mm, hugetlb: remove redundant list_empty check in gather_surplus_pages()
[linux-2.6-block.git] / mm / hugetlb.c
CommitLineData
1da177e4
LT
1/*
2 * Generic hugetlb support.
6d49e352 3 * (C) Nadia Yvette Chambers, April 2004
1da177e4 4 */
1da177e4
LT
5#include <linux/list.h>
6#include <linux/init.h>
7#include <linux/module.h>
8#include <linux/mm.h>
e1759c21 9#include <linux/seq_file.h>
1da177e4
LT
10#include <linux/sysctl.h>
11#include <linux/highmem.h>
cddb8a5c 12#include <linux/mmu_notifier.h>
1da177e4 13#include <linux/nodemask.h>
63551ae0 14#include <linux/pagemap.h>
5da7ca86 15#include <linux/mempolicy.h>
aea47ff3 16#include <linux/cpuset.h>
3935baa9 17#include <linux/mutex.h>
aa888a74 18#include <linux/bootmem.h>
a3437870 19#include <linux/sysfs.h>
5a0e3ad6 20#include <linux/slab.h>
0fe6e20b 21#include <linux/rmap.h>
fd6a03ed
NH
22#include <linux/swap.h>
23#include <linux/swapops.h>
d6606683 24
63551ae0
DG
25#include <asm/page.h>
26#include <asm/pgtable.h>
24669e58 27#include <asm/tlb.h>
63551ae0 28
24669e58 29#include <linux/io.h>
63551ae0 30#include <linux/hugetlb.h>
9dd540e2 31#include <linux/hugetlb_cgroup.h>
9a305230 32#include <linux/node.h>
7835e98b 33#include "internal.h"
1da177e4
LT
34
35const unsigned long hugetlb_zero = 0, hugetlb_infinity = ~0UL;
396faf03
MG
36static gfp_t htlb_alloc_mask = GFP_HIGHUSER;
37unsigned long hugepages_treat_as_movable;
a5516438 38
c3f38a38 39int hugetlb_max_hstate __read_mostly;
e5ff2159
AK
40unsigned int default_hstate_idx;
41struct hstate hstates[HUGE_MAX_HSTATE];
42
53ba51d2
JT
43__initdata LIST_HEAD(huge_boot_pages);
44
e5ff2159
AK
45/* for command line parsing */
46static struct hstate * __initdata parsed_hstate;
47static unsigned long __initdata default_hstate_max_huge_pages;
e11bfbfc 48static unsigned long __initdata default_hstate_size;
e5ff2159 49
3935baa9
DG
50/*
51 * Protects updates to hugepage_freelists, nr_huge_pages, and free_huge_pages
52 */
c3f38a38 53DEFINE_SPINLOCK(hugetlb_lock);
0bd0f9fb 54
90481622
DG
55static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
56{
57 bool free = (spool->count == 0) && (spool->used_hpages == 0);
58
59 spin_unlock(&spool->lock);
60
61 /* If no pages are used, and no other handles to the subpool
62 * remain, free the subpool the subpool remain */
63 if (free)
64 kfree(spool);
65}
66
67struct hugepage_subpool *hugepage_new_subpool(long nr_blocks)
68{
69 struct hugepage_subpool *spool;
70
71 spool = kmalloc(sizeof(*spool), GFP_KERNEL);
72 if (!spool)
73 return NULL;
74
75 spin_lock_init(&spool->lock);
76 spool->count = 1;
77 spool->max_hpages = nr_blocks;
78 spool->used_hpages = 0;
79
80 return spool;
81}
82
83void hugepage_put_subpool(struct hugepage_subpool *spool)
84{
85 spin_lock(&spool->lock);
86 BUG_ON(!spool->count);
87 spool->count--;
88 unlock_or_release_subpool(spool);
89}
90
91static int hugepage_subpool_get_pages(struct hugepage_subpool *spool,
92 long delta)
93{
94 int ret = 0;
95
96 if (!spool)
97 return 0;
98
99 spin_lock(&spool->lock);
100 if ((spool->used_hpages + delta) <= spool->max_hpages) {
101 spool->used_hpages += delta;
102 } else {
103 ret = -ENOMEM;
104 }
105 spin_unlock(&spool->lock);
106
107 return ret;
108}
109
110static void hugepage_subpool_put_pages(struct hugepage_subpool *spool,
111 long delta)
112{
113 if (!spool)
114 return;
115
116 spin_lock(&spool->lock);
117 spool->used_hpages -= delta;
118 /* If hugetlbfs_put_super couldn't free spool due to
119 * an outstanding quota reference, free it now. */
120 unlock_or_release_subpool(spool);
121}
122
123static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
124{
125 return HUGETLBFS_SB(inode->i_sb)->spool;
126}
127
128static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
129{
496ad9aa 130 return subpool_inode(file_inode(vma->vm_file));
90481622
DG
131}
132
96822904
AW
133/*
134 * Region tracking -- allows tracking of reservations and instantiated pages
135 * across the pages in a mapping.
84afd99b
AW
136 *
137 * The region data structures are protected by a combination of the mmap_sem
c748c262 138 * and the hugetlb_instantiation_mutex. To access or modify a region the caller
84afd99b 139 * must either hold the mmap_sem for write, or the mmap_sem for read and
c748c262 140 * the hugetlb_instantiation_mutex:
84afd99b 141 *
32f84528 142 * down_write(&mm->mmap_sem);
84afd99b 143 * or
32f84528
CF
144 * down_read(&mm->mmap_sem);
145 * mutex_lock(&hugetlb_instantiation_mutex);
96822904
AW
146 */
147struct file_region {
148 struct list_head link;
149 long from;
150 long to;
151};
152
153static long region_add(struct list_head *head, long f, long t)
154{
155 struct file_region *rg, *nrg, *trg;
156
157 /* Locate the region we are either in or before. */
158 list_for_each_entry(rg, head, link)
159 if (f <= rg->to)
160 break;
161
162 /* Round our left edge to the current segment if it encloses us. */
163 if (f > rg->from)
164 f = rg->from;
165
166 /* Check for and consume any regions we now overlap with. */
167 nrg = rg;
168 list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
169 if (&rg->link == head)
170 break;
171 if (rg->from > t)
172 break;
173
174 /* If this area reaches higher then extend our area to
175 * include it completely. If this is not the first area
176 * which we intend to reuse, free it. */
177 if (rg->to > t)
178 t = rg->to;
179 if (rg != nrg) {
180 list_del(&rg->link);
181 kfree(rg);
182 }
183 }
184 nrg->from = f;
185 nrg->to = t;
186 return 0;
187}
188
189static long region_chg(struct list_head *head, long f, long t)
190{
191 struct file_region *rg, *nrg;
192 long chg = 0;
193
194 /* Locate the region we are before or in. */
195 list_for_each_entry(rg, head, link)
196 if (f <= rg->to)
197 break;
198
199 /* If we are below the current region then a new region is required.
200 * Subtle, allocate a new region at the position but make it zero
201 * size such that we can guarantee to record the reservation. */
202 if (&rg->link == head || t < rg->from) {
203 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
204 if (!nrg)
205 return -ENOMEM;
206 nrg->from = f;
207 nrg->to = f;
208 INIT_LIST_HEAD(&nrg->link);
209 list_add(&nrg->link, rg->link.prev);
210
211 return t - f;
212 }
213
214 /* Round our left edge to the current segment if it encloses us. */
215 if (f > rg->from)
216 f = rg->from;
217 chg = t - f;
218
219 /* Check for and consume any regions we now overlap with. */
220 list_for_each_entry(rg, rg->link.prev, link) {
221 if (&rg->link == head)
222 break;
223 if (rg->from > t)
224 return chg;
225
25985edc 226 /* We overlap with this area, if it extends further than
96822904
AW
227 * us then we must extend ourselves. Account for its
228 * existing reservation. */
229 if (rg->to > t) {
230 chg += rg->to - t;
231 t = rg->to;
232 }
233 chg -= rg->to - rg->from;
234 }
235 return chg;
236}
237
238static long region_truncate(struct list_head *head, long end)
239{
240 struct file_region *rg, *trg;
241 long chg = 0;
242
243 /* Locate the region we are either in or before. */
244 list_for_each_entry(rg, head, link)
245 if (end <= rg->to)
246 break;
247 if (&rg->link == head)
248 return 0;
249
250 /* If we are in the middle of a region then adjust it. */
251 if (end > rg->from) {
252 chg = rg->to - end;
253 rg->to = end;
254 rg = list_entry(rg->link.next, typeof(*rg), link);
255 }
256
257 /* Drop any remaining regions. */
258 list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
259 if (&rg->link == head)
260 break;
261 chg += rg->to - rg->from;
262 list_del(&rg->link);
263 kfree(rg);
264 }
265 return chg;
266}
267
84afd99b
AW
268static long region_count(struct list_head *head, long f, long t)
269{
270 struct file_region *rg;
271 long chg = 0;
272
273 /* Locate each segment we overlap with, and count that overlap. */
274 list_for_each_entry(rg, head, link) {
f2135a4a
WSH
275 long seg_from;
276 long seg_to;
84afd99b
AW
277
278 if (rg->to <= f)
279 continue;
280 if (rg->from >= t)
281 break;
282
283 seg_from = max(rg->from, f);
284 seg_to = min(rg->to, t);
285
286 chg += seg_to - seg_from;
287 }
288
289 return chg;
290}
291
e7c4b0bf
AW
292/*
293 * Convert the address within this vma to the page offset within
294 * the mapping, in pagecache page units; huge pages here.
295 */
a5516438
AK
296static pgoff_t vma_hugecache_offset(struct hstate *h,
297 struct vm_area_struct *vma, unsigned long address)
e7c4b0bf 298{
a5516438
AK
299 return ((address - vma->vm_start) >> huge_page_shift(h)) +
300 (vma->vm_pgoff >> huge_page_order(h));
e7c4b0bf
AW
301}
302
0fe6e20b
NH
303pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
304 unsigned long address)
305{
306 return vma_hugecache_offset(hstate_vma(vma), vma, address);
307}
308
08fba699
MG
309/*
310 * Return the size of the pages allocated when backing a VMA. In the majority
311 * cases this will be same size as used by the page table entries.
312 */
313unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
314{
315 struct hstate *hstate;
316
317 if (!is_vm_hugetlb_page(vma))
318 return PAGE_SIZE;
319
320 hstate = hstate_vma(vma);
321
2415cf12 322 return 1UL << huge_page_shift(hstate);
08fba699 323}
f340ca0f 324EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
08fba699 325
3340289d
MG
326/*
327 * Return the page size being used by the MMU to back a VMA. In the majority
328 * of cases, the page size used by the kernel matches the MMU size. On
329 * architectures where it differs, an architecture-specific version of this
330 * function is required.
331 */
332#ifndef vma_mmu_pagesize
333unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
334{
335 return vma_kernel_pagesize(vma);
336}
337#endif
338
84afd99b
AW
339/*
340 * Flags for MAP_PRIVATE reservations. These are stored in the bottom
341 * bits of the reservation map pointer, which are always clear due to
342 * alignment.
343 */
344#define HPAGE_RESV_OWNER (1UL << 0)
345#define HPAGE_RESV_UNMAPPED (1UL << 1)
04f2cbe3 346#define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
84afd99b 347
a1e78772
MG
348/*
349 * These helpers are used to track how many pages are reserved for
350 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
351 * is guaranteed to have their future faults succeed.
352 *
353 * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
354 * the reserve counters are updated with the hugetlb_lock held. It is safe
355 * to reset the VMA at fork() time as it is not in use yet and there is no
356 * chance of the global counters getting corrupted as a result of the values.
84afd99b
AW
357 *
358 * The private mapping reservation is represented in a subtly different
359 * manner to a shared mapping. A shared mapping has a region map associated
360 * with the underlying file, this region map represents the backing file
361 * pages which have ever had a reservation assigned which this persists even
362 * after the page is instantiated. A private mapping has a region map
363 * associated with the original mmap which is attached to all VMAs which
364 * reference it, this region map represents those offsets which have consumed
365 * reservation ie. where pages have been instantiated.
a1e78772 366 */
e7c4b0bf
AW
367static unsigned long get_vma_private_data(struct vm_area_struct *vma)
368{
369 return (unsigned long)vma->vm_private_data;
370}
371
372static void set_vma_private_data(struct vm_area_struct *vma,
373 unsigned long value)
374{
375 vma->vm_private_data = (void *)value;
376}
377
84afd99b
AW
378struct resv_map {
379 struct kref refs;
380 struct list_head regions;
381};
382
2a4b3ded 383static struct resv_map *resv_map_alloc(void)
84afd99b
AW
384{
385 struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
386 if (!resv_map)
387 return NULL;
388
389 kref_init(&resv_map->refs);
390 INIT_LIST_HEAD(&resv_map->regions);
391
392 return resv_map;
393}
394
2a4b3ded 395static void resv_map_release(struct kref *ref)
84afd99b
AW
396{
397 struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
398
399 /* Clear out any active regions before we release the map. */
400 region_truncate(&resv_map->regions, 0);
401 kfree(resv_map);
402}
403
404static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
a1e78772
MG
405{
406 VM_BUG_ON(!is_vm_hugetlb_page(vma));
f83a275d 407 if (!(vma->vm_flags & VM_MAYSHARE))
84afd99b
AW
408 return (struct resv_map *)(get_vma_private_data(vma) &
409 ~HPAGE_RESV_MASK);
2a4b3ded 410 return NULL;
a1e78772
MG
411}
412
84afd99b 413static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
a1e78772
MG
414{
415 VM_BUG_ON(!is_vm_hugetlb_page(vma));
f83a275d 416 VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
a1e78772 417
84afd99b
AW
418 set_vma_private_data(vma, (get_vma_private_data(vma) &
419 HPAGE_RESV_MASK) | (unsigned long)map);
04f2cbe3
MG
420}
421
422static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
423{
04f2cbe3 424 VM_BUG_ON(!is_vm_hugetlb_page(vma));
f83a275d 425 VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
e7c4b0bf
AW
426
427 set_vma_private_data(vma, get_vma_private_data(vma) | flags);
04f2cbe3
MG
428}
429
430static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
431{
432 VM_BUG_ON(!is_vm_hugetlb_page(vma));
e7c4b0bf
AW
433
434 return (get_vma_private_data(vma) & flag) != 0;
a1e78772
MG
435}
436
437/* Decrement the reserved pages in the hugepage pool by one */
a5516438
AK
438static void decrement_hugepage_resv_vma(struct hstate *h,
439 struct vm_area_struct *vma)
a1e78772 440{
c37f9fb1
AW
441 if (vma->vm_flags & VM_NORESERVE)
442 return;
443
f83a275d 444 if (vma->vm_flags & VM_MAYSHARE) {
a1e78772 445 /* Shared mappings always use reserves */
a5516438 446 h->resv_huge_pages--;
84afd99b 447 } else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
a1e78772
MG
448 /*
449 * Only the process that called mmap() has reserves for
450 * private mappings.
451 */
a5516438 452 h->resv_huge_pages--;
a1e78772
MG
453 }
454}
455
04f2cbe3 456/* Reset counters to 0 and clear all HPAGE_RESV_* flags */
a1e78772
MG
457void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
458{
459 VM_BUG_ON(!is_vm_hugetlb_page(vma));
f83a275d 460 if (!(vma->vm_flags & VM_MAYSHARE))
a1e78772
MG
461 vma->vm_private_data = (void *)0;
462}
463
464/* Returns true if the VMA has associated reserve pages */
7f09ca51 465static int vma_has_reserves(struct vm_area_struct *vma)
a1e78772 466{
f83a275d 467 if (vma->vm_flags & VM_MAYSHARE)
7f09ca51
MG
468 return 1;
469 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER))
470 return 1;
471 return 0;
a1e78772
MG
472}
473
0ebabb41
NH
474static void copy_gigantic_page(struct page *dst, struct page *src)
475{
476 int i;
477 struct hstate *h = page_hstate(src);
478 struct page *dst_base = dst;
479 struct page *src_base = src;
480
481 for (i = 0; i < pages_per_huge_page(h); ) {
482 cond_resched();
483 copy_highpage(dst, src);
484
485 i++;
486 dst = mem_map_next(dst, dst_base, i);
487 src = mem_map_next(src, src_base, i);
488 }
489}
490
491void copy_huge_page(struct page *dst, struct page *src)
492{
493 int i;
494 struct hstate *h = page_hstate(src);
495
496 if (unlikely(pages_per_huge_page(h) > MAX_ORDER_NR_PAGES)) {
497 copy_gigantic_page(dst, src);
498 return;
499 }
500
501 might_sleep();
502 for (i = 0; i < pages_per_huge_page(h); i++) {
503 cond_resched();
504 copy_highpage(dst + i, src + i);
505 }
506}
507
a5516438 508static void enqueue_huge_page(struct hstate *h, struct page *page)
1da177e4
LT
509{
510 int nid = page_to_nid(page);
0edaecfa 511 list_move(&page->lru, &h->hugepage_freelists[nid]);
a5516438
AK
512 h->free_huge_pages++;
513 h->free_huge_pages_node[nid]++;
1da177e4
LT
514}
515
bf50bab2
NH
516static struct page *dequeue_huge_page_node(struct hstate *h, int nid)
517{
518 struct page *page;
519
520 if (list_empty(&h->hugepage_freelists[nid]))
521 return NULL;
522 page = list_entry(h->hugepage_freelists[nid].next, struct page, lru);
0edaecfa 523 list_move(&page->lru, &h->hugepage_activelist);
a9869b83 524 set_page_refcounted(page);
bf50bab2
NH
525 h->free_huge_pages--;
526 h->free_huge_pages_node[nid]--;
527 return page;
528}
529
a5516438
AK
530static struct page *dequeue_huge_page_vma(struct hstate *h,
531 struct vm_area_struct *vma,
04f2cbe3 532 unsigned long address, int avoid_reserve)
1da177e4 533{
b1c12cbc 534 struct page *page = NULL;
480eccf9 535 struct mempolicy *mpol;
19770b32 536 nodemask_t *nodemask;
c0ff7453 537 struct zonelist *zonelist;
dd1a239f
MG
538 struct zone *zone;
539 struct zoneref *z;
cc9a6c87 540 unsigned int cpuset_mems_cookie;
1da177e4 541
a1e78772
MG
542 /*
543 * A child process with MAP_PRIVATE mappings created by their parent
544 * have no page reserves. This check ensures that reservations are
545 * not "stolen". The child may still get SIGKILLed
546 */
7f09ca51 547 if (!vma_has_reserves(vma) &&
a5516438 548 h->free_huge_pages - h->resv_huge_pages == 0)
c0ff7453 549 goto err;
a1e78772 550
04f2cbe3 551 /* If reserves cannot be used, ensure enough pages are in the pool */
a5516438 552 if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
6eab04a8 553 goto err;
04f2cbe3 554
9966c4bb
JK
555retry_cpuset:
556 cpuset_mems_cookie = get_mems_allowed();
557 zonelist = huge_zonelist(vma, address,
558 htlb_alloc_mask, &mpol, &nodemask);
559
19770b32
MG
560 for_each_zone_zonelist_nodemask(zone, z, zonelist,
561 MAX_NR_ZONES - 1, nodemask) {
bf50bab2
NH
562 if (cpuset_zone_allowed_softwall(zone, htlb_alloc_mask)) {
563 page = dequeue_huge_page_node(h, zone_to_nid(zone));
564 if (page) {
565 if (!avoid_reserve)
566 decrement_hugepage_resv_vma(h, vma);
567 break;
568 }
3abf7afd 569 }
1da177e4 570 }
cc9a6c87 571
52cd3b07 572 mpol_cond_put(mpol);
cc9a6c87
MG
573 if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !page))
574 goto retry_cpuset;
1da177e4 575 return page;
cc9a6c87
MG
576
577err:
cc9a6c87 578 return NULL;
1da177e4
LT
579}
580
a5516438 581static void update_and_free_page(struct hstate *h, struct page *page)
6af2acb6
AL
582{
583 int i;
a5516438 584
18229df5
AW
585 VM_BUG_ON(h->order >= MAX_ORDER);
586
a5516438
AK
587 h->nr_huge_pages--;
588 h->nr_huge_pages_node[page_to_nid(page)]--;
589 for (i = 0; i < pages_per_huge_page(h); i++) {
32f84528
CF
590 page[i].flags &= ~(1 << PG_locked | 1 << PG_error |
591 1 << PG_referenced | 1 << PG_dirty |
592 1 << PG_active | 1 << PG_reserved |
593 1 << PG_private | 1 << PG_writeback);
6af2acb6 594 }
9dd540e2 595 VM_BUG_ON(hugetlb_cgroup_from_page(page));
6af2acb6
AL
596 set_compound_page_dtor(page, NULL);
597 set_page_refcounted(page);
7f2e9525 598 arch_release_hugepage(page);
a5516438 599 __free_pages(page, huge_page_order(h));
6af2acb6
AL
600}
601
e5ff2159
AK
602struct hstate *size_to_hstate(unsigned long size)
603{
604 struct hstate *h;
605
606 for_each_hstate(h) {
607 if (huge_page_size(h) == size)
608 return h;
609 }
610 return NULL;
611}
612
27a85ef1
DG
613static void free_huge_page(struct page *page)
614{
a5516438
AK
615 /*
616 * Can't pass hstate in here because it is called from the
617 * compound page destructor.
618 */
e5ff2159 619 struct hstate *h = page_hstate(page);
7893d1d5 620 int nid = page_to_nid(page);
90481622
DG
621 struct hugepage_subpool *spool =
622 (struct hugepage_subpool *)page_private(page);
27a85ef1 623
e5df70ab 624 set_page_private(page, 0);
23be7468 625 page->mapping = NULL;
7893d1d5 626 BUG_ON(page_count(page));
0fe6e20b 627 BUG_ON(page_mapcount(page));
27a85ef1
DG
628
629 spin_lock(&hugetlb_lock);
6d76dcf4
AK
630 hugetlb_cgroup_uncharge_page(hstate_index(h),
631 pages_per_huge_page(h), page);
aa888a74 632 if (h->surplus_huge_pages_node[nid] && huge_page_order(h) < MAX_ORDER) {
0edaecfa
AK
633 /* remove the page from active list */
634 list_del(&page->lru);
a5516438
AK
635 update_and_free_page(h, page);
636 h->surplus_huge_pages--;
637 h->surplus_huge_pages_node[nid]--;
7893d1d5 638 } else {
5d3a551c 639 arch_clear_hugepage_flags(page);
a5516438 640 enqueue_huge_page(h, page);
7893d1d5 641 }
27a85ef1 642 spin_unlock(&hugetlb_lock);
90481622 643 hugepage_subpool_put_pages(spool, 1);
27a85ef1
DG
644}
645
a5516438 646static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
b7ba30c6 647{
0edaecfa 648 INIT_LIST_HEAD(&page->lru);
b7ba30c6
AK
649 set_compound_page_dtor(page, free_huge_page);
650 spin_lock(&hugetlb_lock);
9dd540e2 651 set_hugetlb_cgroup(page, NULL);
a5516438
AK
652 h->nr_huge_pages++;
653 h->nr_huge_pages_node[nid]++;
b7ba30c6
AK
654 spin_unlock(&hugetlb_lock);
655 put_page(page); /* free it into the hugepage allocator */
656}
657
20a0307c
WF
658static void prep_compound_gigantic_page(struct page *page, unsigned long order)
659{
660 int i;
661 int nr_pages = 1 << order;
662 struct page *p = page + 1;
663
664 /* we rely on prep_new_huge_page to set the destructor */
665 set_compound_order(page, order);
666 __SetPageHead(page);
667 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
668 __SetPageTail(p);
58a84aa9 669 set_page_count(p, 0);
20a0307c
WF
670 p->first_page = page;
671 }
672}
673
7795912c
AM
674/*
675 * PageHuge() only returns true for hugetlbfs pages, but not for normal or
676 * transparent huge pages. See the PageTransHuge() documentation for more
677 * details.
678 */
20a0307c
WF
679int PageHuge(struct page *page)
680{
681 compound_page_dtor *dtor;
682
683 if (!PageCompound(page))
684 return 0;
685
686 page = compound_head(page);
687 dtor = get_compound_page_dtor(page);
688
689 return dtor == free_huge_page;
690}
43131e14
NH
691EXPORT_SYMBOL_GPL(PageHuge);
692
13d60f4b
ZY
693pgoff_t __basepage_index(struct page *page)
694{
695 struct page *page_head = compound_head(page);
696 pgoff_t index = page_index(page_head);
697 unsigned long compound_idx;
698
699 if (!PageHuge(page_head))
700 return page_index(page);
701
702 if (compound_order(page_head) >= MAX_ORDER)
703 compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
704 else
705 compound_idx = page - page_head;
706
707 return (index << compound_order(page_head)) + compound_idx;
708}
709
a5516438 710static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid)
1da177e4 711{
1da177e4 712 struct page *page;
f96efd58 713
aa888a74
AK
714 if (h->order >= MAX_ORDER)
715 return NULL;
716
6484eb3e 717 page = alloc_pages_exact_node(nid,
551883ae
NA
718 htlb_alloc_mask|__GFP_COMP|__GFP_THISNODE|
719 __GFP_REPEAT|__GFP_NOWARN,
a5516438 720 huge_page_order(h));
1da177e4 721 if (page) {
7f2e9525 722 if (arch_prepare_hugepage(page)) {
caff3a2c 723 __free_pages(page, huge_page_order(h));
7b8ee84d 724 return NULL;
7f2e9525 725 }
a5516438 726 prep_new_huge_page(h, page, nid);
1da177e4 727 }
63b4613c
NA
728
729 return page;
730}
731
9a76db09 732/*
6ae11b27
LS
733 * common helper functions for hstate_next_node_to_{alloc|free}.
734 * We may have allocated or freed a huge page based on a different
735 * nodes_allowed previously, so h->next_node_to_{alloc|free} might
736 * be outside of *nodes_allowed. Ensure that we use an allowed
737 * node for alloc or free.
9a76db09 738 */
6ae11b27 739static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
9a76db09 740{
6ae11b27 741 nid = next_node(nid, *nodes_allowed);
9a76db09 742 if (nid == MAX_NUMNODES)
6ae11b27 743 nid = first_node(*nodes_allowed);
9a76db09
LS
744 VM_BUG_ON(nid >= MAX_NUMNODES);
745
746 return nid;
747}
748
6ae11b27
LS
749static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
750{
751 if (!node_isset(nid, *nodes_allowed))
752 nid = next_node_allowed(nid, nodes_allowed);
753 return nid;
754}
755
5ced66c9 756/*
6ae11b27
LS
757 * returns the previously saved node ["this node"] from which to
758 * allocate a persistent huge page for the pool and advance the
759 * next node from which to allocate, handling wrap at end of node
760 * mask.
5ced66c9 761 */
6ae11b27
LS
762static int hstate_next_node_to_alloc(struct hstate *h,
763 nodemask_t *nodes_allowed)
5ced66c9 764{
6ae11b27
LS
765 int nid;
766
767 VM_BUG_ON(!nodes_allowed);
768
769 nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
770 h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
9a76db09 771
9a76db09 772 return nid;
5ced66c9
AK
773}
774
e8c5c824 775/*
6ae11b27
LS
776 * helper for free_pool_huge_page() - return the previously saved
777 * node ["this node"] from which to free a huge page. Advance the
778 * next node id whether or not we find a free huge page to free so
779 * that the next attempt to free addresses the next node.
e8c5c824 780 */
6ae11b27 781static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
e8c5c824 782{
6ae11b27
LS
783 int nid;
784
785 VM_BUG_ON(!nodes_allowed);
786
787 nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
788 h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
9a76db09 789
9a76db09 790 return nid;
e8c5c824
LS
791}
792
b2261026
JK
793#define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask) \
794 for (nr_nodes = nodes_weight(*mask); \
795 nr_nodes > 0 && \
796 ((node = hstate_next_node_to_alloc(hs, mask)) || 1); \
797 nr_nodes--)
798
799#define for_each_node_mask_to_free(hs, nr_nodes, node, mask) \
800 for (nr_nodes = nodes_weight(*mask); \
801 nr_nodes > 0 && \
802 ((node = hstate_next_node_to_free(hs, mask)) || 1); \
803 nr_nodes--)
804
805static int alloc_fresh_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
806{
807 struct page *page;
808 int nr_nodes, node;
809 int ret = 0;
810
811 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
812 page = alloc_fresh_huge_page_node(h, node);
813 if (page) {
814 ret = 1;
815 break;
816 }
817 }
818
819 if (ret)
820 count_vm_event(HTLB_BUDDY_PGALLOC);
821 else
822 count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
823
824 return ret;
825}
826
e8c5c824
LS
827/*
828 * Free huge page from pool from next node to free.
829 * Attempt to keep persistent huge pages more or less
830 * balanced over allowed nodes.
831 * Called with hugetlb_lock locked.
832 */
6ae11b27
LS
833static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
834 bool acct_surplus)
e8c5c824 835{
b2261026 836 int nr_nodes, node;
e8c5c824
LS
837 int ret = 0;
838
b2261026 839 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
685f3457
LS
840 /*
841 * If we're returning unused surplus pages, only examine
842 * nodes with surplus pages.
843 */
b2261026
JK
844 if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
845 !list_empty(&h->hugepage_freelists[node])) {
e8c5c824 846 struct page *page =
b2261026 847 list_entry(h->hugepage_freelists[node].next,
e8c5c824
LS
848 struct page, lru);
849 list_del(&page->lru);
850 h->free_huge_pages--;
b2261026 851 h->free_huge_pages_node[node]--;
685f3457
LS
852 if (acct_surplus) {
853 h->surplus_huge_pages--;
b2261026 854 h->surplus_huge_pages_node[node]--;
685f3457 855 }
e8c5c824
LS
856 update_and_free_page(h, page);
857 ret = 1;
9a76db09 858 break;
e8c5c824 859 }
b2261026 860 }
e8c5c824
LS
861
862 return ret;
863}
864
bf50bab2 865static struct page *alloc_buddy_huge_page(struct hstate *h, int nid)
7893d1d5
AL
866{
867 struct page *page;
bf50bab2 868 unsigned int r_nid;
7893d1d5 869
aa888a74
AK
870 if (h->order >= MAX_ORDER)
871 return NULL;
872
d1c3fb1f
NA
873 /*
874 * Assume we will successfully allocate the surplus page to
875 * prevent racing processes from causing the surplus to exceed
876 * overcommit
877 *
878 * This however introduces a different race, where a process B
879 * tries to grow the static hugepage pool while alloc_pages() is
880 * called by process A. B will only examine the per-node
881 * counters in determining if surplus huge pages can be
882 * converted to normal huge pages in adjust_pool_surplus(). A
883 * won't be able to increment the per-node counter, until the
884 * lock is dropped by B, but B doesn't drop hugetlb_lock until
885 * no more huge pages can be converted from surplus to normal
886 * state (and doesn't try to convert again). Thus, we have a
887 * case where a surplus huge page exists, the pool is grown, and
888 * the surplus huge page still exists after, even though it
889 * should just have been converted to a normal huge page. This
890 * does not leak memory, though, as the hugepage will be freed
891 * once it is out of use. It also does not allow the counters to
892 * go out of whack in adjust_pool_surplus() as we don't modify
893 * the node values until we've gotten the hugepage and only the
894 * per-node value is checked there.
895 */
896 spin_lock(&hugetlb_lock);
a5516438 897 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
d1c3fb1f
NA
898 spin_unlock(&hugetlb_lock);
899 return NULL;
900 } else {
a5516438
AK
901 h->nr_huge_pages++;
902 h->surplus_huge_pages++;
d1c3fb1f
NA
903 }
904 spin_unlock(&hugetlb_lock);
905
bf50bab2
NH
906 if (nid == NUMA_NO_NODE)
907 page = alloc_pages(htlb_alloc_mask|__GFP_COMP|
908 __GFP_REPEAT|__GFP_NOWARN,
909 huge_page_order(h));
910 else
911 page = alloc_pages_exact_node(nid,
912 htlb_alloc_mask|__GFP_COMP|__GFP_THISNODE|
913 __GFP_REPEAT|__GFP_NOWARN, huge_page_order(h));
d1c3fb1f 914
caff3a2c
GS
915 if (page && arch_prepare_hugepage(page)) {
916 __free_pages(page, huge_page_order(h));
ea5768c7 917 page = NULL;
caff3a2c
GS
918 }
919
d1c3fb1f 920 spin_lock(&hugetlb_lock);
7893d1d5 921 if (page) {
0edaecfa 922 INIT_LIST_HEAD(&page->lru);
bf50bab2 923 r_nid = page_to_nid(page);
7893d1d5 924 set_compound_page_dtor(page, free_huge_page);
9dd540e2 925 set_hugetlb_cgroup(page, NULL);
d1c3fb1f
NA
926 /*
927 * We incremented the global counters already
928 */
bf50bab2
NH
929 h->nr_huge_pages_node[r_nid]++;
930 h->surplus_huge_pages_node[r_nid]++;
3b116300 931 __count_vm_event(HTLB_BUDDY_PGALLOC);
d1c3fb1f 932 } else {
a5516438
AK
933 h->nr_huge_pages--;
934 h->surplus_huge_pages--;
3b116300 935 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
7893d1d5 936 }
d1c3fb1f 937 spin_unlock(&hugetlb_lock);
7893d1d5
AL
938
939 return page;
940}
941
bf50bab2
NH
942/*
943 * This allocation function is useful in the context where vma is irrelevant.
944 * E.g. soft-offlining uses this function because it only cares physical
945 * address of error page.
946 */
947struct page *alloc_huge_page_node(struct hstate *h, int nid)
948{
949 struct page *page;
950
951 spin_lock(&hugetlb_lock);
952 page = dequeue_huge_page_node(h, nid);
953 spin_unlock(&hugetlb_lock);
954
94ae8ba7 955 if (!page)
bf50bab2
NH
956 page = alloc_buddy_huge_page(h, nid);
957
958 return page;
959}
960
e4e574b7 961/*
25985edc 962 * Increase the hugetlb pool such that it can accommodate a reservation
e4e574b7
AL
963 * of size 'delta'.
964 */
a5516438 965static int gather_surplus_pages(struct hstate *h, int delta)
e4e574b7
AL
966{
967 struct list_head surplus_list;
968 struct page *page, *tmp;
969 int ret, i;
970 int needed, allocated;
28073b02 971 bool alloc_ok = true;
e4e574b7 972
a5516438 973 needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
ac09b3a1 974 if (needed <= 0) {
a5516438 975 h->resv_huge_pages += delta;
e4e574b7 976 return 0;
ac09b3a1 977 }
e4e574b7
AL
978
979 allocated = 0;
980 INIT_LIST_HEAD(&surplus_list);
981
982 ret = -ENOMEM;
983retry:
984 spin_unlock(&hugetlb_lock);
985 for (i = 0; i < needed; i++) {
bf50bab2 986 page = alloc_buddy_huge_page(h, NUMA_NO_NODE);
28073b02
HD
987 if (!page) {
988 alloc_ok = false;
989 break;
990 }
e4e574b7
AL
991 list_add(&page->lru, &surplus_list);
992 }
28073b02 993 allocated += i;
e4e574b7
AL
994
995 /*
996 * After retaking hugetlb_lock, we need to recalculate 'needed'
997 * because either resv_huge_pages or free_huge_pages may have changed.
998 */
999 spin_lock(&hugetlb_lock);
a5516438
AK
1000 needed = (h->resv_huge_pages + delta) -
1001 (h->free_huge_pages + allocated);
28073b02
HD
1002 if (needed > 0) {
1003 if (alloc_ok)
1004 goto retry;
1005 /*
1006 * We were not able to allocate enough pages to
1007 * satisfy the entire reservation so we free what
1008 * we've allocated so far.
1009 */
1010 goto free;
1011 }
e4e574b7
AL
1012 /*
1013 * The surplus_list now contains _at_least_ the number of extra pages
25985edc 1014 * needed to accommodate the reservation. Add the appropriate number
e4e574b7 1015 * of pages to the hugetlb pool and free the extras back to the buddy
ac09b3a1
AL
1016 * allocator. Commit the entire reservation here to prevent another
1017 * process from stealing the pages as they are added to the pool but
1018 * before they are reserved.
e4e574b7
AL
1019 */
1020 needed += allocated;
a5516438 1021 h->resv_huge_pages += delta;
e4e574b7 1022 ret = 0;
a9869b83 1023
19fc3f0a 1024 /* Free the needed pages to the hugetlb pool */
e4e574b7 1025 list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
19fc3f0a
AL
1026 if ((--needed) < 0)
1027 break;
a9869b83
NH
1028 /*
1029 * This page is now managed by the hugetlb allocator and has
1030 * no users -- drop the buddy allocator's reference.
1031 */
1032 put_page_testzero(page);
1033 VM_BUG_ON(page_count(page));
a5516438 1034 enqueue_huge_page(h, page);
19fc3f0a 1035 }
28073b02 1036free:
b0365c8d 1037 spin_unlock(&hugetlb_lock);
19fc3f0a
AL
1038
1039 /* Free unnecessary surplus pages to the buddy allocator */
c0d934ba
JK
1040 list_for_each_entry_safe(page, tmp, &surplus_list, lru)
1041 put_page(page);
a9869b83 1042 spin_lock(&hugetlb_lock);
e4e574b7
AL
1043
1044 return ret;
1045}
1046
1047/*
1048 * When releasing a hugetlb pool reservation, any surplus pages that were
1049 * allocated to satisfy the reservation must be explicitly freed if they were
1050 * never used.
685f3457 1051 * Called with hugetlb_lock held.
e4e574b7 1052 */
a5516438
AK
1053static void return_unused_surplus_pages(struct hstate *h,
1054 unsigned long unused_resv_pages)
e4e574b7 1055{
e4e574b7
AL
1056 unsigned long nr_pages;
1057
ac09b3a1 1058 /* Uncommit the reservation */
a5516438 1059 h->resv_huge_pages -= unused_resv_pages;
ac09b3a1 1060
aa888a74
AK
1061 /* Cannot return gigantic pages currently */
1062 if (h->order >= MAX_ORDER)
1063 return;
1064
a5516438 1065 nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
e4e574b7 1066
685f3457
LS
1067 /*
1068 * We want to release as many surplus pages as possible, spread
9b5e5d0f
LS
1069 * evenly across all nodes with memory. Iterate across these nodes
1070 * until we can no longer free unreserved surplus pages. This occurs
1071 * when the nodes with surplus pages have no free pages.
1072 * free_pool_huge_page() will balance the the freed pages across the
1073 * on-line nodes with memory and will handle the hstate accounting.
685f3457
LS
1074 */
1075 while (nr_pages--) {
8cebfcd0 1076 if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1))
685f3457 1077 break;
e4e574b7
AL
1078 }
1079}
1080
c37f9fb1
AW
1081/*
1082 * Determine if the huge page at addr within the vma has an associated
1083 * reservation. Where it does not we will need to logically increase
90481622
DG
1084 * reservation and actually increase subpool usage before an allocation
1085 * can occur. Where any new reservation would be required the
1086 * reservation change is prepared, but not committed. Once the page
1087 * has been allocated from the subpool and instantiated the change should
1088 * be committed via vma_commit_reservation. No action is required on
1089 * failure.
c37f9fb1 1090 */
e2f17d94 1091static long vma_needs_reservation(struct hstate *h,
a5516438 1092 struct vm_area_struct *vma, unsigned long addr)
c37f9fb1
AW
1093{
1094 struct address_space *mapping = vma->vm_file->f_mapping;
1095 struct inode *inode = mapping->host;
1096
f83a275d 1097 if (vma->vm_flags & VM_MAYSHARE) {
a5516438 1098 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
c37f9fb1
AW
1099 return region_chg(&inode->i_mapping->private_list,
1100 idx, idx + 1);
1101
84afd99b
AW
1102 } else if (!is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1103 return 1;
c37f9fb1 1104
84afd99b 1105 } else {
e2f17d94 1106 long err;
a5516438 1107 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
84afd99b
AW
1108 struct resv_map *reservations = vma_resv_map(vma);
1109
1110 err = region_chg(&reservations->regions, idx, idx + 1);
1111 if (err < 0)
1112 return err;
1113 return 0;
1114 }
c37f9fb1 1115}
a5516438
AK
1116static void vma_commit_reservation(struct hstate *h,
1117 struct vm_area_struct *vma, unsigned long addr)
c37f9fb1
AW
1118{
1119 struct address_space *mapping = vma->vm_file->f_mapping;
1120 struct inode *inode = mapping->host;
1121
f83a275d 1122 if (vma->vm_flags & VM_MAYSHARE) {
a5516438 1123 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
c37f9fb1 1124 region_add(&inode->i_mapping->private_list, idx, idx + 1);
84afd99b
AW
1125
1126 } else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
a5516438 1127 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
84afd99b
AW
1128 struct resv_map *reservations = vma_resv_map(vma);
1129
1130 /* Mark this page used in the map. */
1131 region_add(&reservations->regions, idx, idx + 1);
c37f9fb1
AW
1132 }
1133}
1134
a1e78772 1135static struct page *alloc_huge_page(struct vm_area_struct *vma,
04f2cbe3 1136 unsigned long addr, int avoid_reserve)
1da177e4 1137{
90481622 1138 struct hugepage_subpool *spool = subpool_vma(vma);
a5516438 1139 struct hstate *h = hstate_vma(vma);
348ea204 1140 struct page *page;
e2f17d94 1141 long chg;
6d76dcf4
AK
1142 int ret, idx;
1143 struct hugetlb_cgroup *h_cg;
a1e78772 1144
6d76dcf4 1145 idx = hstate_index(h);
a1e78772 1146 /*
90481622
DG
1147 * Processes that did not create the mapping will have no
1148 * reserves and will not have accounted against subpool
1149 * limit. Check that the subpool limit can be made before
1150 * satisfying the allocation MAP_NORESERVE mappings may also
1151 * need pages and subpool limit allocated allocated if no reserve
1152 * mapping overlaps.
a1e78772 1153 */
a5516438 1154 chg = vma_needs_reservation(h, vma, addr);
c37f9fb1 1155 if (chg < 0)
76dcee75 1156 return ERR_PTR(-ENOMEM);
c37f9fb1 1157 if (chg)
90481622 1158 if (hugepage_subpool_get_pages(spool, chg))
76dcee75 1159 return ERR_PTR(-ENOSPC);
1da177e4 1160
6d76dcf4
AK
1161 ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
1162 if (ret) {
1163 hugepage_subpool_put_pages(spool, chg);
1164 return ERR_PTR(-ENOSPC);
1165 }
1da177e4 1166 spin_lock(&hugetlb_lock);
a5516438 1167 page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve);
81a6fcae 1168 if (!page) {
94ae8ba7 1169 spin_unlock(&hugetlb_lock);
bf50bab2 1170 page = alloc_buddy_huge_page(h, NUMA_NO_NODE);
68842c9b 1171 if (!page) {
6d76dcf4
AK
1172 hugetlb_cgroup_uncharge_cgroup(idx,
1173 pages_per_huge_page(h),
1174 h_cg);
90481622 1175 hugepage_subpool_put_pages(spool, chg);
76dcee75 1176 return ERR_PTR(-ENOSPC);
68842c9b 1177 }
79dbb236
AK
1178 spin_lock(&hugetlb_lock);
1179 list_move(&page->lru, &h->hugepage_activelist);
81a6fcae 1180 /* Fall through */
68842c9b 1181 }
81a6fcae
JK
1182 hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
1183 spin_unlock(&hugetlb_lock);
348ea204 1184
90481622 1185 set_page_private(page, (unsigned long)spool);
90d8b7e6 1186
a5516438 1187 vma_commit_reservation(h, vma, addr);
90d8b7e6 1188 return page;
b45b5bd6
DG
1189}
1190
91f47662 1191int __weak alloc_bootmem_huge_page(struct hstate *h)
aa888a74
AK
1192{
1193 struct huge_bootmem_page *m;
b2261026 1194 int nr_nodes, node;
aa888a74 1195
b2261026 1196 for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
aa888a74
AK
1197 void *addr;
1198
b2261026 1199 addr = __alloc_bootmem_node_nopanic(NODE_DATA(node),
aa888a74
AK
1200 huge_page_size(h), huge_page_size(h), 0);
1201
1202 if (addr) {
1203 /*
1204 * Use the beginning of the huge page to store the
1205 * huge_bootmem_page struct (until gather_bootmem
1206 * puts them into the mem_map).
1207 */
1208 m = addr;
91f47662 1209 goto found;
aa888a74 1210 }
aa888a74
AK
1211 }
1212 return 0;
1213
1214found:
1215 BUG_ON((unsigned long)virt_to_phys(m) & (huge_page_size(h) - 1));
1216 /* Put them into a private list first because mem_map is not up yet */
1217 list_add(&m->list, &huge_boot_pages);
1218 m->hstate = h;
1219 return 1;
1220}
1221
18229df5
AW
1222static void prep_compound_huge_page(struct page *page, int order)
1223{
1224 if (unlikely(order > (MAX_ORDER - 1)))
1225 prep_compound_gigantic_page(page, order);
1226 else
1227 prep_compound_page(page, order);
1228}
1229
aa888a74
AK
1230/* Put bootmem huge pages into the standard lists after mem_map is up */
1231static void __init gather_bootmem_prealloc(void)
1232{
1233 struct huge_bootmem_page *m;
1234
1235 list_for_each_entry(m, &huge_boot_pages, list) {
aa888a74 1236 struct hstate *h = m->hstate;
ee8f248d
BB
1237 struct page *page;
1238
1239#ifdef CONFIG_HIGHMEM
1240 page = pfn_to_page(m->phys >> PAGE_SHIFT);
1241 free_bootmem_late((unsigned long)m,
1242 sizeof(struct huge_bootmem_page));
1243#else
1244 page = virt_to_page(m);
1245#endif
aa888a74
AK
1246 __ClearPageReserved(page);
1247 WARN_ON(page_count(page) != 1);
18229df5 1248 prep_compound_huge_page(page, h->order);
aa888a74 1249 prep_new_huge_page(h, page, page_to_nid(page));
b0320c7b
RA
1250 /*
1251 * If we had gigantic hugepages allocated at boot time, we need
1252 * to restore the 'stolen' pages to totalram_pages in order to
1253 * fix confusing memory reports from free(1) and another
1254 * side-effects, like CommitLimit going negative.
1255 */
1256 if (h->order > (MAX_ORDER - 1))
3dcc0571 1257 adjust_managed_page_count(page, 1 << h->order);
aa888a74
AK
1258 }
1259}
1260
8faa8b07 1261static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
1da177e4
LT
1262{
1263 unsigned long i;
a5516438 1264
e5ff2159 1265 for (i = 0; i < h->max_huge_pages; ++i) {
aa888a74
AK
1266 if (h->order >= MAX_ORDER) {
1267 if (!alloc_bootmem_huge_page(h))
1268 break;
9b5e5d0f 1269 } else if (!alloc_fresh_huge_page(h,
8cebfcd0 1270 &node_states[N_MEMORY]))
1da177e4 1271 break;
1da177e4 1272 }
8faa8b07 1273 h->max_huge_pages = i;
e5ff2159
AK
1274}
1275
1276static void __init hugetlb_init_hstates(void)
1277{
1278 struct hstate *h;
1279
1280 for_each_hstate(h) {
8faa8b07
AK
1281 /* oversize hugepages were init'ed in early boot */
1282 if (h->order < MAX_ORDER)
1283 hugetlb_hstate_alloc_pages(h);
e5ff2159
AK
1284 }
1285}
1286
4abd32db
AK
1287static char * __init memfmt(char *buf, unsigned long n)
1288{
1289 if (n >= (1UL << 30))
1290 sprintf(buf, "%lu GB", n >> 30);
1291 else if (n >= (1UL << 20))
1292 sprintf(buf, "%lu MB", n >> 20);
1293 else
1294 sprintf(buf, "%lu KB", n >> 10);
1295 return buf;
1296}
1297
e5ff2159
AK
1298static void __init report_hugepages(void)
1299{
1300 struct hstate *h;
1301
1302 for_each_hstate(h) {
4abd32db 1303 char buf[32];
ffb22af5 1304 pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
4abd32db
AK
1305 memfmt(buf, huge_page_size(h)),
1306 h->free_huge_pages);
e5ff2159
AK
1307 }
1308}
1309
1da177e4 1310#ifdef CONFIG_HIGHMEM
6ae11b27
LS
1311static void try_to_free_low(struct hstate *h, unsigned long count,
1312 nodemask_t *nodes_allowed)
1da177e4 1313{
4415cc8d
CL
1314 int i;
1315
aa888a74
AK
1316 if (h->order >= MAX_ORDER)
1317 return;
1318
6ae11b27 1319 for_each_node_mask(i, *nodes_allowed) {
1da177e4 1320 struct page *page, *next;
a5516438
AK
1321 struct list_head *freel = &h->hugepage_freelists[i];
1322 list_for_each_entry_safe(page, next, freel, lru) {
1323 if (count >= h->nr_huge_pages)
6b0c880d 1324 return;
1da177e4
LT
1325 if (PageHighMem(page))
1326 continue;
1327 list_del(&page->lru);
e5ff2159 1328 update_and_free_page(h, page);
a5516438
AK
1329 h->free_huge_pages--;
1330 h->free_huge_pages_node[page_to_nid(page)]--;
1da177e4
LT
1331 }
1332 }
1333}
1334#else
6ae11b27
LS
1335static inline void try_to_free_low(struct hstate *h, unsigned long count,
1336 nodemask_t *nodes_allowed)
1da177e4
LT
1337{
1338}
1339#endif
1340
20a0307c
WF
1341/*
1342 * Increment or decrement surplus_huge_pages. Keep node-specific counters
1343 * balanced by operating on them in a round-robin fashion.
1344 * Returns 1 if an adjustment was made.
1345 */
6ae11b27
LS
1346static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
1347 int delta)
20a0307c 1348{
b2261026 1349 int nr_nodes, node;
20a0307c
WF
1350
1351 VM_BUG_ON(delta != -1 && delta != 1);
20a0307c 1352
b2261026
JK
1353 if (delta < 0) {
1354 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1355 if (h->surplus_huge_pages_node[node])
1356 goto found;
e8c5c824 1357 }
b2261026
JK
1358 } else {
1359 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
1360 if (h->surplus_huge_pages_node[node] <
1361 h->nr_huge_pages_node[node])
1362 goto found;
e8c5c824 1363 }
b2261026
JK
1364 }
1365 return 0;
20a0307c 1366
b2261026
JK
1367found:
1368 h->surplus_huge_pages += delta;
1369 h->surplus_huge_pages_node[node] += delta;
1370 return 1;
20a0307c
WF
1371}
1372
a5516438 1373#define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
6ae11b27
LS
1374static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count,
1375 nodemask_t *nodes_allowed)
1da177e4 1376{
7893d1d5 1377 unsigned long min_count, ret;
1da177e4 1378
aa888a74
AK
1379 if (h->order >= MAX_ORDER)
1380 return h->max_huge_pages;
1381
7893d1d5
AL
1382 /*
1383 * Increase the pool size
1384 * First take pages out of surplus state. Then make up the
1385 * remaining difference by allocating fresh huge pages.
d1c3fb1f
NA
1386 *
1387 * We might race with alloc_buddy_huge_page() here and be unable
1388 * to convert a surplus huge page to a normal huge page. That is
1389 * not critical, though, it just means the overall size of the
1390 * pool might be one hugepage larger than it needs to be, but
1391 * within all the constraints specified by the sysctls.
7893d1d5 1392 */
1da177e4 1393 spin_lock(&hugetlb_lock);
a5516438 1394 while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
6ae11b27 1395 if (!adjust_pool_surplus(h, nodes_allowed, -1))
7893d1d5
AL
1396 break;
1397 }
1398
a5516438 1399 while (count > persistent_huge_pages(h)) {
7893d1d5
AL
1400 /*
1401 * If this allocation races such that we no longer need the
1402 * page, free_huge_page will handle it by freeing the page
1403 * and reducing the surplus.
1404 */
1405 spin_unlock(&hugetlb_lock);
6ae11b27 1406 ret = alloc_fresh_huge_page(h, nodes_allowed);
7893d1d5
AL
1407 spin_lock(&hugetlb_lock);
1408 if (!ret)
1409 goto out;
1410
536240f2
MG
1411 /* Bail for signals. Probably ctrl-c from user */
1412 if (signal_pending(current))
1413 goto out;
7893d1d5 1414 }
7893d1d5
AL
1415
1416 /*
1417 * Decrease the pool size
1418 * First return free pages to the buddy allocator (being careful
1419 * to keep enough around to satisfy reservations). Then place
1420 * pages into surplus state as needed so the pool will shrink
1421 * to the desired size as pages become free.
d1c3fb1f
NA
1422 *
1423 * By placing pages into the surplus state independent of the
1424 * overcommit value, we are allowing the surplus pool size to
1425 * exceed overcommit. There are few sane options here. Since
1426 * alloc_buddy_huge_page() is checking the global counter,
1427 * though, we'll note that we're not allowed to exceed surplus
1428 * and won't grow the pool anywhere else. Not until one of the
1429 * sysctls are changed, or the surplus pages go out of use.
7893d1d5 1430 */
a5516438 1431 min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
6b0c880d 1432 min_count = max(count, min_count);
6ae11b27 1433 try_to_free_low(h, min_count, nodes_allowed);
a5516438 1434 while (min_count < persistent_huge_pages(h)) {
6ae11b27 1435 if (!free_pool_huge_page(h, nodes_allowed, 0))
1da177e4 1436 break;
1da177e4 1437 }
a5516438 1438 while (count < persistent_huge_pages(h)) {
6ae11b27 1439 if (!adjust_pool_surplus(h, nodes_allowed, 1))
7893d1d5
AL
1440 break;
1441 }
1442out:
a5516438 1443 ret = persistent_huge_pages(h);
1da177e4 1444 spin_unlock(&hugetlb_lock);
7893d1d5 1445 return ret;
1da177e4
LT
1446}
1447
a3437870
NA
1448#define HSTATE_ATTR_RO(_name) \
1449 static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
1450
1451#define HSTATE_ATTR(_name) \
1452 static struct kobj_attribute _name##_attr = \
1453 __ATTR(_name, 0644, _name##_show, _name##_store)
1454
1455static struct kobject *hugepages_kobj;
1456static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
1457
9a305230
LS
1458static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
1459
1460static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
a3437870
NA
1461{
1462 int i;
9a305230 1463
a3437870 1464 for (i = 0; i < HUGE_MAX_HSTATE; i++)
9a305230
LS
1465 if (hstate_kobjs[i] == kobj) {
1466 if (nidp)
1467 *nidp = NUMA_NO_NODE;
a3437870 1468 return &hstates[i];
9a305230
LS
1469 }
1470
1471 return kobj_to_node_hstate(kobj, nidp);
a3437870
NA
1472}
1473
06808b08 1474static ssize_t nr_hugepages_show_common(struct kobject *kobj,
a3437870
NA
1475 struct kobj_attribute *attr, char *buf)
1476{
9a305230
LS
1477 struct hstate *h;
1478 unsigned long nr_huge_pages;
1479 int nid;
1480
1481 h = kobj_to_hstate(kobj, &nid);
1482 if (nid == NUMA_NO_NODE)
1483 nr_huge_pages = h->nr_huge_pages;
1484 else
1485 nr_huge_pages = h->nr_huge_pages_node[nid];
1486
1487 return sprintf(buf, "%lu\n", nr_huge_pages);
a3437870 1488}
adbe8726 1489
06808b08
LS
1490static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
1491 struct kobject *kobj, struct kobj_attribute *attr,
1492 const char *buf, size_t len)
a3437870
NA
1493{
1494 int err;
9a305230 1495 int nid;
06808b08 1496 unsigned long count;
9a305230 1497 struct hstate *h;
bad44b5b 1498 NODEMASK_ALLOC(nodemask_t, nodes_allowed, GFP_KERNEL | __GFP_NORETRY);
a3437870 1499
3dbb95f7 1500 err = kstrtoul(buf, 10, &count);
73ae31e5 1501 if (err)
adbe8726 1502 goto out;
a3437870 1503
9a305230 1504 h = kobj_to_hstate(kobj, &nid);
adbe8726
EM
1505 if (h->order >= MAX_ORDER) {
1506 err = -EINVAL;
1507 goto out;
1508 }
1509
9a305230
LS
1510 if (nid == NUMA_NO_NODE) {
1511 /*
1512 * global hstate attribute
1513 */
1514 if (!(obey_mempolicy &&
1515 init_nodemask_of_mempolicy(nodes_allowed))) {
1516 NODEMASK_FREE(nodes_allowed);
8cebfcd0 1517 nodes_allowed = &node_states[N_MEMORY];
9a305230
LS
1518 }
1519 } else if (nodes_allowed) {
1520 /*
1521 * per node hstate attribute: adjust count to global,
1522 * but restrict alloc/free to the specified node.
1523 */
1524 count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
1525 init_nodemask_of_node(nodes_allowed, nid);
1526 } else
8cebfcd0 1527 nodes_allowed = &node_states[N_MEMORY];
9a305230 1528
06808b08 1529 h->max_huge_pages = set_max_huge_pages(h, count, nodes_allowed);
a3437870 1530
8cebfcd0 1531 if (nodes_allowed != &node_states[N_MEMORY])
06808b08
LS
1532 NODEMASK_FREE(nodes_allowed);
1533
1534 return len;
adbe8726
EM
1535out:
1536 NODEMASK_FREE(nodes_allowed);
1537 return err;
06808b08
LS
1538}
1539
1540static ssize_t nr_hugepages_show(struct kobject *kobj,
1541 struct kobj_attribute *attr, char *buf)
1542{
1543 return nr_hugepages_show_common(kobj, attr, buf);
1544}
1545
1546static ssize_t nr_hugepages_store(struct kobject *kobj,
1547 struct kobj_attribute *attr, const char *buf, size_t len)
1548{
1549 return nr_hugepages_store_common(false, kobj, attr, buf, len);
a3437870
NA
1550}
1551HSTATE_ATTR(nr_hugepages);
1552
06808b08
LS
1553#ifdef CONFIG_NUMA
1554
1555/*
1556 * hstate attribute for optionally mempolicy-based constraint on persistent
1557 * huge page alloc/free.
1558 */
1559static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
1560 struct kobj_attribute *attr, char *buf)
1561{
1562 return nr_hugepages_show_common(kobj, attr, buf);
1563}
1564
1565static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
1566 struct kobj_attribute *attr, const char *buf, size_t len)
1567{
1568 return nr_hugepages_store_common(true, kobj, attr, buf, len);
1569}
1570HSTATE_ATTR(nr_hugepages_mempolicy);
1571#endif
1572
1573
a3437870
NA
1574static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
1575 struct kobj_attribute *attr, char *buf)
1576{
9a305230 1577 struct hstate *h = kobj_to_hstate(kobj, NULL);
a3437870
NA
1578 return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
1579}
adbe8726 1580
a3437870
NA
1581static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
1582 struct kobj_attribute *attr, const char *buf, size_t count)
1583{
1584 int err;
1585 unsigned long input;
9a305230 1586 struct hstate *h = kobj_to_hstate(kobj, NULL);
a3437870 1587
adbe8726
EM
1588 if (h->order >= MAX_ORDER)
1589 return -EINVAL;
1590
3dbb95f7 1591 err = kstrtoul(buf, 10, &input);
a3437870 1592 if (err)
73ae31e5 1593 return err;
a3437870
NA
1594
1595 spin_lock(&hugetlb_lock);
1596 h->nr_overcommit_huge_pages = input;
1597 spin_unlock(&hugetlb_lock);
1598
1599 return count;
1600}
1601HSTATE_ATTR(nr_overcommit_hugepages);
1602
1603static ssize_t free_hugepages_show(struct kobject *kobj,
1604 struct kobj_attribute *attr, char *buf)
1605{
9a305230
LS
1606 struct hstate *h;
1607 unsigned long free_huge_pages;
1608 int nid;
1609
1610 h = kobj_to_hstate(kobj, &nid);
1611 if (nid == NUMA_NO_NODE)
1612 free_huge_pages = h->free_huge_pages;
1613 else
1614 free_huge_pages = h->free_huge_pages_node[nid];
1615
1616 return sprintf(buf, "%lu\n", free_huge_pages);
a3437870
NA
1617}
1618HSTATE_ATTR_RO(free_hugepages);
1619
1620static ssize_t resv_hugepages_show(struct kobject *kobj,
1621 struct kobj_attribute *attr, char *buf)
1622{
9a305230 1623 struct hstate *h = kobj_to_hstate(kobj, NULL);
a3437870
NA
1624 return sprintf(buf, "%lu\n", h->resv_huge_pages);
1625}
1626HSTATE_ATTR_RO(resv_hugepages);
1627
1628static ssize_t surplus_hugepages_show(struct kobject *kobj,
1629 struct kobj_attribute *attr, char *buf)
1630{
9a305230
LS
1631 struct hstate *h;
1632 unsigned long surplus_huge_pages;
1633 int nid;
1634
1635 h = kobj_to_hstate(kobj, &nid);
1636 if (nid == NUMA_NO_NODE)
1637 surplus_huge_pages = h->surplus_huge_pages;
1638 else
1639 surplus_huge_pages = h->surplus_huge_pages_node[nid];
1640
1641 return sprintf(buf, "%lu\n", surplus_huge_pages);
a3437870
NA
1642}
1643HSTATE_ATTR_RO(surplus_hugepages);
1644
1645static struct attribute *hstate_attrs[] = {
1646 &nr_hugepages_attr.attr,
1647 &nr_overcommit_hugepages_attr.attr,
1648 &free_hugepages_attr.attr,
1649 &resv_hugepages_attr.attr,
1650 &surplus_hugepages_attr.attr,
06808b08
LS
1651#ifdef CONFIG_NUMA
1652 &nr_hugepages_mempolicy_attr.attr,
1653#endif
a3437870
NA
1654 NULL,
1655};
1656
1657static struct attribute_group hstate_attr_group = {
1658 .attrs = hstate_attrs,
1659};
1660
094e9539
JM
1661static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
1662 struct kobject **hstate_kobjs,
1663 struct attribute_group *hstate_attr_group)
a3437870
NA
1664{
1665 int retval;
972dc4de 1666 int hi = hstate_index(h);
a3437870 1667
9a305230
LS
1668 hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
1669 if (!hstate_kobjs[hi])
a3437870
NA
1670 return -ENOMEM;
1671
9a305230 1672 retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
a3437870 1673 if (retval)
9a305230 1674 kobject_put(hstate_kobjs[hi]);
a3437870
NA
1675
1676 return retval;
1677}
1678
1679static void __init hugetlb_sysfs_init(void)
1680{
1681 struct hstate *h;
1682 int err;
1683
1684 hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
1685 if (!hugepages_kobj)
1686 return;
1687
1688 for_each_hstate(h) {
9a305230
LS
1689 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
1690 hstate_kobjs, &hstate_attr_group);
a3437870 1691 if (err)
ffb22af5 1692 pr_err("Hugetlb: Unable to add hstate %s", h->name);
a3437870
NA
1693 }
1694}
1695
9a305230
LS
1696#ifdef CONFIG_NUMA
1697
1698/*
1699 * node_hstate/s - associate per node hstate attributes, via their kobjects,
10fbcf4c
KS
1700 * with node devices in node_devices[] using a parallel array. The array
1701 * index of a node device or _hstate == node id.
1702 * This is here to avoid any static dependency of the node device driver, in
9a305230
LS
1703 * the base kernel, on the hugetlb module.
1704 */
1705struct node_hstate {
1706 struct kobject *hugepages_kobj;
1707 struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
1708};
1709struct node_hstate node_hstates[MAX_NUMNODES];
1710
1711/*
10fbcf4c 1712 * A subset of global hstate attributes for node devices
9a305230
LS
1713 */
1714static struct attribute *per_node_hstate_attrs[] = {
1715 &nr_hugepages_attr.attr,
1716 &free_hugepages_attr.attr,
1717 &surplus_hugepages_attr.attr,
1718 NULL,
1719};
1720
1721static struct attribute_group per_node_hstate_attr_group = {
1722 .attrs = per_node_hstate_attrs,
1723};
1724
1725/*
10fbcf4c 1726 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
9a305230
LS
1727 * Returns node id via non-NULL nidp.
1728 */
1729static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
1730{
1731 int nid;
1732
1733 for (nid = 0; nid < nr_node_ids; nid++) {
1734 struct node_hstate *nhs = &node_hstates[nid];
1735 int i;
1736 for (i = 0; i < HUGE_MAX_HSTATE; i++)
1737 if (nhs->hstate_kobjs[i] == kobj) {
1738 if (nidp)
1739 *nidp = nid;
1740 return &hstates[i];
1741 }
1742 }
1743
1744 BUG();
1745 return NULL;
1746}
1747
1748/*
10fbcf4c 1749 * Unregister hstate attributes from a single node device.
9a305230
LS
1750 * No-op if no hstate attributes attached.
1751 */
3cd8b44f 1752static void hugetlb_unregister_node(struct node *node)
9a305230
LS
1753{
1754 struct hstate *h;
10fbcf4c 1755 struct node_hstate *nhs = &node_hstates[node->dev.id];
9a305230
LS
1756
1757 if (!nhs->hugepages_kobj)
9b5e5d0f 1758 return; /* no hstate attributes */
9a305230 1759
972dc4de
AK
1760 for_each_hstate(h) {
1761 int idx = hstate_index(h);
1762 if (nhs->hstate_kobjs[idx]) {
1763 kobject_put(nhs->hstate_kobjs[idx]);
1764 nhs->hstate_kobjs[idx] = NULL;
9a305230 1765 }
972dc4de 1766 }
9a305230
LS
1767
1768 kobject_put(nhs->hugepages_kobj);
1769 nhs->hugepages_kobj = NULL;
1770}
1771
1772/*
10fbcf4c 1773 * hugetlb module exit: unregister hstate attributes from node devices
9a305230
LS
1774 * that have them.
1775 */
1776static void hugetlb_unregister_all_nodes(void)
1777{
1778 int nid;
1779
1780 /*
10fbcf4c 1781 * disable node device registrations.
9a305230
LS
1782 */
1783 register_hugetlbfs_with_node(NULL, NULL);
1784
1785 /*
1786 * remove hstate attributes from any nodes that have them.
1787 */
1788 for (nid = 0; nid < nr_node_ids; nid++)
8732794b 1789 hugetlb_unregister_node(node_devices[nid]);
9a305230
LS
1790}
1791
1792/*
10fbcf4c 1793 * Register hstate attributes for a single node device.
9a305230
LS
1794 * No-op if attributes already registered.
1795 */
3cd8b44f 1796static void hugetlb_register_node(struct node *node)
9a305230
LS
1797{
1798 struct hstate *h;
10fbcf4c 1799 struct node_hstate *nhs = &node_hstates[node->dev.id];
9a305230
LS
1800 int err;
1801
1802 if (nhs->hugepages_kobj)
1803 return; /* already allocated */
1804
1805 nhs->hugepages_kobj = kobject_create_and_add("hugepages",
10fbcf4c 1806 &node->dev.kobj);
9a305230
LS
1807 if (!nhs->hugepages_kobj)
1808 return;
1809
1810 for_each_hstate(h) {
1811 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
1812 nhs->hstate_kobjs,
1813 &per_node_hstate_attr_group);
1814 if (err) {
ffb22af5
AM
1815 pr_err("Hugetlb: Unable to add hstate %s for node %d\n",
1816 h->name, node->dev.id);
9a305230
LS
1817 hugetlb_unregister_node(node);
1818 break;
1819 }
1820 }
1821}
1822
1823/*
9b5e5d0f 1824 * hugetlb init time: register hstate attributes for all registered node
10fbcf4c
KS
1825 * devices of nodes that have memory. All on-line nodes should have
1826 * registered their associated device by this time.
9a305230
LS
1827 */
1828static void hugetlb_register_all_nodes(void)
1829{
1830 int nid;
1831
8cebfcd0 1832 for_each_node_state(nid, N_MEMORY) {
8732794b 1833 struct node *node = node_devices[nid];
10fbcf4c 1834 if (node->dev.id == nid)
9a305230
LS
1835 hugetlb_register_node(node);
1836 }
1837
1838 /*
10fbcf4c 1839 * Let the node device driver know we're here so it can
9a305230
LS
1840 * [un]register hstate attributes on node hotplug.
1841 */
1842 register_hugetlbfs_with_node(hugetlb_register_node,
1843 hugetlb_unregister_node);
1844}
1845#else /* !CONFIG_NUMA */
1846
1847static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
1848{
1849 BUG();
1850 if (nidp)
1851 *nidp = -1;
1852 return NULL;
1853}
1854
1855static void hugetlb_unregister_all_nodes(void) { }
1856
1857static void hugetlb_register_all_nodes(void) { }
1858
1859#endif
1860
a3437870
NA
1861static void __exit hugetlb_exit(void)
1862{
1863 struct hstate *h;
1864
9a305230
LS
1865 hugetlb_unregister_all_nodes();
1866
a3437870 1867 for_each_hstate(h) {
972dc4de 1868 kobject_put(hstate_kobjs[hstate_index(h)]);
a3437870
NA
1869 }
1870
1871 kobject_put(hugepages_kobj);
1872}
1873module_exit(hugetlb_exit);
1874
1875static int __init hugetlb_init(void)
1876{
0ef89d25
BH
1877 /* Some platform decide whether they support huge pages at boot
1878 * time. On these, such as powerpc, HPAGE_SHIFT is set to 0 when
1879 * there is no such support
1880 */
1881 if (HPAGE_SHIFT == 0)
1882 return 0;
a3437870 1883
e11bfbfc
NP
1884 if (!size_to_hstate(default_hstate_size)) {
1885 default_hstate_size = HPAGE_SIZE;
1886 if (!size_to_hstate(default_hstate_size))
1887 hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
a3437870 1888 }
972dc4de 1889 default_hstate_idx = hstate_index(size_to_hstate(default_hstate_size));
e11bfbfc
NP
1890 if (default_hstate_max_huge_pages)
1891 default_hstate.max_huge_pages = default_hstate_max_huge_pages;
a3437870
NA
1892
1893 hugetlb_init_hstates();
aa888a74 1894 gather_bootmem_prealloc();
a3437870
NA
1895 report_hugepages();
1896
1897 hugetlb_sysfs_init();
9a305230 1898 hugetlb_register_all_nodes();
7179e7bf 1899 hugetlb_cgroup_file_init();
9a305230 1900
a3437870
NA
1901 return 0;
1902}
1903module_init(hugetlb_init);
1904
1905/* Should be called on processing a hugepagesz=... option */
1906void __init hugetlb_add_hstate(unsigned order)
1907{
1908 struct hstate *h;
8faa8b07
AK
1909 unsigned long i;
1910
a3437870 1911 if (size_to_hstate(PAGE_SIZE << order)) {
ffb22af5 1912 pr_warning("hugepagesz= specified twice, ignoring\n");
a3437870
NA
1913 return;
1914 }
47d38344 1915 BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
a3437870 1916 BUG_ON(order == 0);
47d38344 1917 h = &hstates[hugetlb_max_hstate++];
a3437870
NA
1918 h->order = order;
1919 h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
8faa8b07
AK
1920 h->nr_huge_pages = 0;
1921 h->free_huge_pages = 0;
1922 for (i = 0; i < MAX_NUMNODES; ++i)
1923 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
0edaecfa 1924 INIT_LIST_HEAD(&h->hugepage_activelist);
8cebfcd0
LJ
1925 h->next_nid_to_alloc = first_node(node_states[N_MEMORY]);
1926 h->next_nid_to_free = first_node(node_states[N_MEMORY]);
a3437870
NA
1927 snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
1928 huge_page_size(h)/1024);
8faa8b07 1929
a3437870
NA
1930 parsed_hstate = h;
1931}
1932
e11bfbfc 1933static int __init hugetlb_nrpages_setup(char *s)
a3437870
NA
1934{
1935 unsigned long *mhp;
8faa8b07 1936 static unsigned long *last_mhp;
a3437870
NA
1937
1938 /*
47d38344 1939 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter yet,
a3437870
NA
1940 * so this hugepages= parameter goes to the "default hstate".
1941 */
47d38344 1942 if (!hugetlb_max_hstate)
a3437870
NA
1943 mhp = &default_hstate_max_huge_pages;
1944 else
1945 mhp = &parsed_hstate->max_huge_pages;
1946
8faa8b07 1947 if (mhp == last_mhp) {
ffb22af5
AM
1948 pr_warning("hugepages= specified twice without "
1949 "interleaving hugepagesz=, ignoring\n");
8faa8b07
AK
1950 return 1;
1951 }
1952
a3437870
NA
1953 if (sscanf(s, "%lu", mhp) <= 0)
1954 *mhp = 0;
1955
8faa8b07
AK
1956 /*
1957 * Global state is always initialized later in hugetlb_init.
1958 * But we need to allocate >= MAX_ORDER hstates here early to still
1959 * use the bootmem allocator.
1960 */
47d38344 1961 if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER)
8faa8b07
AK
1962 hugetlb_hstate_alloc_pages(parsed_hstate);
1963
1964 last_mhp = mhp;
1965
a3437870
NA
1966 return 1;
1967}
e11bfbfc
NP
1968__setup("hugepages=", hugetlb_nrpages_setup);
1969
1970static int __init hugetlb_default_setup(char *s)
1971{
1972 default_hstate_size = memparse(s, &s);
1973 return 1;
1974}
1975__setup("default_hugepagesz=", hugetlb_default_setup);
a3437870 1976
8a213460
NA
1977static unsigned int cpuset_mems_nr(unsigned int *array)
1978{
1979 int node;
1980 unsigned int nr = 0;
1981
1982 for_each_node_mask(node, cpuset_current_mems_allowed)
1983 nr += array[node];
1984
1985 return nr;
1986}
1987
1988#ifdef CONFIG_SYSCTL
06808b08
LS
1989static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
1990 struct ctl_table *table, int write,
1991 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 1992{
e5ff2159
AK
1993 struct hstate *h = &default_hstate;
1994 unsigned long tmp;
08d4a246 1995 int ret;
e5ff2159 1996
c033a93c 1997 tmp = h->max_huge_pages;
e5ff2159 1998
adbe8726
EM
1999 if (write && h->order >= MAX_ORDER)
2000 return -EINVAL;
2001
e5ff2159
AK
2002 table->data = &tmp;
2003 table->maxlen = sizeof(unsigned long);
08d4a246
MH
2004 ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2005 if (ret)
2006 goto out;
e5ff2159 2007
06808b08 2008 if (write) {
bad44b5b
DR
2009 NODEMASK_ALLOC(nodemask_t, nodes_allowed,
2010 GFP_KERNEL | __GFP_NORETRY);
06808b08
LS
2011 if (!(obey_mempolicy &&
2012 init_nodemask_of_mempolicy(nodes_allowed))) {
2013 NODEMASK_FREE(nodes_allowed);
8cebfcd0 2014 nodes_allowed = &node_states[N_MEMORY];
06808b08
LS
2015 }
2016 h->max_huge_pages = set_max_huge_pages(h, tmp, nodes_allowed);
2017
8cebfcd0 2018 if (nodes_allowed != &node_states[N_MEMORY])
06808b08
LS
2019 NODEMASK_FREE(nodes_allowed);
2020 }
08d4a246
MH
2021out:
2022 return ret;
1da177e4 2023}
396faf03 2024
06808b08
LS
2025int hugetlb_sysctl_handler(struct ctl_table *table, int write,
2026 void __user *buffer, size_t *length, loff_t *ppos)
2027{
2028
2029 return hugetlb_sysctl_handler_common(false, table, write,
2030 buffer, length, ppos);
2031}
2032
2033#ifdef CONFIG_NUMA
2034int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
2035 void __user *buffer, size_t *length, loff_t *ppos)
2036{
2037 return hugetlb_sysctl_handler_common(true, table, write,
2038 buffer, length, ppos);
2039}
2040#endif /* CONFIG_NUMA */
2041
396faf03 2042int hugetlb_treat_movable_handler(struct ctl_table *table, int write,
8d65af78 2043 void __user *buffer,
396faf03
MG
2044 size_t *length, loff_t *ppos)
2045{
8d65af78 2046 proc_dointvec(table, write, buffer, length, ppos);
396faf03
MG
2047 if (hugepages_treat_as_movable)
2048 htlb_alloc_mask = GFP_HIGHUSER_MOVABLE;
2049 else
2050 htlb_alloc_mask = GFP_HIGHUSER;
2051 return 0;
2052}
2053
a3d0c6aa 2054int hugetlb_overcommit_handler(struct ctl_table *table, int write,
8d65af78 2055 void __user *buffer,
a3d0c6aa
NA
2056 size_t *length, loff_t *ppos)
2057{
a5516438 2058 struct hstate *h = &default_hstate;
e5ff2159 2059 unsigned long tmp;
08d4a246 2060 int ret;
e5ff2159 2061
c033a93c 2062 tmp = h->nr_overcommit_huge_pages;
e5ff2159 2063
adbe8726
EM
2064 if (write && h->order >= MAX_ORDER)
2065 return -EINVAL;
2066
e5ff2159
AK
2067 table->data = &tmp;
2068 table->maxlen = sizeof(unsigned long);
08d4a246
MH
2069 ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2070 if (ret)
2071 goto out;
e5ff2159
AK
2072
2073 if (write) {
2074 spin_lock(&hugetlb_lock);
2075 h->nr_overcommit_huge_pages = tmp;
2076 spin_unlock(&hugetlb_lock);
2077 }
08d4a246
MH
2078out:
2079 return ret;
a3d0c6aa
NA
2080}
2081
1da177e4
LT
2082#endif /* CONFIG_SYSCTL */
2083
e1759c21 2084void hugetlb_report_meminfo(struct seq_file *m)
1da177e4 2085{
a5516438 2086 struct hstate *h = &default_hstate;
e1759c21 2087 seq_printf(m,
4f98a2fe
RR
2088 "HugePages_Total: %5lu\n"
2089 "HugePages_Free: %5lu\n"
2090 "HugePages_Rsvd: %5lu\n"
2091 "HugePages_Surp: %5lu\n"
2092 "Hugepagesize: %8lu kB\n",
a5516438
AK
2093 h->nr_huge_pages,
2094 h->free_huge_pages,
2095 h->resv_huge_pages,
2096 h->surplus_huge_pages,
2097 1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
1da177e4
LT
2098}
2099
2100int hugetlb_report_node_meminfo(int nid, char *buf)
2101{
a5516438 2102 struct hstate *h = &default_hstate;
1da177e4
LT
2103 return sprintf(buf,
2104 "Node %d HugePages_Total: %5u\n"
a1de0919
NA
2105 "Node %d HugePages_Free: %5u\n"
2106 "Node %d HugePages_Surp: %5u\n",
a5516438
AK
2107 nid, h->nr_huge_pages_node[nid],
2108 nid, h->free_huge_pages_node[nid],
2109 nid, h->surplus_huge_pages_node[nid]);
1da177e4
LT
2110}
2111
949f7ec5
DR
2112void hugetlb_show_meminfo(void)
2113{
2114 struct hstate *h;
2115 int nid;
2116
2117 for_each_node_state(nid, N_MEMORY)
2118 for_each_hstate(h)
2119 pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
2120 nid,
2121 h->nr_huge_pages_node[nid],
2122 h->free_huge_pages_node[nid],
2123 h->surplus_huge_pages_node[nid],
2124 1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
2125}
2126
1da177e4
LT
2127/* Return the number pages of memory we physically have, in PAGE_SIZE units. */
2128unsigned long hugetlb_total_pages(void)
2129{
d0028588
WL
2130 struct hstate *h;
2131 unsigned long nr_total_pages = 0;
2132
2133 for_each_hstate(h)
2134 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
2135 return nr_total_pages;
1da177e4 2136}
1da177e4 2137
a5516438 2138static int hugetlb_acct_memory(struct hstate *h, long delta)
fc1b8a73
MG
2139{
2140 int ret = -ENOMEM;
2141
2142 spin_lock(&hugetlb_lock);
2143 /*
2144 * When cpuset is configured, it breaks the strict hugetlb page
2145 * reservation as the accounting is done on a global variable. Such
2146 * reservation is completely rubbish in the presence of cpuset because
2147 * the reservation is not checked against page availability for the
2148 * current cpuset. Application can still potentially OOM'ed by kernel
2149 * with lack of free htlb page in cpuset that the task is in.
2150 * Attempt to enforce strict accounting with cpuset is almost
2151 * impossible (or too ugly) because cpuset is too fluid that
2152 * task or memory node can be dynamically moved between cpusets.
2153 *
2154 * The change of semantics for shared hugetlb mapping with cpuset is
2155 * undesirable. However, in order to preserve some of the semantics,
2156 * we fall back to check against current free page availability as
2157 * a best attempt and hopefully to minimize the impact of changing
2158 * semantics that cpuset has.
2159 */
2160 if (delta > 0) {
a5516438 2161 if (gather_surplus_pages(h, delta) < 0)
fc1b8a73
MG
2162 goto out;
2163
a5516438
AK
2164 if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
2165 return_unused_surplus_pages(h, delta);
fc1b8a73
MG
2166 goto out;
2167 }
2168 }
2169
2170 ret = 0;
2171 if (delta < 0)
a5516438 2172 return_unused_surplus_pages(h, (unsigned long) -delta);
fc1b8a73
MG
2173
2174out:
2175 spin_unlock(&hugetlb_lock);
2176 return ret;
2177}
2178
84afd99b
AW
2179static void hugetlb_vm_op_open(struct vm_area_struct *vma)
2180{
2181 struct resv_map *reservations = vma_resv_map(vma);
2182
2183 /*
2184 * This new VMA should share its siblings reservation map if present.
2185 * The VMA will only ever have a valid reservation map pointer where
2186 * it is being copied for another still existing VMA. As that VMA
25985edc 2187 * has a reference to the reservation map it cannot disappear until
84afd99b
AW
2188 * after this open call completes. It is therefore safe to take a
2189 * new reference here without additional locking.
2190 */
2191 if (reservations)
2192 kref_get(&reservations->refs);
2193}
2194
c50ac050
DH
2195static void resv_map_put(struct vm_area_struct *vma)
2196{
2197 struct resv_map *reservations = vma_resv_map(vma);
2198
2199 if (!reservations)
2200 return;
2201 kref_put(&reservations->refs, resv_map_release);
2202}
2203
a1e78772
MG
2204static void hugetlb_vm_op_close(struct vm_area_struct *vma)
2205{
a5516438 2206 struct hstate *h = hstate_vma(vma);
84afd99b 2207 struct resv_map *reservations = vma_resv_map(vma);
90481622 2208 struct hugepage_subpool *spool = subpool_vma(vma);
84afd99b
AW
2209 unsigned long reserve;
2210 unsigned long start;
2211 unsigned long end;
2212
2213 if (reservations) {
a5516438
AK
2214 start = vma_hugecache_offset(h, vma, vma->vm_start);
2215 end = vma_hugecache_offset(h, vma, vma->vm_end);
84afd99b
AW
2216
2217 reserve = (end - start) -
2218 region_count(&reservations->regions, start, end);
2219
c50ac050 2220 resv_map_put(vma);
84afd99b 2221
7251ff78 2222 if (reserve) {
a5516438 2223 hugetlb_acct_memory(h, -reserve);
90481622 2224 hugepage_subpool_put_pages(spool, reserve);
7251ff78 2225 }
84afd99b 2226 }
a1e78772
MG
2227}
2228
1da177e4
LT
2229/*
2230 * We cannot handle pagefaults against hugetlb pages at all. They cause
2231 * handle_mm_fault() to try to instantiate regular-sized pages in the
2232 * hugegpage VMA. do_page_fault() is supposed to trap this, so BUG is we get
2233 * this far.
2234 */
d0217ac0 2235static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1da177e4
LT
2236{
2237 BUG();
d0217ac0 2238 return 0;
1da177e4
LT
2239}
2240
f0f37e2f 2241const struct vm_operations_struct hugetlb_vm_ops = {
d0217ac0 2242 .fault = hugetlb_vm_op_fault,
84afd99b 2243 .open = hugetlb_vm_op_open,
a1e78772 2244 .close = hugetlb_vm_op_close,
1da177e4
LT
2245};
2246
1e8f889b
DG
2247static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
2248 int writable)
63551ae0
DG
2249{
2250 pte_t entry;
2251
1e8f889b 2252 if (writable) {
106c992a
GS
2253 entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
2254 vma->vm_page_prot)));
63551ae0 2255 } else {
106c992a
GS
2256 entry = huge_pte_wrprotect(mk_huge_pte(page,
2257 vma->vm_page_prot));
63551ae0
DG
2258 }
2259 entry = pte_mkyoung(entry);
2260 entry = pte_mkhuge(entry);
d9ed9faa 2261 entry = arch_make_huge_pte(entry, vma, page, writable);
63551ae0
DG
2262
2263 return entry;
2264}
2265
1e8f889b
DG
2266static void set_huge_ptep_writable(struct vm_area_struct *vma,
2267 unsigned long address, pte_t *ptep)
2268{
2269 pte_t entry;
2270
106c992a 2271 entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
32f84528 2272 if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
4b3073e1 2273 update_mmu_cache(vma, address, ptep);
1e8f889b
DG
2274}
2275
2276
63551ae0
DG
2277int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
2278 struct vm_area_struct *vma)
2279{
2280 pte_t *src_pte, *dst_pte, entry;
2281 struct page *ptepage;
1c59827d 2282 unsigned long addr;
1e8f889b 2283 int cow;
a5516438
AK
2284 struct hstate *h = hstate_vma(vma);
2285 unsigned long sz = huge_page_size(h);
1e8f889b
DG
2286
2287 cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
63551ae0 2288
a5516438 2289 for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
c74df32c
HD
2290 src_pte = huge_pte_offset(src, addr);
2291 if (!src_pte)
2292 continue;
a5516438 2293 dst_pte = huge_pte_alloc(dst, addr, sz);
63551ae0
DG
2294 if (!dst_pte)
2295 goto nomem;
c5c99429
LW
2296
2297 /* If the pagetables are shared don't copy or take references */
2298 if (dst_pte == src_pte)
2299 continue;
2300
c74df32c 2301 spin_lock(&dst->page_table_lock);
46478758 2302 spin_lock_nested(&src->page_table_lock, SINGLE_DEPTH_NESTING);
7f2e9525 2303 if (!huge_pte_none(huge_ptep_get(src_pte))) {
1e8f889b 2304 if (cow)
7f2e9525
GS
2305 huge_ptep_set_wrprotect(src, addr, src_pte);
2306 entry = huge_ptep_get(src_pte);
1c59827d
HD
2307 ptepage = pte_page(entry);
2308 get_page(ptepage);
0fe6e20b 2309 page_dup_rmap(ptepage);
1c59827d
HD
2310 set_huge_pte_at(dst, addr, dst_pte, entry);
2311 }
2312 spin_unlock(&src->page_table_lock);
c74df32c 2313 spin_unlock(&dst->page_table_lock);
63551ae0
DG
2314 }
2315 return 0;
2316
2317nomem:
2318 return -ENOMEM;
2319}
2320
290408d4
NH
2321static int is_hugetlb_entry_migration(pte_t pte)
2322{
2323 swp_entry_t swp;
2324
2325 if (huge_pte_none(pte) || pte_present(pte))
2326 return 0;
2327 swp = pte_to_swp_entry(pte);
32f84528 2328 if (non_swap_entry(swp) && is_migration_entry(swp))
290408d4 2329 return 1;
32f84528 2330 else
290408d4
NH
2331 return 0;
2332}
2333
fd6a03ed
NH
2334static int is_hugetlb_entry_hwpoisoned(pte_t pte)
2335{
2336 swp_entry_t swp;
2337
2338 if (huge_pte_none(pte) || pte_present(pte))
2339 return 0;
2340 swp = pte_to_swp_entry(pte);
32f84528 2341 if (non_swap_entry(swp) && is_hwpoison_entry(swp))
fd6a03ed 2342 return 1;
32f84528 2343 else
fd6a03ed
NH
2344 return 0;
2345}
2346
24669e58
AK
2347void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
2348 unsigned long start, unsigned long end,
2349 struct page *ref_page)
63551ae0 2350{
24669e58 2351 int force_flush = 0;
63551ae0
DG
2352 struct mm_struct *mm = vma->vm_mm;
2353 unsigned long address;
c7546f8f 2354 pte_t *ptep;
63551ae0
DG
2355 pte_t pte;
2356 struct page *page;
a5516438
AK
2357 struct hstate *h = hstate_vma(vma);
2358 unsigned long sz = huge_page_size(h);
2ec74c3e
SG
2359 const unsigned long mmun_start = start; /* For mmu_notifiers */
2360 const unsigned long mmun_end = end; /* For mmu_notifiers */
a5516438 2361
63551ae0 2362 WARN_ON(!is_vm_hugetlb_page(vma));
a5516438
AK
2363 BUG_ON(start & ~huge_page_mask(h));
2364 BUG_ON(end & ~huge_page_mask(h));
63551ae0 2365
24669e58 2366 tlb_start_vma(tlb, vma);
2ec74c3e 2367 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
24669e58 2368again:
508034a3 2369 spin_lock(&mm->page_table_lock);
a5516438 2370 for (address = start; address < end; address += sz) {
c7546f8f 2371 ptep = huge_pte_offset(mm, address);
4c887265 2372 if (!ptep)
c7546f8f
DG
2373 continue;
2374
39dde65c
CK
2375 if (huge_pmd_unshare(mm, &address, ptep))
2376 continue;
2377
6629326b
HD
2378 pte = huge_ptep_get(ptep);
2379 if (huge_pte_none(pte))
2380 continue;
2381
2382 /*
2383 * HWPoisoned hugepage is already unmapped and dropped reference
2384 */
8c4894c6 2385 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
106c992a 2386 huge_pte_clear(mm, address, ptep);
6629326b 2387 continue;
8c4894c6 2388 }
6629326b
HD
2389
2390 page = pte_page(pte);
04f2cbe3
MG
2391 /*
2392 * If a reference page is supplied, it is because a specific
2393 * page is being unmapped, not a range. Ensure the page we
2394 * are about to unmap is the actual page of interest.
2395 */
2396 if (ref_page) {
04f2cbe3
MG
2397 if (page != ref_page)
2398 continue;
2399
2400 /*
2401 * Mark the VMA as having unmapped its page so that
2402 * future faults in this VMA will fail rather than
2403 * looking like data was lost
2404 */
2405 set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
2406 }
2407
c7546f8f 2408 pte = huge_ptep_get_and_clear(mm, address, ptep);
24669e58 2409 tlb_remove_tlb_entry(tlb, ptep, address);
106c992a 2410 if (huge_pte_dirty(pte))
6649a386 2411 set_page_dirty(page);
9e81130b 2412
24669e58
AK
2413 page_remove_rmap(page);
2414 force_flush = !__tlb_remove_page(tlb, page);
2415 if (force_flush)
2416 break;
9e81130b
HD
2417 /* Bail out after unmapping reference page if supplied */
2418 if (ref_page)
2419 break;
63551ae0 2420 }
cd2934a3 2421 spin_unlock(&mm->page_table_lock);
24669e58
AK
2422 /*
2423 * mmu_gather ran out of room to batch pages, we break out of
2424 * the PTE lock to avoid doing the potential expensive TLB invalidate
2425 * and page-free while holding it.
2426 */
2427 if (force_flush) {
2428 force_flush = 0;
2429 tlb_flush_mmu(tlb);
2430 if (address < end && !ref_page)
2431 goto again;
fe1668ae 2432 }
2ec74c3e 2433 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
24669e58 2434 tlb_end_vma(tlb, vma);
1da177e4 2435}
63551ae0 2436
d833352a
MG
2437void __unmap_hugepage_range_final(struct mmu_gather *tlb,
2438 struct vm_area_struct *vma, unsigned long start,
2439 unsigned long end, struct page *ref_page)
2440{
2441 __unmap_hugepage_range(tlb, vma, start, end, ref_page);
2442
2443 /*
2444 * Clear this flag so that x86's huge_pmd_share page_table_shareable
2445 * test will fail on a vma being torn down, and not grab a page table
2446 * on its way out. We're lucky that the flag has such an appropriate
2447 * name, and can in fact be safely cleared here. We could clear it
2448 * before the __unmap_hugepage_range above, but all that's necessary
2449 * is to clear it before releasing the i_mmap_mutex. This works
2450 * because in the context this is called, the VMA is about to be
2451 * destroyed and the i_mmap_mutex is held.
2452 */
2453 vma->vm_flags &= ~VM_MAYSHARE;
2454}
2455
502717f4 2456void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
04f2cbe3 2457 unsigned long end, struct page *ref_page)
502717f4 2458{
24669e58
AK
2459 struct mm_struct *mm;
2460 struct mmu_gather tlb;
2461
2462 mm = vma->vm_mm;
2463
2b047252 2464 tlb_gather_mmu(&tlb, mm, start, end);
24669e58
AK
2465 __unmap_hugepage_range(&tlb, vma, start, end, ref_page);
2466 tlb_finish_mmu(&tlb, start, end);
502717f4
CK
2467}
2468
04f2cbe3
MG
2469/*
2470 * This is called when the original mapper is failing to COW a MAP_PRIVATE
2471 * mappping it owns the reserve page for. The intention is to unmap the page
2472 * from other VMAs and let the children be SIGKILLed if they are faulting the
2473 * same region.
2474 */
2a4b3ded
HH
2475static int unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
2476 struct page *page, unsigned long address)
04f2cbe3 2477{
7526674d 2478 struct hstate *h = hstate_vma(vma);
04f2cbe3
MG
2479 struct vm_area_struct *iter_vma;
2480 struct address_space *mapping;
04f2cbe3
MG
2481 pgoff_t pgoff;
2482
2483 /*
2484 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
2485 * from page cache lookup which is in HPAGE_SIZE units.
2486 */
7526674d 2487 address = address & huge_page_mask(h);
36e4f20a
MH
2488 pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
2489 vma->vm_pgoff;
496ad9aa 2490 mapping = file_inode(vma->vm_file)->i_mapping;
04f2cbe3 2491
4eb2b1dc
MG
2492 /*
2493 * Take the mapping lock for the duration of the table walk. As
2494 * this mapping should be shared between all the VMAs,
2495 * __unmap_hugepage_range() is called as the lock is already held
2496 */
3d48ae45 2497 mutex_lock(&mapping->i_mmap_mutex);
6b2dbba8 2498 vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
04f2cbe3
MG
2499 /* Do not unmap the current VMA */
2500 if (iter_vma == vma)
2501 continue;
2502
2503 /*
2504 * Unmap the page from other VMAs without their own reserves.
2505 * They get marked to be SIGKILLed if they fault in these
2506 * areas. This is because a future no-page fault on this VMA
2507 * could insert a zeroed page instead of the data existing
2508 * from the time of fork. This would look like data corruption
2509 */
2510 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
24669e58
AK
2511 unmap_hugepage_range(iter_vma, address,
2512 address + huge_page_size(h), page);
04f2cbe3 2513 }
3d48ae45 2514 mutex_unlock(&mapping->i_mmap_mutex);
04f2cbe3
MG
2515
2516 return 1;
2517}
2518
0fe6e20b
NH
2519/*
2520 * Hugetlb_cow() should be called with page lock of the original hugepage held.
ef009b25
MH
2521 * Called with hugetlb_instantiation_mutex held and pte_page locked so we
2522 * cannot race with other handlers or page migration.
2523 * Keep the pte_same checks anyway to make transition from the mutex easier.
0fe6e20b 2524 */
1e8f889b 2525static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
04f2cbe3
MG
2526 unsigned long address, pte_t *ptep, pte_t pte,
2527 struct page *pagecache_page)
1e8f889b 2528{
a5516438 2529 struct hstate *h = hstate_vma(vma);
1e8f889b 2530 struct page *old_page, *new_page;
79ac6ba4 2531 int avoidcopy;
04f2cbe3 2532 int outside_reserve = 0;
2ec74c3e
SG
2533 unsigned long mmun_start; /* For mmu_notifiers */
2534 unsigned long mmun_end; /* For mmu_notifiers */
1e8f889b
DG
2535
2536 old_page = pte_page(pte);
2537
04f2cbe3 2538retry_avoidcopy:
1e8f889b
DG
2539 /* If no-one else is actually using this page, avoid the copy
2540 * and just make the page writable */
0fe6e20b 2541 avoidcopy = (page_mapcount(old_page) == 1);
1e8f889b 2542 if (avoidcopy) {
56c9cfb1
NH
2543 if (PageAnon(old_page))
2544 page_move_anon_rmap(old_page, vma, address);
1e8f889b 2545 set_huge_ptep_writable(vma, address, ptep);
83c54070 2546 return 0;
1e8f889b
DG
2547 }
2548
04f2cbe3
MG
2549 /*
2550 * If the process that created a MAP_PRIVATE mapping is about to
2551 * perform a COW due to a shared page count, attempt to satisfy
2552 * the allocation without using the existing reserves. The pagecache
2553 * page is used to determine if the reserve at this address was
2554 * consumed or not. If reserves were used, a partial faulted mapping
2555 * at the time of fork() could consume its reserves on COW instead
2556 * of the full address range.
2557 */
f83a275d 2558 if (!(vma->vm_flags & VM_MAYSHARE) &&
04f2cbe3
MG
2559 is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
2560 old_page != pagecache_page)
2561 outside_reserve = 1;
2562
1e8f889b 2563 page_cache_get(old_page);
b76c8cfb
LW
2564
2565 /* Drop page_table_lock as buddy allocator may be called */
2566 spin_unlock(&mm->page_table_lock);
04f2cbe3 2567 new_page = alloc_huge_page(vma, address, outside_reserve);
1e8f889b 2568
2fc39cec 2569 if (IS_ERR(new_page)) {
76dcee75 2570 long err = PTR_ERR(new_page);
1e8f889b 2571 page_cache_release(old_page);
04f2cbe3
MG
2572
2573 /*
2574 * If a process owning a MAP_PRIVATE mapping fails to COW,
2575 * it is due to references held by a child and an insufficient
2576 * huge page pool. To guarantee the original mappers
2577 * reliability, unmap the page from child processes. The child
2578 * may get SIGKILLed if it later faults.
2579 */
2580 if (outside_reserve) {
2581 BUG_ON(huge_pte_none(pte));
2582 if (unmap_ref_private(mm, vma, old_page, address)) {
04f2cbe3 2583 BUG_ON(huge_pte_none(pte));
b76c8cfb 2584 spin_lock(&mm->page_table_lock);
a734bcc8
HD
2585 ptep = huge_pte_offset(mm, address & huge_page_mask(h));
2586 if (likely(pte_same(huge_ptep_get(ptep), pte)))
2587 goto retry_avoidcopy;
2588 /*
2589 * race occurs while re-acquiring page_table_lock, and
2590 * our job is done.
2591 */
2592 return 0;
04f2cbe3
MG
2593 }
2594 WARN_ON_ONCE(1);
2595 }
2596
b76c8cfb
LW
2597 /* Caller expects lock to be held */
2598 spin_lock(&mm->page_table_lock);
76dcee75
AK
2599 if (err == -ENOMEM)
2600 return VM_FAULT_OOM;
2601 else
2602 return VM_FAULT_SIGBUS;
1e8f889b
DG
2603 }
2604
0fe6e20b
NH
2605 /*
2606 * When the original hugepage is shared one, it does not have
2607 * anon_vma prepared.
2608 */
44e2aa93 2609 if (unlikely(anon_vma_prepare(vma))) {
ea4039a3
HD
2610 page_cache_release(new_page);
2611 page_cache_release(old_page);
44e2aa93
DN
2612 /* Caller expects lock to be held */
2613 spin_lock(&mm->page_table_lock);
0fe6e20b 2614 return VM_FAULT_OOM;
44e2aa93 2615 }
0fe6e20b 2616
47ad8475
AA
2617 copy_user_huge_page(new_page, old_page, address, vma,
2618 pages_per_huge_page(h));
0ed361de 2619 __SetPageUptodate(new_page);
1e8f889b 2620
2ec74c3e
SG
2621 mmun_start = address & huge_page_mask(h);
2622 mmun_end = mmun_start + huge_page_size(h);
2623 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
b76c8cfb
LW
2624 /*
2625 * Retake the page_table_lock to check for racing updates
2626 * before the page tables are altered
2627 */
2628 spin_lock(&mm->page_table_lock);
a5516438 2629 ptep = huge_pte_offset(mm, address & huge_page_mask(h));
7f2e9525 2630 if (likely(pte_same(huge_ptep_get(ptep), pte))) {
1e8f889b 2631 /* Break COW */
8fe627ec 2632 huge_ptep_clear_flush(vma, address, ptep);
1e8f889b
DG
2633 set_huge_pte_at(mm, address, ptep,
2634 make_huge_pte(vma, new_page, 1));
0fe6e20b 2635 page_remove_rmap(old_page);
cd67f0d2 2636 hugepage_add_new_anon_rmap(new_page, vma, address);
1e8f889b
DG
2637 /* Make the old page be freed below */
2638 new_page = old_page;
2639 }
2ec74c3e
SG
2640 spin_unlock(&mm->page_table_lock);
2641 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2642 /* Caller expects lock to be held */
2643 spin_lock(&mm->page_table_lock);
1e8f889b
DG
2644 page_cache_release(new_page);
2645 page_cache_release(old_page);
83c54070 2646 return 0;
1e8f889b
DG
2647}
2648
04f2cbe3 2649/* Return the pagecache page at a given address within a VMA */
a5516438
AK
2650static struct page *hugetlbfs_pagecache_page(struct hstate *h,
2651 struct vm_area_struct *vma, unsigned long address)
04f2cbe3
MG
2652{
2653 struct address_space *mapping;
e7c4b0bf 2654 pgoff_t idx;
04f2cbe3
MG
2655
2656 mapping = vma->vm_file->f_mapping;
a5516438 2657 idx = vma_hugecache_offset(h, vma, address);
04f2cbe3
MG
2658
2659 return find_lock_page(mapping, idx);
2660}
2661
3ae77f43
HD
2662/*
2663 * Return whether there is a pagecache page to back given address within VMA.
2664 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
2665 */
2666static bool hugetlbfs_pagecache_present(struct hstate *h,
2a15efc9
HD
2667 struct vm_area_struct *vma, unsigned long address)
2668{
2669 struct address_space *mapping;
2670 pgoff_t idx;
2671 struct page *page;
2672
2673 mapping = vma->vm_file->f_mapping;
2674 idx = vma_hugecache_offset(h, vma, address);
2675
2676 page = find_get_page(mapping, idx);
2677 if (page)
2678 put_page(page);
2679 return page != NULL;
2680}
2681
a1ed3dda 2682static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
788c7df4 2683 unsigned long address, pte_t *ptep, unsigned int flags)
ac9b9c66 2684{
a5516438 2685 struct hstate *h = hstate_vma(vma);
ac9b9c66 2686 int ret = VM_FAULT_SIGBUS;
409eb8c2 2687 int anon_rmap = 0;
e7c4b0bf 2688 pgoff_t idx;
4c887265 2689 unsigned long size;
4c887265
AL
2690 struct page *page;
2691 struct address_space *mapping;
1e8f889b 2692 pte_t new_pte;
4c887265 2693
04f2cbe3
MG
2694 /*
2695 * Currently, we are forced to kill the process in the event the
2696 * original mapper has unmapped pages from the child due to a failed
25985edc 2697 * COW. Warn that such a situation has occurred as it may not be obvious
04f2cbe3
MG
2698 */
2699 if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
ffb22af5
AM
2700 pr_warning("PID %d killed due to inadequate hugepage pool\n",
2701 current->pid);
04f2cbe3
MG
2702 return ret;
2703 }
2704
4c887265 2705 mapping = vma->vm_file->f_mapping;
a5516438 2706 idx = vma_hugecache_offset(h, vma, address);
4c887265
AL
2707
2708 /*
2709 * Use page lock to guard against racing truncation
2710 * before we get page_table_lock.
2711 */
6bda666a
CL
2712retry:
2713 page = find_lock_page(mapping, idx);
2714 if (!page) {
a5516438 2715 size = i_size_read(mapping->host) >> huge_page_shift(h);
ebed4bfc
HD
2716 if (idx >= size)
2717 goto out;
04f2cbe3 2718 page = alloc_huge_page(vma, address, 0);
2fc39cec 2719 if (IS_ERR(page)) {
76dcee75
AK
2720 ret = PTR_ERR(page);
2721 if (ret == -ENOMEM)
2722 ret = VM_FAULT_OOM;
2723 else
2724 ret = VM_FAULT_SIGBUS;
6bda666a
CL
2725 goto out;
2726 }
47ad8475 2727 clear_huge_page(page, address, pages_per_huge_page(h));
0ed361de 2728 __SetPageUptodate(page);
ac9b9c66 2729
f83a275d 2730 if (vma->vm_flags & VM_MAYSHARE) {
6bda666a 2731 int err;
45c682a6 2732 struct inode *inode = mapping->host;
6bda666a
CL
2733
2734 err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
2735 if (err) {
2736 put_page(page);
6bda666a
CL
2737 if (err == -EEXIST)
2738 goto retry;
2739 goto out;
2740 }
45c682a6
KC
2741
2742 spin_lock(&inode->i_lock);
a5516438 2743 inode->i_blocks += blocks_per_huge_page(h);
45c682a6 2744 spin_unlock(&inode->i_lock);
23be7468 2745 } else {
6bda666a 2746 lock_page(page);
0fe6e20b
NH
2747 if (unlikely(anon_vma_prepare(vma))) {
2748 ret = VM_FAULT_OOM;
2749 goto backout_unlocked;
2750 }
409eb8c2 2751 anon_rmap = 1;
23be7468 2752 }
0fe6e20b 2753 } else {
998b4382
NH
2754 /*
2755 * If memory error occurs between mmap() and fault, some process
2756 * don't have hwpoisoned swap entry for errored virtual address.
2757 * So we need to block hugepage fault by PG_hwpoison bit check.
2758 */
2759 if (unlikely(PageHWPoison(page))) {
32f84528 2760 ret = VM_FAULT_HWPOISON |
972dc4de 2761 VM_FAULT_SET_HINDEX(hstate_index(h));
998b4382
NH
2762 goto backout_unlocked;
2763 }
6bda666a 2764 }
1e8f889b 2765
57303d80
AW
2766 /*
2767 * If we are going to COW a private mapping later, we examine the
2768 * pending reservations for this page now. This will ensure that
2769 * any allocations necessary to record that reservation occur outside
2770 * the spinlock.
2771 */
788c7df4 2772 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED))
2b26736c
AW
2773 if (vma_needs_reservation(h, vma, address) < 0) {
2774 ret = VM_FAULT_OOM;
2775 goto backout_unlocked;
2776 }
57303d80 2777
ac9b9c66 2778 spin_lock(&mm->page_table_lock);
a5516438 2779 size = i_size_read(mapping->host) >> huge_page_shift(h);
4c887265
AL
2780 if (idx >= size)
2781 goto backout;
2782
83c54070 2783 ret = 0;
7f2e9525 2784 if (!huge_pte_none(huge_ptep_get(ptep)))
4c887265
AL
2785 goto backout;
2786
409eb8c2
HD
2787 if (anon_rmap)
2788 hugepage_add_new_anon_rmap(page, vma, address);
2789 else
2790 page_dup_rmap(page);
1e8f889b
DG
2791 new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
2792 && (vma->vm_flags & VM_SHARED)));
2793 set_huge_pte_at(mm, address, ptep, new_pte);
2794
788c7df4 2795 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
1e8f889b 2796 /* Optimization, do the COW without a second fault */
04f2cbe3 2797 ret = hugetlb_cow(mm, vma, address, ptep, new_pte, page);
1e8f889b
DG
2798 }
2799
ac9b9c66 2800 spin_unlock(&mm->page_table_lock);
4c887265
AL
2801 unlock_page(page);
2802out:
ac9b9c66 2803 return ret;
4c887265
AL
2804
2805backout:
2806 spin_unlock(&mm->page_table_lock);
2b26736c 2807backout_unlocked:
4c887265
AL
2808 unlock_page(page);
2809 put_page(page);
2810 goto out;
ac9b9c66
HD
2811}
2812
86e5216f 2813int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
788c7df4 2814 unsigned long address, unsigned int flags)
86e5216f
AL
2815{
2816 pte_t *ptep;
2817 pte_t entry;
1e8f889b 2818 int ret;
0fe6e20b 2819 struct page *page = NULL;
57303d80 2820 struct page *pagecache_page = NULL;
3935baa9 2821 static DEFINE_MUTEX(hugetlb_instantiation_mutex);
a5516438 2822 struct hstate *h = hstate_vma(vma);
86e5216f 2823
1e16a539
KH
2824 address &= huge_page_mask(h);
2825
fd6a03ed
NH
2826 ptep = huge_pte_offset(mm, address);
2827 if (ptep) {
2828 entry = huge_ptep_get(ptep);
290408d4 2829 if (unlikely(is_hugetlb_entry_migration(entry))) {
30dad309 2830 migration_entry_wait_huge(mm, ptep);
290408d4
NH
2831 return 0;
2832 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
32f84528 2833 return VM_FAULT_HWPOISON_LARGE |
972dc4de 2834 VM_FAULT_SET_HINDEX(hstate_index(h));
fd6a03ed
NH
2835 }
2836
a5516438 2837 ptep = huge_pte_alloc(mm, address, huge_page_size(h));
86e5216f
AL
2838 if (!ptep)
2839 return VM_FAULT_OOM;
2840
3935baa9
DG
2841 /*
2842 * Serialize hugepage allocation and instantiation, so that we don't
2843 * get spurious allocation failures if two CPUs race to instantiate
2844 * the same page in the page cache.
2845 */
2846 mutex_lock(&hugetlb_instantiation_mutex);
7f2e9525
GS
2847 entry = huge_ptep_get(ptep);
2848 if (huge_pte_none(entry)) {
788c7df4 2849 ret = hugetlb_no_page(mm, vma, address, ptep, flags);
b4d1d99f 2850 goto out_mutex;
3935baa9 2851 }
86e5216f 2852
83c54070 2853 ret = 0;
1e8f889b 2854
57303d80
AW
2855 /*
2856 * If we are going to COW the mapping later, we examine the pending
2857 * reservations for this page now. This will ensure that any
2858 * allocations necessary to record that reservation occur outside the
2859 * spinlock. For private mappings, we also lookup the pagecache
2860 * page now as it is used to determine if a reservation has been
2861 * consumed.
2862 */
106c992a 2863 if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
2b26736c
AW
2864 if (vma_needs_reservation(h, vma, address) < 0) {
2865 ret = VM_FAULT_OOM;
b4d1d99f 2866 goto out_mutex;
2b26736c 2867 }
57303d80 2868
f83a275d 2869 if (!(vma->vm_flags & VM_MAYSHARE))
57303d80
AW
2870 pagecache_page = hugetlbfs_pagecache_page(h,
2871 vma, address);
2872 }
2873
56c9cfb1
NH
2874 /*
2875 * hugetlb_cow() requires page locks of pte_page(entry) and
2876 * pagecache_page, so here we need take the former one
2877 * when page != pagecache_page or !pagecache_page.
2878 * Note that locking order is always pagecache_page -> page,
2879 * so no worry about deadlock.
2880 */
2881 page = pte_page(entry);
66aebce7 2882 get_page(page);
56c9cfb1 2883 if (page != pagecache_page)
0fe6e20b 2884 lock_page(page);
0fe6e20b 2885
1e8f889b
DG
2886 spin_lock(&mm->page_table_lock);
2887 /* Check for a racing update before calling hugetlb_cow */
b4d1d99f
DG
2888 if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
2889 goto out_page_table_lock;
2890
2891
788c7df4 2892 if (flags & FAULT_FLAG_WRITE) {
106c992a 2893 if (!huge_pte_write(entry)) {
57303d80
AW
2894 ret = hugetlb_cow(mm, vma, address, ptep, entry,
2895 pagecache_page);
b4d1d99f
DG
2896 goto out_page_table_lock;
2897 }
106c992a 2898 entry = huge_pte_mkdirty(entry);
b4d1d99f
DG
2899 }
2900 entry = pte_mkyoung(entry);
788c7df4
HD
2901 if (huge_ptep_set_access_flags(vma, address, ptep, entry,
2902 flags & FAULT_FLAG_WRITE))
4b3073e1 2903 update_mmu_cache(vma, address, ptep);
b4d1d99f
DG
2904
2905out_page_table_lock:
1e8f889b 2906 spin_unlock(&mm->page_table_lock);
57303d80
AW
2907
2908 if (pagecache_page) {
2909 unlock_page(pagecache_page);
2910 put_page(pagecache_page);
2911 }
1f64d69c
DN
2912 if (page != pagecache_page)
2913 unlock_page(page);
66aebce7 2914 put_page(page);
57303d80 2915
b4d1d99f 2916out_mutex:
3935baa9 2917 mutex_unlock(&hugetlb_instantiation_mutex);
1e8f889b
DG
2918
2919 return ret;
86e5216f
AL
2920}
2921
28a35716
ML
2922long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
2923 struct page **pages, struct vm_area_struct **vmas,
2924 unsigned long *position, unsigned long *nr_pages,
2925 long i, unsigned int flags)
63551ae0 2926{
d5d4b0aa
CK
2927 unsigned long pfn_offset;
2928 unsigned long vaddr = *position;
28a35716 2929 unsigned long remainder = *nr_pages;
a5516438 2930 struct hstate *h = hstate_vma(vma);
63551ae0 2931
1c59827d 2932 spin_lock(&mm->page_table_lock);
63551ae0 2933 while (vaddr < vma->vm_end && remainder) {
4c887265 2934 pte_t *pte;
2a15efc9 2935 int absent;
4c887265 2936 struct page *page;
63551ae0 2937
4c887265
AL
2938 /*
2939 * Some archs (sparc64, sh*) have multiple pte_ts to
2a15efc9 2940 * each hugepage. We have to make sure we get the
4c887265
AL
2941 * first, for the page indexing below to work.
2942 */
a5516438 2943 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h));
2a15efc9
HD
2944 absent = !pte || huge_pte_none(huge_ptep_get(pte));
2945
2946 /*
2947 * When coredumping, it suits get_dump_page if we just return
3ae77f43
HD
2948 * an error where there's an empty slot with no huge pagecache
2949 * to back it. This way, we avoid allocating a hugepage, and
2950 * the sparse dumpfile avoids allocating disk blocks, but its
2951 * huge holes still show up with zeroes where they need to be.
2a15efc9 2952 */
3ae77f43
HD
2953 if (absent && (flags & FOLL_DUMP) &&
2954 !hugetlbfs_pagecache_present(h, vma, vaddr)) {
2a15efc9
HD
2955 remainder = 0;
2956 break;
2957 }
63551ae0 2958
9cc3a5bd
NH
2959 /*
2960 * We need call hugetlb_fault for both hugepages under migration
2961 * (in which case hugetlb_fault waits for the migration,) and
2962 * hwpoisoned hugepages (in which case we need to prevent the
2963 * caller from accessing to them.) In order to do this, we use
2964 * here is_swap_pte instead of is_hugetlb_entry_migration and
2965 * is_hugetlb_entry_hwpoisoned. This is because it simply covers
2966 * both cases, and because we can't follow correct pages
2967 * directly from any kind of swap entries.
2968 */
2969 if (absent || is_swap_pte(huge_ptep_get(pte)) ||
106c992a
GS
2970 ((flags & FOLL_WRITE) &&
2971 !huge_pte_write(huge_ptep_get(pte)))) {
4c887265 2972 int ret;
63551ae0 2973
4c887265 2974 spin_unlock(&mm->page_table_lock);
2a15efc9
HD
2975 ret = hugetlb_fault(mm, vma, vaddr,
2976 (flags & FOLL_WRITE) ? FAULT_FLAG_WRITE : 0);
4c887265 2977 spin_lock(&mm->page_table_lock);
a89182c7 2978 if (!(ret & VM_FAULT_ERROR))
4c887265 2979 continue;
63551ae0 2980
4c887265 2981 remainder = 0;
4c887265
AL
2982 break;
2983 }
2984
a5516438 2985 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
7f2e9525 2986 page = pte_page(huge_ptep_get(pte));
d5d4b0aa 2987same_page:
d6692183 2988 if (pages) {
2a15efc9 2989 pages[i] = mem_map_offset(page, pfn_offset);
4b2e38ad 2990 get_page(pages[i]);
d6692183 2991 }
63551ae0
DG
2992
2993 if (vmas)
2994 vmas[i] = vma;
2995
2996 vaddr += PAGE_SIZE;
d5d4b0aa 2997 ++pfn_offset;
63551ae0
DG
2998 --remainder;
2999 ++i;
d5d4b0aa 3000 if (vaddr < vma->vm_end && remainder &&
a5516438 3001 pfn_offset < pages_per_huge_page(h)) {
d5d4b0aa
CK
3002 /*
3003 * We use pfn_offset to avoid touching the pageframes
3004 * of this compound page.
3005 */
3006 goto same_page;
3007 }
63551ae0 3008 }
1c59827d 3009 spin_unlock(&mm->page_table_lock);
28a35716 3010 *nr_pages = remainder;
63551ae0
DG
3011 *position = vaddr;
3012
2a15efc9 3013 return i ? i : -EFAULT;
63551ae0 3014}
8f860591 3015
7da4d641 3016unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
8f860591
ZY
3017 unsigned long address, unsigned long end, pgprot_t newprot)
3018{
3019 struct mm_struct *mm = vma->vm_mm;
3020 unsigned long start = address;
3021 pte_t *ptep;
3022 pte_t pte;
a5516438 3023 struct hstate *h = hstate_vma(vma);
7da4d641 3024 unsigned long pages = 0;
8f860591
ZY
3025
3026 BUG_ON(address >= end);
3027 flush_cache_range(vma, address, end);
3028
3d48ae45 3029 mutex_lock(&vma->vm_file->f_mapping->i_mmap_mutex);
8f860591 3030 spin_lock(&mm->page_table_lock);
a5516438 3031 for (; address < end; address += huge_page_size(h)) {
8f860591
ZY
3032 ptep = huge_pte_offset(mm, address);
3033 if (!ptep)
3034 continue;
7da4d641
PZ
3035 if (huge_pmd_unshare(mm, &address, ptep)) {
3036 pages++;
39dde65c 3037 continue;
7da4d641 3038 }
7f2e9525 3039 if (!huge_pte_none(huge_ptep_get(ptep))) {
8f860591 3040 pte = huge_ptep_get_and_clear(mm, address, ptep);
106c992a 3041 pte = pte_mkhuge(huge_pte_modify(pte, newprot));
be7517d6 3042 pte = arch_make_huge_pte(pte, vma, NULL, 0);
8f860591 3043 set_huge_pte_at(mm, address, ptep, pte);
7da4d641 3044 pages++;
8f860591
ZY
3045 }
3046 }
3047 spin_unlock(&mm->page_table_lock);
d833352a
MG
3048 /*
3049 * Must flush TLB before releasing i_mmap_mutex: x86's huge_pmd_unshare
3050 * may have cleared our pud entry and done put_page on the page table:
3051 * once we release i_mmap_mutex, another task can do the final put_page
3052 * and that page table be reused and filled with junk.
3053 */
8f860591 3054 flush_tlb_range(vma, start, end);
d833352a 3055 mutex_unlock(&vma->vm_file->f_mapping->i_mmap_mutex);
7da4d641
PZ
3056
3057 return pages << h->order;
8f860591
ZY
3058}
3059
a1e78772
MG
3060int hugetlb_reserve_pages(struct inode *inode,
3061 long from, long to,
5a6fe125 3062 struct vm_area_struct *vma,
ca16d140 3063 vm_flags_t vm_flags)
e4e574b7 3064{
17c9d12e 3065 long ret, chg;
a5516438 3066 struct hstate *h = hstate_inode(inode);
90481622 3067 struct hugepage_subpool *spool = subpool_inode(inode);
e4e574b7 3068
17c9d12e
MG
3069 /*
3070 * Only apply hugepage reservation if asked. At fault time, an
3071 * attempt will be made for VM_NORESERVE to allocate a page
90481622 3072 * without using reserves
17c9d12e 3073 */
ca16d140 3074 if (vm_flags & VM_NORESERVE)
17c9d12e
MG
3075 return 0;
3076
a1e78772
MG
3077 /*
3078 * Shared mappings base their reservation on the number of pages that
3079 * are already allocated on behalf of the file. Private mappings need
3080 * to reserve the full area even if read-only as mprotect() may be
3081 * called to make the mapping read-write. Assume !vma is a shm mapping
3082 */
f83a275d 3083 if (!vma || vma->vm_flags & VM_MAYSHARE)
a1e78772 3084 chg = region_chg(&inode->i_mapping->private_list, from, to);
17c9d12e
MG
3085 else {
3086 struct resv_map *resv_map = resv_map_alloc();
3087 if (!resv_map)
3088 return -ENOMEM;
3089
a1e78772 3090 chg = to - from;
84afd99b 3091
17c9d12e
MG
3092 set_vma_resv_map(vma, resv_map);
3093 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
3094 }
3095
c50ac050
DH
3096 if (chg < 0) {
3097 ret = chg;
3098 goto out_err;
3099 }
8a630112 3100
90481622 3101 /* There must be enough pages in the subpool for the mapping */
c50ac050
DH
3102 if (hugepage_subpool_get_pages(spool, chg)) {
3103 ret = -ENOSPC;
3104 goto out_err;
3105 }
5a6fe125
MG
3106
3107 /*
17c9d12e 3108 * Check enough hugepages are available for the reservation.
90481622 3109 * Hand the pages back to the subpool if there are not
5a6fe125 3110 */
a5516438 3111 ret = hugetlb_acct_memory(h, chg);
68842c9b 3112 if (ret < 0) {
90481622 3113 hugepage_subpool_put_pages(spool, chg);
c50ac050 3114 goto out_err;
68842c9b 3115 }
17c9d12e
MG
3116
3117 /*
3118 * Account for the reservations made. Shared mappings record regions
3119 * that have reservations as they are shared by multiple VMAs.
3120 * When the last VMA disappears, the region map says how much
3121 * the reservation was and the page cache tells how much of
3122 * the reservation was consumed. Private mappings are per-VMA and
3123 * only the consumed reservations are tracked. When the VMA
3124 * disappears, the original reservation is the VMA size and the
3125 * consumed reservations are stored in the map. Hence, nothing
3126 * else has to be done for private mappings here
3127 */
f83a275d 3128 if (!vma || vma->vm_flags & VM_MAYSHARE)
a1e78772 3129 region_add(&inode->i_mapping->private_list, from, to);
a43a8c39 3130 return 0;
c50ac050 3131out_err:
4523e145
DH
3132 if (vma)
3133 resv_map_put(vma);
c50ac050 3134 return ret;
a43a8c39
CK
3135}
3136
3137void hugetlb_unreserve_pages(struct inode *inode, long offset, long freed)
3138{
a5516438 3139 struct hstate *h = hstate_inode(inode);
a43a8c39 3140 long chg = region_truncate(&inode->i_mapping->private_list, offset);
90481622 3141 struct hugepage_subpool *spool = subpool_inode(inode);
45c682a6
KC
3142
3143 spin_lock(&inode->i_lock);
e4c6f8be 3144 inode->i_blocks -= (blocks_per_huge_page(h) * freed);
45c682a6
KC
3145 spin_unlock(&inode->i_lock);
3146
90481622 3147 hugepage_subpool_put_pages(spool, (chg - freed));
a5516438 3148 hugetlb_acct_memory(h, -(chg - freed));
a43a8c39 3149}
93f70f90 3150
3212b535
SC
3151#ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
3152static unsigned long page_table_shareable(struct vm_area_struct *svma,
3153 struct vm_area_struct *vma,
3154 unsigned long addr, pgoff_t idx)
3155{
3156 unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
3157 svma->vm_start;
3158 unsigned long sbase = saddr & PUD_MASK;
3159 unsigned long s_end = sbase + PUD_SIZE;
3160
3161 /* Allow segments to share if only one is marked locked */
3162 unsigned long vm_flags = vma->vm_flags & ~VM_LOCKED;
3163 unsigned long svm_flags = svma->vm_flags & ~VM_LOCKED;
3164
3165 /*
3166 * match the virtual addresses, permission and the alignment of the
3167 * page table page.
3168 */
3169 if (pmd_index(addr) != pmd_index(saddr) ||
3170 vm_flags != svm_flags ||
3171 sbase < svma->vm_start || svma->vm_end < s_end)
3172 return 0;
3173
3174 return saddr;
3175}
3176
3177static int vma_shareable(struct vm_area_struct *vma, unsigned long addr)
3178{
3179 unsigned long base = addr & PUD_MASK;
3180 unsigned long end = base + PUD_SIZE;
3181
3182 /*
3183 * check on proper vm_flags and page table alignment
3184 */
3185 if (vma->vm_flags & VM_MAYSHARE &&
3186 vma->vm_start <= base && end <= vma->vm_end)
3187 return 1;
3188 return 0;
3189}
3190
3191/*
3192 * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
3193 * and returns the corresponding pte. While this is not necessary for the
3194 * !shared pmd case because we can allocate the pmd later as well, it makes the
3195 * code much cleaner. pmd allocation is essential for the shared case because
3196 * pud has to be populated inside the same i_mmap_mutex section - otherwise
3197 * racing tasks could either miss the sharing (see huge_pte_offset) or select a
3198 * bad pmd for sharing.
3199 */
3200pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
3201{
3202 struct vm_area_struct *vma = find_vma(mm, addr);
3203 struct address_space *mapping = vma->vm_file->f_mapping;
3204 pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
3205 vma->vm_pgoff;
3206 struct vm_area_struct *svma;
3207 unsigned long saddr;
3208 pte_t *spte = NULL;
3209 pte_t *pte;
3210
3211 if (!vma_shareable(vma, addr))
3212 return (pte_t *)pmd_alloc(mm, pud, addr);
3213
3214 mutex_lock(&mapping->i_mmap_mutex);
3215 vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
3216 if (svma == vma)
3217 continue;
3218
3219 saddr = page_table_shareable(svma, vma, addr, idx);
3220 if (saddr) {
3221 spte = huge_pte_offset(svma->vm_mm, saddr);
3222 if (spte) {
3223 get_page(virt_to_page(spte));
3224 break;
3225 }
3226 }
3227 }
3228
3229 if (!spte)
3230 goto out;
3231
3232 spin_lock(&mm->page_table_lock);
3233 if (pud_none(*pud))
3234 pud_populate(mm, pud,
3235 (pmd_t *)((unsigned long)spte & PAGE_MASK));
3236 else
3237 put_page(virt_to_page(spte));
3238 spin_unlock(&mm->page_table_lock);
3239out:
3240 pte = (pte_t *)pmd_alloc(mm, pud, addr);
3241 mutex_unlock(&mapping->i_mmap_mutex);
3242 return pte;
3243}
3244
3245/*
3246 * unmap huge page backed by shared pte.
3247 *
3248 * Hugetlb pte page is ref counted at the time of mapping. If pte is shared
3249 * indicated by page_count > 1, unmap is achieved by clearing pud and
3250 * decrementing the ref count. If count == 1, the pte page is not shared.
3251 *
3252 * called with vma->vm_mm->page_table_lock held.
3253 *
3254 * returns: 1 successfully unmapped a shared pte page
3255 * 0 the underlying pte page is not shared, or it is the last user
3256 */
3257int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
3258{
3259 pgd_t *pgd = pgd_offset(mm, *addr);
3260 pud_t *pud = pud_offset(pgd, *addr);
3261
3262 BUG_ON(page_count(virt_to_page(ptep)) == 0);
3263 if (page_count(virt_to_page(ptep)) == 1)
3264 return 0;
3265
3266 pud_clear(pud);
3267 put_page(virt_to_page(ptep));
3268 *addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE;
3269 return 1;
3270}
9e5fc74c
SC
3271#define want_pmd_share() (1)
3272#else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
3273pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
3274{
3275 return NULL;
3276}
3277#define want_pmd_share() (0)
3212b535
SC
3278#endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
3279
9e5fc74c
SC
3280#ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
3281pte_t *huge_pte_alloc(struct mm_struct *mm,
3282 unsigned long addr, unsigned long sz)
3283{
3284 pgd_t *pgd;
3285 pud_t *pud;
3286 pte_t *pte = NULL;
3287
3288 pgd = pgd_offset(mm, addr);
3289 pud = pud_alloc(mm, pgd, addr);
3290 if (pud) {
3291 if (sz == PUD_SIZE) {
3292 pte = (pte_t *)pud;
3293 } else {
3294 BUG_ON(sz != PMD_SIZE);
3295 if (want_pmd_share() && pud_none(*pud))
3296 pte = huge_pmd_share(mm, addr, pud);
3297 else
3298 pte = (pte_t *)pmd_alloc(mm, pud, addr);
3299 }
3300 }
3301 BUG_ON(pte && !pte_none(*pte) && !pte_huge(*pte));
3302
3303 return pte;
3304}
3305
3306pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr)
3307{
3308 pgd_t *pgd;
3309 pud_t *pud;
3310 pmd_t *pmd = NULL;
3311
3312 pgd = pgd_offset(mm, addr);
3313 if (pgd_present(*pgd)) {
3314 pud = pud_offset(pgd, addr);
3315 if (pud_present(*pud)) {
3316 if (pud_huge(*pud))
3317 return (pte_t *)pud;
3318 pmd = pmd_offset(pud, addr);
3319 }
3320 }
3321 return (pte_t *) pmd;
3322}
3323
3324struct page *
3325follow_huge_pmd(struct mm_struct *mm, unsigned long address,
3326 pmd_t *pmd, int write)
3327{
3328 struct page *page;
3329
3330 page = pte_page(*(pte_t *)pmd);
3331 if (page)
3332 page += ((address & ~PMD_MASK) >> PAGE_SHIFT);
3333 return page;
3334}
3335
3336struct page *
3337follow_huge_pud(struct mm_struct *mm, unsigned long address,
3338 pud_t *pud, int write)
3339{
3340 struct page *page;
3341
3342 page = pte_page(*(pte_t *)pud);
3343 if (page)
3344 page += ((address & ~PUD_MASK) >> PAGE_SHIFT);
3345 return page;
3346}
3347
3348#else /* !CONFIG_ARCH_WANT_GENERAL_HUGETLB */
3349
3350/* Can be overriden by architectures */
3351__attribute__((weak)) struct page *
3352follow_huge_pud(struct mm_struct *mm, unsigned long address,
3353 pud_t *pud, int write)
3354{
3355 BUG();
3356 return NULL;
3357}
3358
3359#endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
3360
d5bd9106
AK
3361#ifdef CONFIG_MEMORY_FAILURE
3362
6de2b1aa
NH
3363/* Should be called in hugetlb_lock */
3364static int is_hugepage_on_freelist(struct page *hpage)
3365{
3366 struct page *page;
3367 struct page *tmp;
3368 struct hstate *h = page_hstate(hpage);
3369 int nid = page_to_nid(hpage);
3370
3371 list_for_each_entry_safe(page, tmp, &h->hugepage_freelists[nid], lru)
3372 if (page == hpage)
3373 return 1;
3374 return 0;
3375}
3376
93f70f90
NH
3377/*
3378 * This function is called from memory failure code.
3379 * Assume the caller holds page lock of the head page.
3380 */
6de2b1aa 3381int dequeue_hwpoisoned_huge_page(struct page *hpage)
93f70f90
NH
3382{
3383 struct hstate *h = page_hstate(hpage);
3384 int nid = page_to_nid(hpage);
6de2b1aa 3385 int ret = -EBUSY;
93f70f90
NH
3386
3387 spin_lock(&hugetlb_lock);
6de2b1aa 3388 if (is_hugepage_on_freelist(hpage)) {
56f2fb14
NH
3389 /*
3390 * Hwpoisoned hugepage isn't linked to activelist or freelist,
3391 * but dangling hpage->lru can trigger list-debug warnings
3392 * (this happens when we call unpoison_memory() on it),
3393 * so let it point to itself with list_del_init().
3394 */
3395 list_del_init(&hpage->lru);
8c6c2ecb 3396 set_page_refcounted(hpage);
6de2b1aa
NH
3397 h->free_huge_pages--;
3398 h->free_huge_pages_node[nid]--;
3399 ret = 0;
3400 }
93f70f90 3401 spin_unlock(&hugetlb_lock);
6de2b1aa 3402 return ret;
93f70f90 3403}
6de2b1aa 3404#endif