[PATCH] readahead: fix initial window size calculation
[linux-2.6-block.git] / mm / hugetlb.c
CommitLineData
1da177e4
LT
1/*
2 * Generic hugetlb support.
3 * (C) William Irwin, April 2004
4 */
5#include <linux/gfp.h>
6#include <linux/list.h>
7#include <linux/init.h>
8#include <linux/module.h>
9#include <linux/mm.h>
1da177e4
LT
10#include <linux/sysctl.h>
11#include <linux/highmem.h>
12#include <linux/nodemask.h>
63551ae0 13#include <linux/pagemap.h>
5da7ca86 14#include <linux/mempolicy.h>
aea47ff3 15#include <linux/cpuset.h>
5da7ca86 16
63551ae0
DG
17#include <asm/page.h>
18#include <asm/pgtable.h>
19
20#include <linux/hugetlb.h>
7835e98b 21#include "internal.h"
1da177e4
LT
22
23const unsigned long hugetlb_zero = 0, hugetlb_infinity = ~0UL;
24static unsigned long nr_huge_pages, free_huge_pages;
25unsigned long max_huge_pages;
26static struct list_head hugepage_freelists[MAX_NUMNODES];
27static unsigned int nr_huge_pages_node[MAX_NUMNODES];
28static unsigned int free_huge_pages_node[MAX_NUMNODES];
0bd0f9fb
EP
29
30/*
31 * Protects updates to hugepage_freelists, nr_huge_pages, and free_huge_pages
32 */
1da177e4
LT
33static DEFINE_SPINLOCK(hugetlb_lock);
34
35static void enqueue_huge_page(struct page *page)
36{
37 int nid = page_to_nid(page);
38 list_add(&page->lru, &hugepage_freelists[nid]);
39 free_huge_pages++;
40 free_huge_pages_node[nid]++;
41}
42
5da7ca86
CL
43static struct page *dequeue_huge_page(struct vm_area_struct *vma,
44 unsigned long address)
1da177e4
LT
45{
46 int nid = numa_node_id();
47 struct page *page = NULL;
5da7ca86 48 struct zonelist *zonelist = huge_zonelist(vma, address);
96df9333 49 struct zone **z;
1da177e4 50
96df9333
CL
51 for (z = zonelist->zones; *z; z++) {
52 nid = (*z)->zone_pgdat->node_id;
aea47ff3
CL
53 if (cpuset_zone_allowed(*z, GFP_HIGHUSER) &&
54 !list_empty(&hugepage_freelists[nid]))
96df9333 55 break;
1da177e4 56 }
96df9333
CL
57
58 if (*z) {
1da177e4
LT
59 page = list_entry(hugepage_freelists[nid].next,
60 struct page, lru);
61 list_del(&page->lru);
62 free_huge_pages--;
63 free_huge_pages_node[nid]--;
64 }
65 return page;
66}
67
a482289d 68static int alloc_fresh_huge_page(void)
1da177e4
LT
69{
70 static int nid = 0;
71 struct page *page;
72 page = alloc_pages_node(nid, GFP_HIGHUSER|__GFP_COMP|__GFP_NOWARN,
73 HUGETLB_PAGE_ORDER);
74 nid = (nid + 1) % num_online_nodes();
75 if (page) {
a482289d 76 page[1].lru.next = (void *)free_huge_page; /* dtor */
0bd0f9fb 77 spin_lock(&hugetlb_lock);
1da177e4
LT
78 nr_huge_pages++;
79 nr_huge_pages_node[page_to_nid(page)]++;
0bd0f9fb 80 spin_unlock(&hugetlb_lock);
a482289d
NP
81 put_page(page); /* free it into the hugepage allocator */
82 return 1;
1da177e4 83 }
a482289d 84 return 0;
1da177e4
LT
85}
86
87void free_huge_page(struct page *page)
88{
89 BUG_ON(page_count(page));
90
91 INIT_LIST_HEAD(&page->lru);
1da177e4
LT
92
93 spin_lock(&hugetlb_lock);
94 enqueue_huge_page(page);
95 spin_unlock(&hugetlb_lock);
96}
97
5da7ca86 98struct page *alloc_huge_page(struct vm_area_struct *vma, unsigned long addr)
1da177e4
LT
99{
100 struct page *page;
101 int i;
102
103 spin_lock(&hugetlb_lock);
5da7ca86 104 page = dequeue_huge_page(vma, addr);
1da177e4
LT
105 if (!page) {
106 spin_unlock(&hugetlb_lock);
107 return NULL;
108 }
109 spin_unlock(&hugetlb_lock);
7835e98b 110 set_page_refcounted(page);
1da177e4 111 for (i = 0; i < (HPAGE_SIZE/PAGE_SIZE); ++i)
a2dfef69 112 clear_user_highpage(&page[i], addr);
1da177e4
LT
113 return page;
114}
115
116static int __init hugetlb_init(void)
117{
118 unsigned long i;
1da177e4 119
3c726f8d
BH
120 if (HPAGE_SHIFT == 0)
121 return 0;
122
1da177e4
LT
123 for (i = 0; i < MAX_NUMNODES; ++i)
124 INIT_LIST_HEAD(&hugepage_freelists[i]);
125
126 for (i = 0; i < max_huge_pages; ++i) {
a482289d 127 if (!alloc_fresh_huge_page())
1da177e4 128 break;
1da177e4
LT
129 }
130 max_huge_pages = free_huge_pages = nr_huge_pages = i;
131 printk("Total HugeTLB memory allocated, %ld\n", free_huge_pages);
132 return 0;
133}
134module_init(hugetlb_init);
135
136static int __init hugetlb_setup(char *s)
137{
138 if (sscanf(s, "%lu", &max_huge_pages) <= 0)
139 max_huge_pages = 0;
140 return 1;
141}
142__setup("hugepages=", hugetlb_setup);
143
144#ifdef CONFIG_SYSCTL
145static void update_and_free_page(struct page *page)
146{
147 int i;
148 nr_huge_pages--;
149 nr_huge_pages_node[page_zone(page)->zone_pgdat->node_id]--;
150 for (i = 0; i < (HPAGE_SIZE / PAGE_SIZE); i++) {
151 page[i].flags &= ~(1 << PG_locked | 1 << PG_error | 1 << PG_referenced |
152 1 << PG_dirty | 1 << PG_active | 1 << PG_reserved |
153 1 << PG_private | 1<< PG_writeback);
1da177e4 154 }
a482289d 155 page[1].lru.next = NULL;
7835e98b 156 set_page_refcounted(page);
1da177e4
LT
157 __free_pages(page, HUGETLB_PAGE_ORDER);
158}
159
160#ifdef CONFIG_HIGHMEM
161static void try_to_free_low(unsigned long count)
162{
163 int i, nid;
164 for (i = 0; i < MAX_NUMNODES; ++i) {
165 struct page *page, *next;
166 list_for_each_entry_safe(page, next, &hugepage_freelists[i], lru) {
167 if (PageHighMem(page))
168 continue;
169 list_del(&page->lru);
170 update_and_free_page(page);
171 nid = page_zone(page)->zone_pgdat->node_id;
172 free_huge_pages--;
173 free_huge_pages_node[nid]--;
174 if (count >= nr_huge_pages)
175 return;
176 }
177 }
178}
179#else
180static inline void try_to_free_low(unsigned long count)
181{
182}
183#endif
184
185static unsigned long set_max_huge_pages(unsigned long count)
186{
187 while (count > nr_huge_pages) {
a482289d 188 if (!alloc_fresh_huge_page())
1da177e4 189 return nr_huge_pages;
1da177e4
LT
190 }
191 if (count >= nr_huge_pages)
192 return nr_huge_pages;
193
194 spin_lock(&hugetlb_lock);
195 try_to_free_low(count);
196 while (count < nr_huge_pages) {
5da7ca86 197 struct page *page = dequeue_huge_page(NULL, 0);
1da177e4
LT
198 if (!page)
199 break;
200 update_and_free_page(page);
201 }
202 spin_unlock(&hugetlb_lock);
203 return nr_huge_pages;
204}
205
206int hugetlb_sysctl_handler(struct ctl_table *table, int write,
207 struct file *file, void __user *buffer,
208 size_t *length, loff_t *ppos)
209{
210 proc_doulongvec_minmax(table, write, file, buffer, length, ppos);
211 max_huge_pages = set_max_huge_pages(max_huge_pages);
212 return 0;
213}
214#endif /* CONFIG_SYSCTL */
215
216int hugetlb_report_meminfo(char *buf)
217{
218 return sprintf(buf,
219 "HugePages_Total: %5lu\n"
220 "HugePages_Free: %5lu\n"
221 "Hugepagesize: %5lu kB\n",
222 nr_huge_pages,
223 free_huge_pages,
224 HPAGE_SIZE/1024);
225}
226
227int hugetlb_report_node_meminfo(int nid, char *buf)
228{
229 return sprintf(buf,
230 "Node %d HugePages_Total: %5u\n"
231 "Node %d HugePages_Free: %5u\n",
232 nid, nr_huge_pages_node[nid],
233 nid, free_huge_pages_node[nid]);
234}
235
236int is_hugepage_mem_enough(size_t size)
237{
238 return (size + ~HPAGE_MASK)/HPAGE_SIZE <= free_huge_pages;
239}
240
241/* Return the number pages of memory we physically have, in PAGE_SIZE units. */
242unsigned long hugetlb_total_pages(void)
243{
244 return nr_huge_pages * (HPAGE_SIZE / PAGE_SIZE);
245}
1da177e4
LT
246
247/*
248 * We cannot handle pagefaults against hugetlb pages at all. They cause
249 * handle_mm_fault() to try to instantiate regular-sized pages in the
250 * hugegpage VMA. do_page_fault() is supposed to trap this, so BUG is we get
251 * this far.
252 */
253static struct page *hugetlb_nopage(struct vm_area_struct *vma,
254 unsigned long address, int *unused)
255{
256 BUG();
257 return NULL;
258}
259
260struct vm_operations_struct hugetlb_vm_ops = {
261 .nopage = hugetlb_nopage,
262};
263
1e8f889b
DG
264static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
265 int writable)
63551ae0
DG
266{
267 pte_t entry;
268
1e8f889b 269 if (writable) {
63551ae0
DG
270 entry =
271 pte_mkwrite(pte_mkdirty(mk_pte(page, vma->vm_page_prot)));
272 } else {
273 entry = pte_wrprotect(mk_pte(page, vma->vm_page_prot));
274 }
275 entry = pte_mkyoung(entry);
276 entry = pte_mkhuge(entry);
277
278 return entry;
279}
280
1e8f889b
DG
281static void set_huge_ptep_writable(struct vm_area_struct *vma,
282 unsigned long address, pte_t *ptep)
283{
284 pte_t entry;
285
286 entry = pte_mkwrite(pte_mkdirty(*ptep));
287 ptep_set_access_flags(vma, address, ptep, entry, 1);
288 update_mmu_cache(vma, address, entry);
289 lazy_mmu_prot_update(entry);
290}
291
292
63551ae0
DG
293int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
294 struct vm_area_struct *vma)
295{
296 pte_t *src_pte, *dst_pte, entry;
297 struct page *ptepage;
1c59827d 298 unsigned long addr;
1e8f889b
DG
299 int cow;
300
301 cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
63551ae0 302
1c59827d 303 for (addr = vma->vm_start; addr < vma->vm_end; addr += HPAGE_SIZE) {
c74df32c
HD
304 src_pte = huge_pte_offset(src, addr);
305 if (!src_pte)
306 continue;
63551ae0
DG
307 dst_pte = huge_pte_alloc(dst, addr);
308 if (!dst_pte)
309 goto nomem;
c74df32c 310 spin_lock(&dst->page_table_lock);
1c59827d 311 spin_lock(&src->page_table_lock);
c74df32c 312 if (!pte_none(*src_pte)) {
1e8f889b
DG
313 if (cow)
314 ptep_set_wrprotect(src, addr, src_pte);
1c59827d
HD
315 entry = *src_pte;
316 ptepage = pte_page(entry);
317 get_page(ptepage);
4294621f 318 add_mm_counter(dst, file_rss, HPAGE_SIZE / PAGE_SIZE);
1c59827d
HD
319 set_huge_pte_at(dst, addr, dst_pte, entry);
320 }
321 spin_unlock(&src->page_table_lock);
c74df32c 322 spin_unlock(&dst->page_table_lock);
63551ae0
DG
323 }
324 return 0;
325
326nomem:
327 return -ENOMEM;
328}
329
330void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
331 unsigned long end)
332{
333 struct mm_struct *mm = vma->vm_mm;
334 unsigned long address;
c7546f8f 335 pte_t *ptep;
63551ae0
DG
336 pte_t pte;
337 struct page *page;
338
339 WARN_ON(!is_vm_hugetlb_page(vma));
340 BUG_ON(start & ~HPAGE_MASK);
341 BUG_ON(end & ~HPAGE_MASK);
342
508034a3
HD
343 spin_lock(&mm->page_table_lock);
344
365e9c87
HD
345 /* Update high watermark before we lower rss */
346 update_hiwater_rss(mm);
347
63551ae0 348 for (address = start; address < end; address += HPAGE_SIZE) {
c7546f8f 349 ptep = huge_pte_offset(mm, address);
4c887265 350 if (!ptep)
c7546f8f
DG
351 continue;
352
353 pte = huge_ptep_get_and_clear(mm, address, ptep);
63551ae0
DG
354 if (pte_none(pte))
355 continue;
c7546f8f 356
63551ae0
DG
357 page = pte_page(pte);
358 put_page(page);
4294621f 359 add_mm_counter(mm, file_rss, (int) -(HPAGE_SIZE / PAGE_SIZE));
63551ae0 360 }
63551ae0 361
1da177e4 362 spin_unlock(&mm->page_table_lock);
508034a3 363 flush_tlb_range(vma, start, end);
1da177e4 364}
63551ae0 365
1e8f889b
DG
366static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
367 unsigned long address, pte_t *ptep, pte_t pte)
368{
369 struct page *old_page, *new_page;
370 int i, avoidcopy;
371
372 old_page = pte_page(pte);
373
374 /* If no-one else is actually using this page, avoid the copy
375 * and just make the page writable */
376 avoidcopy = (page_count(old_page) == 1);
377 if (avoidcopy) {
378 set_huge_ptep_writable(vma, address, ptep);
379 return VM_FAULT_MINOR;
380 }
381
382 page_cache_get(old_page);
5da7ca86 383 new_page = alloc_huge_page(vma, address);
1e8f889b
DG
384
385 if (!new_page) {
386 page_cache_release(old_page);
0df420d8 387 return VM_FAULT_OOM;
1e8f889b
DG
388 }
389
390 spin_unlock(&mm->page_table_lock);
391 for (i = 0; i < HPAGE_SIZE/PAGE_SIZE; i++)
392 copy_user_highpage(new_page + i, old_page + i,
393 address + i*PAGE_SIZE);
394 spin_lock(&mm->page_table_lock);
395
396 ptep = huge_pte_offset(mm, address & HPAGE_MASK);
397 if (likely(pte_same(*ptep, pte))) {
398 /* Break COW */
399 set_huge_pte_at(mm, address, ptep,
400 make_huge_pte(vma, new_page, 1));
401 /* Make the old page be freed below */
402 new_page = old_page;
403 }
404 page_cache_release(new_page);
405 page_cache_release(old_page);
406 return VM_FAULT_MINOR;
407}
408
86e5216f 409int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
1e8f889b 410 unsigned long address, pte_t *ptep, int write_access)
ac9b9c66
HD
411{
412 int ret = VM_FAULT_SIGBUS;
4c887265
AL
413 unsigned long idx;
414 unsigned long size;
4c887265
AL
415 struct page *page;
416 struct address_space *mapping;
1e8f889b 417 pte_t new_pte;
4c887265 418
4c887265
AL
419 mapping = vma->vm_file->f_mapping;
420 idx = ((address - vma->vm_start) >> HPAGE_SHIFT)
421 + (vma->vm_pgoff >> (HPAGE_SHIFT - PAGE_SHIFT));
422
423 /*
424 * Use page lock to guard against racing truncation
425 * before we get page_table_lock.
426 */
6bda666a
CL
427retry:
428 page = find_lock_page(mapping, idx);
429 if (!page) {
430 if (hugetlb_get_quota(mapping))
431 goto out;
432 page = alloc_huge_page(vma, address);
433 if (!page) {
434 hugetlb_put_quota(mapping);
0df420d8 435 ret = VM_FAULT_OOM;
6bda666a
CL
436 goto out;
437 }
ac9b9c66 438
6bda666a
CL
439 if (vma->vm_flags & VM_SHARED) {
440 int err;
441
442 err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
443 if (err) {
444 put_page(page);
445 hugetlb_put_quota(mapping);
446 if (err == -EEXIST)
447 goto retry;
448 goto out;
449 }
450 } else
451 lock_page(page);
452 }
1e8f889b 453
ac9b9c66 454 spin_lock(&mm->page_table_lock);
4c887265
AL
455 size = i_size_read(mapping->host) >> HPAGE_SHIFT;
456 if (idx >= size)
457 goto backout;
458
459 ret = VM_FAULT_MINOR;
86e5216f 460 if (!pte_none(*ptep))
4c887265
AL
461 goto backout;
462
463 add_mm_counter(mm, file_rss, HPAGE_SIZE / PAGE_SIZE);
1e8f889b
DG
464 new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
465 && (vma->vm_flags & VM_SHARED)));
466 set_huge_pte_at(mm, address, ptep, new_pte);
467
468 if (write_access && !(vma->vm_flags & VM_SHARED)) {
469 /* Optimization, do the COW without a second fault */
470 ret = hugetlb_cow(mm, vma, address, ptep, new_pte);
471 }
472
ac9b9c66 473 spin_unlock(&mm->page_table_lock);
4c887265
AL
474 unlock_page(page);
475out:
ac9b9c66 476 return ret;
4c887265
AL
477
478backout:
479 spin_unlock(&mm->page_table_lock);
480 hugetlb_put_quota(mapping);
481 unlock_page(page);
482 put_page(page);
483 goto out;
ac9b9c66
HD
484}
485
86e5216f
AL
486int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
487 unsigned long address, int write_access)
488{
489 pte_t *ptep;
490 pte_t entry;
1e8f889b 491 int ret;
86e5216f
AL
492
493 ptep = huge_pte_alloc(mm, address);
494 if (!ptep)
495 return VM_FAULT_OOM;
496
497 entry = *ptep;
498 if (pte_none(entry))
1e8f889b 499 return hugetlb_no_page(mm, vma, address, ptep, write_access);
86e5216f 500
1e8f889b
DG
501 ret = VM_FAULT_MINOR;
502
503 spin_lock(&mm->page_table_lock);
504 /* Check for a racing update before calling hugetlb_cow */
505 if (likely(pte_same(entry, *ptep)))
506 if (write_access && !pte_write(entry))
507 ret = hugetlb_cow(mm, vma, address, ptep, entry);
508 spin_unlock(&mm->page_table_lock);
509
510 return ret;
86e5216f
AL
511}
512
63551ae0
DG
513int follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
514 struct page **pages, struct vm_area_struct **vmas,
515 unsigned long *position, int *length, int i)
516{
517 unsigned long vpfn, vaddr = *position;
518 int remainder = *length;
519
63551ae0 520 vpfn = vaddr/PAGE_SIZE;
1c59827d 521 spin_lock(&mm->page_table_lock);
63551ae0 522 while (vaddr < vma->vm_end && remainder) {
4c887265
AL
523 pte_t *pte;
524 struct page *page;
63551ae0 525
4c887265
AL
526 /*
527 * Some archs (sparc64, sh*) have multiple pte_ts to
528 * each hugepage. We have to make * sure we get the
529 * first, for the page indexing below to work.
530 */
531 pte = huge_pte_offset(mm, vaddr & HPAGE_MASK);
63551ae0 532
4c887265
AL
533 if (!pte || pte_none(*pte)) {
534 int ret;
63551ae0 535
4c887265
AL
536 spin_unlock(&mm->page_table_lock);
537 ret = hugetlb_fault(mm, vma, vaddr, 0);
538 spin_lock(&mm->page_table_lock);
539 if (ret == VM_FAULT_MINOR)
540 continue;
63551ae0 541
4c887265
AL
542 remainder = 0;
543 if (!i)
544 i = -EFAULT;
545 break;
546 }
547
548 if (pages) {
549 page = &pte_page(*pte)[vpfn % (HPAGE_SIZE/PAGE_SIZE)];
63551ae0
DG
550 get_page(page);
551 pages[i] = page;
552 }
553
554 if (vmas)
555 vmas[i] = vma;
556
557 vaddr += PAGE_SIZE;
558 ++vpfn;
559 --remainder;
560 ++i;
561 }
1c59827d 562 spin_unlock(&mm->page_table_lock);
63551ae0
DG
563 *length = remainder;
564 *position = vaddr;
565
566 return i;
567}