hugetlb: factor init_nodemask_of_node()
[linux-2.6-block.git] / mm / hugetlb.c
CommitLineData
1da177e4
LT
1/*
2 * Generic hugetlb support.
3 * (C) William Irwin, April 2004
4 */
5#include <linux/gfp.h>
6#include <linux/list.h>
7#include <linux/init.h>
8#include <linux/module.h>
9#include <linux/mm.h>
e1759c21 10#include <linux/seq_file.h>
1da177e4
LT
11#include <linux/sysctl.h>
12#include <linux/highmem.h>
cddb8a5c 13#include <linux/mmu_notifier.h>
1da177e4 14#include <linux/nodemask.h>
63551ae0 15#include <linux/pagemap.h>
5da7ca86 16#include <linux/mempolicy.h>
aea47ff3 17#include <linux/cpuset.h>
3935baa9 18#include <linux/mutex.h>
aa888a74 19#include <linux/bootmem.h>
a3437870 20#include <linux/sysfs.h>
d6606683 21
63551ae0
DG
22#include <asm/page.h>
23#include <asm/pgtable.h>
78a34ae2 24#include <asm/io.h>
63551ae0
DG
25
26#include <linux/hugetlb.h>
7835e98b 27#include "internal.h"
1da177e4
LT
28
29const unsigned long hugetlb_zero = 0, hugetlb_infinity = ~0UL;
396faf03
MG
30static gfp_t htlb_alloc_mask = GFP_HIGHUSER;
31unsigned long hugepages_treat_as_movable;
a5516438 32
e5ff2159
AK
33static int max_hstate;
34unsigned int default_hstate_idx;
35struct hstate hstates[HUGE_MAX_HSTATE];
36
53ba51d2
JT
37__initdata LIST_HEAD(huge_boot_pages);
38
e5ff2159
AK
39/* for command line parsing */
40static struct hstate * __initdata parsed_hstate;
41static unsigned long __initdata default_hstate_max_huge_pages;
e11bfbfc 42static unsigned long __initdata default_hstate_size;
e5ff2159
AK
43
44#define for_each_hstate(h) \
45 for ((h) = hstates; (h) < &hstates[max_hstate]; (h)++)
396faf03 46
3935baa9
DG
47/*
48 * Protects updates to hugepage_freelists, nr_huge_pages, and free_huge_pages
49 */
50static DEFINE_SPINLOCK(hugetlb_lock);
0bd0f9fb 51
96822904
AW
52/*
53 * Region tracking -- allows tracking of reservations and instantiated pages
54 * across the pages in a mapping.
84afd99b
AW
55 *
56 * The region data structures are protected by a combination of the mmap_sem
57 * and the hugetlb_instantion_mutex. To access or modify a region the caller
58 * must either hold the mmap_sem for write, or the mmap_sem for read and
59 * the hugetlb_instantiation mutex:
60 *
61 * down_write(&mm->mmap_sem);
62 * or
63 * down_read(&mm->mmap_sem);
64 * mutex_lock(&hugetlb_instantiation_mutex);
96822904
AW
65 */
66struct file_region {
67 struct list_head link;
68 long from;
69 long to;
70};
71
72static long region_add(struct list_head *head, long f, long t)
73{
74 struct file_region *rg, *nrg, *trg;
75
76 /* Locate the region we are either in or before. */
77 list_for_each_entry(rg, head, link)
78 if (f <= rg->to)
79 break;
80
81 /* Round our left edge to the current segment if it encloses us. */
82 if (f > rg->from)
83 f = rg->from;
84
85 /* Check for and consume any regions we now overlap with. */
86 nrg = rg;
87 list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
88 if (&rg->link == head)
89 break;
90 if (rg->from > t)
91 break;
92
93 /* If this area reaches higher then extend our area to
94 * include it completely. If this is not the first area
95 * which we intend to reuse, free it. */
96 if (rg->to > t)
97 t = rg->to;
98 if (rg != nrg) {
99 list_del(&rg->link);
100 kfree(rg);
101 }
102 }
103 nrg->from = f;
104 nrg->to = t;
105 return 0;
106}
107
108static long region_chg(struct list_head *head, long f, long t)
109{
110 struct file_region *rg, *nrg;
111 long chg = 0;
112
113 /* Locate the region we are before or in. */
114 list_for_each_entry(rg, head, link)
115 if (f <= rg->to)
116 break;
117
118 /* If we are below the current region then a new region is required.
119 * Subtle, allocate a new region at the position but make it zero
120 * size such that we can guarantee to record the reservation. */
121 if (&rg->link == head || t < rg->from) {
122 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
123 if (!nrg)
124 return -ENOMEM;
125 nrg->from = f;
126 nrg->to = f;
127 INIT_LIST_HEAD(&nrg->link);
128 list_add(&nrg->link, rg->link.prev);
129
130 return t - f;
131 }
132
133 /* Round our left edge to the current segment if it encloses us. */
134 if (f > rg->from)
135 f = rg->from;
136 chg = t - f;
137
138 /* Check for and consume any regions we now overlap with. */
139 list_for_each_entry(rg, rg->link.prev, link) {
140 if (&rg->link == head)
141 break;
142 if (rg->from > t)
143 return chg;
144
145 /* We overlap with this area, if it extends futher than
146 * us then we must extend ourselves. Account for its
147 * existing reservation. */
148 if (rg->to > t) {
149 chg += rg->to - t;
150 t = rg->to;
151 }
152 chg -= rg->to - rg->from;
153 }
154 return chg;
155}
156
157static long region_truncate(struct list_head *head, long end)
158{
159 struct file_region *rg, *trg;
160 long chg = 0;
161
162 /* Locate the region we are either in or before. */
163 list_for_each_entry(rg, head, link)
164 if (end <= rg->to)
165 break;
166 if (&rg->link == head)
167 return 0;
168
169 /* If we are in the middle of a region then adjust it. */
170 if (end > rg->from) {
171 chg = rg->to - end;
172 rg->to = end;
173 rg = list_entry(rg->link.next, typeof(*rg), link);
174 }
175
176 /* Drop any remaining regions. */
177 list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
178 if (&rg->link == head)
179 break;
180 chg += rg->to - rg->from;
181 list_del(&rg->link);
182 kfree(rg);
183 }
184 return chg;
185}
186
84afd99b
AW
187static long region_count(struct list_head *head, long f, long t)
188{
189 struct file_region *rg;
190 long chg = 0;
191
192 /* Locate each segment we overlap with, and count that overlap. */
193 list_for_each_entry(rg, head, link) {
194 int seg_from;
195 int seg_to;
196
197 if (rg->to <= f)
198 continue;
199 if (rg->from >= t)
200 break;
201
202 seg_from = max(rg->from, f);
203 seg_to = min(rg->to, t);
204
205 chg += seg_to - seg_from;
206 }
207
208 return chg;
209}
210
e7c4b0bf
AW
211/*
212 * Convert the address within this vma to the page offset within
213 * the mapping, in pagecache page units; huge pages here.
214 */
a5516438
AK
215static pgoff_t vma_hugecache_offset(struct hstate *h,
216 struct vm_area_struct *vma, unsigned long address)
e7c4b0bf 217{
a5516438
AK
218 return ((address - vma->vm_start) >> huge_page_shift(h)) +
219 (vma->vm_pgoff >> huge_page_order(h));
e7c4b0bf
AW
220}
221
08fba699
MG
222/*
223 * Return the size of the pages allocated when backing a VMA. In the majority
224 * cases this will be same size as used by the page table entries.
225 */
226unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
227{
228 struct hstate *hstate;
229
230 if (!is_vm_hugetlb_page(vma))
231 return PAGE_SIZE;
232
233 hstate = hstate_vma(vma);
234
235 return 1UL << (hstate->order + PAGE_SHIFT);
236}
f340ca0f 237EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
08fba699 238
3340289d
MG
239/*
240 * Return the page size being used by the MMU to back a VMA. In the majority
241 * of cases, the page size used by the kernel matches the MMU size. On
242 * architectures where it differs, an architecture-specific version of this
243 * function is required.
244 */
245#ifndef vma_mmu_pagesize
246unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
247{
248 return vma_kernel_pagesize(vma);
249}
250#endif
251
84afd99b
AW
252/*
253 * Flags for MAP_PRIVATE reservations. These are stored in the bottom
254 * bits of the reservation map pointer, which are always clear due to
255 * alignment.
256 */
257#define HPAGE_RESV_OWNER (1UL << 0)
258#define HPAGE_RESV_UNMAPPED (1UL << 1)
04f2cbe3 259#define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
84afd99b 260
a1e78772
MG
261/*
262 * These helpers are used to track how many pages are reserved for
263 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
264 * is guaranteed to have their future faults succeed.
265 *
266 * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
267 * the reserve counters are updated with the hugetlb_lock held. It is safe
268 * to reset the VMA at fork() time as it is not in use yet and there is no
269 * chance of the global counters getting corrupted as a result of the values.
84afd99b
AW
270 *
271 * The private mapping reservation is represented in a subtly different
272 * manner to a shared mapping. A shared mapping has a region map associated
273 * with the underlying file, this region map represents the backing file
274 * pages which have ever had a reservation assigned which this persists even
275 * after the page is instantiated. A private mapping has a region map
276 * associated with the original mmap which is attached to all VMAs which
277 * reference it, this region map represents those offsets which have consumed
278 * reservation ie. where pages have been instantiated.
a1e78772 279 */
e7c4b0bf
AW
280static unsigned long get_vma_private_data(struct vm_area_struct *vma)
281{
282 return (unsigned long)vma->vm_private_data;
283}
284
285static void set_vma_private_data(struct vm_area_struct *vma,
286 unsigned long value)
287{
288 vma->vm_private_data = (void *)value;
289}
290
84afd99b
AW
291struct resv_map {
292 struct kref refs;
293 struct list_head regions;
294};
295
2a4b3ded 296static struct resv_map *resv_map_alloc(void)
84afd99b
AW
297{
298 struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
299 if (!resv_map)
300 return NULL;
301
302 kref_init(&resv_map->refs);
303 INIT_LIST_HEAD(&resv_map->regions);
304
305 return resv_map;
306}
307
2a4b3ded 308static void resv_map_release(struct kref *ref)
84afd99b
AW
309{
310 struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
311
312 /* Clear out any active regions before we release the map. */
313 region_truncate(&resv_map->regions, 0);
314 kfree(resv_map);
315}
316
317static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
a1e78772
MG
318{
319 VM_BUG_ON(!is_vm_hugetlb_page(vma));
f83a275d 320 if (!(vma->vm_flags & VM_MAYSHARE))
84afd99b
AW
321 return (struct resv_map *)(get_vma_private_data(vma) &
322 ~HPAGE_RESV_MASK);
2a4b3ded 323 return NULL;
a1e78772
MG
324}
325
84afd99b 326static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
a1e78772
MG
327{
328 VM_BUG_ON(!is_vm_hugetlb_page(vma));
f83a275d 329 VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
a1e78772 330
84afd99b
AW
331 set_vma_private_data(vma, (get_vma_private_data(vma) &
332 HPAGE_RESV_MASK) | (unsigned long)map);
04f2cbe3
MG
333}
334
335static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
336{
04f2cbe3 337 VM_BUG_ON(!is_vm_hugetlb_page(vma));
f83a275d 338 VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
e7c4b0bf
AW
339
340 set_vma_private_data(vma, get_vma_private_data(vma) | flags);
04f2cbe3
MG
341}
342
343static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
344{
345 VM_BUG_ON(!is_vm_hugetlb_page(vma));
e7c4b0bf
AW
346
347 return (get_vma_private_data(vma) & flag) != 0;
a1e78772
MG
348}
349
350/* Decrement the reserved pages in the hugepage pool by one */
a5516438
AK
351static void decrement_hugepage_resv_vma(struct hstate *h,
352 struct vm_area_struct *vma)
a1e78772 353{
c37f9fb1
AW
354 if (vma->vm_flags & VM_NORESERVE)
355 return;
356
f83a275d 357 if (vma->vm_flags & VM_MAYSHARE) {
a1e78772 358 /* Shared mappings always use reserves */
a5516438 359 h->resv_huge_pages--;
84afd99b 360 } else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
a1e78772
MG
361 /*
362 * Only the process that called mmap() has reserves for
363 * private mappings.
364 */
a5516438 365 h->resv_huge_pages--;
a1e78772
MG
366 }
367}
368
04f2cbe3 369/* Reset counters to 0 and clear all HPAGE_RESV_* flags */
a1e78772
MG
370void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
371{
372 VM_BUG_ON(!is_vm_hugetlb_page(vma));
f83a275d 373 if (!(vma->vm_flags & VM_MAYSHARE))
a1e78772
MG
374 vma->vm_private_data = (void *)0;
375}
376
377/* Returns true if the VMA has associated reserve pages */
7f09ca51 378static int vma_has_reserves(struct vm_area_struct *vma)
a1e78772 379{
f83a275d 380 if (vma->vm_flags & VM_MAYSHARE)
7f09ca51
MG
381 return 1;
382 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER))
383 return 1;
384 return 0;
a1e78772
MG
385}
386
69d177c2
AW
387static void clear_gigantic_page(struct page *page,
388 unsigned long addr, unsigned long sz)
389{
390 int i;
391 struct page *p = page;
392
393 might_sleep();
394 for (i = 0; i < sz/PAGE_SIZE; i++, p = mem_map_next(p, page, i)) {
395 cond_resched();
396 clear_user_highpage(p, addr + i * PAGE_SIZE);
397 }
398}
a5516438
AK
399static void clear_huge_page(struct page *page,
400 unsigned long addr, unsigned long sz)
79ac6ba4
DG
401{
402 int i;
403
ebdd4aea
HE
404 if (unlikely(sz > MAX_ORDER_NR_PAGES)) {
405 clear_gigantic_page(page, addr, sz);
406 return;
407 }
69d177c2 408
79ac6ba4 409 might_sleep();
a5516438 410 for (i = 0; i < sz/PAGE_SIZE; i++) {
79ac6ba4 411 cond_resched();
281e0e3b 412 clear_user_highpage(page + i, addr + i * PAGE_SIZE);
79ac6ba4
DG
413 }
414}
415
69d177c2
AW
416static void copy_gigantic_page(struct page *dst, struct page *src,
417 unsigned long addr, struct vm_area_struct *vma)
418{
419 int i;
420 struct hstate *h = hstate_vma(vma);
421 struct page *dst_base = dst;
422 struct page *src_base = src;
423 might_sleep();
424 for (i = 0; i < pages_per_huge_page(h); ) {
425 cond_resched();
426 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
427
428 i++;
429 dst = mem_map_next(dst, dst_base, i);
430 src = mem_map_next(src, src_base, i);
431 }
432}
79ac6ba4 433static void copy_huge_page(struct page *dst, struct page *src,
9de455b2 434 unsigned long addr, struct vm_area_struct *vma)
79ac6ba4
DG
435{
436 int i;
a5516438 437 struct hstate *h = hstate_vma(vma);
79ac6ba4 438
ebdd4aea
HE
439 if (unlikely(pages_per_huge_page(h) > MAX_ORDER_NR_PAGES)) {
440 copy_gigantic_page(dst, src, addr, vma);
441 return;
442 }
69d177c2 443
79ac6ba4 444 might_sleep();
a5516438 445 for (i = 0; i < pages_per_huge_page(h); i++) {
79ac6ba4 446 cond_resched();
9de455b2 447 copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
79ac6ba4
DG
448 }
449}
450
a5516438 451static void enqueue_huge_page(struct hstate *h, struct page *page)
1da177e4
LT
452{
453 int nid = page_to_nid(page);
a5516438
AK
454 list_add(&page->lru, &h->hugepage_freelists[nid]);
455 h->free_huge_pages++;
456 h->free_huge_pages_node[nid]++;
1da177e4
LT
457}
458
a5516438
AK
459static struct page *dequeue_huge_page_vma(struct hstate *h,
460 struct vm_area_struct *vma,
04f2cbe3 461 unsigned long address, int avoid_reserve)
1da177e4 462{
31a5c6e4 463 int nid;
1da177e4 464 struct page *page = NULL;
480eccf9 465 struct mempolicy *mpol;
19770b32 466 nodemask_t *nodemask;
396faf03 467 struct zonelist *zonelist = huge_zonelist(vma, address,
19770b32 468 htlb_alloc_mask, &mpol, &nodemask);
dd1a239f
MG
469 struct zone *zone;
470 struct zoneref *z;
1da177e4 471
a1e78772
MG
472 /*
473 * A child process with MAP_PRIVATE mappings created by their parent
474 * have no page reserves. This check ensures that reservations are
475 * not "stolen". The child may still get SIGKILLed
476 */
7f09ca51 477 if (!vma_has_reserves(vma) &&
a5516438 478 h->free_huge_pages - h->resv_huge_pages == 0)
a1e78772
MG
479 return NULL;
480
04f2cbe3 481 /* If reserves cannot be used, ensure enough pages are in the pool */
a5516438 482 if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
04f2cbe3
MG
483 return NULL;
484
19770b32
MG
485 for_each_zone_zonelist_nodemask(zone, z, zonelist,
486 MAX_NR_ZONES - 1, nodemask) {
54a6eb5c
MG
487 nid = zone_to_nid(zone);
488 if (cpuset_zone_allowed_softwall(zone, htlb_alloc_mask) &&
a5516438
AK
489 !list_empty(&h->hugepage_freelists[nid])) {
490 page = list_entry(h->hugepage_freelists[nid].next,
3abf7afd
AM
491 struct page, lru);
492 list_del(&page->lru);
a5516438
AK
493 h->free_huge_pages--;
494 h->free_huge_pages_node[nid]--;
04f2cbe3
MG
495
496 if (!avoid_reserve)
a5516438 497 decrement_hugepage_resv_vma(h, vma);
a1e78772 498
5ab3ee7b 499 break;
3abf7afd 500 }
1da177e4 501 }
52cd3b07 502 mpol_cond_put(mpol);
1da177e4
LT
503 return page;
504}
505
a5516438 506static void update_and_free_page(struct hstate *h, struct page *page)
6af2acb6
AL
507{
508 int i;
a5516438 509
18229df5
AW
510 VM_BUG_ON(h->order >= MAX_ORDER);
511
a5516438
AK
512 h->nr_huge_pages--;
513 h->nr_huge_pages_node[page_to_nid(page)]--;
514 for (i = 0; i < pages_per_huge_page(h); i++) {
6af2acb6
AL
515 page[i].flags &= ~(1 << PG_locked | 1 << PG_error | 1 << PG_referenced |
516 1 << PG_dirty | 1 << PG_active | 1 << PG_reserved |
517 1 << PG_private | 1<< PG_writeback);
518 }
519 set_compound_page_dtor(page, NULL);
520 set_page_refcounted(page);
7f2e9525 521 arch_release_hugepage(page);
a5516438 522 __free_pages(page, huge_page_order(h));
6af2acb6
AL
523}
524
e5ff2159
AK
525struct hstate *size_to_hstate(unsigned long size)
526{
527 struct hstate *h;
528
529 for_each_hstate(h) {
530 if (huge_page_size(h) == size)
531 return h;
532 }
533 return NULL;
534}
535
27a85ef1
DG
536static void free_huge_page(struct page *page)
537{
a5516438
AK
538 /*
539 * Can't pass hstate in here because it is called from the
540 * compound page destructor.
541 */
e5ff2159 542 struct hstate *h = page_hstate(page);
7893d1d5 543 int nid = page_to_nid(page);
c79fb75e 544 struct address_space *mapping;
27a85ef1 545
c79fb75e 546 mapping = (struct address_space *) page_private(page);
e5df70ab 547 set_page_private(page, 0);
7893d1d5 548 BUG_ON(page_count(page));
27a85ef1
DG
549 INIT_LIST_HEAD(&page->lru);
550
551 spin_lock(&hugetlb_lock);
aa888a74 552 if (h->surplus_huge_pages_node[nid] && huge_page_order(h) < MAX_ORDER) {
a5516438
AK
553 update_and_free_page(h, page);
554 h->surplus_huge_pages--;
555 h->surplus_huge_pages_node[nid]--;
7893d1d5 556 } else {
a5516438 557 enqueue_huge_page(h, page);
7893d1d5 558 }
27a85ef1 559 spin_unlock(&hugetlb_lock);
c79fb75e 560 if (mapping)
9a119c05 561 hugetlb_put_quota(mapping, 1);
27a85ef1
DG
562}
563
a5516438 564static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
b7ba30c6
AK
565{
566 set_compound_page_dtor(page, free_huge_page);
567 spin_lock(&hugetlb_lock);
a5516438
AK
568 h->nr_huge_pages++;
569 h->nr_huge_pages_node[nid]++;
b7ba30c6
AK
570 spin_unlock(&hugetlb_lock);
571 put_page(page); /* free it into the hugepage allocator */
572}
573
20a0307c
WF
574static void prep_compound_gigantic_page(struct page *page, unsigned long order)
575{
576 int i;
577 int nr_pages = 1 << order;
578 struct page *p = page + 1;
579
580 /* we rely on prep_new_huge_page to set the destructor */
581 set_compound_order(page, order);
582 __SetPageHead(page);
583 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
584 __SetPageTail(p);
585 p->first_page = page;
586 }
587}
588
589int PageHuge(struct page *page)
590{
591 compound_page_dtor *dtor;
592
593 if (!PageCompound(page))
594 return 0;
595
596 page = compound_head(page);
597 dtor = get_compound_page_dtor(page);
598
599 return dtor == free_huge_page;
600}
601
a5516438 602static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid)
1da177e4 603{
1da177e4 604 struct page *page;
f96efd58 605
aa888a74
AK
606 if (h->order >= MAX_ORDER)
607 return NULL;
608
6484eb3e 609 page = alloc_pages_exact_node(nid,
551883ae
NA
610 htlb_alloc_mask|__GFP_COMP|__GFP_THISNODE|
611 __GFP_REPEAT|__GFP_NOWARN,
a5516438 612 huge_page_order(h));
1da177e4 613 if (page) {
7f2e9525 614 if (arch_prepare_hugepage(page)) {
caff3a2c 615 __free_pages(page, huge_page_order(h));
7b8ee84d 616 return NULL;
7f2e9525 617 }
a5516438 618 prep_new_huge_page(h, page, nid);
1da177e4 619 }
63b4613c
NA
620
621 return page;
622}
623
9a76db09 624/*
6ae11b27
LS
625 * common helper functions for hstate_next_node_to_{alloc|free}.
626 * We may have allocated or freed a huge page based on a different
627 * nodes_allowed previously, so h->next_node_to_{alloc|free} might
628 * be outside of *nodes_allowed. Ensure that we use an allowed
629 * node for alloc or free.
9a76db09 630 */
6ae11b27 631static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
9a76db09 632{
6ae11b27 633 nid = next_node(nid, *nodes_allowed);
9a76db09 634 if (nid == MAX_NUMNODES)
6ae11b27 635 nid = first_node(*nodes_allowed);
9a76db09
LS
636 VM_BUG_ON(nid >= MAX_NUMNODES);
637
638 return nid;
639}
640
6ae11b27
LS
641static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
642{
643 if (!node_isset(nid, *nodes_allowed))
644 nid = next_node_allowed(nid, nodes_allowed);
645 return nid;
646}
647
5ced66c9 648/*
6ae11b27
LS
649 * returns the previously saved node ["this node"] from which to
650 * allocate a persistent huge page for the pool and advance the
651 * next node from which to allocate, handling wrap at end of node
652 * mask.
5ced66c9 653 */
6ae11b27
LS
654static int hstate_next_node_to_alloc(struct hstate *h,
655 nodemask_t *nodes_allowed)
5ced66c9 656{
6ae11b27
LS
657 int nid;
658
659 VM_BUG_ON(!nodes_allowed);
660
661 nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
662 h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
9a76db09 663
9a76db09 664 return nid;
5ced66c9
AK
665}
666
6ae11b27 667static int alloc_fresh_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
63b4613c
NA
668{
669 struct page *page;
670 int start_nid;
671 int next_nid;
672 int ret = 0;
673
6ae11b27 674 start_nid = hstate_next_node_to_alloc(h, nodes_allowed);
e8c5c824 675 next_nid = start_nid;
63b4613c
NA
676
677 do {
e8c5c824 678 page = alloc_fresh_huge_page_node(h, next_nid);
9a76db09 679 if (page) {
63b4613c 680 ret = 1;
9a76db09
LS
681 break;
682 }
6ae11b27 683 next_nid = hstate_next_node_to_alloc(h, nodes_allowed);
9a76db09 684 } while (next_nid != start_nid);
63b4613c 685
3b116300
AL
686 if (ret)
687 count_vm_event(HTLB_BUDDY_PGALLOC);
688 else
689 count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
690
63b4613c 691 return ret;
1da177e4
LT
692}
693
e8c5c824 694/*
6ae11b27
LS
695 * helper for free_pool_huge_page() - return the previously saved
696 * node ["this node"] from which to free a huge page. Advance the
697 * next node id whether or not we find a free huge page to free so
698 * that the next attempt to free addresses the next node.
e8c5c824 699 */
6ae11b27 700static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
e8c5c824 701{
6ae11b27
LS
702 int nid;
703
704 VM_BUG_ON(!nodes_allowed);
705
706 nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
707 h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
9a76db09 708
9a76db09 709 return nid;
e8c5c824
LS
710}
711
712/*
713 * Free huge page from pool from next node to free.
714 * Attempt to keep persistent huge pages more or less
715 * balanced over allowed nodes.
716 * Called with hugetlb_lock locked.
717 */
6ae11b27
LS
718static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
719 bool acct_surplus)
e8c5c824
LS
720{
721 int start_nid;
722 int next_nid;
723 int ret = 0;
724
6ae11b27 725 start_nid = hstate_next_node_to_free(h, nodes_allowed);
e8c5c824
LS
726 next_nid = start_nid;
727
728 do {
685f3457
LS
729 /*
730 * If we're returning unused surplus pages, only examine
731 * nodes with surplus pages.
732 */
733 if ((!acct_surplus || h->surplus_huge_pages_node[next_nid]) &&
734 !list_empty(&h->hugepage_freelists[next_nid])) {
e8c5c824
LS
735 struct page *page =
736 list_entry(h->hugepage_freelists[next_nid].next,
737 struct page, lru);
738 list_del(&page->lru);
739 h->free_huge_pages--;
740 h->free_huge_pages_node[next_nid]--;
685f3457
LS
741 if (acct_surplus) {
742 h->surplus_huge_pages--;
743 h->surplus_huge_pages_node[next_nid]--;
744 }
e8c5c824
LS
745 update_and_free_page(h, page);
746 ret = 1;
9a76db09 747 break;
e8c5c824 748 }
6ae11b27 749 next_nid = hstate_next_node_to_free(h, nodes_allowed);
9a76db09 750 } while (next_nid != start_nid);
e8c5c824
LS
751
752 return ret;
753}
754
a5516438
AK
755static struct page *alloc_buddy_huge_page(struct hstate *h,
756 struct vm_area_struct *vma, unsigned long address)
7893d1d5
AL
757{
758 struct page *page;
d1c3fb1f 759 unsigned int nid;
7893d1d5 760
aa888a74
AK
761 if (h->order >= MAX_ORDER)
762 return NULL;
763
d1c3fb1f
NA
764 /*
765 * Assume we will successfully allocate the surplus page to
766 * prevent racing processes from causing the surplus to exceed
767 * overcommit
768 *
769 * This however introduces a different race, where a process B
770 * tries to grow the static hugepage pool while alloc_pages() is
771 * called by process A. B will only examine the per-node
772 * counters in determining if surplus huge pages can be
773 * converted to normal huge pages in adjust_pool_surplus(). A
774 * won't be able to increment the per-node counter, until the
775 * lock is dropped by B, but B doesn't drop hugetlb_lock until
776 * no more huge pages can be converted from surplus to normal
777 * state (and doesn't try to convert again). Thus, we have a
778 * case where a surplus huge page exists, the pool is grown, and
779 * the surplus huge page still exists after, even though it
780 * should just have been converted to a normal huge page. This
781 * does not leak memory, though, as the hugepage will be freed
782 * once it is out of use. It also does not allow the counters to
783 * go out of whack in adjust_pool_surplus() as we don't modify
784 * the node values until we've gotten the hugepage and only the
785 * per-node value is checked there.
786 */
787 spin_lock(&hugetlb_lock);
a5516438 788 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
d1c3fb1f
NA
789 spin_unlock(&hugetlb_lock);
790 return NULL;
791 } else {
a5516438
AK
792 h->nr_huge_pages++;
793 h->surplus_huge_pages++;
d1c3fb1f
NA
794 }
795 spin_unlock(&hugetlb_lock);
796
551883ae
NA
797 page = alloc_pages(htlb_alloc_mask|__GFP_COMP|
798 __GFP_REPEAT|__GFP_NOWARN,
a5516438 799 huge_page_order(h));
d1c3fb1f 800
caff3a2c
GS
801 if (page && arch_prepare_hugepage(page)) {
802 __free_pages(page, huge_page_order(h));
803 return NULL;
804 }
805
d1c3fb1f 806 spin_lock(&hugetlb_lock);
7893d1d5 807 if (page) {
2668db91
AL
808 /*
809 * This page is now managed by the hugetlb allocator and has
810 * no users -- drop the buddy allocator's reference.
811 */
812 put_page_testzero(page);
813 VM_BUG_ON(page_count(page));
d1c3fb1f 814 nid = page_to_nid(page);
7893d1d5 815 set_compound_page_dtor(page, free_huge_page);
d1c3fb1f
NA
816 /*
817 * We incremented the global counters already
818 */
a5516438
AK
819 h->nr_huge_pages_node[nid]++;
820 h->surplus_huge_pages_node[nid]++;
3b116300 821 __count_vm_event(HTLB_BUDDY_PGALLOC);
d1c3fb1f 822 } else {
a5516438
AK
823 h->nr_huge_pages--;
824 h->surplus_huge_pages--;
3b116300 825 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
7893d1d5 826 }
d1c3fb1f 827 spin_unlock(&hugetlb_lock);
7893d1d5
AL
828
829 return page;
830}
831
e4e574b7
AL
832/*
833 * Increase the hugetlb pool such that it can accomodate a reservation
834 * of size 'delta'.
835 */
a5516438 836static int gather_surplus_pages(struct hstate *h, int delta)
e4e574b7
AL
837{
838 struct list_head surplus_list;
839 struct page *page, *tmp;
840 int ret, i;
841 int needed, allocated;
842
a5516438 843 needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
ac09b3a1 844 if (needed <= 0) {
a5516438 845 h->resv_huge_pages += delta;
e4e574b7 846 return 0;
ac09b3a1 847 }
e4e574b7
AL
848
849 allocated = 0;
850 INIT_LIST_HEAD(&surplus_list);
851
852 ret = -ENOMEM;
853retry:
854 spin_unlock(&hugetlb_lock);
855 for (i = 0; i < needed; i++) {
a5516438 856 page = alloc_buddy_huge_page(h, NULL, 0);
e4e574b7
AL
857 if (!page) {
858 /*
859 * We were not able to allocate enough pages to
860 * satisfy the entire reservation so we free what
861 * we've allocated so far.
862 */
863 spin_lock(&hugetlb_lock);
864 needed = 0;
865 goto free;
866 }
867
868 list_add(&page->lru, &surplus_list);
869 }
870 allocated += needed;
871
872 /*
873 * After retaking hugetlb_lock, we need to recalculate 'needed'
874 * because either resv_huge_pages or free_huge_pages may have changed.
875 */
876 spin_lock(&hugetlb_lock);
a5516438
AK
877 needed = (h->resv_huge_pages + delta) -
878 (h->free_huge_pages + allocated);
e4e574b7
AL
879 if (needed > 0)
880 goto retry;
881
882 /*
883 * The surplus_list now contains _at_least_ the number of extra pages
884 * needed to accomodate the reservation. Add the appropriate number
885 * of pages to the hugetlb pool and free the extras back to the buddy
ac09b3a1
AL
886 * allocator. Commit the entire reservation here to prevent another
887 * process from stealing the pages as they are added to the pool but
888 * before they are reserved.
e4e574b7
AL
889 */
890 needed += allocated;
a5516438 891 h->resv_huge_pages += delta;
e4e574b7
AL
892 ret = 0;
893free:
19fc3f0a 894 /* Free the needed pages to the hugetlb pool */
e4e574b7 895 list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
19fc3f0a
AL
896 if ((--needed) < 0)
897 break;
e4e574b7 898 list_del(&page->lru);
a5516438 899 enqueue_huge_page(h, page);
19fc3f0a
AL
900 }
901
902 /* Free unnecessary surplus pages to the buddy allocator */
903 if (!list_empty(&surplus_list)) {
904 spin_unlock(&hugetlb_lock);
905 list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
906 list_del(&page->lru);
af767cbd 907 /*
2668db91
AL
908 * The page has a reference count of zero already, so
909 * call free_huge_page directly instead of using
910 * put_page. This must be done with hugetlb_lock
af767cbd
AL
911 * unlocked which is safe because free_huge_page takes
912 * hugetlb_lock before deciding how to free the page.
913 */
2668db91 914 free_huge_page(page);
af767cbd 915 }
19fc3f0a 916 spin_lock(&hugetlb_lock);
e4e574b7
AL
917 }
918
919 return ret;
920}
921
922/*
923 * When releasing a hugetlb pool reservation, any surplus pages that were
924 * allocated to satisfy the reservation must be explicitly freed if they were
925 * never used.
685f3457 926 * Called with hugetlb_lock held.
e4e574b7 927 */
a5516438
AK
928static void return_unused_surplus_pages(struct hstate *h,
929 unsigned long unused_resv_pages)
e4e574b7 930{
e4e574b7
AL
931 unsigned long nr_pages;
932
ac09b3a1 933 /* Uncommit the reservation */
a5516438 934 h->resv_huge_pages -= unused_resv_pages;
ac09b3a1 935
aa888a74
AK
936 /* Cannot return gigantic pages currently */
937 if (h->order >= MAX_ORDER)
938 return;
939
a5516438 940 nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
e4e574b7 941
685f3457
LS
942 /*
943 * We want to release as many surplus pages as possible, spread
944 * evenly across all nodes. Iterate across all nodes until we
945 * can no longer free unreserved surplus pages. This occurs when
946 * the nodes with surplus pages have no free pages.
947 * free_pool_huge_page() will balance the the frees across the
948 * on-line nodes for us and will handle the hstate accounting.
949 */
950 while (nr_pages--) {
6ae11b27 951 if (!free_pool_huge_page(h, &node_online_map, 1))
685f3457 952 break;
e4e574b7
AL
953 }
954}
955
c37f9fb1
AW
956/*
957 * Determine if the huge page at addr within the vma has an associated
958 * reservation. Where it does not we will need to logically increase
959 * reservation and actually increase quota before an allocation can occur.
960 * Where any new reservation would be required the reservation change is
961 * prepared, but not committed. Once the page has been quota'd allocated
962 * an instantiated the change should be committed via vma_commit_reservation.
963 * No action is required on failure.
964 */
e2f17d94 965static long vma_needs_reservation(struct hstate *h,
a5516438 966 struct vm_area_struct *vma, unsigned long addr)
c37f9fb1
AW
967{
968 struct address_space *mapping = vma->vm_file->f_mapping;
969 struct inode *inode = mapping->host;
970
f83a275d 971 if (vma->vm_flags & VM_MAYSHARE) {
a5516438 972 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
c37f9fb1
AW
973 return region_chg(&inode->i_mapping->private_list,
974 idx, idx + 1);
975
84afd99b
AW
976 } else if (!is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
977 return 1;
c37f9fb1 978
84afd99b 979 } else {
e2f17d94 980 long err;
a5516438 981 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
84afd99b
AW
982 struct resv_map *reservations = vma_resv_map(vma);
983
984 err = region_chg(&reservations->regions, idx, idx + 1);
985 if (err < 0)
986 return err;
987 return 0;
988 }
c37f9fb1 989}
a5516438
AK
990static void vma_commit_reservation(struct hstate *h,
991 struct vm_area_struct *vma, unsigned long addr)
c37f9fb1
AW
992{
993 struct address_space *mapping = vma->vm_file->f_mapping;
994 struct inode *inode = mapping->host;
995
f83a275d 996 if (vma->vm_flags & VM_MAYSHARE) {
a5516438 997 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
c37f9fb1 998 region_add(&inode->i_mapping->private_list, idx, idx + 1);
84afd99b
AW
999
1000 } else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
a5516438 1001 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
84afd99b
AW
1002 struct resv_map *reservations = vma_resv_map(vma);
1003
1004 /* Mark this page used in the map. */
1005 region_add(&reservations->regions, idx, idx + 1);
c37f9fb1
AW
1006 }
1007}
1008
a1e78772 1009static struct page *alloc_huge_page(struct vm_area_struct *vma,
04f2cbe3 1010 unsigned long addr, int avoid_reserve)
1da177e4 1011{
a5516438 1012 struct hstate *h = hstate_vma(vma);
348ea204 1013 struct page *page;
a1e78772
MG
1014 struct address_space *mapping = vma->vm_file->f_mapping;
1015 struct inode *inode = mapping->host;
e2f17d94 1016 long chg;
a1e78772
MG
1017
1018 /*
1019 * Processes that did not create the mapping will have no reserves and
1020 * will not have accounted against quota. Check that the quota can be
1021 * made before satisfying the allocation
c37f9fb1
AW
1022 * MAP_NORESERVE mappings may also need pages and quota allocated
1023 * if no reserve mapping overlaps.
a1e78772 1024 */
a5516438 1025 chg = vma_needs_reservation(h, vma, addr);
c37f9fb1
AW
1026 if (chg < 0)
1027 return ERR_PTR(chg);
1028 if (chg)
a1e78772
MG
1029 if (hugetlb_get_quota(inode->i_mapping, chg))
1030 return ERR_PTR(-ENOSPC);
1da177e4
LT
1031
1032 spin_lock(&hugetlb_lock);
a5516438 1033 page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve);
1da177e4 1034 spin_unlock(&hugetlb_lock);
b45b5bd6 1035
68842c9b 1036 if (!page) {
a5516438 1037 page = alloc_buddy_huge_page(h, vma, addr);
68842c9b 1038 if (!page) {
a1e78772 1039 hugetlb_put_quota(inode->i_mapping, chg);
68842c9b
KC
1040 return ERR_PTR(-VM_FAULT_OOM);
1041 }
1042 }
348ea204 1043
a1e78772
MG
1044 set_page_refcounted(page);
1045 set_page_private(page, (unsigned long) mapping);
90d8b7e6 1046
a5516438 1047 vma_commit_reservation(h, vma, addr);
c37f9fb1 1048
90d8b7e6 1049 return page;
b45b5bd6
DG
1050}
1051
91f47662 1052int __weak alloc_bootmem_huge_page(struct hstate *h)
aa888a74
AK
1053{
1054 struct huge_bootmem_page *m;
1055 int nr_nodes = nodes_weight(node_online_map);
1056
1057 while (nr_nodes) {
1058 void *addr;
1059
1060 addr = __alloc_bootmem_node_nopanic(
6ae11b27
LS
1061 NODE_DATA(hstate_next_node_to_alloc(h,
1062 &node_online_map)),
aa888a74
AK
1063 huge_page_size(h), huge_page_size(h), 0);
1064
1065 if (addr) {
1066 /*
1067 * Use the beginning of the huge page to store the
1068 * huge_bootmem_page struct (until gather_bootmem
1069 * puts them into the mem_map).
1070 */
1071 m = addr;
91f47662 1072 goto found;
aa888a74 1073 }
aa888a74
AK
1074 nr_nodes--;
1075 }
1076 return 0;
1077
1078found:
1079 BUG_ON((unsigned long)virt_to_phys(m) & (huge_page_size(h) - 1));
1080 /* Put them into a private list first because mem_map is not up yet */
1081 list_add(&m->list, &huge_boot_pages);
1082 m->hstate = h;
1083 return 1;
1084}
1085
18229df5
AW
1086static void prep_compound_huge_page(struct page *page, int order)
1087{
1088 if (unlikely(order > (MAX_ORDER - 1)))
1089 prep_compound_gigantic_page(page, order);
1090 else
1091 prep_compound_page(page, order);
1092}
1093
aa888a74
AK
1094/* Put bootmem huge pages into the standard lists after mem_map is up */
1095static void __init gather_bootmem_prealloc(void)
1096{
1097 struct huge_bootmem_page *m;
1098
1099 list_for_each_entry(m, &huge_boot_pages, list) {
1100 struct page *page = virt_to_page(m);
1101 struct hstate *h = m->hstate;
1102 __ClearPageReserved(page);
1103 WARN_ON(page_count(page) != 1);
18229df5 1104 prep_compound_huge_page(page, h->order);
aa888a74
AK
1105 prep_new_huge_page(h, page, page_to_nid(page));
1106 }
1107}
1108
8faa8b07 1109static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
1da177e4
LT
1110{
1111 unsigned long i;
a5516438 1112
e5ff2159 1113 for (i = 0; i < h->max_huge_pages; ++i) {
aa888a74
AK
1114 if (h->order >= MAX_ORDER) {
1115 if (!alloc_bootmem_huge_page(h))
1116 break;
6ae11b27 1117 } else if (!alloc_fresh_huge_page(h, &node_online_map))
1da177e4 1118 break;
1da177e4 1119 }
8faa8b07 1120 h->max_huge_pages = i;
e5ff2159
AK
1121}
1122
1123static void __init hugetlb_init_hstates(void)
1124{
1125 struct hstate *h;
1126
1127 for_each_hstate(h) {
8faa8b07
AK
1128 /* oversize hugepages were init'ed in early boot */
1129 if (h->order < MAX_ORDER)
1130 hugetlb_hstate_alloc_pages(h);
e5ff2159
AK
1131 }
1132}
1133
4abd32db
AK
1134static char * __init memfmt(char *buf, unsigned long n)
1135{
1136 if (n >= (1UL << 30))
1137 sprintf(buf, "%lu GB", n >> 30);
1138 else if (n >= (1UL << 20))
1139 sprintf(buf, "%lu MB", n >> 20);
1140 else
1141 sprintf(buf, "%lu KB", n >> 10);
1142 return buf;
1143}
1144
e5ff2159
AK
1145static void __init report_hugepages(void)
1146{
1147 struct hstate *h;
1148
1149 for_each_hstate(h) {
4abd32db
AK
1150 char buf[32];
1151 printk(KERN_INFO "HugeTLB registered %s page size, "
1152 "pre-allocated %ld pages\n",
1153 memfmt(buf, huge_page_size(h)),
1154 h->free_huge_pages);
e5ff2159
AK
1155 }
1156}
1157
1da177e4 1158#ifdef CONFIG_HIGHMEM
6ae11b27
LS
1159static void try_to_free_low(struct hstate *h, unsigned long count,
1160 nodemask_t *nodes_allowed)
1da177e4 1161{
4415cc8d
CL
1162 int i;
1163
aa888a74
AK
1164 if (h->order >= MAX_ORDER)
1165 return;
1166
6ae11b27 1167 for_each_node_mask(i, *nodes_allowed) {
1da177e4 1168 struct page *page, *next;
a5516438
AK
1169 struct list_head *freel = &h->hugepage_freelists[i];
1170 list_for_each_entry_safe(page, next, freel, lru) {
1171 if (count >= h->nr_huge_pages)
6b0c880d 1172 return;
1da177e4
LT
1173 if (PageHighMem(page))
1174 continue;
1175 list_del(&page->lru);
e5ff2159 1176 update_and_free_page(h, page);
a5516438
AK
1177 h->free_huge_pages--;
1178 h->free_huge_pages_node[page_to_nid(page)]--;
1da177e4
LT
1179 }
1180 }
1181}
1182#else
6ae11b27
LS
1183static inline void try_to_free_low(struct hstate *h, unsigned long count,
1184 nodemask_t *nodes_allowed)
1da177e4
LT
1185{
1186}
1187#endif
1188
20a0307c
WF
1189/*
1190 * Increment or decrement surplus_huge_pages. Keep node-specific counters
1191 * balanced by operating on them in a round-robin fashion.
1192 * Returns 1 if an adjustment was made.
1193 */
6ae11b27
LS
1194static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
1195 int delta)
20a0307c 1196{
e8c5c824 1197 int start_nid, next_nid;
20a0307c
WF
1198 int ret = 0;
1199
1200 VM_BUG_ON(delta != -1 && delta != 1);
20a0307c 1201
e8c5c824 1202 if (delta < 0)
6ae11b27 1203 start_nid = hstate_next_node_to_alloc(h, nodes_allowed);
e8c5c824 1204 else
6ae11b27 1205 start_nid = hstate_next_node_to_free(h, nodes_allowed);
e8c5c824
LS
1206 next_nid = start_nid;
1207
1208 do {
1209 int nid = next_nid;
1210 if (delta < 0) {
e8c5c824
LS
1211 /*
1212 * To shrink on this node, there must be a surplus page
1213 */
9a76db09 1214 if (!h->surplus_huge_pages_node[nid]) {
6ae11b27
LS
1215 next_nid = hstate_next_node_to_alloc(h,
1216 nodes_allowed);
e8c5c824 1217 continue;
9a76db09 1218 }
e8c5c824
LS
1219 }
1220 if (delta > 0) {
e8c5c824
LS
1221 /*
1222 * Surplus cannot exceed the total number of pages
1223 */
1224 if (h->surplus_huge_pages_node[nid] >=
9a76db09 1225 h->nr_huge_pages_node[nid]) {
6ae11b27
LS
1226 next_nid = hstate_next_node_to_free(h,
1227 nodes_allowed);
e8c5c824 1228 continue;
9a76db09 1229 }
e8c5c824 1230 }
20a0307c
WF
1231
1232 h->surplus_huge_pages += delta;
1233 h->surplus_huge_pages_node[nid] += delta;
1234 ret = 1;
1235 break;
e8c5c824 1236 } while (next_nid != start_nid);
20a0307c 1237
20a0307c
WF
1238 return ret;
1239}
1240
a5516438 1241#define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
6ae11b27
LS
1242static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count,
1243 nodemask_t *nodes_allowed)
1da177e4 1244{
7893d1d5 1245 unsigned long min_count, ret;
1da177e4 1246
aa888a74
AK
1247 if (h->order >= MAX_ORDER)
1248 return h->max_huge_pages;
1249
7893d1d5
AL
1250 /*
1251 * Increase the pool size
1252 * First take pages out of surplus state. Then make up the
1253 * remaining difference by allocating fresh huge pages.
d1c3fb1f
NA
1254 *
1255 * We might race with alloc_buddy_huge_page() here and be unable
1256 * to convert a surplus huge page to a normal huge page. That is
1257 * not critical, though, it just means the overall size of the
1258 * pool might be one hugepage larger than it needs to be, but
1259 * within all the constraints specified by the sysctls.
7893d1d5 1260 */
1da177e4 1261 spin_lock(&hugetlb_lock);
a5516438 1262 while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
6ae11b27 1263 if (!adjust_pool_surplus(h, nodes_allowed, -1))
7893d1d5
AL
1264 break;
1265 }
1266
a5516438 1267 while (count > persistent_huge_pages(h)) {
7893d1d5
AL
1268 /*
1269 * If this allocation races such that we no longer need the
1270 * page, free_huge_page will handle it by freeing the page
1271 * and reducing the surplus.
1272 */
1273 spin_unlock(&hugetlb_lock);
6ae11b27 1274 ret = alloc_fresh_huge_page(h, nodes_allowed);
7893d1d5
AL
1275 spin_lock(&hugetlb_lock);
1276 if (!ret)
1277 goto out;
1278
1279 }
7893d1d5
AL
1280
1281 /*
1282 * Decrease the pool size
1283 * First return free pages to the buddy allocator (being careful
1284 * to keep enough around to satisfy reservations). Then place
1285 * pages into surplus state as needed so the pool will shrink
1286 * to the desired size as pages become free.
d1c3fb1f
NA
1287 *
1288 * By placing pages into the surplus state independent of the
1289 * overcommit value, we are allowing the surplus pool size to
1290 * exceed overcommit. There are few sane options here. Since
1291 * alloc_buddy_huge_page() is checking the global counter,
1292 * though, we'll note that we're not allowed to exceed surplus
1293 * and won't grow the pool anywhere else. Not until one of the
1294 * sysctls are changed, or the surplus pages go out of use.
7893d1d5 1295 */
a5516438 1296 min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
6b0c880d 1297 min_count = max(count, min_count);
6ae11b27 1298 try_to_free_low(h, min_count, nodes_allowed);
a5516438 1299 while (min_count < persistent_huge_pages(h)) {
6ae11b27 1300 if (!free_pool_huge_page(h, nodes_allowed, 0))
1da177e4 1301 break;
1da177e4 1302 }
a5516438 1303 while (count < persistent_huge_pages(h)) {
6ae11b27 1304 if (!adjust_pool_surplus(h, nodes_allowed, 1))
7893d1d5
AL
1305 break;
1306 }
1307out:
a5516438 1308 ret = persistent_huge_pages(h);
1da177e4 1309 spin_unlock(&hugetlb_lock);
7893d1d5 1310 return ret;
1da177e4
LT
1311}
1312
a3437870
NA
1313#define HSTATE_ATTR_RO(_name) \
1314 static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
1315
1316#define HSTATE_ATTR(_name) \
1317 static struct kobj_attribute _name##_attr = \
1318 __ATTR(_name, 0644, _name##_show, _name##_store)
1319
1320static struct kobject *hugepages_kobj;
1321static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
1322
1323static struct hstate *kobj_to_hstate(struct kobject *kobj)
1324{
1325 int i;
1326 for (i = 0; i < HUGE_MAX_HSTATE; i++)
1327 if (hstate_kobjs[i] == kobj)
1328 return &hstates[i];
1329 BUG();
1330 return NULL;
1331}
1332
1333static ssize_t nr_hugepages_show(struct kobject *kobj,
1334 struct kobj_attribute *attr, char *buf)
1335{
1336 struct hstate *h = kobj_to_hstate(kobj);
1337 return sprintf(buf, "%lu\n", h->nr_huge_pages);
1338}
1339static ssize_t nr_hugepages_store(struct kobject *kobj,
1340 struct kobj_attribute *attr, const char *buf, size_t count)
1341{
1342 int err;
1343 unsigned long input;
1344 struct hstate *h = kobj_to_hstate(kobj);
1345
1346 err = strict_strtoul(buf, 10, &input);
1347 if (err)
1348 return 0;
1349
6ae11b27 1350 h->max_huge_pages = set_max_huge_pages(h, input, &node_online_map);
a3437870
NA
1351
1352 return count;
1353}
1354HSTATE_ATTR(nr_hugepages);
1355
1356static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
1357 struct kobj_attribute *attr, char *buf)
1358{
1359 struct hstate *h = kobj_to_hstate(kobj);
1360 return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
1361}
1362static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
1363 struct kobj_attribute *attr, const char *buf, size_t count)
1364{
1365 int err;
1366 unsigned long input;
1367 struct hstate *h = kobj_to_hstate(kobj);
1368
1369 err = strict_strtoul(buf, 10, &input);
1370 if (err)
1371 return 0;
1372
1373 spin_lock(&hugetlb_lock);
1374 h->nr_overcommit_huge_pages = input;
1375 spin_unlock(&hugetlb_lock);
1376
1377 return count;
1378}
1379HSTATE_ATTR(nr_overcommit_hugepages);
1380
1381static ssize_t free_hugepages_show(struct kobject *kobj,
1382 struct kobj_attribute *attr, char *buf)
1383{
1384 struct hstate *h = kobj_to_hstate(kobj);
1385 return sprintf(buf, "%lu\n", h->free_huge_pages);
1386}
1387HSTATE_ATTR_RO(free_hugepages);
1388
1389static ssize_t resv_hugepages_show(struct kobject *kobj,
1390 struct kobj_attribute *attr, char *buf)
1391{
1392 struct hstate *h = kobj_to_hstate(kobj);
1393 return sprintf(buf, "%lu\n", h->resv_huge_pages);
1394}
1395HSTATE_ATTR_RO(resv_hugepages);
1396
1397static ssize_t surplus_hugepages_show(struct kobject *kobj,
1398 struct kobj_attribute *attr, char *buf)
1399{
1400 struct hstate *h = kobj_to_hstate(kobj);
1401 return sprintf(buf, "%lu\n", h->surplus_huge_pages);
1402}
1403HSTATE_ATTR_RO(surplus_hugepages);
1404
1405static struct attribute *hstate_attrs[] = {
1406 &nr_hugepages_attr.attr,
1407 &nr_overcommit_hugepages_attr.attr,
1408 &free_hugepages_attr.attr,
1409 &resv_hugepages_attr.attr,
1410 &surplus_hugepages_attr.attr,
1411 NULL,
1412};
1413
1414static struct attribute_group hstate_attr_group = {
1415 .attrs = hstate_attrs,
1416};
1417
1418static int __init hugetlb_sysfs_add_hstate(struct hstate *h)
1419{
1420 int retval;
1421
1422 hstate_kobjs[h - hstates] = kobject_create_and_add(h->name,
1423 hugepages_kobj);
1424 if (!hstate_kobjs[h - hstates])
1425 return -ENOMEM;
1426
1427 retval = sysfs_create_group(hstate_kobjs[h - hstates],
1428 &hstate_attr_group);
1429 if (retval)
1430 kobject_put(hstate_kobjs[h - hstates]);
1431
1432 return retval;
1433}
1434
1435static void __init hugetlb_sysfs_init(void)
1436{
1437 struct hstate *h;
1438 int err;
1439
1440 hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
1441 if (!hugepages_kobj)
1442 return;
1443
1444 for_each_hstate(h) {
1445 err = hugetlb_sysfs_add_hstate(h);
1446 if (err)
1447 printk(KERN_ERR "Hugetlb: Unable to add hstate %s",
1448 h->name);
1449 }
1450}
1451
1452static void __exit hugetlb_exit(void)
1453{
1454 struct hstate *h;
1455
1456 for_each_hstate(h) {
1457 kobject_put(hstate_kobjs[h - hstates]);
1458 }
1459
1460 kobject_put(hugepages_kobj);
1461}
1462module_exit(hugetlb_exit);
1463
1464static int __init hugetlb_init(void)
1465{
0ef89d25
BH
1466 /* Some platform decide whether they support huge pages at boot
1467 * time. On these, such as powerpc, HPAGE_SHIFT is set to 0 when
1468 * there is no such support
1469 */
1470 if (HPAGE_SHIFT == 0)
1471 return 0;
a3437870 1472
e11bfbfc
NP
1473 if (!size_to_hstate(default_hstate_size)) {
1474 default_hstate_size = HPAGE_SIZE;
1475 if (!size_to_hstate(default_hstate_size))
1476 hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
a3437870 1477 }
e11bfbfc
NP
1478 default_hstate_idx = size_to_hstate(default_hstate_size) - hstates;
1479 if (default_hstate_max_huge_pages)
1480 default_hstate.max_huge_pages = default_hstate_max_huge_pages;
a3437870
NA
1481
1482 hugetlb_init_hstates();
1483
aa888a74
AK
1484 gather_bootmem_prealloc();
1485
a3437870
NA
1486 report_hugepages();
1487
1488 hugetlb_sysfs_init();
1489
1490 return 0;
1491}
1492module_init(hugetlb_init);
1493
1494/* Should be called on processing a hugepagesz=... option */
1495void __init hugetlb_add_hstate(unsigned order)
1496{
1497 struct hstate *h;
8faa8b07
AK
1498 unsigned long i;
1499
a3437870
NA
1500 if (size_to_hstate(PAGE_SIZE << order)) {
1501 printk(KERN_WARNING "hugepagesz= specified twice, ignoring\n");
1502 return;
1503 }
1504 BUG_ON(max_hstate >= HUGE_MAX_HSTATE);
1505 BUG_ON(order == 0);
1506 h = &hstates[max_hstate++];
1507 h->order = order;
1508 h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
8faa8b07
AK
1509 h->nr_huge_pages = 0;
1510 h->free_huge_pages = 0;
1511 for (i = 0; i < MAX_NUMNODES; ++i)
1512 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
e8c5c824
LS
1513 h->next_nid_to_alloc = first_node(node_online_map);
1514 h->next_nid_to_free = first_node(node_online_map);
a3437870
NA
1515 snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
1516 huge_page_size(h)/1024);
8faa8b07 1517
a3437870
NA
1518 parsed_hstate = h;
1519}
1520
e11bfbfc 1521static int __init hugetlb_nrpages_setup(char *s)
a3437870
NA
1522{
1523 unsigned long *mhp;
8faa8b07 1524 static unsigned long *last_mhp;
a3437870
NA
1525
1526 /*
1527 * !max_hstate means we haven't parsed a hugepagesz= parameter yet,
1528 * so this hugepages= parameter goes to the "default hstate".
1529 */
1530 if (!max_hstate)
1531 mhp = &default_hstate_max_huge_pages;
1532 else
1533 mhp = &parsed_hstate->max_huge_pages;
1534
8faa8b07
AK
1535 if (mhp == last_mhp) {
1536 printk(KERN_WARNING "hugepages= specified twice without "
1537 "interleaving hugepagesz=, ignoring\n");
1538 return 1;
1539 }
1540
a3437870
NA
1541 if (sscanf(s, "%lu", mhp) <= 0)
1542 *mhp = 0;
1543
8faa8b07
AK
1544 /*
1545 * Global state is always initialized later in hugetlb_init.
1546 * But we need to allocate >= MAX_ORDER hstates here early to still
1547 * use the bootmem allocator.
1548 */
1549 if (max_hstate && parsed_hstate->order >= MAX_ORDER)
1550 hugetlb_hstate_alloc_pages(parsed_hstate);
1551
1552 last_mhp = mhp;
1553
a3437870
NA
1554 return 1;
1555}
e11bfbfc
NP
1556__setup("hugepages=", hugetlb_nrpages_setup);
1557
1558static int __init hugetlb_default_setup(char *s)
1559{
1560 default_hstate_size = memparse(s, &s);
1561 return 1;
1562}
1563__setup("default_hugepagesz=", hugetlb_default_setup);
a3437870 1564
8a213460
NA
1565static unsigned int cpuset_mems_nr(unsigned int *array)
1566{
1567 int node;
1568 unsigned int nr = 0;
1569
1570 for_each_node_mask(node, cpuset_current_mems_allowed)
1571 nr += array[node];
1572
1573 return nr;
1574}
1575
1576#ifdef CONFIG_SYSCTL
1da177e4 1577int hugetlb_sysctl_handler(struct ctl_table *table, int write,
8d65af78 1578 void __user *buffer,
1da177e4
LT
1579 size_t *length, loff_t *ppos)
1580{
e5ff2159
AK
1581 struct hstate *h = &default_hstate;
1582 unsigned long tmp;
1583
1584 if (!write)
1585 tmp = h->max_huge_pages;
1586
1587 table->data = &tmp;
1588 table->maxlen = sizeof(unsigned long);
8d65af78 1589 proc_doulongvec_minmax(table, write, buffer, length, ppos);
e5ff2159
AK
1590
1591 if (write)
6ae11b27
LS
1592 h->max_huge_pages = set_max_huge_pages(h, tmp,
1593 &node_online_map);
e5ff2159 1594
1da177e4
LT
1595 return 0;
1596}
396faf03
MG
1597
1598int hugetlb_treat_movable_handler(struct ctl_table *table, int write,
8d65af78 1599 void __user *buffer,
396faf03
MG
1600 size_t *length, loff_t *ppos)
1601{
8d65af78 1602 proc_dointvec(table, write, buffer, length, ppos);
396faf03
MG
1603 if (hugepages_treat_as_movable)
1604 htlb_alloc_mask = GFP_HIGHUSER_MOVABLE;
1605 else
1606 htlb_alloc_mask = GFP_HIGHUSER;
1607 return 0;
1608}
1609
a3d0c6aa 1610int hugetlb_overcommit_handler(struct ctl_table *table, int write,
8d65af78 1611 void __user *buffer,
a3d0c6aa
NA
1612 size_t *length, loff_t *ppos)
1613{
a5516438 1614 struct hstate *h = &default_hstate;
e5ff2159
AK
1615 unsigned long tmp;
1616
1617 if (!write)
1618 tmp = h->nr_overcommit_huge_pages;
1619
1620 table->data = &tmp;
1621 table->maxlen = sizeof(unsigned long);
8d65af78 1622 proc_doulongvec_minmax(table, write, buffer, length, ppos);
e5ff2159
AK
1623
1624 if (write) {
1625 spin_lock(&hugetlb_lock);
1626 h->nr_overcommit_huge_pages = tmp;
1627 spin_unlock(&hugetlb_lock);
1628 }
1629
a3d0c6aa
NA
1630 return 0;
1631}
1632
1da177e4
LT
1633#endif /* CONFIG_SYSCTL */
1634
e1759c21 1635void hugetlb_report_meminfo(struct seq_file *m)
1da177e4 1636{
a5516438 1637 struct hstate *h = &default_hstate;
e1759c21 1638 seq_printf(m,
4f98a2fe
RR
1639 "HugePages_Total: %5lu\n"
1640 "HugePages_Free: %5lu\n"
1641 "HugePages_Rsvd: %5lu\n"
1642 "HugePages_Surp: %5lu\n"
1643 "Hugepagesize: %8lu kB\n",
a5516438
AK
1644 h->nr_huge_pages,
1645 h->free_huge_pages,
1646 h->resv_huge_pages,
1647 h->surplus_huge_pages,
1648 1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
1da177e4
LT
1649}
1650
1651int hugetlb_report_node_meminfo(int nid, char *buf)
1652{
a5516438 1653 struct hstate *h = &default_hstate;
1da177e4
LT
1654 return sprintf(buf,
1655 "Node %d HugePages_Total: %5u\n"
a1de0919
NA
1656 "Node %d HugePages_Free: %5u\n"
1657 "Node %d HugePages_Surp: %5u\n",
a5516438
AK
1658 nid, h->nr_huge_pages_node[nid],
1659 nid, h->free_huge_pages_node[nid],
1660 nid, h->surplus_huge_pages_node[nid]);
1da177e4
LT
1661}
1662
1da177e4
LT
1663/* Return the number pages of memory we physically have, in PAGE_SIZE units. */
1664unsigned long hugetlb_total_pages(void)
1665{
a5516438
AK
1666 struct hstate *h = &default_hstate;
1667 return h->nr_huge_pages * pages_per_huge_page(h);
1da177e4 1668}
1da177e4 1669
a5516438 1670static int hugetlb_acct_memory(struct hstate *h, long delta)
fc1b8a73
MG
1671{
1672 int ret = -ENOMEM;
1673
1674 spin_lock(&hugetlb_lock);
1675 /*
1676 * When cpuset is configured, it breaks the strict hugetlb page
1677 * reservation as the accounting is done on a global variable. Such
1678 * reservation is completely rubbish in the presence of cpuset because
1679 * the reservation is not checked against page availability for the
1680 * current cpuset. Application can still potentially OOM'ed by kernel
1681 * with lack of free htlb page in cpuset that the task is in.
1682 * Attempt to enforce strict accounting with cpuset is almost
1683 * impossible (or too ugly) because cpuset is too fluid that
1684 * task or memory node can be dynamically moved between cpusets.
1685 *
1686 * The change of semantics for shared hugetlb mapping with cpuset is
1687 * undesirable. However, in order to preserve some of the semantics,
1688 * we fall back to check against current free page availability as
1689 * a best attempt and hopefully to minimize the impact of changing
1690 * semantics that cpuset has.
1691 */
1692 if (delta > 0) {
a5516438 1693 if (gather_surplus_pages(h, delta) < 0)
fc1b8a73
MG
1694 goto out;
1695
a5516438
AK
1696 if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
1697 return_unused_surplus_pages(h, delta);
fc1b8a73
MG
1698 goto out;
1699 }
1700 }
1701
1702 ret = 0;
1703 if (delta < 0)
a5516438 1704 return_unused_surplus_pages(h, (unsigned long) -delta);
fc1b8a73
MG
1705
1706out:
1707 spin_unlock(&hugetlb_lock);
1708 return ret;
1709}
1710
84afd99b
AW
1711static void hugetlb_vm_op_open(struct vm_area_struct *vma)
1712{
1713 struct resv_map *reservations = vma_resv_map(vma);
1714
1715 /*
1716 * This new VMA should share its siblings reservation map if present.
1717 * The VMA will only ever have a valid reservation map pointer where
1718 * it is being copied for another still existing VMA. As that VMA
1719 * has a reference to the reservation map it cannot dissappear until
1720 * after this open call completes. It is therefore safe to take a
1721 * new reference here without additional locking.
1722 */
1723 if (reservations)
1724 kref_get(&reservations->refs);
1725}
1726
a1e78772
MG
1727static void hugetlb_vm_op_close(struct vm_area_struct *vma)
1728{
a5516438 1729 struct hstate *h = hstate_vma(vma);
84afd99b
AW
1730 struct resv_map *reservations = vma_resv_map(vma);
1731 unsigned long reserve;
1732 unsigned long start;
1733 unsigned long end;
1734
1735 if (reservations) {
a5516438
AK
1736 start = vma_hugecache_offset(h, vma, vma->vm_start);
1737 end = vma_hugecache_offset(h, vma, vma->vm_end);
84afd99b
AW
1738
1739 reserve = (end - start) -
1740 region_count(&reservations->regions, start, end);
1741
1742 kref_put(&reservations->refs, resv_map_release);
1743
7251ff78 1744 if (reserve) {
a5516438 1745 hugetlb_acct_memory(h, -reserve);
7251ff78
AL
1746 hugetlb_put_quota(vma->vm_file->f_mapping, reserve);
1747 }
84afd99b 1748 }
a1e78772
MG
1749}
1750
1da177e4
LT
1751/*
1752 * We cannot handle pagefaults against hugetlb pages at all. They cause
1753 * handle_mm_fault() to try to instantiate regular-sized pages in the
1754 * hugegpage VMA. do_page_fault() is supposed to trap this, so BUG is we get
1755 * this far.
1756 */
d0217ac0 1757static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1da177e4
LT
1758{
1759 BUG();
d0217ac0 1760 return 0;
1da177e4
LT
1761}
1762
f0f37e2f 1763const struct vm_operations_struct hugetlb_vm_ops = {
d0217ac0 1764 .fault = hugetlb_vm_op_fault,
84afd99b 1765 .open = hugetlb_vm_op_open,
a1e78772 1766 .close = hugetlb_vm_op_close,
1da177e4
LT
1767};
1768
1e8f889b
DG
1769static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
1770 int writable)
63551ae0
DG
1771{
1772 pte_t entry;
1773
1e8f889b 1774 if (writable) {
63551ae0
DG
1775 entry =
1776 pte_mkwrite(pte_mkdirty(mk_pte(page, vma->vm_page_prot)));
1777 } else {
7f2e9525 1778 entry = huge_pte_wrprotect(mk_pte(page, vma->vm_page_prot));
63551ae0
DG
1779 }
1780 entry = pte_mkyoung(entry);
1781 entry = pte_mkhuge(entry);
1782
1783 return entry;
1784}
1785
1e8f889b
DG
1786static void set_huge_ptep_writable(struct vm_area_struct *vma,
1787 unsigned long address, pte_t *ptep)
1788{
1789 pte_t entry;
1790
7f2e9525
GS
1791 entry = pte_mkwrite(pte_mkdirty(huge_ptep_get(ptep)));
1792 if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1)) {
8dab5241 1793 update_mmu_cache(vma, address, entry);
8dab5241 1794 }
1e8f889b
DG
1795}
1796
1797
63551ae0
DG
1798int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
1799 struct vm_area_struct *vma)
1800{
1801 pte_t *src_pte, *dst_pte, entry;
1802 struct page *ptepage;
1c59827d 1803 unsigned long addr;
1e8f889b 1804 int cow;
a5516438
AK
1805 struct hstate *h = hstate_vma(vma);
1806 unsigned long sz = huge_page_size(h);
1e8f889b
DG
1807
1808 cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
63551ae0 1809
a5516438 1810 for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
c74df32c
HD
1811 src_pte = huge_pte_offset(src, addr);
1812 if (!src_pte)
1813 continue;
a5516438 1814 dst_pte = huge_pte_alloc(dst, addr, sz);
63551ae0
DG
1815 if (!dst_pte)
1816 goto nomem;
c5c99429
LW
1817
1818 /* If the pagetables are shared don't copy or take references */
1819 if (dst_pte == src_pte)
1820 continue;
1821
c74df32c 1822 spin_lock(&dst->page_table_lock);
46478758 1823 spin_lock_nested(&src->page_table_lock, SINGLE_DEPTH_NESTING);
7f2e9525 1824 if (!huge_pte_none(huge_ptep_get(src_pte))) {
1e8f889b 1825 if (cow)
7f2e9525
GS
1826 huge_ptep_set_wrprotect(src, addr, src_pte);
1827 entry = huge_ptep_get(src_pte);
1c59827d
HD
1828 ptepage = pte_page(entry);
1829 get_page(ptepage);
1c59827d
HD
1830 set_huge_pte_at(dst, addr, dst_pte, entry);
1831 }
1832 spin_unlock(&src->page_table_lock);
c74df32c 1833 spin_unlock(&dst->page_table_lock);
63551ae0
DG
1834 }
1835 return 0;
1836
1837nomem:
1838 return -ENOMEM;
1839}
1840
502717f4 1841void __unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
04f2cbe3 1842 unsigned long end, struct page *ref_page)
63551ae0
DG
1843{
1844 struct mm_struct *mm = vma->vm_mm;
1845 unsigned long address;
c7546f8f 1846 pte_t *ptep;
63551ae0
DG
1847 pte_t pte;
1848 struct page *page;
fe1668ae 1849 struct page *tmp;
a5516438
AK
1850 struct hstate *h = hstate_vma(vma);
1851 unsigned long sz = huge_page_size(h);
1852
c0a499c2
CK
1853 /*
1854 * A page gathering list, protected by per file i_mmap_lock. The
1855 * lock is used to avoid list corruption from multiple unmapping
1856 * of the same page since we are using page->lru.
1857 */
fe1668ae 1858 LIST_HEAD(page_list);
63551ae0
DG
1859
1860 WARN_ON(!is_vm_hugetlb_page(vma));
a5516438
AK
1861 BUG_ON(start & ~huge_page_mask(h));
1862 BUG_ON(end & ~huge_page_mask(h));
63551ae0 1863
cddb8a5c 1864 mmu_notifier_invalidate_range_start(mm, start, end);
508034a3 1865 spin_lock(&mm->page_table_lock);
a5516438 1866 for (address = start; address < end; address += sz) {
c7546f8f 1867 ptep = huge_pte_offset(mm, address);
4c887265 1868 if (!ptep)
c7546f8f
DG
1869 continue;
1870
39dde65c
CK
1871 if (huge_pmd_unshare(mm, &address, ptep))
1872 continue;
1873
04f2cbe3
MG
1874 /*
1875 * If a reference page is supplied, it is because a specific
1876 * page is being unmapped, not a range. Ensure the page we
1877 * are about to unmap is the actual page of interest.
1878 */
1879 if (ref_page) {
1880 pte = huge_ptep_get(ptep);
1881 if (huge_pte_none(pte))
1882 continue;
1883 page = pte_page(pte);
1884 if (page != ref_page)
1885 continue;
1886
1887 /*
1888 * Mark the VMA as having unmapped its page so that
1889 * future faults in this VMA will fail rather than
1890 * looking like data was lost
1891 */
1892 set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
1893 }
1894
c7546f8f 1895 pte = huge_ptep_get_and_clear(mm, address, ptep);
7f2e9525 1896 if (huge_pte_none(pte))
63551ae0 1897 continue;
c7546f8f 1898
63551ae0 1899 page = pte_page(pte);
6649a386
KC
1900 if (pte_dirty(pte))
1901 set_page_dirty(page);
fe1668ae 1902 list_add(&page->lru, &page_list);
63551ae0 1903 }
1da177e4 1904 spin_unlock(&mm->page_table_lock);
508034a3 1905 flush_tlb_range(vma, start, end);
cddb8a5c 1906 mmu_notifier_invalidate_range_end(mm, start, end);
fe1668ae
CK
1907 list_for_each_entry_safe(page, tmp, &page_list, lru) {
1908 list_del(&page->lru);
1909 put_page(page);
1910 }
1da177e4 1911}
63551ae0 1912
502717f4 1913void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
04f2cbe3 1914 unsigned long end, struct page *ref_page)
502717f4 1915{
a137e1cc
AK
1916 spin_lock(&vma->vm_file->f_mapping->i_mmap_lock);
1917 __unmap_hugepage_range(vma, start, end, ref_page);
1918 spin_unlock(&vma->vm_file->f_mapping->i_mmap_lock);
502717f4
CK
1919}
1920
04f2cbe3
MG
1921/*
1922 * This is called when the original mapper is failing to COW a MAP_PRIVATE
1923 * mappping it owns the reserve page for. The intention is to unmap the page
1924 * from other VMAs and let the children be SIGKILLed if they are faulting the
1925 * same region.
1926 */
2a4b3ded
HH
1927static int unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
1928 struct page *page, unsigned long address)
04f2cbe3 1929{
7526674d 1930 struct hstate *h = hstate_vma(vma);
04f2cbe3
MG
1931 struct vm_area_struct *iter_vma;
1932 struct address_space *mapping;
1933 struct prio_tree_iter iter;
1934 pgoff_t pgoff;
1935
1936 /*
1937 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
1938 * from page cache lookup which is in HPAGE_SIZE units.
1939 */
7526674d 1940 address = address & huge_page_mask(h);
04f2cbe3
MG
1941 pgoff = ((address - vma->vm_start) >> PAGE_SHIFT)
1942 + (vma->vm_pgoff >> PAGE_SHIFT);
1943 mapping = (struct address_space *)page_private(page);
1944
1945 vma_prio_tree_foreach(iter_vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
1946 /* Do not unmap the current VMA */
1947 if (iter_vma == vma)
1948 continue;
1949
1950 /*
1951 * Unmap the page from other VMAs without their own reserves.
1952 * They get marked to be SIGKILLed if they fault in these
1953 * areas. This is because a future no-page fault on this VMA
1954 * could insert a zeroed page instead of the data existing
1955 * from the time of fork. This would look like data corruption
1956 */
1957 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
1958 unmap_hugepage_range(iter_vma,
7526674d 1959 address, address + huge_page_size(h),
04f2cbe3
MG
1960 page);
1961 }
1962
1963 return 1;
1964}
1965
1e8f889b 1966static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
04f2cbe3
MG
1967 unsigned long address, pte_t *ptep, pte_t pte,
1968 struct page *pagecache_page)
1e8f889b 1969{
a5516438 1970 struct hstate *h = hstate_vma(vma);
1e8f889b 1971 struct page *old_page, *new_page;
79ac6ba4 1972 int avoidcopy;
04f2cbe3 1973 int outside_reserve = 0;
1e8f889b
DG
1974
1975 old_page = pte_page(pte);
1976
04f2cbe3 1977retry_avoidcopy:
1e8f889b
DG
1978 /* If no-one else is actually using this page, avoid the copy
1979 * and just make the page writable */
1980 avoidcopy = (page_count(old_page) == 1);
1981 if (avoidcopy) {
1982 set_huge_ptep_writable(vma, address, ptep);
83c54070 1983 return 0;
1e8f889b
DG
1984 }
1985
04f2cbe3
MG
1986 /*
1987 * If the process that created a MAP_PRIVATE mapping is about to
1988 * perform a COW due to a shared page count, attempt to satisfy
1989 * the allocation without using the existing reserves. The pagecache
1990 * page is used to determine if the reserve at this address was
1991 * consumed or not. If reserves were used, a partial faulted mapping
1992 * at the time of fork() could consume its reserves on COW instead
1993 * of the full address range.
1994 */
f83a275d 1995 if (!(vma->vm_flags & VM_MAYSHARE) &&
04f2cbe3
MG
1996 is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
1997 old_page != pagecache_page)
1998 outside_reserve = 1;
1999
1e8f889b 2000 page_cache_get(old_page);
04f2cbe3 2001 new_page = alloc_huge_page(vma, address, outside_reserve);
1e8f889b 2002
2fc39cec 2003 if (IS_ERR(new_page)) {
1e8f889b 2004 page_cache_release(old_page);
04f2cbe3
MG
2005
2006 /*
2007 * If a process owning a MAP_PRIVATE mapping fails to COW,
2008 * it is due to references held by a child and an insufficient
2009 * huge page pool. To guarantee the original mappers
2010 * reliability, unmap the page from child processes. The child
2011 * may get SIGKILLed if it later faults.
2012 */
2013 if (outside_reserve) {
2014 BUG_ON(huge_pte_none(pte));
2015 if (unmap_ref_private(mm, vma, old_page, address)) {
2016 BUG_ON(page_count(old_page) != 1);
2017 BUG_ON(huge_pte_none(pte));
2018 goto retry_avoidcopy;
2019 }
2020 WARN_ON_ONCE(1);
2021 }
2022
2fc39cec 2023 return -PTR_ERR(new_page);
1e8f889b
DG
2024 }
2025
2026 spin_unlock(&mm->page_table_lock);
9de455b2 2027 copy_huge_page(new_page, old_page, address, vma);
0ed361de 2028 __SetPageUptodate(new_page);
1e8f889b
DG
2029 spin_lock(&mm->page_table_lock);
2030
a5516438 2031 ptep = huge_pte_offset(mm, address & huge_page_mask(h));
7f2e9525 2032 if (likely(pte_same(huge_ptep_get(ptep), pte))) {
1e8f889b 2033 /* Break COW */
8fe627ec 2034 huge_ptep_clear_flush(vma, address, ptep);
1e8f889b
DG
2035 set_huge_pte_at(mm, address, ptep,
2036 make_huge_pte(vma, new_page, 1));
2037 /* Make the old page be freed below */
2038 new_page = old_page;
2039 }
2040 page_cache_release(new_page);
2041 page_cache_release(old_page);
83c54070 2042 return 0;
1e8f889b
DG
2043}
2044
04f2cbe3 2045/* Return the pagecache page at a given address within a VMA */
a5516438
AK
2046static struct page *hugetlbfs_pagecache_page(struct hstate *h,
2047 struct vm_area_struct *vma, unsigned long address)
04f2cbe3
MG
2048{
2049 struct address_space *mapping;
e7c4b0bf 2050 pgoff_t idx;
04f2cbe3
MG
2051
2052 mapping = vma->vm_file->f_mapping;
a5516438 2053 idx = vma_hugecache_offset(h, vma, address);
04f2cbe3
MG
2054
2055 return find_lock_page(mapping, idx);
2056}
2057
3ae77f43
HD
2058/*
2059 * Return whether there is a pagecache page to back given address within VMA.
2060 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
2061 */
2062static bool hugetlbfs_pagecache_present(struct hstate *h,
2a15efc9
HD
2063 struct vm_area_struct *vma, unsigned long address)
2064{
2065 struct address_space *mapping;
2066 pgoff_t idx;
2067 struct page *page;
2068
2069 mapping = vma->vm_file->f_mapping;
2070 idx = vma_hugecache_offset(h, vma, address);
2071
2072 page = find_get_page(mapping, idx);
2073 if (page)
2074 put_page(page);
2075 return page != NULL;
2076}
2077
a1ed3dda 2078static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
788c7df4 2079 unsigned long address, pte_t *ptep, unsigned int flags)
ac9b9c66 2080{
a5516438 2081 struct hstate *h = hstate_vma(vma);
ac9b9c66 2082 int ret = VM_FAULT_SIGBUS;
e7c4b0bf 2083 pgoff_t idx;
4c887265 2084 unsigned long size;
4c887265
AL
2085 struct page *page;
2086 struct address_space *mapping;
1e8f889b 2087 pte_t new_pte;
4c887265 2088
04f2cbe3
MG
2089 /*
2090 * Currently, we are forced to kill the process in the event the
2091 * original mapper has unmapped pages from the child due to a failed
2092 * COW. Warn that such a situation has occured as it may not be obvious
2093 */
2094 if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
2095 printk(KERN_WARNING
2096 "PID %d killed due to inadequate hugepage pool\n",
2097 current->pid);
2098 return ret;
2099 }
2100
4c887265 2101 mapping = vma->vm_file->f_mapping;
a5516438 2102 idx = vma_hugecache_offset(h, vma, address);
4c887265
AL
2103
2104 /*
2105 * Use page lock to guard against racing truncation
2106 * before we get page_table_lock.
2107 */
6bda666a
CL
2108retry:
2109 page = find_lock_page(mapping, idx);
2110 if (!page) {
a5516438 2111 size = i_size_read(mapping->host) >> huge_page_shift(h);
ebed4bfc
HD
2112 if (idx >= size)
2113 goto out;
04f2cbe3 2114 page = alloc_huge_page(vma, address, 0);
2fc39cec
AL
2115 if (IS_ERR(page)) {
2116 ret = -PTR_ERR(page);
6bda666a
CL
2117 goto out;
2118 }
a5516438 2119 clear_huge_page(page, address, huge_page_size(h));
0ed361de 2120 __SetPageUptodate(page);
ac9b9c66 2121
f83a275d 2122 if (vma->vm_flags & VM_MAYSHARE) {
6bda666a 2123 int err;
45c682a6 2124 struct inode *inode = mapping->host;
6bda666a
CL
2125
2126 err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
2127 if (err) {
2128 put_page(page);
6bda666a
CL
2129 if (err == -EEXIST)
2130 goto retry;
2131 goto out;
2132 }
45c682a6
KC
2133
2134 spin_lock(&inode->i_lock);
a5516438 2135 inode->i_blocks += blocks_per_huge_page(h);
45c682a6 2136 spin_unlock(&inode->i_lock);
6bda666a
CL
2137 } else
2138 lock_page(page);
2139 }
1e8f889b 2140
57303d80
AW
2141 /*
2142 * If we are going to COW a private mapping later, we examine the
2143 * pending reservations for this page now. This will ensure that
2144 * any allocations necessary to record that reservation occur outside
2145 * the spinlock.
2146 */
788c7df4 2147 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED))
2b26736c
AW
2148 if (vma_needs_reservation(h, vma, address) < 0) {
2149 ret = VM_FAULT_OOM;
2150 goto backout_unlocked;
2151 }
57303d80 2152
ac9b9c66 2153 spin_lock(&mm->page_table_lock);
a5516438 2154 size = i_size_read(mapping->host) >> huge_page_shift(h);
4c887265
AL
2155 if (idx >= size)
2156 goto backout;
2157
83c54070 2158 ret = 0;
7f2e9525 2159 if (!huge_pte_none(huge_ptep_get(ptep)))
4c887265
AL
2160 goto backout;
2161
1e8f889b
DG
2162 new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
2163 && (vma->vm_flags & VM_SHARED)));
2164 set_huge_pte_at(mm, address, ptep, new_pte);
2165
788c7df4 2166 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
1e8f889b 2167 /* Optimization, do the COW without a second fault */
04f2cbe3 2168 ret = hugetlb_cow(mm, vma, address, ptep, new_pte, page);
1e8f889b
DG
2169 }
2170
ac9b9c66 2171 spin_unlock(&mm->page_table_lock);
4c887265
AL
2172 unlock_page(page);
2173out:
ac9b9c66 2174 return ret;
4c887265
AL
2175
2176backout:
2177 spin_unlock(&mm->page_table_lock);
2b26736c 2178backout_unlocked:
4c887265
AL
2179 unlock_page(page);
2180 put_page(page);
2181 goto out;
ac9b9c66
HD
2182}
2183
86e5216f 2184int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
788c7df4 2185 unsigned long address, unsigned int flags)
86e5216f
AL
2186{
2187 pte_t *ptep;
2188 pte_t entry;
1e8f889b 2189 int ret;
57303d80 2190 struct page *pagecache_page = NULL;
3935baa9 2191 static DEFINE_MUTEX(hugetlb_instantiation_mutex);
a5516438 2192 struct hstate *h = hstate_vma(vma);
86e5216f 2193
a5516438 2194 ptep = huge_pte_alloc(mm, address, huge_page_size(h));
86e5216f
AL
2195 if (!ptep)
2196 return VM_FAULT_OOM;
2197
3935baa9
DG
2198 /*
2199 * Serialize hugepage allocation and instantiation, so that we don't
2200 * get spurious allocation failures if two CPUs race to instantiate
2201 * the same page in the page cache.
2202 */
2203 mutex_lock(&hugetlb_instantiation_mutex);
7f2e9525
GS
2204 entry = huge_ptep_get(ptep);
2205 if (huge_pte_none(entry)) {
788c7df4 2206 ret = hugetlb_no_page(mm, vma, address, ptep, flags);
b4d1d99f 2207 goto out_mutex;
3935baa9 2208 }
86e5216f 2209
83c54070 2210 ret = 0;
1e8f889b 2211
57303d80
AW
2212 /*
2213 * If we are going to COW the mapping later, we examine the pending
2214 * reservations for this page now. This will ensure that any
2215 * allocations necessary to record that reservation occur outside the
2216 * spinlock. For private mappings, we also lookup the pagecache
2217 * page now as it is used to determine if a reservation has been
2218 * consumed.
2219 */
788c7df4 2220 if ((flags & FAULT_FLAG_WRITE) && !pte_write(entry)) {
2b26736c
AW
2221 if (vma_needs_reservation(h, vma, address) < 0) {
2222 ret = VM_FAULT_OOM;
b4d1d99f 2223 goto out_mutex;
2b26736c 2224 }
57303d80 2225
f83a275d 2226 if (!(vma->vm_flags & VM_MAYSHARE))
57303d80
AW
2227 pagecache_page = hugetlbfs_pagecache_page(h,
2228 vma, address);
2229 }
2230
1e8f889b
DG
2231 spin_lock(&mm->page_table_lock);
2232 /* Check for a racing update before calling hugetlb_cow */
b4d1d99f
DG
2233 if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
2234 goto out_page_table_lock;
2235
2236
788c7df4 2237 if (flags & FAULT_FLAG_WRITE) {
b4d1d99f 2238 if (!pte_write(entry)) {
57303d80
AW
2239 ret = hugetlb_cow(mm, vma, address, ptep, entry,
2240 pagecache_page);
b4d1d99f
DG
2241 goto out_page_table_lock;
2242 }
2243 entry = pte_mkdirty(entry);
2244 }
2245 entry = pte_mkyoung(entry);
788c7df4
HD
2246 if (huge_ptep_set_access_flags(vma, address, ptep, entry,
2247 flags & FAULT_FLAG_WRITE))
b4d1d99f
DG
2248 update_mmu_cache(vma, address, entry);
2249
2250out_page_table_lock:
1e8f889b 2251 spin_unlock(&mm->page_table_lock);
57303d80
AW
2252
2253 if (pagecache_page) {
2254 unlock_page(pagecache_page);
2255 put_page(pagecache_page);
2256 }
2257
b4d1d99f 2258out_mutex:
3935baa9 2259 mutex_unlock(&hugetlb_instantiation_mutex);
1e8f889b
DG
2260
2261 return ret;
86e5216f
AL
2262}
2263
ceb86879
AK
2264/* Can be overriden by architectures */
2265__attribute__((weak)) struct page *
2266follow_huge_pud(struct mm_struct *mm, unsigned long address,
2267 pud_t *pud, int write)
2268{
2269 BUG();
2270 return NULL;
2271}
2272
63551ae0
DG
2273int follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
2274 struct page **pages, struct vm_area_struct **vmas,
5b23dbe8 2275 unsigned long *position, int *length, int i,
2a15efc9 2276 unsigned int flags)
63551ae0 2277{
d5d4b0aa
CK
2278 unsigned long pfn_offset;
2279 unsigned long vaddr = *position;
63551ae0 2280 int remainder = *length;
a5516438 2281 struct hstate *h = hstate_vma(vma);
63551ae0 2282
1c59827d 2283 spin_lock(&mm->page_table_lock);
63551ae0 2284 while (vaddr < vma->vm_end && remainder) {
4c887265 2285 pte_t *pte;
2a15efc9 2286 int absent;
4c887265 2287 struct page *page;
63551ae0 2288
4c887265
AL
2289 /*
2290 * Some archs (sparc64, sh*) have multiple pte_ts to
2a15efc9 2291 * each hugepage. We have to make sure we get the
4c887265
AL
2292 * first, for the page indexing below to work.
2293 */
a5516438 2294 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h));
2a15efc9
HD
2295 absent = !pte || huge_pte_none(huge_ptep_get(pte));
2296
2297 /*
2298 * When coredumping, it suits get_dump_page if we just return
3ae77f43
HD
2299 * an error where there's an empty slot with no huge pagecache
2300 * to back it. This way, we avoid allocating a hugepage, and
2301 * the sparse dumpfile avoids allocating disk blocks, but its
2302 * huge holes still show up with zeroes where they need to be.
2a15efc9 2303 */
3ae77f43
HD
2304 if (absent && (flags & FOLL_DUMP) &&
2305 !hugetlbfs_pagecache_present(h, vma, vaddr)) {
2a15efc9
HD
2306 remainder = 0;
2307 break;
2308 }
63551ae0 2309
2a15efc9
HD
2310 if (absent ||
2311 ((flags & FOLL_WRITE) && !pte_write(huge_ptep_get(pte)))) {
4c887265 2312 int ret;
63551ae0 2313
4c887265 2314 spin_unlock(&mm->page_table_lock);
2a15efc9
HD
2315 ret = hugetlb_fault(mm, vma, vaddr,
2316 (flags & FOLL_WRITE) ? FAULT_FLAG_WRITE : 0);
4c887265 2317 spin_lock(&mm->page_table_lock);
a89182c7 2318 if (!(ret & VM_FAULT_ERROR))
4c887265 2319 continue;
63551ae0 2320
4c887265 2321 remainder = 0;
4c887265
AL
2322 break;
2323 }
2324
a5516438 2325 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
7f2e9525 2326 page = pte_page(huge_ptep_get(pte));
d5d4b0aa 2327same_page:
d6692183 2328 if (pages) {
2a15efc9 2329 pages[i] = mem_map_offset(page, pfn_offset);
4b2e38ad 2330 get_page(pages[i]);
d6692183 2331 }
63551ae0
DG
2332
2333 if (vmas)
2334 vmas[i] = vma;
2335
2336 vaddr += PAGE_SIZE;
d5d4b0aa 2337 ++pfn_offset;
63551ae0
DG
2338 --remainder;
2339 ++i;
d5d4b0aa 2340 if (vaddr < vma->vm_end && remainder &&
a5516438 2341 pfn_offset < pages_per_huge_page(h)) {
d5d4b0aa
CK
2342 /*
2343 * We use pfn_offset to avoid touching the pageframes
2344 * of this compound page.
2345 */
2346 goto same_page;
2347 }
63551ae0 2348 }
1c59827d 2349 spin_unlock(&mm->page_table_lock);
63551ae0
DG
2350 *length = remainder;
2351 *position = vaddr;
2352
2a15efc9 2353 return i ? i : -EFAULT;
63551ae0 2354}
8f860591
ZY
2355
2356void hugetlb_change_protection(struct vm_area_struct *vma,
2357 unsigned long address, unsigned long end, pgprot_t newprot)
2358{
2359 struct mm_struct *mm = vma->vm_mm;
2360 unsigned long start = address;
2361 pte_t *ptep;
2362 pte_t pte;
a5516438 2363 struct hstate *h = hstate_vma(vma);
8f860591
ZY
2364
2365 BUG_ON(address >= end);
2366 flush_cache_range(vma, address, end);
2367
39dde65c 2368 spin_lock(&vma->vm_file->f_mapping->i_mmap_lock);
8f860591 2369 spin_lock(&mm->page_table_lock);
a5516438 2370 for (; address < end; address += huge_page_size(h)) {
8f860591
ZY
2371 ptep = huge_pte_offset(mm, address);
2372 if (!ptep)
2373 continue;
39dde65c
CK
2374 if (huge_pmd_unshare(mm, &address, ptep))
2375 continue;
7f2e9525 2376 if (!huge_pte_none(huge_ptep_get(ptep))) {
8f860591
ZY
2377 pte = huge_ptep_get_and_clear(mm, address, ptep);
2378 pte = pte_mkhuge(pte_modify(pte, newprot));
2379 set_huge_pte_at(mm, address, ptep, pte);
8f860591
ZY
2380 }
2381 }
2382 spin_unlock(&mm->page_table_lock);
39dde65c 2383 spin_unlock(&vma->vm_file->f_mapping->i_mmap_lock);
8f860591
ZY
2384
2385 flush_tlb_range(vma, start, end);
2386}
2387
a1e78772
MG
2388int hugetlb_reserve_pages(struct inode *inode,
2389 long from, long to,
5a6fe125
MG
2390 struct vm_area_struct *vma,
2391 int acctflag)
e4e574b7 2392{
17c9d12e 2393 long ret, chg;
a5516438 2394 struct hstate *h = hstate_inode(inode);
e4e574b7 2395
17c9d12e
MG
2396 /*
2397 * Only apply hugepage reservation if asked. At fault time, an
2398 * attempt will be made for VM_NORESERVE to allocate a page
2399 * and filesystem quota without using reserves
2400 */
2401 if (acctflag & VM_NORESERVE)
2402 return 0;
2403
a1e78772
MG
2404 /*
2405 * Shared mappings base their reservation on the number of pages that
2406 * are already allocated on behalf of the file. Private mappings need
2407 * to reserve the full area even if read-only as mprotect() may be
2408 * called to make the mapping read-write. Assume !vma is a shm mapping
2409 */
f83a275d 2410 if (!vma || vma->vm_flags & VM_MAYSHARE)
a1e78772 2411 chg = region_chg(&inode->i_mapping->private_list, from, to);
17c9d12e
MG
2412 else {
2413 struct resv_map *resv_map = resv_map_alloc();
2414 if (!resv_map)
2415 return -ENOMEM;
2416
a1e78772 2417 chg = to - from;
84afd99b 2418
17c9d12e
MG
2419 set_vma_resv_map(vma, resv_map);
2420 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
2421 }
2422
e4e574b7
AL
2423 if (chg < 0)
2424 return chg;
8a630112 2425
17c9d12e 2426 /* There must be enough filesystem quota for the mapping */
90d8b7e6
AL
2427 if (hugetlb_get_quota(inode->i_mapping, chg))
2428 return -ENOSPC;
5a6fe125
MG
2429
2430 /*
17c9d12e
MG
2431 * Check enough hugepages are available for the reservation.
2432 * Hand back the quota if there are not
5a6fe125 2433 */
a5516438 2434 ret = hugetlb_acct_memory(h, chg);
68842c9b
KC
2435 if (ret < 0) {
2436 hugetlb_put_quota(inode->i_mapping, chg);
a43a8c39 2437 return ret;
68842c9b 2438 }
17c9d12e
MG
2439
2440 /*
2441 * Account for the reservations made. Shared mappings record regions
2442 * that have reservations as they are shared by multiple VMAs.
2443 * When the last VMA disappears, the region map says how much
2444 * the reservation was and the page cache tells how much of
2445 * the reservation was consumed. Private mappings are per-VMA and
2446 * only the consumed reservations are tracked. When the VMA
2447 * disappears, the original reservation is the VMA size and the
2448 * consumed reservations are stored in the map. Hence, nothing
2449 * else has to be done for private mappings here
2450 */
f83a275d 2451 if (!vma || vma->vm_flags & VM_MAYSHARE)
a1e78772 2452 region_add(&inode->i_mapping->private_list, from, to);
a43a8c39
CK
2453 return 0;
2454}
2455
2456void hugetlb_unreserve_pages(struct inode *inode, long offset, long freed)
2457{
a5516438 2458 struct hstate *h = hstate_inode(inode);
a43a8c39 2459 long chg = region_truncate(&inode->i_mapping->private_list, offset);
45c682a6
KC
2460
2461 spin_lock(&inode->i_lock);
e4c6f8be 2462 inode->i_blocks -= (blocks_per_huge_page(h) * freed);
45c682a6
KC
2463 spin_unlock(&inode->i_lock);
2464
90d8b7e6 2465 hugetlb_put_quota(inode->i_mapping, (chg - freed));
a5516438 2466 hugetlb_acct_memory(h, -(chg - freed));
a43a8c39 2467}