fs/fs-writeback.c: fix sync_inodes_sb() return value kernel-doc
[linux-2.6-block.git] / mm / hugetlb.c
CommitLineData
1da177e4
LT
1/*
2 * Generic hugetlb support.
3 * (C) William Irwin, April 2004
4 */
1da177e4
LT
5#include <linux/list.h>
6#include <linux/init.h>
7#include <linux/module.h>
8#include <linux/mm.h>
e1759c21 9#include <linux/seq_file.h>
1da177e4
LT
10#include <linux/sysctl.h>
11#include <linux/highmem.h>
cddb8a5c 12#include <linux/mmu_notifier.h>
1da177e4 13#include <linux/nodemask.h>
63551ae0 14#include <linux/pagemap.h>
5da7ca86 15#include <linux/mempolicy.h>
aea47ff3 16#include <linux/cpuset.h>
3935baa9 17#include <linux/mutex.h>
aa888a74 18#include <linux/bootmem.h>
a3437870 19#include <linux/sysfs.h>
5a0e3ad6 20#include <linux/slab.h>
0fe6e20b 21#include <linux/rmap.h>
fd6a03ed
NH
22#include <linux/swap.h>
23#include <linux/swapops.h>
d6606683 24
63551ae0
DG
25#include <asm/page.h>
26#include <asm/pgtable.h>
78a34ae2 27#include <asm/io.h>
63551ae0
DG
28
29#include <linux/hugetlb.h>
9a305230 30#include <linux/node.h>
7835e98b 31#include "internal.h"
1da177e4
LT
32
33const unsigned long hugetlb_zero = 0, hugetlb_infinity = ~0UL;
396faf03
MG
34static gfp_t htlb_alloc_mask = GFP_HIGHUSER;
35unsigned long hugepages_treat_as_movable;
a5516438 36
e5ff2159
AK
37static int max_hstate;
38unsigned int default_hstate_idx;
39struct hstate hstates[HUGE_MAX_HSTATE];
40
53ba51d2
JT
41__initdata LIST_HEAD(huge_boot_pages);
42
e5ff2159
AK
43/* for command line parsing */
44static struct hstate * __initdata parsed_hstate;
45static unsigned long __initdata default_hstate_max_huge_pages;
e11bfbfc 46static unsigned long __initdata default_hstate_size;
e5ff2159
AK
47
48#define for_each_hstate(h) \
49 for ((h) = hstates; (h) < &hstates[max_hstate]; (h)++)
396faf03 50
3935baa9
DG
51/*
52 * Protects updates to hugepage_freelists, nr_huge_pages, and free_huge_pages
53 */
54static DEFINE_SPINLOCK(hugetlb_lock);
0bd0f9fb 55
96822904
AW
56/*
57 * Region tracking -- allows tracking of reservations and instantiated pages
58 * across the pages in a mapping.
84afd99b
AW
59 *
60 * The region data structures are protected by a combination of the mmap_sem
61 * and the hugetlb_instantion_mutex. To access or modify a region the caller
62 * must either hold the mmap_sem for write, or the mmap_sem for read and
63 * the hugetlb_instantiation mutex:
64 *
65 * down_write(&mm->mmap_sem);
66 * or
67 * down_read(&mm->mmap_sem);
68 * mutex_lock(&hugetlb_instantiation_mutex);
96822904
AW
69 */
70struct file_region {
71 struct list_head link;
72 long from;
73 long to;
74};
75
76static long region_add(struct list_head *head, long f, long t)
77{
78 struct file_region *rg, *nrg, *trg;
79
80 /* Locate the region we are either in or before. */
81 list_for_each_entry(rg, head, link)
82 if (f <= rg->to)
83 break;
84
85 /* Round our left edge to the current segment if it encloses us. */
86 if (f > rg->from)
87 f = rg->from;
88
89 /* Check for and consume any regions we now overlap with. */
90 nrg = rg;
91 list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
92 if (&rg->link == head)
93 break;
94 if (rg->from > t)
95 break;
96
97 /* If this area reaches higher then extend our area to
98 * include it completely. If this is not the first area
99 * which we intend to reuse, free it. */
100 if (rg->to > t)
101 t = rg->to;
102 if (rg != nrg) {
103 list_del(&rg->link);
104 kfree(rg);
105 }
106 }
107 nrg->from = f;
108 nrg->to = t;
109 return 0;
110}
111
112static long region_chg(struct list_head *head, long f, long t)
113{
114 struct file_region *rg, *nrg;
115 long chg = 0;
116
117 /* Locate the region we are before or in. */
118 list_for_each_entry(rg, head, link)
119 if (f <= rg->to)
120 break;
121
122 /* If we are below the current region then a new region is required.
123 * Subtle, allocate a new region at the position but make it zero
124 * size such that we can guarantee to record the reservation. */
125 if (&rg->link == head || t < rg->from) {
126 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
127 if (!nrg)
128 return -ENOMEM;
129 nrg->from = f;
130 nrg->to = f;
131 INIT_LIST_HEAD(&nrg->link);
132 list_add(&nrg->link, rg->link.prev);
133
134 return t - f;
135 }
136
137 /* Round our left edge to the current segment if it encloses us. */
138 if (f > rg->from)
139 f = rg->from;
140 chg = t - f;
141
142 /* Check for and consume any regions we now overlap with. */
143 list_for_each_entry(rg, rg->link.prev, link) {
144 if (&rg->link == head)
145 break;
146 if (rg->from > t)
147 return chg;
148
149 /* We overlap with this area, if it extends futher than
150 * us then we must extend ourselves. Account for its
151 * existing reservation. */
152 if (rg->to > t) {
153 chg += rg->to - t;
154 t = rg->to;
155 }
156 chg -= rg->to - rg->from;
157 }
158 return chg;
159}
160
161static long region_truncate(struct list_head *head, long end)
162{
163 struct file_region *rg, *trg;
164 long chg = 0;
165
166 /* Locate the region we are either in or before. */
167 list_for_each_entry(rg, head, link)
168 if (end <= rg->to)
169 break;
170 if (&rg->link == head)
171 return 0;
172
173 /* If we are in the middle of a region then adjust it. */
174 if (end > rg->from) {
175 chg = rg->to - end;
176 rg->to = end;
177 rg = list_entry(rg->link.next, typeof(*rg), link);
178 }
179
180 /* Drop any remaining regions. */
181 list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
182 if (&rg->link == head)
183 break;
184 chg += rg->to - rg->from;
185 list_del(&rg->link);
186 kfree(rg);
187 }
188 return chg;
189}
190
84afd99b
AW
191static long region_count(struct list_head *head, long f, long t)
192{
193 struct file_region *rg;
194 long chg = 0;
195
196 /* Locate each segment we overlap with, and count that overlap. */
197 list_for_each_entry(rg, head, link) {
198 int seg_from;
199 int seg_to;
200
201 if (rg->to <= f)
202 continue;
203 if (rg->from >= t)
204 break;
205
206 seg_from = max(rg->from, f);
207 seg_to = min(rg->to, t);
208
209 chg += seg_to - seg_from;
210 }
211
212 return chg;
213}
214
e7c4b0bf
AW
215/*
216 * Convert the address within this vma to the page offset within
217 * the mapping, in pagecache page units; huge pages here.
218 */
a5516438
AK
219static pgoff_t vma_hugecache_offset(struct hstate *h,
220 struct vm_area_struct *vma, unsigned long address)
e7c4b0bf 221{
a5516438
AK
222 return ((address - vma->vm_start) >> huge_page_shift(h)) +
223 (vma->vm_pgoff >> huge_page_order(h));
e7c4b0bf
AW
224}
225
0fe6e20b
NH
226pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
227 unsigned long address)
228{
229 return vma_hugecache_offset(hstate_vma(vma), vma, address);
230}
231
08fba699
MG
232/*
233 * Return the size of the pages allocated when backing a VMA. In the majority
234 * cases this will be same size as used by the page table entries.
235 */
236unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
237{
238 struct hstate *hstate;
239
240 if (!is_vm_hugetlb_page(vma))
241 return PAGE_SIZE;
242
243 hstate = hstate_vma(vma);
244
245 return 1UL << (hstate->order + PAGE_SHIFT);
246}
f340ca0f 247EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
08fba699 248
3340289d
MG
249/*
250 * Return the page size being used by the MMU to back a VMA. In the majority
251 * of cases, the page size used by the kernel matches the MMU size. On
252 * architectures where it differs, an architecture-specific version of this
253 * function is required.
254 */
255#ifndef vma_mmu_pagesize
256unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
257{
258 return vma_kernel_pagesize(vma);
259}
260#endif
261
84afd99b
AW
262/*
263 * Flags for MAP_PRIVATE reservations. These are stored in the bottom
264 * bits of the reservation map pointer, which are always clear due to
265 * alignment.
266 */
267#define HPAGE_RESV_OWNER (1UL << 0)
268#define HPAGE_RESV_UNMAPPED (1UL << 1)
04f2cbe3 269#define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
84afd99b 270
a1e78772
MG
271/*
272 * These helpers are used to track how many pages are reserved for
273 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
274 * is guaranteed to have their future faults succeed.
275 *
276 * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
277 * the reserve counters are updated with the hugetlb_lock held. It is safe
278 * to reset the VMA at fork() time as it is not in use yet and there is no
279 * chance of the global counters getting corrupted as a result of the values.
84afd99b
AW
280 *
281 * The private mapping reservation is represented in a subtly different
282 * manner to a shared mapping. A shared mapping has a region map associated
283 * with the underlying file, this region map represents the backing file
284 * pages which have ever had a reservation assigned which this persists even
285 * after the page is instantiated. A private mapping has a region map
286 * associated with the original mmap which is attached to all VMAs which
287 * reference it, this region map represents those offsets which have consumed
288 * reservation ie. where pages have been instantiated.
a1e78772 289 */
e7c4b0bf
AW
290static unsigned long get_vma_private_data(struct vm_area_struct *vma)
291{
292 return (unsigned long)vma->vm_private_data;
293}
294
295static void set_vma_private_data(struct vm_area_struct *vma,
296 unsigned long value)
297{
298 vma->vm_private_data = (void *)value;
299}
300
84afd99b
AW
301struct resv_map {
302 struct kref refs;
303 struct list_head regions;
304};
305
2a4b3ded 306static struct resv_map *resv_map_alloc(void)
84afd99b
AW
307{
308 struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
309 if (!resv_map)
310 return NULL;
311
312 kref_init(&resv_map->refs);
313 INIT_LIST_HEAD(&resv_map->regions);
314
315 return resv_map;
316}
317
2a4b3ded 318static void resv_map_release(struct kref *ref)
84afd99b
AW
319{
320 struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
321
322 /* Clear out any active regions before we release the map. */
323 region_truncate(&resv_map->regions, 0);
324 kfree(resv_map);
325}
326
327static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
a1e78772
MG
328{
329 VM_BUG_ON(!is_vm_hugetlb_page(vma));
f83a275d 330 if (!(vma->vm_flags & VM_MAYSHARE))
84afd99b
AW
331 return (struct resv_map *)(get_vma_private_data(vma) &
332 ~HPAGE_RESV_MASK);
2a4b3ded 333 return NULL;
a1e78772
MG
334}
335
84afd99b 336static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
a1e78772
MG
337{
338 VM_BUG_ON(!is_vm_hugetlb_page(vma));
f83a275d 339 VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
a1e78772 340
84afd99b
AW
341 set_vma_private_data(vma, (get_vma_private_data(vma) &
342 HPAGE_RESV_MASK) | (unsigned long)map);
04f2cbe3
MG
343}
344
345static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
346{
04f2cbe3 347 VM_BUG_ON(!is_vm_hugetlb_page(vma));
f83a275d 348 VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
e7c4b0bf
AW
349
350 set_vma_private_data(vma, get_vma_private_data(vma) | flags);
04f2cbe3
MG
351}
352
353static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
354{
355 VM_BUG_ON(!is_vm_hugetlb_page(vma));
e7c4b0bf
AW
356
357 return (get_vma_private_data(vma) & flag) != 0;
a1e78772
MG
358}
359
360/* Decrement the reserved pages in the hugepage pool by one */
a5516438
AK
361static void decrement_hugepage_resv_vma(struct hstate *h,
362 struct vm_area_struct *vma)
a1e78772 363{
c37f9fb1
AW
364 if (vma->vm_flags & VM_NORESERVE)
365 return;
366
f83a275d 367 if (vma->vm_flags & VM_MAYSHARE) {
a1e78772 368 /* Shared mappings always use reserves */
a5516438 369 h->resv_huge_pages--;
84afd99b 370 } else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
a1e78772
MG
371 /*
372 * Only the process that called mmap() has reserves for
373 * private mappings.
374 */
a5516438 375 h->resv_huge_pages--;
a1e78772
MG
376 }
377}
378
04f2cbe3 379/* Reset counters to 0 and clear all HPAGE_RESV_* flags */
a1e78772
MG
380void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
381{
382 VM_BUG_ON(!is_vm_hugetlb_page(vma));
f83a275d 383 if (!(vma->vm_flags & VM_MAYSHARE))
a1e78772
MG
384 vma->vm_private_data = (void *)0;
385}
386
387/* Returns true if the VMA has associated reserve pages */
7f09ca51 388static int vma_has_reserves(struct vm_area_struct *vma)
a1e78772 389{
f83a275d 390 if (vma->vm_flags & VM_MAYSHARE)
7f09ca51
MG
391 return 1;
392 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER))
393 return 1;
394 return 0;
a1e78772
MG
395}
396
0ebabb41
NH
397static void copy_gigantic_page(struct page *dst, struct page *src)
398{
399 int i;
400 struct hstate *h = page_hstate(src);
401 struct page *dst_base = dst;
402 struct page *src_base = src;
403
404 for (i = 0; i < pages_per_huge_page(h); ) {
405 cond_resched();
406 copy_highpage(dst, src);
407
408 i++;
409 dst = mem_map_next(dst, dst_base, i);
410 src = mem_map_next(src, src_base, i);
411 }
412}
413
414void copy_huge_page(struct page *dst, struct page *src)
415{
416 int i;
417 struct hstate *h = page_hstate(src);
418
419 if (unlikely(pages_per_huge_page(h) > MAX_ORDER_NR_PAGES)) {
420 copy_gigantic_page(dst, src);
421 return;
422 }
423
424 might_sleep();
425 for (i = 0; i < pages_per_huge_page(h); i++) {
426 cond_resched();
427 copy_highpage(dst + i, src + i);
428 }
429}
430
a5516438 431static void enqueue_huge_page(struct hstate *h, struct page *page)
1da177e4
LT
432{
433 int nid = page_to_nid(page);
a5516438
AK
434 list_add(&page->lru, &h->hugepage_freelists[nid]);
435 h->free_huge_pages++;
436 h->free_huge_pages_node[nid]++;
1da177e4
LT
437}
438
bf50bab2
NH
439static struct page *dequeue_huge_page_node(struct hstate *h, int nid)
440{
441 struct page *page;
442
443 if (list_empty(&h->hugepage_freelists[nid]))
444 return NULL;
445 page = list_entry(h->hugepage_freelists[nid].next, struct page, lru);
446 list_del(&page->lru);
a9869b83 447 set_page_refcounted(page);
bf50bab2
NH
448 h->free_huge_pages--;
449 h->free_huge_pages_node[nid]--;
450 return page;
451}
452
a5516438
AK
453static struct page *dequeue_huge_page_vma(struct hstate *h,
454 struct vm_area_struct *vma,
04f2cbe3 455 unsigned long address, int avoid_reserve)
1da177e4 456{
1da177e4 457 struct page *page = NULL;
480eccf9 458 struct mempolicy *mpol;
19770b32 459 nodemask_t *nodemask;
c0ff7453 460 struct zonelist *zonelist;
dd1a239f
MG
461 struct zone *zone;
462 struct zoneref *z;
1da177e4 463
c0ff7453
MX
464 get_mems_allowed();
465 zonelist = huge_zonelist(vma, address,
466 htlb_alloc_mask, &mpol, &nodemask);
a1e78772
MG
467 /*
468 * A child process with MAP_PRIVATE mappings created by their parent
469 * have no page reserves. This check ensures that reservations are
470 * not "stolen". The child may still get SIGKILLed
471 */
7f09ca51 472 if (!vma_has_reserves(vma) &&
a5516438 473 h->free_huge_pages - h->resv_huge_pages == 0)
c0ff7453 474 goto err;
a1e78772 475
04f2cbe3 476 /* If reserves cannot be used, ensure enough pages are in the pool */
a5516438 477 if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
c0ff7453 478 goto err;;
04f2cbe3 479
19770b32
MG
480 for_each_zone_zonelist_nodemask(zone, z, zonelist,
481 MAX_NR_ZONES - 1, nodemask) {
bf50bab2
NH
482 if (cpuset_zone_allowed_softwall(zone, htlb_alloc_mask)) {
483 page = dequeue_huge_page_node(h, zone_to_nid(zone));
484 if (page) {
485 if (!avoid_reserve)
486 decrement_hugepage_resv_vma(h, vma);
487 break;
488 }
3abf7afd 489 }
1da177e4 490 }
c0ff7453 491err:
52cd3b07 492 mpol_cond_put(mpol);
c0ff7453 493 put_mems_allowed();
1da177e4
LT
494 return page;
495}
496
a5516438 497static void update_and_free_page(struct hstate *h, struct page *page)
6af2acb6
AL
498{
499 int i;
a5516438 500
18229df5
AW
501 VM_BUG_ON(h->order >= MAX_ORDER);
502
a5516438
AK
503 h->nr_huge_pages--;
504 h->nr_huge_pages_node[page_to_nid(page)]--;
505 for (i = 0; i < pages_per_huge_page(h); i++) {
6af2acb6
AL
506 page[i].flags &= ~(1 << PG_locked | 1 << PG_error | 1 << PG_referenced |
507 1 << PG_dirty | 1 << PG_active | 1 << PG_reserved |
508 1 << PG_private | 1<< PG_writeback);
509 }
510 set_compound_page_dtor(page, NULL);
511 set_page_refcounted(page);
7f2e9525 512 arch_release_hugepage(page);
a5516438 513 __free_pages(page, huge_page_order(h));
6af2acb6
AL
514}
515
e5ff2159
AK
516struct hstate *size_to_hstate(unsigned long size)
517{
518 struct hstate *h;
519
520 for_each_hstate(h) {
521 if (huge_page_size(h) == size)
522 return h;
523 }
524 return NULL;
525}
526
27a85ef1
DG
527static void free_huge_page(struct page *page)
528{
a5516438
AK
529 /*
530 * Can't pass hstate in here because it is called from the
531 * compound page destructor.
532 */
e5ff2159 533 struct hstate *h = page_hstate(page);
7893d1d5 534 int nid = page_to_nid(page);
c79fb75e 535 struct address_space *mapping;
27a85ef1 536
c79fb75e 537 mapping = (struct address_space *) page_private(page);
e5df70ab 538 set_page_private(page, 0);
23be7468 539 page->mapping = NULL;
7893d1d5 540 BUG_ON(page_count(page));
0fe6e20b 541 BUG_ON(page_mapcount(page));
27a85ef1
DG
542 INIT_LIST_HEAD(&page->lru);
543
544 spin_lock(&hugetlb_lock);
aa888a74 545 if (h->surplus_huge_pages_node[nid] && huge_page_order(h) < MAX_ORDER) {
a5516438
AK
546 update_and_free_page(h, page);
547 h->surplus_huge_pages--;
548 h->surplus_huge_pages_node[nid]--;
7893d1d5 549 } else {
a5516438 550 enqueue_huge_page(h, page);
7893d1d5 551 }
27a85ef1 552 spin_unlock(&hugetlb_lock);
c79fb75e 553 if (mapping)
9a119c05 554 hugetlb_put_quota(mapping, 1);
27a85ef1
DG
555}
556
a5516438 557static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
b7ba30c6
AK
558{
559 set_compound_page_dtor(page, free_huge_page);
560 spin_lock(&hugetlb_lock);
a5516438
AK
561 h->nr_huge_pages++;
562 h->nr_huge_pages_node[nid]++;
b7ba30c6
AK
563 spin_unlock(&hugetlb_lock);
564 put_page(page); /* free it into the hugepage allocator */
565}
566
20a0307c
WF
567static void prep_compound_gigantic_page(struct page *page, unsigned long order)
568{
569 int i;
570 int nr_pages = 1 << order;
571 struct page *p = page + 1;
572
573 /* we rely on prep_new_huge_page to set the destructor */
574 set_compound_order(page, order);
575 __SetPageHead(page);
576 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
577 __SetPageTail(p);
578 p->first_page = page;
579 }
580}
581
582int PageHuge(struct page *page)
583{
584 compound_page_dtor *dtor;
585
586 if (!PageCompound(page))
587 return 0;
588
589 page = compound_head(page);
590 dtor = get_compound_page_dtor(page);
591
592 return dtor == free_huge_page;
593}
594
43131e14
NH
595EXPORT_SYMBOL_GPL(PageHuge);
596
a5516438 597static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid)
1da177e4 598{
1da177e4 599 struct page *page;
f96efd58 600
aa888a74
AK
601 if (h->order >= MAX_ORDER)
602 return NULL;
603
6484eb3e 604 page = alloc_pages_exact_node(nid,
551883ae
NA
605 htlb_alloc_mask|__GFP_COMP|__GFP_THISNODE|
606 __GFP_REPEAT|__GFP_NOWARN,
a5516438 607 huge_page_order(h));
1da177e4 608 if (page) {
7f2e9525 609 if (arch_prepare_hugepage(page)) {
caff3a2c 610 __free_pages(page, huge_page_order(h));
7b8ee84d 611 return NULL;
7f2e9525 612 }
a5516438 613 prep_new_huge_page(h, page, nid);
1da177e4 614 }
63b4613c
NA
615
616 return page;
617}
618
9a76db09 619/*
6ae11b27
LS
620 * common helper functions for hstate_next_node_to_{alloc|free}.
621 * We may have allocated or freed a huge page based on a different
622 * nodes_allowed previously, so h->next_node_to_{alloc|free} might
623 * be outside of *nodes_allowed. Ensure that we use an allowed
624 * node for alloc or free.
9a76db09 625 */
6ae11b27 626static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
9a76db09 627{
6ae11b27 628 nid = next_node(nid, *nodes_allowed);
9a76db09 629 if (nid == MAX_NUMNODES)
6ae11b27 630 nid = first_node(*nodes_allowed);
9a76db09
LS
631 VM_BUG_ON(nid >= MAX_NUMNODES);
632
633 return nid;
634}
635
6ae11b27
LS
636static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
637{
638 if (!node_isset(nid, *nodes_allowed))
639 nid = next_node_allowed(nid, nodes_allowed);
640 return nid;
641}
642
5ced66c9 643/*
6ae11b27
LS
644 * returns the previously saved node ["this node"] from which to
645 * allocate a persistent huge page for the pool and advance the
646 * next node from which to allocate, handling wrap at end of node
647 * mask.
5ced66c9 648 */
6ae11b27
LS
649static int hstate_next_node_to_alloc(struct hstate *h,
650 nodemask_t *nodes_allowed)
5ced66c9 651{
6ae11b27
LS
652 int nid;
653
654 VM_BUG_ON(!nodes_allowed);
655
656 nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
657 h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
9a76db09 658
9a76db09 659 return nid;
5ced66c9
AK
660}
661
6ae11b27 662static int alloc_fresh_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
63b4613c
NA
663{
664 struct page *page;
665 int start_nid;
666 int next_nid;
667 int ret = 0;
668
6ae11b27 669 start_nid = hstate_next_node_to_alloc(h, nodes_allowed);
e8c5c824 670 next_nid = start_nid;
63b4613c
NA
671
672 do {
e8c5c824 673 page = alloc_fresh_huge_page_node(h, next_nid);
9a76db09 674 if (page) {
63b4613c 675 ret = 1;
9a76db09
LS
676 break;
677 }
6ae11b27 678 next_nid = hstate_next_node_to_alloc(h, nodes_allowed);
9a76db09 679 } while (next_nid != start_nid);
63b4613c 680
3b116300
AL
681 if (ret)
682 count_vm_event(HTLB_BUDDY_PGALLOC);
683 else
684 count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
685
63b4613c 686 return ret;
1da177e4
LT
687}
688
e8c5c824 689/*
6ae11b27
LS
690 * helper for free_pool_huge_page() - return the previously saved
691 * node ["this node"] from which to free a huge page. Advance the
692 * next node id whether or not we find a free huge page to free so
693 * that the next attempt to free addresses the next node.
e8c5c824 694 */
6ae11b27 695static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
e8c5c824 696{
6ae11b27
LS
697 int nid;
698
699 VM_BUG_ON(!nodes_allowed);
700
701 nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
702 h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
9a76db09 703
9a76db09 704 return nid;
e8c5c824
LS
705}
706
707/*
708 * Free huge page from pool from next node to free.
709 * Attempt to keep persistent huge pages more or less
710 * balanced over allowed nodes.
711 * Called with hugetlb_lock locked.
712 */
6ae11b27
LS
713static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
714 bool acct_surplus)
e8c5c824
LS
715{
716 int start_nid;
717 int next_nid;
718 int ret = 0;
719
6ae11b27 720 start_nid = hstate_next_node_to_free(h, nodes_allowed);
e8c5c824
LS
721 next_nid = start_nid;
722
723 do {
685f3457
LS
724 /*
725 * If we're returning unused surplus pages, only examine
726 * nodes with surplus pages.
727 */
728 if ((!acct_surplus || h->surplus_huge_pages_node[next_nid]) &&
729 !list_empty(&h->hugepage_freelists[next_nid])) {
e8c5c824
LS
730 struct page *page =
731 list_entry(h->hugepage_freelists[next_nid].next,
732 struct page, lru);
733 list_del(&page->lru);
734 h->free_huge_pages--;
735 h->free_huge_pages_node[next_nid]--;
685f3457
LS
736 if (acct_surplus) {
737 h->surplus_huge_pages--;
738 h->surplus_huge_pages_node[next_nid]--;
739 }
e8c5c824
LS
740 update_and_free_page(h, page);
741 ret = 1;
9a76db09 742 break;
e8c5c824 743 }
6ae11b27 744 next_nid = hstate_next_node_to_free(h, nodes_allowed);
9a76db09 745 } while (next_nid != start_nid);
e8c5c824
LS
746
747 return ret;
748}
749
bf50bab2 750static struct page *alloc_buddy_huge_page(struct hstate *h, int nid)
7893d1d5
AL
751{
752 struct page *page;
bf50bab2 753 unsigned int r_nid;
7893d1d5 754
aa888a74
AK
755 if (h->order >= MAX_ORDER)
756 return NULL;
757
d1c3fb1f
NA
758 /*
759 * Assume we will successfully allocate the surplus page to
760 * prevent racing processes from causing the surplus to exceed
761 * overcommit
762 *
763 * This however introduces a different race, where a process B
764 * tries to grow the static hugepage pool while alloc_pages() is
765 * called by process A. B will only examine the per-node
766 * counters in determining if surplus huge pages can be
767 * converted to normal huge pages in adjust_pool_surplus(). A
768 * won't be able to increment the per-node counter, until the
769 * lock is dropped by B, but B doesn't drop hugetlb_lock until
770 * no more huge pages can be converted from surplus to normal
771 * state (and doesn't try to convert again). Thus, we have a
772 * case where a surplus huge page exists, the pool is grown, and
773 * the surplus huge page still exists after, even though it
774 * should just have been converted to a normal huge page. This
775 * does not leak memory, though, as the hugepage will be freed
776 * once it is out of use. It also does not allow the counters to
777 * go out of whack in adjust_pool_surplus() as we don't modify
778 * the node values until we've gotten the hugepage and only the
779 * per-node value is checked there.
780 */
781 spin_lock(&hugetlb_lock);
a5516438 782 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
d1c3fb1f
NA
783 spin_unlock(&hugetlb_lock);
784 return NULL;
785 } else {
a5516438
AK
786 h->nr_huge_pages++;
787 h->surplus_huge_pages++;
d1c3fb1f
NA
788 }
789 spin_unlock(&hugetlb_lock);
790
bf50bab2
NH
791 if (nid == NUMA_NO_NODE)
792 page = alloc_pages(htlb_alloc_mask|__GFP_COMP|
793 __GFP_REPEAT|__GFP_NOWARN,
794 huge_page_order(h));
795 else
796 page = alloc_pages_exact_node(nid,
797 htlb_alloc_mask|__GFP_COMP|__GFP_THISNODE|
798 __GFP_REPEAT|__GFP_NOWARN, huge_page_order(h));
d1c3fb1f 799
caff3a2c
GS
800 if (page && arch_prepare_hugepage(page)) {
801 __free_pages(page, huge_page_order(h));
802 return NULL;
803 }
804
d1c3fb1f 805 spin_lock(&hugetlb_lock);
7893d1d5 806 if (page) {
bf50bab2 807 r_nid = page_to_nid(page);
7893d1d5 808 set_compound_page_dtor(page, free_huge_page);
d1c3fb1f
NA
809 /*
810 * We incremented the global counters already
811 */
bf50bab2
NH
812 h->nr_huge_pages_node[r_nid]++;
813 h->surplus_huge_pages_node[r_nid]++;
3b116300 814 __count_vm_event(HTLB_BUDDY_PGALLOC);
d1c3fb1f 815 } else {
a5516438
AK
816 h->nr_huge_pages--;
817 h->surplus_huge_pages--;
3b116300 818 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
7893d1d5 819 }
d1c3fb1f 820 spin_unlock(&hugetlb_lock);
7893d1d5
AL
821
822 return page;
823}
824
bf50bab2
NH
825/*
826 * This allocation function is useful in the context where vma is irrelevant.
827 * E.g. soft-offlining uses this function because it only cares physical
828 * address of error page.
829 */
830struct page *alloc_huge_page_node(struct hstate *h, int nid)
831{
832 struct page *page;
833
834 spin_lock(&hugetlb_lock);
835 page = dequeue_huge_page_node(h, nid);
836 spin_unlock(&hugetlb_lock);
837
838 if (!page)
839 page = alloc_buddy_huge_page(h, nid);
840
841 return page;
842}
843
e4e574b7
AL
844/*
845 * Increase the hugetlb pool such that it can accomodate a reservation
846 * of size 'delta'.
847 */
a5516438 848static int gather_surplus_pages(struct hstate *h, int delta)
e4e574b7
AL
849{
850 struct list_head surplus_list;
851 struct page *page, *tmp;
852 int ret, i;
853 int needed, allocated;
854
a5516438 855 needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
ac09b3a1 856 if (needed <= 0) {
a5516438 857 h->resv_huge_pages += delta;
e4e574b7 858 return 0;
ac09b3a1 859 }
e4e574b7
AL
860
861 allocated = 0;
862 INIT_LIST_HEAD(&surplus_list);
863
864 ret = -ENOMEM;
865retry:
866 spin_unlock(&hugetlb_lock);
867 for (i = 0; i < needed; i++) {
bf50bab2 868 page = alloc_buddy_huge_page(h, NUMA_NO_NODE);
a9869b83 869 if (!page)
e4e574b7
AL
870 /*
871 * We were not able to allocate enough pages to
872 * satisfy the entire reservation so we free what
873 * we've allocated so far.
874 */
e4e574b7 875 goto free;
e4e574b7
AL
876
877 list_add(&page->lru, &surplus_list);
878 }
879 allocated += needed;
880
881 /*
882 * After retaking hugetlb_lock, we need to recalculate 'needed'
883 * because either resv_huge_pages or free_huge_pages may have changed.
884 */
885 spin_lock(&hugetlb_lock);
a5516438
AK
886 needed = (h->resv_huge_pages + delta) -
887 (h->free_huge_pages + allocated);
e4e574b7
AL
888 if (needed > 0)
889 goto retry;
890
891 /*
892 * The surplus_list now contains _at_least_ the number of extra pages
893 * needed to accomodate the reservation. Add the appropriate number
894 * of pages to the hugetlb pool and free the extras back to the buddy
ac09b3a1
AL
895 * allocator. Commit the entire reservation here to prevent another
896 * process from stealing the pages as they are added to the pool but
897 * before they are reserved.
e4e574b7
AL
898 */
899 needed += allocated;
a5516438 900 h->resv_huge_pages += delta;
e4e574b7 901 ret = 0;
a9869b83
NH
902
903 spin_unlock(&hugetlb_lock);
19fc3f0a 904 /* Free the needed pages to the hugetlb pool */
e4e574b7 905 list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
19fc3f0a
AL
906 if ((--needed) < 0)
907 break;
e4e574b7 908 list_del(&page->lru);
a9869b83
NH
909 /*
910 * This page is now managed by the hugetlb allocator and has
911 * no users -- drop the buddy allocator's reference.
912 */
913 put_page_testzero(page);
914 VM_BUG_ON(page_count(page));
a5516438 915 enqueue_huge_page(h, page);
19fc3f0a
AL
916 }
917
918 /* Free unnecessary surplus pages to the buddy allocator */
a9869b83 919free:
19fc3f0a 920 if (!list_empty(&surplus_list)) {
19fc3f0a
AL
921 list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
922 list_del(&page->lru);
a9869b83 923 put_page(page);
af767cbd 924 }
e4e574b7 925 }
a9869b83 926 spin_lock(&hugetlb_lock);
e4e574b7
AL
927
928 return ret;
929}
930
931/*
932 * When releasing a hugetlb pool reservation, any surplus pages that were
933 * allocated to satisfy the reservation must be explicitly freed if they were
934 * never used.
685f3457 935 * Called with hugetlb_lock held.
e4e574b7 936 */
a5516438
AK
937static void return_unused_surplus_pages(struct hstate *h,
938 unsigned long unused_resv_pages)
e4e574b7 939{
e4e574b7
AL
940 unsigned long nr_pages;
941
ac09b3a1 942 /* Uncommit the reservation */
a5516438 943 h->resv_huge_pages -= unused_resv_pages;
ac09b3a1 944
aa888a74
AK
945 /* Cannot return gigantic pages currently */
946 if (h->order >= MAX_ORDER)
947 return;
948
a5516438 949 nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
e4e574b7 950
685f3457
LS
951 /*
952 * We want to release as many surplus pages as possible, spread
9b5e5d0f
LS
953 * evenly across all nodes with memory. Iterate across these nodes
954 * until we can no longer free unreserved surplus pages. This occurs
955 * when the nodes with surplus pages have no free pages.
956 * free_pool_huge_page() will balance the the freed pages across the
957 * on-line nodes with memory and will handle the hstate accounting.
685f3457
LS
958 */
959 while (nr_pages--) {
9b5e5d0f 960 if (!free_pool_huge_page(h, &node_states[N_HIGH_MEMORY], 1))
685f3457 961 break;
e4e574b7
AL
962 }
963}
964
c37f9fb1
AW
965/*
966 * Determine if the huge page at addr within the vma has an associated
967 * reservation. Where it does not we will need to logically increase
968 * reservation and actually increase quota before an allocation can occur.
969 * Where any new reservation would be required the reservation change is
970 * prepared, but not committed. Once the page has been quota'd allocated
971 * an instantiated the change should be committed via vma_commit_reservation.
972 * No action is required on failure.
973 */
e2f17d94 974static long vma_needs_reservation(struct hstate *h,
a5516438 975 struct vm_area_struct *vma, unsigned long addr)
c37f9fb1
AW
976{
977 struct address_space *mapping = vma->vm_file->f_mapping;
978 struct inode *inode = mapping->host;
979
f83a275d 980 if (vma->vm_flags & VM_MAYSHARE) {
a5516438 981 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
c37f9fb1
AW
982 return region_chg(&inode->i_mapping->private_list,
983 idx, idx + 1);
984
84afd99b
AW
985 } else if (!is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
986 return 1;
c37f9fb1 987
84afd99b 988 } else {
e2f17d94 989 long err;
a5516438 990 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
84afd99b
AW
991 struct resv_map *reservations = vma_resv_map(vma);
992
993 err = region_chg(&reservations->regions, idx, idx + 1);
994 if (err < 0)
995 return err;
996 return 0;
997 }
c37f9fb1 998}
a5516438
AK
999static void vma_commit_reservation(struct hstate *h,
1000 struct vm_area_struct *vma, unsigned long addr)
c37f9fb1
AW
1001{
1002 struct address_space *mapping = vma->vm_file->f_mapping;
1003 struct inode *inode = mapping->host;
1004
f83a275d 1005 if (vma->vm_flags & VM_MAYSHARE) {
a5516438 1006 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
c37f9fb1 1007 region_add(&inode->i_mapping->private_list, idx, idx + 1);
84afd99b
AW
1008
1009 } else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
a5516438 1010 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
84afd99b
AW
1011 struct resv_map *reservations = vma_resv_map(vma);
1012
1013 /* Mark this page used in the map. */
1014 region_add(&reservations->regions, idx, idx + 1);
c37f9fb1
AW
1015 }
1016}
1017
a1e78772 1018static struct page *alloc_huge_page(struct vm_area_struct *vma,
04f2cbe3 1019 unsigned long addr, int avoid_reserve)
1da177e4 1020{
a5516438 1021 struct hstate *h = hstate_vma(vma);
348ea204 1022 struct page *page;
a1e78772
MG
1023 struct address_space *mapping = vma->vm_file->f_mapping;
1024 struct inode *inode = mapping->host;
e2f17d94 1025 long chg;
a1e78772
MG
1026
1027 /*
1028 * Processes that did not create the mapping will have no reserves and
1029 * will not have accounted against quota. Check that the quota can be
1030 * made before satisfying the allocation
c37f9fb1
AW
1031 * MAP_NORESERVE mappings may also need pages and quota allocated
1032 * if no reserve mapping overlaps.
a1e78772 1033 */
a5516438 1034 chg = vma_needs_reservation(h, vma, addr);
c37f9fb1
AW
1035 if (chg < 0)
1036 return ERR_PTR(chg);
1037 if (chg)
a1e78772
MG
1038 if (hugetlb_get_quota(inode->i_mapping, chg))
1039 return ERR_PTR(-ENOSPC);
1da177e4
LT
1040
1041 spin_lock(&hugetlb_lock);
a5516438 1042 page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve);
1da177e4 1043 spin_unlock(&hugetlb_lock);
b45b5bd6 1044
68842c9b 1045 if (!page) {
bf50bab2 1046 page = alloc_buddy_huge_page(h, NUMA_NO_NODE);
68842c9b 1047 if (!page) {
a1e78772 1048 hugetlb_put_quota(inode->i_mapping, chg);
4a6018f7 1049 return ERR_PTR(-VM_FAULT_SIGBUS);
68842c9b
KC
1050 }
1051 }
348ea204 1052
a1e78772 1053 set_page_private(page, (unsigned long) mapping);
90d8b7e6 1054
a5516438 1055 vma_commit_reservation(h, vma, addr);
c37f9fb1 1056
90d8b7e6 1057 return page;
b45b5bd6
DG
1058}
1059
91f47662 1060int __weak alloc_bootmem_huge_page(struct hstate *h)
aa888a74
AK
1061{
1062 struct huge_bootmem_page *m;
9b5e5d0f 1063 int nr_nodes = nodes_weight(node_states[N_HIGH_MEMORY]);
aa888a74
AK
1064
1065 while (nr_nodes) {
1066 void *addr;
1067
1068 addr = __alloc_bootmem_node_nopanic(
6ae11b27 1069 NODE_DATA(hstate_next_node_to_alloc(h,
9b5e5d0f 1070 &node_states[N_HIGH_MEMORY])),
aa888a74
AK
1071 huge_page_size(h), huge_page_size(h), 0);
1072
1073 if (addr) {
1074 /*
1075 * Use the beginning of the huge page to store the
1076 * huge_bootmem_page struct (until gather_bootmem
1077 * puts them into the mem_map).
1078 */
1079 m = addr;
91f47662 1080 goto found;
aa888a74 1081 }
aa888a74
AK
1082 nr_nodes--;
1083 }
1084 return 0;
1085
1086found:
1087 BUG_ON((unsigned long)virt_to_phys(m) & (huge_page_size(h) - 1));
1088 /* Put them into a private list first because mem_map is not up yet */
1089 list_add(&m->list, &huge_boot_pages);
1090 m->hstate = h;
1091 return 1;
1092}
1093
18229df5
AW
1094static void prep_compound_huge_page(struct page *page, int order)
1095{
1096 if (unlikely(order > (MAX_ORDER - 1)))
1097 prep_compound_gigantic_page(page, order);
1098 else
1099 prep_compound_page(page, order);
1100}
1101
aa888a74
AK
1102/* Put bootmem huge pages into the standard lists after mem_map is up */
1103static void __init gather_bootmem_prealloc(void)
1104{
1105 struct huge_bootmem_page *m;
1106
1107 list_for_each_entry(m, &huge_boot_pages, list) {
1108 struct page *page = virt_to_page(m);
1109 struct hstate *h = m->hstate;
1110 __ClearPageReserved(page);
1111 WARN_ON(page_count(page) != 1);
18229df5 1112 prep_compound_huge_page(page, h->order);
aa888a74
AK
1113 prep_new_huge_page(h, page, page_to_nid(page));
1114 }
1115}
1116
8faa8b07 1117static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
1da177e4
LT
1118{
1119 unsigned long i;
a5516438 1120
e5ff2159 1121 for (i = 0; i < h->max_huge_pages; ++i) {
aa888a74
AK
1122 if (h->order >= MAX_ORDER) {
1123 if (!alloc_bootmem_huge_page(h))
1124 break;
9b5e5d0f
LS
1125 } else if (!alloc_fresh_huge_page(h,
1126 &node_states[N_HIGH_MEMORY]))
1da177e4 1127 break;
1da177e4 1128 }
8faa8b07 1129 h->max_huge_pages = i;
e5ff2159
AK
1130}
1131
1132static void __init hugetlb_init_hstates(void)
1133{
1134 struct hstate *h;
1135
1136 for_each_hstate(h) {
8faa8b07
AK
1137 /* oversize hugepages were init'ed in early boot */
1138 if (h->order < MAX_ORDER)
1139 hugetlb_hstate_alloc_pages(h);
e5ff2159
AK
1140 }
1141}
1142
4abd32db
AK
1143static char * __init memfmt(char *buf, unsigned long n)
1144{
1145 if (n >= (1UL << 30))
1146 sprintf(buf, "%lu GB", n >> 30);
1147 else if (n >= (1UL << 20))
1148 sprintf(buf, "%lu MB", n >> 20);
1149 else
1150 sprintf(buf, "%lu KB", n >> 10);
1151 return buf;
1152}
1153
e5ff2159
AK
1154static void __init report_hugepages(void)
1155{
1156 struct hstate *h;
1157
1158 for_each_hstate(h) {
4abd32db
AK
1159 char buf[32];
1160 printk(KERN_INFO "HugeTLB registered %s page size, "
1161 "pre-allocated %ld pages\n",
1162 memfmt(buf, huge_page_size(h)),
1163 h->free_huge_pages);
e5ff2159
AK
1164 }
1165}
1166
1da177e4 1167#ifdef CONFIG_HIGHMEM
6ae11b27
LS
1168static void try_to_free_low(struct hstate *h, unsigned long count,
1169 nodemask_t *nodes_allowed)
1da177e4 1170{
4415cc8d
CL
1171 int i;
1172
aa888a74
AK
1173 if (h->order >= MAX_ORDER)
1174 return;
1175
6ae11b27 1176 for_each_node_mask(i, *nodes_allowed) {
1da177e4 1177 struct page *page, *next;
a5516438
AK
1178 struct list_head *freel = &h->hugepage_freelists[i];
1179 list_for_each_entry_safe(page, next, freel, lru) {
1180 if (count >= h->nr_huge_pages)
6b0c880d 1181 return;
1da177e4
LT
1182 if (PageHighMem(page))
1183 continue;
1184 list_del(&page->lru);
e5ff2159 1185 update_and_free_page(h, page);
a5516438
AK
1186 h->free_huge_pages--;
1187 h->free_huge_pages_node[page_to_nid(page)]--;
1da177e4
LT
1188 }
1189 }
1190}
1191#else
6ae11b27
LS
1192static inline void try_to_free_low(struct hstate *h, unsigned long count,
1193 nodemask_t *nodes_allowed)
1da177e4
LT
1194{
1195}
1196#endif
1197
20a0307c
WF
1198/*
1199 * Increment or decrement surplus_huge_pages. Keep node-specific counters
1200 * balanced by operating on them in a round-robin fashion.
1201 * Returns 1 if an adjustment was made.
1202 */
6ae11b27
LS
1203static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
1204 int delta)
20a0307c 1205{
e8c5c824 1206 int start_nid, next_nid;
20a0307c
WF
1207 int ret = 0;
1208
1209 VM_BUG_ON(delta != -1 && delta != 1);
20a0307c 1210
e8c5c824 1211 if (delta < 0)
6ae11b27 1212 start_nid = hstate_next_node_to_alloc(h, nodes_allowed);
e8c5c824 1213 else
6ae11b27 1214 start_nid = hstate_next_node_to_free(h, nodes_allowed);
e8c5c824
LS
1215 next_nid = start_nid;
1216
1217 do {
1218 int nid = next_nid;
1219 if (delta < 0) {
e8c5c824
LS
1220 /*
1221 * To shrink on this node, there must be a surplus page
1222 */
9a76db09 1223 if (!h->surplus_huge_pages_node[nid]) {
6ae11b27
LS
1224 next_nid = hstate_next_node_to_alloc(h,
1225 nodes_allowed);
e8c5c824 1226 continue;
9a76db09 1227 }
e8c5c824
LS
1228 }
1229 if (delta > 0) {
e8c5c824
LS
1230 /*
1231 * Surplus cannot exceed the total number of pages
1232 */
1233 if (h->surplus_huge_pages_node[nid] >=
9a76db09 1234 h->nr_huge_pages_node[nid]) {
6ae11b27
LS
1235 next_nid = hstate_next_node_to_free(h,
1236 nodes_allowed);
e8c5c824 1237 continue;
9a76db09 1238 }
e8c5c824 1239 }
20a0307c
WF
1240
1241 h->surplus_huge_pages += delta;
1242 h->surplus_huge_pages_node[nid] += delta;
1243 ret = 1;
1244 break;
e8c5c824 1245 } while (next_nid != start_nid);
20a0307c 1246
20a0307c
WF
1247 return ret;
1248}
1249
a5516438 1250#define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
6ae11b27
LS
1251static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count,
1252 nodemask_t *nodes_allowed)
1da177e4 1253{
7893d1d5 1254 unsigned long min_count, ret;
1da177e4 1255
aa888a74
AK
1256 if (h->order >= MAX_ORDER)
1257 return h->max_huge_pages;
1258
7893d1d5
AL
1259 /*
1260 * Increase the pool size
1261 * First take pages out of surplus state. Then make up the
1262 * remaining difference by allocating fresh huge pages.
d1c3fb1f
NA
1263 *
1264 * We might race with alloc_buddy_huge_page() here and be unable
1265 * to convert a surplus huge page to a normal huge page. That is
1266 * not critical, though, it just means the overall size of the
1267 * pool might be one hugepage larger than it needs to be, but
1268 * within all the constraints specified by the sysctls.
7893d1d5 1269 */
1da177e4 1270 spin_lock(&hugetlb_lock);
a5516438 1271 while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
6ae11b27 1272 if (!adjust_pool_surplus(h, nodes_allowed, -1))
7893d1d5
AL
1273 break;
1274 }
1275
a5516438 1276 while (count > persistent_huge_pages(h)) {
7893d1d5
AL
1277 /*
1278 * If this allocation races such that we no longer need the
1279 * page, free_huge_page will handle it by freeing the page
1280 * and reducing the surplus.
1281 */
1282 spin_unlock(&hugetlb_lock);
6ae11b27 1283 ret = alloc_fresh_huge_page(h, nodes_allowed);
7893d1d5
AL
1284 spin_lock(&hugetlb_lock);
1285 if (!ret)
1286 goto out;
1287
536240f2
MG
1288 /* Bail for signals. Probably ctrl-c from user */
1289 if (signal_pending(current))
1290 goto out;
7893d1d5 1291 }
7893d1d5
AL
1292
1293 /*
1294 * Decrease the pool size
1295 * First return free pages to the buddy allocator (being careful
1296 * to keep enough around to satisfy reservations). Then place
1297 * pages into surplus state as needed so the pool will shrink
1298 * to the desired size as pages become free.
d1c3fb1f
NA
1299 *
1300 * By placing pages into the surplus state independent of the
1301 * overcommit value, we are allowing the surplus pool size to
1302 * exceed overcommit. There are few sane options here. Since
1303 * alloc_buddy_huge_page() is checking the global counter,
1304 * though, we'll note that we're not allowed to exceed surplus
1305 * and won't grow the pool anywhere else. Not until one of the
1306 * sysctls are changed, or the surplus pages go out of use.
7893d1d5 1307 */
a5516438 1308 min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
6b0c880d 1309 min_count = max(count, min_count);
6ae11b27 1310 try_to_free_low(h, min_count, nodes_allowed);
a5516438 1311 while (min_count < persistent_huge_pages(h)) {
6ae11b27 1312 if (!free_pool_huge_page(h, nodes_allowed, 0))
1da177e4 1313 break;
1da177e4 1314 }
a5516438 1315 while (count < persistent_huge_pages(h)) {
6ae11b27 1316 if (!adjust_pool_surplus(h, nodes_allowed, 1))
7893d1d5
AL
1317 break;
1318 }
1319out:
a5516438 1320 ret = persistent_huge_pages(h);
1da177e4 1321 spin_unlock(&hugetlb_lock);
7893d1d5 1322 return ret;
1da177e4
LT
1323}
1324
a3437870
NA
1325#define HSTATE_ATTR_RO(_name) \
1326 static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
1327
1328#define HSTATE_ATTR(_name) \
1329 static struct kobj_attribute _name##_attr = \
1330 __ATTR(_name, 0644, _name##_show, _name##_store)
1331
1332static struct kobject *hugepages_kobj;
1333static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
1334
9a305230
LS
1335static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
1336
1337static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
a3437870
NA
1338{
1339 int i;
9a305230 1340
a3437870 1341 for (i = 0; i < HUGE_MAX_HSTATE; i++)
9a305230
LS
1342 if (hstate_kobjs[i] == kobj) {
1343 if (nidp)
1344 *nidp = NUMA_NO_NODE;
a3437870 1345 return &hstates[i];
9a305230
LS
1346 }
1347
1348 return kobj_to_node_hstate(kobj, nidp);
a3437870
NA
1349}
1350
06808b08 1351static ssize_t nr_hugepages_show_common(struct kobject *kobj,
a3437870
NA
1352 struct kobj_attribute *attr, char *buf)
1353{
9a305230
LS
1354 struct hstate *h;
1355 unsigned long nr_huge_pages;
1356 int nid;
1357
1358 h = kobj_to_hstate(kobj, &nid);
1359 if (nid == NUMA_NO_NODE)
1360 nr_huge_pages = h->nr_huge_pages;
1361 else
1362 nr_huge_pages = h->nr_huge_pages_node[nid];
1363
1364 return sprintf(buf, "%lu\n", nr_huge_pages);
a3437870 1365}
06808b08
LS
1366static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
1367 struct kobject *kobj, struct kobj_attribute *attr,
1368 const char *buf, size_t len)
a3437870
NA
1369{
1370 int err;
9a305230 1371 int nid;
06808b08 1372 unsigned long count;
9a305230 1373 struct hstate *h;
bad44b5b 1374 NODEMASK_ALLOC(nodemask_t, nodes_allowed, GFP_KERNEL | __GFP_NORETRY);
a3437870 1375
06808b08 1376 err = strict_strtoul(buf, 10, &count);
32d6fead
JJ
1377 if (err) {
1378 NODEMASK_FREE(nodes_allowed);
a3437870 1379 return 0;
32d6fead 1380 }
a3437870 1381
9a305230
LS
1382 h = kobj_to_hstate(kobj, &nid);
1383 if (nid == NUMA_NO_NODE) {
1384 /*
1385 * global hstate attribute
1386 */
1387 if (!(obey_mempolicy &&
1388 init_nodemask_of_mempolicy(nodes_allowed))) {
1389 NODEMASK_FREE(nodes_allowed);
1390 nodes_allowed = &node_states[N_HIGH_MEMORY];
1391 }
1392 } else if (nodes_allowed) {
1393 /*
1394 * per node hstate attribute: adjust count to global,
1395 * but restrict alloc/free to the specified node.
1396 */
1397 count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
1398 init_nodemask_of_node(nodes_allowed, nid);
1399 } else
1400 nodes_allowed = &node_states[N_HIGH_MEMORY];
1401
06808b08 1402 h->max_huge_pages = set_max_huge_pages(h, count, nodes_allowed);
a3437870 1403
9b5e5d0f 1404 if (nodes_allowed != &node_states[N_HIGH_MEMORY])
06808b08
LS
1405 NODEMASK_FREE(nodes_allowed);
1406
1407 return len;
1408}
1409
1410static ssize_t nr_hugepages_show(struct kobject *kobj,
1411 struct kobj_attribute *attr, char *buf)
1412{
1413 return nr_hugepages_show_common(kobj, attr, buf);
1414}
1415
1416static ssize_t nr_hugepages_store(struct kobject *kobj,
1417 struct kobj_attribute *attr, const char *buf, size_t len)
1418{
1419 return nr_hugepages_store_common(false, kobj, attr, buf, len);
a3437870
NA
1420}
1421HSTATE_ATTR(nr_hugepages);
1422
06808b08
LS
1423#ifdef CONFIG_NUMA
1424
1425/*
1426 * hstate attribute for optionally mempolicy-based constraint on persistent
1427 * huge page alloc/free.
1428 */
1429static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
1430 struct kobj_attribute *attr, char *buf)
1431{
1432 return nr_hugepages_show_common(kobj, attr, buf);
1433}
1434
1435static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
1436 struct kobj_attribute *attr, const char *buf, size_t len)
1437{
1438 return nr_hugepages_store_common(true, kobj, attr, buf, len);
1439}
1440HSTATE_ATTR(nr_hugepages_mempolicy);
1441#endif
1442
1443
a3437870
NA
1444static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
1445 struct kobj_attribute *attr, char *buf)
1446{
9a305230 1447 struct hstate *h = kobj_to_hstate(kobj, NULL);
a3437870
NA
1448 return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
1449}
1450static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
1451 struct kobj_attribute *attr, const char *buf, size_t count)
1452{
1453 int err;
1454 unsigned long input;
9a305230 1455 struct hstate *h = kobj_to_hstate(kobj, NULL);
a3437870
NA
1456
1457 err = strict_strtoul(buf, 10, &input);
1458 if (err)
1459 return 0;
1460
1461 spin_lock(&hugetlb_lock);
1462 h->nr_overcommit_huge_pages = input;
1463 spin_unlock(&hugetlb_lock);
1464
1465 return count;
1466}
1467HSTATE_ATTR(nr_overcommit_hugepages);
1468
1469static ssize_t free_hugepages_show(struct kobject *kobj,
1470 struct kobj_attribute *attr, char *buf)
1471{
9a305230
LS
1472 struct hstate *h;
1473 unsigned long free_huge_pages;
1474 int nid;
1475
1476 h = kobj_to_hstate(kobj, &nid);
1477 if (nid == NUMA_NO_NODE)
1478 free_huge_pages = h->free_huge_pages;
1479 else
1480 free_huge_pages = h->free_huge_pages_node[nid];
1481
1482 return sprintf(buf, "%lu\n", free_huge_pages);
a3437870
NA
1483}
1484HSTATE_ATTR_RO(free_hugepages);
1485
1486static ssize_t resv_hugepages_show(struct kobject *kobj,
1487 struct kobj_attribute *attr, char *buf)
1488{
9a305230 1489 struct hstate *h = kobj_to_hstate(kobj, NULL);
a3437870
NA
1490 return sprintf(buf, "%lu\n", h->resv_huge_pages);
1491}
1492HSTATE_ATTR_RO(resv_hugepages);
1493
1494static ssize_t surplus_hugepages_show(struct kobject *kobj,
1495 struct kobj_attribute *attr, char *buf)
1496{
9a305230
LS
1497 struct hstate *h;
1498 unsigned long surplus_huge_pages;
1499 int nid;
1500
1501 h = kobj_to_hstate(kobj, &nid);
1502 if (nid == NUMA_NO_NODE)
1503 surplus_huge_pages = h->surplus_huge_pages;
1504 else
1505 surplus_huge_pages = h->surplus_huge_pages_node[nid];
1506
1507 return sprintf(buf, "%lu\n", surplus_huge_pages);
a3437870
NA
1508}
1509HSTATE_ATTR_RO(surplus_hugepages);
1510
1511static struct attribute *hstate_attrs[] = {
1512 &nr_hugepages_attr.attr,
1513 &nr_overcommit_hugepages_attr.attr,
1514 &free_hugepages_attr.attr,
1515 &resv_hugepages_attr.attr,
1516 &surplus_hugepages_attr.attr,
06808b08
LS
1517#ifdef CONFIG_NUMA
1518 &nr_hugepages_mempolicy_attr.attr,
1519#endif
a3437870
NA
1520 NULL,
1521};
1522
1523static struct attribute_group hstate_attr_group = {
1524 .attrs = hstate_attrs,
1525};
1526
094e9539
JM
1527static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
1528 struct kobject **hstate_kobjs,
1529 struct attribute_group *hstate_attr_group)
a3437870
NA
1530{
1531 int retval;
9a305230 1532 int hi = h - hstates;
a3437870 1533
9a305230
LS
1534 hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
1535 if (!hstate_kobjs[hi])
a3437870
NA
1536 return -ENOMEM;
1537
9a305230 1538 retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
a3437870 1539 if (retval)
9a305230 1540 kobject_put(hstate_kobjs[hi]);
a3437870
NA
1541
1542 return retval;
1543}
1544
1545static void __init hugetlb_sysfs_init(void)
1546{
1547 struct hstate *h;
1548 int err;
1549
1550 hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
1551 if (!hugepages_kobj)
1552 return;
1553
1554 for_each_hstate(h) {
9a305230
LS
1555 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
1556 hstate_kobjs, &hstate_attr_group);
a3437870
NA
1557 if (err)
1558 printk(KERN_ERR "Hugetlb: Unable to add hstate %s",
1559 h->name);
1560 }
1561}
1562
9a305230
LS
1563#ifdef CONFIG_NUMA
1564
1565/*
1566 * node_hstate/s - associate per node hstate attributes, via their kobjects,
1567 * with node sysdevs in node_devices[] using a parallel array. The array
1568 * index of a node sysdev or _hstate == node id.
1569 * This is here to avoid any static dependency of the node sysdev driver, in
1570 * the base kernel, on the hugetlb module.
1571 */
1572struct node_hstate {
1573 struct kobject *hugepages_kobj;
1574 struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
1575};
1576struct node_hstate node_hstates[MAX_NUMNODES];
1577
1578/*
1579 * A subset of global hstate attributes for node sysdevs
1580 */
1581static struct attribute *per_node_hstate_attrs[] = {
1582 &nr_hugepages_attr.attr,
1583 &free_hugepages_attr.attr,
1584 &surplus_hugepages_attr.attr,
1585 NULL,
1586};
1587
1588static struct attribute_group per_node_hstate_attr_group = {
1589 .attrs = per_node_hstate_attrs,
1590};
1591
1592/*
1593 * kobj_to_node_hstate - lookup global hstate for node sysdev hstate attr kobj.
1594 * Returns node id via non-NULL nidp.
1595 */
1596static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
1597{
1598 int nid;
1599
1600 for (nid = 0; nid < nr_node_ids; nid++) {
1601 struct node_hstate *nhs = &node_hstates[nid];
1602 int i;
1603 for (i = 0; i < HUGE_MAX_HSTATE; i++)
1604 if (nhs->hstate_kobjs[i] == kobj) {
1605 if (nidp)
1606 *nidp = nid;
1607 return &hstates[i];
1608 }
1609 }
1610
1611 BUG();
1612 return NULL;
1613}
1614
1615/*
1616 * Unregister hstate attributes from a single node sysdev.
1617 * No-op if no hstate attributes attached.
1618 */
1619void hugetlb_unregister_node(struct node *node)
1620{
1621 struct hstate *h;
1622 struct node_hstate *nhs = &node_hstates[node->sysdev.id];
1623
1624 if (!nhs->hugepages_kobj)
9b5e5d0f 1625 return; /* no hstate attributes */
9a305230
LS
1626
1627 for_each_hstate(h)
1628 if (nhs->hstate_kobjs[h - hstates]) {
1629 kobject_put(nhs->hstate_kobjs[h - hstates]);
1630 nhs->hstate_kobjs[h - hstates] = NULL;
1631 }
1632
1633 kobject_put(nhs->hugepages_kobj);
1634 nhs->hugepages_kobj = NULL;
1635}
1636
1637/*
1638 * hugetlb module exit: unregister hstate attributes from node sysdevs
1639 * that have them.
1640 */
1641static void hugetlb_unregister_all_nodes(void)
1642{
1643 int nid;
1644
1645 /*
1646 * disable node sysdev registrations.
1647 */
1648 register_hugetlbfs_with_node(NULL, NULL);
1649
1650 /*
1651 * remove hstate attributes from any nodes that have them.
1652 */
1653 for (nid = 0; nid < nr_node_ids; nid++)
1654 hugetlb_unregister_node(&node_devices[nid]);
1655}
1656
1657/*
1658 * Register hstate attributes for a single node sysdev.
1659 * No-op if attributes already registered.
1660 */
1661void hugetlb_register_node(struct node *node)
1662{
1663 struct hstate *h;
1664 struct node_hstate *nhs = &node_hstates[node->sysdev.id];
1665 int err;
1666
1667 if (nhs->hugepages_kobj)
1668 return; /* already allocated */
1669
1670 nhs->hugepages_kobj = kobject_create_and_add("hugepages",
1671 &node->sysdev.kobj);
1672 if (!nhs->hugepages_kobj)
1673 return;
1674
1675 for_each_hstate(h) {
1676 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
1677 nhs->hstate_kobjs,
1678 &per_node_hstate_attr_group);
1679 if (err) {
1680 printk(KERN_ERR "Hugetlb: Unable to add hstate %s"
1681 " for node %d\n",
1682 h->name, node->sysdev.id);
1683 hugetlb_unregister_node(node);
1684 break;
1685 }
1686 }
1687}
1688
1689/*
9b5e5d0f
LS
1690 * hugetlb init time: register hstate attributes for all registered node
1691 * sysdevs of nodes that have memory. All on-line nodes should have
1692 * registered their associated sysdev by this time.
9a305230
LS
1693 */
1694static void hugetlb_register_all_nodes(void)
1695{
1696 int nid;
1697
9b5e5d0f 1698 for_each_node_state(nid, N_HIGH_MEMORY) {
9a305230
LS
1699 struct node *node = &node_devices[nid];
1700 if (node->sysdev.id == nid)
1701 hugetlb_register_node(node);
1702 }
1703
1704 /*
1705 * Let the node sysdev driver know we're here so it can
1706 * [un]register hstate attributes on node hotplug.
1707 */
1708 register_hugetlbfs_with_node(hugetlb_register_node,
1709 hugetlb_unregister_node);
1710}
1711#else /* !CONFIG_NUMA */
1712
1713static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
1714{
1715 BUG();
1716 if (nidp)
1717 *nidp = -1;
1718 return NULL;
1719}
1720
1721static void hugetlb_unregister_all_nodes(void) { }
1722
1723static void hugetlb_register_all_nodes(void) { }
1724
1725#endif
1726
a3437870
NA
1727static void __exit hugetlb_exit(void)
1728{
1729 struct hstate *h;
1730
9a305230
LS
1731 hugetlb_unregister_all_nodes();
1732
a3437870
NA
1733 for_each_hstate(h) {
1734 kobject_put(hstate_kobjs[h - hstates]);
1735 }
1736
1737 kobject_put(hugepages_kobj);
1738}
1739module_exit(hugetlb_exit);
1740
1741static int __init hugetlb_init(void)
1742{
0ef89d25
BH
1743 /* Some platform decide whether they support huge pages at boot
1744 * time. On these, such as powerpc, HPAGE_SHIFT is set to 0 when
1745 * there is no such support
1746 */
1747 if (HPAGE_SHIFT == 0)
1748 return 0;
a3437870 1749
e11bfbfc
NP
1750 if (!size_to_hstate(default_hstate_size)) {
1751 default_hstate_size = HPAGE_SIZE;
1752 if (!size_to_hstate(default_hstate_size))
1753 hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
a3437870 1754 }
e11bfbfc
NP
1755 default_hstate_idx = size_to_hstate(default_hstate_size) - hstates;
1756 if (default_hstate_max_huge_pages)
1757 default_hstate.max_huge_pages = default_hstate_max_huge_pages;
a3437870
NA
1758
1759 hugetlb_init_hstates();
1760
aa888a74
AK
1761 gather_bootmem_prealloc();
1762
a3437870
NA
1763 report_hugepages();
1764
1765 hugetlb_sysfs_init();
1766
9a305230
LS
1767 hugetlb_register_all_nodes();
1768
a3437870
NA
1769 return 0;
1770}
1771module_init(hugetlb_init);
1772
1773/* Should be called on processing a hugepagesz=... option */
1774void __init hugetlb_add_hstate(unsigned order)
1775{
1776 struct hstate *h;
8faa8b07
AK
1777 unsigned long i;
1778
a3437870
NA
1779 if (size_to_hstate(PAGE_SIZE << order)) {
1780 printk(KERN_WARNING "hugepagesz= specified twice, ignoring\n");
1781 return;
1782 }
1783 BUG_ON(max_hstate >= HUGE_MAX_HSTATE);
1784 BUG_ON(order == 0);
1785 h = &hstates[max_hstate++];
1786 h->order = order;
1787 h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
8faa8b07
AK
1788 h->nr_huge_pages = 0;
1789 h->free_huge_pages = 0;
1790 for (i = 0; i < MAX_NUMNODES; ++i)
1791 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
9b5e5d0f
LS
1792 h->next_nid_to_alloc = first_node(node_states[N_HIGH_MEMORY]);
1793 h->next_nid_to_free = first_node(node_states[N_HIGH_MEMORY]);
a3437870
NA
1794 snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
1795 huge_page_size(h)/1024);
8faa8b07 1796
a3437870
NA
1797 parsed_hstate = h;
1798}
1799
e11bfbfc 1800static int __init hugetlb_nrpages_setup(char *s)
a3437870
NA
1801{
1802 unsigned long *mhp;
8faa8b07 1803 static unsigned long *last_mhp;
a3437870
NA
1804
1805 /*
1806 * !max_hstate means we haven't parsed a hugepagesz= parameter yet,
1807 * so this hugepages= parameter goes to the "default hstate".
1808 */
1809 if (!max_hstate)
1810 mhp = &default_hstate_max_huge_pages;
1811 else
1812 mhp = &parsed_hstate->max_huge_pages;
1813
8faa8b07
AK
1814 if (mhp == last_mhp) {
1815 printk(KERN_WARNING "hugepages= specified twice without "
1816 "interleaving hugepagesz=, ignoring\n");
1817 return 1;
1818 }
1819
a3437870
NA
1820 if (sscanf(s, "%lu", mhp) <= 0)
1821 *mhp = 0;
1822
8faa8b07
AK
1823 /*
1824 * Global state is always initialized later in hugetlb_init.
1825 * But we need to allocate >= MAX_ORDER hstates here early to still
1826 * use the bootmem allocator.
1827 */
1828 if (max_hstate && parsed_hstate->order >= MAX_ORDER)
1829 hugetlb_hstate_alloc_pages(parsed_hstate);
1830
1831 last_mhp = mhp;
1832
a3437870
NA
1833 return 1;
1834}
e11bfbfc
NP
1835__setup("hugepages=", hugetlb_nrpages_setup);
1836
1837static int __init hugetlb_default_setup(char *s)
1838{
1839 default_hstate_size = memparse(s, &s);
1840 return 1;
1841}
1842__setup("default_hugepagesz=", hugetlb_default_setup);
a3437870 1843
8a213460
NA
1844static unsigned int cpuset_mems_nr(unsigned int *array)
1845{
1846 int node;
1847 unsigned int nr = 0;
1848
1849 for_each_node_mask(node, cpuset_current_mems_allowed)
1850 nr += array[node];
1851
1852 return nr;
1853}
1854
1855#ifdef CONFIG_SYSCTL
06808b08
LS
1856static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
1857 struct ctl_table *table, int write,
1858 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 1859{
e5ff2159
AK
1860 struct hstate *h = &default_hstate;
1861 unsigned long tmp;
1862
1863 if (!write)
1864 tmp = h->max_huge_pages;
1865
1866 table->data = &tmp;
1867 table->maxlen = sizeof(unsigned long);
8d65af78 1868 proc_doulongvec_minmax(table, write, buffer, length, ppos);
e5ff2159 1869
06808b08 1870 if (write) {
bad44b5b
DR
1871 NODEMASK_ALLOC(nodemask_t, nodes_allowed,
1872 GFP_KERNEL | __GFP_NORETRY);
06808b08
LS
1873 if (!(obey_mempolicy &&
1874 init_nodemask_of_mempolicy(nodes_allowed))) {
1875 NODEMASK_FREE(nodes_allowed);
1876 nodes_allowed = &node_states[N_HIGH_MEMORY];
1877 }
1878 h->max_huge_pages = set_max_huge_pages(h, tmp, nodes_allowed);
1879
1880 if (nodes_allowed != &node_states[N_HIGH_MEMORY])
1881 NODEMASK_FREE(nodes_allowed);
1882 }
e5ff2159 1883
1da177e4
LT
1884 return 0;
1885}
396faf03 1886
06808b08
LS
1887int hugetlb_sysctl_handler(struct ctl_table *table, int write,
1888 void __user *buffer, size_t *length, loff_t *ppos)
1889{
1890
1891 return hugetlb_sysctl_handler_common(false, table, write,
1892 buffer, length, ppos);
1893}
1894
1895#ifdef CONFIG_NUMA
1896int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
1897 void __user *buffer, size_t *length, loff_t *ppos)
1898{
1899 return hugetlb_sysctl_handler_common(true, table, write,
1900 buffer, length, ppos);
1901}
1902#endif /* CONFIG_NUMA */
1903
396faf03 1904int hugetlb_treat_movable_handler(struct ctl_table *table, int write,
8d65af78 1905 void __user *buffer,
396faf03
MG
1906 size_t *length, loff_t *ppos)
1907{
8d65af78 1908 proc_dointvec(table, write, buffer, length, ppos);
396faf03
MG
1909 if (hugepages_treat_as_movable)
1910 htlb_alloc_mask = GFP_HIGHUSER_MOVABLE;
1911 else
1912 htlb_alloc_mask = GFP_HIGHUSER;
1913 return 0;
1914}
1915
a3d0c6aa 1916int hugetlb_overcommit_handler(struct ctl_table *table, int write,
8d65af78 1917 void __user *buffer,
a3d0c6aa
NA
1918 size_t *length, loff_t *ppos)
1919{
a5516438 1920 struct hstate *h = &default_hstate;
e5ff2159
AK
1921 unsigned long tmp;
1922
1923 if (!write)
1924 tmp = h->nr_overcommit_huge_pages;
1925
1926 table->data = &tmp;
1927 table->maxlen = sizeof(unsigned long);
8d65af78 1928 proc_doulongvec_minmax(table, write, buffer, length, ppos);
e5ff2159
AK
1929
1930 if (write) {
1931 spin_lock(&hugetlb_lock);
1932 h->nr_overcommit_huge_pages = tmp;
1933 spin_unlock(&hugetlb_lock);
1934 }
1935
a3d0c6aa
NA
1936 return 0;
1937}
1938
1da177e4
LT
1939#endif /* CONFIG_SYSCTL */
1940
e1759c21 1941void hugetlb_report_meminfo(struct seq_file *m)
1da177e4 1942{
a5516438 1943 struct hstate *h = &default_hstate;
e1759c21 1944 seq_printf(m,
4f98a2fe
RR
1945 "HugePages_Total: %5lu\n"
1946 "HugePages_Free: %5lu\n"
1947 "HugePages_Rsvd: %5lu\n"
1948 "HugePages_Surp: %5lu\n"
1949 "Hugepagesize: %8lu kB\n",
a5516438
AK
1950 h->nr_huge_pages,
1951 h->free_huge_pages,
1952 h->resv_huge_pages,
1953 h->surplus_huge_pages,
1954 1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
1da177e4
LT
1955}
1956
1957int hugetlb_report_node_meminfo(int nid, char *buf)
1958{
a5516438 1959 struct hstate *h = &default_hstate;
1da177e4
LT
1960 return sprintf(buf,
1961 "Node %d HugePages_Total: %5u\n"
a1de0919
NA
1962 "Node %d HugePages_Free: %5u\n"
1963 "Node %d HugePages_Surp: %5u\n",
a5516438
AK
1964 nid, h->nr_huge_pages_node[nid],
1965 nid, h->free_huge_pages_node[nid],
1966 nid, h->surplus_huge_pages_node[nid]);
1da177e4
LT
1967}
1968
1da177e4
LT
1969/* Return the number pages of memory we physically have, in PAGE_SIZE units. */
1970unsigned long hugetlb_total_pages(void)
1971{
a5516438
AK
1972 struct hstate *h = &default_hstate;
1973 return h->nr_huge_pages * pages_per_huge_page(h);
1da177e4 1974}
1da177e4 1975
a5516438 1976static int hugetlb_acct_memory(struct hstate *h, long delta)
fc1b8a73
MG
1977{
1978 int ret = -ENOMEM;
1979
1980 spin_lock(&hugetlb_lock);
1981 /*
1982 * When cpuset is configured, it breaks the strict hugetlb page
1983 * reservation as the accounting is done on a global variable. Such
1984 * reservation is completely rubbish in the presence of cpuset because
1985 * the reservation is not checked against page availability for the
1986 * current cpuset. Application can still potentially OOM'ed by kernel
1987 * with lack of free htlb page in cpuset that the task is in.
1988 * Attempt to enforce strict accounting with cpuset is almost
1989 * impossible (or too ugly) because cpuset is too fluid that
1990 * task or memory node can be dynamically moved between cpusets.
1991 *
1992 * The change of semantics for shared hugetlb mapping with cpuset is
1993 * undesirable. However, in order to preserve some of the semantics,
1994 * we fall back to check against current free page availability as
1995 * a best attempt and hopefully to minimize the impact of changing
1996 * semantics that cpuset has.
1997 */
1998 if (delta > 0) {
a5516438 1999 if (gather_surplus_pages(h, delta) < 0)
fc1b8a73
MG
2000 goto out;
2001
a5516438
AK
2002 if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
2003 return_unused_surplus_pages(h, delta);
fc1b8a73
MG
2004 goto out;
2005 }
2006 }
2007
2008 ret = 0;
2009 if (delta < 0)
a5516438 2010 return_unused_surplus_pages(h, (unsigned long) -delta);
fc1b8a73
MG
2011
2012out:
2013 spin_unlock(&hugetlb_lock);
2014 return ret;
2015}
2016
84afd99b
AW
2017static void hugetlb_vm_op_open(struct vm_area_struct *vma)
2018{
2019 struct resv_map *reservations = vma_resv_map(vma);
2020
2021 /*
2022 * This new VMA should share its siblings reservation map if present.
2023 * The VMA will only ever have a valid reservation map pointer where
2024 * it is being copied for another still existing VMA. As that VMA
2025 * has a reference to the reservation map it cannot dissappear until
2026 * after this open call completes. It is therefore safe to take a
2027 * new reference here without additional locking.
2028 */
2029 if (reservations)
2030 kref_get(&reservations->refs);
2031}
2032
a1e78772
MG
2033static void hugetlb_vm_op_close(struct vm_area_struct *vma)
2034{
a5516438 2035 struct hstate *h = hstate_vma(vma);
84afd99b
AW
2036 struct resv_map *reservations = vma_resv_map(vma);
2037 unsigned long reserve;
2038 unsigned long start;
2039 unsigned long end;
2040
2041 if (reservations) {
a5516438
AK
2042 start = vma_hugecache_offset(h, vma, vma->vm_start);
2043 end = vma_hugecache_offset(h, vma, vma->vm_end);
84afd99b
AW
2044
2045 reserve = (end - start) -
2046 region_count(&reservations->regions, start, end);
2047
2048 kref_put(&reservations->refs, resv_map_release);
2049
7251ff78 2050 if (reserve) {
a5516438 2051 hugetlb_acct_memory(h, -reserve);
7251ff78
AL
2052 hugetlb_put_quota(vma->vm_file->f_mapping, reserve);
2053 }
84afd99b 2054 }
a1e78772
MG
2055}
2056
1da177e4
LT
2057/*
2058 * We cannot handle pagefaults against hugetlb pages at all. They cause
2059 * handle_mm_fault() to try to instantiate regular-sized pages in the
2060 * hugegpage VMA. do_page_fault() is supposed to trap this, so BUG is we get
2061 * this far.
2062 */
d0217ac0 2063static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1da177e4
LT
2064{
2065 BUG();
d0217ac0 2066 return 0;
1da177e4
LT
2067}
2068
f0f37e2f 2069const struct vm_operations_struct hugetlb_vm_ops = {
d0217ac0 2070 .fault = hugetlb_vm_op_fault,
84afd99b 2071 .open = hugetlb_vm_op_open,
a1e78772 2072 .close = hugetlb_vm_op_close,
1da177e4
LT
2073};
2074
1e8f889b
DG
2075static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
2076 int writable)
63551ae0
DG
2077{
2078 pte_t entry;
2079
1e8f889b 2080 if (writable) {
63551ae0
DG
2081 entry =
2082 pte_mkwrite(pte_mkdirty(mk_pte(page, vma->vm_page_prot)));
2083 } else {
7f2e9525 2084 entry = huge_pte_wrprotect(mk_pte(page, vma->vm_page_prot));
63551ae0
DG
2085 }
2086 entry = pte_mkyoung(entry);
2087 entry = pte_mkhuge(entry);
2088
2089 return entry;
2090}
2091
1e8f889b
DG
2092static void set_huge_ptep_writable(struct vm_area_struct *vma,
2093 unsigned long address, pte_t *ptep)
2094{
2095 pte_t entry;
2096
7f2e9525
GS
2097 entry = pte_mkwrite(pte_mkdirty(huge_ptep_get(ptep)));
2098 if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1)) {
4b3073e1 2099 update_mmu_cache(vma, address, ptep);
8dab5241 2100 }
1e8f889b
DG
2101}
2102
2103
63551ae0
DG
2104int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
2105 struct vm_area_struct *vma)
2106{
2107 pte_t *src_pte, *dst_pte, entry;
2108 struct page *ptepage;
1c59827d 2109 unsigned long addr;
1e8f889b 2110 int cow;
a5516438
AK
2111 struct hstate *h = hstate_vma(vma);
2112 unsigned long sz = huge_page_size(h);
1e8f889b
DG
2113
2114 cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
63551ae0 2115
a5516438 2116 for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
c74df32c
HD
2117 src_pte = huge_pte_offset(src, addr);
2118 if (!src_pte)
2119 continue;
a5516438 2120 dst_pte = huge_pte_alloc(dst, addr, sz);
63551ae0
DG
2121 if (!dst_pte)
2122 goto nomem;
c5c99429
LW
2123
2124 /* If the pagetables are shared don't copy or take references */
2125 if (dst_pte == src_pte)
2126 continue;
2127
c74df32c 2128 spin_lock(&dst->page_table_lock);
46478758 2129 spin_lock_nested(&src->page_table_lock, SINGLE_DEPTH_NESTING);
7f2e9525 2130 if (!huge_pte_none(huge_ptep_get(src_pte))) {
1e8f889b 2131 if (cow)
7f2e9525
GS
2132 huge_ptep_set_wrprotect(src, addr, src_pte);
2133 entry = huge_ptep_get(src_pte);
1c59827d
HD
2134 ptepage = pte_page(entry);
2135 get_page(ptepage);
0fe6e20b 2136 page_dup_rmap(ptepage);
1c59827d
HD
2137 set_huge_pte_at(dst, addr, dst_pte, entry);
2138 }
2139 spin_unlock(&src->page_table_lock);
c74df32c 2140 spin_unlock(&dst->page_table_lock);
63551ae0
DG
2141 }
2142 return 0;
2143
2144nomem:
2145 return -ENOMEM;
2146}
2147
290408d4
NH
2148static int is_hugetlb_entry_migration(pte_t pte)
2149{
2150 swp_entry_t swp;
2151
2152 if (huge_pte_none(pte) || pte_present(pte))
2153 return 0;
2154 swp = pte_to_swp_entry(pte);
2155 if (non_swap_entry(swp) && is_migration_entry(swp)) {
2156 return 1;
2157 } else
2158 return 0;
2159}
2160
fd6a03ed
NH
2161static int is_hugetlb_entry_hwpoisoned(pte_t pte)
2162{
2163 swp_entry_t swp;
2164
2165 if (huge_pte_none(pte) || pte_present(pte))
2166 return 0;
2167 swp = pte_to_swp_entry(pte);
2168 if (non_swap_entry(swp) && is_hwpoison_entry(swp)) {
2169 return 1;
2170 } else
2171 return 0;
2172}
2173
502717f4 2174void __unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
04f2cbe3 2175 unsigned long end, struct page *ref_page)
63551ae0
DG
2176{
2177 struct mm_struct *mm = vma->vm_mm;
2178 unsigned long address;
c7546f8f 2179 pte_t *ptep;
63551ae0
DG
2180 pte_t pte;
2181 struct page *page;
fe1668ae 2182 struct page *tmp;
a5516438
AK
2183 struct hstate *h = hstate_vma(vma);
2184 unsigned long sz = huge_page_size(h);
2185
c0a499c2
CK
2186 /*
2187 * A page gathering list, protected by per file i_mmap_lock. The
2188 * lock is used to avoid list corruption from multiple unmapping
2189 * of the same page since we are using page->lru.
2190 */
fe1668ae 2191 LIST_HEAD(page_list);
63551ae0
DG
2192
2193 WARN_ON(!is_vm_hugetlb_page(vma));
a5516438
AK
2194 BUG_ON(start & ~huge_page_mask(h));
2195 BUG_ON(end & ~huge_page_mask(h));
63551ae0 2196
cddb8a5c 2197 mmu_notifier_invalidate_range_start(mm, start, end);
508034a3 2198 spin_lock(&mm->page_table_lock);
a5516438 2199 for (address = start; address < end; address += sz) {
c7546f8f 2200 ptep = huge_pte_offset(mm, address);
4c887265 2201 if (!ptep)
c7546f8f
DG
2202 continue;
2203
39dde65c
CK
2204 if (huge_pmd_unshare(mm, &address, ptep))
2205 continue;
2206
04f2cbe3
MG
2207 /*
2208 * If a reference page is supplied, it is because a specific
2209 * page is being unmapped, not a range. Ensure the page we
2210 * are about to unmap is the actual page of interest.
2211 */
2212 if (ref_page) {
2213 pte = huge_ptep_get(ptep);
2214 if (huge_pte_none(pte))
2215 continue;
2216 page = pte_page(pte);
2217 if (page != ref_page)
2218 continue;
2219
2220 /*
2221 * Mark the VMA as having unmapped its page so that
2222 * future faults in this VMA will fail rather than
2223 * looking like data was lost
2224 */
2225 set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
2226 }
2227
c7546f8f 2228 pte = huge_ptep_get_and_clear(mm, address, ptep);
7f2e9525 2229 if (huge_pte_none(pte))
63551ae0 2230 continue;
c7546f8f 2231
fd6a03ed
NH
2232 /*
2233 * HWPoisoned hugepage is already unmapped and dropped reference
2234 */
2235 if (unlikely(is_hugetlb_entry_hwpoisoned(pte)))
2236 continue;
2237
63551ae0 2238 page = pte_page(pte);
6649a386
KC
2239 if (pte_dirty(pte))
2240 set_page_dirty(page);
fe1668ae 2241 list_add(&page->lru, &page_list);
63551ae0 2242 }
1da177e4 2243 spin_unlock(&mm->page_table_lock);
508034a3 2244 flush_tlb_range(vma, start, end);
cddb8a5c 2245 mmu_notifier_invalidate_range_end(mm, start, end);
fe1668ae 2246 list_for_each_entry_safe(page, tmp, &page_list, lru) {
0fe6e20b 2247 page_remove_rmap(page);
fe1668ae
CK
2248 list_del(&page->lru);
2249 put_page(page);
2250 }
1da177e4 2251}
63551ae0 2252
502717f4 2253void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
04f2cbe3 2254 unsigned long end, struct page *ref_page)
502717f4 2255{
a137e1cc
AK
2256 spin_lock(&vma->vm_file->f_mapping->i_mmap_lock);
2257 __unmap_hugepage_range(vma, start, end, ref_page);
2258 spin_unlock(&vma->vm_file->f_mapping->i_mmap_lock);
502717f4
CK
2259}
2260
04f2cbe3
MG
2261/*
2262 * This is called when the original mapper is failing to COW a MAP_PRIVATE
2263 * mappping it owns the reserve page for. The intention is to unmap the page
2264 * from other VMAs and let the children be SIGKILLed if they are faulting the
2265 * same region.
2266 */
2a4b3ded
HH
2267static int unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
2268 struct page *page, unsigned long address)
04f2cbe3 2269{
7526674d 2270 struct hstate *h = hstate_vma(vma);
04f2cbe3
MG
2271 struct vm_area_struct *iter_vma;
2272 struct address_space *mapping;
2273 struct prio_tree_iter iter;
2274 pgoff_t pgoff;
2275
2276 /*
2277 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
2278 * from page cache lookup which is in HPAGE_SIZE units.
2279 */
7526674d 2280 address = address & huge_page_mask(h);
04f2cbe3
MG
2281 pgoff = ((address - vma->vm_start) >> PAGE_SHIFT)
2282 + (vma->vm_pgoff >> PAGE_SHIFT);
2283 mapping = (struct address_space *)page_private(page);
2284
4eb2b1dc
MG
2285 /*
2286 * Take the mapping lock for the duration of the table walk. As
2287 * this mapping should be shared between all the VMAs,
2288 * __unmap_hugepage_range() is called as the lock is already held
2289 */
2290 spin_lock(&mapping->i_mmap_lock);
04f2cbe3
MG
2291 vma_prio_tree_foreach(iter_vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
2292 /* Do not unmap the current VMA */
2293 if (iter_vma == vma)
2294 continue;
2295
2296 /*
2297 * Unmap the page from other VMAs without their own reserves.
2298 * They get marked to be SIGKILLed if they fault in these
2299 * areas. This is because a future no-page fault on this VMA
2300 * could insert a zeroed page instead of the data existing
2301 * from the time of fork. This would look like data corruption
2302 */
2303 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
4eb2b1dc 2304 __unmap_hugepage_range(iter_vma,
7526674d 2305 address, address + huge_page_size(h),
04f2cbe3
MG
2306 page);
2307 }
4eb2b1dc 2308 spin_unlock(&mapping->i_mmap_lock);
04f2cbe3
MG
2309
2310 return 1;
2311}
2312
0fe6e20b
NH
2313/*
2314 * Hugetlb_cow() should be called with page lock of the original hugepage held.
2315 */
1e8f889b 2316static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
04f2cbe3
MG
2317 unsigned long address, pte_t *ptep, pte_t pte,
2318 struct page *pagecache_page)
1e8f889b 2319{
a5516438 2320 struct hstate *h = hstate_vma(vma);
1e8f889b 2321 struct page *old_page, *new_page;
79ac6ba4 2322 int avoidcopy;
04f2cbe3 2323 int outside_reserve = 0;
1e8f889b
DG
2324
2325 old_page = pte_page(pte);
2326
04f2cbe3 2327retry_avoidcopy:
1e8f889b
DG
2328 /* If no-one else is actually using this page, avoid the copy
2329 * and just make the page writable */
0fe6e20b 2330 avoidcopy = (page_mapcount(old_page) == 1);
1e8f889b 2331 if (avoidcopy) {
56c9cfb1
NH
2332 if (PageAnon(old_page))
2333 page_move_anon_rmap(old_page, vma, address);
1e8f889b 2334 set_huge_ptep_writable(vma, address, ptep);
83c54070 2335 return 0;
1e8f889b
DG
2336 }
2337
04f2cbe3
MG
2338 /*
2339 * If the process that created a MAP_PRIVATE mapping is about to
2340 * perform a COW due to a shared page count, attempt to satisfy
2341 * the allocation without using the existing reserves. The pagecache
2342 * page is used to determine if the reserve at this address was
2343 * consumed or not. If reserves were used, a partial faulted mapping
2344 * at the time of fork() could consume its reserves on COW instead
2345 * of the full address range.
2346 */
f83a275d 2347 if (!(vma->vm_flags & VM_MAYSHARE) &&
04f2cbe3
MG
2348 is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
2349 old_page != pagecache_page)
2350 outside_reserve = 1;
2351
1e8f889b 2352 page_cache_get(old_page);
b76c8cfb
LW
2353
2354 /* Drop page_table_lock as buddy allocator may be called */
2355 spin_unlock(&mm->page_table_lock);
04f2cbe3 2356 new_page = alloc_huge_page(vma, address, outside_reserve);
1e8f889b 2357
2fc39cec 2358 if (IS_ERR(new_page)) {
1e8f889b 2359 page_cache_release(old_page);
04f2cbe3
MG
2360
2361 /*
2362 * If a process owning a MAP_PRIVATE mapping fails to COW,
2363 * it is due to references held by a child and an insufficient
2364 * huge page pool. To guarantee the original mappers
2365 * reliability, unmap the page from child processes. The child
2366 * may get SIGKILLed if it later faults.
2367 */
2368 if (outside_reserve) {
2369 BUG_ON(huge_pte_none(pte));
2370 if (unmap_ref_private(mm, vma, old_page, address)) {
2371 BUG_ON(page_count(old_page) != 1);
2372 BUG_ON(huge_pte_none(pte));
b76c8cfb 2373 spin_lock(&mm->page_table_lock);
04f2cbe3
MG
2374 goto retry_avoidcopy;
2375 }
2376 WARN_ON_ONCE(1);
2377 }
2378
b76c8cfb
LW
2379 /* Caller expects lock to be held */
2380 spin_lock(&mm->page_table_lock);
2fc39cec 2381 return -PTR_ERR(new_page);
1e8f889b
DG
2382 }
2383
0fe6e20b
NH
2384 /*
2385 * When the original hugepage is shared one, it does not have
2386 * anon_vma prepared.
2387 */
44e2aa93
DN
2388 if (unlikely(anon_vma_prepare(vma))) {
2389 /* Caller expects lock to be held */
2390 spin_lock(&mm->page_table_lock);
0fe6e20b 2391 return VM_FAULT_OOM;
44e2aa93 2392 }
0fe6e20b 2393
47ad8475
AA
2394 copy_user_huge_page(new_page, old_page, address, vma,
2395 pages_per_huge_page(h));
0ed361de 2396 __SetPageUptodate(new_page);
1e8f889b 2397
b76c8cfb
LW
2398 /*
2399 * Retake the page_table_lock to check for racing updates
2400 * before the page tables are altered
2401 */
2402 spin_lock(&mm->page_table_lock);
a5516438 2403 ptep = huge_pte_offset(mm, address & huge_page_mask(h));
7f2e9525 2404 if (likely(pte_same(huge_ptep_get(ptep), pte))) {
1e8f889b 2405 /* Break COW */
3edd4fc9
DD
2406 mmu_notifier_invalidate_range_start(mm,
2407 address & huge_page_mask(h),
2408 (address & huge_page_mask(h)) + huge_page_size(h));
8fe627ec 2409 huge_ptep_clear_flush(vma, address, ptep);
1e8f889b
DG
2410 set_huge_pte_at(mm, address, ptep,
2411 make_huge_pte(vma, new_page, 1));
0fe6e20b 2412 page_remove_rmap(old_page);
cd67f0d2 2413 hugepage_add_new_anon_rmap(new_page, vma, address);
1e8f889b
DG
2414 /* Make the old page be freed below */
2415 new_page = old_page;
3edd4fc9
DD
2416 mmu_notifier_invalidate_range_end(mm,
2417 address & huge_page_mask(h),
2418 (address & huge_page_mask(h)) + huge_page_size(h));
1e8f889b
DG
2419 }
2420 page_cache_release(new_page);
2421 page_cache_release(old_page);
83c54070 2422 return 0;
1e8f889b
DG
2423}
2424
04f2cbe3 2425/* Return the pagecache page at a given address within a VMA */
a5516438
AK
2426static struct page *hugetlbfs_pagecache_page(struct hstate *h,
2427 struct vm_area_struct *vma, unsigned long address)
04f2cbe3
MG
2428{
2429 struct address_space *mapping;
e7c4b0bf 2430 pgoff_t idx;
04f2cbe3
MG
2431
2432 mapping = vma->vm_file->f_mapping;
a5516438 2433 idx = vma_hugecache_offset(h, vma, address);
04f2cbe3
MG
2434
2435 return find_lock_page(mapping, idx);
2436}
2437
3ae77f43
HD
2438/*
2439 * Return whether there is a pagecache page to back given address within VMA.
2440 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
2441 */
2442static bool hugetlbfs_pagecache_present(struct hstate *h,
2a15efc9
HD
2443 struct vm_area_struct *vma, unsigned long address)
2444{
2445 struct address_space *mapping;
2446 pgoff_t idx;
2447 struct page *page;
2448
2449 mapping = vma->vm_file->f_mapping;
2450 idx = vma_hugecache_offset(h, vma, address);
2451
2452 page = find_get_page(mapping, idx);
2453 if (page)
2454 put_page(page);
2455 return page != NULL;
2456}
2457
a1ed3dda 2458static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
788c7df4 2459 unsigned long address, pte_t *ptep, unsigned int flags)
ac9b9c66 2460{
a5516438 2461 struct hstate *h = hstate_vma(vma);
ac9b9c66 2462 int ret = VM_FAULT_SIGBUS;
e7c4b0bf 2463 pgoff_t idx;
4c887265 2464 unsigned long size;
4c887265
AL
2465 struct page *page;
2466 struct address_space *mapping;
1e8f889b 2467 pte_t new_pte;
4c887265 2468
04f2cbe3
MG
2469 /*
2470 * Currently, we are forced to kill the process in the event the
2471 * original mapper has unmapped pages from the child due to a failed
2472 * COW. Warn that such a situation has occured as it may not be obvious
2473 */
2474 if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
2475 printk(KERN_WARNING
2476 "PID %d killed due to inadequate hugepage pool\n",
2477 current->pid);
2478 return ret;
2479 }
2480
4c887265 2481 mapping = vma->vm_file->f_mapping;
a5516438 2482 idx = vma_hugecache_offset(h, vma, address);
4c887265
AL
2483
2484 /*
2485 * Use page lock to guard against racing truncation
2486 * before we get page_table_lock.
2487 */
6bda666a
CL
2488retry:
2489 page = find_lock_page(mapping, idx);
2490 if (!page) {
a5516438 2491 size = i_size_read(mapping->host) >> huge_page_shift(h);
ebed4bfc
HD
2492 if (idx >= size)
2493 goto out;
04f2cbe3 2494 page = alloc_huge_page(vma, address, 0);
2fc39cec
AL
2495 if (IS_ERR(page)) {
2496 ret = -PTR_ERR(page);
6bda666a
CL
2497 goto out;
2498 }
47ad8475 2499 clear_huge_page(page, address, pages_per_huge_page(h));
0ed361de 2500 __SetPageUptodate(page);
ac9b9c66 2501
f83a275d 2502 if (vma->vm_flags & VM_MAYSHARE) {
6bda666a 2503 int err;
45c682a6 2504 struct inode *inode = mapping->host;
6bda666a
CL
2505
2506 err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
2507 if (err) {
2508 put_page(page);
6bda666a
CL
2509 if (err == -EEXIST)
2510 goto retry;
2511 goto out;
2512 }
45c682a6
KC
2513
2514 spin_lock(&inode->i_lock);
a5516438 2515 inode->i_blocks += blocks_per_huge_page(h);
45c682a6 2516 spin_unlock(&inode->i_lock);
0fe6e20b 2517 page_dup_rmap(page);
23be7468 2518 } else {
6bda666a 2519 lock_page(page);
0fe6e20b
NH
2520 if (unlikely(anon_vma_prepare(vma))) {
2521 ret = VM_FAULT_OOM;
2522 goto backout_unlocked;
2523 }
2524 hugepage_add_new_anon_rmap(page, vma, address);
23be7468 2525 }
0fe6e20b 2526 } else {
998b4382
NH
2527 /*
2528 * If memory error occurs between mmap() and fault, some process
2529 * don't have hwpoisoned swap entry for errored virtual address.
2530 * So we need to block hugepage fault by PG_hwpoison bit check.
2531 */
2532 if (unlikely(PageHWPoison(page))) {
aa50d3a7
AK
2533 ret = VM_FAULT_HWPOISON |
2534 VM_FAULT_SET_HINDEX(h - hstates);
998b4382
NH
2535 goto backout_unlocked;
2536 }
0fe6e20b 2537 page_dup_rmap(page);
6bda666a 2538 }
1e8f889b 2539
57303d80
AW
2540 /*
2541 * If we are going to COW a private mapping later, we examine the
2542 * pending reservations for this page now. This will ensure that
2543 * any allocations necessary to record that reservation occur outside
2544 * the spinlock.
2545 */
788c7df4 2546 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED))
2b26736c
AW
2547 if (vma_needs_reservation(h, vma, address) < 0) {
2548 ret = VM_FAULT_OOM;
2549 goto backout_unlocked;
2550 }
57303d80 2551
ac9b9c66 2552 spin_lock(&mm->page_table_lock);
a5516438 2553 size = i_size_read(mapping->host) >> huge_page_shift(h);
4c887265
AL
2554 if (idx >= size)
2555 goto backout;
2556
83c54070 2557 ret = 0;
7f2e9525 2558 if (!huge_pte_none(huge_ptep_get(ptep)))
4c887265
AL
2559 goto backout;
2560
1e8f889b
DG
2561 new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
2562 && (vma->vm_flags & VM_SHARED)));
2563 set_huge_pte_at(mm, address, ptep, new_pte);
2564
788c7df4 2565 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
1e8f889b 2566 /* Optimization, do the COW without a second fault */
04f2cbe3 2567 ret = hugetlb_cow(mm, vma, address, ptep, new_pte, page);
1e8f889b
DG
2568 }
2569
ac9b9c66 2570 spin_unlock(&mm->page_table_lock);
4c887265
AL
2571 unlock_page(page);
2572out:
ac9b9c66 2573 return ret;
4c887265
AL
2574
2575backout:
2576 spin_unlock(&mm->page_table_lock);
2b26736c 2577backout_unlocked:
4c887265
AL
2578 unlock_page(page);
2579 put_page(page);
2580 goto out;
ac9b9c66
HD
2581}
2582
86e5216f 2583int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
788c7df4 2584 unsigned long address, unsigned int flags)
86e5216f
AL
2585{
2586 pte_t *ptep;
2587 pte_t entry;
1e8f889b 2588 int ret;
0fe6e20b 2589 struct page *page = NULL;
57303d80 2590 struct page *pagecache_page = NULL;
3935baa9 2591 static DEFINE_MUTEX(hugetlb_instantiation_mutex);
a5516438 2592 struct hstate *h = hstate_vma(vma);
86e5216f 2593
fd6a03ed
NH
2594 ptep = huge_pte_offset(mm, address);
2595 if (ptep) {
2596 entry = huge_ptep_get(ptep);
290408d4
NH
2597 if (unlikely(is_hugetlb_entry_migration(entry))) {
2598 migration_entry_wait(mm, (pmd_t *)ptep, address);
2599 return 0;
2600 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
aa50d3a7
AK
2601 return VM_FAULT_HWPOISON_LARGE |
2602 VM_FAULT_SET_HINDEX(h - hstates);
fd6a03ed
NH
2603 }
2604
a5516438 2605 ptep = huge_pte_alloc(mm, address, huge_page_size(h));
86e5216f
AL
2606 if (!ptep)
2607 return VM_FAULT_OOM;
2608
3935baa9
DG
2609 /*
2610 * Serialize hugepage allocation and instantiation, so that we don't
2611 * get spurious allocation failures if two CPUs race to instantiate
2612 * the same page in the page cache.
2613 */
2614 mutex_lock(&hugetlb_instantiation_mutex);
7f2e9525
GS
2615 entry = huge_ptep_get(ptep);
2616 if (huge_pte_none(entry)) {
788c7df4 2617 ret = hugetlb_no_page(mm, vma, address, ptep, flags);
b4d1d99f 2618 goto out_mutex;
3935baa9 2619 }
86e5216f 2620
83c54070 2621 ret = 0;
1e8f889b 2622
57303d80
AW
2623 /*
2624 * If we are going to COW the mapping later, we examine the pending
2625 * reservations for this page now. This will ensure that any
2626 * allocations necessary to record that reservation occur outside the
2627 * spinlock. For private mappings, we also lookup the pagecache
2628 * page now as it is used to determine if a reservation has been
2629 * consumed.
2630 */
788c7df4 2631 if ((flags & FAULT_FLAG_WRITE) && !pte_write(entry)) {
2b26736c
AW
2632 if (vma_needs_reservation(h, vma, address) < 0) {
2633 ret = VM_FAULT_OOM;
b4d1d99f 2634 goto out_mutex;
2b26736c 2635 }
57303d80 2636
f83a275d 2637 if (!(vma->vm_flags & VM_MAYSHARE))
57303d80
AW
2638 pagecache_page = hugetlbfs_pagecache_page(h,
2639 vma, address);
2640 }
2641
56c9cfb1
NH
2642 /*
2643 * hugetlb_cow() requires page locks of pte_page(entry) and
2644 * pagecache_page, so here we need take the former one
2645 * when page != pagecache_page or !pagecache_page.
2646 * Note that locking order is always pagecache_page -> page,
2647 * so no worry about deadlock.
2648 */
2649 page = pte_page(entry);
2650 if (page != pagecache_page)
0fe6e20b 2651 lock_page(page);
0fe6e20b 2652
1e8f889b
DG
2653 spin_lock(&mm->page_table_lock);
2654 /* Check for a racing update before calling hugetlb_cow */
b4d1d99f
DG
2655 if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
2656 goto out_page_table_lock;
2657
2658
788c7df4 2659 if (flags & FAULT_FLAG_WRITE) {
b4d1d99f 2660 if (!pte_write(entry)) {
57303d80
AW
2661 ret = hugetlb_cow(mm, vma, address, ptep, entry,
2662 pagecache_page);
b4d1d99f
DG
2663 goto out_page_table_lock;
2664 }
2665 entry = pte_mkdirty(entry);
2666 }
2667 entry = pte_mkyoung(entry);
788c7df4
HD
2668 if (huge_ptep_set_access_flags(vma, address, ptep, entry,
2669 flags & FAULT_FLAG_WRITE))
4b3073e1 2670 update_mmu_cache(vma, address, ptep);
b4d1d99f
DG
2671
2672out_page_table_lock:
1e8f889b 2673 spin_unlock(&mm->page_table_lock);
57303d80
AW
2674
2675 if (pagecache_page) {
2676 unlock_page(pagecache_page);
2677 put_page(pagecache_page);
2678 }
1f64d69c
DN
2679 if (page != pagecache_page)
2680 unlock_page(page);
57303d80 2681
b4d1d99f 2682out_mutex:
3935baa9 2683 mutex_unlock(&hugetlb_instantiation_mutex);
1e8f889b
DG
2684
2685 return ret;
86e5216f
AL
2686}
2687
ceb86879
AK
2688/* Can be overriden by architectures */
2689__attribute__((weak)) struct page *
2690follow_huge_pud(struct mm_struct *mm, unsigned long address,
2691 pud_t *pud, int write)
2692{
2693 BUG();
2694 return NULL;
2695}
2696
63551ae0
DG
2697int follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
2698 struct page **pages, struct vm_area_struct **vmas,
5b23dbe8 2699 unsigned long *position, int *length, int i,
2a15efc9 2700 unsigned int flags)
63551ae0 2701{
d5d4b0aa
CK
2702 unsigned long pfn_offset;
2703 unsigned long vaddr = *position;
63551ae0 2704 int remainder = *length;
a5516438 2705 struct hstate *h = hstate_vma(vma);
63551ae0 2706
1c59827d 2707 spin_lock(&mm->page_table_lock);
63551ae0 2708 while (vaddr < vma->vm_end && remainder) {
4c887265 2709 pte_t *pte;
2a15efc9 2710 int absent;
4c887265 2711 struct page *page;
63551ae0 2712
4c887265
AL
2713 /*
2714 * Some archs (sparc64, sh*) have multiple pte_ts to
2a15efc9 2715 * each hugepage. We have to make sure we get the
4c887265
AL
2716 * first, for the page indexing below to work.
2717 */
a5516438 2718 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h));
2a15efc9
HD
2719 absent = !pte || huge_pte_none(huge_ptep_get(pte));
2720
2721 /*
2722 * When coredumping, it suits get_dump_page if we just return
3ae77f43
HD
2723 * an error where there's an empty slot with no huge pagecache
2724 * to back it. This way, we avoid allocating a hugepage, and
2725 * the sparse dumpfile avoids allocating disk blocks, but its
2726 * huge holes still show up with zeroes where they need to be.
2a15efc9 2727 */
3ae77f43
HD
2728 if (absent && (flags & FOLL_DUMP) &&
2729 !hugetlbfs_pagecache_present(h, vma, vaddr)) {
2a15efc9
HD
2730 remainder = 0;
2731 break;
2732 }
63551ae0 2733
2a15efc9
HD
2734 if (absent ||
2735 ((flags & FOLL_WRITE) && !pte_write(huge_ptep_get(pte)))) {
4c887265 2736 int ret;
63551ae0 2737
4c887265 2738 spin_unlock(&mm->page_table_lock);
2a15efc9
HD
2739 ret = hugetlb_fault(mm, vma, vaddr,
2740 (flags & FOLL_WRITE) ? FAULT_FLAG_WRITE : 0);
4c887265 2741 spin_lock(&mm->page_table_lock);
a89182c7 2742 if (!(ret & VM_FAULT_ERROR))
4c887265 2743 continue;
63551ae0 2744
4c887265 2745 remainder = 0;
4c887265
AL
2746 break;
2747 }
2748
a5516438 2749 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
7f2e9525 2750 page = pte_page(huge_ptep_get(pte));
d5d4b0aa 2751same_page:
d6692183 2752 if (pages) {
2a15efc9 2753 pages[i] = mem_map_offset(page, pfn_offset);
4b2e38ad 2754 get_page(pages[i]);
d6692183 2755 }
63551ae0
DG
2756
2757 if (vmas)
2758 vmas[i] = vma;
2759
2760 vaddr += PAGE_SIZE;
d5d4b0aa 2761 ++pfn_offset;
63551ae0
DG
2762 --remainder;
2763 ++i;
d5d4b0aa 2764 if (vaddr < vma->vm_end && remainder &&
a5516438 2765 pfn_offset < pages_per_huge_page(h)) {
d5d4b0aa
CK
2766 /*
2767 * We use pfn_offset to avoid touching the pageframes
2768 * of this compound page.
2769 */
2770 goto same_page;
2771 }
63551ae0 2772 }
1c59827d 2773 spin_unlock(&mm->page_table_lock);
63551ae0
DG
2774 *length = remainder;
2775 *position = vaddr;
2776
2a15efc9 2777 return i ? i : -EFAULT;
63551ae0 2778}
8f860591
ZY
2779
2780void hugetlb_change_protection(struct vm_area_struct *vma,
2781 unsigned long address, unsigned long end, pgprot_t newprot)
2782{
2783 struct mm_struct *mm = vma->vm_mm;
2784 unsigned long start = address;
2785 pte_t *ptep;
2786 pte_t pte;
a5516438 2787 struct hstate *h = hstate_vma(vma);
8f860591
ZY
2788
2789 BUG_ON(address >= end);
2790 flush_cache_range(vma, address, end);
2791
39dde65c 2792 spin_lock(&vma->vm_file->f_mapping->i_mmap_lock);
8f860591 2793 spin_lock(&mm->page_table_lock);
a5516438 2794 for (; address < end; address += huge_page_size(h)) {
8f860591
ZY
2795 ptep = huge_pte_offset(mm, address);
2796 if (!ptep)
2797 continue;
39dde65c
CK
2798 if (huge_pmd_unshare(mm, &address, ptep))
2799 continue;
7f2e9525 2800 if (!huge_pte_none(huge_ptep_get(ptep))) {
8f860591
ZY
2801 pte = huge_ptep_get_and_clear(mm, address, ptep);
2802 pte = pte_mkhuge(pte_modify(pte, newprot));
2803 set_huge_pte_at(mm, address, ptep, pte);
8f860591
ZY
2804 }
2805 }
2806 spin_unlock(&mm->page_table_lock);
39dde65c 2807 spin_unlock(&vma->vm_file->f_mapping->i_mmap_lock);
8f860591
ZY
2808
2809 flush_tlb_range(vma, start, end);
2810}
2811
a1e78772
MG
2812int hugetlb_reserve_pages(struct inode *inode,
2813 long from, long to,
5a6fe125
MG
2814 struct vm_area_struct *vma,
2815 int acctflag)
e4e574b7 2816{
17c9d12e 2817 long ret, chg;
a5516438 2818 struct hstate *h = hstate_inode(inode);
e4e574b7 2819
17c9d12e
MG
2820 /*
2821 * Only apply hugepage reservation if asked. At fault time, an
2822 * attempt will be made for VM_NORESERVE to allocate a page
2823 * and filesystem quota without using reserves
2824 */
2825 if (acctflag & VM_NORESERVE)
2826 return 0;
2827
a1e78772
MG
2828 /*
2829 * Shared mappings base their reservation on the number of pages that
2830 * are already allocated on behalf of the file. Private mappings need
2831 * to reserve the full area even if read-only as mprotect() may be
2832 * called to make the mapping read-write. Assume !vma is a shm mapping
2833 */
f83a275d 2834 if (!vma || vma->vm_flags & VM_MAYSHARE)
a1e78772 2835 chg = region_chg(&inode->i_mapping->private_list, from, to);
17c9d12e
MG
2836 else {
2837 struct resv_map *resv_map = resv_map_alloc();
2838 if (!resv_map)
2839 return -ENOMEM;
2840
a1e78772 2841 chg = to - from;
84afd99b 2842
17c9d12e
MG
2843 set_vma_resv_map(vma, resv_map);
2844 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
2845 }
2846
e4e574b7
AL
2847 if (chg < 0)
2848 return chg;
8a630112 2849
17c9d12e 2850 /* There must be enough filesystem quota for the mapping */
90d8b7e6
AL
2851 if (hugetlb_get_quota(inode->i_mapping, chg))
2852 return -ENOSPC;
5a6fe125
MG
2853
2854 /*
17c9d12e
MG
2855 * Check enough hugepages are available for the reservation.
2856 * Hand back the quota if there are not
5a6fe125 2857 */
a5516438 2858 ret = hugetlb_acct_memory(h, chg);
68842c9b
KC
2859 if (ret < 0) {
2860 hugetlb_put_quota(inode->i_mapping, chg);
a43a8c39 2861 return ret;
68842c9b 2862 }
17c9d12e
MG
2863
2864 /*
2865 * Account for the reservations made. Shared mappings record regions
2866 * that have reservations as they are shared by multiple VMAs.
2867 * When the last VMA disappears, the region map says how much
2868 * the reservation was and the page cache tells how much of
2869 * the reservation was consumed. Private mappings are per-VMA and
2870 * only the consumed reservations are tracked. When the VMA
2871 * disappears, the original reservation is the VMA size and the
2872 * consumed reservations are stored in the map. Hence, nothing
2873 * else has to be done for private mappings here
2874 */
f83a275d 2875 if (!vma || vma->vm_flags & VM_MAYSHARE)
a1e78772 2876 region_add(&inode->i_mapping->private_list, from, to);
a43a8c39
CK
2877 return 0;
2878}
2879
2880void hugetlb_unreserve_pages(struct inode *inode, long offset, long freed)
2881{
a5516438 2882 struct hstate *h = hstate_inode(inode);
a43a8c39 2883 long chg = region_truncate(&inode->i_mapping->private_list, offset);
45c682a6
KC
2884
2885 spin_lock(&inode->i_lock);
e4c6f8be 2886 inode->i_blocks -= (blocks_per_huge_page(h) * freed);
45c682a6
KC
2887 spin_unlock(&inode->i_lock);
2888
90d8b7e6 2889 hugetlb_put_quota(inode->i_mapping, (chg - freed));
a5516438 2890 hugetlb_acct_memory(h, -(chg - freed));
a43a8c39 2891}
93f70f90 2892
d5bd9106
AK
2893#ifdef CONFIG_MEMORY_FAILURE
2894
6de2b1aa
NH
2895/* Should be called in hugetlb_lock */
2896static int is_hugepage_on_freelist(struct page *hpage)
2897{
2898 struct page *page;
2899 struct page *tmp;
2900 struct hstate *h = page_hstate(hpage);
2901 int nid = page_to_nid(hpage);
2902
2903 list_for_each_entry_safe(page, tmp, &h->hugepage_freelists[nid], lru)
2904 if (page == hpage)
2905 return 1;
2906 return 0;
2907}
2908
93f70f90
NH
2909/*
2910 * This function is called from memory failure code.
2911 * Assume the caller holds page lock of the head page.
2912 */
6de2b1aa 2913int dequeue_hwpoisoned_huge_page(struct page *hpage)
93f70f90
NH
2914{
2915 struct hstate *h = page_hstate(hpage);
2916 int nid = page_to_nid(hpage);
6de2b1aa 2917 int ret = -EBUSY;
93f70f90
NH
2918
2919 spin_lock(&hugetlb_lock);
6de2b1aa
NH
2920 if (is_hugepage_on_freelist(hpage)) {
2921 list_del(&hpage->lru);
8c6c2ecb 2922 set_page_refcounted(hpage);
6de2b1aa
NH
2923 h->free_huge_pages--;
2924 h->free_huge_pages_node[nid]--;
2925 ret = 0;
2926 }
93f70f90 2927 spin_unlock(&hugetlb_lock);
6de2b1aa 2928 return ret;
93f70f90 2929}
6de2b1aa 2930#endif