hugetlbfs: New huge_add_to_page_cache helper routine
[linux-2.6-block.git] / mm / hugetlb.c
CommitLineData
1da177e4
LT
1/*
2 * Generic hugetlb support.
6d49e352 3 * (C) Nadia Yvette Chambers, April 2004
1da177e4 4 */
1da177e4
LT
5#include <linux/list.h>
6#include <linux/init.h>
7#include <linux/module.h>
8#include <linux/mm.h>
e1759c21 9#include <linux/seq_file.h>
1da177e4
LT
10#include <linux/sysctl.h>
11#include <linux/highmem.h>
cddb8a5c 12#include <linux/mmu_notifier.h>
1da177e4 13#include <linux/nodemask.h>
63551ae0 14#include <linux/pagemap.h>
5da7ca86 15#include <linux/mempolicy.h>
3b32123d 16#include <linux/compiler.h>
aea47ff3 17#include <linux/cpuset.h>
3935baa9 18#include <linux/mutex.h>
aa888a74 19#include <linux/bootmem.h>
a3437870 20#include <linux/sysfs.h>
5a0e3ad6 21#include <linux/slab.h>
0fe6e20b 22#include <linux/rmap.h>
fd6a03ed
NH
23#include <linux/swap.h>
24#include <linux/swapops.h>
c8721bbb 25#include <linux/page-isolation.h>
8382d914 26#include <linux/jhash.h>
d6606683 27
63551ae0
DG
28#include <asm/page.h>
29#include <asm/pgtable.h>
24669e58 30#include <asm/tlb.h>
63551ae0 31
24669e58 32#include <linux/io.h>
63551ae0 33#include <linux/hugetlb.h>
9dd540e2 34#include <linux/hugetlb_cgroup.h>
9a305230 35#include <linux/node.h>
7835e98b 36#include "internal.h"
1da177e4 37
753162cd 38int hugepages_treat_as_movable;
a5516438 39
c3f38a38 40int hugetlb_max_hstate __read_mostly;
e5ff2159
AK
41unsigned int default_hstate_idx;
42struct hstate hstates[HUGE_MAX_HSTATE];
641844f5
NH
43/*
44 * Minimum page order among possible hugepage sizes, set to a proper value
45 * at boot time.
46 */
47static unsigned int minimum_order __read_mostly = UINT_MAX;
e5ff2159 48
53ba51d2
JT
49__initdata LIST_HEAD(huge_boot_pages);
50
e5ff2159
AK
51/* for command line parsing */
52static struct hstate * __initdata parsed_hstate;
53static unsigned long __initdata default_hstate_max_huge_pages;
e11bfbfc 54static unsigned long __initdata default_hstate_size;
e5ff2159 55
3935baa9 56/*
31caf665
NH
57 * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
58 * free_huge_pages, and surplus_huge_pages.
3935baa9 59 */
c3f38a38 60DEFINE_SPINLOCK(hugetlb_lock);
0bd0f9fb 61
8382d914
DB
62/*
63 * Serializes faults on the same logical page. This is used to
64 * prevent spurious OOMs when the hugepage pool is fully utilized.
65 */
66static int num_fault_mutexes;
c672c7f2 67struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp;
8382d914 68
7ca02d0a
MK
69/* Forward declaration */
70static int hugetlb_acct_memory(struct hstate *h, long delta);
71
90481622
DG
72static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
73{
74 bool free = (spool->count == 0) && (spool->used_hpages == 0);
75
76 spin_unlock(&spool->lock);
77
78 /* If no pages are used, and no other handles to the subpool
7ca02d0a
MK
79 * remain, give up any reservations mased on minimum size and
80 * free the subpool */
81 if (free) {
82 if (spool->min_hpages != -1)
83 hugetlb_acct_memory(spool->hstate,
84 -spool->min_hpages);
90481622 85 kfree(spool);
7ca02d0a 86 }
90481622
DG
87}
88
7ca02d0a
MK
89struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
90 long min_hpages)
90481622
DG
91{
92 struct hugepage_subpool *spool;
93
c6a91820 94 spool = kzalloc(sizeof(*spool), GFP_KERNEL);
90481622
DG
95 if (!spool)
96 return NULL;
97
98 spin_lock_init(&spool->lock);
99 spool->count = 1;
7ca02d0a
MK
100 spool->max_hpages = max_hpages;
101 spool->hstate = h;
102 spool->min_hpages = min_hpages;
103
104 if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
105 kfree(spool);
106 return NULL;
107 }
108 spool->rsv_hpages = min_hpages;
90481622
DG
109
110 return spool;
111}
112
113void hugepage_put_subpool(struct hugepage_subpool *spool)
114{
115 spin_lock(&spool->lock);
116 BUG_ON(!spool->count);
117 spool->count--;
118 unlock_or_release_subpool(spool);
119}
120
1c5ecae3
MK
121/*
122 * Subpool accounting for allocating and reserving pages.
123 * Return -ENOMEM if there are not enough resources to satisfy the
124 * the request. Otherwise, return the number of pages by which the
125 * global pools must be adjusted (upward). The returned value may
126 * only be different than the passed value (delta) in the case where
127 * a subpool minimum size must be manitained.
128 */
129static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
90481622
DG
130 long delta)
131{
1c5ecae3 132 long ret = delta;
90481622
DG
133
134 if (!spool)
1c5ecae3 135 return ret;
90481622
DG
136
137 spin_lock(&spool->lock);
1c5ecae3
MK
138
139 if (spool->max_hpages != -1) { /* maximum size accounting */
140 if ((spool->used_hpages + delta) <= spool->max_hpages)
141 spool->used_hpages += delta;
142 else {
143 ret = -ENOMEM;
144 goto unlock_ret;
145 }
90481622 146 }
90481622 147
1c5ecae3
MK
148 if (spool->min_hpages != -1) { /* minimum size accounting */
149 if (delta > spool->rsv_hpages) {
150 /*
151 * Asking for more reserves than those already taken on
152 * behalf of subpool. Return difference.
153 */
154 ret = delta - spool->rsv_hpages;
155 spool->rsv_hpages = 0;
156 } else {
157 ret = 0; /* reserves already accounted for */
158 spool->rsv_hpages -= delta;
159 }
160 }
161
162unlock_ret:
163 spin_unlock(&spool->lock);
90481622
DG
164 return ret;
165}
166
1c5ecae3
MK
167/*
168 * Subpool accounting for freeing and unreserving pages.
169 * Return the number of global page reservations that must be dropped.
170 * The return value may only be different than the passed value (delta)
171 * in the case where a subpool minimum size must be maintained.
172 */
173static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
90481622
DG
174 long delta)
175{
1c5ecae3
MK
176 long ret = delta;
177
90481622 178 if (!spool)
1c5ecae3 179 return delta;
90481622
DG
180
181 spin_lock(&spool->lock);
1c5ecae3
MK
182
183 if (spool->max_hpages != -1) /* maximum size accounting */
184 spool->used_hpages -= delta;
185
186 if (spool->min_hpages != -1) { /* minimum size accounting */
187 if (spool->rsv_hpages + delta <= spool->min_hpages)
188 ret = 0;
189 else
190 ret = spool->rsv_hpages + delta - spool->min_hpages;
191
192 spool->rsv_hpages += delta;
193 if (spool->rsv_hpages > spool->min_hpages)
194 spool->rsv_hpages = spool->min_hpages;
195 }
196
197 /*
198 * If hugetlbfs_put_super couldn't free spool due to an outstanding
199 * quota reference, free it now.
200 */
90481622 201 unlock_or_release_subpool(spool);
1c5ecae3
MK
202
203 return ret;
90481622
DG
204}
205
206static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
207{
208 return HUGETLBFS_SB(inode->i_sb)->spool;
209}
210
211static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
212{
496ad9aa 213 return subpool_inode(file_inode(vma->vm_file));
90481622
DG
214}
215
96822904
AW
216/*
217 * Region tracking -- allows tracking of reservations and instantiated pages
218 * across the pages in a mapping.
84afd99b 219 *
1dd308a7
MK
220 * The region data structures are embedded into a resv_map and protected
221 * by a resv_map's lock. The set of regions within the resv_map represent
222 * reservations for huge pages, or huge pages that have already been
223 * instantiated within the map. The from and to elements are huge page
224 * indicies into the associated mapping. from indicates the starting index
225 * of the region. to represents the first index past the end of the region.
226 *
227 * For example, a file region structure with from == 0 and to == 4 represents
228 * four huge pages in a mapping. It is important to note that the to element
229 * represents the first element past the end of the region. This is used in
230 * arithmetic as 4(to) - 0(from) = 4 huge pages in the region.
231 *
232 * Interval notation of the form [from, to) will be used to indicate that
233 * the endpoint from is inclusive and to is exclusive.
96822904
AW
234 */
235struct file_region {
236 struct list_head link;
237 long from;
238 long to;
239};
240
1dd308a7
MK
241/*
242 * Add the huge page range represented by [f, t) to the reserve
5e911373
MK
243 * map. In the normal case, existing regions will be expanded
244 * to accommodate the specified range. Sufficient regions should
245 * exist for expansion due to the previous call to region_chg
246 * with the same range. However, it is possible that region_del
247 * could have been called after region_chg and modifed the map
248 * in such a way that no region exists to be expanded. In this
249 * case, pull a region descriptor from the cache associated with
250 * the map and use that for the new range.
cf3ad20b
MK
251 *
252 * Return the number of new huge pages added to the map. This
253 * number is greater than or equal to zero.
1dd308a7 254 */
1406ec9b 255static long region_add(struct resv_map *resv, long f, long t)
96822904 256{
1406ec9b 257 struct list_head *head = &resv->regions;
96822904 258 struct file_region *rg, *nrg, *trg;
cf3ad20b 259 long add = 0;
96822904 260
7b24d861 261 spin_lock(&resv->lock);
96822904
AW
262 /* Locate the region we are either in or before. */
263 list_for_each_entry(rg, head, link)
264 if (f <= rg->to)
265 break;
266
5e911373
MK
267 /*
268 * If no region exists which can be expanded to include the
269 * specified range, the list must have been modified by an
270 * interleving call to region_del(). Pull a region descriptor
271 * from the cache and use it for this range.
272 */
273 if (&rg->link == head || t < rg->from) {
274 VM_BUG_ON(resv->region_cache_count <= 0);
275
276 resv->region_cache_count--;
277 nrg = list_first_entry(&resv->region_cache, struct file_region,
278 link);
279 list_del(&nrg->link);
280
281 nrg->from = f;
282 nrg->to = t;
283 list_add(&nrg->link, rg->link.prev);
284
285 add += t - f;
286 goto out_locked;
287 }
288
96822904
AW
289 /* Round our left edge to the current segment if it encloses us. */
290 if (f > rg->from)
291 f = rg->from;
292
293 /* Check for and consume any regions we now overlap with. */
294 nrg = rg;
295 list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
296 if (&rg->link == head)
297 break;
298 if (rg->from > t)
299 break;
300
301 /* If this area reaches higher then extend our area to
302 * include it completely. If this is not the first area
303 * which we intend to reuse, free it. */
304 if (rg->to > t)
305 t = rg->to;
306 if (rg != nrg) {
cf3ad20b
MK
307 /* Decrement return value by the deleted range.
308 * Another range will span this area so that by
309 * end of routine add will be >= zero
310 */
311 add -= (rg->to - rg->from);
96822904
AW
312 list_del(&rg->link);
313 kfree(rg);
314 }
315 }
cf3ad20b
MK
316
317 add += (nrg->from - f); /* Added to beginning of region */
96822904 318 nrg->from = f;
cf3ad20b 319 add += t - nrg->to; /* Added to end of region */
96822904 320 nrg->to = t;
cf3ad20b 321
5e911373
MK
322out_locked:
323 resv->adds_in_progress--;
7b24d861 324 spin_unlock(&resv->lock);
cf3ad20b
MK
325 VM_BUG_ON(add < 0);
326 return add;
96822904
AW
327}
328
1dd308a7
MK
329/*
330 * Examine the existing reserve map and determine how many
331 * huge pages in the specified range [f, t) are NOT currently
332 * represented. This routine is called before a subsequent
333 * call to region_add that will actually modify the reserve
334 * map to add the specified range [f, t). region_chg does
335 * not change the number of huge pages represented by the
336 * map. However, if the existing regions in the map can not
337 * be expanded to represent the new range, a new file_region
338 * structure is added to the map as a placeholder. This is
339 * so that the subsequent region_add call will have all the
340 * regions it needs and will not fail.
341 *
5e911373
MK
342 * Upon entry, region_chg will also examine the cache of region descriptors
343 * associated with the map. If there are not enough descriptors cached, one
344 * will be allocated for the in progress add operation.
345 *
346 * Returns the number of huge pages that need to be added to the existing
347 * reservation map for the range [f, t). This number is greater or equal to
348 * zero. -ENOMEM is returned if a new file_region structure or cache entry
349 * is needed and can not be allocated.
1dd308a7 350 */
1406ec9b 351static long region_chg(struct resv_map *resv, long f, long t)
96822904 352{
1406ec9b 353 struct list_head *head = &resv->regions;
7b24d861 354 struct file_region *rg, *nrg = NULL;
96822904
AW
355 long chg = 0;
356
7b24d861
DB
357retry:
358 spin_lock(&resv->lock);
5e911373
MK
359retry_locked:
360 resv->adds_in_progress++;
361
362 /*
363 * Check for sufficient descriptors in the cache to accommodate
364 * the number of in progress add operations.
365 */
366 if (resv->adds_in_progress > resv->region_cache_count) {
367 struct file_region *trg;
368
369 VM_BUG_ON(resv->adds_in_progress - resv->region_cache_count > 1);
370 /* Must drop lock to allocate a new descriptor. */
371 resv->adds_in_progress--;
372 spin_unlock(&resv->lock);
373
374 trg = kmalloc(sizeof(*trg), GFP_KERNEL);
375 if (!trg)
376 return -ENOMEM;
377
378 spin_lock(&resv->lock);
379 list_add(&trg->link, &resv->region_cache);
380 resv->region_cache_count++;
381 goto retry_locked;
382 }
383
96822904
AW
384 /* Locate the region we are before or in. */
385 list_for_each_entry(rg, head, link)
386 if (f <= rg->to)
387 break;
388
389 /* If we are below the current region then a new region is required.
390 * Subtle, allocate a new region at the position but make it zero
391 * size such that we can guarantee to record the reservation. */
392 if (&rg->link == head || t < rg->from) {
7b24d861 393 if (!nrg) {
5e911373 394 resv->adds_in_progress--;
7b24d861
DB
395 spin_unlock(&resv->lock);
396 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
397 if (!nrg)
398 return -ENOMEM;
399
400 nrg->from = f;
401 nrg->to = f;
402 INIT_LIST_HEAD(&nrg->link);
403 goto retry;
404 }
96822904 405
7b24d861
DB
406 list_add(&nrg->link, rg->link.prev);
407 chg = t - f;
408 goto out_nrg;
96822904
AW
409 }
410
411 /* Round our left edge to the current segment if it encloses us. */
412 if (f > rg->from)
413 f = rg->from;
414 chg = t - f;
415
416 /* Check for and consume any regions we now overlap with. */
417 list_for_each_entry(rg, rg->link.prev, link) {
418 if (&rg->link == head)
419 break;
420 if (rg->from > t)
7b24d861 421 goto out;
96822904 422
25985edc 423 /* We overlap with this area, if it extends further than
96822904
AW
424 * us then we must extend ourselves. Account for its
425 * existing reservation. */
426 if (rg->to > t) {
427 chg += rg->to - t;
428 t = rg->to;
429 }
430 chg -= rg->to - rg->from;
431 }
7b24d861
DB
432
433out:
434 spin_unlock(&resv->lock);
435 /* We already know we raced and no longer need the new region */
436 kfree(nrg);
437 return chg;
438out_nrg:
439 spin_unlock(&resv->lock);
96822904
AW
440 return chg;
441}
442
5e911373
MK
443/*
444 * Abort the in progress add operation. The adds_in_progress field
445 * of the resv_map keeps track of the operations in progress between
446 * calls to region_chg and region_add. Operations are sometimes
447 * aborted after the call to region_chg. In such cases, region_abort
448 * is called to decrement the adds_in_progress counter.
449 *
450 * NOTE: The range arguments [f, t) are not needed or used in this
451 * routine. They are kept to make reading the calling code easier as
452 * arguments will match the associated region_chg call.
453 */
454static void region_abort(struct resv_map *resv, long f, long t)
455{
456 spin_lock(&resv->lock);
457 VM_BUG_ON(!resv->region_cache_count);
458 resv->adds_in_progress--;
459 spin_unlock(&resv->lock);
460}
461
1dd308a7 462/*
feba16e2
MK
463 * Delete the specified range [f, t) from the reserve map. If the
464 * t parameter is LONG_MAX, this indicates that ALL regions after f
465 * should be deleted. Locate the regions which intersect [f, t)
466 * and either trim, delete or split the existing regions.
467 *
468 * Returns the number of huge pages deleted from the reserve map.
469 * In the normal case, the return value is zero or more. In the
470 * case where a region must be split, a new region descriptor must
471 * be allocated. If the allocation fails, -ENOMEM will be returned.
472 * NOTE: If the parameter t == LONG_MAX, then we will never split
473 * a region and possibly return -ENOMEM. Callers specifying
474 * t == LONG_MAX do not need to check for -ENOMEM error.
1dd308a7 475 */
feba16e2 476static long region_del(struct resv_map *resv, long f, long t)
96822904 477{
1406ec9b 478 struct list_head *head = &resv->regions;
96822904 479 struct file_region *rg, *trg;
feba16e2
MK
480 struct file_region *nrg = NULL;
481 long del = 0;
96822904 482
feba16e2 483retry:
7b24d861 484 spin_lock(&resv->lock);
feba16e2
MK
485 list_for_each_entry_safe(rg, trg, head, link) {
486 if (rg->to <= f)
487 continue;
488 if (rg->from >= t)
96822904 489 break;
96822904 490
feba16e2
MK
491 if (f > rg->from && t < rg->to) { /* Must split region */
492 /*
493 * Check for an entry in the cache before dropping
494 * lock and attempting allocation.
495 */
496 if (!nrg &&
497 resv->region_cache_count > resv->adds_in_progress) {
498 nrg = list_first_entry(&resv->region_cache,
499 struct file_region,
500 link);
501 list_del(&nrg->link);
502 resv->region_cache_count--;
503 }
96822904 504
feba16e2
MK
505 if (!nrg) {
506 spin_unlock(&resv->lock);
507 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
508 if (!nrg)
509 return -ENOMEM;
510 goto retry;
511 }
512
513 del += t - f;
514
515 /* New entry for end of split region */
516 nrg->from = t;
517 nrg->to = rg->to;
518 INIT_LIST_HEAD(&nrg->link);
519
520 /* Original entry is trimmed */
521 rg->to = f;
522
523 list_add(&nrg->link, &rg->link);
524 nrg = NULL;
96822904 525 break;
feba16e2
MK
526 }
527
528 if (f <= rg->from && t >= rg->to) { /* Remove entire region */
529 del += rg->to - rg->from;
530 list_del(&rg->link);
531 kfree(rg);
532 continue;
533 }
534
535 if (f <= rg->from) { /* Trim beginning of region */
536 del += t - rg->from;
537 rg->from = t;
538 } else { /* Trim end of region */
539 del += rg->to - f;
540 rg->to = f;
541 }
96822904 542 }
7b24d861 543
7b24d861 544 spin_unlock(&resv->lock);
feba16e2
MK
545 kfree(nrg);
546 return del;
96822904
AW
547}
548
b5cec28d
MK
549/*
550 * A rare out of memory error was encountered which prevented removal of
551 * the reserve map region for a page. The huge page itself was free'ed
552 * and removed from the page cache. This routine will adjust the subpool
553 * usage count, and the global reserve count if needed. By incrementing
554 * these counts, the reserve map entry which could not be deleted will
555 * appear as a "reserved" entry instead of simply dangling with incorrect
556 * counts.
557 */
558void hugetlb_fix_reserve_counts(struct inode *inode, bool restore_reserve)
559{
560 struct hugepage_subpool *spool = subpool_inode(inode);
561 long rsv_adjust;
562
563 rsv_adjust = hugepage_subpool_get_pages(spool, 1);
564 if (restore_reserve && rsv_adjust) {
565 struct hstate *h = hstate_inode(inode);
566
567 hugetlb_acct_memory(h, 1);
568 }
569}
570
1dd308a7
MK
571/*
572 * Count and return the number of huge pages in the reserve map
573 * that intersect with the range [f, t).
574 */
1406ec9b 575static long region_count(struct resv_map *resv, long f, long t)
84afd99b 576{
1406ec9b 577 struct list_head *head = &resv->regions;
84afd99b
AW
578 struct file_region *rg;
579 long chg = 0;
580
7b24d861 581 spin_lock(&resv->lock);
84afd99b
AW
582 /* Locate each segment we overlap with, and count that overlap. */
583 list_for_each_entry(rg, head, link) {
f2135a4a
WSH
584 long seg_from;
585 long seg_to;
84afd99b
AW
586
587 if (rg->to <= f)
588 continue;
589 if (rg->from >= t)
590 break;
591
592 seg_from = max(rg->from, f);
593 seg_to = min(rg->to, t);
594
595 chg += seg_to - seg_from;
596 }
7b24d861 597 spin_unlock(&resv->lock);
84afd99b
AW
598
599 return chg;
600}
601
e7c4b0bf
AW
602/*
603 * Convert the address within this vma to the page offset within
604 * the mapping, in pagecache page units; huge pages here.
605 */
a5516438
AK
606static pgoff_t vma_hugecache_offset(struct hstate *h,
607 struct vm_area_struct *vma, unsigned long address)
e7c4b0bf 608{
a5516438
AK
609 return ((address - vma->vm_start) >> huge_page_shift(h)) +
610 (vma->vm_pgoff >> huge_page_order(h));
e7c4b0bf
AW
611}
612
0fe6e20b
NH
613pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
614 unsigned long address)
615{
616 return vma_hugecache_offset(hstate_vma(vma), vma, address);
617}
618
08fba699
MG
619/*
620 * Return the size of the pages allocated when backing a VMA. In the majority
621 * cases this will be same size as used by the page table entries.
622 */
623unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
624{
625 struct hstate *hstate;
626
627 if (!is_vm_hugetlb_page(vma))
628 return PAGE_SIZE;
629
630 hstate = hstate_vma(vma);
631
2415cf12 632 return 1UL << huge_page_shift(hstate);
08fba699 633}
f340ca0f 634EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
08fba699 635
3340289d
MG
636/*
637 * Return the page size being used by the MMU to back a VMA. In the majority
638 * of cases, the page size used by the kernel matches the MMU size. On
639 * architectures where it differs, an architecture-specific version of this
640 * function is required.
641 */
642#ifndef vma_mmu_pagesize
643unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
644{
645 return vma_kernel_pagesize(vma);
646}
647#endif
648
84afd99b
AW
649/*
650 * Flags for MAP_PRIVATE reservations. These are stored in the bottom
651 * bits of the reservation map pointer, which are always clear due to
652 * alignment.
653 */
654#define HPAGE_RESV_OWNER (1UL << 0)
655#define HPAGE_RESV_UNMAPPED (1UL << 1)
04f2cbe3 656#define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
84afd99b 657
a1e78772
MG
658/*
659 * These helpers are used to track how many pages are reserved for
660 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
661 * is guaranteed to have their future faults succeed.
662 *
663 * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
664 * the reserve counters are updated with the hugetlb_lock held. It is safe
665 * to reset the VMA at fork() time as it is not in use yet and there is no
666 * chance of the global counters getting corrupted as a result of the values.
84afd99b
AW
667 *
668 * The private mapping reservation is represented in a subtly different
669 * manner to a shared mapping. A shared mapping has a region map associated
670 * with the underlying file, this region map represents the backing file
671 * pages which have ever had a reservation assigned which this persists even
672 * after the page is instantiated. A private mapping has a region map
673 * associated with the original mmap which is attached to all VMAs which
674 * reference it, this region map represents those offsets which have consumed
675 * reservation ie. where pages have been instantiated.
a1e78772 676 */
e7c4b0bf
AW
677static unsigned long get_vma_private_data(struct vm_area_struct *vma)
678{
679 return (unsigned long)vma->vm_private_data;
680}
681
682static void set_vma_private_data(struct vm_area_struct *vma,
683 unsigned long value)
684{
685 vma->vm_private_data = (void *)value;
686}
687
9119a41e 688struct resv_map *resv_map_alloc(void)
84afd99b
AW
689{
690 struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
5e911373
MK
691 struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);
692
693 if (!resv_map || !rg) {
694 kfree(resv_map);
695 kfree(rg);
84afd99b 696 return NULL;
5e911373 697 }
84afd99b
AW
698
699 kref_init(&resv_map->refs);
7b24d861 700 spin_lock_init(&resv_map->lock);
84afd99b
AW
701 INIT_LIST_HEAD(&resv_map->regions);
702
5e911373
MK
703 resv_map->adds_in_progress = 0;
704
705 INIT_LIST_HEAD(&resv_map->region_cache);
706 list_add(&rg->link, &resv_map->region_cache);
707 resv_map->region_cache_count = 1;
708
84afd99b
AW
709 return resv_map;
710}
711
9119a41e 712void resv_map_release(struct kref *ref)
84afd99b
AW
713{
714 struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
5e911373
MK
715 struct list_head *head = &resv_map->region_cache;
716 struct file_region *rg, *trg;
84afd99b
AW
717
718 /* Clear out any active regions before we release the map. */
feba16e2 719 region_del(resv_map, 0, LONG_MAX);
5e911373
MK
720
721 /* ... and any entries left in the cache */
722 list_for_each_entry_safe(rg, trg, head, link) {
723 list_del(&rg->link);
724 kfree(rg);
725 }
726
727 VM_BUG_ON(resv_map->adds_in_progress);
728
84afd99b
AW
729 kfree(resv_map);
730}
731
4e35f483
JK
732static inline struct resv_map *inode_resv_map(struct inode *inode)
733{
734 return inode->i_mapping->private_data;
735}
736
84afd99b 737static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
a1e78772 738{
81d1b09c 739 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
4e35f483
JK
740 if (vma->vm_flags & VM_MAYSHARE) {
741 struct address_space *mapping = vma->vm_file->f_mapping;
742 struct inode *inode = mapping->host;
743
744 return inode_resv_map(inode);
745
746 } else {
84afd99b
AW
747 return (struct resv_map *)(get_vma_private_data(vma) &
748 ~HPAGE_RESV_MASK);
4e35f483 749 }
a1e78772
MG
750}
751
84afd99b 752static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
a1e78772 753{
81d1b09c
SL
754 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
755 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
a1e78772 756
84afd99b
AW
757 set_vma_private_data(vma, (get_vma_private_data(vma) &
758 HPAGE_RESV_MASK) | (unsigned long)map);
04f2cbe3
MG
759}
760
761static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
762{
81d1b09c
SL
763 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
764 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
e7c4b0bf
AW
765
766 set_vma_private_data(vma, get_vma_private_data(vma) | flags);
04f2cbe3
MG
767}
768
769static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
770{
81d1b09c 771 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
e7c4b0bf
AW
772
773 return (get_vma_private_data(vma) & flag) != 0;
a1e78772
MG
774}
775
04f2cbe3 776/* Reset counters to 0 and clear all HPAGE_RESV_* flags */
a1e78772
MG
777void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
778{
81d1b09c 779 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
f83a275d 780 if (!(vma->vm_flags & VM_MAYSHARE))
a1e78772
MG
781 vma->vm_private_data = (void *)0;
782}
783
784/* Returns true if the VMA has associated reserve pages */
559ec2f8 785static bool vma_has_reserves(struct vm_area_struct *vma, long chg)
a1e78772 786{
af0ed73e
JK
787 if (vma->vm_flags & VM_NORESERVE) {
788 /*
789 * This address is already reserved by other process(chg == 0),
790 * so, we should decrement reserved count. Without decrementing,
791 * reserve count remains after releasing inode, because this
792 * allocated page will go into page cache and is regarded as
793 * coming from reserved pool in releasing step. Currently, we
794 * don't have any other solution to deal with this situation
795 * properly, so add work-around here.
796 */
797 if (vma->vm_flags & VM_MAYSHARE && chg == 0)
559ec2f8 798 return true;
af0ed73e 799 else
559ec2f8 800 return false;
af0ed73e 801 }
a63884e9
JK
802
803 /* Shared mappings always use reserves */
1fb1b0e9
MK
804 if (vma->vm_flags & VM_MAYSHARE) {
805 /*
806 * We know VM_NORESERVE is not set. Therefore, there SHOULD
807 * be a region map for all pages. The only situation where
808 * there is no region map is if a hole was punched via
809 * fallocate. In this case, there really are no reverves to
810 * use. This situation is indicated if chg != 0.
811 */
812 if (chg)
813 return false;
814 else
815 return true;
816 }
a63884e9
JK
817
818 /*
819 * Only the process that called mmap() has reserves for
820 * private mappings.
821 */
7f09ca51 822 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER))
559ec2f8 823 return true;
a63884e9 824
559ec2f8 825 return false;
a1e78772
MG
826}
827
a5516438 828static void enqueue_huge_page(struct hstate *h, struct page *page)
1da177e4
LT
829{
830 int nid = page_to_nid(page);
0edaecfa 831 list_move(&page->lru, &h->hugepage_freelists[nid]);
a5516438
AK
832 h->free_huge_pages++;
833 h->free_huge_pages_node[nid]++;
1da177e4
LT
834}
835
bf50bab2
NH
836static struct page *dequeue_huge_page_node(struct hstate *h, int nid)
837{
838 struct page *page;
839
c8721bbb
NH
840 list_for_each_entry(page, &h->hugepage_freelists[nid], lru)
841 if (!is_migrate_isolate_page(page))
842 break;
843 /*
844 * if 'non-isolated free hugepage' not found on the list,
845 * the allocation fails.
846 */
847 if (&h->hugepage_freelists[nid] == &page->lru)
bf50bab2 848 return NULL;
0edaecfa 849 list_move(&page->lru, &h->hugepage_activelist);
a9869b83 850 set_page_refcounted(page);
bf50bab2
NH
851 h->free_huge_pages--;
852 h->free_huge_pages_node[nid]--;
853 return page;
854}
855
86cdb465
NH
856/* Movability of hugepages depends on migration support. */
857static inline gfp_t htlb_alloc_mask(struct hstate *h)
858{
100873d7 859 if (hugepages_treat_as_movable || hugepage_migration_supported(h))
86cdb465
NH
860 return GFP_HIGHUSER_MOVABLE;
861 else
862 return GFP_HIGHUSER;
863}
864
a5516438
AK
865static struct page *dequeue_huge_page_vma(struct hstate *h,
866 struct vm_area_struct *vma,
af0ed73e
JK
867 unsigned long address, int avoid_reserve,
868 long chg)
1da177e4 869{
b1c12cbc 870 struct page *page = NULL;
480eccf9 871 struct mempolicy *mpol;
19770b32 872 nodemask_t *nodemask;
c0ff7453 873 struct zonelist *zonelist;
dd1a239f
MG
874 struct zone *zone;
875 struct zoneref *z;
cc9a6c87 876 unsigned int cpuset_mems_cookie;
1da177e4 877
a1e78772
MG
878 /*
879 * A child process with MAP_PRIVATE mappings created by their parent
880 * have no page reserves. This check ensures that reservations are
881 * not "stolen". The child may still get SIGKILLed
882 */
af0ed73e 883 if (!vma_has_reserves(vma, chg) &&
a5516438 884 h->free_huge_pages - h->resv_huge_pages == 0)
c0ff7453 885 goto err;
a1e78772 886
04f2cbe3 887 /* If reserves cannot be used, ensure enough pages are in the pool */
a5516438 888 if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
6eab04a8 889 goto err;
04f2cbe3 890
9966c4bb 891retry_cpuset:
d26914d1 892 cpuset_mems_cookie = read_mems_allowed_begin();
9966c4bb 893 zonelist = huge_zonelist(vma, address,
86cdb465 894 htlb_alloc_mask(h), &mpol, &nodemask);
9966c4bb 895
19770b32
MG
896 for_each_zone_zonelist_nodemask(zone, z, zonelist,
897 MAX_NR_ZONES - 1, nodemask) {
344736f2 898 if (cpuset_zone_allowed(zone, htlb_alloc_mask(h))) {
bf50bab2
NH
899 page = dequeue_huge_page_node(h, zone_to_nid(zone));
900 if (page) {
af0ed73e
JK
901 if (avoid_reserve)
902 break;
903 if (!vma_has_reserves(vma, chg))
904 break;
905
07443a85 906 SetPagePrivate(page);
af0ed73e 907 h->resv_huge_pages--;
bf50bab2
NH
908 break;
909 }
3abf7afd 910 }
1da177e4 911 }
cc9a6c87 912
52cd3b07 913 mpol_cond_put(mpol);
d26914d1 914 if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie)))
cc9a6c87 915 goto retry_cpuset;
1da177e4 916 return page;
cc9a6c87
MG
917
918err:
cc9a6c87 919 return NULL;
1da177e4
LT
920}
921
1cac6f2c
LC
922/*
923 * common helper functions for hstate_next_node_to_{alloc|free}.
924 * We may have allocated or freed a huge page based on a different
925 * nodes_allowed previously, so h->next_node_to_{alloc|free} might
926 * be outside of *nodes_allowed. Ensure that we use an allowed
927 * node for alloc or free.
928 */
929static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
930{
931 nid = next_node(nid, *nodes_allowed);
932 if (nid == MAX_NUMNODES)
933 nid = first_node(*nodes_allowed);
934 VM_BUG_ON(nid >= MAX_NUMNODES);
935
936 return nid;
937}
938
939static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
940{
941 if (!node_isset(nid, *nodes_allowed))
942 nid = next_node_allowed(nid, nodes_allowed);
943 return nid;
944}
945
946/*
947 * returns the previously saved node ["this node"] from which to
948 * allocate a persistent huge page for the pool and advance the
949 * next node from which to allocate, handling wrap at end of node
950 * mask.
951 */
952static int hstate_next_node_to_alloc(struct hstate *h,
953 nodemask_t *nodes_allowed)
954{
955 int nid;
956
957 VM_BUG_ON(!nodes_allowed);
958
959 nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
960 h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
961
962 return nid;
963}
964
965/*
966 * helper for free_pool_huge_page() - return the previously saved
967 * node ["this node"] from which to free a huge page. Advance the
968 * next node id whether or not we find a free huge page to free so
969 * that the next attempt to free addresses the next node.
970 */
971static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
972{
973 int nid;
974
975 VM_BUG_ON(!nodes_allowed);
976
977 nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
978 h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
979
980 return nid;
981}
982
983#define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask) \
984 for (nr_nodes = nodes_weight(*mask); \
985 nr_nodes > 0 && \
986 ((node = hstate_next_node_to_alloc(hs, mask)) || 1); \
987 nr_nodes--)
988
989#define for_each_node_mask_to_free(hs, nr_nodes, node, mask) \
990 for (nr_nodes = nodes_weight(*mask); \
991 nr_nodes > 0 && \
992 ((node = hstate_next_node_to_free(hs, mask)) || 1); \
993 nr_nodes--)
994
944d9fec
LC
995#if defined(CONFIG_CMA) && defined(CONFIG_X86_64)
996static void destroy_compound_gigantic_page(struct page *page,
997 unsigned long order)
998{
999 int i;
1000 int nr_pages = 1 << order;
1001 struct page *p = page + 1;
1002
1003 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1004 __ClearPageTail(p);
1005 set_page_refcounted(p);
1006 p->first_page = NULL;
1007 }
1008
1009 set_compound_order(page, 0);
1010 __ClearPageHead(page);
1011}
1012
1013static void free_gigantic_page(struct page *page, unsigned order)
1014{
1015 free_contig_range(page_to_pfn(page), 1 << order);
1016}
1017
1018static int __alloc_gigantic_page(unsigned long start_pfn,
1019 unsigned long nr_pages)
1020{
1021 unsigned long end_pfn = start_pfn + nr_pages;
1022 return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE);
1023}
1024
1025static bool pfn_range_valid_gigantic(unsigned long start_pfn,
1026 unsigned long nr_pages)
1027{
1028 unsigned long i, end_pfn = start_pfn + nr_pages;
1029 struct page *page;
1030
1031 for (i = start_pfn; i < end_pfn; i++) {
1032 if (!pfn_valid(i))
1033 return false;
1034
1035 page = pfn_to_page(i);
1036
1037 if (PageReserved(page))
1038 return false;
1039
1040 if (page_count(page) > 0)
1041 return false;
1042
1043 if (PageHuge(page))
1044 return false;
1045 }
1046
1047 return true;
1048}
1049
1050static bool zone_spans_last_pfn(const struct zone *zone,
1051 unsigned long start_pfn, unsigned long nr_pages)
1052{
1053 unsigned long last_pfn = start_pfn + nr_pages - 1;
1054 return zone_spans_pfn(zone, last_pfn);
1055}
1056
1057static struct page *alloc_gigantic_page(int nid, unsigned order)
1058{
1059 unsigned long nr_pages = 1 << order;
1060 unsigned long ret, pfn, flags;
1061 struct zone *z;
1062
1063 z = NODE_DATA(nid)->node_zones;
1064 for (; z - NODE_DATA(nid)->node_zones < MAX_NR_ZONES; z++) {
1065 spin_lock_irqsave(&z->lock, flags);
1066
1067 pfn = ALIGN(z->zone_start_pfn, nr_pages);
1068 while (zone_spans_last_pfn(z, pfn, nr_pages)) {
1069 if (pfn_range_valid_gigantic(pfn, nr_pages)) {
1070 /*
1071 * We release the zone lock here because
1072 * alloc_contig_range() will also lock the zone
1073 * at some point. If there's an allocation
1074 * spinning on this lock, it may win the race
1075 * and cause alloc_contig_range() to fail...
1076 */
1077 spin_unlock_irqrestore(&z->lock, flags);
1078 ret = __alloc_gigantic_page(pfn, nr_pages);
1079 if (!ret)
1080 return pfn_to_page(pfn);
1081 spin_lock_irqsave(&z->lock, flags);
1082 }
1083 pfn += nr_pages;
1084 }
1085
1086 spin_unlock_irqrestore(&z->lock, flags);
1087 }
1088
1089 return NULL;
1090}
1091
1092static void prep_new_huge_page(struct hstate *h, struct page *page, int nid);
1093static void prep_compound_gigantic_page(struct page *page, unsigned long order);
1094
1095static struct page *alloc_fresh_gigantic_page_node(struct hstate *h, int nid)
1096{
1097 struct page *page;
1098
1099 page = alloc_gigantic_page(nid, huge_page_order(h));
1100 if (page) {
1101 prep_compound_gigantic_page(page, huge_page_order(h));
1102 prep_new_huge_page(h, page, nid);
1103 }
1104
1105 return page;
1106}
1107
1108static int alloc_fresh_gigantic_page(struct hstate *h,
1109 nodemask_t *nodes_allowed)
1110{
1111 struct page *page = NULL;
1112 int nr_nodes, node;
1113
1114 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1115 page = alloc_fresh_gigantic_page_node(h, node);
1116 if (page)
1117 return 1;
1118 }
1119
1120 return 0;
1121}
1122
1123static inline bool gigantic_page_supported(void) { return true; }
1124#else
1125static inline bool gigantic_page_supported(void) { return false; }
1126static inline void free_gigantic_page(struct page *page, unsigned order) { }
1127static inline void destroy_compound_gigantic_page(struct page *page,
1128 unsigned long order) { }
1129static inline int alloc_fresh_gigantic_page(struct hstate *h,
1130 nodemask_t *nodes_allowed) { return 0; }
1131#endif
1132
a5516438 1133static void update_and_free_page(struct hstate *h, struct page *page)
6af2acb6
AL
1134{
1135 int i;
a5516438 1136
944d9fec
LC
1137 if (hstate_is_gigantic(h) && !gigantic_page_supported())
1138 return;
18229df5 1139
a5516438
AK
1140 h->nr_huge_pages--;
1141 h->nr_huge_pages_node[page_to_nid(page)]--;
1142 for (i = 0; i < pages_per_huge_page(h); i++) {
32f84528
CF
1143 page[i].flags &= ~(1 << PG_locked | 1 << PG_error |
1144 1 << PG_referenced | 1 << PG_dirty |
a7407a27
LC
1145 1 << PG_active | 1 << PG_private |
1146 1 << PG_writeback);
6af2acb6 1147 }
309381fe 1148 VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page);
6af2acb6
AL
1149 set_compound_page_dtor(page, NULL);
1150 set_page_refcounted(page);
944d9fec
LC
1151 if (hstate_is_gigantic(h)) {
1152 destroy_compound_gigantic_page(page, huge_page_order(h));
1153 free_gigantic_page(page, huge_page_order(h));
1154 } else {
944d9fec
LC
1155 __free_pages(page, huge_page_order(h));
1156 }
6af2acb6
AL
1157}
1158
e5ff2159
AK
1159struct hstate *size_to_hstate(unsigned long size)
1160{
1161 struct hstate *h;
1162
1163 for_each_hstate(h) {
1164 if (huge_page_size(h) == size)
1165 return h;
1166 }
1167 return NULL;
1168}
1169
bcc54222
NH
1170/*
1171 * Test to determine whether the hugepage is "active/in-use" (i.e. being linked
1172 * to hstate->hugepage_activelist.)
1173 *
1174 * This function can be called for tail pages, but never returns true for them.
1175 */
1176bool page_huge_active(struct page *page)
1177{
1178 VM_BUG_ON_PAGE(!PageHuge(page), page);
1179 return PageHead(page) && PagePrivate(&page[1]);
1180}
1181
1182/* never called for tail page */
1183static void set_page_huge_active(struct page *page)
1184{
1185 VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1186 SetPagePrivate(&page[1]);
1187}
1188
1189static void clear_page_huge_active(struct page *page)
1190{
1191 VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1192 ClearPagePrivate(&page[1]);
1193}
1194
8f1d26d0 1195void free_huge_page(struct page *page)
27a85ef1 1196{
a5516438
AK
1197 /*
1198 * Can't pass hstate in here because it is called from the
1199 * compound page destructor.
1200 */
e5ff2159 1201 struct hstate *h = page_hstate(page);
7893d1d5 1202 int nid = page_to_nid(page);
90481622
DG
1203 struct hugepage_subpool *spool =
1204 (struct hugepage_subpool *)page_private(page);
07443a85 1205 bool restore_reserve;
27a85ef1 1206
e5df70ab 1207 set_page_private(page, 0);
23be7468 1208 page->mapping = NULL;
7893d1d5 1209 BUG_ON(page_count(page));
0fe6e20b 1210 BUG_ON(page_mapcount(page));
07443a85 1211 restore_reserve = PagePrivate(page);
16c794b4 1212 ClearPagePrivate(page);
27a85ef1 1213
1c5ecae3
MK
1214 /*
1215 * A return code of zero implies that the subpool will be under its
1216 * minimum size if the reservation is not restored after page is free.
1217 * Therefore, force restore_reserve operation.
1218 */
1219 if (hugepage_subpool_put_pages(spool, 1) == 0)
1220 restore_reserve = true;
1221
27a85ef1 1222 spin_lock(&hugetlb_lock);
bcc54222 1223 clear_page_huge_active(page);
6d76dcf4
AK
1224 hugetlb_cgroup_uncharge_page(hstate_index(h),
1225 pages_per_huge_page(h), page);
07443a85
JK
1226 if (restore_reserve)
1227 h->resv_huge_pages++;
1228
944d9fec 1229 if (h->surplus_huge_pages_node[nid]) {
0edaecfa
AK
1230 /* remove the page from active list */
1231 list_del(&page->lru);
a5516438
AK
1232 update_and_free_page(h, page);
1233 h->surplus_huge_pages--;
1234 h->surplus_huge_pages_node[nid]--;
7893d1d5 1235 } else {
5d3a551c 1236 arch_clear_hugepage_flags(page);
a5516438 1237 enqueue_huge_page(h, page);
7893d1d5 1238 }
27a85ef1
DG
1239 spin_unlock(&hugetlb_lock);
1240}
1241
a5516438 1242static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
b7ba30c6 1243{
0edaecfa 1244 INIT_LIST_HEAD(&page->lru);
b7ba30c6
AK
1245 set_compound_page_dtor(page, free_huge_page);
1246 spin_lock(&hugetlb_lock);
9dd540e2 1247 set_hugetlb_cgroup(page, NULL);
a5516438
AK
1248 h->nr_huge_pages++;
1249 h->nr_huge_pages_node[nid]++;
b7ba30c6
AK
1250 spin_unlock(&hugetlb_lock);
1251 put_page(page); /* free it into the hugepage allocator */
1252}
1253
2906dd52 1254static void prep_compound_gigantic_page(struct page *page, unsigned long order)
20a0307c
WF
1255{
1256 int i;
1257 int nr_pages = 1 << order;
1258 struct page *p = page + 1;
1259
1260 /* we rely on prep_new_huge_page to set the destructor */
1261 set_compound_order(page, order);
1262 __SetPageHead(page);
ef5a22be 1263 __ClearPageReserved(page);
20a0307c 1264 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
ef5a22be
AA
1265 /*
1266 * For gigantic hugepages allocated through bootmem at
1267 * boot, it's safer to be consistent with the not-gigantic
1268 * hugepages and clear the PG_reserved bit from all tail pages
1269 * too. Otherwse drivers using get_user_pages() to access tail
1270 * pages may get the reference counting wrong if they see
1271 * PG_reserved set on a tail page (despite the head page not
1272 * having PG_reserved set). Enforcing this consistency between
1273 * head and tail pages allows drivers to optimize away a check
1274 * on the head page when they need know if put_page() is needed
1275 * after get_user_pages().
1276 */
1277 __ClearPageReserved(p);
58a84aa9 1278 set_page_count(p, 0);
20a0307c 1279 p->first_page = page;
44fc8057
DR
1280 /* Make sure p->first_page is always valid for PageTail() */
1281 smp_wmb();
1282 __SetPageTail(p);
20a0307c
WF
1283 }
1284}
1285
7795912c
AM
1286/*
1287 * PageHuge() only returns true for hugetlbfs pages, but not for normal or
1288 * transparent huge pages. See the PageTransHuge() documentation for more
1289 * details.
1290 */
20a0307c
WF
1291int PageHuge(struct page *page)
1292{
20a0307c
WF
1293 if (!PageCompound(page))
1294 return 0;
1295
1296 page = compound_head(page);
758f66a2 1297 return get_compound_page_dtor(page) == free_huge_page;
20a0307c 1298}
43131e14
NH
1299EXPORT_SYMBOL_GPL(PageHuge);
1300
27c73ae7
AA
1301/*
1302 * PageHeadHuge() only returns true for hugetlbfs head page, but not for
1303 * normal or transparent huge pages.
1304 */
1305int PageHeadHuge(struct page *page_head)
1306{
27c73ae7
AA
1307 if (!PageHead(page_head))
1308 return 0;
1309
758f66a2 1310 return get_compound_page_dtor(page_head) == free_huge_page;
27c73ae7 1311}
27c73ae7 1312
13d60f4b
ZY
1313pgoff_t __basepage_index(struct page *page)
1314{
1315 struct page *page_head = compound_head(page);
1316 pgoff_t index = page_index(page_head);
1317 unsigned long compound_idx;
1318
1319 if (!PageHuge(page_head))
1320 return page_index(page);
1321
1322 if (compound_order(page_head) >= MAX_ORDER)
1323 compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
1324 else
1325 compound_idx = page - page_head;
1326
1327 return (index << compound_order(page_head)) + compound_idx;
1328}
1329
a5516438 1330static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid)
1da177e4 1331{
1da177e4 1332 struct page *page;
f96efd58 1333
6484eb3e 1334 page = alloc_pages_exact_node(nid,
86cdb465 1335 htlb_alloc_mask(h)|__GFP_COMP|__GFP_THISNODE|
551883ae 1336 __GFP_REPEAT|__GFP_NOWARN,
a5516438 1337 huge_page_order(h));
1da177e4 1338 if (page) {
a5516438 1339 prep_new_huge_page(h, page, nid);
1da177e4 1340 }
63b4613c
NA
1341
1342 return page;
1343}
1344
b2261026
JK
1345static int alloc_fresh_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
1346{
1347 struct page *page;
1348 int nr_nodes, node;
1349 int ret = 0;
1350
1351 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1352 page = alloc_fresh_huge_page_node(h, node);
1353 if (page) {
1354 ret = 1;
1355 break;
1356 }
1357 }
1358
1359 if (ret)
1360 count_vm_event(HTLB_BUDDY_PGALLOC);
1361 else
1362 count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1363
1364 return ret;
1365}
1366
e8c5c824
LS
1367/*
1368 * Free huge page from pool from next node to free.
1369 * Attempt to keep persistent huge pages more or less
1370 * balanced over allowed nodes.
1371 * Called with hugetlb_lock locked.
1372 */
6ae11b27
LS
1373static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
1374 bool acct_surplus)
e8c5c824 1375{
b2261026 1376 int nr_nodes, node;
e8c5c824
LS
1377 int ret = 0;
1378
b2261026 1379 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
685f3457
LS
1380 /*
1381 * If we're returning unused surplus pages, only examine
1382 * nodes with surplus pages.
1383 */
b2261026
JK
1384 if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
1385 !list_empty(&h->hugepage_freelists[node])) {
e8c5c824 1386 struct page *page =
b2261026 1387 list_entry(h->hugepage_freelists[node].next,
e8c5c824
LS
1388 struct page, lru);
1389 list_del(&page->lru);
1390 h->free_huge_pages--;
b2261026 1391 h->free_huge_pages_node[node]--;
685f3457
LS
1392 if (acct_surplus) {
1393 h->surplus_huge_pages--;
b2261026 1394 h->surplus_huge_pages_node[node]--;
685f3457 1395 }
e8c5c824
LS
1396 update_and_free_page(h, page);
1397 ret = 1;
9a76db09 1398 break;
e8c5c824 1399 }
b2261026 1400 }
e8c5c824
LS
1401
1402 return ret;
1403}
1404
c8721bbb
NH
1405/*
1406 * Dissolve a given free hugepage into free buddy pages. This function does
1407 * nothing for in-use (including surplus) hugepages.
1408 */
1409static void dissolve_free_huge_page(struct page *page)
1410{
1411 spin_lock(&hugetlb_lock);
1412 if (PageHuge(page) && !page_count(page)) {
1413 struct hstate *h = page_hstate(page);
1414 int nid = page_to_nid(page);
1415 list_del(&page->lru);
1416 h->free_huge_pages--;
1417 h->free_huge_pages_node[nid]--;
1418 update_and_free_page(h, page);
1419 }
1420 spin_unlock(&hugetlb_lock);
1421}
1422
1423/*
1424 * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
1425 * make specified memory blocks removable from the system.
1426 * Note that start_pfn should aligned with (minimum) hugepage size.
1427 */
1428void dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
1429{
c8721bbb 1430 unsigned long pfn;
c8721bbb 1431
d0177639
LZ
1432 if (!hugepages_supported())
1433 return;
1434
641844f5
NH
1435 VM_BUG_ON(!IS_ALIGNED(start_pfn, 1 << minimum_order));
1436 for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << minimum_order)
c8721bbb
NH
1437 dissolve_free_huge_page(pfn_to_page(pfn));
1438}
1439
bf50bab2 1440static struct page *alloc_buddy_huge_page(struct hstate *h, int nid)
7893d1d5
AL
1441{
1442 struct page *page;
bf50bab2 1443 unsigned int r_nid;
7893d1d5 1444
bae7f4ae 1445 if (hstate_is_gigantic(h))
aa888a74
AK
1446 return NULL;
1447
d1c3fb1f
NA
1448 /*
1449 * Assume we will successfully allocate the surplus page to
1450 * prevent racing processes from causing the surplus to exceed
1451 * overcommit
1452 *
1453 * This however introduces a different race, where a process B
1454 * tries to grow the static hugepage pool while alloc_pages() is
1455 * called by process A. B will only examine the per-node
1456 * counters in determining if surplus huge pages can be
1457 * converted to normal huge pages in adjust_pool_surplus(). A
1458 * won't be able to increment the per-node counter, until the
1459 * lock is dropped by B, but B doesn't drop hugetlb_lock until
1460 * no more huge pages can be converted from surplus to normal
1461 * state (and doesn't try to convert again). Thus, we have a
1462 * case where a surplus huge page exists, the pool is grown, and
1463 * the surplus huge page still exists after, even though it
1464 * should just have been converted to a normal huge page. This
1465 * does not leak memory, though, as the hugepage will be freed
1466 * once it is out of use. It also does not allow the counters to
1467 * go out of whack in adjust_pool_surplus() as we don't modify
1468 * the node values until we've gotten the hugepage and only the
1469 * per-node value is checked there.
1470 */
1471 spin_lock(&hugetlb_lock);
a5516438 1472 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
d1c3fb1f
NA
1473 spin_unlock(&hugetlb_lock);
1474 return NULL;
1475 } else {
a5516438
AK
1476 h->nr_huge_pages++;
1477 h->surplus_huge_pages++;
d1c3fb1f
NA
1478 }
1479 spin_unlock(&hugetlb_lock);
1480
bf50bab2 1481 if (nid == NUMA_NO_NODE)
86cdb465 1482 page = alloc_pages(htlb_alloc_mask(h)|__GFP_COMP|
bf50bab2
NH
1483 __GFP_REPEAT|__GFP_NOWARN,
1484 huge_page_order(h));
1485 else
1486 page = alloc_pages_exact_node(nid,
86cdb465 1487 htlb_alloc_mask(h)|__GFP_COMP|__GFP_THISNODE|
bf50bab2 1488 __GFP_REPEAT|__GFP_NOWARN, huge_page_order(h));
d1c3fb1f
NA
1489
1490 spin_lock(&hugetlb_lock);
7893d1d5 1491 if (page) {
0edaecfa 1492 INIT_LIST_HEAD(&page->lru);
bf50bab2 1493 r_nid = page_to_nid(page);
7893d1d5 1494 set_compound_page_dtor(page, free_huge_page);
9dd540e2 1495 set_hugetlb_cgroup(page, NULL);
d1c3fb1f
NA
1496 /*
1497 * We incremented the global counters already
1498 */
bf50bab2
NH
1499 h->nr_huge_pages_node[r_nid]++;
1500 h->surplus_huge_pages_node[r_nid]++;
3b116300 1501 __count_vm_event(HTLB_BUDDY_PGALLOC);
d1c3fb1f 1502 } else {
a5516438
AK
1503 h->nr_huge_pages--;
1504 h->surplus_huge_pages--;
3b116300 1505 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
7893d1d5 1506 }
d1c3fb1f 1507 spin_unlock(&hugetlb_lock);
7893d1d5
AL
1508
1509 return page;
1510}
1511
bf50bab2
NH
1512/*
1513 * This allocation function is useful in the context where vma is irrelevant.
1514 * E.g. soft-offlining uses this function because it only cares physical
1515 * address of error page.
1516 */
1517struct page *alloc_huge_page_node(struct hstate *h, int nid)
1518{
4ef91848 1519 struct page *page = NULL;
bf50bab2
NH
1520
1521 spin_lock(&hugetlb_lock);
4ef91848
JK
1522 if (h->free_huge_pages - h->resv_huge_pages > 0)
1523 page = dequeue_huge_page_node(h, nid);
bf50bab2
NH
1524 spin_unlock(&hugetlb_lock);
1525
94ae8ba7 1526 if (!page)
bf50bab2
NH
1527 page = alloc_buddy_huge_page(h, nid);
1528
1529 return page;
1530}
1531
e4e574b7 1532/*
25985edc 1533 * Increase the hugetlb pool such that it can accommodate a reservation
e4e574b7
AL
1534 * of size 'delta'.
1535 */
a5516438 1536static int gather_surplus_pages(struct hstate *h, int delta)
e4e574b7
AL
1537{
1538 struct list_head surplus_list;
1539 struct page *page, *tmp;
1540 int ret, i;
1541 int needed, allocated;
28073b02 1542 bool alloc_ok = true;
e4e574b7 1543
a5516438 1544 needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
ac09b3a1 1545 if (needed <= 0) {
a5516438 1546 h->resv_huge_pages += delta;
e4e574b7 1547 return 0;
ac09b3a1 1548 }
e4e574b7
AL
1549
1550 allocated = 0;
1551 INIT_LIST_HEAD(&surplus_list);
1552
1553 ret = -ENOMEM;
1554retry:
1555 spin_unlock(&hugetlb_lock);
1556 for (i = 0; i < needed; i++) {
bf50bab2 1557 page = alloc_buddy_huge_page(h, NUMA_NO_NODE);
28073b02
HD
1558 if (!page) {
1559 alloc_ok = false;
1560 break;
1561 }
e4e574b7
AL
1562 list_add(&page->lru, &surplus_list);
1563 }
28073b02 1564 allocated += i;
e4e574b7
AL
1565
1566 /*
1567 * After retaking hugetlb_lock, we need to recalculate 'needed'
1568 * because either resv_huge_pages or free_huge_pages may have changed.
1569 */
1570 spin_lock(&hugetlb_lock);
a5516438
AK
1571 needed = (h->resv_huge_pages + delta) -
1572 (h->free_huge_pages + allocated);
28073b02
HD
1573 if (needed > 0) {
1574 if (alloc_ok)
1575 goto retry;
1576 /*
1577 * We were not able to allocate enough pages to
1578 * satisfy the entire reservation so we free what
1579 * we've allocated so far.
1580 */
1581 goto free;
1582 }
e4e574b7
AL
1583 /*
1584 * The surplus_list now contains _at_least_ the number of extra pages
25985edc 1585 * needed to accommodate the reservation. Add the appropriate number
e4e574b7 1586 * of pages to the hugetlb pool and free the extras back to the buddy
ac09b3a1
AL
1587 * allocator. Commit the entire reservation here to prevent another
1588 * process from stealing the pages as they are added to the pool but
1589 * before they are reserved.
e4e574b7
AL
1590 */
1591 needed += allocated;
a5516438 1592 h->resv_huge_pages += delta;
e4e574b7 1593 ret = 0;
a9869b83 1594
19fc3f0a 1595 /* Free the needed pages to the hugetlb pool */
e4e574b7 1596 list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
19fc3f0a
AL
1597 if ((--needed) < 0)
1598 break;
a9869b83
NH
1599 /*
1600 * This page is now managed by the hugetlb allocator and has
1601 * no users -- drop the buddy allocator's reference.
1602 */
1603 put_page_testzero(page);
309381fe 1604 VM_BUG_ON_PAGE(page_count(page), page);
a5516438 1605 enqueue_huge_page(h, page);
19fc3f0a 1606 }
28073b02 1607free:
b0365c8d 1608 spin_unlock(&hugetlb_lock);
19fc3f0a
AL
1609
1610 /* Free unnecessary surplus pages to the buddy allocator */
c0d934ba
JK
1611 list_for_each_entry_safe(page, tmp, &surplus_list, lru)
1612 put_page(page);
a9869b83 1613 spin_lock(&hugetlb_lock);
e4e574b7
AL
1614
1615 return ret;
1616}
1617
1618/*
1619 * When releasing a hugetlb pool reservation, any surplus pages that were
1620 * allocated to satisfy the reservation must be explicitly freed if they were
1621 * never used.
685f3457 1622 * Called with hugetlb_lock held.
e4e574b7 1623 */
a5516438
AK
1624static void return_unused_surplus_pages(struct hstate *h,
1625 unsigned long unused_resv_pages)
e4e574b7 1626{
e4e574b7
AL
1627 unsigned long nr_pages;
1628
ac09b3a1 1629 /* Uncommit the reservation */
a5516438 1630 h->resv_huge_pages -= unused_resv_pages;
ac09b3a1 1631
aa888a74 1632 /* Cannot return gigantic pages currently */
bae7f4ae 1633 if (hstate_is_gigantic(h))
aa888a74
AK
1634 return;
1635
a5516438 1636 nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
e4e574b7 1637
685f3457
LS
1638 /*
1639 * We want to release as many surplus pages as possible, spread
9b5e5d0f
LS
1640 * evenly across all nodes with memory. Iterate across these nodes
1641 * until we can no longer free unreserved surplus pages. This occurs
1642 * when the nodes with surplus pages have no free pages.
1643 * free_pool_huge_page() will balance the the freed pages across the
1644 * on-line nodes with memory and will handle the hstate accounting.
685f3457
LS
1645 */
1646 while (nr_pages--) {
8cebfcd0 1647 if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1))
685f3457 1648 break;
7848a4bf 1649 cond_resched_lock(&hugetlb_lock);
e4e574b7
AL
1650 }
1651}
1652
5e911373 1653
c37f9fb1 1654/*
feba16e2 1655 * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
5e911373 1656 * are used by the huge page allocation routines to manage reservations.
cf3ad20b
MK
1657 *
1658 * vma_needs_reservation is called to determine if the huge page at addr
1659 * within the vma has an associated reservation. If a reservation is
1660 * needed, the value 1 is returned. The caller is then responsible for
1661 * managing the global reservation and subpool usage counts. After
1662 * the huge page has been allocated, vma_commit_reservation is called
feba16e2
MK
1663 * to add the page to the reservation map. If the page allocation fails,
1664 * the reservation must be ended instead of committed. vma_end_reservation
1665 * is called in such cases.
cf3ad20b
MK
1666 *
1667 * In the normal case, vma_commit_reservation returns the same value
1668 * as the preceding vma_needs_reservation call. The only time this
1669 * is not the case is if a reserve map was changed between calls. It
1670 * is the responsibility of the caller to notice the difference and
1671 * take appropriate action.
c37f9fb1 1672 */
5e911373
MK
1673enum vma_resv_mode {
1674 VMA_NEEDS_RESV,
1675 VMA_COMMIT_RESV,
feba16e2 1676 VMA_END_RESV,
5e911373 1677};
cf3ad20b
MK
1678static long __vma_reservation_common(struct hstate *h,
1679 struct vm_area_struct *vma, unsigned long addr,
5e911373 1680 enum vma_resv_mode mode)
c37f9fb1 1681{
4e35f483
JK
1682 struct resv_map *resv;
1683 pgoff_t idx;
cf3ad20b 1684 long ret;
c37f9fb1 1685
4e35f483
JK
1686 resv = vma_resv_map(vma);
1687 if (!resv)
84afd99b 1688 return 1;
c37f9fb1 1689
4e35f483 1690 idx = vma_hugecache_offset(h, vma, addr);
5e911373
MK
1691 switch (mode) {
1692 case VMA_NEEDS_RESV:
cf3ad20b 1693 ret = region_chg(resv, idx, idx + 1);
5e911373
MK
1694 break;
1695 case VMA_COMMIT_RESV:
1696 ret = region_add(resv, idx, idx + 1);
1697 break;
feba16e2 1698 case VMA_END_RESV:
5e911373
MK
1699 region_abort(resv, idx, idx + 1);
1700 ret = 0;
1701 break;
1702 default:
1703 BUG();
1704 }
84afd99b 1705
4e35f483 1706 if (vma->vm_flags & VM_MAYSHARE)
cf3ad20b 1707 return ret;
4e35f483 1708 else
cf3ad20b 1709 return ret < 0 ? ret : 0;
c37f9fb1 1710}
cf3ad20b
MK
1711
1712static long vma_needs_reservation(struct hstate *h,
a5516438 1713 struct vm_area_struct *vma, unsigned long addr)
c37f9fb1 1714{
5e911373 1715 return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
cf3ad20b 1716}
84afd99b 1717
cf3ad20b
MK
1718static long vma_commit_reservation(struct hstate *h,
1719 struct vm_area_struct *vma, unsigned long addr)
1720{
5e911373
MK
1721 return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
1722}
1723
feba16e2 1724static void vma_end_reservation(struct hstate *h,
5e911373
MK
1725 struct vm_area_struct *vma, unsigned long addr)
1726{
feba16e2 1727 (void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
c37f9fb1
AW
1728}
1729
a1e78772 1730static struct page *alloc_huge_page(struct vm_area_struct *vma,
04f2cbe3 1731 unsigned long addr, int avoid_reserve)
1da177e4 1732{
90481622 1733 struct hugepage_subpool *spool = subpool_vma(vma);
a5516438 1734 struct hstate *h = hstate_vma(vma);
348ea204 1735 struct page *page;
d85f69b0
MK
1736 long map_chg, map_commit;
1737 long gbl_chg;
6d76dcf4
AK
1738 int ret, idx;
1739 struct hugetlb_cgroup *h_cg;
a1e78772 1740
6d76dcf4 1741 idx = hstate_index(h);
a1e78772 1742 /*
d85f69b0
MK
1743 * Examine the region/reserve map to determine if the process
1744 * has a reservation for the page to be allocated. A return
1745 * code of zero indicates a reservation exists (no change).
a1e78772 1746 */
d85f69b0
MK
1747 map_chg = gbl_chg = vma_needs_reservation(h, vma, addr);
1748 if (map_chg < 0)
76dcee75 1749 return ERR_PTR(-ENOMEM);
d85f69b0
MK
1750
1751 /*
1752 * Processes that did not create the mapping will have no
1753 * reserves as indicated by the region/reserve map. Check
1754 * that the allocation will not exceed the subpool limit.
1755 * Allocations for MAP_NORESERVE mappings also need to be
1756 * checked against any subpool limit.
1757 */
1758 if (map_chg || avoid_reserve) {
1759 gbl_chg = hugepage_subpool_get_pages(spool, 1);
1760 if (gbl_chg < 0) {
feba16e2 1761 vma_end_reservation(h, vma, addr);
76dcee75 1762 return ERR_PTR(-ENOSPC);
5e911373 1763 }
1da177e4 1764
d85f69b0
MK
1765 /*
1766 * Even though there was no reservation in the region/reserve
1767 * map, there could be reservations associated with the
1768 * subpool that can be used. This would be indicated if the
1769 * return value of hugepage_subpool_get_pages() is zero.
1770 * However, if avoid_reserve is specified we still avoid even
1771 * the subpool reservations.
1772 */
1773 if (avoid_reserve)
1774 gbl_chg = 1;
1775 }
1776
6d76dcf4 1777 ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
8f34af6f
JZ
1778 if (ret)
1779 goto out_subpool_put;
1780
1da177e4 1781 spin_lock(&hugetlb_lock);
d85f69b0
MK
1782 /*
1783 * glb_chg is passed to indicate whether or not a page must be taken
1784 * from the global free pool (global change). gbl_chg == 0 indicates
1785 * a reservation exists for the allocation.
1786 */
1787 page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, gbl_chg);
81a6fcae 1788 if (!page) {
94ae8ba7 1789 spin_unlock(&hugetlb_lock);
bf50bab2 1790 page = alloc_buddy_huge_page(h, NUMA_NO_NODE);
8f34af6f
JZ
1791 if (!page)
1792 goto out_uncharge_cgroup;
1793
79dbb236
AK
1794 spin_lock(&hugetlb_lock);
1795 list_move(&page->lru, &h->hugepage_activelist);
81a6fcae 1796 /* Fall through */
68842c9b 1797 }
81a6fcae
JK
1798 hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
1799 spin_unlock(&hugetlb_lock);
348ea204 1800
90481622 1801 set_page_private(page, (unsigned long)spool);
90d8b7e6 1802
d85f69b0
MK
1803 map_commit = vma_commit_reservation(h, vma, addr);
1804 if (unlikely(map_chg > map_commit)) {
33039678
MK
1805 /*
1806 * The page was added to the reservation map between
1807 * vma_needs_reservation and vma_commit_reservation.
1808 * This indicates a race with hugetlb_reserve_pages.
1809 * Adjust for the subpool count incremented above AND
1810 * in hugetlb_reserve_pages for the same page. Also,
1811 * the reservation count added in hugetlb_reserve_pages
1812 * no longer applies.
1813 */
1814 long rsv_adjust;
1815
1816 rsv_adjust = hugepage_subpool_put_pages(spool, 1);
1817 hugetlb_acct_memory(h, -rsv_adjust);
1818 }
90d8b7e6 1819 return page;
8f34af6f
JZ
1820
1821out_uncharge_cgroup:
1822 hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
1823out_subpool_put:
d85f69b0 1824 if (map_chg || avoid_reserve)
8f34af6f 1825 hugepage_subpool_put_pages(spool, 1);
feba16e2 1826 vma_end_reservation(h, vma, addr);
8f34af6f 1827 return ERR_PTR(-ENOSPC);
b45b5bd6
DG
1828}
1829
74060e4d
NH
1830/*
1831 * alloc_huge_page()'s wrapper which simply returns the page if allocation
1832 * succeeds, otherwise NULL. This function is called from new_vma_page(),
1833 * where no ERR_VALUE is expected to be returned.
1834 */
1835struct page *alloc_huge_page_noerr(struct vm_area_struct *vma,
1836 unsigned long addr, int avoid_reserve)
1837{
1838 struct page *page = alloc_huge_page(vma, addr, avoid_reserve);
1839 if (IS_ERR(page))
1840 page = NULL;
1841 return page;
1842}
1843
91f47662 1844int __weak alloc_bootmem_huge_page(struct hstate *h)
aa888a74
AK
1845{
1846 struct huge_bootmem_page *m;
b2261026 1847 int nr_nodes, node;
aa888a74 1848
b2261026 1849 for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
aa888a74
AK
1850 void *addr;
1851
8b89a116
GS
1852 addr = memblock_virt_alloc_try_nid_nopanic(
1853 huge_page_size(h), huge_page_size(h),
1854 0, BOOTMEM_ALLOC_ACCESSIBLE, node);
aa888a74
AK
1855 if (addr) {
1856 /*
1857 * Use the beginning of the huge page to store the
1858 * huge_bootmem_page struct (until gather_bootmem
1859 * puts them into the mem_map).
1860 */
1861 m = addr;
91f47662 1862 goto found;
aa888a74 1863 }
aa888a74
AK
1864 }
1865 return 0;
1866
1867found:
df994ead 1868 BUG_ON(!IS_ALIGNED(virt_to_phys(m), huge_page_size(h)));
aa888a74
AK
1869 /* Put them into a private list first because mem_map is not up yet */
1870 list_add(&m->list, &huge_boot_pages);
1871 m->hstate = h;
1872 return 1;
1873}
1874
f412c97a 1875static void __init prep_compound_huge_page(struct page *page, int order)
18229df5
AW
1876{
1877 if (unlikely(order > (MAX_ORDER - 1)))
1878 prep_compound_gigantic_page(page, order);
1879 else
1880 prep_compound_page(page, order);
1881}
1882
aa888a74
AK
1883/* Put bootmem huge pages into the standard lists after mem_map is up */
1884static void __init gather_bootmem_prealloc(void)
1885{
1886 struct huge_bootmem_page *m;
1887
1888 list_for_each_entry(m, &huge_boot_pages, list) {
aa888a74 1889 struct hstate *h = m->hstate;
ee8f248d
BB
1890 struct page *page;
1891
1892#ifdef CONFIG_HIGHMEM
1893 page = pfn_to_page(m->phys >> PAGE_SHIFT);
8b89a116
GS
1894 memblock_free_late(__pa(m),
1895 sizeof(struct huge_bootmem_page));
ee8f248d
BB
1896#else
1897 page = virt_to_page(m);
1898#endif
aa888a74 1899 WARN_ON(page_count(page) != 1);
18229df5 1900 prep_compound_huge_page(page, h->order);
ef5a22be 1901 WARN_ON(PageReserved(page));
aa888a74 1902 prep_new_huge_page(h, page, page_to_nid(page));
b0320c7b
RA
1903 /*
1904 * If we had gigantic hugepages allocated at boot time, we need
1905 * to restore the 'stolen' pages to totalram_pages in order to
1906 * fix confusing memory reports from free(1) and another
1907 * side-effects, like CommitLimit going negative.
1908 */
bae7f4ae 1909 if (hstate_is_gigantic(h))
3dcc0571 1910 adjust_managed_page_count(page, 1 << h->order);
aa888a74
AK
1911 }
1912}
1913
8faa8b07 1914static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
1da177e4
LT
1915{
1916 unsigned long i;
a5516438 1917
e5ff2159 1918 for (i = 0; i < h->max_huge_pages; ++i) {
bae7f4ae 1919 if (hstate_is_gigantic(h)) {
aa888a74
AK
1920 if (!alloc_bootmem_huge_page(h))
1921 break;
9b5e5d0f 1922 } else if (!alloc_fresh_huge_page(h,
8cebfcd0 1923 &node_states[N_MEMORY]))
1da177e4 1924 break;
1da177e4 1925 }
8faa8b07 1926 h->max_huge_pages = i;
e5ff2159
AK
1927}
1928
1929static void __init hugetlb_init_hstates(void)
1930{
1931 struct hstate *h;
1932
1933 for_each_hstate(h) {
641844f5
NH
1934 if (minimum_order > huge_page_order(h))
1935 minimum_order = huge_page_order(h);
1936
8faa8b07 1937 /* oversize hugepages were init'ed in early boot */
bae7f4ae 1938 if (!hstate_is_gigantic(h))
8faa8b07 1939 hugetlb_hstate_alloc_pages(h);
e5ff2159 1940 }
641844f5 1941 VM_BUG_ON(minimum_order == UINT_MAX);
e5ff2159
AK
1942}
1943
4abd32db
AK
1944static char * __init memfmt(char *buf, unsigned long n)
1945{
1946 if (n >= (1UL << 30))
1947 sprintf(buf, "%lu GB", n >> 30);
1948 else if (n >= (1UL << 20))
1949 sprintf(buf, "%lu MB", n >> 20);
1950 else
1951 sprintf(buf, "%lu KB", n >> 10);
1952 return buf;
1953}
1954
e5ff2159
AK
1955static void __init report_hugepages(void)
1956{
1957 struct hstate *h;
1958
1959 for_each_hstate(h) {
4abd32db 1960 char buf[32];
ffb22af5 1961 pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
4abd32db
AK
1962 memfmt(buf, huge_page_size(h)),
1963 h->free_huge_pages);
e5ff2159
AK
1964 }
1965}
1966
1da177e4 1967#ifdef CONFIG_HIGHMEM
6ae11b27
LS
1968static void try_to_free_low(struct hstate *h, unsigned long count,
1969 nodemask_t *nodes_allowed)
1da177e4 1970{
4415cc8d
CL
1971 int i;
1972
bae7f4ae 1973 if (hstate_is_gigantic(h))
aa888a74
AK
1974 return;
1975
6ae11b27 1976 for_each_node_mask(i, *nodes_allowed) {
1da177e4 1977 struct page *page, *next;
a5516438
AK
1978 struct list_head *freel = &h->hugepage_freelists[i];
1979 list_for_each_entry_safe(page, next, freel, lru) {
1980 if (count >= h->nr_huge_pages)
6b0c880d 1981 return;
1da177e4
LT
1982 if (PageHighMem(page))
1983 continue;
1984 list_del(&page->lru);
e5ff2159 1985 update_and_free_page(h, page);
a5516438
AK
1986 h->free_huge_pages--;
1987 h->free_huge_pages_node[page_to_nid(page)]--;
1da177e4
LT
1988 }
1989 }
1990}
1991#else
6ae11b27
LS
1992static inline void try_to_free_low(struct hstate *h, unsigned long count,
1993 nodemask_t *nodes_allowed)
1da177e4
LT
1994{
1995}
1996#endif
1997
20a0307c
WF
1998/*
1999 * Increment or decrement surplus_huge_pages. Keep node-specific counters
2000 * balanced by operating on them in a round-robin fashion.
2001 * Returns 1 if an adjustment was made.
2002 */
6ae11b27
LS
2003static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
2004 int delta)
20a0307c 2005{
b2261026 2006 int nr_nodes, node;
20a0307c
WF
2007
2008 VM_BUG_ON(delta != -1 && delta != 1);
20a0307c 2009
b2261026
JK
2010 if (delta < 0) {
2011 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
2012 if (h->surplus_huge_pages_node[node])
2013 goto found;
e8c5c824 2014 }
b2261026
JK
2015 } else {
2016 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
2017 if (h->surplus_huge_pages_node[node] <
2018 h->nr_huge_pages_node[node])
2019 goto found;
e8c5c824 2020 }
b2261026
JK
2021 }
2022 return 0;
20a0307c 2023
b2261026
JK
2024found:
2025 h->surplus_huge_pages += delta;
2026 h->surplus_huge_pages_node[node] += delta;
2027 return 1;
20a0307c
WF
2028}
2029
a5516438 2030#define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
6ae11b27
LS
2031static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count,
2032 nodemask_t *nodes_allowed)
1da177e4 2033{
7893d1d5 2034 unsigned long min_count, ret;
1da177e4 2035
944d9fec 2036 if (hstate_is_gigantic(h) && !gigantic_page_supported())
aa888a74
AK
2037 return h->max_huge_pages;
2038
7893d1d5
AL
2039 /*
2040 * Increase the pool size
2041 * First take pages out of surplus state. Then make up the
2042 * remaining difference by allocating fresh huge pages.
d1c3fb1f
NA
2043 *
2044 * We might race with alloc_buddy_huge_page() here and be unable
2045 * to convert a surplus huge page to a normal huge page. That is
2046 * not critical, though, it just means the overall size of the
2047 * pool might be one hugepage larger than it needs to be, but
2048 * within all the constraints specified by the sysctls.
7893d1d5 2049 */
1da177e4 2050 spin_lock(&hugetlb_lock);
a5516438 2051 while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
6ae11b27 2052 if (!adjust_pool_surplus(h, nodes_allowed, -1))
7893d1d5
AL
2053 break;
2054 }
2055
a5516438 2056 while (count > persistent_huge_pages(h)) {
7893d1d5
AL
2057 /*
2058 * If this allocation races such that we no longer need the
2059 * page, free_huge_page will handle it by freeing the page
2060 * and reducing the surplus.
2061 */
2062 spin_unlock(&hugetlb_lock);
944d9fec
LC
2063 if (hstate_is_gigantic(h))
2064 ret = alloc_fresh_gigantic_page(h, nodes_allowed);
2065 else
2066 ret = alloc_fresh_huge_page(h, nodes_allowed);
7893d1d5
AL
2067 spin_lock(&hugetlb_lock);
2068 if (!ret)
2069 goto out;
2070
536240f2
MG
2071 /* Bail for signals. Probably ctrl-c from user */
2072 if (signal_pending(current))
2073 goto out;
7893d1d5 2074 }
7893d1d5
AL
2075
2076 /*
2077 * Decrease the pool size
2078 * First return free pages to the buddy allocator (being careful
2079 * to keep enough around to satisfy reservations). Then place
2080 * pages into surplus state as needed so the pool will shrink
2081 * to the desired size as pages become free.
d1c3fb1f
NA
2082 *
2083 * By placing pages into the surplus state independent of the
2084 * overcommit value, we are allowing the surplus pool size to
2085 * exceed overcommit. There are few sane options here. Since
2086 * alloc_buddy_huge_page() is checking the global counter,
2087 * though, we'll note that we're not allowed to exceed surplus
2088 * and won't grow the pool anywhere else. Not until one of the
2089 * sysctls are changed, or the surplus pages go out of use.
7893d1d5 2090 */
a5516438 2091 min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
6b0c880d 2092 min_count = max(count, min_count);
6ae11b27 2093 try_to_free_low(h, min_count, nodes_allowed);
a5516438 2094 while (min_count < persistent_huge_pages(h)) {
6ae11b27 2095 if (!free_pool_huge_page(h, nodes_allowed, 0))
1da177e4 2096 break;
55f67141 2097 cond_resched_lock(&hugetlb_lock);
1da177e4 2098 }
a5516438 2099 while (count < persistent_huge_pages(h)) {
6ae11b27 2100 if (!adjust_pool_surplus(h, nodes_allowed, 1))
7893d1d5
AL
2101 break;
2102 }
2103out:
a5516438 2104 ret = persistent_huge_pages(h);
1da177e4 2105 spin_unlock(&hugetlb_lock);
7893d1d5 2106 return ret;
1da177e4
LT
2107}
2108
a3437870
NA
2109#define HSTATE_ATTR_RO(_name) \
2110 static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
2111
2112#define HSTATE_ATTR(_name) \
2113 static struct kobj_attribute _name##_attr = \
2114 __ATTR(_name, 0644, _name##_show, _name##_store)
2115
2116static struct kobject *hugepages_kobj;
2117static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
2118
9a305230
LS
2119static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
2120
2121static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
a3437870
NA
2122{
2123 int i;
9a305230 2124
a3437870 2125 for (i = 0; i < HUGE_MAX_HSTATE; i++)
9a305230
LS
2126 if (hstate_kobjs[i] == kobj) {
2127 if (nidp)
2128 *nidp = NUMA_NO_NODE;
a3437870 2129 return &hstates[i];
9a305230
LS
2130 }
2131
2132 return kobj_to_node_hstate(kobj, nidp);
a3437870
NA
2133}
2134
06808b08 2135static ssize_t nr_hugepages_show_common(struct kobject *kobj,
a3437870
NA
2136 struct kobj_attribute *attr, char *buf)
2137{
9a305230
LS
2138 struct hstate *h;
2139 unsigned long nr_huge_pages;
2140 int nid;
2141
2142 h = kobj_to_hstate(kobj, &nid);
2143 if (nid == NUMA_NO_NODE)
2144 nr_huge_pages = h->nr_huge_pages;
2145 else
2146 nr_huge_pages = h->nr_huge_pages_node[nid];
2147
2148 return sprintf(buf, "%lu\n", nr_huge_pages);
a3437870 2149}
adbe8726 2150
238d3c13
DR
2151static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
2152 struct hstate *h, int nid,
2153 unsigned long count, size_t len)
a3437870
NA
2154{
2155 int err;
bad44b5b 2156 NODEMASK_ALLOC(nodemask_t, nodes_allowed, GFP_KERNEL | __GFP_NORETRY);
a3437870 2157
944d9fec 2158 if (hstate_is_gigantic(h) && !gigantic_page_supported()) {
adbe8726
EM
2159 err = -EINVAL;
2160 goto out;
2161 }
2162
9a305230
LS
2163 if (nid == NUMA_NO_NODE) {
2164 /*
2165 * global hstate attribute
2166 */
2167 if (!(obey_mempolicy &&
2168 init_nodemask_of_mempolicy(nodes_allowed))) {
2169 NODEMASK_FREE(nodes_allowed);
8cebfcd0 2170 nodes_allowed = &node_states[N_MEMORY];
9a305230
LS
2171 }
2172 } else if (nodes_allowed) {
2173 /*
2174 * per node hstate attribute: adjust count to global,
2175 * but restrict alloc/free to the specified node.
2176 */
2177 count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
2178 init_nodemask_of_node(nodes_allowed, nid);
2179 } else
8cebfcd0 2180 nodes_allowed = &node_states[N_MEMORY];
9a305230 2181
06808b08 2182 h->max_huge_pages = set_max_huge_pages(h, count, nodes_allowed);
a3437870 2183
8cebfcd0 2184 if (nodes_allowed != &node_states[N_MEMORY])
06808b08
LS
2185 NODEMASK_FREE(nodes_allowed);
2186
2187 return len;
adbe8726
EM
2188out:
2189 NODEMASK_FREE(nodes_allowed);
2190 return err;
06808b08
LS
2191}
2192
238d3c13
DR
2193static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
2194 struct kobject *kobj, const char *buf,
2195 size_t len)
2196{
2197 struct hstate *h;
2198 unsigned long count;
2199 int nid;
2200 int err;
2201
2202 err = kstrtoul(buf, 10, &count);
2203 if (err)
2204 return err;
2205
2206 h = kobj_to_hstate(kobj, &nid);
2207 return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
2208}
2209
06808b08
LS
2210static ssize_t nr_hugepages_show(struct kobject *kobj,
2211 struct kobj_attribute *attr, char *buf)
2212{
2213 return nr_hugepages_show_common(kobj, attr, buf);
2214}
2215
2216static ssize_t nr_hugepages_store(struct kobject *kobj,
2217 struct kobj_attribute *attr, const char *buf, size_t len)
2218{
238d3c13 2219 return nr_hugepages_store_common(false, kobj, buf, len);
a3437870
NA
2220}
2221HSTATE_ATTR(nr_hugepages);
2222
06808b08
LS
2223#ifdef CONFIG_NUMA
2224
2225/*
2226 * hstate attribute for optionally mempolicy-based constraint on persistent
2227 * huge page alloc/free.
2228 */
2229static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
2230 struct kobj_attribute *attr, char *buf)
2231{
2232 return nr_hugepages_show_common(kobj, attr, buf);
2233}
2234
2235static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
2236 struct kobj_attribute *attr, const char *buf, size_t len)
2237{
238d3c13 2238 return nr_hugepages_store_common(true, kobj, buf, len);
06808b08
LS
2239}
2240HSTATE_ATTR(nr_hugepages_mempolicy);
2241#endif
2242
2243
a3437870
NA
2244static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
2245 struct kobj_attribute *attr, char *buf)
2246{
9a305230 2247 struct hstate *h = kobj_to_hstate(kobj, NULL);
a3437870
NA
2248 return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
2249}
adbe8726 2250
a3437870
NA
2251static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
2252 struct kobj_attribute *attr, const char *buf, size_t count)
2253{
2254 int err;
2255 unsigned long input;
9a305230 2256 struct hstate *h = kobj_to_hstate(kobj, NULL);
a3437870 2257
bae7f4ae 2258 if (hstate_is_gigantic(h))
adbe8726
EM
2259 return -EINVAL;
2260
3dbb95f7 2261 err = kstrtoul(buf, 10, &input);
a3437870 2262 if (err)
73ae31e5 2263 return err;
a3437870
NA
2264
2265 spin_lock(&hugetlb_lock);
2266 h->nr_overcommit_huge_pages = input;
2267 spin_unlock(&hugetlb_lock);
2268
2269 return count;
2270}
2271HSTATE_ATTR(nr_overcommit_hugepages);
2272
2273static ssize_t free_hugepages_show(struct kobject *kobj,
2274 struct kobj_attribute *attr, char *buf)
2275{
9a305230
LS
2276 struct hstate *h;
2277 unsigned long free_huge_pages;
2278 int nid;
2279
2280 h = kobj_to_hstate(kobj, &nid);
2281 if (nid == NUMA_NO_NODE)
2282 free_huge_pages = h->free_huge_pages;
2283 else
2284 free_huge_pages = h->free_huge_pages_node[nid];
2285
2286 return sprintf(buf, "%lu\n", free_huge_pages);
a3437870
NA
2287}
2288HSTATE_ATTR_RO(free_hugepages);
2289
2290static ssize_t resv_hugepages_show(struct kobject *kobj,
2291 struct kobj_attribute *attr, char *buf)
2292{
9a305230 2293 struct hstate *h = kobj_to_hstate(kobj, NULL);
a3437870
NA
2294 return sprintf(buf, "%lu\n", h->resv_huge_pages);
2295}
2296HSTATE_ATTR_RO(resv_hugepages);
2297
2298static ssize_t surplus_hugepages_show(struct kobject *kobj,
2299 struct kobj_attribute *attr, char *buf)
2300{
9a305230
LS
2301 struct hstate *h;
2302 unsigned long surplus_huge_pages;
2303 int nid;
2304
2305 h = kobj_to_hstate(kobj, &nid);
2306 if (nid == NUMA_NO_NODE)
2307 surplus_huge_pages = h->surplus_huge_pages;
2308 else
2309 surplus_huge_pages = h->surplus_huge_pages_node[nid];
2310
2311 return sprintf(buf, "%lu\n", surplus_huge_pages);
a3437870
NA
2312}
2313HSTATE_ATTR_RO(surplus_hugepages);
2314
2315static struct attribute *hstate_attrs[] = {
2316 &nr_hugepages_attr.attr,
2317 &nr_overcommit_hugepages_attr.attr,
2318 &free_hugepages_attr.attr,
2319 &resv_hugepages_attr.attr,
2320 &surplus_hugepages_attr.attr,
06808b08
LS
2321#ifdef CONFIG_NUMA
2322 &nr_hugepages_mempolicy_attr.attr,
2323#endif
a3437870
NA
2324 NULL,
2325};
2326
2327static struct attribute_group hstate_attr_group = {
2328 .attrs = hstate_attrs,
2329};
2330
094e9539
JM
2331static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
2332 struct kobject **hstate_kobjs,
2333 struct attribute_group *hstate_attr_group)
a3437870
NA
2334{
2335 int retval;
972dc4de 2336 int hi = hstate_index(h);
a3437870 2337
9a305230
LS
2338 hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
2339 if (!hstate_kobjs[hi])
a3437870
NA
2340 return -ENOMEM;
2341
9a305230 2342 retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
a3437870 2343 if (retval)
9a305230 2344 kobject_put(hstate_kobjs[hi]);
a3437870
NA
2345
2346 return retval;
2347}
2348
2349static void __init hugetlb_sysfs_init(void)
2350{
2351 struct hstate *h;
2352 int err;
2353
2354 hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
2355 if (!hugepages_kobj)
2356 return;
2357
2358 for_each_hstate(h) {
9a305230
LS
2359 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
2360 hstate_kobjs, &hstate_attr_group);
a3437870 2361 if (err)
ffb22af5 2362 pr_err("Hugetlb: Unable to add hstate %s", h->name);
a3437870
NA
2363 }
2364}
2365
9a305230
LS
2366#ifdef CONFIG_NUMA
2367
2368/*
2369 * node_hstate/s - associate per node hstate attributes, via their kobjects,
10fbcf4c
KS
2370 * with node devices in node_devices[] using a parallel array. The array
2371 * index of a node device or _hstate == node id.
2372 * This is here to avoid any static dependency of the node device driver, in
9a305230
LS
2373 * the base kernel, on the hugetlb module.
2374 */
2375struct node_hstate {
2376 struct kobject *hugepages_kobj;
2377 struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
2378};
2379struct node_hstate node_hstates[MAX_NUMNODES];
2380
2381/*
10fbcf4c 2382 * A subset of global hstate attributes for node devices
9a305230
LS
2383 */
2384static struct attribute *per_node_hstate_attrs[] = {
2385 &nr_hugepages_attr.attr,
2386 &free_hugepages_attr.attr,
2387 &surplus_hugepages_attr.attr,
2388 NULL,
2389};
2390
2391static struct attribute_group per_node_hstate_attr_group = {
2392 .attrs = per_node_hstate_attrs,
2393};
2394
2395/*
10fbcf4c 2396 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
9a305230
LS
2397 * Returns node id via non-NULL nidp.
2398 */
2399static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
2400{
2401 int nid;
2402
2403 for (nid = 0; nid < nr_node_ids; nid++) {
2404 struct node_hstate *nhs = &node_hstates[nid];
2405 int i;
2406 for (i = 0; i < HUGE_MAX_HSTATE; i++)
2407 if (nhs->hstate_kobjs[i] == kobj) {
2408 if (nidp)
2409 *nidp = nid;
2410 return &hstates[i];
2411 }
2412 }
2413
2414 BUG();
2415 return NULL;
2416}
2417
2418/*
10fbcf4c 2419 * Unregister hstate attributes from a single node device.
9a305230
LS
2420 * No-op if no hstate attributes attached.
2421 */
3cd8b44f 2422static void hugetlb_unregister_node(struct node *node)
9a305230
LS
2423{
2424 struct hstate *h;
10fbcf4c 2425 struct node_hstate *nhs = &node_hstates[node->dev.id];
9a305230
LS
2426
2427 if (!nhs->hugepages_kobj)
9b5e5d0f 2428 return; /* no hstate attributes */
9a305230 2429
972dc4de
AK
2430 for_each_hstate(h) {
2431 int idx = hstate_index(h);
2432 if (nhs->hstate_kobjs[idx]) {
2433 kobject_put(nhs->hstate_kobjs[idx]);
2434 nhs->hstate_kobjs[idx] = NULL;
9a305230 2435 }
972dc4de 2436 }
9a305230
LS
2437
2438 kobject_put(nhs->hugepages_kobj);
2439 nhs->hugepages_kobj = NULL;
2440}
2441
2442/*
10fbcf4c 2443 * hugetlb module exit: unregister hstate attributes from node devices
9a305230
LS
2444 * that have them.
2445 */
2446static void hugetlb_unregister_all_nodes(void)
2447{
2448 int nid;
2449
2450 /*
10fbcf4c 2451 * disable node device registrations.
9a305230
LS
2452 */
2453 register_hugetlbfs_with_node(NULL, NULL);
2454
2455 /*
2456 * remove hstate attributes from any nodes that have them.
2457 */
2458 for (nid = 0; nid < nr_node_ids; nid++)
8732794b 2459 hugetlb_unregister_node(node_devices[nid]);
9a305230
LS
2460}
2461
2462/*
10fbcf4c 2463 * Register hstate attributes for a single node device.
9a305230
LS
2464 * No-op if attributes already registered.
2465 */
3cd8b44f 2466static void hugetlb_register_node(struct node *node)
9a305230
LS
2467{
2468 struct hstate *h;
10fbcf4c 2469 struct node_hstate *nhs = &node_hstates[node->dev.id];
9a305230
LS
2470 int err;
2471
2472 if (nhs->hugepages_kobj)
2473 return; /* already allocated */
2474
2475 nhs->hugepages_kobj = kobject_create_and_add("hugepages",
10fbcf4c 2476 &node->dev.kobj);
9a305230
LS
2477 if (!nhs->hugepages_kobj)
2478 return;
2479
2480 for_each_hstate(h) {
2481 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
2482 nhs->hstate_kobjs,
2483 &per_node_hstate_attr_group);
2484 if (err) {
ffb22af5
AM
2485 pr_err("Hugetlb: Unable to add hstate %s for node %d\n",
2486 h->name, node->dev.id);
9a305230
LS
2487 hugetlb_unregister_node(node);
2488 break;
2489 }
2490 }
2491}
2492
2493/*
9b5e5d0f 2494 * hugetlb init time: register hstate attributes for all registered node
10fbcf4c
KS
2495 * devices of nodes that have memory. All on-line nodes should have
2496 * registered their associated device by this time.
9a305230 2497 */
7d9ca000 2498static void __init hugetlb_register_all_nodes(void)
9a305230
LS
2499{
2500 int nid;
2501
8cebfcd0 2502 for_each_node_state(nid, N_MEMORY) {
8732794b 2503 struct node *node = node_devices[nid];
10fbcf4c 2504 if (node->dev.id == nid)
9a305230
LS
2505 hugetlb_register_node(node);
2506 }
2507
2508 /*
10fbcf4c 2509 * Let the node device driver know we're here so it can
9a305230
LS
2510 * [un]register hstate attributes on node hotplug.
2511 */
2512 register_hugetlbfs_with_node(hugetlb_register_node,
2513 hugetlb_unregister_node);
2514}
2515#else /* !CONFIG_NUMA */
2516
2517static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
2518{
2519 BUG();
2520 if (nidp)
2521 *nidp = -1;
2522 return NULL;
2523}
2524
2525static void hugetlb_unregister_all_nodes(void) { }
2526
2527static void hugetlb_register_all_nodes(void) { }
2528
2529#endif
2530
a3437870
NA
2531static void __exit hugetlb_exit(void)
2532{
2533 struct hstate *h;
2534
9a305230
LS
2535 hugetlb_unregister_all_nodes();
2536
a3437870 2537 for_each_hstate(h) {
972dc4de 2538 kobject_put(hstate_kobjs[hstate_index(h)]);
a3437870
NA
2539 }
2540
2541 kobject_put(hugepages_kobj);
c672c7f2 2542 kfree(hugetlb_fault_mutex_table);
a3437870
NA
2543}
2544module_exit(hugetlb_exit);
2545
2546static int __init hugetlb_init(void)
2547{
8382d914
DB
2548 int i;
2549
457c1b27 2550 if (!hugepages_supported())
0ef89d25 2551 return 0;
a3437870 2552
e11bfbfc
NP
2553 if (!size_to_hstate(default_hstate_size)) {
2554 default_hstate_size = HPAGE_SIZE;
2555 if (!size_to_hstate(default_hstate_size))
2556 hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
a3437870 2557 }
972dc4de 2558 default_hstate_idx = hstate_index(size_to_hstate(default_hstate_size));
e11bfbfc
NP
2559 if (default_hstate_max_huge_pages)
2560 default_hstate.max_huge_pages = default_hstate_max_huge_pages;
a3437870
NA
2561
2562 hugetlb_init_hstates();
aa888a74 2563 gather_bootmem_prealloc();
a3437870
NA
2564 report_hugepages();
2565
2566 hugetlb_sysfs_init();
9a305230 2567 hugetlb_register_all_nodes();
7179e7bf 2568 hugetlb_cgroup_file_init();
9a305230 2569
8382d914
DB
2570#ifdef CONFIG_SMP
2571 num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
2572#else
2573 num_fault_mutexes = 1;
2574#endif
c672c7f2 2575 hugetlb_fault_mutex_table =
8382d914 2576 kmalloc(sizeof(struct mutex) * num_fault_mutexes, GFP_KERNEL);
c672c7f2 2577 BUG_ON(!hugetlb_fault_mutex_table);
8382d914
DB
2578
2579 for (i = 0; i < num_fault_mutexes; i++)
c672c7f2 2580 mutex_init(&hugetlb_fault_mutex_table[i]);
a3437870
NA
2581 return 0;
2582}
2583module_init(hugetlb_init);
2584
2585/* Should be called on processing a hugepagesz=... option */
2586void __init hugetlb_add_hstate(unsigned order)
2587{
2588 struct hstate *h;
8faa8b07
AK
2589 unsigned long i;
2590
a3437870 2591 if (size_to_hstate(PAGE_SIZE << order)) {
ffb22af5 2592 pr_warning("hugepagesz= specified twice, ignoring\n");
a3437870
NA
2593 return;
2594 }
47d38344 2595 BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
a3437870 2596 BUG_ON(order == 0);
47d38344 2597 h = &hstates[hugetlb_max_hstate++];
a3437870
NA
2598 h->order = order;
2599 h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
8faa8b07
AK
2600 h->nr_huge_pages = 0;
2601 h->free_huge_pages = 0;
2602 for (i = 0; i < MAX_NUMNODES; ++i)
2603 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
0edaecfa 2604 INIT_LIST_HEAD(&h->hugepage_activelist);
8cebfcd0
LJ
2605 h->next_nid_to_alloc = first_node(node_states[N_MEMORY]);
2606 h->next_nid_to_free = first_node(node_states[N_MEMORY]);
a3437870
NA
2607 snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
2608 huge_page_size(h)/1024);
8faa8b07 2609
a3437870
NA
2610 parsed_hstate = h;
2611}
2612
e11bfbfc 2613static int __init hugetlb_nrpages_setup(char *s)
a3437870
NA
2614{
2615 unsigned long *mhp;
8faa8b07 2616 static unsigned long *last_mhp;
a3437870
NA
2617
2618 /*
47d38344 2619 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter yet,
a3437870
NA
2620 * so this hugepages= parameter goes to the "default hstate".
2621 */
47d38344 2622 if (!hugetlb_max_hstate)
a3437870
NA
2623 mhp = &default_hstate_max_huge_pages;
2624 else
2625 mhp = &parsed_hstate->max_huge_pages;
2626
8faa8b07 2627 if (mhp == last_mhp) {
ffb22af5
AM
2628 pr_warning("hugepages= specified twice without "
2629 "interleaving hugepagesz=, ignoring\n");
8faa8b07
AK
2630 return 1;
2631 }
2632
a3437870
NA
2633 if (sscanf(s, "%lu", mhp) <= 0)
2634 *mhp = 0;
2635
8faa8b07
AK
2636 /*
2637 * Global state is always initialized later in hugetlb_init.
2638 * But we need to allocate >= MAX_ORDER hstates here early to still
2639 * use the bootmem allocator.
2640 */
47d38344 2641 if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER)
8faa8b07
AK
2642 hugetlb_hstate_alloc_pages(parsed_hstate);
2643
2644 last_mhp = mhp;
2645
a3437870
NA
2646 return 1;
2647}
e11bfbfc
NP
2648__setup("hugepages=", hugetlb_nrpages_setup);
2649
2650static int __init hugetlb_default_setup(char *s)
2651{
2652 default_hstate_size = memparse(s, &s);
2653 return 1;
2654}
2655__setup("default_hugepagesz=", hugetlb_default_setup);
a3437870 2656
8a213460
NA
2657static unsigned int cpuset_mems_nr(unsigned int *array)
2658{
2659 int node;
2660 unsigned int nr = 0;
2661
2662 for_each_node_mask(node, cpuset_current_mems_allowed)
2663 nr += array[node];
2664
2665 return nr;
2666}
2667
2668#ifdef CONFIG_SYSCTL
06808b08
LS
2669static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
2670 struct ctl_table *table, int write,
2671 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 2672{
e5ff2159 2673 struct hstate *h = &default_hstate;
238d3c13 2674 unsigned long tmp = h->max_huge_pages;
08d4a246 2675 int ret;
e5ff2159 2676
457c1b27
NA
2677 if (!hugepages_supported())
2678 return -ENOTSUPP;
2679
e5ff2159
AK
2680 table->data = &tmp;
2681 table->maxlen = sizeof(unsigned long);
08d4a246
MH
2682 ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2683 if (ret)
2684 goto out;
e5ff2159 2685
238d3c13
DR
2686 if (write)
2687 ret = __nr_hugepages_store_common(obey_mempolicy, h,
2688 NUMA_NO_NODE, tmp, *length);
08d4a246
MH
2689out:
2690 return ret;
1da177e4 2691}
396faf03 2692
06808b08
LS
2693int hugetlb_sysctl_handler(struct ctl_table *table, int write,
2694 void __user *buffer, size_t *length, loff_t *ppos)
2695{
2696
2697 return hugetlb_sysctl_handler_common(false, table, write,
2698 buffer, length, ppos);
2699}
2700
2701#ifdef CONFIG_NUMA
2702int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
2703 void __user *buffer, size_t *length, loff_t *ppos)
2704{
2705 return hugetlb_sysctl_handler_common(true, table, write,
2706 buffer, length, ppos);
2707}
2708#endif /* CONFIG_NUMA */
2709
a3d0c6aa 2710int hugetlb_overcommit_handler(struct ctl_table *table, int write,
8d65af78 2711 void __user *buffer,
a3d0c6aa
NA
2712 size_t *length, loff_t *ppos)
2713{
a5516438 2714 struct hstate *h = &default_hstate;
e5ff2159 2715 unsigned long tmp;
08d4a246 2716 int ret;
e5ff2159 2717
457c1b27
NA
2718 if (!hugepages_supported())
2719 return -ENOTSUPP;
2720
c033a93c 2721 tmp = h->nr_overcommit_huge_pages;
e5ff2159 2722
bae7f4ae 2723 if (write && hstate_is_gigantic(h))
adbe8726
EM
2724 return -EINVAL;
2725
e5ff2159
AK
2726 table->data = &tmp;
2727 table->maxlen = sizeof(unsigned long);
08d4a246
MH
2728 ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2729 if (ret)
2730 goto out;
e5ff2159
AK
2731
2732 if (write) {
2733 spin_lock(&hugetlb_lock);
2734 h->nr_overcommit_huge_pages = tmp;
2735 spin_unlock(&hugetlb_lock);
2736 }
08d4a246
MH
2737out:
2738 return ret;
a3d0c6aa
NA
2739}
2740
1da177e4
LT
2741#endif /* CONFIG_SYSCTL */
2742
e1759c21 2743void hugetlb_report_meminfo(struct seq_file *m)
1da177e4 2744{
a5516438 2745 struct hstate *h = &default_hstate;
457c1b27
NA
2746 if (!hugepages_supported())
2747 return;
e1759c21 2748 seq_printf(m,
4f98a2fe
RR
2749 "HugePages_Total: %5lu\n"
2750 "HugePages_Free: %5lu\n"
2751 "HugePages_Rsvd: %5lu\n"
2752 "HugePages_Surp: %5lu\n"
2753 "Hugepagesize: %8lu kB\n",
a5516438
AK
2754 h->nr_huge_pages,
2755 h->free_huge_pages,
2756 h->resv_huge_pages,
2757 h->surplus_huge_pages,
2758 1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
1da177e4
LT
2759}
2760
2761int hugetlb_report_node_meminfo(int nid, char *buf)
2762{
a5516438 2763 struct hstate *h = &default_hstate;
457c1b27
NA
2764 if (!hugepages_supported())
2765 return 0;
1da177e4
LT
2766 return sprintf(buf,
2767 "Node %d HugePages_Total: %5u\n"
a1de0919
NA
2768 "Node %d HugePages_Free: %5u\n"
2769 "Node %d HugePages_Surp: %5u\n",
a5516438
AK
2770 nid, h->nr_huge_pages_node[nid],
2771 nid, h->free_huge_pages_node[nid],
2772 nid, h->surplus_huge_pages_node[nid]);
1da177e4
LT
2773}
2774
949f7ec5
DR
2775void hugetlb_show_meminfo(void)
2776{
2777 struct hstate *h;
2778 int nid;
2779
457c1b27
NA
2780 if (!hugepages_supported())
2781 return;
2782
949f7ec5
DR
2783 for_each_node_state(nid, N_MEMORY)
2784 for_each_hstate(h)
2785 pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
2786 nid,
2787 h->nr_huge_pages_node[nid],
2788 h->free_huge_pages_node[nid],
2789 h->surplus_huge_pages_node[nid],
2790 1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
2791}
2792
1da177e4
LT
2793/* Return the number pages of memory we physically have, in PAGE_SIZE units. */
2794unsigned long hugetlb_total_pages(void)
2795{
d0028588
WL
2796 struct hstate *h;
2797 unsigned long nr_total_pages = 0;
2798
2799 for_each_hstate(h)
2800 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
2801 return nr_total_pages;
1da177e4 2802}
1da177e4 2803
a5516438 2804static int hugetlb_acct_memory(struct hstate *h, long delta)
fc1b8a73
MG
2805{
2806 int ret = -ENOMEM;
2807
2808 spin_lock(&hugetlb_lock);
2809 /*
2810 * When cpuset is configured, it breaks the strict hugetlb page
2811 * reservation as the accounting is done on a global variable. Such
2812 * reservation is completely rubbish in the presence of cpuset because
2813 * the reservation is not checked against page availability for the
2814 * current cpuset. Application can still potentially OOM'ed by kernel
2815 * with lack of free htlb page in cpuset that the task is in.
2816 * Attempt to enforce strict accounting with cpuset is almost
2817 * impossible (or too ugly) because cpuset is too fluid that
2818 * task or memory node can be dynamically moved between cpusets.
2819 *
2820 * The change of semantics for shared hugetlb mapping with cpuset is
2821 * undesirable. However, in order to preserve some of the semantics,
2822 * we fall back to check against current free page availability as
2823 * a best attempt and hopefully to minimize the impact of changing
2824 * semantics that cpuset has.
2825 */
2826 if (delta > 0) {
a5516438 2827 if (gather_surplus_pages(h, delta) < 0)
fc1b8a73
MG
2828 goto out;
2829
a5516438
AK
2830 if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
2831 return_unused_surplus_pages(h, delta);
fc1b8a73
MG
2832 goto out;
2833 }
2834 }
2835
2836 ret = 0;
2837 if (delta < 0)
a5516438 2838 return_unused_surplus_pages(h, (unsigned long) -delta);
fc1b8a73
MG
2839
2840out:
2841 spin_unlock(&hugetlb_lock);
2842 return ret;
2843}
2844
84afd99b
AW
2845static void hugetlb_vm_op_open(struct vm_area_struct *vma)
2846{
f522c3ac 2847 struct resv_map *resv = vma_resv_map(vma);
84afd99b
AW
2848
2849 /*
2850 * This new VMA should share its siblings reservation map if present.
2851 * The VMA will only ever have a valid reservation map pointer where
2852 * it is being copied for another still existing VMA. As that VMA
25985edc 2853 * has a reference to the reservation map it cannot disappear until
84afd99b
AW
2854 * after this open call completes. It is therefore safe to take a
2855 * new reference here without additional locking.
2856 */
4e35f483 2857 if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
f522c3ac 2858 kref_get(&resv->refs);
84afd99b
AW
2859}
2860
a1e78772
MG
2861static void hugetlb_vm_op_close(struct vm_area_struct *vma)
2862{
a5516438 2863 struct hstate *h = hstate_vma(vma);
f522c3ac 2864 struct resv_map *resv = vma_resv_map(vma);
90481622 2865 struct hugepage_subpool *spool = subpool_vma(vma);
4e35f483 2866 unsigned long reserve, start, end;
1c5ecae3 2867 long gbl_reserve;
84afd99b 2868
4e35f483
JK
2869 if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
2870 return;
84afd99b 2871
4e35f483
JK
2872 start = vma_hugecache_offset(h, vma, vma->vm_start);
2873 end = vma_hugecache_offset(h, vma, vma->vm_end);
84afd99b 2874
4e35f483 2875 reserve = (end - start) - region_count(resv, start, end);
84afd99b 2876
4e35f483
JK
2877 kref_put(&resv->refs, resv_map_release);
2878
2879 if (reserve) {
1c5ecae3
MK
2880 /*
2881 * Decrement reserve counts. The global reserve count may be
2882 * adjusted if the subpool has a minimum size.
2883 */
2884 gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
2885 hugetlb_acct_memory(h, -gbl_reserve);
84afd99b 2886 }
a1e78772
MG
2887}
2888
1da177e4
LT
2889/*
2890 * We cannot handle pagefaults against hugetlb pages at all. They cause
2891 * handle_mm_fault() to try to instantiate regular-sized pages in the
2892 * hugegpage VMA. do_page_fault() is supposed to trap this, so BUG is we get
2893 * this far.
2894 */
d0217ac0 2895static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1da177e4
LT
2896{
2897 BUG();
d0217ac0 2898 return 0;
1da177e4
LT
2899}
2900
f0f37e2f 2901const struct vm_operations_struct hugetlb_vm_ops = {
d0217ac0 2902 .fault = hugetlb_vm_op_fault,
84afd99b 2903 .open = hugetlb_vm_op_open,
a1e78772 2904 .close = hugetlb_vm_op_close,
1da177e4
LT
2905};
2906
1e8f889b
DG
2907static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
2908 int writable)
63551ae0
DG
2909{
2910 pte_t entry;
2911
1e8f889b 2912 if (writable) {
106c992a
GS
2913 entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
2914 vma->vm_page_prot)));
63551ae0 2915 } else {
106c992a
GS
2916 entry = huge_pte_wrprotect(mk_huge_pte(page,
2917 vma->vm_page_prot));
63551ae0
DG
2918 }
2919 entry = pte_mkyoung(entry);
2920 entry = pte_mkhuge(entry);
d9ed9faa 2921 entry = arch_make_huge_pte(entry, vma, page, writable);
63551ae0
DG
2922
2923 return entry;
2924}
2925
1e8f889b
DG
2926static void set_huge_ptep_writable(struct vm_area_struct *vma,
2927 unsigned long address, pte_t *ptep)
2928{
2929 pte_t entry;
2930
106c992a 2931 entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
32f84528 2932 if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
4b3073e1 2933 update_mmu_cache(vma, address, ptep);
1e8f889b
DG
2934}
2935
4a705fef
NH
2936static int is_hugetlb_entry_migration(pte_t pte)
2937{
2938 swp_entry_t swp;
2939
2940 if (huge_pte_none(pte) || pte_present(pte))
2941 return 0;
2942 swp = pte_to_swp_entry(pte);
2943 if (non_swap_entry(swp) && is_migration_entry(swp))
2944 return 1;
2945 else
2946 return 0;
2947}
2948
2949static int is_hugetlb_entry_hwpoisoned(pte_t pte)
2950{
2951 swp_entry_t swp;
2952
2953 if (huge_pte_none(pte) || pte_present(pte))
2954 return 0;
2955 swp = pte_to_swp_entry(pte);
2956 if (non_swap_entry(swp) && is_hwpoison_entry(swp))
2957 return 1;
2958 else
2959 return 0;
2960}
1e8f889b 2961
63551ae0
DG
2962int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
2963 struct vm_area_struct *vma)
2964{
2965 pte_t *src_pte, *dst_pte, entry;
2966 struct page *ptepage;
1c59827d 2967 unsigned long addr;
1e8f889b 2968 int cow;
a5516438
AK
2969 struct hstate *h = hstate_vma(vma);
2970 unsigned long sz = huge_page_size(h);
e8569dd2
AS
2971 unsigned long mmun_start; /* For mmu_notifiers */
2972 unsigned long mmun_end; /* For mmu_notifiers */
2973 int ret = 0;
1e8f889b
DG
2974
2975 cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
63551ae0 2976
e8569dd2
AS
2977 mmun_start = vma->vm_start;
2978 mmun_end = vma->vm_end;
2979 if (cow)
2980 mmu_notifier_invalidate_range_start(src, mmun_start, mmun_end);
2981
a5516438 2982 for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
cb900f41 2983 spinlock_t *src_ptl, *dst_ptl;
c74df32c
HD
2984 src_pte = huge_pte_offset(src, addr);
2985 if (!src_pte)
2986 continue;
a5516438 2987 dst_pte = huge_pte_alloc(dst, addr, sz);
e8569dd2
AS
2988 if (!dst_pte) {
2989 ret = -ENOMEM;
2990 break;
2991 }
c5c99429
LW
2992
2993 /* If the pagetables are shared don't copy or take references */
2994 if (dst_pte == src_pte)
2995 continue;
2996
cb900f41
KS
2997 dst_ptl = huge_pte_lock(h, dst, dst_pte);
2998 src_ptl = huge_pte_lockptr(h, src, src_pte);
2999 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
4a705fef
NH
3000 entry = huge_ptep_get(src_pte);
3001 if (huge_pte_none(entry)) { /* skip none entry */
3002 ;
3003 } else if (unlikely(is_hugetlb_entry_migration(entry) ||
3004 is_hugetlb_entry_hwpoisoned(entry))) {
3005 swp_entry_t swp_entry = pte_to_swp_entry(entry);
3006
3007 if (is_write_migration_entry(swp_entry) && cow) {
3008 /*
3009 * COW mappings require pages in both
3010 * parent and child to be set to read.
3011 */
3012 make_migration_entry_read(&swp_entry);
3013 entry = swp_entry_to_pte(swp_entry);
3014 set_huge_pte_at(src, addr, src_pte, entry);
3015 }
3016 set_huge_pte_at(dst, addr, dst_pte, entry);
3017 } else {
34ee645e 3018 if (cow) {
7f2e9525 3019 huge_ptep_set_wrprotect(src, addr, src_pte);
34ee645e
JR
3020 mmu_notifier_invalidate_range(src, mmun_start,
3021 mmun_end);
3022 }
0253d634 3023 entry = huge_ptep_get(src_pte);
1c59827d
HD
3024 ptepage = pte_page(entry);
3025 get_page(ptepage);
0fe6e20b 3026 page_dup_rmap(ptepage);
1c59827d
HD
3027 set_huge_pte_at(dst, addr, dst_pte, entry);
3028 }
cb900f41
KS
3029 spin_unlock(src_ptl);
3030 spin_unlock(dst_ptl);
63551ae0 3031 }
63551ae0 3032
e8569dd2
AS
3033 if (cow)
3034 mmu_notifier_invalidate_range_end(src, mmun_start, mmun_end);
3035
3036 return ret;
63551ae0
DG
3037}
3038
24669e58
AK
3039void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
3040 unsigned long start, unsigned long end,
3041 struct page *ref_page)
63551ae0 3042{
24669e58 3043 int force_flush = 0;
63551ae0
DG
3044 struct mm_struct *mm = vma->vm_mm;
3045 unsigned long address;
c7546f8f 3046 pte_t *ptep;
63551ae0 3047 pte_t pte;
cb900f41 3048 spinlock_t *ptl;
63551ae0 3049 struct page *page;
a5516438
AK
3050 struct hstate *h = hstate_vma(vma);
3051 unsigned long sz = huge_page_size(h);
2ec74c3e
SG
3052 const unsigned long mmun_start = start; /* For mmu_notifiers */
3053 const unsigned long mmun_end = end; /* For mmu_notifiers */
a5516438 3054
63551ae0 3055 WARN_ON(!is_vm_hugetlb_page(vma));
a5516438
AK
3056 BUG_ON(start & ~huge_page_mask(h));
3057 BUG_ON(end & ~huge_page_mask(h));
63551ae0 3058
24669e58 3059 tlb_start_vma(tlb, vma);
2ec74c3e 3060 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
569f48b8 3061 address = start;
24669e58 3062again:
569f48b8 3063 for (; address < end; address += sz) {
c7546f8f 3064 ptep = huge_pte_offset(mm, address);
4c887265 3065 if (!ptep)
c7546f8f
DG
3066 continue;
3067
cb900f41 3068 ptl = huge_pte_lock(h, mm, ptep);
39dde65c 3069 if (huge_pmd_unshare(mm, &address, ptep))
cb900f41 3070 goto unlock;
39dde65c 3071
6629326b
HD
3072 pte = huge_ptep_get(ptep);
3073 if (huge_pte_none(pte))
cb900f41 3074 goto unlock;
6629326b
HD
3075
3076 /*
9fbc1f63
NH
3077 * Migrating hugepage or HWPoisoned hugepage is already
3078 * unmapped and its refcount is dropped, so just clear pte here.
6629326b 3079 */
9fbc1f63 3080 if (unlikely(!pte_present(pte))) {
106c992a 3081 huge_pte_clear(mm, address, ptep);
cb900f41 3082 goto unlock;
8c4894c6 3083 }
6629326b
HD
3084
3085 page = pte_page(pte);
04f2cbe3
MG
3086 /*
3087 * If a reference page is supplied, it is because a specific
3088 * page is being unmapped, not a range. Ensure the page we
3089 * are about to unmap is the actual page of interest.
3090 */
3091 if (ref_page) {
04f2cbe3 3092 if (page != ref_page)
cb900f41 3093 goto unlock;
04f2cbe3
MG
3094
3095 /*
3096 * Mark the VMA as having unmapped its page so that
3097 * future faults in this VMA will fail rather than
3098 * looking like data was lost
3099 */
3100 set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
3101 }
3102
c7546f8f 3103 pte = huge_ptep_get_and_clear(mm, address, ptep);
24669e58 3104 tlb_remove_tlb_entry(tlb, ptep, address);
106c992a 3105 if (huge_pte_dirty(pte))
6649a386 3106 set_page_dirty(page);
9e81130b 3107
24669e58
AK
3108 page_remove_rmap(page);
3109 force_flush = !__tlb_remove_page(tlb, page);
cb900f41 3110 if (force_flush) {
569f48b8 3111 address += sz;
cb900f41 3112 spin_unlock(ptl);
24669e58 3113 break;
cb900f41 3114 }
9e81130b 3115 /* Bail out after unmapping reference page if supplied */
cb900f41
KS
3116 if (ref_page) {
3117 spin_unlock(ptl);
9e81130b 3118 break;
cb900f41
KS
3119 }
3120unlock:
3121 spin_unlock(ptl);
63551ae0 3122 }
24669e58
AK
3123 /*
3124 * mmu_gather ran out of room to batch pages, we break out of
3125 * the PTE lock to avoid doing the potential expensive TLB invalidate
3126 * and page-free while holding it.
3127 */
3128 if (force_flush) {
3129 force_flush = 0;
3130 tlb_flush_mmu(tlb);
3131 if (address < end && !ref_page)
3132 goto again;
fe1668ae 3133 }
2ec74c3e 3134 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
24669e58 3135 tlb_end_vma(tlb, vma);
1da177e4 3136}
63551ae0 3137
d833352a
MG
3138void __unmap_hugepage_range_final(struct mmu_gather *tlb,
3139 struct vm_area_struct *vma, unsigned long start,
3140 unsigned long end, struct page *ref_page)
3141{
3142 __unmap_hugepage_range(tlb, vma, start, end, ref_page);
3143
3144 /*
3145 * Clear this flag so that x86's huge_pmd_share page_table_shareable
3146 * test will fail on a vma being torn down, and not grab a page table
3147 * on its way out. We're lucky that the flag has such an appropriate
3148 * name, and can in fact be safely cleared here. We could clear it
3149 * before the __unmap_hugepage_range above, but all that's necessary
c8c06efa 3150 * is to clear it before releasing the i_mmap_rwsem. This works
d833352a 3151 * because in the context this is called, the VMA is about to be
c8c06efa 3152 * destroyed and the i_mmap_rwsem is held.
d833352a
MG
3153 */
3154 vma->vm_flags &= ~VM_MAYSHARE;
3155}
3156
502717f4 3157void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
04f2cbe3 3158 unsigned long end, struct page *ref_page)
502717f4 3159{
24669e58
AK
3160 struct mm_struct *mm;
3161 struct mmu_gather tlb;
3162
3163 mm = vma->vm_mm;
3164
2b047252 3165 tlb_gather_mmu(&tlb, mm, start, end);
24669e58
AK
3166 __unmap_hugepage_range(&tlb, vma, start, end, ref_page);
3167 tlb_finish_mmu(&tlb, start, end);
502717f4
CK
3168}
3169
04f2cbe3
MG
3170/*
3171 * This is called when the original mapper is failing to COW a MAP_PRIVATE
3172 * mappping it owns the reserve page for. The intention is to unmap the page
3173 * from other VMAs and let the children be SIGKILLed if they are faulting the
3174 * same region.
3175 */
2f4612af
DB
3176static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
3177 struct page *page, unsigned long address)
04f2cbe3 3178{
7526674d 3179 struct hstate *h = hstate_vma(vma);
04f2cbe3
MG
3180 struct vm_area_struct *iter_vma;
3181 struct address_space *mapping;
04f2cbe3
MG
3182 pgoff_t pgoff;
3183
3184 /*
3185 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
3186 * from page cache lookup which is in HPAGE_SIZE units.
3187 */
7526674d 3188 address = address & huge_page_mask(h);
36e4f20a
MH
3189 pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
3190 vma->vm_pgoff;
496ad9aa 3191 mapping = file_inode(vma->vm_file)->i_mapping;
04f2cbe3 3192
4eb2b1dc
MG
3193 /*
3194 * Take the mapping lock for the duration of the table walk. As
3195 * this mapping should be shared between all the VMAs,
3196 * __unmap_hugepage_range() is called as the lock is already held
3197 */
83cde9e8 3198 i_mmap_lock_write(mapping);
6b2dbba8 3199 vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
04f2cbe3
MG
3200 /* Do not unmap the current VMA */
3201 if (iter_vma == vma)
3202 continue;
3203
3204 /*
3205 * Unmap the page from other VMAs without their own reserves.
3206 * They get marked to be SIGKILLed if they fault in these
3207 * areas. This is because a future no-page fault on this VMA
3208 * could insert a zeroed page instead of the data existing
3209 * from the time of fork. This would look like data corruption
3210 */
3211 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
24669e58
AK
3212 unmap_hugepage_range(iter_vma, address,
3213 address + huge_page_size(h), page);
04f2cbe3 3214 }
83cde9e8 3215 i_mmap_unlock_write(mapping);
04f2cbe3
MG
3216}
3217
0fe6e20b
NH
3218/*
3219 * Hugetlb_cow() should be called with page lock of the original hugepage held.
ef009b25
MH
3220 * Called with hugetlb_instantiation_mutex held and pte_page locked so we
3221 * cannot race with other handlers or page migration.
3222 * Keep the pte_same checks anyway to make transition from the mutex easier.
0fe6e20b 3223 */
1e8f889b 3224static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
04f2cbe3 3225 unsigned long address, pte_t *ptep, pte_t pte,
cb900f41 3226 struct page *pagecache_page, spinlock_t *ptl)
1e8f889b 3227{
a5516438 3228 struct hstate *h = hstate_vma(vma);
1e8f889b 3229 struct page *old_page, *new_page;
ad4404a2 3230 int ret = 0, outside_reserve = 0;
2ec74c3e
SG
3231 unsigned long mmun_start; /* For mmu_notifiers */
3232 unsigned long mmun_end; /* For mmu_notifiers */
1e8f889b
DG
3233
3234 old_page = pte_page(pte);
3235
04f2cbe3 3236retry_avoidcopy:
1e8f889b
DG
3237 /* If no-one else is actually using this page, avoid the copy
3238 * and just make the page writable */
37a2140d
JK
3239 if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
3240 page_move_anon_rmap(old_page, vma, address);
1e8f889b 3241 set_huge_ptep_writable(vma, address, ptep);
83c54070 3242 return 0;
1e8f889b
DG
3243 }
3244
04f2cbe3
MG
3245 /*
3246 * If the process that created a MAP_PRIVATE mapping is about to
3247 * perform a COW due to a shared page count, attempt to satisfy
3248 * the allocation without using the existing reserves. The pagecache
3249 * page is used to determine if the reserve at this address was
3250 * consumed or not. If reserves were used, a partial faulted mapping
3251 * at the time of fork() could consume its reserves on COW instead
3252 * of the full address range.
3253 */
5944d011 3254 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
04f2cbe3
MG
3255 old_page != pagecache_page)
3256 outside_reserve = 1;
3257
1e8f889b 3258 page_cache_get(old_page);
b76c8cfb 3259
ad4404a2
DB
3260 /*
3261 * Drop page table lock as buddy allocator may be called. It will
3262 * be acquired again before returning to the caller, as expected.
3263 */
cb900f41 3264 spin_unlock(ptl);
04f2cbe3 3265 new_page = alloc_huge_page(vma, address, outside_reserve);
1e8f889b 3266
2fc39cec 3267 if (IS_ERR(new_page)) {
04f2cbe3
MG
3268 /*
3269 * If a process owning a MAP_PRIVATE mapping fails to COW,
3270 * it is due to references held by a child and an insufficient
3271 * huge page pool. To guarantee the original mappers
3272 * reliability, unmap the page from child processes. The child
3273 * may get SIGKILLed if it later faults.
3274 */
3275 if (outside_reserve) {
ad4404a2 3276 page_cache_release(old_page);
04f2cbe3 3277 BUG_ON(huge_pte_none(pte));
2f4612af
DB
3278 unmap_ref_private(mm, vma, old_page, address);
3279 BUG_ON(huge_pte_none(pte));
3280 spin_lock(ptl);
3281 ptep = huge_pte_offset(mm, address & huge_page_mask(h));
3282 if (likely(ptep &&
3283 pte_same(huge_ptep_get(ptep), pte)))
3284 goto retry_avoidcopy;
3285 /*
3286 * race occurs while re-acquiring page table
3287 * lock, and our job is done.
3288 */
3289 return 0;
04f2cbe3
MG
3290 }
3291
ad4404a2
DB
3292 ret = (PTR_ERR(new_page) == -ENOMEM) ?
3293 VM_FAULT_OOM : VM_FAULT_SIGBUS;
3294 goto out_release_old;
1e8f889b
DG
3295 }
3296
0fe6e20b
NH
3297 /*
3298 * When the original hugepage is shared one, it does not have
3299 * anon_vma prepared.
3300 */
44e2aa93 3301 if (unlikely(anon_vma_prepare(vma))) {
ad4404a2
DB
3302 ret = VM_FAULT_OOM;
3303 goto out_release_all;
44e2aa93 3304 }
0fe6e20b 3305
47ad8475
AA
3306 copy_user_huge_page(new_page, old_page, address, vma,
3307 pages_per_huge_page(h));
0ed361de 3308 __SetPageUptodate(new_page);
bcc54222 3309 set_page_huge_active(new_page);
1e8f889b 3310
2ec74c3e
SG
3311 mmun_start = address & huge_page_mask(h);
3312 mmun_end = mmun_start + huge_page_size(h);
3313 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
ad4404a2 3314
b76c8cfb 3315 /*
cb900f41 3316 * Retake the page table lock to check for racing updates
b76c8cfb
LW
3317 * before the page tables are altered
3318 */
cb900f41 3319 spin_lock(ptl);
a5516438 3320 ptep = huge_pte_offset(mm, address & huge_page_mask(h));
a9af0c5d 3321 if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
07443a85
JK
3322 ClearPagePrivate(new_page);
3323
1e8f889b 3324 /* Break COW */
8fe627ec 3325 huge_ptep_clear_flush(vma, address, ptep);
34ee645e 3326 mmu_notifier_invalidate_range(mm, mmun_start, mmun_end);
1e8f889b
DG
3327 set_huge_pte_at(mm, address, ptep,
3328 make_huge_pte(vma, new_page, 1));
0fe6e20b 3329 page_remove_rmap(old_page);
cd67f0d2 3330 hugepage_add_new_anon_rmap(new_page, vma, address);
1e8f889b
DG
3331 /* Make the old page be freed below */
3332 new_page = old_page;
3333 }
cb900f41 3334 spin_unlock(ptl);
2ec74c3e 3335 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
ad4404a2 3336out_release_all:
1e8f889b 3337 page_cache_release(new_page);
ad4404a2 3338out_release_old:
1e8f889b 3339 page_cache_release(old_page);
8312034f 3340
ad4404a2
DB
3341 spin_lock(ptl); /* Caller expects lock to be held */
3342 return ret;
1e8f889b
DG
3343}
3344
04f2cbe3 3345/* Return the pagecache page at a given address within a VMA */
a5516438
AK
3346static struct page *hugetlbfs_pagecache_page(struct hstate *h,
3347 struct vm_area_struct *vma, unsigned long address)
04f2cbe3
MG
3348{
3349 struct address_space *mapping;
e7c4b0bf 3350 pgoff_t idx;
04f2cbe3
MG
3351
3352 mapping = vma->vm_file->f_mapping;
a5516438 3353 idx = vma_hugecache_offset(h, vma, address);
04f2cbe3
MG
3354
3355 return find_lock_page(mapping, idx);
3356}
3357
3ae77f43
HD
3358/*
3359 * Return whether there is a pagecache page to back given address within VMA.
3360 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
3361 */
3362static bool hugetlbfs_pagecache_present(struct hstate *h,
2a15efc9
HD
3363 struct vm_area_struct *vma, unsigned long address)
3364{
3365 struct address_space *mapping;
3366 pgoff_t idx;
3367 struct page *page;
3368
3369 mapping = vma->vm_file->f_mapping;
3370 idx = vma_hugecache_offset(h, vma, address);
3371
3372 page = find_get_page(mapping, idx);
3373 if (page)
3374 put_page(page);
3375 return page != NULL;
3376}
3377
ab76ad54
MK
3378int huge_add_to_page_cache(struct page *page, struct address_space *mapping,
3379 pgoff_t idx)
3380{
3381 struct inode *inode = mapping->host;
3382 struct hstate *h = hstate_inode(inode);
3383 int err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
3384
3385 if (err)
3386 return err;
3387 ClearPagePrivate(page);
3388
3389 spin_lock(&inode->i_lock);
3390 inode->i_blocks += blocks_per_huge_page(h);
3391 spin_unlock(&inode->i_lock);
3392 return 0;
3393}
3394
a1ed3dda 3395static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
8382d914
DB
3396 struct address_space *mapping, pgoff_t idx,
3397 unsigned long address, pte_t *ptep, unsigned int flags)
ac9b9c66 3398{
a5516438 3399 struct hstate *h = hstate_vma(vma);
ac9b9c66 3400 int ret = VM_FAULT_SIGBUS;
409eb8c2 3401 int anon_rmap = 0;
4c887265 3402 unsigned long size;
4c887265 3403 struct page *page;
1e8f889b 3404 pte_t new_pte;
cb900f41 3405 spinlock_t *ptl;
4c887265 3406
04f2cbe3
MG
3407 /*
3408 * Currently, we are forced to kill the process in the event the
3409 * original mapper has unmapped pages from the child due to a failed
25985edc 3410 * COW. Warn that such a situation has occurred as it may not be obvious
04f2cbe3
MG
3411 */
3412 if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
ffb22af5
AM
3413 pr_warning("PID %d killed due to inadequate hugepage pool\n",
3414 current->pid);
04f2cbe3
MG
3415 return ret;
3416 }
3417
4c887265
AL
3418 /*
3419 * Use page lock to guard against racing truncation
3420 * before we get page_table_lock.
3421 */
6bda666a
CL
3422retry:
3423 page = find_lock_page(mapping, idx);
3424 if (!page) {
a5516438 3425 size = i_size_read(mapping->host) >> huge_page_shift(h);
ebed4bfc
HD
3426 if (idx >= size)
3427 goto out;
04f2cbe3 3428 page = alloc_huge_page(vma, address, 0);
2fc39cec 3429 if (IS_ERR(page)) {
76dcee75
AK
3430 ret = PTR_ERR(page);
3431 if (ret == -ENOMEM)
3432 ret = VM_FAULT_OOM;
3433 else
3434 ret = VM_FAULT_SIGBUS;
6bda666a
CL
3435 goto out;
3436 }
47ad8475 3437 clear_huge_page(page, address, pages_per_huge_page(h));
0ed361de 3438 __SetPageUptodate(page);
bcc54222 3439 set_page_huge_active(page);
ac9b9c66 3440
f83a275d 3441 if (vma->vm_flags & VM_MAYSHARE) {
ab76ad54 3442 int err = huge_add_to_page_cache(page, mapping, idx);
6bda666a
CL
3443 if (err) {
3444 put_page(page);
6bda666a
CL
3445 if (err == -EEXIST)
3446 goto retry;
3447 goto out;
3448 }
23be7468 3449 } else {
6bda666a 3450 lock_page(page);
0fe6e20b
NH
3451 if (unlikely(anon_vma_prepare(vma))) {
3452 ret = VM_FAULT_OOM;
3453 goto backout_unlocked;
3454 }
409eb8c2 3455 anon_rmap = 1;
23be7468 3456 }
0fe6e20b 3457 } else {
998b4382
NH
3458 /*
3459 * If memory error occurs between mmap() and fault, some process
3460 * don't have hwpoisoned swap entry for errored virtual address.
3461 * So we need to block hugepage fault by PG_hwpoison bit check.
3462 */
3463 if (unlikely(PageHWPoison(page))) {
32f84528 3464 ret = VM_FAULT_HWPOISON |
972dc4de 3465 VM_FAULT_SET_HINDEX(hstate_index(h));
998b4382
NH
3466 goto backout_unlocked;
3467 }
6bda666a 3468 }
1e8f889b 3469
57303d80
AW
3470 /*
3471 * If we are going to COW a private mapping later, we examine the
3472 * pending reservations for this page now. This will ensure that
3473 * any allocations necessary to record that reservation occur outside
3474 * the spinlock.
3475 */
5e911373 3476 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
2b26736c
AW
3477 if (vma_needs_reservation(h, vma, address) < 0) {
3478 ret = VM_FAULT_OOM;
3479 goto backout_unlocked;
3480 }
5e911373 3481 /* Just decrements count, does not deallocate */
feba16e2 3482 vma_end_reservation(h, vma, address);
5e911373 3483 }
57303d80 3484
cb900f41
KS
3485 ptl = huge_pte_lockptr(h, mm, ptep);
3486 spin_lock(ptl);
a5516438 3487 size = i_size_read(mapping->host) >> huge_page_shift(h);
4c887265
AL
3488 if (idx >= size)
3489 goto backout;
3490
83c54070 3491 ret = 0;
7f2e9525 3492 if (!huge_pte_none(huge_ptep_get(ptep)))
4c887265
AL
3493 goto backout;
3494
07443a85
JK
3495 if (anon_rmap) {
3496 ClearPagePrivate(page);
409eb8c2 3497 hugepage_add_new_anon_rmap(page, vma, address);
ac714904 3498 } else
409eb8c2 3499 page_dup_rmap(page);
1e8f889b
DG
3500 new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
3501 && (vma->vm_flags & VM_SHARED)));
3502 set_huge_pte_at(mm, address, ptep, new_pte);
3503
788c7df4 3504 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
1e8f889b 3505 /* Optimization, do the COW without a second fault */
cb900f41 3506 ret = hugetlb_cow(mm, vma, address, ptep, new_pte, page, ptl);
1e8f889b
DG
3507 }
3508
cb900f41 3509 spin_unlock(ptl);
4c887265
AL
3510 unlock_page(page);
3511out:
ac9b9c66 3512 return ret;
4c887265
AL
3513
3514backout:
cb900f41 3515 spin_unlock(ptl);
2b26736c 3516backout_unlocked:
4c887265
AL
3517 unlock_page(page);
3518 put_page(page);
3519 goto out;
ac9b9c66
HD
3520}
3521
8382d914 3522#ifdef CONFIG_SMP
c672c7f2 3523u32 hugetlb_fault_mutex_hash(struct hstate *h, struct mm_struct *mm,
8382d914
DB
3524 struct vm_area_struct *vma,
3525 struct address_space *mapping,
3526 pgoff_t idx, unsigned long address)
3527{
3528 unsigned long key[2];
3529 u32 hash;
3530
3531 if (vma->vm_flags & VM_SHARED) {
3532 key[0] = (unsigned long) mapping;
3533 key[1] = idx;
3534 } else {
3535 key[0] = (unsigned long) mm;
3536 key[1] = address >> huge_page_shift(h);
3537 }
3538
3539 hash = jhash2((u32 *)&key, sizeof(key)/sizeof(u32), 0);
3540
3541 return hash & (num_fault_mutexes - 1);
3542}
3543#else
3544/*
3545 * For uniprocesor systems we always use a single mutex, so just
3546 * return 0 and avoid the hashing overhead.
3547 */
c672c7f2 3548u32 hugetlb_fault_mutex_hash(struct hstate *h, struct mm_struct *mm,
8382d914
DB
3549 struct vm_area_struct *vma,
3550 struct address_space *mapping,
3551 pgoff_t idx, unsigned long address)
3552{
3553 return 0;
3554}
3555#endif
3556
86e5216f 3557int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
788c7df4 3558 unsigned long address, unsigned int flags)
86e5216f 3559{
8382d914 3560 pte_t *ptep, entry;
cb900f41 3561 spinlock_t *ptl;
1e8f889b 3562 int ret;
8382d914
DB
3563 u32 hash;
3564 pgoff_t idx;
0fe6e20b 3565 struct page *page = NULL;
57303d80 3566 struct page *pagecache_page = NULL;
a5516438 3567 struct hstate *h = hstate_vma(vma);
8382d914 3568 struct address_space *mapping;
0f792cf9 3569 int need_wait_lock = 0;
86e5216f 3570
1e16a539
KH
3571 address &= huge_page_mask(h);
3572
fd6a03ed
NH
3573 ptep = huge_pte_offset(mm, address);
3574 if (ptep) {
3575 entry = huge_ptep_get(ptep);
290408d4 3576 if (unlikely(is_hugetlb_entry_migration(entry))) {
cb900f41 3577 migration_entry_wait_huge(vma, mm, ptep);
290408d4
NH
3578 return 0;
3579 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
32f84528 3580 return VM_FAULT_HWPOISON_LARGE |
972dc4de 3581 VM_FAULT_SET_HINDEX(hstate_index(h));
fd6a03ed
NH
3582 }
3583
a5516438 3584 ptep = huge_pte_alloc(mm, address, huge_page_size(h));
86e5216f
AL
3585 if (!ptep)
3586 return VM_FAULT_OOM;
3587
8382d914
DB
3588 mapping = vma->vm_file->f_mapping;
3589 idx = vma_hugecache_offset(h, vma, address);
3590
3935baa9
DG
3591 /*
3592 * Serialize hugepage allocation and instantiation, so that we don't
3593 * get spurious allocation failures if two CPUs race to instantiate
3594 * the same page in the page cache.
3595 */
c672c7f2
MK
3596 hash = hugetlb_fault_mutex_hash(h, mm, vma, mapping, idx, address);
3597 mutex_lock(&hugetlb_fault_mutex_table[hash]);
8382d914 3598
7f2e9525
GS
3599 entry = huge_ptep_get(ptep);
3600 if (huge_pte_none(entry)) {
8382d914 3601 ret = hugetlb_no_page(mm, vma, mapping, idx, address, ptep, flags);
b4d1d99f 3602 goto out_mutex;
3935baa9 3603 }
86e5216f 3604
83c54070 3605 ret = 0;
1e8f889b 3606
0f792cf9
NH
3607 /*
3608 * entry could be a migration/hwpoison entry at this point, so this
3609 * check prevents the kernel from going below assuming that we have
3610 * a active hugepage in pagecache. This goto expects the 2nd page fault,
3611 * and is_hugetlb_entry_(migration|hwpoisoned) check will properly
3612 * handle it.
3613 */
3614 if (!pte_present(entry))
3615 goto out_mutex;
3616
57303d80
AW
3617 /*
3618 * If we are going to COW the mapping later, we examine the pending
3619 * reservations for this page now. This will ensure that any
3620 * allocations necessary to record that reservation occur outside the
3621 * spinlock. For private mappings, we also lookup the pagecache
3622 * page now as it is used to determine if a reservation has been
3623 * consumed.
3624 */
106c992a 3625 if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
2b26736c
AW
3626 if (vma_needs_reservation(h, vma, address) < 0) {
3627 ret = VM_FAULT_OOM;
b4d1d99f 3628 goto out_mutex;
2b26736c 3629 }
5e911373 3630 /* Just decrements count, does not deallocate */
feba16e2 3631 vma_end_reservation(h, vma, address);
57303d80 3632
f83a275d 3633 if (!(vma->vm_flags & VM_MAYSHARE))
57303d80
AW
3634 pagecache_page = hugetlbfs_pagecache_page(h,
3635 vma, address);
3636 }
3637
0f792cf9
NH
3638 ptl = huge_pte_lock(h, mm, ptep);
3639
3640 /* Check for a racing update before calling hugetlb_cow */
3641 if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
3642 goto out_ptl;
3643
56c9cfb1
NH
3644 /*
3645 * hugetlb_cow() requires page locks of pte_page(entry) and
3646 * pagecache_page, so here we need take the former one
3647 * when page != pagecache_page or !pagecache_page.
56c9cfb1
NH
3648 */
3649 page = pte_page(entry);
3650 if (page != pagecache_page)
0f792cf9
NH
3651 if (!trylock_page(page)) {
3652 need_wait_lock = 1;
3653 goto out_ptl;
3654 }
b4d1d99f 3655
0f792cf9 3656 get_page(page);
b4d1d99f 3657
788c7df4 3658 if (flags & FAULT_FLAG_WRITE) {
106c992a 3659 if (!huge_pte_write(entry)) {
57303d80 3660 ret = hugetlb_cow(mm, vma, address, ptep, entry,
cb900f41 3661 pagecache_page, ptl);
0f792cf9 3662 goto out_put_page;
b4d1d99f 3663 }
106c992a 3664 entry = huge_pte_mkdirty(entry);
b4d1d99f
DG
3665 }
3666 entry = pte_mkyoung(entry);
788c7df4
HD
3667 if (huge_ptep_set_access_flags(vma, address, ptep, entry,
3668 flags & FAULT_FLAG_WRITE))
4b3073e1 3669 update_mmu_cache(vma, address, ptep);
0f792cf9
NH
3670out_put_page:
3671 if (page != pagecache_page)
3672 unlock_page(page);
3673 put_page(page);
cb900f41
KS
3674out_ptl:
3675 spin_unlock(ptl);
57303d80
AW
3676
3677 if (pagecache_page) {
3678 unlock_page(pagecache_page);
3679 put_page(pagecache_page);
3680 }
b4d1d99f 3681out_mutex:
c672c7f2 3682 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
0f792cf9
NH
3683 /*
3684 * Generally it's safe to hold refcount during waiting page lock. But
3685 * here we just wait to defer the next page fault to avoid busy loop and
3686 * the page is not used after unlocked before returning from the current
3687 * page fault. So we are safe from accessing freed page, even if we wait
3688 * here without taking refcount.
3689 */
3690 if (need_wait_lock)
3691 wait_on_page_locked(page);
1e8f889b 3692 return ret;
86e5216f
AL
3693}
3694
28a35716
ML
3695long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
3696 struct page **pages, struct vm_area_struct **vmas,
3697 unsigned long *position, unsigned long *nr_pages,
3698 long i, unsigned int flags)
63551ae0 3699{
d5d4b0aa
CK
3700 unsigned long pfn_offset;
3701 unsigned long vaddr = *position;
28a35716 3702 unsigned long remainder = *nr_pages;
a5516438 3703 struct hstate *h = hstate_vma(vma);
63551ae0 3704
63551ae0 3705 while (vaddr < vma->vm_end && remainder) {
4c887265 3706 pte_t *pte;
cb900f41 3707 spinlock_t *ptl = NULL;
2a15efc9 3708 int absent;
4c887265 3709 struct page *page;
63551ae0 3710
02057967
DR
3711 /*
3712 * If we have a pending SIGKILL, don't keep faulting pages and
3713 * potentially allocating memory.
3714 */
3715 if (unlikely(fatal_signal_pending(current))) {
3716 remainder = 0;
3717 break;
3718 }
3719
4c887265
AL
3720 /*
3721 * Some archs (sparc64, sh*) have multiple pte_ts to
2a15efc9 3722 * each hugepage. We have to make sure we get the
4c887265 3723 * first, for the page indexing below to work.
cb900f41
KS
3724 *
3725 * Note that page table lock is not held when pte is null.
4c887265 3726 */
a5516438 3727 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h));
cb900f41
KS
3728 if (pte)
3729 ptl = huge_pte_lock(h, mm, pte);
2a15efc9
HD
3730 absent = !pte || huge_pte_none(huge_ptep_get(pte));
3731
3732 /*
3733 * When coredumping, it suits get_dump_page if we just return
3ae77f43
HD
3734 * an error where there's an empty slot with no huge pagecache
3735 * to back it. This way, we avoid allocating a hugepage, and
3736 * the sparse dumpfile avoids allocating disk blocks, but its
3737 * huge holes still show up with zeroes where they need to be.
2a15efc9 3738 */
3ae77f43
HD
3739 if (absent && (flags & FOLL_DUMP) &&
3740 !hugetlbfs_pagecache_present(h, vma, vaddr)) {
cb900f41
KS
3741 if (pte)
3742 spin_unlock(ptl);
2a15efc9
HD
3743 remainder = 0;
3744 break;
3745 }
63551ae0 3746
9cc3a5bd
NH
3747 /*
3748 * We need call hugetlb_fault for both hugepages under migration
3749 * (in which case hugetlb_fault waits for the migration,) and
3750 * hwpoisoned hugepages (in which case we need to prevent the
3751 * caller from accessing to them.) In order to do this, we use
3752 * here is_swap_pte instead of is_hugetlb_entry_migration and
3753 * is_hugetlb_entry_hwpoisoned. This is because it simply covers
3754 * both cases, and because we can't follow correct pages
3755 * directly from any kind of swap entries.
3756 */
3757 if (absent || is_swap_pte(huge_ptep_get(pte)) ||
106c992a
GS
3758 ((flags & FOLL_WRITE) &&
3759 !huge_pte_write(huge_ptep_get(pte)))) {
4c887265 3760 int ret;
63551ae0 3761
cb900f41
KS
3762 if (pte)
3763 spin_unlock(ptl);
2a15efc9
HD
3764 ret = hugetlb_fault(mm, vma, vaddr,
3765 (flags & FOLL_WRITE) ? FAULT_FLAG_WRITE : 0);
a89182c7 3766 if (!(ret & VM_FAULT_ERROR))
4c887265 3767 continue;
63551ae0 3768
4c887265 3769 remainder = 0;
4c887265
AL
3770 break;
3771 }
3772
a5516438 3773 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
7f2e9525 3774 page = pte_page(huge_ptep_get(pte));
d5d4b0aa 3775same_page:
d6692183 3776 if (pages) {
2a15efc9 3777 pages[i] = mem_map_offset(page, pfn_offset);
a0368d4e 3778 get_page_foll(pages[i]);
d6692183 3779 }
63551ae0
DG
3780
3781 if (vmas)
3782 vmas[i] = vma;
3783
3784 vaddr += PAGE_SIZE;
d5d4b0aa 3785 ++pfn_offset;
63551ae0
DG
3786 --remainder;
3787 ++i;
d5d4b0aa 3788 if (vaddr < vma->vm_end && remainder &&
a5516438 3789 pfn_offset < pages_per_huge_page(h)) {
d5d4b0aa
CK
3790 /*
3791 * We use pfn_offset to avoid touching the pageframes
3792 * of this compound page.
3793 */
3794 goto same_page;
3795 }
cb900f41 3796 spin_unlock(ptl);
63551ae0 3797 }
28a35716 3798 *nr_pages = remainder;
63551ae0
DG
3799 *position = vaddr;
3800
2a15efc9 3801 return i ? i : -EFAULT;
63551ae0 3802}
8f860591 3803
7da4d641 3804unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
8f860591
ZY
3805 unsigned long address, unsigned long end, pgprot_t newprot)
3806{
3807 struct mm_struct *mm = vma->vm_mm;
3808 unsigned long start = address;
3809 pte_t *ptep;
3810 pte_t pte;
a5516438 3811 struct hstate *h = hstate_vma(vma);
7da4d641 3812 unsigned long pages = 0;
8f860591
ZY
3813
3814 BUG_ON(address >= end);
3815 flush_cache_range(vma, address, end);
3816
a5338093 3817 mmu_notifier_invalidate_range_start(mm, start, end);
83cde9e8 3818 i_mmap_lock_write(vma->vm_file->f_mapping);
a5516438 3819 for (; address < end; address += huge_page_size(h)) {
cb900f41 3820 spinlock_t *ptl;
8f860591
ZY
3821 ptep = huge_pte_offset(mm, address);
3822 if (!ptep)
3823 continue;
cb900f41 3824 ptl = huge_pte_lock(h, mm, ptep);
7da4d641
PZ
3825 if (huge_pmd_unshare(mm, &address, ptep)) {
3826 pages++;
cb900f41 3827 spin_unlock(ptl);
39dde65c 3828 continue;
7da4d641 3829 }
a8bda28d
NH
3830 pte = huge_ptep_get(ptep);
3831 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
3832 spin_unlock(ptl);
3833 continue;
3834 }
3835 if (unlikely(is_hugetlb_entry_migration(pte))) {
3836 swp_entry_t entry = pte_to_swp_entry(pte);
3837
3838 if (is_write_migration_entry(entry)) {
3839 pte_t newpte;
3840
3841 make_migration_entry_read(&entry);
3842 newpte = swp_entry_to_pte(entry);
3843 set_huge_pte_at(mm, address, ptep, newpte);
3844 pages++;
3845 }
3846 spin_unlock(ptl);
3847 continue;
3848 }
3849 if (!huge_pte_none(pte)) {
8f860591 3850 pte = huge_ptep_get_and_clear(mm, address, ptep);
106c992a 3851 pte = pte_mkhuge(huge_pte_modify(pte, newprot));
be7517d6 3852 pte = arch_make_huge_pte(pte, vma, NULL, 0);
8f860591 3853 set_huge_pte_at(mm, address, ptep, pte);
7da4d641 3854 pages++;
8f860591 3855 }
cb900f41 3856 spin_unlock(ptl);
8f860591 3857 }
d833352a 3858 /*
c8c06efa 3859 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
d833352a 3860 * may have cleared our pud entry and done put_page on the page table:
c8c06efa 3861 * once we release i_mmap_rwsem, another task can do the final put_page
d833352a
MG
3862 * and that page table be reused and filled with junk.
3863 */
8f860591 3864 flush_tlb_range(vma, start, end);
34ee645e 3865 mmu_notifier_invalidate_range(mm, start, end);
83cde9e8 3866 i_mmap_unlock_write(vma->vm_file->f_mapping);
a5338093 3867 mmu_notifier_invalidate_range_end(mm, start, end);
7da4d641
PZ
3868
3869 return pages << h->order;
8f860591
ZY
3870}
3871
a1e78772
MG
3872int hugetlb_reserve_pages(struct inode *inode,
3873 long from, long to,
5a6fe125 3874 struct vm_area_struct *vma,
ca16d140 3875 vm_flags_t vm_flags)
e4e574b7 3876{
17c9d12e 3877 long ret, chg;
a5516438 3878 struct hstate *h = hstate_inode(inode);
90481622 3879 struct hugepage_subpool *spool = subpool_inode(inode);
9119a41e 3880 struct resv_map *resv_map;
1c5ecae3 3881 long gbl_reserve;
e4e574b7 3882
17c9d12e
MG
3883 /*
3884 * Only apply hugepage reservation if asked. At fault time, an
3885 * attempt will be made for VM_NORESERVE to allocate a page
90481622 3886 * without using reserves
17c9d12e 3887 */
ca16d140 3888 if (vm_flags & VM_NORESERVE)
17c9d12e
MG
3889 return 0;
3890
a1e78772
MG
3891 /*
3892 * Shared mappings base their reservation on the number of pages that
3893 * are already allocated on behalf of the file. Private mappings need
3894 * to reserve the full area even if read-only as mprotect() may be
3895 * called to make the mapping read-write. Assume !vma is a shm mapping
3896 */
9119a41e 3897 if (!vma || vma->vm_flags & VM_MAYSHARE) {
4e35f483 3898 resv_map = inode_resv_map(inode);
9119a41e 3899
1406ec9b 3900 chg = region_chg(resv_map, from, to);
9119a41e
JK
3901
3902 } else {
3903 resv_map = resv_map_alloc();
17c9d12e
MG
3904 if (!resv_map)
3905 return -ENOMEM;
3906
a1e78772 3907 chg = to - from;
84afd99b 3908
17c9d12e
MG
3909 set_vma_resv_map(vma, resv_map);
3910 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
3911 }
3912
c50ac050
DH
3913 if (chg < 0) {
3914 ret = chg;
3915 goto out_err;
3916 }
8a630112 3917
1c5ecae3
MK
3918 /*
3919 * There must be enough pages in the subpool for the mapping. If
3920 * the subpool has a minimum size, there may be some global
3921 * reservations already in place (gbl_reserve).
3922 */
3923 gbl_reserve = hugepage_subpool_get_pages(spool, chg);
3924 if (gbl_reserve < 0) {
c50ac050
DH
3925 ret = -ENOSPC;
3926 goto out_err;
3927 }
5a6fe125
MG
3928
3929 /*
17c9d12e 3930 * Check enough hugepages are available for the reservation.
90481622 3931 * Hand the pages back to the subpool if there are not
5a6fe125 3932 */
1c5ecae3 3933 ret = hugetlb_acct_memory(h, gbl_reserve);
68842c9b 3934 if (ret < 0) {
1c5ecae3
MK
3935 /* put back original number of pages, chg */
3936 (void)hugepage_subpool_put_pages(spool, chg);
c50ac050 3937 goto out_err;
68842c9b 3938 }
17c9d12e
MG
3939
3940 /*
3941 * Account for the reservations made. Shared mappings record regions
3942 * that have reservations as they are shared by multiple VMAs.
3943 * When the last VMA disappears, the region map says how much
3944 * the reservation was and the page cache tells how much of
3945 * the reservation was consumed. Private mappings are per-VMA and
3946 * only the consumed reservations are tracked. When the VMA
3947 * disappears, the original reservation is the VMA size and the
3948 * consumed reservations are stored in the map. Hence, nothing
3949 * else has to be done for private mappings here
3950 */
33039678
MK
3951 if (!vma || vma->vm_flags & VM_MAYSHARE) {
3952 long add = region_add(resv_map, from, to);
3953
3954 if (unlikely(chg > add)) {
3955 /*
3956 * pages in this range were added to the reserve
3957 * map between region_chg and region_add. This
3958 * indicates a race with alloc_huge_page. Adjust
3959 * the subpool and reserve counts modified above
3960 * based on the difference.
3961 */
3962 long rsv_adjust;
3963
3964 rsv_adjust = hugepage_subpool_put_pages(spool,
3965 chg - add);
3966 hugetlb_acct_memory(h, -rsv_adjust);
3967 }
3968 }
a43a8c39 3969 return 0;
c50ac050 3970out_err:
5e911373
MK
3971 if (!vma || vma->vm_flags & VM_MAYSHARE)
3972 region_abort(resv_map, from, to);
f031dd27
JK
3973 if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
3974 kref_put(&resv_map->refs, resv_map_release);
c50ac050 3975 return ret;
a43a8c39
CK
3976}
3977
b5cec28d
MK
3978long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
3979 long freed)
a43a8c39 3980{
a5516438 3981 struct hstate *h = hstate_inode(inode);
4e35f483 3982 struct resv_map *resv_map = inode_resv_map(inode);
9119a41e 3983 long chg = 0;
90481622 3984 struct hugepage_subpool *spool = subpool_inode(inode);
1c5ecae3 3985 long gbl_reserve;
45c682a6 3986
b5cec28d
MK
3987 if (resv_map) {
3988 chg = region_del(resv_map, start, end);
3989 /*
3990 * region_del() can fail in the rare case where a region
3991 * must be split and another region descriptor can not be
3992 * allocated. If end == LONG_MAX, it will not fail.
3993 */
3994 if (chg < 0)
3995 return chg;
3996 }
3997
45c682a6 3998 spin_lock(&inode->i_lock);
e4c6f8be 3999 inode->i_blocks -= (blocks_per_huge_page(h) * freed);
45c682a6
KC
4000 spin_unlock(&inode->i_lock);
4001
1c5ecae3
MK
4002 /*
4003 * If the subpool has a minimum size, the number of global
4004 * reservations to be released may be adjusted.
4005 */
4006 gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
4007 hugetlb_acct_memory(h, -gbl_reserve);
b5cec28d
MK
4008
4009 return 0;
a43a8c39 4010}
93f70f90 4011
3212b535
SC
4012#ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
4013static unsigned long page_table_shareable(struct vm_area_struct *svma,
4014 struct vm_area_struct *vma,
4015 unsigned long addr, pgoff_t idx)
4016{
4017 unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
4018 svma->vm_start;
4019 unsigned long sbase = saddr & PUD_MASK;
4020 unsigned long s_end = sbase + PUD_SIZE;
4021
4022 /* Allow segments to share if only one is marked locked */
4023 unsigned long vm_flags = vma->vm_flags & ~VM_LOCKED;
4024 unsigned long svm_flags = svma->vm_flags & ~VM_LOCKED;
4025
4026 /*
4027 * match the virtual addresses, permission and the alignment of the
4028 * page table page.
4029 */
4030 if (pmd_index(addr) != pmd_index(saddr) ||
4031 vm_flags != svm_flags ||
4032 sbase < svma->vm_start || svma->vm_end < s_end)
4033 return 0;
4034
4035 return saddr;
4036}
4037
31aafb45 4038static bool vma_shareable(struct vm_area_struct *vma, unsigned long addr)
3212b535
SC
4039{
4040 unsigned long base = addr & PUD_MASK;
4041 unsigned long end = base + PUD_SIZE;
4042
4043 /*
4044 * check on proper vm_flags and page table alignment
4045 */
4046 if (vma->vm_flags & VM_MAYSHARE &&
4047 vma->vm_start <= base && end <= vma->vm_end)
31aafb45
NK
4048 return true;
4049 return false;
3212b535
SC
4050}
4051
4052/*
4053 * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
4054 * and returns the corresponding pte. While this is not necessary for the
4055 * !shared pmd case because we can allocate the pmd later as well, it makes the
4056 * code much cleaner. pmd allocation is essential for the shared case because
c8c06efa 4057 * pud has to be populated inside the same i_mmap_rwsem section - otherwise
3212b535
SC
4058 * racing tasks could either miss the sharing (see huge_pte_offset) or select a
4059 * bad pmd for sharing.
4060 */
4061pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
4062{
4063 struct vm_area_struct *vma = find_vma(mm, addr);
4064 struct address_space *mapping = vma->vm_file->f_mapping;
4065 pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
4066 vma->vm_pgoff;
4067 struct vm_area_struct *svma;
4068 unsigned long saddr;
4069 pte_t *spte = NULL;
4070 pte_t *pte;
cb900f41 4071 spinlock_t *ptl;
3212b535
SC
4072
4073 if (!vma_shareable(vma, addr))
4074 return (pte_t *)pmd_alloc(mm, pud, addr);
4075
83cde9e8 4076 i_mmap_lock_write(mapping);
3212b535
SC
4077 vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
4078 if (svma == vma)
4079 continue;
4080
4081 saddr = page_table_shareable(svma, vma, addr, idx);
4082 if (saddr) {
4083 spte = huge_pte_offset(svma->vm_mm, saddr);
4084 if (spte) {
dc6c9a35 4085 mm_inc_nr_pmds(mm);
3212b535
SC
4086 get_page(virt_to_page(spte));
4087 break;
4088 }
4089 }
4090 }
4091
4092 if (!spte)
4093 goto out;
4094
cb900f41
KS
4095 ptl = huge_pte_lockptr(hstate_vma(vma), mm, spte);
4096 spin_lock(ptl);
dc6c9a35 4097 if (pud_none(*pud)) {
3212b535
SC
4098 pud_populate(mm, pud,
4099 (pmd_t *)((unsigned long)spte & PAGE_MASK));
dc6c9a35 4100 } else {
3212b535 4101 put_page(virt_to_page(spte));
dc6c9a35
KS
4102 mm_inc_nr_pmds(mm);
4103 }
cb900f41 4104 spin_unlock(ptl);
3212b535
SC
4105out:
4106 pte = (pte_t *)pmd_alloc(mm, pud, addr);
83cde9e8 4107 i_mmap_unlock_write(mapping);
3212b535
SC
4108 return pte;
4109}
4110
4111/*
4112 * unmap huge page backed by shared pte.
4113 *
4114 * Hugetlb pte page is ref counted at the time of mapping. If pte is shared
4115 * indicated by page_count > 1, unmap is achieved by clearing pud and
4116 * decrementing the ref count. If count == 1, the pte page is not shared.
4117 *
cb900f41 4118 * called with page table lock held.
3212b535
SC
4119 *
4120 * returns: 1 successfully unmapped a shared pte page
4121 * 0 the underlying pte page is not shared, or it is the last user
4122 */
4123int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
4124{
4125 pgd_t *pgd = pgd_offset(mm, *addr);
4126 pud_t *pud = pud_offset(pgd, *addr);
4127
4128 BUG_ON(page_count(virt_to_page(ptep)) == 0);
4129 if (page_count(virt_to_page(ptep)) == 1)
4130 return 0;
4131
4132 pud_clear(pud);
4133 put_page(virt_to_page(ptep));
dc6c9a35 4134 mm_dec_nr_pmds(mm);
3212b535
SC
4135 *addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE;
4136 return 1;
4137}
9e5fc74c
SC
4138#define want_pmd_share() (1)
4139#else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
4140pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
4141{
4142 return NULL;
4143}
e81f2d22
ZZ
4144
4145int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
4146{
4147 return 0;
4148}
9e5fc74c 4149#define want_pmd_share() (0)
3212b535
SC
4150#endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
4151
9e5fc74c
SC
4152#ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
4153pte_t *huge_pte_alloc(struct mm_struct *mm,
4154 unsigned long addr, unsigned long sz)
4155{
4156 pgd_t *pgd;
4157 pud_t *pud;
4158 pte_t *pte = NULL;
4159
4160 pgd = pgd_offset(mm, addr);
4161 pud = pud_alloc(mm, pgd, addr);
4162 if (pud) {
4163 if (sz == PUD_SIZE) {
4164 pte = (pte_t *)pud;
4165 } else {
4166 BUG_ON(sz != PMD_SIZE);
4167 if (want_pmd_share() && pud_none(*pud))
4168 pte = huge_pmd_share(mm, addr, pud);
4169 else
4170 pte = (pte_t *)pmd_alloc(mm, pud, addr);
4171 }
4172 }
4173 BUG_ON(pte && !pte_none(*pte) && !pte_huge(*pte));
4174
4175 return pte;
4176}
4177
4178pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr)
4179{
4180 pgd_t *pgd;
4181 pud_t *pud;
4182 pmd_t *pmd = NULL;
4183
4184 pgd = pgd_offset(mm, addr);
4185 if (pgd_present(*pgd)) {
4186 pud = pud_offset(pgd, addr);
4187 if (pud_present(*pud)) {
4188 if (pud_huge(*pud))
4189 return (pte_t *)pud;
4190 pmd = pmd_offset(pud, addr);
4191 }
4192 }
4193 return (pte_t *) pmd;
4194}
4195
61f77eda
NH
4196#endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
4197
4198/*
4199 * These functions are overwritable if your architecture needs its own
4200 * behavior.
4201 */
4202struct page * __weak
4203follow_huge_addr(struct mm_struct *mm, unsigned long address,
4204 int write)
4205{
4206 return ERR_PTR(-EINVAL);
4207}
4208
4209struct page * __weak
9e5fc74c 4210follow_huge_pmd(struct mm_struct *mm, unsigned long address,
e66f17ff 4211 pmd_t *pmd, int flags)
9e5fc74c 4212{
e66f17ff
NH
4213 struct page *page = NULL;
4214 spinlock_t *ptl;
4215retry:
4216 ptl = pmd_lockptr(mm, pmd);
4217 spin_lock(ptl);
4218 /*
4219 * make sure that the address range covered by this pmd is not
4220 * unmapped from other threads.
4221 */
4222 if (!pmd_huge(*pmd))
4223 goto out;
4224 if (pmd_present(*pmd)) {
97534127 4225 page = pmd_page(*pmd) + ((address & ~PMD_MASK) >> PAGE_SHIFT);
e66f17ff
NH
4226 if (flags & FOLL_GET)
4227 get_page(page);
4228 } else {
4229 if (is_hugetlb_entry_migration(huge_ptep_get((pte_t *)pmd))) {
4230 spin_unlock(ptl);
4231 __migration_entry_wait(mm, (pte_t *)pmd, ptl);
4232 goto retry;
4233 }
4234 /*
4235 * hwpoisoned entry is treated as no_page_table in
4236 * follow_page_mask().
4237 */
4238 }
4239out:
4240 spin_unlock(ptl);
9e5fc74c
SC
4241 return page;
4242}
4243
61f77eda 4244struct page * __weak
9e5fc74c 4245follow_huge_pud(struct mm_struct *mm, unsigned long address,
e66f17ff 4246 pud_t *pud, int flags)
9e5fc74c 4247{
e66f17ff
NH
4248 if (flags & FOLL_GET)
4249 return NULL;
9e5fc74c 4250
e66f17ff 4251 return pte_page(*(pte_t *)pud) + ((address & ~PUD_MASK) >> PAGE_SHIFT);
9e5fc74c
SC
4252}
4253
d5bd9106
AK
4254#ifdef CONFIG_MEMORY_FAILURE
4255
93f70f90
NH
4256/*
4257 * This function is called from memory failure code.
4258 * Assume the caller holds page lock of the head page.
4259 */
6de2b1aa 4260int dequeue_hwpoisoned_huge_page(struct page *hpage)
93f70f90
NH
4261{
4262 struct hstate *h = page_hstate(hpage);
4263 int nid = page_to_nid(hpage);
6de2b1aa 4264 int ret = -EBUSY;
93f70f90
NH
4265
4266 spin_lock(&hugetlb_lock);
7e1f049e
NH
4267 /*
4268 * Just checking !page_huge_active is not enough, because that could be
4269 * an isolated/hwpoisoned hugepage (which have >0 refcount).
4270 */
4271 if (!page_huge_active(hpage) && !page_count(hpage)) {
56f2fb14
NH
4272 /*
4273 * Hwpoisoned hugepage isn't linked to activelist or freelist,
4274 * but dangling hpage->lru can trigger list-debug warnings
4275 * (this happens when we call unpoison_memory() on it),
4276 * so let it point to itself with list_del_init().
4277 */
4278 list_del_init(&hpage->lru);
8c6c2ecb 4279 set_page_refcounted(hpage);
6de2b1aa
NH
4280 h->free_huge_pages--;
4281 h->free_huge_pages_node[nid]--;
4282 ret = 0;
4283 }
93f70f90 4284 spin_unlock(&hugetlb_lock);
6de2b1aa 4285 return ret;
93f70f90 4286}
6de2b1aa 4287#endif
31caf665
NH
4288
4289bool isolate_huge_page(struct page *page, struct list_head *list)
4290{
bcc54222
NH
4291 bool ret = true;
4292
309381fe 4293 VM_BUG_ON_PAGE(!PageHead(page), page);
31caf665 4294 spin_lock(&hugetlb_lock);
bcc54222
NH
4295 if (!page_huge_active(page) || !get_page_unless_zero(page)) {
4296 ret = false;
4297 goto unlock;
4298 }
4299 clear_page_huge_active(page);
31caf665 4300 list_move_tail(&page->lru, list);
bcc54222 4301unlock:
31caf665 4302 spin_unlock(&hugetlb_lock);
bcc54222 4303 return ret;
31caf665
NH
4304}
4305
4306void putback_active_hugepage(struct page *page)
4307{
309381fe 4308 VM_BUG_ON_PAGE(!PageHead(page), page);
31caf665 4309 spin_lock(&hugetlb_lock);
bcc54222 4310 set_page_huge_active(page);
31caf665
NH
4311 list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
4312 spin_unlock(&hugetlb_lock);
4313 put_page(page);
4314}