, addr);
43 }
44}
45
46static void copy_huge_page(struct page *dst, struct page *src,
47 unsigned long addr)
48{
49 int i;
50
51 might_sleep();
52 for (i = 0; i < HPAGE_SIZE/PAGE_SIZE; i++) {
53 cond_resched();
54 copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE);
55 }
56}
57
1da177e4
LT
58static void enqueue_huge_page(struct page *page)
59{
60 int nid = page_to_nid(page);
61 list_add(&page->lru, &hugepage_freelists[nid]);
62 free_huge_pages++;
63 free_huge_pages_node[nid]++;
64}
65
5da7ca86
CL
66static struct page *dequeue_huge_page(struct vm_area_struct *vma,
67 unsigned long address)
1da177e4
LT
68{
69 int nid = numa_node_id();
70 struct page *page = NULL;
5da7ca86 71 struct zonelist *zonelist = huge_zonelist(vma, address);
96df9333 72 struct zone **z;
1da177e4 73
96df9333 74 for (z = zonelist->zones; *z; z++) {
89fa3024 75 nid = zone_to_nid(*z);
aea47ff3
CL
76 if (cpuset_zone_allowed(*z, GFP_HIGHUSER) &&
77 !list_empty(&hugepage_freelists[nid]))
96df9333 78 break;
1da177e4 79 }
96df9333
CL
80
81 if (*z) {
1da177e4
LT
82 page = list_entry(hugepage_freelists[nid].next,
83 struct page, lru);
84 list_del(&page->lru);
85 free_huge_pages--;
86 free_huge_pages_node[nid]--;
87 }
88 return page;
89}
90
27a85ef1
DG
91static void free_huge_page(struct page *page)
92{
93 BUG_ON(page_count(page));
94
95 INIT_LIST_HEAD(&page->lru);
96
97 spin_lock(&hugetlb_lock);
98 enqueue_huge_page(page);
99 spin_unlock(&hugetlb_lock);
100}
101
a482289d 102static int alloc_fresh_huge_page(void)
1da177e4
LT
103{
104 static int nid = 0;
105 struct page *page;
106 page = alloc_pages_node(nid, GFP_HIGHUSER|__GFP_COMP|__GFP_NOWARN,
107 HUGETLB_PAGE_ORDER);
fdb7cc59
PJ
108 nid = next_node(nid, node_online_map);
109 if (nid == MAX_NUMNODES)
110 nid = first_node(node_online_map);
1da177e4 111 if (page) {
a482289d 112 page[1].lru.next = (void *)free_huge_page; /* dtor */
0bd0f9fb 113 spin_lock(&hugetlb_lock);
1da177e4
LT
114 nr_huge_pages++;
115 nr_huge_pages_node[page_to_nid(page)]++;
0bd0f9fb 116 spin_unlock(&hugetlb_lock);
a482289d
NP
117 put_page(page); /* free it into the hugepage allocator */
118 return 1;
1da177e4 119 }
a482289d 120 return 0;
1da177e4
LT
121}
122
27a85ef1
DG
123static struct page *alloc_huge_page(struct vm_area_struct *vma,
124 unsigned long addr)
1da177e4
LT
125{
126 struct page *page;
1da177e4
LT
127
128 spin_lock(&hugetlb_lock);
a43a8c39
CK
129 if (vma->vm_flags & VM_MAYSHARE)
130 resv_huge_pages--;
131 else if (free_huge_pages <= resv_huge_pages)
132 goto fail;
b45b5bd6
DG
133
134 page = dequeue_huge_page(vma, addr);
135 if (!page)
136 goto fail;
137
1da177e4 138 spin_unlock(&hugetlb_lock);
7835e98b 139 set_page_refcounted(page);
1da177e4 140 return page;
b45b5bd6 141
a43a8c39 142fail:
b45b5bd6
DG
143 spin_unlock(&hugetlb_lock);
144 return NULL;
145}
146
1da177e4
LT
147static int __init hugetlb_init(void)
148{
149 unsigned long i;
1da177e4 150
3c726f8d
BH
151 if (HPAGE_SHIFT == 0)
152 return 0;
153
1da177e4
LT
154 for (i = 0; i < MAX_NUMNODES; ++i)
155 INIT_LIST_HEAD(&hugepage_freelists[i]);
156
157 for (i = 0; i < max_huge_pages; ++i) {
a482289d 158 if (!alloc_fresh_huge_page())
1da177e4 159 break;
1da177e4
LT
160 }
161 max_huge_pages = free_huge_pages = nr_huge_pages = i;
162 printk("Total HugeTLB memory allocated, %ld\n", free_huge_pages);
163 return 0;
164}
165module_init(hugetlb_init);
166
167static int __init hugetlb_setup(char *s)
168{
169 if (sscanf(s, "%lu", &max_huge_pages) <= 0)
170 max_huge_pages = 0;
171 return 1;
172}
173__setup("hugepages=", hugetlb_setup);
174
175#ifdef CONFIG_SYSCTL
176static void update_and_free_page(struct page *page)
177{
178 int i;
179 nr_huge_pages--;
4415cc8d 180 nr_huge_pages_node[page_to_nid(page)]--;
1da177e4
LT
181 for (i = 0; i < (HPAGE_SIZE / PAGE_SIZE); i++) {
182 page[i].flags &= ~(1 << PG_locked | 1 << PG_error | 1 << PG_referenced |
183 1 << PG_dirty | 1 << PG_active | 1 << PG_reserved |
184 1 << PG_private | 1<< PG_writeback);
1da177e4 185 }
a482289d 186 page[1].lru.next = NULL;
7835e98b 187 set_page_refcounted(page);
1da177e4
LT
188 __free_pages(page, HUGETLB_PAGE_ORDER);
189}
190
191#ifdef CONFIG_HIGHMEM
192static void try_to_free_low(unsigned long count)
193{
4415cc8d
CL
194 int i;
195
1da177e4
LT
196 for (i = 0; i < MAX_NUMNODES; ++i) {
197 struct page *page, *next;
198 list_for_each_entry_safe(page, next, &hugepage_freelists[i], lru) {
199 if (PageHighMem(page))
200 continue;
201 list_del(&page->lru);
202 update_and_free_page(page);
1da177e4 203 free_huge_pages--;
4415cc8d 204 free_huge_pages_node[page_to_nid(page)]--;
1da177e4
LT
205 if (count >= nr_huge_pages)
206 return;
207 }
208 }
209}
210#else
211static inline void try_to_free_low(unsigned long count)
212{
213}
214#endif
215
216static unsigned long set_max_huge_pages(unsigned long count)
217{
218 while (count > nr_huge_pages) {
a482289d 219 if (!alloc_fresh_huge_page())
1da177e4 220 return nr_huge_pages;
1da177e4
LT
221 }
222 if (count >= nr_huge_pages)
223 return nr_huge_pages;
224
225 spin_lock(&hugetlb_lock);
a43a8c39 226 count = max(count, resv_huge_pages);
1da177e4
LT
227 try_to_free_low(count);
228 while (count < nr_huge_pages) {
5da7ca86 229 struct page *page = dequeue_huge_page(NULL, 0);
1da177e4
LT
230 if (!page)
231 break;
232 update_and_free_page(page);
233 }
234 spin_unlock(&hugetlb_lock);
235 return nr_huge_pages;
236}
237
238int hugetlb_sysctl_handler(struct ctl_table *table, int write,
239 struct file *file, void __user *buffer,
240 size_t *length, loff_t *ppos)
241{
242 proc_doulongvec_minmax(table, write, file, buffer, length, ppos);
243 max_huge_pages = set_max_huge_pages(max_huge_pages);
244 return 0;
245}
246#endif /* CONFIG_SYSCTL */
247
248int hugetlb_report_meminfo(char *buf)
249{
250 return sprintf(buf,
251 "HugePages_Total: %5lu\n"
252 "HugePages_Free: %5lu\n"
a43a8c39 253 "HugePages_Rsvd: %5lu\n"
1da177e4
LT
254 "Hugepagesize: %5lu kB\n",
255 nr_huge_pages,
256 free_huge_pages,
a43a8c39 257 resv_huge_pages,
1da177e4
LT
258 HPAGE_SIZE/1024);
259}
260
261int hugetlb_report_node_meminfo(int nid, char *buf)
262{
263 return sprintf(buf,
264 "Node %d HugePages_Total: %5u\n"
265 "Node %d HugePages_Free: %5u\n",
266 nid, nr_huge_pages_node[nid],
267 nid, free_huge_pages_node[nid]);
268}
269
1da177e4
LT
270/* Return the number pages of memory we physically have, in PAGE_SIZE units. */
271unsigned long hugetlb_total_pages(void)
272{
273 return nr_huge_pages * (HPAGE_SIZE / PAGE_SIZE);
274}
1da177e4
LT
275
276/*
277 * We cannot handle pagefaults against hugetlb pages at all. They cause
278 * handle_mm_fault() to try to instantiate regular-sized pages in the
279 * hugegpage VMA. do_page_fault() is supposed to trap this, so BUG is we get
280 * this far.
281 */
282static struct page *hugetlb_nopage(struct vm_area_struct *vma,
283 unsigned long address, int *unused)
284{
285 BUG();
286 return NULL;
287}
288
289struct vm_operations_struct hugetlb_vm_ops = {
290 .nopage = hugetlb_nopage,
291};
292
1e8f889b
DG
293static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
294 int writable)
63551ae0
DG
295{
296 pte_t entry;
297
1e8f889b 298 if (writable) {
63551ae0
DG
299 entry =
300 pte_mkwrite(pte_mkdirty(mk_pte(page, vma->vm_page_prot)));
301 } else {
302 entry = pte_wrprotect(mk_pte(page, vma->vm_page_prot));
303 }
304 entry = pte_mkyoung(entry);
305 entry = pte_mkhuge(entry);
306
307 return entry;
308}
309
1e8f889b
DG
310static void set_huge_ptep_writable(struct vm_area_struct *vma,
311 unsigned long address, pte_t *ptep)
312{
313 pte_t entry;
314
315 entry = pte_mkwrite(pte_mkdirty(*ptep));
316 ptep_set_access_flags(vma, address, ptep, entry, 1);
317 update_mmu_cache(vma, address, entry);
318 lazy_mmu_prot_update(entry);
319}
320
321
63551ae0
DG
322int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
323 struct vm_area_struct *vma)
324{
325 pte_t *src_pte, *dst_pte, entry;
326 struct page *ptepage;
1c59827d 327 unsigned long addr;
1e8f889b
DG
328 int cow;
329
330 cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
63551ae0 331
1c59827d 332 for (addr = vma->vm_start; addr < vma->vm_end; addr += HPAGE_SIZE) {
c74df32c
HD
333 src_pte = huge_pte_offset(src, addr);
334 if (!src_pte)
335 continue;
63551ae0
DG
336 dst_pte = huge_pte_alloc(dst, addr);
337 if (!dst_pte)
338 goto nomem;
c74df32c 339 spin_lock(&dst->page_table_lock);
1c59827d 340 spin_lock(&src->page_table_lock);
c74df32c 341 if (!pte_none(*src_pte)) {
1e8f889b
DG
342 if (cow)
343 ptep_set_wrprotect(src, addr, src_pte);
1c59827d
HD
344 entry = *src_pte;
345 ptepage = pte_page(entry);
346 get_page(ptepage);
4294621f 347 add_mm_counter(dst, file_rss, HPAGE_SIZE / PAGE_SIZE);
1c59827d
HD
348 set_huge_pte_at(dst, addr, dst_pte, entry);
349 }
350 spin_unlock(&src->page_table_lock);
c74df32c 351 spin_unlock(&dst->page_table_lock);
63551ae0
DG
352 }
353 return 0;
354
355nomem:
356 return -ENOMEM;
357}
358
502717f4
CK
359void __unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
360 unsigned long end)
63551ae0
DG
361{
362 struct mm_struct *mm = vma->vm_mm;
363 unsigned long address;
c7546f8f 364 pte_t *ptep;
63551ae0
DG
365 pte_t pte;
366 struct page *page;
fe1668ae 367 struct page *tmp;
c0a499c2
CK
368 /*
369 * A page gathering list, protected by per file i_mmap_lock. The
370 * lock is used to avoid list corruption from multiple unmapping
371 * of the same page since we are using page->lru.
372 */
fe1668ae 373 LIST_HEAD(page_list);
63551ae0
DG
374
375 WARN_ON(!is_vm_hugetlb_page(vma));
376 BUG_ON(start & ~HPAGE_MASK);
377 BUG_ON(end & ~HPAGE_MASK);
378
508034a3
HD
379 spin_lock(&mm->page_table_lock);
380
365e9c87
HD
381 /* Update high watermark before we lower rss */
382 update_hiwater_rss(mm);
383
63551ae0 384 for (address = start; address < end; address += HPAGE_SIZE) {
c7546f8f 385 ptep = huge_pte_offset(mm, address);
4c887265 386 if (!ptep)
c7546f8f
DG
387 continue;
388
389 pte = huge_ptep_get_and_clear(mm, address, ptep);
63551ae0
DG
390 if (pte_none(pte))
391 continue;
c7546f8f 392
63551ae0 393 page = pte_page(pte);
fe1668ae 394 list_add(&page->lru, &page_list);
4294621f 395 add_mm_counter(mm, file_rss, (int) -(HPAGE_SIZE / PAGE_SIZE));
63551ae0 396 }
63551ae0 397
1da177e4 398 spin_unlock(&mm->page_table_lock);
508034a3 399 flush_tlb_range(vma, start, end);
fe1668ae
CK
400 list_for_each_entry_safe(page, tmp, &page_list, lru) {
401 list_del(&page->lru);
402 put_page(page);
403 }
1da177e4 404}
63551ae0 405
502717f4
CK
406void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
407 unsigned long end)
408{
409 /*
410 * It is undesirable to test vma->vm_file as it should be non-null
411 * for valid hugetlb area. However, vm_file will be NULL in the error
412 * cleanup path of do_mmap_pgoff. When hugetlbfs ->mmap method fails,
413 * do_mmap_pgoff() nullifies vma->vm_file before calling this function
414 * to clean up. Since no pte has actually been setup, it is safe to
415 * do nothing in this case.
416 */
417 if (vma->vm_file) {
418 spin_lock(&vma->vm_file->f_mapping->i_mmap_lock);
419 __unmap_hugepage_range(vma, start, end);
420 spin_unlock(&vma->vm_file->f_mapping->i_mmap_lock);
421 }
422}
423
1e8f889b
DG
424static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
425 unsigned long address, pte_t *ptep, pte_t pte)
426{
427 struct page *old_page, *new_page;
79ac6ba4 428 int avoidcopy;
1e8f889b
DG
429
430 old_page = pte_page(pte);
431
432 /* If no-one else is actually using this page, avoid the copy
433 * and just make the page writable */
434 avoidcopy = (page_count(old_page) == 1);
435 if (avoidcopy) {
436 set_huge_ptep_writable(vma, address, ptep);
437 return VM_FAULT_MINOR;
438 }
439
440 page_cache_get(old_page);
5da7ca86 441 new_page = alloc_huge_page(vma, address);
1e8f889b
DG
442
443 if (!new_page) {
444 page_cache_release(old_page);
0df420d8 445 return VM_FAULT_OOM;
1e8f889b
DG
446 }
447
448 spin_unlock(&mm->page_table_lock);
79ac6ba4 449 copy_huge_page(new_page, old_page, address);
1e8f889b
DG
450 spin_lock(&mm->page_table_lock);
451
452 ptep = huge_pte_offset(mm, address & HPAGE_MASK);
453 if (likely(pte_same(*ptep, pte))) {
454 /* Break COW */
455 set_huge_pte_at(mm, address, ptep,
456 make_huge_pte(vma, new_page, 1));
457 /* Make the old page be freed below */
458 new_page = old_page;
459 }
460 page_cache_release(new_page);
461 page_cache_release(old_page);
462 return VM_FAULT_MINOR;
463}
464
86e5216f 465int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
1e8f889b 466 unsigned long address, pte_t *ptep, int write_access)
ac9b9c66
HD
467{
468 int ret = VM_FAULT_SIGBUS;
4c887265
AL
469 unsigned long idx;
470 unsigned long size;
4c887265
AL
471 struct page *page;
472 struct address_space *mapping;
1e8f889b 473 pte_t new_pte;
4c887265 474
4c887265
AL
475 mapping = vma->vm_file->f_mapping;
476 idx = ((address - vma->vm_start) >> HPAGE_SHIFT)
477 + (vma->vm_pgoff >> (HPAGE_SHIFT - PAGE_SHIFT));
478
479 /*
480 * Use page lock to guard against racing truncation
481 * before we get page_table_lock.
482 */
6bda666a
CL
483retry:
484 page = find_lock_page(mapping, idx);
485 if (!page) {
ebed4bfc
HD
486 size = i_size_read(mapping->host) >> HPAGE_SHIFT;
487 if (idx >= size)
488 goto out;
6bda666a
CL
489 if (hugetlb_get_quota(mapping))
490 goto out;
491 page = alloc_huge_page(vma, address);
492 if (!page) {
493 hugetlb_put_quota(mapping);
0df420d8 494 ret = VM_FAULT_OOM;
6bda666a
CL
495 goto out;
496 }
79ac6ba4 497 clear_huge_page(page, address);
ac9b9c66 498
6bda666a
CL
499 if (vma->vm_flags & VM_SHARED) {
500 int err;
501
502 err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
503 if (err) {
504 put_page(page);
505 hugetlb_put_quota(mapping);
506 if (err == -EEXIST)
507 goto retry;
508 goto out;
509 }
510 } else
511 lock_page(page);
512 }
1e8f889b 513
ac9b9c66 514 spin_lock(&mm->page_table_lock);
4c887265
AL
515 size = i_size_read(mapping->host) >> HPAGE_SHIFT;
516 if (idx >= size)
517 goto backout;
518
519 ret = VM_FAULT_MINOR;
86e5216f 520 if (!pte_none(*ptep))
4c887265
AL
521 goto backout;
522
523 add_mm_counter(mm, file_rss, HPAGE_SIZE / PAGE_SIZE);
1e8f889b
DG
524 new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
525 && (vma->vm_flags & VM_SHARED)));
526 set_huge_pte_at(mm, address, ptep, new_pte);
527
528 if (write_access && !(vma->vm_flags & VM_SHARED)) {
529 /* Optimization, do the COW without a second fault */
530 ret = hugetlb_cow(mm, vma, address, ptep, new_pte);
531 }
532
ac9b9c66 533 spin_unlock(&mm->page_table_lock);
4c887265
AL
534 unlock_page(page);
535out:
ac9b9c66 536 return ret;
4c887265
AL
537
538backout:
539 spin_unlock(&mm->page_table_lock);
540 hugetlb_put_quota(mapping);
541 unlock_page(page);
542 put_page(page);
543 goto out;
ac9b9c66
HD
544}
545
86e5216f
AL
546int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
547 unsigned long address, int write_access)
548{
549 pte_t *ptep;
550 pte_t entry;
1e8f889b 551 int ret;
3935baa9 552 static DEFINE_MUTEX(hugetlb_instantiation_mutex);
86e5216f
AL
553
554 ptep = huge_pte_alloc(mm, address);
555 if (!ptep)
556 return VM_FAULT_OOM;
557
3935baa9
DG
558 /*
559 * Serialize hugepage allocation and instantiation, so that we don't
560 * get spurious allocation failures if two CPUs race to instantiate
561 * the same page in the page cache.
562 */
563 mutex_lock(&hugetlb_instantiation_mutex);
86e5216f 564 entry = *ptep;
3935baa9
DG
565 if (pte_none(entry)) {
566 ret = hugetlb_no_page(mm, vma, address, ptep, write_access);
567 mutex_unlock(&hugetlb_instantiation_mutex);
568 return ret;
569 }
86e5216f 570
1e8f889b
DG
571 ret = VM_FAULT_MINOR;
572
573 spin_lock(&mm->page_table_lock);
574 /* Check for a racing update before calling hugetlb_cow */
575 if (likely(pte_same(entry, *ptep)))
576 if (write_access && !pte_write(entry))
577 ret = hugetlb_cow(mm, vma, address, ptep, entry);
578 spin_unlock(&mm->page_table_lock);
3935baa9 579 mutex_unlock(&hugetlb_instantiation_mutex);
1e8f889b
DG
580
581 return ret;
86e5216f
AL
582}
583
63551ae0
DG
584int follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
585 struct page **pages, struct vm_area_struct **vmas,
586 unsigned long *position, int *length, int i)
587{
d5d4b0aa
CK
588 unsigned long pfn_offset;
589 unsigned long vaddr = *position;
63551ae0
DG
590 int remainder = *length;
591
1c59827d 592 spin_lock(&mm->page_table_lock);
63551ae0 593 while (vaddr < vma->vm_end && remainder) {
4c887265
AL
594 pte_t *pte;
595 struct page *page;
63551ae0 596
4c887265
AL
597 /*
598 * Some archs (sparc64, sh*) have multiple pte_ts to
599 * each hugepage. We have to make * sure we get the
600 * first, for the page indexing below to work.
601 */
602 pte = huge_pte_offset(mm, vaddr & HPAGE_MASK);
63551ae0 603
4c887265
AL
604 if (!pte || pte_none(*pte)) {
605 int ret;
63551ae0 606
4c887265
AL
607 spin_unlock(&mm->page_table_lock);
608 ret = hugetlb_fault(mm, vma, vaddr, 0);
609 spin_lock(&mm->page_table_lock);
610 if (ret == VM_FAULT_MINOR)
611 continue;
63551ae0 612
4c887265
AL
613 remainder = 0;
614 if (!i)
615 i = -EFAULT;
616 break;
617 }
618
d5d4b0aa
CK
619 pfn_offset = (vaddr & ~HPAGE_MASK) >> PAGE_SHIFT;
620 page = pte_page(*pte);
621same_page:
d6692183
CK
622 if (pages) {
623 get_page(page);
d5d4b0aa 624 pages[i] = page + pfn_offset;
d6692183 625 }
63551ae0
DG
626
627 if (vmas)
628 vmas[i] = vma;
629
630 vaddr += PAGE_SIZE;
d5d4b0aa 631 ++pfn_offset;
63551ae0
DG
632 --remainder;
633 ++i;
d5d4b0aa
CK
634 if (vaddr < vma->vm_end && remainder &&
635 pfn_offset < HPAGE_SIZE/PAGE_SIZE) {
636 /*
637 * We use pfn_offset to avoid touching the pageframes
638 * of this compound page.
639 */
640 goto same_page;
641 }
63551ae0 642 }
1c59827d 643 spin_unlock(&mm->page_table_lock);
63551ae0
DG
644 *length = remainder;
645 *position = vaddr;
646
647 return i;
648}
8f860591
ZY
649
650void hugetlb_change_protection(struct vm_area_struct *vma,
651 unsigned long address, unsigned long end, pgprot_t newprot)
652{
653 struct mm_struct *mm = vma->vm_mm;
654 unsigned long start = address;
655 pte_t *ptep;
656 pte_t pte;
657
658 BUG_ON(address >= end);
659 flush_cache_range(vma, address, end);
660
661 spin_lock(&mm->page_table_lock);
662 for (; address < end; address += HPAGE_SIZE) {
663 ptep = huge_pte_offset(mm, address);
664 if (!ptep)
665 continue;
666 if (!pte_none(*ptep)) {
667 pte = huge_ptep_get_and_clear(mm, address, ptep);
668 pte = pte_mkhuge(pte_modify(pte, newprot));
669 set_huge_pte_at(mm, address, ptep, pte);
670 lazy_mmu_prot_update(pte);
671 }
672 }
673 spin_unlock(&mm->page_table_lock);
674
675 flush_tlb_range(vma, start, end);
676}
677
a43a8c39
CK
678struct file_region {
679 struct list_head link;
680 long from;
681 long to;
682};
683
684static long region_add(struct list_head *head, long f, long t)
685{
686 struct file_region *rg, *nrg, *trg;
687
688 /* Locate the region we are either in or before. */
689 list_for_each_entry(rg, head, link)
690 if (f <= rg->to)
691 break;
692
693 /* Round our left edge to the current segment if it encloses us. */
694 if (f > rg->from)
695 f = rg->from;
696
697 /* Check for and consume any regions we now overlap with. */
698 nrg = rg;
699 list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
700 if (&rg->link == head)
701 break;
702 if (rg->from > t)
703 break;
704
705 /* If this area reaches higher then extend our area to
706 * include it completely. If this is not the first area
707 * which we intend to reuse, free it. */
708 if (rg->to > t)
709 t = rg->to;
710 if (rg != nrg) {
711 list_del(&rg->link);
712 kfree(rg);
713 }
714 }
715 nrg->from = f;
716 nrg->to = t;
717 return 0;
718}
719
720static long region_chg(struct list_head *head, long f, long t)
721{
722 struct file_region *rg, *nrg;
723 long chg = 0;
724
725 /* Locate the region we are before or in. */
726 list_for_each_entry(rg, head, link)
727 if (f <= rg->to)
728 break;
729
730 /* If we are below the current region then a new region is required.
731 * Subtle, allocate a new region at the position but make it zero
732 * size such that we can guarentee to record the reservation. */
733 if (&rg->link == head || t < rg->from) {
734 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
735 if (nrg == 0)
736 return -ENOMEM;
737 nrg->from = f;
738 nrg->to = f;
739 INIT_LIST_HEAD(&nrg->link);
740 list_add(&nrg->link, rg->link.prev);
741
742 return t - f;
743 }
744
745 /* Round our left edge to the current segment if it encloses us. */
746 if (f > rg->from)
747 f = rg->from;
748 chg = t - f;
749
750 /* Check for and consume any regions we now overlap with. */
751 list_for_each_entry(rg, rg->link.prev, link) {
752 if (&rg->link == head)
753 break;
754 if (rg->from > t)
755 return chg;
756
757 /* We overlap with this area, if it extends futher than
758 * us then we must extend ourselves. Account for its
759 * existing reservation. */
760 if (rg->to > t) {
761 chg += rg->to - t;
762 t = rg->to;
763 }
764 chg -= rg->to - rg->from;
765 }
766 return chg;
767}
768
769static long region_truncate(struct list_head *head, long end)
770{
771 struct file_region *rg, *trg;
772 long chg = 0;
773
774 /* Locate the region we are either in or before. */
775 list_for_each_entry(rg, head, link)
776 if (end <= rg->to)
777 break;
778 if (&rg->link == head)
779 return 0;
780
781 /* If we are in the middle of a region then adjust it. */
782 if (end > rg->from) {
783 chg = rg->to - end;
784 rg->to = end;
785 rg = list_entry(rg->link.next, typeof(*rg), link);
786 }
787
788 /* Drop any remaining regions. */
789 list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
790 if (&rg->link == head)
791 break;
792 chg += rg->to - rg->from;
793 list_del(&rg->link);
794 kfree(rg);
795 }
796 return chg;
797}
798
799static int hugetlb_acct_memory(long delta)
800{
801 int ret = -ENOMEM;
802
803 spin_lock(&hugetlb_lock);
804 if ((delta + resv_huge_pages) <= free_huge_pages) {
805 resv_huge_pages += delta;
806 ret = 0;
807 }
808 spin_unlock(&hugetlb_lock);
809 return ret;
810}
811
812int hugetlb_reserve_pages(struct inode *inode, long from, long to)
813{
814 long ret, chg;
815
816 chg = region_chg(&inode->i_mapping->private_list, from, to);
817 if (chg < 0)
818 return chg;
819 ret = hugetlb_acct_memory(chg);
820 if (ret < 0)
821 return ret;
822 region_add(&inode->i_mapping->private_list, from, to);
823 return 0;
824}
825
826void hugetlb_unreserve_pages(struct inode *inode, long offset, long freed)
827{
828 long chg = region_truncate(&inode->i_mapping->private_list, offset);
829 hugetlb_acct_memory(freed - chg);
830}