some kmalloc/memset ->kzalloc (tree wide)
[linux-2.6-block.git] / mm / hugetlb.c
CommitLineData
1da177e4
LT
1/*
2 * Generic hugetlb support.
3 * (C) William Irwin, April 2004
4 */
5#include <linux/gfp.h>
6#include <linux/list.h>
7#include <linux/init.h>
8#include <linux/module.h>
9#include <linux/mm.h>
1da177e4
LT
10#include <linux/sysctl.h>
11#include <linux/highmem.h>
12#include <linux/nodemask.h>
63551ae0 13#include <linux/pagemap.h>
5da7ca86 14#include <linux/mempolicy.h>
aea47ff3 15#include <linux/cpuset.h>
3935baa9 16#include <linux/mutex.h>
5da7ca86 17
63551ae0
DG
18#include <asm/page.h>
19#include <asm/pgtable.h>
20
21#include <linux/hugetlb.h>
7835e98b 22#include "internal.h"
1da177e4
LT
23
24const unsigned long hugetlb_zero = 0, hugetlb_infinity = ~0UL;
a43a8c39 25static unsigned long nr_huge_pages, free_huge_pages, resv_huge_pages;
1da177e4
LT
26unsigned long max_huge_pages;
27static struct list_head hugepage_freelists[MAX_NUMNODES];
28static unsigned int nr_huge_pages_node[MAX_NUMNODES];
29static unsigned int free_huge_pages_node[MAX_NUMNODES];
396faf03
MG
30static gfp_t htlb_alloc_mask = GFP_HIGHUSER;
31unsigned long hugepages_treat_as_movable;
32
3935baa9
DG
33/*
34 * Protects updates to hugepage_freelists, nr_huge_pages, and free_huge_pages
35 */
36static DEFINE_SPINLOCK(hugetlb_lock);
0bd0f9fb 37
79ac6ba4
DG
38static void clear_huge_page(struct page *page, unsigned long addr)
39{
40 int i;
41
42 might_sleep();
43 for (i = 0; i < (HPAGE_SIZE/PAGE_SIZE); i++) {
44 cond_resched();
45 clear_user_highpage(page + i, addr);
46 }
47}
48
49static void copy_huge_page(struct page *dst, struct page *src,
9de455b2 50 unsigned long addr, struct vm_area_struct *vma)
79ac6ba4
DG
51{
52 int i;
53
54 might_sleep();
55 for (i = 0; i < HPAGE_SIZE/PAGE_SIZE; i++) {
56 cond_resched();
9de455b2 57 copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
79ac6ba4
DG
58 }
59}
60
1da177e4
LT
61static void enqueue_huge_page(struct page *page)
62{
63 int nid = page_to_nid(page);
64 list_add(&page->lru, &hugepage_freelists[nid]);
65 free_huge_pages++;
66 free_huge_pages_node[nid]++;
67}
68
5da7ca86
CL
69static struct page *dequeue_huge_page(struct vm_area_struct *vma,
70 unsigned long address)
1da177e4 71{
31a5c6e4 72 int nid;
1da177e4 73 struct page *page = NULL;
396faf03
MG
74 struct zonelist *zonelist = huge_zonelist(vma, address,
75 htlb_alloc_mask);
96df9333 76 struct zone **z;
1da177e4 77
96df9333 78 for (z = zonelist->zones; *z; z++) {
89fa3024 79 nid = zone_to_nid(*z);
396faf03 80 if (cpuset_zone_allowed_softwall(*z, htlb_alloc_mask) &&
aea47ff3 81 !list_empty(&hugepage_freelists[nid]))
96df9333 82 break;
1da177e4 83 }
96df9333
CL
84
85 if (*z) {
1da177e4
LT
86 page = list_entry(hugepage_freelists[nid].next,
87 struct page, lru);
88 list_del(&page->lru);
89 free_huge_pages--;
90 free_huge_pages_node[nid]--;
91 }
92 return page;
93}
94
27a85ef1
DG
95static void free_huge_page(struct page *page)
96{
97 BUG_ON(page_count(page));
98
99 INIT_LIST_HEAD(&page->lru);
100
101 spin_lock(&hugetlb_lock);
102 enqueue_huge_page(page);
103 spin_unlock(&hugetlb_lock);
104}
105
a482289d 106static int alloc_fresh_huge_page(void)
1da177e4 107{
f96efd58 108 static int prev_nid;
1da177e4 109 struct page *page;
f96efd58
JJ
110 static DEFINE_SPINLOCK(nid_lock);
111 int nid;
112
113 spin_lock(&nid_lock);
114 nid = next_node(prev_nid, node_online_map);
fdb7cc59
PJ
115 if (nid == MAX_NUMNODES)
116 nid = first_node(node_online_map);
f96efd58
JJ
117 prev_nid = nid;
118 spin_unlock(&nid_lock);
119
396faf03 120 page = alloc_pages_node(nid, htlb_alloc_mask|__GFP_COMP|__GFP_NOWARN,
f96efd58 121 HUGETLB_PAGE_ORDER);
1da177e4 122 if (page) {
33f2ef89 123 set_compound_page_dtor(page, free_huge_page);
0bd0f9fb 124 spin_lock(&hugetlb_lock);
1da177e4
LT
125 nr_huge_pages++;
126 nr_huge_pages_node[page_to_nid(page)]++;
0bd0f9fb 127 spin_unlock(&hugetlb_lock);
a482289d
NP
128 put_page(page); /* free it into the hugepage allocator */
129 return 1;
1da177e4 130 }
a482289d 131 return 0;
1da177e4
LT
132}
133
27a85ef1
DG
134static struct page *alloc_huge_page(struct vm_area_struct *vma,
135 unsigned long addr)
1da177e4
LT
136{
137 struct page *page;
1da177e4
LT
138
139 spin_lock(&hugetlb_lock);
a43a8c39
CK
140 if (vma->vm_flags & VM_MAYSHARE)
141 resv_huge_pages--;
142 else if (free_huge_pages <= resv_huge_pages)
143 goto fail;
b45b5bd6
DG
144
145 page = dequeue_huge_page(vma, addr);
146 if (!page)
147 goto fail;
148
1da177e4 149 spin_unlock(&hugetlb_lock);
7835e98b 150 set_page_refcounted(page);
1da177e4 151 return page;
b45b5bd6 152
a43a8c39 153fail:
ace4bd29
KC
154 if (vma->vm_flags & VM_MAYSHARE)
155 resv_huge_pages++;
b45b5bd6
DG
156 spin_unlock(&hugetlb_lock);
157 return NULL;
158}
159
1da177e4
LT
160static int __init hugetlb_init(void)
161{
162 unsigned long i;
1da177e4 163
3c726f8d
BH
164 if (HPAGE_SHIFT == 0)
165 return 0;
166
1da177e4
LT
167 for (i = 0; i < MAX_NUMNODES; ++i)
168 INIT_LIST_HEAD(&hugepage_freelists[i]);
169
170 for (i = 0; i < max_huge_pages; ++i) {
a482289d 171 if (!alloc_fresh_huge_page())
1da177e4 172 break;
1da177e4
LT
173 }
174 max_huge_pages = free_huge_pages = nr_huge_pages = i;
175 printk("Total HugeTLB memory allocated, %ld\n", free_huge_pages);
176 return 0;
177}
178module_init(hugetlb_init);
179
180static int __init hugetlb_setup(char *s)
181{
182 if (sscanf(s, "%lu", &max_huge_pages) <= 0)
183 max_huge_pages = 0;
184 return 1;
185}
186__setup("hugepages=", hugetlb_setup);
187
8a630112
KC
188static unsigned int cpuset_mems_nr(unsigned int *array)
189{
190 int node;
191 unsigned int nr = 0;
192
193 for_each_node_mask(node, cpuset_current_mems_allowed)
194 nr += array[node];
195
196 return nr;
197}
198
1da177e4
LT
199#ifdef CONFIG_SYSCTL
200static void update_and_free_page(struct page *page)
201{
202 int i;
203 nr_huge_pages--;
4415cc8d 204 nr_huge_pages_node[page_to_nid(page)]--;
1da177e4
LT
205 for (i = 0; i < (HPAGE_SIZE / PAGE_SIZE); i++) {
206 page[i].flags &= ~(1 << PG_locked | 1 << PG_error | 1 << PG_referenced |
207 1 << PG_dirty | 1 << PG_active | 1 << PG_reserved |
208 1 << PG_private | 1<< PG_writeback);
1da177e4 209 }
a482289d 210 page[1].lru.next = NULL;
7835e98b 211 set_page_refcounted(page);
1da177e4
LT
212 __free_pages(page, HUGETLB_PAGE_ORDER);
213}
214
215#ifdef CONFIG_HIGHMEM
216static void try_to_free_low(unsigned long count)
217{
4415cc8d
CL
218 int i;
219
1da177e4
LT
220 for (i = 0; i < MAX_NUMNODES; ++i) {
221 struct page *page, *next;
222 list_for_each_entry_safe(page, next, &hugepage_freelists[i], lru) {
223 if (PageHighMem(page))
224 continue;
225 list_del(&page->lru);
226 update_and_free_page(page);
1da177e4 227 free_huge_pages--;
4415cc8d 228 free_huge_pages_node[page_to_nid(page)]--;
1da177e4
LT
229 if (count >= nr_huge_pages)
230 return;
231 }
232 }
233}
234#else
235static inline void try_to_free_low(unsigned long count)
236{
237}
238#endif
239
240static unsigned long set_max_huge_pages(unsigned long count)
241{
242 while (count > nr_huge_pages) {
a482289d 243 if (!alloc_fresh_huge_page())
1da177e4 244 return nr_huge_pages;
1da177e4
LT
245 }
246 if (count >= nr_huge_pages)
247 return nr_huge_pages;
248
249 spin_lock(&hugetlb_lock);
a43a8c39 250 count = max(count, resv_huge_pages);
1da177e4
LT
251 try_to_free_low(count);
252 while (count < nr_huge_pages) {
5da7ca86 253 struct page *page = dequeue_huge_page(NULL, 0);
1da177e4
LT
254 if (!page)
255 break;
256 update_and_free_page(page);
257 }
258 spin_unlock(&hugetlb_lock);
259 return nr_huge_pages;
260}
261
262int hugetlb_sysctl_handler(struct ctl_table *table, int write,
263 struct file *file, void __user *buffer,
264 size_t *length, loff_t *ppos)
265{
266 proc_doulongvec_minmax(table, write, file, buffer, length, ppos);
267 max_huge_pages = set_max_huge_pages(max_huge_pages);
268 return 0;
269}
396faf03
MG
270
271int hugetlb_treat_movable_handler(struct ctl_table *table, int write,
272 struct file *file, void __user *buffer,
273 size_t *length, loff_t *ppos)
274{
275 proc_dointvec(table, write, file, buffer, length, ppos);
276 if (hugepages_treat_as_movable)
277 htlb_alloc_mask = GFP_HIGHUSER_MOVABLE;
278 else
279 htlb_alloc_mask = GFP_HIGHUSER;
280 return 0;
281}
282
1da177e4
LT
283#endif /* CONFIG_SYSCTL */
284
285int hugetlb_report_meminfo(char *buf)
286{
287 return sprintf(buf,
288 "HugePages_Total: %5lu\n"
289 "HugePages_Free: %5lu\n"
a43a8c39 290 "HugePages_Rsvd: %5lu\n"
1da177e4
LT
291 "Hugepagesize: %5lu kB\n",
292 nr_huge_pages,
293 free_huge_pages,
a43a8c39 294 resv_huge_pages,
1da177e4
LT
295 HPAGE_SIZE/1024);
296}
297
298int hugetlb_report_node_meminfo(int nid, char *buf)
299{
300 return sprintf(buf,
301 "Node %d HugePages_Total: %5u\n"
302 "Node %d HugePages_Free: %5u\n",
303 nid, nr_huge_pages_node[nid],
304 nid, free_huge_pages_node[nid]);
305}
306
1da177e4
LT
307/* Return the number pages of memory we physically have, in PAGE_SIZE units. */
308unsigned long hugetlb_total_pages(void)
309{
310 return nr_huge_pages * (HPAGE_SIZE / PAGE_SIZE);
311}
1da177e4
LT
312
313/*
314 * We cannot handle pagefaults against hugetlb pages at all. They cause
315 * handle_mm_fault() to try to instantiate regular-sized pages in the
316 * hugegpage VMA. do_page_fault() is supposed to trap this, so BUG is we get
317 * this far.
318 */
d0217ac0 319static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1da177e4
LT
320{
321 BUG();
d0217ac0 322 return 0;
1da177e4
LT
323}
324
325struct vm_operations_struct hugetlb_vm_ops = {
d0217ac0 326 .fault = hugetlb_vm_op_fault,
1da177e4
LT
327};
328
1e8f889b
DG
329static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
330 int writable)
63551ae0
DG
331{
332 pte_t entry;
333
1e8f889b 334 if (writable) {
63551ae0
DG
335 entry =
336 pte_mkwrite(pte_mkdirty(mk_pte(page, vma->vm_page_prot)));
337 } else {
338 entry = pte_wrprotect(mk_pte(page, vma->vm_page_prot));
339 }
340 entry = pte_mkyoung(entry);
341 entry = pte_mkhuge(entry);
342
343 return entry;
344}
345
1e8f889b
DG
346static void set_huge_ptep_writable(struct vm_area_struct *vma,
347 unsigned long address, pte_t *ptep)
348{
349 pte_t entry;
350
351 entry = pte_mkwrite(pte_mkdirty(*ptep));
8dab5241
BH
352 if (ptep_set_access_flags(vma, address, ptep, entry, 1)) {
353 update_mmu_cache(vma, address, entry);
354 lazy_mmu_prot_update(entry);
355 }
1e8f889b
DG
356}
357
358
63551ae0
DG
359int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
360 struct vm_area_struct *vma)
361{
362 pte_t *src_pte, *dst_pte, entry;
363 struct page *ptepage;
1c59827d 364 unsigned long addr;
1e8f889b
DG
365 int cow;
366
367 cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
63551ae0 368
1c59827d 369 for (addr = vma->vm_start; addr < vma->vm_end; addr += HPAGE_SIZE) {
c74df32c
HD
370 src_pte = huge_pte_offset(src, addr);
371 if (!src_pte)
372 continue;
63551ae0
DG
373 dst_pte = huge_pte_alloc(dst, addr);
374 if (!dst_pte)
375 goto nomem;
c74df32c 376 spin_lock(&dst->page_table_lock);
1c59827d 377 spin_lock(&src->page_table_lock);
c74df32c 378 if (!pte_none(*src_pte)) {
1e8f889b
DG
379 if (cow)
380 ptep_set_wrprotect(src, addr, src_pte);
1c59827d
HD
381 entry = *src_pte;
382 ptepage = pte_page(entry);
383 get_page(ptepage);
1c59827d
HD
384 set_huge_pte_at(dst, addr, dst_pte, entry);
385 }
386 spin_unlock(&src->page_table_lock);
c74df32c 387 spin_unlock(&dst->page_table_lock);
63551ae0
DG
388 }
389 return 0;
390
391nomem:
392 return -ENOMEM;
393}
394
502717f4
CK
395void __unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
396 unsigned long end)
63551ae0
DG
397{
398 struct mm_struct *mm = vma->vm_mm;
399 unsigned long address;
c7546f8f 400 pte_t *ptep;
63551ae0
DG
401 pte_t pte;
402 struct page *page;
fe1668ae 403 struct page *tmp;
c0a499c2
CK
404 /*
405 * A page gathering list, protected by per file i_mmap_lock. The
406 * lock is used to avoid list corruption from multiple unmapping
407 * of the same page since we are using page->lru.
408 */
fe1668ae 409 LIST_HEAD(page_list);
63551ae0
DG
410
411 WARN_ON(!is_vm_hugetlb_page(vma));
412 BUG_ON(start & ~HPAGE_MASK);
413 BUG_ON(end & ~HPAGE_MASK);
414
508034a3 415 spin_lock(&mm->page_table_lock);
63551ae0 416 for (address = start; address < end; address += HPAGE_SIZE) {
c7546f8f 417 ptep = huge_pte_offset(mm, address);
4c887265 418 if (!ptep)
c7546f8f
DG
419 continue;
420
39dde65c
CK
421 if (huge_pmd_unshare(mm, &address, ptep))
422 continue;
423
c7546f8f 424 pte = huge_ptep_get_and_clear(mm, address, ptep);
63551ae0
DG
425 if (pte_none(pte))
426 continue;
c7546f8f 427
63551ae0 428 page = pte_page(pte);
6649a386
KC
429 if (pte_dirty(pte))
430 set_page_dirty(page);
fe1668ae 431 list_add(&page->lru, &page_list);
63551ae0 432 }
1da177e4 433 spin_unlock(&mm->page_table_lock);
508034a3 434 flush_tlb_range(vma, start, end);
fe1668ae
CK
435 list_for_each_entry_safe(page, tmp, &page_list, lru) {
436 list_del(&page->lru);
437 put_page(page);
438 }
1da177e4 439}
63551ae0 440
502717f4
CK
441void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
442 unsigned long end)
443{
444 /*
445 * It is undesirable to test vma->vm_file as it should be non-null
446 * for valid hugetlb area. However, vm_file will be NULL in the error
447 * cleanup path of do_mmap_pgoff. When hugetlbfs ->mmap method fails,
448 * do_mmap_pgoff() nullifies vma->vm_file before calling this function
449 * to clean up. Since no pte has actually been setup, it is safe to
450 * do nothing in this case.
451 */
452 if (vma->vm_file) {
453 spin_lock(&vma->vm_file->f_mapping->i_mmap_lock);
454 __unmap_hugepage_range(vma, start, end);
455 spin_unlock(&vma->vm_file->f_mapping->i_mmap_lock);
456 }
457}
458
1e8f889b
DG
459static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
460 unsigned long address, pte_t *ptep, pte_t pte)
461{
462 struct page *old_page, *new_page;
79ac6ba4 463 int avoidcopy;
1e8f889b
DG
464
465 old_page = pte_page(pte);
466
467 /* If no-one else is actually using this page, avoid the copy
468 * and just make the page writable */
469 avoidcopy = (page_count(old_page) == 1);
470 if (avoidcopy) {
471 set_huge_ptep_writable(vma, address, ptep);
83c54070 472 return 0;
1e8f889b
DG
473 }
474
475 page_cache_get(old_page);
5da7ca86 476 new_page = alloc_huge_page(vma, address);
1e8f889b
DG
477
478 if (!new_page) {
479 page_cache_release(old_page);
0df420d8 480 return VM_FAULT_OOM;
1e8f889b
DG
481 }
482
483 spin_unlock(&mm->page_table_lock);
9de455b2 484 copy_huge_page(new_page, old_page, address, vma);
1e8f889b
DG
485 spin_lock(&mm->page_table_lock);
486
487 ptep = huge_pte_offset(mm, address & HPAGE_MASK);
488 if (likely(pte_same(*ptep, pte))) {
489 /* Break COW */
490 set_huge_pte_at(mm, address, ptep,
491 make_huge_pte(vma, new_page, 1));
492 /* Make the old page be freed below */
493 new_page = old_page;
494 }
495 page_cache_release(new_page);
496 page_cache_release(old_page);
83c54070 497 return 0;
1e8f889b
DG
498}
499
a1ed3dda 500static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
1e8f889b 501 unsigned long address, pte_t *ptep, int write_access)
ac9b9c66
HD
502{
503 int ret = VM_FAULT_SIGBUS;
4c887265
AL
504 unsigned long idx;
505 unsigned long size;
4c887265
AL
506 struct page *page;
507 struct address_space *mapping;
1e8f889b 508 pte_t new_pte;
4c887265 509
4c887265
AL
510 mapping = vma->vm_file->f_mapping;
511 idx = ((address - vma->vm_start) >> HPAGE_SHIFT)
512 + (vma->vm_pgoff >> (HPAGE_SHIFT - PAGE_SHIFT));
513
514 /*
515 * Use page lock to guard against racing truncation
516 * before we get page_table_lock.
517 */
6bda666a
CL
518retry:
519 page = find_lock_page(mapping, idx);
520 if (!page) {
ebed4bfc
HD
521 size = i_size_read(mapping->host) >> HPAGE_SHIFT;
522 if (idx >= size)
523 goto out;
6bda666a
CL
524 if (hugetlb_get_quota(mapping))
525 goto out;
526 page = alloc_huge_page(vma, address);
527 if (!page) {
528 hugetlb_put_quota(mapping);
0df420d8 529 ret = VM_FAULT_OOM;
6bda666a
CL
530 goto out;
531 }
79ac6ba4 532 clear_huge_page(page, address);
ac9b9c66 533
6bda666a
CL
534 if (vma->vm_flags & VM_SHARED) {
535 int err;
536
537 err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
538 if (err) {
539 put_page(page);
540 hugetlb_put_quota(mapping);
541 if (err == -EEXIST)
542 goto retry;
543 goto out;
544 }
545 } else
546 lock_page(page);
547 }
1e8f889b 548
ac9b9c66 549 spin_lock(&mm->page_table_lock);
4c887265
AL
550 size = i_size_read(mapping->host) >> HPAGE_SHIFT;
551 if (idx >= size)
552 goto backout;
553
83c54070 554 ret = 0;
86e5216f 555 if (!pte_none(*ptep))
4c887265
AL
556 goto backout;
557
1e8f889b
DG
558 new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
559 && (vma->vm_flags & VM_SHARED)));
560 set_huge_pte_at(mm, address, ptep, new_pte);
561
562 if (write_access && !(vma->vm_flags & VM_SHARED)) {
563 /* Optimization, do the COW without a second fault */
564 ret = hugetlb_cow(mm, vma, address, ptep, new_pte);
565 }
566
ac9b9c66 567 spin_unlock(&mm->page_table_lock);
4c887265
AL
568 unlock_page(page);
569out:
ac9b9c66 570 return ret;
4c887265
AL
571
572backout:
573 spin_unlock(&mm->page_table_lock);
574 hugetlb_put_quota(mapping);
575 unlock_page(page);
576 put_page(page);
577 goto out;
ac9b9c66
HD
578}
579
86e5216f
AL
580int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
581 unsigned long address, int write_access)
582{
583 pte_t *ptep;
584 pte_t entry;
1e8f889b 585 int ret;
3935baa9 586 static DEFINE_MUTEX(hugetlb_instantiation_mutex);
86e5216f
AL
587
588 ptep = huge_pte_alloc(mm, address);
589 if (!ptep)
590 return VM_FAULT_OOM;
591
3935baa9
DG
592 /*
593 * Serialize hugepage allocation and instantiation, so that we don't
594 * get spurious allocation failures if two CPUs race to instantiate
595 * the same page in the page cache.
596 */
597 mutex_lock(&hugetlb_instantiation_mutex);
86e5216f 598 entry = *ptep;
3935baa9
DG
599 if (pte_none(entry)) {
600 ret = hugetlb_no_page(mm, vma, address, ptep, write_access);
601 mutex_unlock(&hugetlb_instantiation_mutex);
602 return ret;
603 }
86e5216f 604
83c54070 605 ret = 0;
1e8f889b
DG
606
607 spin_lock(&mm->page_table_lock);
608 /* Check for a racing update before calling hugetlb_cow */
609 if (likely(pte_same(entry, *ptep)))
610 if (write_access && !pte_write(entry))
611 ret = hugetlb_cow(mm, vma, address, ptep, entry);
612 spin_unlock(&mm->page_table_lock);
3935baa9 613 mutex_unlock(&hugetlb_instantiation_mutex);
1e8f889b
DG
614
615 return ret;
86e5216f
AL
616}
617
63551ae0
DG
618int follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
619 struct page **pages, struct vm_area_struct **vmas,
620 unsigned long *position, int *length, int i)
621{
d5d4b0aa
CK
622 unsigned long pfn_offset;
623 unsigned long vaddr = *position;
63551ae0
DG
624 int remainder = *length;
625
1c59827d 626 spin_lock(&mm->page_table_lock);
63551ae0 627 while (vaddr < vma->vm_end && remainder) {
4c887265
AL
628 pte_t *pte;
629 struct page *page;
63551ae0 630
4c887265
AL
631 /*
632 * Some archs (sparc64, sh*) have multiple pte_ts to
633 * each hugepage. We have to make * sure we get the
634 * first, for the page indexing below to work.
635 */
636 pte = huge_pte_offset(mm, vaddr & HPAGE_MASK);
63551ae0 637
4c887265
AL
638 if (!pte || pte_none(*pte)) {
639 int ret;
63551ae0 640
4c887265
AL
641 spin_unlock(&mm->page_table_lock);
642 ret = hugetlb_fault(mm, vma, vaddr, 0);
643 spin_lock(&mm->page_table_lock);
83c54070 644 if (!(ret & VM_FAULT_MAJOR))
4c887265 645 continue;
63551ae0 646
4c887265
AL
647 remainder = 0;
648 if (!i)
649 i = -EFAULT;
650 break;
651 }
652
d5d4b0aa
CK
653 pfn_offset = (vaddr & ~HPAGE_MASK) >> PAGE_SHIFT;
654 page = pte_page(*pte);
655same_page:
d6692183
CK
656 if (pages) {
657 get_page(page);
d5d4b0aa 658 pages[i] = page + pfn_offset;
d6692183 659 }
63551ae0
DG
660
661 if (vmas)
662 vmas[i] = vma;
663
664 vaddr += PAGE_SIZE;
d5d4b0aa 665 ++pfn_offset;
63551ae0
DG
666 --remainder;
667 ++i;
d5d4b0aa
CK
668 if (vaddr < vma->vm_end && remainder &&
669 pfn_offset < HPAGE_SIZE/PAGE_SIZE) {
670 /*
671 * We use pfn_offset to avoid touching the pageframes
672 * of this compound page.
673 */
674 goto same_page;
675 }
63551ae0 676 }
1c59827d 677 spin_unlock(&mm->page_table_lock);
63551ae0
DG
678 *length = remainder;
679 *position = vaddr;
680
681 return i;
682}
8f860591
ZY
683
684void hugetlb_change_protection(struct vm_area_struct *vma,
685 unsigned long address, unsigned long end, pgprot_t newprot)
686{
687 struct mm_struct *mm = vma->vm_mm;
688 unsigned long start = address;
689 pte_t *ptep;
690 pte_t pte;
691
692 BUG_ON(address >= end);
693 flush_cache_range(vma, address, end);
694
39dde65c 695 spin_lock(&vma->vm_file->f_mapping->i_mmap_lock);
8f860591
ZY
696 spin_lock(&mm->page_table_lock);
697 for (; address < end; address += HPAGE_SIZE) {
698 ptep = huge_pte_offset(mm, address);
699 if (!ptep)
700 continue;
39dde65c
CK
701 if (huge_pmd_unshare(mm, &address, ptep))
702 continue;
8f860591
ZY
703 if (!pte_none(*ptep)) {
704 pte = huge_ptep_get_and_clear(mm, address, ptep);
705 pte = pte_mkhuge(pte_modify(pte, newprot));
706 set_huge_pte_at(mm, address, ptep, pte);
707 lazy_mmu_prot_update(pte);
708 }
709 }
710 spin_unlock(&mm->page_table_lock);
39dde65c 711 spin_unlock(&vma->vm_file->f_mapping->i_mmap_lock);
8f860591
ZY
712
713 flush_tlb_range(vma, start, end);
714}
715
a43a8c39
CK
716struct file_region {
717 struct list_head link;
718 long from;
719 long to;
720};
721
722static long region_add(struct list_head *head, long f, long t)
723{
724 struct file_region *rg, *nrg, *trg;
725
726 /* Locate the region we are either in or before. */
727 list_for_each_entry(rg, head, link)
728 if (f <= rg->to)
729 break;
730
731 /* Round our left edge to the current segment if it encloses us. */
732 if (f > rg->from)
733 f = rg->from;
734
735 /* Check for and consume any regions we now overlap with. */
736 nrg = rg;
737 list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
738 if (&rg->link == head)
739 break;
740 if (rg->from > t)
741 break;
742
743 /* If this area reaches higher then extend our area to
744 * include it completely. If this is not the first area
745 * which we intend to reuse, free it. */
746 if (rg->to > t)
747 t = rg->to;
748 if (rg != nrg) {
749 list_del(&rg->link);
750 kfree(rg);
751 }
752 }
753 nrg->from = f;
754 nrg->to = t;
755 return 0;
756}
757
758static long region_chg(struct list_head *head, long f, long t)
759{
760 struct file_region *rg, *nrg;
761 long chg = 0;
762
763 /* Locate the region we are before or in. */
764 list_for_each_entry(rg, head, link)
765 if (f <= rg->to)
766 break;
767
768 /* If we are below the current region then a new region is required.
769 * Subtle, allocate a new region at the position but make it zero
770 * size such that we can guarentee to record the reservation. */
771 if (&rg->link == head || t < rg->from) {
772 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
773 if (nrg == 0)
774 return -ENOMEM;
775 nrg->from = f;
776 nrg->to = f;
777 INIT_LIST_HEAD(&nrg->link);
778 list_add(&nrg->link, rg->link.prev);
779
780 return t - f;
781 }
782
783 /* Round our left edge to the current segment if it encloses us. */
784 if (f > rg->from)
785 f = rg->from;
786 chg = t - f;
787
788 /* Check for and consume any regions we now overlap with. */
789 list_for_each_entry(rg, rg->link.prev, link) {
790 if (&rg->link == head)
791 break;
792 if (rg->from > t)
793 return chg;
794
795 /* We overlap with this area, if it extends futher than
796 * us then we must extend ourselves. Account for its
797 * existing reservation. */
798 if (rg->to > t) {
799 chg += rg->to - t;
800 t = rg->to;
801 }
802 chg -= rg->to - rg->from;
803 }
804 return chg;
805}
806
807static long region_truncate(struct list_head *head, long end)
808{
809 struct file_region *rg, *trg;
810 long chg = 0;
811
812 /* Locate the region we are either in or before. */
813 list_for_each_entry(rg, head, link)
814 if (end <= rg->to)
815 break;
816 if (&rg->link == head)
817 return 0;
818
819 /* If we are in the middle of a region then adjust it. */
820 if (end > rg->from) {
821 chg = rg->to - end;
822 rg->to = end;
823 rg = list_entry(rg->link.next, typeof(*rg), link);
824 }
825
826 /* Drop any remaining regions. */
827 list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
828 if (&rg->link == head)
829 break;
830 chg += rg->to - rg->from;
831 list_del(&rg->link);
832 kfree(rg);
833 }
834 return chg;
835}
836
837static int hugetlb_acct_memory(long delta)
838{
839 int ret = -ENOMEM;
840
841 spin_lock(&hugetlb_lock);
842 if ((delta + resv_huge_pages) <= free_huge_pages) {
843 resv_huge_pages += delta;
844 ret = 0;
845 }
846 spin_unlock(&hugetlb_lock);
847 return ret;
848}
849
850int hugetlb_reserve_pages(struct inode *inode, long from, long to)
851{
852 long ret, chg;
853
854 chg = region_chg(&inode->i_mapping->private_list, from, to);
855 if (chg < 0)
856 return chg;
8a630112
KC
857 /*
858 * When cpuset is configured, it breaks the strict hugetlb page
859 * reservation as the accounting is done on a global variable. Such
860 * reservation is completely rubbish in the presence of cpuset because
861 * the reservation is not checked against page availability for the
862 * current cpuset. Application can still potentially OOM'ed by kernel
863 * with lack of free htlb page in cpuset that the task is in.
864 * Attempt to enforce strict accounting with cpuset is almost
865 * impossible (or too ugly) because cpuset is too fluid that
866 * task or memory node can be dynamically moved between cpusets.
867 *
868 * The change of semantics for shared hugetlb mapping with cpuset is
869 * undesirable. However, in order to preserve some of the semantics,
870 * we fall back to check against current free page availability as
871 * a best attempt and hopefully to minimize the impact of changing
872 * semantics that cpuset has.
873 */
874 if (chg > cpuset_mems_nr(free_huge_pages_node))
875 return -ENOMEM;
876
a43a8c39
CK
877 ret = hugetlb_acct_memory(chg);
878 if (ret < 0)
879 return ret;
880 region_add(&inode->i_mapping->private_list, from, to);
881 return 0;
882}
883
884void hugetlb_unreserve_pages(struct inode *inode, long offset, long freed)
885{
886 long chg = region_truncate(&inode->i_mapping->private_list, offset);
887 hugetlb_acct_memory(freed - chg);
888}