Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/net-2.6
[linux-2.6-block.git] / mm / hugetlb.c
CommitLineData
1da177e4
LT
1/*
2 * Generic hugetlb support.
3 * (C) William Irwin, April 2004
4 */
5#include <linux/gfp.h>
6#include <linux/list.h>
7#include <linux/init.h>
8#include <linux/module.h>
9#include <linux/mm.h>
e1759c21 10#include <linux/seq_file.h>
1da177e4
LT
11#include <linux/sysctl.h>
12#include <linux/highmem.h>
cddb8a5c 13#include <linux/mmu_notifier.h>
1da177e4 14#include <linux/nodemask.h>
63551ae0 15#include <linux/pagemap.h>
5da7ca86 16#include <linux/mempolicy.h>
aea47ff3 17#include <linux/cpuset.h>
3935baa9 18#include <linux/mutex.h>
aa888a74 19#include <linux/bootmem.h>
a3437870 20#include <linux/sysfs.h>
d6606683 21
63551ae0
DG
22#include <asm/page.h>
23#include <asm/pgtable.h>
78a34ae2 24#include <asm/io.h>
63551ae0
DG
25
26#include <linux/hugetlb.h>
7835e98b 27#include "internal.h"
1da177e4
LT
28
29const unsigned long hugetlb_zero = 0, hugetlb_infinity = ~0UL;
396faf03
MG
30static gfp_t htlb_alloc_mask = GFP_HIGHUSER;
31unsigned long hugepages_treat_as_movable;
a5516438 32
e5ff2159
AK
33static int max_hstate;
34unsigned int default_hstate_idx;
35struct hstate hstates[HUGE_MAX_HSTATE];
36
53ba51d2
JT
37__initdata LIST_HEAD(huge_boot_pages);
38
e5ff2159
AK
39/* for command line parsing */
40static struct hstate * __initdata parsed_hstate;
41static unsigned long __initdata default_hstate_max_huge_pages;
e11bfbfc 42static unsigned long __initdata default_hstate_size;
e5ff2159
AK
43
44#define for_each_hstate(h) \
45 for ((h) = hstates; (h) < &hstates[max_hstate]; (h)++)
396faf03 46
3935baa9
DG
47/*
48 * Protects updates to hugepage_freelists, nr_huge_pages, and free_huge_pages
49 */
50static DEFINE_SPINLOCK(hugetlb_lock);
0bd0f9fb 51
96822904
AW
52/*
53 * Region tracking -- allows tracking of reservations and instantiated pages
54 * across the pages in a mapping.
84afd99b
AW
55 *
56 * The region data structures are protected by a combination of the mmap_sem
57 * and the hugetlb_instantion_mutex. To access or modify a region the caller
58 * must either hold the mmap_sem for write, or the mmap_sem for read and
59 * the hugetlb_instantiation mutex:
60 *
61 * down_write(&mm->mmap_sem);
62 * or
63 * down_read(&mm->mmap_sem);
64 * mutex_lock(&hugetlb_instantiation_mutex);
96822904
AW
65 */
66struct file_region {
67 struct list_head link;
68 long from;
69 long to;
70};
71
72static long region_add(struct list_head *head, long f, long t)
73{
74 struct file_region *rg, *nrg, *trg;
75
76 /* Locate the region we are either in or before. */
77 list_for_each_entry(rg, head, link)
78 if (f <= rg->to)
79 break;
80
81 /* Round our left edge to the current segment if it encloses us. */
82 if (f > rg->from)
83 f = rg->from;
84
85 /* Check for and consume any regions we now overlap with. */
86 nrg = rg;
87 list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
88 if (&rg->link == head)
89 break;
90 if (rg->from > t)
91 break;
92
93 /* If this area reaches higher then extend our area to
94 * include it completely. If this is not the first area
95 * which we intend to reuse, free it. */
96 if (rg->to > t)
97 t = rg->to;
98 if (rg != nrg) {
99 list_del(&rg->link);
100 kfree(rg);
101 }
102 }
103 nrg->from = f;
104 nrg->to = t;
105 return 0;
106}
107
108static long region_chg(struct list_head *head, long f, long t)
109{
110 struct file_region *rg, *nrg;
111 long chg = 0;
112
113 /* Locate the region we are before or in. */
114 list_for_each_entry(rg, head, link)
115 if (f <= rg->to)
116 break;
117
118 /* If we are below the current region then a new region is required.
119 * Subtle, allocate a new region at the position but make it zero
120 * size such that we can guarantee to record the reservation. */
121 if (&rg->link == head || t < rg->from) {
122 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
123 if (!nrg)
124 return -ENOMEM;
125 nrg->from = f;
126 nrg->to = f;
127 INIT_LIST_HEAD(&nrg->link);
128 list_add(&nrg->link, rg->link.prev);
129
130 return t - f;
131 }
132
133 /* Round our left edge to the current segment if it encloses us. */
134 if (f > rg->from)
135 f = rg->from;
136 chg = t - f;
137
138 /* Check for and consume any regions we now overlap with. */
139 list_for_each_entry(rg, rg->link.prev, link) {
140 if (&rg->link == head)
141 break;
142 if (rg->from > t)
143 return chg;
144
145 /* We overlap with this area, if it extends futher than
146 * us then we must extend ourselves. Account for its
147 * existing reservation. */
148 if (rg->to > t) {
149 chg += rg->to - t;
150 t = rg->to;
151 }
152 chg -= rg->to - rg->from;
153 }
154 return chg;
155}
156
157static long region_truncate(struct list_head *head, long end)
158{
159 struct file_region *rg, *trg;
160 long chg = 0;
161
162 /* Locate the region we are either in or before. */
163 list_for_each_entry(rg, head, link)
164 if (end <= rg->to)
165 break;
166 if (&rg->link == head)
167 return 0;
168
169 /* If we are in the middle of a region then adjust it. */
170 if (end > rg->from) {
171 chg = rg->to - end;
172 rg->to = end;
173 rg = list_entry(rg->link.next, typeof(*rg), link);
174 }
175
176 /* Drop any remaining regions. */
177 list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
178 if (&rg->link == head)
179 break;
180 chg += rg->to - rg->from;
181 list_del(&rg->link);
182 kfree(rg);
183 }
184 return chg;
185}
186
84afd99b
AW
187static long region_count(struct list_head *head, long f, long t)
188{
189 struct file_region *rg;
190 long chg = 0;
191
192 /* Locate each segment we overlap with, and count that overlap. */
193 list_for_each_entry(rg, head, link) {
194 int seg_from;
195 int seg_to;
196
197 if (rg->to <= f)
198 continue;
199 if (rg->from >= t)
200 break;
201
202 seg_from = max(rg->from, f);
203 seg_to = min(rg->to, t);
204
205 chg += seg_to - seg_from;
206 }
207
208 return chg;
209}
210
e7c4b0bf
AW
211/*
212 * Convert the address within this vma to the page offset within
213 * the mapping, in pagecache page units; huge pages here.
214 */
a5516438
AK
215static pgoff_t vma_hugecache_offset(struct hstate *h,
216 struct vm_area_struct *vma, unsigned long address)
e7c4b0bf 217{
a5516438
AK
218 return ((address - vma->vm_start) >> huge_page_shift(h)) +
219 (vma->vm_pgoff >> huge_page_order(h));
e7c4b0bf
AW
220}
221
84afd99b
AW
222/*
223 * Flags for MAP_PRIVATE reservations. These are stored in the bottom
224 * bits of the reservation map pointer, which are always clear due to
225 * alignment.
226 */
227#define HPAGE_RESV_OWNER (1UL << 0)
228#define HPAGE_RESV_UNMAPPED (1UL << 1)
04f2cbe3 229#define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
84afd99b 230
a1e78772
MG
231/*
232 * These helpers are used to track how many pages are reserved for
233 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
234 * is guaranteed to have their future faults succeed.
235 *
236 * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
237 * the reserve counters are updated with the hugetlb_lock held. It is safe
238 * to reset the VMA at fork() time as it is not in use yet and there is no
239 * chance of the global counters getting corrupted as a result of the values.
84afd99b
AW
240 *
241 * The private mapping reservation is represented in a subtly different
242 * manner to a shared mapping. A shared mapping has a region map associated
243 * with the underlying file, this region map represents the backing file
244 * pages which have ever had a reservation assigned which this persists even
245 * after the page is instantiated. A private mapping has a region map
246 * associated with the original mmap which is attached to all VMAs which
247 * reference it, this region map represents those offsets which have consumed
248 * reservation ie. where pages have been instantiated.
a1e78772 249 */
e7c4b0bf
AW
250static unsigned long get_vma_private_data(struct vm_area_struct *vma)
251{
252 return (unsigned long)vma->vm_private_data;
253}
254
255static void set_vma_private_data(struct vm_area_struct *vma,
256 unsigned long value)
257{
258 vma->vm_private_data = (void *)value;
259}
260
84afd99b
AW
261struct resv_map {
262 struct kref refs;
263 struct list_head regions;
264};
265
2a4b3ded 266static struct resv_map *resv_map_alloc(void)
84afd99b
AW
267{
268 struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
269 if (!resv_map)
270 return NULL;
271
272 kref_init(&resv_map->refs);
273 INIT_LIST_HEAD(&resv_map->regions);
274
275 return resv_map;
276}
277
2a4b3ded 278static void resv_map_release(struct kref *ref)
84afd99b
AW
279{
280 struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
281
282 /* Clear out any active regions before we release the map. */
283 region_truncate(&resv_map->regions, 0);
284 kfree(resv_map);
285}
286
287static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
a1e78772
MG
288{
289 VM_BUG_ON(!is_vm_hugetlb_page(vma));
290 if (!(vma->vm_flags & VM_SHARED))
84afd99b
AW
291 return (struct resv_map *)(get_vma_private_data(vma) &
292 ~HPAGE_RESV_MASK);
2a4b3ded 293 return NULL;
a1e78772
MG
294}
295
84afd99b 296static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
a1e78772
MG
297{
298 VM_BUG_ON(!is_vm_hugetlb_page(vma));
299 VM_BUG_ON(vma->vm_flags & VM_SHARED);
300
84afd99b
AW
301 set_vma_private_data(vma, (get_vma_private_data(vma) &
302 HPAGE_RESV_MASK) | (unsigned long)map);
04f2cbe3
MG
303}
304
305static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
306{
04f2cbe3 307 VM_BUG_ON(!is_vm_hugetlb_page(vma));
e7c4b0bf
AW
308 VM_BUG_ON(vma->vm_flags & VM_SHARED);
309
310 set_vma_private_data(vma, get_vma_private_data(vma) | flags);
04f2cbe3
MG
311}
312
313static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
314{
315 VM_BUG_ON(!is_vm_hugetlb_page(vma));
e7c4b0bf
AW
316
317 return (get_vma_private_data(vma) & flag) != 0;
a1e78772
MG
318}
319
320/* Decrement the reserved pages in the hugepage pool by one */
a5516438
AK
321static void decrement_hugepage_resv_vma(struct hstate *h,
322 struct vm_area_struct *vma)
a1e78772 323{
c37f9fb1
AW
324 if (vma->vm_flags & VM_NORESERVE)
325 return;
326
a1e78772
MG
327 if (vma->vm_flags & VM_SHARED) {
328 /* Shared mappings always use reserves */
a5516438 329 h->resv_huge_pages--;
84afd99b 330 } else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
a1e78772
MG
331 /*
332 * Only the process that called mmap() has reserves for
333 * private mappings.
334 */
a5516438 335 h->resv_huge_pages--;
a1e78772
MG
336 }
337}
338
04f2cbe3 339/* Reset counters to 0 and clear all HPAGE_RESV_* flags */
a1e78772
MG
340void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
341{
342 VM_BUG_ON(!is_vm_hugetlb_page(vma));
343 if (!(vma->vm_flags & VM_SHARED))
344 vma->vm_private_data = (void *)0;
345}
346
347/* Returns true if the VMA has associated reserve pages */
7f09ca51 348static int vma_has_reserves(struct vm_area_struct *vma)
a1e78772
MG
349{
350 if (vma->vm_flags & VM_SHARED)
7f09ca51
MG
351 return 1;
352 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER))
353 return 1;
354 return 0;
a1e78772
MG
355}
356
69d177c2
AW
357static void clear_gigantic_page(struct page *page,
358 unsigned long addr, unsigned long sz)
359{
360 int i;
361 struct page *p = page;
362
363 might_sleep();
364 for (i = 0; i < sz/PAGE_SIZE; i++, p = mem_map_next(p, page, i)) {
365 cond_resched();
366 clear_user_highpage(p, addr + i * PAGE_SIZE);
367 }
368}
a5516438
AK
369static void clear_huge_page(struct page *page,
370 unsigned long addr, unsigned long sz)
79ac6ba4
DG
371{
372 int i;
373
69d177c2
AW
374 if (unlikely(sz > MAX_ORDER_NR_PAGES))
375 return clear_gigantic_page(page, addr, sz);
376
79ac6ba4 377 might_sleep();
a5516438 378 for (i = 0; i < sz/PAGE_SIZE; i++) {
79ac6ba4 379 cond_resched();
281e0e3b 380 clear_user_highpage(page + i, addr + i * PAGE_SIZE);
79ac6ba4
DG
381 }
382}
383
69d177c2
AW
384static void copy_gigantic_page(struct page *dst, struct page *src,
385 unsigned long addr, struct vm_area_struct *vma)
386{
387 int i;
388 struct hstate *h = hstate_vma(vma);
389 struct page *dst_base = dst;
390 struct page *src_base = src;
391 might_sleep();
392 for (i = 0; i < pages_per_huge_page(h); ) {
393 cond_resched();
394 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
395
396 i++;
397 dst = mem_map_next(dst, dst_base, i);
398 src = mem_map_next(src, src_base, i);
399 }
400}
79ac6ba4 401static void copy_huge_page(struct page *dst, struct page *src,
9de455b2 402 unsigned long addr, struct vm_area_struct *vma)
79ac6ba4
DG
403{
404 int i;
a5516438 405 struct hstate *h = hstate_vma(vma);
79ac6ba4 406
69d177c2
AW
407 if (unlikely(pages_per_huge_page(h) > MAX_ORDER_NR_PAGES))
408 return copy_gigantic_page(dst, src, addr, vma);
409
79ac6ba4 410 might_sleep();
a5516438 411 for (i = 0; i < pages_per_huge_page(h); i++) {
79ac6ba4 412 cond_resched();
9de455b2 413 copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
79ac6ba4
DG
414 }
415}
416
a5516438 417static void enqueue_huge_page(struct hstate *h, struct page *page)
1da177e4
LT
418{
419 int nid = page_to_nid(page);
a5516438
AK
420 list_add(&page->lru, &h->hugepage_freelists[nid]);
421 h->free_huge_pages++;
422 h->free_huge_pages_node[nid]++;
1da177e4
LT
423}
424
a5516438 425static struct page *dequeue_huge_page(struct hstate *h)
348e1e04
NA
426{
427 int nid;
428 struct page *page = NULL;
429
430 for (nid = 0; nid < MAX_NUMNODES; ++nid) {
a5516438
AK
431 if (!list_empty(&h->hugepage_freelists[nid])) {
432 page = list_entry(h->hugepage_freelists[nid].next,
348e1e04
NA
433 struct page, lru);
434 list_del(&page->lru);
a5516438
AK
435 h->free_huge_pages--;
436 h->free_huge_pages_node[nid]--;
348e1e04
NA
437 break;
438 }
439 }
440 return page;
441}
442
a5516438
AK
443static struct page *dequeue_huge_page_vma(struct hstate *h,
444 struct vm_area_struct *vma,
04f2cbe3 445 unsigned long address, int avoid_reserve)
1da177e4 446{
31a5c6e4 447 int nid;
1da177e4 448 struct page *page = NULL;
480eccf9 449 struct mempolicy *mpol;
19770b32 450 nodemask_t *nodemask;
396faf03 451 struct zonelist *zonelist = huge_zonelist(vma, address,
19770b32 452 htlb_alloc_mask, &mpol, &nodemask);
dd1a239f
MG
453 struct zone *zone;
454 struct zoneref *z;
1da177e4 455
a1e78772
MG
456 /*
457 * A child process with MAP_PRIVATE mappings created by their parent
458 * have no page reserves. This check ensures that reservations are
459 * not "stolen". The child may still get SIGKILLed
460 */
7f09ca51 461 if (!vma_has_reserves(vma) &&
a5516438 462 h->free_huge_pages - h->resv_huge_pages == 0)
a1e78772
MG
463 return NULL;
464
04f2cbe3 465 /* If reserves cannot be used, ensure enough pages are in the pool */
a5516438 466 if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
04f2cbe3
MG
467 return NULL;
468
19770b32
MG
469 for_each_zone_zonelist_nodemask(zone, z, zonelist,
470 MAX_NR_ZONES - 1, nodemask) {
54a6eb5c
MG
471 nid = zone_to_nid(zone);
472 if (cpuset_zone_allowed_softwall(zone, htlb_alloc_mask) &&
a5516438
AK
473 !list_empty(&h->hugepage_freelists[nid])) {
474 page = list_entry(h->hugepage_freelists[nid].next,
3abf7afd
AM
475 struct page, lru);
476 list_del(&page->lru);
a5516438
AK
477 h->free_huge_pages--;
478 h->free_huge_pages_node[nid]--;
04f2cbe3
MG
479
480 if (!avoid_reserve)
a5516438 481 decrement_hugepage_resv_vma(h, vma);
a1e78772 482
5ab3ee7b 483 break;
3abf7afd 484 }
1da177e4 485 }
52cd3b07 486 mpol_cond_put(mpol);
1da177e4
LT
487 return page;
488}
489
a5516438 490static void update_and_free_page(struct hstate *h, struct page *page)
6af2acb6
AL
491{
492 int i;
a5516438 493
18229df5
AW
494 VM_BUG_ON(h->order >= MAX_ORDER);
495
a5516438
AK
496 h->nr_huge_pages--;
497 h->nr_huge_pages_node[page_to_nid(page)]--;
498 for (i = 0; i < pages_per_huge_page(h); i++) {
6af2acb6
AL
499 page[i].flags &= ~(1 << PG_locked | 1 << PG_error | 1 << PG_referenced |
500 1 << PG_dirty | 1 << PG_active | 1 << PG_reserved |
501 1 << PG_private | 1<< PG_writeback);
502 }
503 set_compound_page_dtor(page, NULL);
504 set_page_refcounted(page);
7f2e9525 505 arch_release_hugepage(page);
a5516438 506 __free_pages(page, huge_page_order(h));
6af2acb6
AL
507}
508
e5ff2159
AK
509struct hstate *size_to_hstate(unsigned long size)
510{
511 struct hstate *h;
512
513 for_each_hstate(h) {
514 if (huge_page_size(h) == size)
515 return h;
516 }
517 return NULL;
518}
519
27a85ef1
DG
520static void free_huge_page(struct page *page)
521{
a5516438
AK
522 /*
523 * Can't pass hstate in here because it is called from the
524 * compound page destructor.
525 */
e5ff2159 526 struct hstate *h = page_hstate(page);
7893d1d5 527 int nid = page_to_nid(page);
c79fb75e 528 struct address_space *mapping;
27a85ef1 529
c79fb75e 530 mapping = (struct address_space *) page_private(page);
e5df70ab 531 set_page_private(page, 0);
7893d1d5 532 BUG_ON(page_count(page));
27a85ef1
DG
533 INIT_LIST_HEAD(&page->lru);
534
535 spin_lock(&hugetlb_lock);
aa888a74 536 if (h->surplus_huge_pages_node[nid] && huge_page_order(h) < MAX_ORDER) {
a5516438
AK
537 update_and_free_page(h, page);
538 h->surplus_huge_pages--;
539 h->surplus_huge_pages_node[nid]--;
7893d1d5 540 } else {
a5516438 541 enqueue_huge_page(h, page);
7893d1d5 542 }
27a85ef1 543 spin_unlock(&hugetlb_lock);
c79fb75e 544 if (mapping)
9a119c05 545 hugetlb_put_quota(mapping, 1);
27a85ef1
DG
546}
547
7893d1d5
AL
548/*
549 * Increment or decrement surplus_huge_pages. Keep node-specific counters
550 * balanced by operating on them in a round-robin fashion.
551 * Returns 1 if an adjustment was made.
552 */
a5516438 553static int adjust_pool_surplus(struct hstate *h, int delta)
7893d1d5
AL
554{
555 static int prev_nid;
556 int nid = prev_nid;
557 int ret = 0;
558
559 VM_BUG_ON(delta != -1 && delta != 1);
560 do {
561 nid = next_node(nid, node_online_map);
562 if (nid == MAX_NUMNODES)
563 nid = first_node(node_online_map);
564
565 /* To shrink on this node, there must be a surplus page */
a5516438 566 if (delta < 0 && !h->surplus_huge_pages_node[nid])
7893d1d5
AL
567 continue;
568 /* Surplus cannot exceed the total number of pages */
a5516438
AK
569 if (delta > 0 && h->surplus_huge_pages_node[nid] >=
570 h->nr_huge_pages_node[nid])
7893d1d5
AL
571 continue;
572
a5516438
AK
573 h->surplus_huge_pages += delta;
574 h->surplus_huge_pages_node[nid] += delta;
7893d1d5
AL
575 ret = 1;
576 break;
577 } while (nid != prev_nid);
578
579 prev_nid = nid;
580 return ret;
581}
582
a5516438 583static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
b7ba30c6
AK
584{
585 set_compound_page_dtor(page, free_huge_page);
586 spin_lock(&hugetlb_lock);
a5516438
AK
587 h->nr_huge_pages++;
588 h->nr_huge_pages_node[nid]++;
b7ba30c6
AK
589 spin_unlock(&hugetlb_lock);
590 put_page(page); /* free it into the hugepage allocator */
591}
592
a5516438 593static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid)
1da177e4 594{
1da177e4 595 struct page *page;
f96efd58 596
aa888a74
AK
597 if (h->order >= MAX_ORDER)
598 return NULL;
599
63b4613c 600 page = alloc_pages_node(nid,
551883ae
NA
601 htlb_alloc_mask|__GFP_COMP|__GFP_THISNODE|
602 __GFP_REPEAT|__GFP_NOWARN,
a5516438 603 huge_page_order(h));
1da177e4 604 if (page) {
7f2e9525 605 if (arch_prepare_hugepage(page)) {
caff3a2c 606 __free_pages(page, huge_page_order(h));
7b8ee84d 607 return NULL;
7f2e9525 608 }
a5516438 609 prep_new_huge_page(h, page, nid);
1da177e4 610 }
63b4613c
NA
611
612 return page;
613}
614
5ced66c9
AK
615/*
616 * Use a helper variable to find the next node and then
617 * copy it back to hugetlb_next_nid afterwards:
618 * otherwise there's a window in which a racer might
619 * pass invalid nid MAX_NUMNODES to alloc_pages_node.
620 * But we don't need to use a spin_lock here: it really
621 * doesn't matter if occasionally a racer chooses the
622 * same nid as we do. Move nid forward in the mask even
623 * if we just successfully allocated a hugepage so that
624 * the next caller gets hugepages on the next node.
625 */
626static int hstate_next_node(struct hstate *h)
627{
628 int next_nid;
629 next_nid = next_node(h->hugetlb_next_nid, node_online_map);
630 if (next_nid == MAX_NUMNODES)
631 next_nid = first_node(node_online_map);
632 h->hugetlb_next_nid = next_nid;
633 return next_nid;
634}
635
a5516438 636static int alloc_fresh_huge_page(struct hstate *h)
63b4613c
NA
637{
638 struct page *page;
639 int start_nid;
640 int next_nid;
641 int ret = 0;
642
a5516438 643 start_nid = h->hugetlb_next_nid;
63b4613c
NA
644
645 do {
a5516438 646 page = alloc_fresh_huge_page_node(h, h->hugetlb_next_nid);
63b4613c
NA
647 if (page)
648 ret = 1;
5ced66c9 649 next_nid = hstate_next_node(h);
a5516438 650 } while (!page && h->hugetlb_next_nid != start_nid);
63b4613c 651
3b116300
AL
652 if (ret)
653 count_vm_event(HTLB_BUDDY_PGALLOC);
654 else
655 count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
656
63b4613c 657 return ret;
1da177e4
LT
658}
659
a5516438
AK
660static struct page *alloc_buddy_huge_page(struct hstate *h,
661 struct vm_area_struct *vma, unsigned long address)
7893d1d5
AL
662{
663 struct page *page;
d1c3fb1f 664 unsigned int nid;
7893d1d5 665
aa888a74
AK
666 if (h->order >= MAX_ORDER)
667 return NULL;
668
d1c3fb1f
NA
669 /*
670 * Assume we will successfully allocate the surplus page to
671 * prevent racing processes from causing the surplus to exceed
672 * overcommit
673 *
674 * This however introduces a different race, where a process B
675 * tries to grow the static hugepage pool while alloc_pages() is
676 * called by process A. B will only examine the per-node
677 * counters in determining if surplus huge pages can be
678 * converted to normal huge pages in adjust_pool_surplus(). A
679 * won't be able to increment the per-node counter, until the
680 * lock is dropped by B, but B doesn't drop hugetlb_lock until
681 * no more huge pages can be converted from surplus to normal
682 * state (and doesn't try to convert again). Thus, we have a
683 * case where a surplus huge page exists, the pool is grown, and
684 * the surplus huge page still exists after, even though it
685 * should just have been converted to a normal huge page. This
686 * does not leak memory, though, as the hugepage will be freed
687 * once it is out of use. It also does not allow the counters to
688 * go out of whack in adjust_pool_surplus() as we don't modify
689 * the node values until we've gotten the hugepage and only the
690 * per-node value is checked there.
691 */
692 spin_lock(&hugetlb_lock);
a5516438 693 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
d1c3fb1f
NA
694 spin_unlock(&hugetlb_lock);
695 return NULL;
696 } else {
a5516438
AK
697 h->nr_huge_pages++;
698 h->surplus_huge_pages++;
d1c3fb1f
NA
699 }
700 spin_unlock(&hugetlb_lock);
701
551883ae
NA
702 page = alloc_pages(htlb_alloc_mask|__GFP_COMP|
703 __GFP_REPEAT|__GFP_NOWARN,
a5516438 704 huge_page_order(h));
d1c3fb1f 705
caff3a2c
GS
706 if (page && arch_prepare_hugepage(page)) {
707 __free_pages(page, huge_page_order(h));
708 return NULL;
709 }
710
d1c3fb1f 711 spin_lock(&hugetlb_lock);
7893d1d5 712 if (page) {
2668db91
AL
713 /*
714 * This page is now managed by the hugetlb allocator and has
715 * no users -- drop the buddy allocator's reference.
716 */
717 put_page_testzero(page);
718 VM_BUG_ON(page_count(page));
d1c3fb1f 719 nid = page_to_nid(page);
7893d1d5 720 set_compound_page_dtor(page, free_huge_page);
d1c3fb1f
NA
721 /*
722 * We incremented the global counters already
723 */
a5516438
AK
724 h->nr_huge_pages_node[nid]++;
725 h->surplus_huge_pages_node[nid]++;
3b116300 726 __count_vm_event(HTLB_BUDDY_PGALLOC);
d1c3fb1f 727 } else {
a5516438
AK
728 h->nr_huge_pages--;
729 h->surplus_huge_pages--;
3b116300 730 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
7893d1d5 731 }
d1c3fb1f 732 spin_unlock(&hugetlb_lock);
7893d1d5
AL
733
734 return page;
735}
736
e4e574b7
AL
737/*
738 * Increase the hugetlb pool such that it can accomodate a reservation
739 * of size 'delta'.
740 */
a5516438 741static int gather_surplus_pages(struct hstate *h, int delta)
e4e574b7
AL
742{
743 struct list_head surplus_list;
744 struct page *page, *tmp;
745 int ret, i;
746 int needed, allocated;
747
a5516438 748 needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
ac09b3a1 749 if (needed <= 0) {
a5516438 750 h->resv_huge_pages += delta;
e4e574b7 751 return 0;
ac09b3a1 752 }
e4e574b7
AL
753
754 allocated = 0;
755 INIT_LIST_HEAD(&surplus_list);
756
757 ret = -ENOMEM;
758retry:
759 spin_unlock(&hugetlb_lock);
760 for (i = 0; i < needed; i++) {
a5516438 761 page = alloc_buddy_huge_page(h, NULL, 0);
e4e574b7
AL
762 if (!page) {
763 /*
764 * We were not able to allocate enough pages to
765 * satisfy the entire reservation so we free what
766 * we've allocated so far.
767 */
768 spin_lock(&hugetlb_lock);
769 needed = 0;
770 goto free;
771 }
772
773 list_add(&page->lru, &surplus_list);
774 }
775 allocated += needed;
776
777 /*
778 * After retaking hugetlb_lock, we need to recalculate 'needed'
779 * because either resv_huge_pages or free_huge_pages may have changed.
780 */
781 spin_lock(&hugetlb_lock);
a5516438
AK
782 needed = (h->resv_huge_pages + delta) -
783 (h->free_huge_pages + allocated);
e4e574b7
AL
784 if (needed > 0)
785 goto retry;
786
787 /*
788 * The surplus_list now contains _at_least_ the number of extra pages
789 * needed to accomodate the reservation. Add the appropriate number
790 * of pages to the hugetlb pool and free the extras back to the buddy
ac09b3a1
AL
791 * allocator. Commit the entire reservation here to prevent another
792 * process from stealing the pages as they are added to the pool but
793 * before they are reserved.
e4e574b7
AL
794 */
795 needed += allocated;
a5516438 796 h->resv_huge_pages += delta;
e4e574b7
AL
797 ret = 0;
798free:
19fc3f0a 799 /* Free the needed pages to the hugetlb pool */
e4e574b7 800 list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
19fc3f0a
AL
801 if ((--needed) < 0)
802 break;
e4e574b7 803 list_del(&page->lru);
a5516438 804 enqueue_huge_page(h, page);
19fc3f0a
AL
805 }
806
807 /* Free unnecessary surplus pages to the buddy allocator */
808 if (!list_empty(&surplus_list)) {
809 spin_unlock(&hugetlb_lock);
810 list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
811 list_del(&page->lru);
af767cbd 812 /*
2668db91
AL
813 * The page has a reference count of zero already, so
814 * call free_huge_page directly instead of using
815 * put_page. This must be done with hugetlb_lock
af767cbd
AL
816 * unlocked which is safe because free_huge_page takes
817 * hugetlb_lock before deciding how to free the page.
818 */
2668db91 819 free_huge_page(page);
af767cbd 820 }
19fc3f0a 821 spin_lock(&hugetlb_lock);
e4e574b7
AL
822 }
823
824 return ret;
825}
826
827/*
828 * When releasing a hugetlb pool reservation, any surplus pages that were
829 * allocated to satisfy the reservation must be explicitly freed if they were
830 * never used.
831 */
a5516438
AK
832static void return_unused_surplus_pages(struct hstate *h,
833 unsigned long unused_resv_pages)
e4e574b7
AL
834{
835 static int nid = -1;
836 struct page *page;
837 unsigned long nr_pages;
838
11320d17
NA
839 /*
840 * We want to release as many surplus pages as possible, spread
841 * evenly across all nodes. Iterate across all nodes until we
842 * can no longer free unreserved surplus pages. This occurs when
843 * the nodes with surplus pages have no free pages.
844 */
845 unsigned long remaining_iterations = num_online_nodes();
846
ac09b3a1 847 /* Uncommit the reservation */
a5516438 848 h->resv_huge_pages -= unused_resv_pages;
ac09b3a1 849
aa888a74
AK
850 /* Cannot return gigantic pages currently */
851 if (h->order >= MAX_ORDER)
852 return;
853
a5516438 854 nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
e4e574b7 855
11320d17 856 while (remaining_iterations-- && nr_pages) {
e4e574b7
AL
857 nid = next_node(nid, node_online_map);
858 if (nid == MAX_NUMNODES)
859 nid = first_node(node_online_map);
860
a5516438 861 if (!h->surplus_huge_pages_node[nid])
e4e574b7
AL
862 continue;
863
a5516438
AK
864 if (!list_empty(&h->hugepage_freelists[nid])) {
865 page = list_entry(h->hugepage_freelists[nid].next,
e4e574b7
AL
866 struct page, lru);
867 list_del(&page->lru);
a5516438
AK
868 update_and_free_page(h, page);
869 h->free_huge_pages--;
870 h->free_huge_pages_node[nid]--;
871 h->surplus_huge_pages--;
872 h->surplus_huge_pages_node[nid]--;
e4e574b7 873 nr_pages--;
11320d17 874 remaining_iterations = num_online_nodes();
e4e574b7
AL
875 }
876 }
877}
878
c37f9fb1
AW
879/*
880 * Determine if the huge page at addr within the vma has an associated
881 * reservation. Where it does not we will need to logically increase
882 * reservation and actually increase quota before an allocation can occur.
883 * Where any new reservation would be required the reservation change is
884 * prepared, but not committed. Once the page has been quota'd allocated
885 * an instantiated the change should be committed via vma_commit_reservation.
886 * No action is required on failure.
887 */
a5516438
AK
888static int vma_needs_reservation(struct hstate *h,
889 struct vm_area_struct *vma, unsigned long addr)
c37f9fb1
AW
890{
891 struct address_space *mapping = vma->vm_file->f_mapping;
892 struct inode *inode = mapping->host;
893
894 if (vma->vm_flags & VM_SHARED) {
a5516438 895 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
c37f9fb1
AW
896 return region_chg(&inode->i_mapping->private_list,
897 idx, idx + 1);
898
84afd99b
AW
899 } else if (!is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
900 return 1;
c37f9fb1 901
84afd99b
AW
902 } else {
903 int err;
a5516438 904 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
84afd99b
AW
905 struct resv_map *reservations = vma_resv_map(vma);
906
907 err = region_chg(&reservations->regions, idx, idx + 1);
908 if (err < 0)
909 return err;
910 return 0;
911 }
c37f9fb1 912}
a5516438
AK
913static void vma_commit_reservation(struct hstate *h,
914 struct vm_area_struct *vma, unsigned long addr)
c37f9fb1
AW
915{
916 struct address_space *mapping = vma->vm_file->f_mapping;
917 struct inode *inode = mapping->host;
918
919 if (vma->vm_flags & VM_SHARED) {
a5516438 920 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
c37f9fb1 921 region_add(&inode->i_mapping->private_list, idx, idx + 1);
84afd99b
AW
922
923 } else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
a5516438 924 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
84afd99b
AW
925 struct resv_map *reservations = vma_resv_map(vma);
926
927 /* Mark this page used in the map. */
928 region_add(&reservations->regions, idx, idx + 1);
c37f9fb1
AW
929 }
930}
931
a1e78772 932static struct page *alloc_huge_page(struct vm_area_struct *vma,
04f2cbe3 933 unsigned long addr, int avoid_reserve)
1da177e4 934{
a5516438 935 struct hstate *h = hstate_vma(vma);
348ea204 936 struct page *page;
a1e78772
MG
937 struct address_space *mapping = vma->vm_file->f_mapping;
938 struct inode *inode = mapping->host;
c37f9fb1 939 unsigned int chg;
a1e78772
MG
940
941 /*
942 * Processes that did not create the mapping will have no reserves and
943 * will not have accounted against quota. Check that the quota can be
944 * made before satisfying the allocation
c37f9fb1
AW
945 * MAP_NORESERVE mappings may also need pages and quota allocated
946 * if no reserve mapping overlaps.
a1e78772 947 */
a5516438 948 chg = vma_needs_reservation(h, vma, addr);
c37f9fb1
AW
949 if (chg < 0)
950 return ERR_PTR(chg);
951 if (chg)
a1e78772
MG
952 if (hugetlb_get_quota(inode->i_mapping, chg))
953 return ERR_PTR(-ENOSPC);
1da177e4
LT
954
955 spin_lock(&hugetlb_lock);
a5516438 956 page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve);
1da177e4 957 spin_unlock(&hugetlb_lock);
b45b5bd6 958
68842c9b 959 if (!page) {
a5516438 960 page = alloc_buddy_huge_page(h, vma, addr);
68842c9b 961 if (!page) {
a1e78772 962 hugetlb_put_quota(inode->i_mapping, chg);
68842c9b
KC
963 return ERR_PTR(-VM_FAULT_OOM);
964 }
965 }
348ea204 966
a1e78772
MG
967 set_page_refcounted(page);
968 set_page_private(page, (unsigned long) mapping);
90d8b7e6 969
a5516438 970 vma_commit_reservation(h, vma, addr);
c37f9fb1 971
90d8b7e6 972 return page;
b45b5bd6
DG
973}
974
53ba51d2 975__attribute__((weak)) int alloc_bootmem_huge_page(struct hstate *h)
aa888a74
AK
976{
977 struct huge_bootmem_page *m;
978 int nr_nodes = nodes_weight(node_online_map);
979
980 while (nr_nodes) {
981 void *addr;
982
983 addr = __alloc_bootmem_node_nopanic(
984 NODE_DATA(h->hugetlb_next_nid),
985 huge_page_size(h), huge_page_size(h), 0);
986
987 if (addr) {
988 /*
989 * Use the beginning of the huge page to store the
990 * huge_bootmem_page struct (until gather_bootmem
991 * puts them into the mem_map).
992 */
993 m = addr;
994 if (m)
995 goto found;
996 }
997 hstate_next_node(h);
998 nr_nodes--;
999 }
1000 return 0;
1001
1002found:
1003 BUG_ON((unsigned long)virt_to_phys(m) & (huge_page_size(h) - 1));
1004 /* Put them into a private list first because mem_map is not up yet */
1005 list_add(&m->list, &huge_boot_pages);
1006 m->hstate = h;
1007 return 1;
1008}
1009
18229df5
AW
1010static void prep_compound_huge_page(struct page *page, int order)
1011{
1012 if (unlikely(order > (MAX_ORDER - 1)))
1013 prep_compound_gigantic_page(page, order);
1014 else
1015 prep_compound_page(page, order);
1016}
1017
aa888a74
AK
1018/* Put bootmem huge pages into the standard lists after mem_map is up */
1019static void __init gather_bootmem_prealloc(void)
1020{
1021 struct huge_bootmem_page *m;
1022
1023 list_for_each_entry(m, &huge_boot_pages, list) {
1024 struct page *page = virt_to_page(m);
1025 struct hstate *h = m->hstate;
1026 __ClearPageReserved(page);
1027 WARN_ON(page_count(page) != 1);
18229df5 1028 prep_compound_huge_page(page, h->order);
aa888a74
AK
1029 prep_new_huge_page(h, page, page_to_nid(page));
1030 }
1031}
1032
8faa8b07 1033static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
1da177e4
LT
1034{
1035 unsigned long i;
a5516438 1036
e5ff2159 1037 for (i = 0; i < h->max_huge_pages; ++i) {
aa888a74
AK
1038 if (h->order >= MAX_ORDER) {
1039 if (!alloc_bootmem_huge_page(h))
1040 break;
1041 } else if (!alloc_fresh_huge_page(h))
1da177e4 1042 break;
1da177e4 1043 }
8faa8b07 1044 h->max_huge_pages = i;
e5ff2159
AK
1045}
1046
1047static void __init hugetlb_init_hstates(void)
1048{
1049 struct hstate *h;
1050
1051 for_each_hstate(h) {
8faa8b07
AK
1052 /* oversize hugepages were init'ed in early boot */
1053 if (h->order < MAX_ORDER)
1054 hugetlb_hstate_alloc_pages(h);
e5ff2159
AK
1055 }
1056}
1057
4abd32db
AK
1058static char * __init memfmt(char *buf, unsigned long n)
1059{
1060 if (n >= (1UL << 30))
1061 sprintf(buf, "%lu GB", n >> 30);
1062 else if (n >= (1UL << 20))
1063 sprintf(buf, "%lu MB", n >> 20);
1064 else
1065 sprintf(buf, "%lu KB", n >> 10);
1066 return buf;
1067}
1068
e5ff2159
AK
1069static void __init report_hugepages(void)
1070{
1071 struct hstate *h;
1072
1073 for_each_hstate(h) {
4abd32db
AK
1074 char buf[32];
1075 printk(KERN_INFO "HugeTLB registered %s page size, "
1076 "pre-allocated %ld pages\n",
1077 memfmt(buf, huge_page_size(h)),
1078 h->free_huge_pages);
e5ff2159
AK
1079 }
1080}
1081
1da177e4 1082#ifdef CONFIG_HIGHMEM
a5516438 1083static void try_to_free_low(struct hstate *h, unsigned long count)
1da177e4 1084{
4415cc8d
CL
1085 int i;
1086
aa888a74
AK
1087 if (h->order >= MAX_ORDER)
1088 return;
1089
1da177e4
LT
1090 for (i = 0; i < MAX_NUMNODES; ++i) {
1091 struct page *page, *next;
a5516438
AK
1092 struct list_head *freel = &h->hugepage_freelists[i];
1093 list_for_each_entry_safe(page, next, freel, lru) {
1094 if (count >= h->nr_huge_pages)
6b0c880d 1095 return;
1da177e4
LT
1096 if (PageHighMem(page))
1097 continue;
1098 list_del(&page->lru);
e5ff2159 1099 update_and_free_page(h, page);
a5516438
AK
1100 h->free_huge_pages--;
1101 h->free_huge_pages_node[page_to_nid(page)]--;
1da177e4
LT
1102 }
1103 }
1104}
1105#else
a5516438 1106static inline void try_to_free_low(struct hstate *h, unsigned long count)
1da177e4
LT
1107{
1108}
1109#endif
1110
a5516438 1111#define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
e5ff2159 1112static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count)
1da177e4 1113{
7893d1d5 1114 unsigned long min_count, ret;
1da177e4 1115
aa888a74
AK
1116 if (h->order >= MAX_ORDER)
1117 return h->max_huge_pages;
1118
7893d1d5
AL
1119 /*
1120 * Increase the pool size
1121 * First take pages out of surplus state. Then make up the
1122 * remaining difference by allocating fresh huge pages.
d1c3fb1f
NA
1123 *
1124 * We might race with alloc_buddy_huge_page() here and be unable
1125 * to convert a surplus huge page to a normal huge page. That is
1126 * not critical, though, it just means the overall size of the
1127 * pool might be one hugepage larger than it needs to be, but
1128 * within all the constraints specified by the sysctls.
7893d1d5 1129 */
1da177e4 1130 spin_lock(&hugetlb_lock);
a5516438
AK
1131 while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
1132 if (!adjust_pool_surplus(h, -1))
7893d1d5
AL
1133 break;
1134 }
1135
a5516438 1136 while (count > persistent_huge_pages(h)) {
7893d1d5
AL
1137 /*
1138 * If this allocation races such that we no longer need the
1139 * page, free_huge_page will handle it by freeing the page
1140 * and reducing the surplus.
1141 */
1142 spin_unlock(&hugetlb_lock);
a5516438 1143 ret = alloc_fresh_huge_page(h);
7893d1d5
AL
1144 spin_lock(&hugetlb_lock);
1145 if (!ret)
1146 goto out;
1147
1148 }
7893d1d5
AL
1149
1150 /*
1151 * Decrease the pool size
1152 * First return free pages to the buddy allocator (being careful
1153 * to keep enough around to satisfy reservations). Then place
1154 * pages into surplus state as needed so the pool will shrink
1155 * to the desired size as pages become free.
d1c3fb1f
NA
1156 *
1157 * By placing pages into the surplus state independent of the
1158 * overcommit value, we are allowing the surplus pool size to
1159 * exceed overcommit. There are few sane options here. Since
1160 * alloc_buddy_huge_page() is checking the global counter,
1161 * though, we'll note that we're not allowed to exceed surplus
1162 * and won't grow the pool anywhere else. Not until one of the
1163 * sysctls are changed, or the surplus pages go out of use.
7893d1d5 1164 */
a5516438 1165 min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
6b0c880d 1166 min_count = max(count, min_count);
a5516438
AK
1167 try_to_free_low(h, min_count);
1168 while (min_count < persistent_huge_pages(h)) {
1169 struct page *page = dequeue_huge_page(h);
1da177e4
LT
1170 if (!page)
1171 break;
a5516438 1172 update_and_free_page(h, page);
1da177e4 1173 }
a5516438
AK
1174 while (count < persistent_huge_pages(h)) {
1175 if (!adjust_pool_surplus(h, 1))
7893d1d5
AL
1176 break;
1177 }
1178out:
a5516438 1179 ret = persistent_huge_pages(h);
1da177e4 1180 spin_unlock(&hugetlb_lock);
7893d1d5 1181 return ret;
1da177e4
LT
1182}
1183
a3437870
NA
1184#define HSTATE_ATTR_RO(_name) \
1185 static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
1186
1187#define HSTATE_ATTR(_name) \
1188 static struct kobj_attribute _name##_attr = \
1189 __ATTR(_name, 0644, _name##_show, _name##_store)
1190
1191static struct kobject *hugepages_kobj;
1192static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
1193
1194static struct hstate *kobj_to_hstate(struct kobject *kobj)
1195{
1196 int i;
1197 for (i = 0; i < HUGE_MAX_HSTATE; i++)
1198 if (hstate_kobjs[i] == kobj)
1199 return &hstates[i];
1200 BUG();
1201 return NULL;
1202}
1203
1204static ssize_t nr_hugepages_show(struct kobject *kobj,
1205 struct kobj_attribute *attr, char *buf)
1206{
1207 struct hstate *h = kobj_to_hstate(kobj);
1208 return sprintf(buf, "%lu\n", h->nr_huge_pages);
1209}
1210static ssize_t nr_hugepages_store(struct kobject *kobj,
1211 struct kobj_attribute *attr, const char *buf, size_t count)
1212{
1213 int err;
1214 unsigned long input;
1215 struct hstate *h = kobj_to_hstate(kobj);
1216
1217 err = strict_strtoul(buf, 10, &input);
1218 if (err)
1219 return 0;
1220
1221 h->max_huge_pages = set_max_huge_pages(h, input);
1222
1223 return count;
1224}
1225HSTATE_ATTR(nr_hugepages);
1226
1227static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
1228 struct kobj_attribute *attr, char *buf)
1229{
1230 struct hstate *h = kobj_to_hstate(kobj);
1231 return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
1232}
1233static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
1234 struct kobj_attribute *attr, const char *buf, size_t count)
1235{
1236 int err;
1237 unsigned long input;
1238 struct hstate *h = kobj_to_hstate(kobj);
1239
1240 err = strict_strtoul(buf, 10, &input);
1241 if (err)
1242 return 0;
1243
1244 spin_lock(&hugetlb_lock);
1245 h->nr_overcommit_huge_pages = input;
1246 spin_unlock(&hugetlb_lock);
1247
1248 return count;
1249}
1250HSTATE_ATTR(nr_overcommit_hugepages);
1251
1252static ssize_t free_hugepages_show(struct kobject *kobj,
1253 struct kobj_attribute *attr, char *buf)
1254{
1255 struct hstate *h = kobj_to_hstate(kobj);
1256 return sprintf(buf, "%lu\n", h->free_huge_pages);
1257}
1258HSTATE_ATTR_RO(free_hugepages);
1259
1260static ssize_t resv_hugepages_show(struct kobject *kobj,
1261 struct kobj_attribute *attr, char *buf)
1262{
1263 struct hstate *h = kobj_to_hstate(kobj);
1264 return sprintf(buf, "%lu\n", h->resv_huge_pages);
1265}
1266HSTATE_ATTR_RO(resv_hugepages);
1267
1268static ssize_t surplus_hugepages_show(struct kobject *kobj,
1269 struct kobj_attribute *attr, char *buf)
1270{
1271 struct hstate *h = kobj_to_hstate(kobj);
1272 return sprintf(buf, "%lu\n", h->surplus_huge_pages);
1273}
1274HSTATE_ATTR_RO(surplus_hugepages);
1275
1276static struct attribute *hstate_attrs[] = {
1277 &nr_hugepages_attr.attr,
1278 &nr_overcommit_hugepages_attr.attr,
1279 &free_hugepages_attr.attr,
1280 &resv_hugepages_attr.attr,
1281 &surplus_hugepages_attr.attr,
1282 NULL,
1283};
1284
1285static struct attribute_group hstate_attr_group = {
1286 .attrs = hstate_attrs,
1287};
1288
1289static int __init hugetlb_sysfs_add_hstate(struct hstate *h)
1290{
1291 int retval;
1292
1293 hstate_kobjs[h - hstates] = kobject_create_and_add(h->name,
1294 hugepages_kobj);
1295 if (!hstate_kobjs[h - hstates])
1296 return -ENOMEM;
1297
1298 retval = sysfs_create_group(hstate_kobjs[h - hstates],
1299 &hstate_attr_group);
1300 if (retval)
1301 kobject_put(hstate_kobjs[h - hstates]);
1302
1303 return retval;
1304}
1305
1306static void __init hugetlb_sysfs_init(void)
1307{
1308 struct hstate *h;
1309 int err;
1310
1311 hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
1312 if (!hugepages_kobj)
1313 return;
1314
1315 for_each_hstate(h) {
1316 err = hugetlb_sysfs_add_hstate(h);
1317 if (err)
1318 printk(KERN_ERR "Hugetlb: Unable to add hstate %s",
1319 h->name);
1320 }
1321}
1322
1323static void __exit hugetlb_exit(void)
1324{
1325 struct hstate *h;
1326
1327 for_each_hstate(h) {
1328 kobject_put(hstate_kobjs[h - hstates]);
1329 }
1330
1331 kobject_put(hugepages_kobj);
1332}
1333module_exit(hugetlb_exit);
1334
1335static int __init hugetlb_init(void)
1336{
0ef89d25
BH
1337 /* Some platform decide whether they support huge pages at boot
1338 * time. On these, such as powerpc, HPAGE_SHIFT is set to 0 when
1339 * there is no such support
1340 */
1341 if (HPAGE_SHIFT == 0)
1342 return 0;
a3437870 1343
e11bfbfc
NP
1344 if (!size_to_hstate(default_hstate_size)) {
1345 default_hstate_size = HPAGE_SIZE;
1346 if (!size_to_hstate(default_hstate_size))
1347 hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
a3437870 1348 }
e11bfbfc
NP
1349 default_hstate_idx = size_to_hstate(default_hstate_size) - hstates;
1350 if (default_hstate_max_huge_pages)
1351 default_hstate.max_huge_pages = default_hstate_max_huge_pages;
a3437870
NA
1352
1353 hugetlb_init_hstates();
1354
aa888a74
AK
1355 gather_bootmem_prealloc();
1356
a3437870
NA
1357 report_hugepages();
1358
1359 hugetlb_sysfs_init();
1360
1361 return 0;
1362}
1363module_init(hugetlb_init);
1364
1365/* Should be called on processing a hugepagesz=... option */
1366void __init hugetlb_add_hstate(unsigned order)
1367{
1368 struct hstate *h;
8faa8b07
AK
1369 unsigned long i;
1370
a3437870
NA
1371 if (size_to_hstate(PAGE_SIZE << order)) {
1372 printk(KERN_WARNING "hugepagesz= specified twice, ignoring\n");
1373 return;
1374 }
1375 BUG_ON(max_hstate >= HUGE_MAX_HSTATE);
1376 BUG_ON(order == 0);
1377 h = &hstates[max_hstate++];
1378 h->order = order;
1379 h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
8faa8b07
AK
1380 h->nr_huge_pages = 0;
1381 h->free_huge_pages = 0;
1382 for (i = 0; i < MAX_NUMNODES; ++i)
1383 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
1384 h->hugetlb_next_nid = first_node(node_online_map);
a3437870
NA
1385 snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
1386 huge_page_size(h)/1024);
8faa8b07 1387
a3437870
NA
1388 parsed_hstate = h;
1389}
1390
e11bfbfc 1391static int __init hugetlb_nrpages_setup(char *s)
a3437870
NA
1392{
1393 unsigned long *mhp;
8faa8b07 1394 static unsigned long *last_mhp;
a3437870
NA
1395
1396 /*
1397 * !max_hstate means we haven't parsed a hugepagesz= parameter yet,
1398 * so this hugepages= parameter goes to the "default hstate".
1399 */
1400 if (!max_hstate)
1401 mhp = &default_hstate_max_huge_pages;
1402 else
1403 mhp = &parsed_hstate->max_huge_pages;
1404
8faa8b07
AK
1405 if (mhp == last_mhp) {
1406 printk(KERN_WARNING "hugepages= specified twice without "
1407 "interleaving hugepagesz=, ignoring\n");
1408 return 1;
1409 }
1410
a3437870
NA
1411 if (sscanf(s, "%lu", mhp) <= 0)
1412 *mhp = 0;
1413
8faa8b07
AK
1414 /*
1415 * Global state is always initialized later in hugetlb_init.
1416 * But we need to allocate >= MAX_ORDER hstates here early to still
1417 * use the bootmem allocator.
1418 */
1419 if (max_hstate && parsed_hstate->order >= MAX_ORDER)
1420 hugetlb_hstate_alloc_pages(parsed_hstate);
1421
1422 last_mhp = mhp;
1423
a3437870
NA
1424 return 1;
1425}
e11bfbfc
NP
1426__setup("hugepages=", hugetlb_nrpages_setup);
1427
1428static int __init hugetlb_default_setup(char *s)
1429{
1430 default_hstate_size = memparse(s, &s);
1431 return 1;
1432}
1433__setup("default_hugepagesz=", hugetlb_default_setup);
a3437870 1434
8a213460
NA
1435static unsigned int cpuset_mems_nr(unsigned int *array)
1436{
1437 int node;
1438 unsigned int nr = 0;
1439
1440 for_each_node_mask(node, cpuset_current_mems_allowed)
1441 nr += array[node];
1442
1443 return nr;
1444}
1445
1446#ifdef CONFIG_SYSCTL
1da177e4
LT
1447int hugetlb_sysctl_handler(struct ctl_table *table, int write,
1448 struct file *file, void __user *buffer,
1449 size_t *length, loff_t *ppos)
1450{
e5ff2159
AK
1451 struct hstate *h = &default_hstate;
1452 unsigned long tmp;
1453
1454 if (!write)
1455 tmp = h->max_huge_pages;
1456
1457 table->data = &tmp;
1458 table->maxlen = sizeof(unsigned long);
1da177e4 1459 proc_doulongvec_minmax(table, write, file, buffer, length, ppos);
e5ff2159
AK
1460
1461 if (write)
1462 h->max_huge_pages = set_max_huge_pages(h, tmp);
1463
1da177e4
LT
1464 return 0;
1465}
396faf03
MG
1466
1467int hugetlb_treat_movable_handler(struct ctl_table *table, int write,
1468 struct file *file, void __user *buffer,
1469 size_t *length, loff_t *ppos)
1470{
1471 proc_dointvec(table, write, file, buffer, length, ppos);
1472 if (hugepages_treat_as_movable)
1473 htlb_alloc_mask = GFP_HIGHUSER_MOVABLE;
1474 else
1475 htlb_alloc_mask = GFP_HIGHUSER;
1476 return 0;
1477}
1478
a3d0c6aa
NA
1479int hugetlb_overcommit_handler(struct ctl_table *table, int write,
1480 struct file *file, void __user *buffer,
1481 size_t *length, loff_t *ppos)
1482{
a5516438 1483 struct hstate *h = &default_hstate;
e5ff2159
AK
1484 unsigned long tmp;
1485
1486 if (!write)
1487 tmp = h->nr_overcommit_huge_pages;
1488
1489 table->data = &tmp;
1490 table->maxlen = sizeof(unsigned long);
a3d0c6aa 1491 proc_doulongvec_minmax(table, write, file, buffer, length, ppos);
e5ff2159
AK
1492
1493 if (write) {
1494 spin_lock(&hugetlb_lock);
1495 h->nr_overcommit_huge_pages = tmp;
1496 spin_unlock(&hugetlb_lock);
1497 }
1498
a3d0c6aa
NA
1499 return 0;
1500}
1501
1da177e4
LT
1502#endif /* CONFIG_SYSCTL */
1503
e1759c21 1504void hugetlb_report_meminfo(struct seq_file *m)
1da177e4 1505{
a5516438 1506 struct hstate *h = &default_hstate;
e1759c21 1507 seq_printf(m,
4f98a2fe
RR
1508 "HugePages_Total: %5lu\n"
1509 "HugePages_Free: %5lu\n"
1510 "HugePages_Rsvd: %5lu\n"
1511 "HugePages_Surp: %5lu\n"
1512 "Hugepagesize: %8lu kB\n",
a5516438
AK
1513 h->nr_huge_pages,
1514 h->free_huge_pages,
1515 h->resv_huge_pages,
1516 h->surplus_huge_pages,
1517 1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
1da177e4
LT
1518}
1519
1520int hugetlb_report_node_meminfo(int nid, char *buf)
1521{
a5516438 1522 struct hstate *h = &default_hstate;
1da177e4
LT
1523 return sprintf(buf,
1524 "Node %d HugePages_Total: %5u\n"
a1de0919
NA
1525 "Node %d HugePages_Free: %5u\n"
1526 "Node %d HugePages_Surp: %5u\n",
a5516438
AK
1527 nid, h->nr_huge_pages_node[nid],
1528 nid, h->free_huge_pages_node[nid],
1529 nid, h->surplus_huge_pages_node[nid]);
1da177e4
LT
1530}
1531
1da177e4
LT
1532/* Return the number pages of memory we physically have, in PAGE_SIZE units. */
1533unsigned long hugetlb_total_pages(void)
1534{
a5516438
AK
1535 struct hstate *h = &default_hstate;
1536 return h->nr_huge_pages * pages_per_huge_page(h);
1da177e4 1537}
1da177e4 1538
a5516438 1539static int hugetlb_acct_memory(struct hstate *h, long delta)
fc1b8a73
MG
1540{
1541 int ret = -ENOMEM;
1542
1543 spin_lock(&hugetlb_lock);
1544 /*
1545 * When cpuset is configured, it breaks the strict hugetlb page
1546 * reservation as the accounting is done on a global variable. Such
1547 * reservation is completely rubbish in the presence of cpuset because
1548 * the reservation is not checked against page availability for the
1549 * current cpuset. Application can still potentially OOM'ed by kernel
1550 * with lack of free htlb page in cpuset that the task is in.
1551 * Attempt to enforce strict accounting with cpuset is almost
1552 * impossible (or too ugly) because cpuset is too fluid that
1553 * task or memory node can be dynamically moved between cpusets.
1554 *
1555 * The change of semantics for shared hugetlb mapping with cpuset is
1556 * undesirable. However, in order to preserve some of the semantics,
1557 * we fall back to check against current free page availability as
1558 * a best attempt and hopefully to minimize the impact of changing
1559 * semantics that cpuset has.
1560 */
1561 if (delta > 0) {
a5516438 1562 if (gather_surplus_pages(h, delta) < 0)
fc1b8a73
MG
1563 goto out;
1564
a5516438
AK
1565 if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
1566 return_unused_surplus_pages(h, delta);
fc1b8a73
MG
1567 goto out;
1568 }
1569 }
1570
1571 ret = 0;
1572 if (delta < 0)
a5516438 1573 return_unused_surplus_pages(h, (unsigned long) -delta);
fc1b8a73
MG
1574
1575out:
1576 spin_unlock(&hugetlb_lock);
1577 return ret;
1578}
1579
84afd99b
AW
1580static void hugetlb_vm_op_open(struct vm_area_struct *vma)
1581{
1582 struct resv_map *reservations = vma_resv_map(vma);
1583
1584 /*
1585 * This new VMA should share its siblings reservation map if present.
1586 * The VMA will only ever have a valid reservation map pointer where
1587 * it is being copied for another still existing VMA. As that VMA
1588 * has a reference to the reservation map it cannot dissappear until
1589 * after this open call completes. It is therefore safe to take a
1590 * new reference here without additional locking.
1591 */
1592 if (reservations)
1593 kref_get(&reservations->refs);
1594}
1595
a1e78772
MG
1596static void hugetlb_vm_op_close(struct vm_area_struct *vma)
1597{
a5516438 1598 struct hstate *h = hstate_vma(vma);
84afd99b
AW
1599 struct resv_map *reservations = vma_resv_map(vma);
1600 unsigned long reserve;
1601 unsigned long start;
1602 unsigned long end;
1603
1604 if (reservations) {
a5516438
AK
1605 start = vma_hugecache_offset(h, vma, vma->vm_start);
1606 end = vma_hugecache_offset(h, vma, vma->vm_end);
84afd99b
AW
1607
1608 reserve = (end - start) -
1609 region_count(&reservations->regions, start, end);
1610
1611 kref_put(&reservations->refs, resv_map_release);
1612
7251ff78 1613 if (reserve) {
a5516438 1614 hugetlb_acct_memory(h, -reserve);
7251ff78
AL
1615 hugetlb_put_quota(vma->vm_file->f_mapping, reserve);
1616 }
84afd99b 1617 }
a1e78772
MG
1618}
1619
1da177e4
LT
1620/*
1621 * We cannot handle pagefaults against hugetlb pages at all. They cause
1622 * handle_mm_fault() to try to instantiate regular-sized pages in the
1623 * hugegpage VMA. do_page_fault() is supposed to trap this, so BUG is we get
1624 * this far.
1625 */
d0217ac0 1626static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1da177e4
LT
1627{
1628 BUG();
d0217ac0 1629 return 0;
1da177e4
LT
1630}
1631
1632struct vm_operations_struct hugetlb_vm_ops = {
d0217ac0 1633 .fault = hugetlb_vm_op_fault,
84afd99b 1634 .open = hugetlb_vm_op_open,
a1e78772 1635 .close = hugetlb_vm_op_close,
1da177e4
LT
1636};
1637
1e8f889b
DG
1638static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
1639 int writable)
63551ae0
DG
1640{
1641 pte_t entry;
1642
1e8f889b 1643 if (writable) {
63551ae0
DG
1644 entry =
1645 pte_mkwrite(pte_mkdirty(mk_pte(page, vma->vm_page_prot)));
1646 } else {
7f2e9525 1647 entry = huge_pte_wrprotect(mk_pte(page, vma->vm_page_prot));
63551ae0
DG
1648 }
1649 entry = pte_mkyoung(entry);
1650 entry = pte_mkhuge(entry);
1651
1652 return entry;
1653}
1654
1e8f889b
DG
1655static void set_huge_ptep_writable(struct vm_area_struct *vma,
1656 unsigned long address, pte_t *ptep)
1657{
1658 pte_t entry;
1659
7f2e9525
GS
1660 entry = pte_mkwrite(pte_mkdirty(huge_ptep_get(ptep)));
1661 if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1)) {
8dab5241 1662 update_mmu_cache(vma, address, entry);
8dab5241 1663 }
1e8f889b
DG
1664}
1665
1666
63551ae0
DG
1667int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
1668 struct vm_area_struct *vma)
1669{
1670 pte_t *src_pte, *dst_pte, entry;
1671 struct page *ptepage;
1c59827d 1672 unsigned long addr;
1e8f889b 1673 int cow;
a5516438
AK
1674 struct hstate *h = hstate_vma(vma);
1675 unsigned long sz = huge_page_size(h);
1e8f889b
DG
1676
1677 cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
63551ae0 1678
a5516438 1679 for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
c74df32c
HD
1680 src_pte = huge_pte_offset(src, addr);
1681 if (!src_pte)
1682 continue;
a5516438 1683 dst_pte = huge_pte_alloc(dst, addr, sz);
63551ae0
DG
1684 if (!dst_pte)
1685 goto nomem;
c5c99429
LW
1686
1687 /* If the pagetables are shared don't copy or take references */
1688 if (dst_pte == src_pte)
1689 continue;
1690
c74df32c 1691 spin_lock(&dst->page_table_lock);
46478758 1692 spin_lock_nested(&src->page_table_lock, SINGLE_DEPTH_NESTING);
7f2e9525 1693 if (!huge_pte_none(huge_ptep_get(src_pte))) {
1e8f889b 1694 if (cow)
7f2e9525
GS
1695 huge_ptep_set_wrprotect(src, addr, src_pte);
1696 entry = huge_ptep_get(src_pte);
1c59827d
HD
1697 ptepage = pte_page(entry);
1698 get_page(ptepage);
1c59827d
HD
1699 set_huge_pte_at(dst, addr, dst_pte, entry);
1700 }
1701 spin_unlock(&src->page_table_lock);
c74df32c 1702 spin_unlock(&dst->page_table_lock);
63551ae0
DG
1703 }
1704 return 0;
1705
1706nomem:
1707 return -ENOMEM;
1708}
1709
502717f4 1710void __unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
04f2cbe3 1711 unsigned long end, struct page *ref_page)
63551ae0
DG
1712{
1713 struct mm_struct *mm = vma->vm_mm;
1714 unsigned long address;
c7546f8f 1715 pte_t *ptep;
63551ae0
DG
1716 pte_t pte;
1717 struct page *page;
fe1668ae 1718 struct page *tmp;
a5516438
AK
1719 struct hstate *h = hstate_vma(vma);
1720 unsigned long sz = huge_page_size(h);
1721
c0a499c2
CK
1722 /*
1723 * A page gathering list, protected by per file i_mmap_lock. The
1724 * lock is used to avoid list corruption from multiple unmapping
1725 * of the same page since we are using page->lru.
1726 */
fe1668ae 1727 LIST_HEAD(page_list);
63551ae0
DG
1728
1729 WARN_ON(!is_vm_hugetlb_page(vma));
a5516438
AK
1730 BUG_ON(start & ~huge_page_mask(h));
1731 BUG_ON(end & ~huge_page_mask(h));
63551ae0 1732
cddb8a5c 1733 mmu_notifier_invalidate_range_start(mm, start, end);
508034a3 1734 spin_lock(&mm->page_table_lock);
a5516438 1735 for (address = start; address < end; address += sz) {
c7546f8f 1736 ptep = huge_pte_offset(mm, address);
4c887265 1737 if (!ptep)
c7546f8f
DG
1738 continue;
1739
39dde65c
CK
1740 if (huge_pmd_unshare(mm, &address, ptep))
1741 continue;
1742
04f2cbe3
MG
1743 /*
1744 * If a reference page is supplied, it is because a specific
1745 * page is being unmapped, not a range. Ensure the page we
1746 * are about to unmap is the actual page of interest.
1747 */
1748 if (ref_page) {
1749 pte = huge_ptep_get(ptep);
1750 if (huge_pte_none(pte))
1751 continue;
1752 page = pte_page(pte);
1753 if (page != ref_page)
1754 continue;
1755
1756 /*
1757 * Mark the VMA as having unmapped its page so that
1758 * future faults in this VMA will fail rather than
1759 * looking like data was lost
1760 */
1761 set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
1762 }
1763
c7546f8f 1764 pte = huge_ptep_get_and_clear(mm, address, ptep);
7f2e9525 1765 if (huge_pte_none(pte))
63551ae0 1766 continue;
c7546f8f 1767
63551ae0 1768 page = pte_page(pte);
6649a386
KC
1769 if (pte_dirty(pte))
1770 set_page_dirty(page);
fe1668ae 1771 list_add(&page->lru, &page_list);
63551ae0 1772 }
1da177e4 1773 spin_unlock(&mm->page_table_lock);
508034a3 1774 flush_tlb_range(vma, start, end);
cddb8a5c 1775 mmu_notifier_invalidate_range_end(mm, start, end);
fe1668ae
CK
1776 list_for_each_entry_safe(page, tmp, &page_list, lru) {
1777 list_del(&page->lru);
1778 put_page(page);
1779 }
1da177e4 1780}
63551ae0 1781
502717f4 1782void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
04f2cbe3 1783 unsigned long end, struct page *ref_page)
502717f4 1784{
a137e1cc
AK
1785 spin_lock(&vma->vm_file->f_mapping->i_mmap_lock);
1786 __unmap_hugepage_range(vma, start, end, ref_page);
1787 spin_unlock(&vma->vm_file->f_mapping->i_mmap_lock);
502717f4
CK
1788}
1789
04f2cbe3
MG
1790/*
1791 * This is called when the original mapper is failing to COW a MAP_PRIVATE
1792 * mappping it owns the reserve page for. The intention is to unmap the page
1793 * from other VMAs and let the children be SIGKILLed if they are faulting the
1794 * same region.
1795 */
2a4b3ded
HH
1796static int unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
1797 struct page *page, unsigned long address)
04f2cbe3
MG
1798{
1799 struct vm_area_struct *iter_vma;
1800 struct address_space *mapping;
1801 struct prio_tree_iter iter;
1802 pgoff_t pgoff;
1803
1804 /*
1805 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
1806 * from page cache lookup which is in HPAGE_SIZE units.
1807 */
1808 address = address & huge_page_mask(hstate_vma(vma));
1809 pgoff = ((address - vma->vm_start) >> PAGE_SHIFT)
1810 + (vma->vm_pgoff >> PAGE_SHIFT);
1811 mapping = (struct address_space *)page_private(page);
1812
1813 vma_prio_tree_foreach(iter_vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
1814 /* Do not unmap the current VMA */
1815 if (iter_vma == vma)
1816 continue;
1817
1818 /*
1819 * Unmap the page from other VMAs without their own reserves.
1820 * They get marked to be SIGKILLed if they fault in these
1821 * areas. This is because a future no-page fault on this VMA
1822 * could insert a zeroed page instead of the data existing
1823 * from the time of fork. This would look like data corruption
1824 */
1825 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
1826 unmap_hugepage_range(iter_vma,
1827 address, address + HPAGE_SIZE,
1828 page);
1829 }
1830
1831 return 1;
1832}
1833
1e8f889b 1834static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
04f2cbe3
MG
1835 unsigned long address, pte_t *ptep, pte_t pte,
1836 struct page *pagecache_page)
1e8f889b 1837{
a5516438 1838 struct hstate *h = hstate_vma(vma);
1e8f889b 1839 struct page *old_page, *new_page;
79ac6ba4 1840 int avoidcopy;
04f2cbe3 1841 int outside_reserve = 0;
1e8f889b
DG
1842
1843 old_page = pte_page(pte);
1844
04f2cbe3 1845retry_avoidcopy:
1e8f889b
DG
1846 /* If no-one else is actually using this page, avoid the copy
1847 * and just make the page writable */
1848 avoidcopy = (page_count(old_page) == 1);
1849 if (avoidcopy) {
1850 set_huge_ptep_writable(vma, address, ptep);
83c54070 1851 return 0;
1e8f889b
DG
1852 }
1853
04f2cbe3
MG
1854 /*
1855 * If the process that created a MAP_PRIVATE mapping is about to
1856 * perform a COW due to a shared page count, attempt to satisfy
1857 * the allocation without using the existing reserves. The pagecache
1858 * page is used to determine if the reserve at this address was
1859 * consumed or not. If reserves were used, a partial faulted mapping
1860 * at the time of fork() could consume its reserves on COW instead
1861 * of the full address range.
1862 */
1863 if (!(vma->vm_flags & VM_SHARED) &&
1864 is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
1865 old_page != pagecache_page)
1866 outside_reserve = 1;
1867
1e8f889b 1868 page_cache_get(old_page);
04f2cbe3 1869 new_page = alloc_huge_page(vma, address, outside_reserve);
1e8f889b 1870
2fc39cec 1871 if (IS_ERR(new_page)) {
1e8f889b 1872 page_cache_release(old_page);
04f2cbe3
MG
1873
1874 /*
1875 * If a process owning a MAP_PRIVATE mapping fails to COW,
1876 * it is due to references held by a child and an insufficient
1877 * huge page pool. To guarantee the original mappers
1878 * reliability, unmap the page from child processes. The child
1879 * may get SIGKILLed if it later faults.
1880 */
1881 if (outside_reserve) {
1882 BUG_ON(huge_pte_none(pte));
1883 if (unmap_ref_private(mm, vma, old_page, address)) {
1884 BUG_ON(page_count(old_page) != 1);
1885 BUG_ON(huge_pte_none(pte));
1886 goto retry_avoidcopy;
1887 }
1888 WARN_ON_ONCE(1);
1889 }
1890
2fc39cec 1891 return -PTR_ERR(new_page);
1e8f889b
DG
1892 }
1893
1894 spin_unlock(&mm->page_table_lock);
9de455b2 1895 copy_huge_page(new_page, old_page, address, vma);
0ed361de 1896 __SetPageUptodate(new_page);
1e8f889b
DG
1897 spin_lock(&mm->page_table_lock);
1898
a5516438 1899 ptep = huge_pte_offset(mm, address & huge_page_mask(h));
7f2e9525 1900 if (likely(pte_same(huge_ptep_get(ptep), pte))) {
1e8f889b 1901 /* Break COW */
8fe627ec 1902 huge_ptep_clear_flush(vma, address, ptep);
1e8f889b
DG
1903 set_huge_pte_at(mm, address, ptep,
1904 make_huge_pte(vma, new_page, 1));
1905 /* Make the old page be freed below */
1906 new_page = old_page;
1907 }
1908 page_cache_release(new_page);
1909 page_cache_release(old_page);
83c54070 1910 return 0;
1e8f889b
DG
1911}
1912
04f2cbe3 1913/* Return the pagecache page at a given address within a VMA */
a5516438
AK
1914static struct page *hugetlbfs_pagecache_page(struct hstate *h,
1915 struct vm_area_struct *vma, unsigned long address)
04f2cbe3
MG
1916{
1917 struct address_space *mapping;
e7c4b0bf 1918 pgoff_t idx;
04f2cbe3
MG
1919
1920 mapping = vma->vm_file->f_mapping;
a5516438 1921 idx = vma_hugecache_offset(h, vma, address);
04f2cbe3
MG
1922
1923 return find_lock_page(mapping, idx);
1924}
1925
a1ed3dda 1926static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
1e8f889b 1927 unsigned long address, pte_t *ptep, int write_access)
ac9b9c66 1928{
a5516438 1929 struct hstate *h = hstate_vma(vma);
ac9b9c66 1930 int ret = VM_FAULT_SIGBUS;
e7c4b0bf 1931 pgoff_t idx;
4c887265 1932 unsigned long size;
4c887265
AL
1933 struct page *page;
1934 struct address_space *mapping;
1e8f889b 1935 pte_t new_pte;
4c887265 1936
04f2cbe3
MG
1937 /*
1938 * Currently, we are forced to kill the process in the event the
1939 * original mapper has unmapped pages from the child due to a failed
1940 * COW. Warn that such a situation has occured as it may not be obvious
1941 */
1942 if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
1943 printk(KERN_WARNING
1944 "PID %d killed due to inadequate hugepage pool\n",
1945 current->pid);
1946 return ret;
1947 }
1948
4c887265 1949 mapping = vma->vm_file->f_mapping;
a5516438 1950 idx = vma_hugecache_offset(h, vma, address);
4c887265
AL
1951
1952 /*
1953 * Use page lock to guard against racing truncation
1954 * before we get page_table_lock.
1955 */
6bda666a
CL
1956retry:
1957 page = find_lock_page(mapping, idx);
1958 if (!page) {
a5516438 1959 size = i_size_read(mapping->host) >> huge_page_shift(h);
ebed4bfc
HD
1960 if (idx >= size)
1961 goto out;
04f2cbe3 1962 page = alloc_huge_page(vma, address, 0);
2fc39cec
AL
1963 if (IS_ERR(page)) {
1964 ret = -PTR_ERR(page);
6bda666a
CL
1965 goto out;
1966 }
a5516438 1967 clear_huge_page(page, address, huge_page_size(h));
0ed361de 1968 __SetPageUptodate(page);
ac9b9c66 1969
6bda666a
CL
1970 if (vma->vm_flags & VM_SHARED) {
1971 int err;
45c682a6 1972 struct inode *inode = mapping->host;
6bda666a
CL
1973
1974 err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
1975 if (err) {
1976 put_page(page);
6bda666a
CL
1977 if (err == -EEXIST)
1978 goto retry;
1979 goto out;
1980 }
45c682a6
KC
1981
1982 spin_lock(&inode->i_lock);
a5516438 1983 inode->i_blocks += blocks_per_huge_page(h);
45c682a6 1984 spin_unlock(&inode->i_lock);
6bda666a
CL
1985 } else
1986 lock_page(page);
1987 }
1e8f889b 1988
57303d80
AW
1989 /*
1990 * If we are going to COW a private mapping later, we examine the
1991 * pending reservations for this page now. This will ensure that
1992 * any allocations necessary to record that reservation occur outside
1993 * the spinlock.
1994 */
1995 if (write_access && !(vma->vm_flags & VM_SHARED))
2b26736c
AW
1996 if (vma_needs_reservation(h, vma, address) < 0) {
1997 ret = VM_FAULT_OOM;
1998 goto backout_unlocked;
1999 }
57303d80 2000
ac9b9c66 2001 spin_lock(&mm->page_table_lock);
a5516438 2002 size = i_size_read(mapping->host) >> huge_page_shift(h);
4c887265
AL
2003 if (idx >= size)
2004 goto backout;
2005
83c54070 2006 ret = 0;
7f2e9525 2007 if (!huge_pte_none(huge_ptep_get(ptep)))
4c887265
AL
2008 goto backout;
2009
1e8f889b
DG
2010 new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
2011 && (vma->vm_flags & VM_SHARED)));
2012 set_huge_pte_at(mm, address, ptep, new_pte);
2013
2014 if (write_access && !(vma->vm_flags & VM_SHARED)) {
2015 /* Optimization, do the COW without a second fault */
04f2cbe3 2016 ret = hugetlb_cow(mm, vma, address, ptep, new_pte, page);
1e8f889b
DG
2017 }
2018
ac9b9c66 2019 spin_unlock(&mm->page_table_lock);
4c887265
AL
2020 unlock_page(page);
2021out:
ac9b9c66 2022 return ret;
4c887265
AL
2023
2024backout:
2025 spin_unlock(&mm->page_table_lock);
2b26736c 2026backout_unlocked:
4c887265
AL
2027 unlock_page(page);
2028 put_page(page);
2029 goto out;
ac9b9c66
HD
2030}
2031
86e5216f
AL
2032int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2033 unsigned long address, int write_access)
2034{
2035 pte_t *ptep;
2036 pte_t entry;
1e8f889b 2037 int ret;
57303d80 2038 struct page *pagecache_page = NULL;
3935baa9 2039 static DEFINE_MUTEX(hugetlb_instantiation_mutex);
a5516438 2040 struct hstate *h = hstate_vma(vma);
86e5216f 2041
a5516438 2042 ptep = huge_pte_alloc(mm, address, huge_page_size(h));
86e5216f
AL
2043 if (!ptep)
2044 return VM_FAULT_OOM;
2045
3935baa9
DG
2046 /*
2047 * Serialize hugepage allocation and instantiation, so that we don't
2048 * get spurious allocation failures if two CPUs race to instantiate
2049 * the same page in the page cache.
2050 */
2051 mutex_lock(&hugetlb_instantiation_mutex);
7f2e9525
GS
2052 entry = huge_ptep_get(ptep);
2053 if (huge_pte_none(entry)) {
3935baa9 2054 ret = hugetlb_no_page(mm, vma, address, ptep, write_access);
b4d1d99f 2055 goto out_mutex;
3935baa9 2056 }
86e5216f 2057
83c54070 2058 ret = 0;
1e8f889b 2059
57303d80
AW
2060 /*
2061 * If we are going to COW the mapping later, we examine the pending
2062 * reservations for this page now. This will ensure that any
2063 * allocations necessary to record that reservation occur outside the
2064 * spinlock. For private mappings, we also lookup the pagecache
2065 * page now as it is used to determine if a reservation has been
2066 * consumed.
2067 */
2068 if (write_access && !pte_write(entry)) {
2b26736c
AW
2069 if (vma_needs_reservation(h, vma, address) < 0) {
2070 ret = VM_FAULT_OOM;
b4d1d99f 2071 goto out_mutex;
2b26736c 2072 }
57303d80
AW
2073
2074 if (!(vma->vm_flags & VM_SHARED))
2075 pagecache_page = hugetlbfs_pagecache_page(h,
2076 vma, address);
2077 }
2078
1e8f889b
DG
2079 spin_lock(&mm->page_table_lock);
2080 /* Check for a racing update before calling hugetlb_cow */
b4d1d99f
DG
2081 if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
2082 goto out_page_table_lock;
2083
2084
2085 if (write_access) {
2086 if (!pte_write(entry)) {
57303d80
AW
2087 ret = hugetlb_cow(mm, vma, address, ptep, entry,
2088 pagecache_page);
b4d1d99f
DG
2089 goto out_page_table_lock;
2090 }
2091 entry = pte_mkdirty(entry);
2092 }
2093 entry = pte_mkyoung(entry);
2094 if (huge_ptep_set_access_flags(vma, address, ptep, entry, write_access))
2095 update_mmu_cache(vma, address, entry);
2096
2097out_page_table_lock:
1e8f889b 2098 spin_unlock(&mm->page_table_lock);
57303d80
AW
2099
2100 if (pagecache_page) {
2101 unlock_page(pagecache_page);
2102 put_page(pagecache_page);
2103 }
2104
b4d1d99f 2105out_mutex:
3935baa9 2106 mutex_unlock(&hugetlb_instantiation_mutex);
1e8f889b
DG
2107
2108 return ret;
86e5216f
AL
2109}
2110
ceb86879
AK
2111/* Can be overriden by architectures */
2112__attribute__((weak)) struct page *
2113follow_huge_pud(struct mm_struct *mm, unsigned long address,
2114 pud_t *pud, int write)
2115{
2116 BUG();
2117 return NULL;
2118}
2119
4b2e38ad
KM
2120static int huge_zeropage_ok(pte_t *ptep, int write, int shared)
2121{
2122 if (!ptep || write || shared)
2123 return 0;
2124 else
2125 return huge_pte_none(huge_ptep_get(ptep));
2126}
2127
63551ae0
DG
2128int follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
2129 struct page **pages, struct vm_area_struct **vmas,
5b23dbe8
AL
2130 unsigned long *position, int *length, int i,
2131 int write)
63551ae0 2132{
d5d4b0aa
CK
2133 unsigned long pfn_offset;
2134 unsigned long vaddr = *position;
63551ae0 2135 int remainder = *length;
a5516438 2136 struct hstate *h = hstate_vma(vma);
4b2e38ad
KM
2137 int zeropage_ok = 0;
2138 int shared = vma->vm_flags & VM_SHARED;
63551ae0 2139
1c59827d 2140 spin_lock(&mm->page_table_lock);
63551ae0 2141 while (vaddr < vma->vm_end && remainder) {
4c887265
AL
2142 pte_t *pte;
2143 struct page *page;
63551ae0 2144
4c887265
AL
2145 /*
2146 * Some archs (sparc64, sh*) have multiple pte_ts to
2147 * each hugepage. We have to make * sure we get the
2148 * first, for the page indexing below to work.
2149 */
a5516438 2150 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h));
4b2e38ad
KM
2151 if (huge_zeropage_ok(pte, write, shared))
2152 zeropage_ok = 1;
63551ae0 2153
4b2e38ad
KM
2154 if (!pte ||
2155 (huge_pte_none(huge_ptep_get(pte)) && !zeropage_ok) ||
7f2e9525 2156 (write && !pte_write(huge_ptep_get(pte)))) {
4c887265 2157 int ret;
63551ae0 2158
4c887265 2159 spin_unlock(&mm->page_table_lock);
5b23dbe8 2160 ret = hugetlb_fault(mm, vma, vaddr, write);
4c887265 2161 spin_lock(&mm->page_table_lock);
a89182c7 2162 if (!(ret & VM_FAULT_ERROR))
4c887265 2163 continue;
63551ae0 2164
4c887265
AL
2165 remainder = 0;
2166 if (!i)
2167 i = -EFAULT;
2168 break;
2169 }
2170
a5516438 2171 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
7f2e9525 2172 page = pte_page(huge_ptep_get(pte));
d5d4b0aa 2173same_page:
d6692183 2174 if (pages) {
4b2e38ad
KM
2175 if (zeropage_ok)
2176 pages[i] = ZERO_PAGE(0);
2177 else
69d177c2 2178 pages[i] = mem_map_offset(page, pfn_offset);
4b2e38ad 2179 get_page(pages[i]);
d6692183 2180 }
63551ae0
DG
2181
2182 if (vmas)
2183 vmas[i] = vma;
2184
2185 vaddr += PAGE_SIZE;
d5d4b0aa 2186 ++pfn_offset;
63551ae0
DG
2187 --remainder;
2188 ++i;
d5d4b0aa 2189 if (vaddr < vma->vm_end && remainder &&
a5516438 2190 pfn_offset < pages_per_huge_page(h)) {
d5d4b0aa
CK
2191 /*
2192 * We use pfn_offset to avoid touching the pageframes
2193 * of this compound page.
2194 */
2195 goto same_page;
2196 }
63551ae0 2197 }
1c59827d 2198 spin_unlock(&mm->page_table_lock);
63551ae0
DG
2199 *length = remainder;
2200 *position = vaddr;
2201
2202 return i;
2203}
8f860591
ZY
2204
2205void hugetlb_change_protection(struct vm_area_struct *vma,
2206 unsigned long address, unsigned long end, pgprot_t newprot)
2207{
2208 struct mm_struct *mm = vma->vm_mm;
2209 unsigned long start = address;
2210 pte_t *ptep;
2211 pte_t pte;
a5516438 2212 struct hstate *h = hstate_vma(vma);
8f860591
ZY
2213
2214 BUG_ON(address >= end);
2215 flush_cache_range(vma, address, end);
2216
39dde65c 2217 spin_lock(&vma->vm_file->f_mapping->i_mmap_lock);
8f860591 2218 spin_lock(&mm->page_table_lock);
a5516438 2219 for (; address < end; address += huge_page_size(h)) {
8f860591
ZY
2220 ptep = huge_pte_offset(mm, address);
2221 if (!ptep)
2222 continue;
39dde65c
CK
2223 if (huge_pmd_unshare(mm, &address, ptep))
2224 continue;
7f2e9525 2225 if (!huge_pte_none(huge_ptep_get(ptep))) {
8f860591
ZY
2226 pte = huge_ptep_get_and_clear(mm, address, ptep);
2227 pte = pte_mkhuge(pte_modify(pte, newprot));
2228 set_huge_pte_at(mm, address, ptep, pte);
8f860591
ZY
2229 }
2230 }
2231 spin_unlock(&mm->page_table_lock);
39dde65c 2232 spin_unlock(&vma->vm_file->f_mapping->i_mmap_lock);
8f860591
ZY
2233
2234 flush_tlb_range(vma, start, end);
2235}
2236
a1e78772
MG
2237int hugetlb_reserve_pages(struct inode *inode,
2238 long from, long to,
2239 struct vm_area_struct *vma)
e4e574b7
AL
2240{
2241 long ret, chg;
a5516438 2242 struct hstate *h = hstate_inode(inode);
e4e574b7 2243
c37f9fb1
AW
2244 if (vma && vma->vm_flags & VM_NORESERVE)
2245 return 0;
2246
a1e78772
MG
2247 /*
2248 * Shared mappings base their reservation on the number of pages that
2249 * are already allocated on behalf of the file. Private mappings need
2250 * to reserve the full area even if read-only as mprotect() may be
2251 * called to make the mapping read-write. Assume !vma is a shm mapping
2252 */
2253 if (!vma || vma->vm_flags & VM_SHARED)
2254 chg = region_chg(&inode->i_mapping->private_list, from, to);
2255 else {
84afd99b
AW
2256 struct resv_map *resv_map = resv_map_alloc();
2257 if (!resv_map)
2258 return -ENOMEM;
2259
a1e78772 2260 chg = to - from;
84afd99b
AW
2261
2262 set_vma_resv_map(vma, resv_map);
04f2cbe3 2263 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
a1e78772
MG
2264 }
2265
e4e574b7
AL
2266 if (chg < 0)
2267 return chg;
8a630112 2268
90d8b7e6
AL
2269 if (hugetlb_get_quota(inode->i_mapping, chg))
2270 return -ENOSPC;
a5516438 2271 ret = hugetlb_acct_memory(h, chg);
68842c9b
KC
2272 if (ret < 0) {
2273 hugetlb_put_quota(inode->i_mapping, chg);
a43a8c39 2274 return ret;
68842c9b 2275 }
a1e78772
MG
2276 if (!vma || vma->vm_flags & VM_SHARED)
2277 region_add(&inode->i_mapping->private_list, from, to);
a43a8c39
CK
2278 return 0;
2279}
2280
2281void hugetlb_unreserve_pages(struct inode *inode, long offset, long freed)
2282{
a5516438 2283 struct hstate *h = hstate_inode(inode);
a43a8c39 2284 long chg = region_truncate(&inode->i_mapping->private_list, offset);
45c682a6
KC
2285
2286 spin_lock(&inode->i_lock);
a5516438 2287 inode->i_blocks -= blocks_per_huge_page(h);
45c682a6
KC
2288 spin_unlock(&inode->i_lock);
2289
90d8b7e6 2290 hugetlb_put_quota(inode->i_mapping, (chg - freed));
a5516438 2291 hugetlb_acct_memory(h, -(chg - freed));
a43a8c39 2292}