mm, hugetlb: unify region structure handling
[linux-2.6-block.git] / mm / hugetlb.c
CommitLineData
1da177e4
LT
1/*
2 * Generic hugetlb support.
6d49e352 3 * (C) Nadia Yvette Chambers, April 2004
1da177e4 4 */
1da177e4
LT
5#include <linux/list.h>
6#include <linux/init.h>
7#include <linux/module.h>
8#include <linux/mm.h>
e1759c21 9#include <linux/seq_file.h>
1da177e4
LT
10#include <linux/sysctl.h>
11#include <linux/highmem.h>
cddb8a5c 12#include <linux/mmu_notifier.h>
1da177e4 13#include <linux/nodemask.h>
63551ae0 14#include <linux/pagemap.h>
5da7ca86 15#include <linux/mempolicy.h>
aea47ff3 16#include <linux/cpuset.h>
3935baa9 17#include <linux/mutex.h>
aa888a74 18#include <linux/bootmem.h>
a3437870 19#include <linux/sysfs.h>
5a0e3ad6 20#include <linux/slab.h>
0fe6e20b 21#include <linux/rmap.h>
fd6a03ed
NH
22#include <linux/swap.h>
23#include <linux/swapops.h>
c8721bbb 24#include <linux/page-isolation.h>
d6606683 25
63551ae0
DG
26#include <asm/page.h>
27#include <asm/pgtable.h>
24669e58 28#include <asm/tlb.h>
63551ae0 29
24669e58 30#include <linux/io.h>
63551ae0 31#include <linux/hugetlb.h>
9dd540e2 32#include <linux/hugetlb_cgroup.h>
9a305230 33#include <linux/node.h>
7835e98b 34#include "internal.h"
1da177e4
LT
35
36const unsigned long hugetlb_zero = 0, hugetlb_infinity = ~0UL;
396faf03 37unsigned long hugepages_treat_as_movable;
a5516438 38
c3f38a38 39int hugetlb_max_hstate __read_mostly;
e5ff2159
AK
40unsigned int default_hstate_idx;
41struct hstate hstates[HUGE_MAX_HSTATE];
42
53ba51d2
JT
43__initdata LIST_HEAD(huge_boot_pages);
44
e5ff2159
AK
45/* for command line parsing */
46static struct hstate * __initdata parsed_hstate;
47static unsigned long __initdata default_hstate_max_huge_pages;
e11bfbfc 48static unsigned long __initdata default_hstate_size;
e5ff2159 49
3935baa9 50/*
31caf665
NH
51 * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
52 * free_huge_pages, and surplus_huge_pages.
3935baa9 53 */
c3f38a38 54DEFINE_SPINLOCK(hugetlb_lock);
0bd0f9fb 55
90481622
DG
56static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
57{
58 bool free = (spool->count == 0) && (spool->used_hpages == 0);
59
60 spin_unlock(&spool->lock);
61
62 /* If no pages are used, and no other handles to the subpool
63 * remain, free the subpool the subpool remain */
64 if (free)
65 kfree(spool);
66}
67
68struct hugepage_subpool *hugepage_new_subpool(long nr_blocks)
69{
70 struct hugepage_subpool *spool;
71
72 spool = kmalloc(sizeof(*spool), GFP_KERNEL);
73 if (!spool)
74 return NULL;
75
76 spin_lock_init(&spool->lock);
77 spool->count = 1;
78 spool->max_hpages = nr_blocks;
79 spool->used_hpages = 0;
80
81 return spool;
82}
83
84void hugepage_put_subpool(struct hugepage_subpool *spool)
85{
86 spin_lock(&spool->lock);
87 BUG_ON(!spool->count);
88 spool->count--;
89 unlock_or_release_subpool(spool);
90}
91
92static int hugepage_subpool_get_pages(struct hugepage_subpool *spool,
93 long delta)
94{
95 int ret = 0;
96
97 if (!spool)
98 return 0;
99
100 spin_lock(&spool->lock);
101 if ((spool->used_hpages + delta) <= spool->max_hpages) {
102 spool->used_hpages += delta;
103 } else {
104 ret = -ENOMEM;
105 }
106 spin_unlock(&spool->lock);
107
108 return ret;
109}
110
111static void hugepage_subpool_put_pages(struct hugepage_subpool *spool,
112 long delta)
113{
114 if (!spool)
115 return;
116
117 spin_lock(&spool->lock);
118 spool->used_hpages -= delta;
119 /* If hugetlbfs_put_super couldn't free spool due to
120 * an outstanding quota reference, free it now. */
121 unlock_or_release_subpool(spool);
122}
123
124static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
125{
126 return HUGETLBFS_SB(inode->i_sb)->spool;
127}
128
129static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
130{
496ad9aa 131 return subpool_inode(file_inode(vma->vm_file));
90481622
DG
132}
133
96822904
AW
134/*
135 * Region tracking -- allows tracking of reservations and instantiated pages
136 * across the pages in a mapping.
84afd99b
AW
137 *
138 * The region data structures are protected by a combination of the mmap_sem
c748c262 139 * and the hugetlb_instantiation_mutex. To access or modify a region the caller
84afd99b 140 * must either hold the mmap_sem for write, or the mmap_sem for read and
c748c262 141 * the hugetlb_instantiation_mutex:
84afd99b 142 *
32f84528 143 * down_write(&mm->mmap_sem);
84afd99b 144 * or
32f84528
CF
145 * down_read(&mm->mmap_sem);
146 * mutex_lock(&hugetlb_instantiation_mutex);
96822904
AW
147 */
148struct file_region {
149 struct list_head link;
150 long from;
151 long to;
152};
153
154static long region_add(struct list_head *head, long f, long t)
155{
156 struct file_region *rg, *nrg, *trg;
157
158 /* Locate the region we are either in or before. */
159 list_for_each_entry(rg, head, link)
160 if (f <= rg->to)
161 break;
162
163 /* Round our left edge to the current segment if it encloses us. */
164 if (f > rg->from)
165 f = rg->from;
166
167 /* Check for and consume any regions we now overlap with. */
168 nrg = rg;
169 list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
170 if (&rg->link == head)
171 break;
172 if (rg->from > t)
173 break;
174
175 /* If this area reaches higher then extend our area to
176 * include it completely. If this is not the first area
177 * which we intend to reuse, free it. */
178 if (rg->to > t)
179 t = rg->to;
180 if (rg != nrg) {
181 list_del(&rg->link);
182 kfree(rg);
183 }
184 }
185 nrg->from = f;
186 nrg->to = t;
187 return 0;
188}
189
190static long region_chg(struct list_head *head, long f, long t)
191{
192 struct file_region *rg, *nrg;
193 long chg = 0;
194
195 /* Locate the region we are before or in. */
196 list_for_each_entry(rg, head, link)
197 if (f <= rg->to)
198 break;
199
200 /* If we are below the current region then a new region is required.
201 * Subtle, allocate a new region at the position but make it zero
202 * size such that we can guarantee to record the reservation. */
203 if (&rg->link == head || t < rg->from) {
204 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
205 if (!nrg)
206 return -ENOMEM;
207 nrg->from = f;
208 nrg->to = f;
209 INIT_LIST_HEAD(&nrg->link);
210 list_add(&nrg->link, rg->link.prev);
211
212 return t - f;
213 }
214
215 /* Round our left edge to the current segment if it encloses us. */
216 if (f > rg->from)
217 f = rg->from;
218 chg = t - f;
219
220 /* Check for and consume any regions we now overlap with. */
221 list_for_each_entry(rg, rg->link.prev, link) {
222 if (&rg->link == head)
223 break;
224 if (rg->from > t)
225 return chg;
226
25985edc 227 /* We overlap with this area, if it extends further than
96822904
AW
228 * us then we must extend ourselves. Account for its
229 * existing reservation. */
230 if (rg->to > t) {
231 chg += rg->to - t;
232 t = rg->to;
233 }
234 chg -= rg->to - rg->from;
235 }
236 return chg;
237}
238
239static long region_truncate(struct list_head *head, long end)
240{
241 struct file_region *rg, *trg;
242 long chg = 0;
243
244 /* Locate the region we are either in or before. */
245 list_for_each_entry(rg, head, link)
246 if (end <= rg->to)
247 break;
248 if (&rg->link == head)
249 return 0;
250
251 /* If we are in the middle of a region then adjust it. */
252 if (end > rg->from) {
253 chg = rg->to - end;
254 rg->to = end;
255 rg = list_entry(rg->link.next, typeof(*rg), link);
256 }
257
258 /* Drop any remaining regions. */
259 list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
260 if (&rg->link == head)
261 break;
262 chg += rg->to - rg->from;
263 list_del(&rg->link);
264 kfree(rg);
265 }
266 return chg;
267}
268
84afd99b
AW
269static long region_count(struct list_head *head, long f, long t)
270{
271 struct file_region *rg;
272 long chg = 0;
273
274 /* Locate each segment we overlap with, and count that overlap. */
275 list_for_each_entry(rg, head, link) {
f2135a4a
WSH
276 long seg_from;
277 long seg_to;
84afd99b
AW
278
279 if (rg->to <= f)
280 continue;
281 if (rg->from >= t)
282 break;
283
284 seg_from = max(rg->from, f);
285 seg_to = min(rg->to, t);
286
287 chg += seg_to - seg_from;
288 }
289
290 return chg;
291}
292
e7c4b0bf
AW
293/*
294 * Convert the address within this vma to the page offset within
295 * the mapping, in pagecache page units; huge pages here.
296 */
a5516438
AK
297static pgoff_t vma_hugecache_offset(struct hstate *h,
298 struct vm_area_struct *vma, unsigned long address)
e7c4b0bf 299{
a5516438
AK
300 return ((address - vma->vm_start) >> huge_page_shift(h)) +
301 (vma->vm_pgoff >> huge_page_order(h));
e7c4b0bf
AW
302}
303
0fe6e20b
NH
304pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
305 unsigned long address)
306{
307 return vma_hugecache_offset(hstate_vma(vma), vma, address);
308}
309
08fba699
MG
310/*
311 * Return the size of the pages allocated when backing a VMA. In the majority
312 * cases this will be same size as used by the page table entries.
313 */
314unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
315{
316 struct hstate *hstate;
317
318 if (!is_vm_hugetlb_page(vma))
319 return PAGE_SIZE;
320
321 hstate = hstate_vma(vma);
322
2415cf12 323 return 1UL << huge_page_shift(hstate);
08fba699 324}
f340ca0f 325EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
08fba699 326
3340289d
MG
327/*
328 * Return the page size being used by the MMU to back a VMA. In the majority
329 * of cases, the page size used by the kernel matches the MMU size. On
330 * architectures where it differs, an architecture-specific version of this
331 * function is required.
332 */
333#ifndef vma_mmu_pagesize
334unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
335{
336 return vma_kernel_pagesize(vma);
337}
338#endif
339
84afd99b
AW
340/*
341 * Flags for MAP_PRIVATE reservations. These are stored in the bottom
342 * bits of the reservation map pointer, which are always clear due to
343 * alignment.
344 */
345#define HPAGE_RESV_OWNER (1UL << 0)
346#define HPAGE_RESV_UNMAPPED (1UL << 1)
04f2cbe3 347#define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
84afd99b 348
a1e78772
MG
349/*
350 * These helpers are used to track how many pages are reserved for
351 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
352 * is guaranteed to have their future faults succeed.
353 *
354 * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
355 * the reserve counters are updated with the hugetlb_lock held. It is safe
356 * to reset the VMA at fork() time as it is not in use yet and there is no
357 * chance of the global counters getting corrupted as a result of the values.
84afd99b
AW
358 *
359 * The private mapping reservation is represented in a subtly different
360 * manner to a shared mapping. A shared mapping has a region map associated
361 * with the underlying file, this region map represents the backing file
362 * pages which have ever had a reservation assigned which this persists even
363 * after the page is instantiated. A private mapping has a region map
364 * associated with the original mmap which is attached to all VMAs which
365 * reference it, this region map represents those offsets which have consumed
366 * reservation ie. where pages have been instantiated.
a1e78772 367 */
e7c4b0bf
AW
368static unsigned long get_vma_private_data(struct vm_area_struct *vma)
369{
370 return (unsigned long)vma->vm_private_data;
371}
372
373static void set_vma_private_data(struct vm_area_struct *vma,
374 unsigned long value)
375{
376 vma->vm_private_data = (void *)value;
377}
378
9119a41e 379struct resv_map *resv_map_alloc(void)
84afd99b
AW
380{
381 struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
382 if (!resv_map)
383 return NULL;
384
385 kref_init(&resv_map->refs);
386 INIT_LIST_HEAD(&resv_map->regions);
387
388 return resv_map;
389}
390
9119a41e 391void resv_map_release(struct kref *ref)
84afd99b
AW
392{
393 struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
394
395 /* Clear out any active regions before we release the map. */
396 region_truncate(&resv_map->regions, 0);
397 kfree(resv_map);
398}
399
400static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
a1e78772
MG
401{
402 VM_BUG_ON(!is_vm_hugetlb_page(vma));
f83a275d 403 if (!(vma->vm_flags & VM_MAYSHARE))
84afd99b
AW
404 return (struct resv_map *)(get_vma_private_data(vma) &
405 ~HPAGE_RESV_MASK);
2a4b3ded 406 return NULL;
a1e78772
MG
407}
408
84afd99b 409static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
a1e78772
MG
410{
411 VM_BUG_ON(!is_vm_hugetlb_page(vma));
f83a275d 412 VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
a1e78772 413
84afd99b
AW
414 set_vma_private_data(vma, (get_vma_private_data(vma) &
415 HPAGE_RESV_MASK) | (unsigned long)map);
04f2cbe3
MG
416}
417
418static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
419{
04f2cbe3 420 VM_BUG_ON(!is_vm_hugetlb_page(vma));
f83a275d 421 VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
e7c4b0bf
AW
422
423 set_vma_private_data(vma, get_vma_private_data(vma) | flags);
04f2cbe3
MG
424}
425
426static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
427{
428 VM_BUG_ON(!is_vm_hugetlb_page(vma));
e7c4b0bf
AW
429
430 return (get_vma_private_data(vma) & flag) != 0;
a1e78772
MG
431}
432
04f2cbe3 433/* Reset counters to 0 and clear all HPAGE_RESV_* flags */
a1e78772
MG
434void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
435{
436 VM_BUG_ON(!is_vm_hugetlb_page(vma));
f83a275d 437 if (!(vma->vm_flags & VM_MAYSHARE))
a1e78772
MG
438 vma->vm_private_data = (void *)0;
439}
440
441/* Returns true if the VMA has associated reserve pages */
af0ed73e 442static int vma_has_reserves(struct vm_area_struct *vma, long chg)
a1e78772 443{
af0ed73e
JK
444 if (vma->vm_flags & VM_NORESERVE) {
445 /*
446 * This address is already reserved by other process(chg == 0),
447 * so, we should decrement reserved count. Without decrementing,
448 * reserve count remains after releasing inode, because this
449 * allocated page will go into page cache and is regarded as
450 * coming from reserved pool in releasing step. Currently, we
451 * don't have any other solution to deal with this situation
452 * properly, so add work-around here.
453 */
454 if (vma->vm_flags & VM_MAYSHARE && chg == 0)
455 return 1;
456 else
457 return 0;
458 }
a63884e9
JK
459
460 /* Shared mappings always use reserves */
f83a275d 461 if (vma->vm_flags & VM_MAYSHARE)
7f09ca51 462 return 1;
a63884e9
JK
463
464 /*
465 * Only the process that called mmap() has reserves for
466 * private mappings.
467 */
7f09ca51
MG
468 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER))
469 return 1;
a63884e9 470
7f09ca51 471 return 0;
a1e78772
MG
472}
473
a5516438 474static void enqueue_huge_page(struct hstate *h, struct page *page)
1da177e4
LT
475{
476 int nid = page_to_nid(page);
0edaecfa 477 list_move(&page->lru, &h->hugepage_freelists[nid]);
a5516438
AK
478 h->free_huge_pages++;
479 h->free_huge_pages_node[nid]++;
1da177e4
LT
480}
481
bf50bab2
NH
482static struct page *dequeue_huge_page_node(struct hstate *h, int nid)
483{
484 struct page *page;
485
c8721bbb
NH
486 list_for_each_entry(page, &h->hugepage_freelists[nid], lru)
487 if (!is_migrate_isolate_page(page))
488 break;
489 /*
490 * if 'non-isolated free hugepage' not found on the list,
491 * the allocation fails.
492 */
493 if (&h->hugepage_freelists[nid] == &page->lru)
bf50bab2 494 return NULL;
0edaecfa 495 list_move(&page->lru, &h->hugepage_activelist);
a9869b83 496 set_page_refcounted(page);
bf50bab2
NH
497 h->free_huge_pages--;
498 h->free_huge_pages_node[nid]--;
499 return page;
500}
501
86cdb465
NH
502/* Movability of hugepages depends on migration support. */
503static inline gfp_t htlb_alloc_mask(struct hstate *h)
504{
505 if (hugepages_treat_as_movable || hugepage_migration_support(h))
506 return GFP_HIGHUSER_MOVABLE;
507 else
508 return GFP_HIGHUSER;
509}
510
a5516438
AK
511static struct page *dequeue_huge_page_vma(struct hstate *h,
512 struct vm_area_struct *vma,
af0ed73e
JK
513 unsigned long address, int avoid_reserve,
514 long chg)
1da177e4 515{
b1c12cbc 516 struct page *page = NULL;
480eccf9 517 struct mempolicy *mpol;
19770b32 518 nodemask_t *nodemask;
c0ff7453 519 struct zonelist *zonelist;
dd1a239f
MG
520 struct zone *zone;
521 struct zoneref *z;
cc9a6c87 522 unsigned int cpuset_mems_cookie;
1da177e4 523
a1e78772
MG
524 /*
525 * A child process with MAP_PRIVATE mappings created by their parent
526 * have no page reserves. This check ensures that reservations are
527 * not "stolen". The child may still get SIGKILLed
528 */
af0ed73e 529 if (!vma_has_reserves(vma, chg) &&
a5516438 530 h->free_huge_pages - h->resv_huge_pages == 0)
c0ff7453 531 goto err;
a1e78772 532
04f2cbe3 533 /* If reserves cannot be used, ensure enough pages are in the pool */
a5516438 534 if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
6eab04a8 535 goto err;
04f2cbe3 536
9966c4bb 537retry_cpuset:
d26914d1 538 cpuset_mems_cookie = read_mems_allowed_begin();
9966c4bb 539 zonelist = huge_zonelist(vma, address,
86cdb465 540 htlb_alloc_mask(h), &mpol, &nodemask);
9966c4bb 541
19770b32
MG
542 for_each_zone_zonelist_nodemask(zone, z, zonelist,
543 MAX_NR_ZONES - 1, nodemask) {
86cdb465 544 if (cpuset_zone_allowed_softwall(zone, htlb_alloc_mask(h))) {
bf50bab2
NH
545 page = dequeue_huge_page_node(h, zone_to_nid(zone));
546 if (page) {
af0ed73e
JK
547 if (avoid_reserve)
548 break;
549 if (!vma_has_reserves(vma, chg))
550 break;
551
07443a85 552 SetPagePrivate(page);
af0ed73e 553 h->resv_huge_pages--;
bf50bab2
NH
554 break;
555 }
3abf7afd 556 }
1da177e4 557 }
cc9a6c87 558
52cd3b07 559 mpol_cond_put(mpol);
d26914d1 560 if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie)))
cc9a6c87 561 goto retry_cpuset;
1da177e4 562 return page;
cc9a6c87
MG
563
564err:
cc9a6c87 565 return NULL;
1da177e4
LT
566}
567
a5516438 568static void update_and_free_page(struct hstate *h, struct page *page)
6af2acb6
AL
569{
570 int i;
a5516438 571
18229df5
AW
572 VM_BUG_ON(h->order >= MAX_ORDER);
573
a5516438
AK
574 h->nr_huge_pages--;
575 h->nr_huge_pages_node[page_to_nid(page)]--;
576 for (i = 0; i < pages_per_huge_page(h); i++) {
32f84528
CF
577 page[i].flags &= ~(1 << PG_locked | 1 << PG_error |
578 1 << PG_referenced | 1 << PG_dirty |
579 1 << PG_active | 1 << PG_reserved |
580 1 << PG_private | 1 << PG_writeback);
6af2acb6 581 }
309381fe 582 VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page);
6af2acb6
AL
583 set_compound_page_dtor(page, NULL);
584 set_page_refcounted(page);
7f2e9525 585 arch_release_hugepage(page);
a5516438 586 __free_pages(page, huge_page_order(h));
6af2acb6
AL
587}
588
e5ff2159
AK
589struct hstate *size_to_hstate(unsigned long size)
590{
591 struct hstate *h;
592
593 for_each_hstate(h) {
594 if (huge_page_size(h) == size)
595 return h;
596 }
597 return NULL;
598}
599
27a85ef1
DG
600static void free_huge_page(struct page *page)
601{
a5516438
AK
602 /*
603 * Can't pass hstate in here because it is called from the
604 * compound page destructor.
605 */
e5ff2159 606 struct hstate *h = page_hstate(page);
7893d1d5 607 int nid = page_to_nid(page);
90481622
DG
608 struct hugepage_subpool *spool =
609 (struct hugepage_subpool *)page_private(page);
07443a85 610 bool restore_reserve;
27a85ef1 611
e5df70ab 612 set_page_private(page, 0);
23be7468 613 page->mapping = NULL;
7893d1d5 614 BUG_ON(page_count(page));
0fe6e20b 615 BUG_ON(page_mapcount(page));
07443a85 616 restore_reserve = PagePrivate(page);
16c794b4 617 ClearPagePrivate(page);
27a85ef1
DG
618
619 spin_lock(&hugetlb_lock);
6d76dcf4
AK
620 hugetlb_cgroup_uncharge_page(hstate_index(h),
621 pages_per_huge_page(h), page);
07443a85
JK
622 if (restore_reserve)
623 h->resv_huge_pages++;
624
aa888a74 625 if (h->surplus_huge_pages_node[nid] && huge_page_order(h) < MAX_ORDER) {
0edaecfa
AK
626 /* remove the page from active list */
627 list_del(&page->lru);
a5516438
AK
628 update_and_free_page(h, page);
629 h->surplus_huge_pages--;
630 h->surplus_huge_pages_node[nid]--;
7893d1d5 631 } else {
5d3a551c 632 arch_clear_hugepage_flags(page);
a5516438 633 enqueue_huge_page(h, page);
7893d1d5 634 }
27a85ef1 635 spin_unlock(&hugetlb_lock);
90481622 636 hugepage_subpool_put_pages(spool, 1);
27a85ef1
DG
637}
638
a5516438 639static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
b7ba30c6 640{
0edaecfa 641 INIT_LIST_HEAD(&page->lru);
b7ba30c6
AK
642 set_compound_page_dtor(page, free_huge_page);
643 spin_lock(&hugetlb_lock);
9dd540e2 644 set_hugetlb_cgroup(page, NULL);
a5516438
AK
645 h->nr_huge_pages++;
646 h->nr_huge_pages_node[nid]++;
b7ba30c6
AK
647 spin_unlock(&hugetlb_lock);
648 put_page(page); /* free it into the hugepage allocator */
649}
650
20a0307c
WF
651static void prep_compound_gigantic_page(struct page *page, unsigned long order)
652{
653 int i;
654 int nr_pages = 1 << order;
655 struct page *p = page + 1;
656
657 /* we rely on prep_new_huge_page to set the destructor */
658 set_compound_order(page, order);
659 __SetPageHead(page);
ef5a22be 660 __ClearPageReserved(page);
20a0307c
WF
661 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
662 __SetPageTail(p);
ef5a22be
AA
663 /*
664 * For gigantic hugepages allocated through bootmem at
665 * boot, it's safer to be consistent with the not-gigantic
666 * hugepages and clear the PG_reserved bit from all tail pages
667 * too. Otherwse drivers using get_user_pages() to access tail
668 * pages may get the reference counting wrong if they see
669 * PG_reserved set on a tail page (despite the head page not
670 * having PG_reserved set). Enforcing this consistency between
671 * head and tail pages allows drivers to optimize away a check
672 * on the head page when they need know if put_page() is needed
673 * after get_user_pages().
674 */
675 __ClearPageReserved(p);
58a84aa9 676 set_page_count(p, 0);
20a0307c
WF
677 p->first_page = page;
678 }
679}
680
7795912c
AM
681/*
682 * PageHuge() only returns true for hugetlbfs pages, but not for normal or
683 * transparent huge pages. See the PageTransHuge() documentation for more
684 * details.
685 */
20a0307c
WF
686int PageHuge(struct page *page)
687{
20a0307c
WF
688 if (!PageCompound(page))
689 return 0;
690
691 page = compound_head(page);
758f66a2 692 return get_compound_page_dtor(page) == free_huge_page;
20a0307c 693}
43131e14
NH
694EXPORT_SYMBOL_GPL(PageHuge);
695
27c73ae7
AA
696/*
697 * PageHeadHuge() only returns true for hugetlbfs head page, but not for
698 * normal or transparent huge pages.
699 */
700int PageHeadHuge(struct page *page_head)
701{
27c73ae7
AA
702 if (!PageHead(page_head))
703 return 0;
704
758f66a2 705 return get_compound_page_dtor(page_head) == free_huge_page;
27c73ae7 706}
27c73ae7 707
13d60f4b
ZY
708pgoff_t __basepage_index(struct page *page)
709{
710 struct page *page_head = compound_head(page);
711 pgoff_t index = page_index(page_head);
712 unsigned long compound_idx;
713
714 if (!PageHuge(page_head))
715 return page_index(page);
716
717 if (compound_order(page_head) >= MAX_ORDER)
718 compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
719 else
720 compound_idx = page - page_head;
721
722 return (index << compound_order(page_head)) + compound_idx;
723}
724
a5516438 725static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid)
1da177e4 726{
1da177e4 727 struct page *page;
f96efd58 728
aa888a74
AK
729 if (h->order >= MAX_ORDER)
730 return NULL;
731
6484eb3e 732 page = alloc_pages_exact_node(nid,
86cdb465 733 htlb_alloc_mask(h)|__GFP_COMP|__GFP_THISNODE|
551883ae 734 __GFP_REPEAT|__GFP_NOWARN,
a5516438 735 huge_page_order(h));
1da177e4 736 if (page) {
7f2e9525 737 if (arch_prepare_hugepage(page)) {
caff3a2c 738 __free_pages(page, huge_page_order(h));
7b8ee84d 739 return NULL;
7f2e9525 740 }
a5516438 741 prep_new_huge_page(h, page, nid);
1da177e4 742 }
63b4613c
NA
743
744 return page;
745}
746
9a76db09 747/*
6ae11b27
LS
748 * common helper functions for hstate_next_node_to_{alloc|free}.
749 * We may have allocated or freed a huge page based on a different
750 * nodes_allowed previously, so h->next_node_to_{alloc|free} might
751 * be outside of *nodes_allowed. Ensure that we use an allowed
752 * node for alloc or free.
9a76db09 753 */
6ae11b27 754static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
9a76db09 755{
6ae11b27 756 nid = next_node(nid, *nodes_allowed);
9a76db09 757 if (nid == MAX_NUMNODES)
6ae11b27 758 nid = first_node(*nodes_allowed);
9a76db09
LS
759 VM_BUG_ON(nid >= MAX_NUMNODES);
760
761 return nid;
762}
763
6ae11b27
LS
764static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
765{
766 if (!node_isset(nid, *nodes_allowed))
767 nid = next_node_allowed(nid, nodes_allowed);
768 return nid;
769}
770
5ced66c9 771/*
6ae11b27
LS
772 * returns the previously saved node ["this node"] from which to
773 * allocate a persistent huge page for the pool and advance the
774 * next node from which to allocate, handling wrap at end of node
775 * mask.
5ced66c9 776 */
6ae11b27
LS
777static int hstate_next_node_to_alloc(struct hstate *h,
778 nodemask_t *nodes_allowed)
5ced66c9 779{
6ae11b27
LS
780 int nid;
781
782 VM_BUG_ON(!nodes_allowed);
783
784 nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
785 h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
9a76db09 786
9a76db09 787 return nid;
5ced66c9
AK
788}
789
e8c5c824 790/*
6ae11b27
LS
791 * helper for free_pool_huge_page() - return the previously saved
792 * node ["this node"] from which to free a huge page. Advance the
793 * next node id whether or not we find a free huge page to free so
794 * that the next attempt to free addresses the next node.
e8c5c824 795 */
6ae11b27 796static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
e8c5c824 797{
6ae11b27
LS
798 int nid;
799
800 VM_BUG_ON(!nodes_allowed);
801
802 nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
803 h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
9a76db09 804
9a76db09 805 return nid;
e8c5c824
LS
806}
807
b2261026
JK
808#define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask) \
809 for (nr_nodes = nodes_weight(*mask); \
810 nr_nodes > 0 && \
811 ((node = hstate_next_node_to_alloc(hs, mask)) || 1); \
812 nr_nodes--)
813
814#define for_each_node_mask_to_free(hs, nr_nodes, node, mask) \
815 for (nr_nodes = nodes_weight(*mask); \
816 nr_nodes > 0 && \
817 ((node = hstate_next_node_to_free(hs, mask)) || 1); \
818 nr_nodes--)
819
820static int alloc_fresh_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
821{
822 struct page *page;
823 int nr_nodes, node;
824 int ret = 0;
825
826 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
827 page = alloc_fresh_huge_page_node(h, node);
828 if (page) {
829 ret = 1;
830 break;
831 }
832 }
833
834 if (ret)
835 count_vm_event(HTLB_BUDDY_PGALLOC);
836 else
837 count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
838
839 return ret;
840}
841
e8c5c824
LS
842/*
843 * Free huge page from pool from next node to free.
844 * Attempt to keep persistent huge pages more or less
845 * balanced over allowed nodes.
846 * Called with hugetlb_lock locked.
847 */
6ae11b27
LS
848static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
849 bool acct_surplus)
e8c5c824 850{
b2261026 851 int nr_nodes, node;
e8c5c824
LS
852 int ret = 0;
853
b2261026 854 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
685f3457
LS
855 /*
856 * If we're returning unused surplus pages, only examine
857 * nodes with surplus pages.
858 */
b2261026
JK
859 if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
860 !list_empty(&h->hugepage_freelists[node])) {
e8c5c824 861 struct page *page =
b2261026 862 list_entry(h->hugepage_freelists[node].next,
e8c5c824
LS
863 struct page, lru);
864 list_del(&page->lru);
865 h->free_huge_pages--;
b2261026 866 h->free_huge_pages_node[node]--;
685f3457
LS
867 if (acct_surplus) {
868 h->surplus_huge_pages--;
b2261026 869 h->surplus_huge_pages_node[node]--;
685f3457 870 }
e8c5c824
LS
871 update_and_free_page(h, page);
872 ret = 1;
9a76db09 873 break;
e8c5c824 874 }
b2261026 875 }
e8c5c824
LS
876
877 return ret;
878}
879
c8721bbb
NH
880/*
881 * Dissolve a given free hugepage into free buddy pages. This function does
882 * nothing for in-use (including surplus) hugepages.
883 */
884static void dissolve_free_huge_page(struct page *page)
885{
886 spin_lock(&hugetlb_lock);
887 if (PageHuge(page) && !page_count(page)) {
888 struct hstate *h = page_hstate(page);
889 int nid = page_to_nid(page);
890 list_del(&page->lru);
891 h->free_huge_pages--;
892 h->free_huge_pages_node[nid]--;
893 update_and_free_page(h, page);
894 }
895 spin_unlock(&hugetlb_lock);
896}
897
898/*
899 * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
900 * make specified memory blocks removable from the system.
901 * Note that start_pfn should aligned with (minimum) hugepage size.
902 */
903void dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
904{
905 unsigned int order = 8 * sizeof(void *);
906 unsigned long pfn;
907 struct hstate *h;
908
909 /* Set scan step to minimum hugepage size */
910 for_each_hstate(h)
911 if (order > huge_page_order(h))
912 order = huge_page_order(h);
913 VM_BUG_ON(!IS_ALIGNED(start_pfn, 1 << order));
914 for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << order)
915 dissolve_free_huge_page(pfn_to_page(pfn));
916}
917
bf50bab2 918static struct page *alloc_buddy_huge_page(struct hstate *h, int nid)
7893d1d5
AL
919{
920 struct page *page;
bf50bab2 921 unsigned int r_nid;
7893d1d5 922
aa888a74
AK
923 if (h->order >= MAX_ORDER)
924 return NULL;
925
d1c3fb1f
NA
926 /*
927 * Assume we will successfully allocate the surplus page to
928 * prevent racing processes from causing the surplus to exceed
929 * overcommit
930 *
931 * This however introduces a different race, where a process B
932 * tries to grow the static hugepage pool while alloc_pages() is
933 * called by process A. B will only examine the per-node
934 * counters in determining if surplus huge pages can be
935 * converted to normal huge pages in adjust_pool_surplus(). A
936 * won't be able to increment the per-node counter, until the
937 * lock is dropped by B, but B doesn't drop hugetlb_lock until
938 * no more huge pages can be converted from surplus to normal
939 * state (and doesn't try to convert again). Thus, we have a
940 * case where a surplus huge page exists, the pool is grown, and
941 * the surplus huge page still exists after, even though it
942 * should just have been converted to a normal huge page. This
943 * does not leak memory, though, as the hugepage will be freed
944 * once it is out of use. It also does not allow the counters to
945 * go out of whack in adjust_pool_surplus() as we don't modify
946 * the node values until we've gotten the hugepage and only the
947 * per-node value is checked there.
948 */
949 spin_lock(&hugetlb_lock);
a5516438 950 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
d1c3fb1f
NA
951 spin_unlock(&hugetlb_lock);
952 return NULL;
953 } else {
a5516438
AK
954 h->nr_huge_pages++;
955 h->surplus_huge_pages++;
d1c3fb1f
NA
956 }
957 spin_unlock(&hugetlb_lock);
958
bf50bab2 959 if (nid == NUMA_NO_NODE)
86cdb465 960 page = alloc_pages(htlb_alloc_mask(h)|__GFP_COMP|
bf50bab2
NH
961 __GFP_REPEAT|__GFP_NOWARN,
962 huge_page_order(h));
963 else
964 page = alloc_pages_exact_node(nid,
86cdb465 965 htlb_alloc_mask(h)|__GFP_COMP|__GFP_THISNODE|
bf50bab2 966 __GFP_REPEAT|__GFP_NOWARN, huge_page_order(h));
d1c3fb1f 967
caff3a2c
GS
968 if (page && arch_prepare_hugepage(page)) {
969 __free_pages(page, huge_page_order(h));
ea5768c7 970 page = NULL;
caff3a2c
GS
971 }
972
d1c3fb1f 973 spin_lock(&hugetlb_lock);
7893d1d5 974 if (page) {
0edaecfa 975 INIT_LIST_HEAD(&page->lru);
bf50bab2 976 r_nid = page_to_nid(page);
7893d1d5 977 set_compound_page_dtor(page, free_huge_page);
9dd540e2 978 set_hugetlb_cgroup(page, NULL);
d1c3fb1f
NA
979 /*
980 * We incremented the global counters already
981 */
bf50bab2
NH
982 h->nr_huge_pages_node[r_nid]++;
983 h->surplus_huge_pages_node[r_nid]++;
3b116300 984 __count_vm_event(HTLB_BUDDY_PGALLOC);
d1c3fb1f 985 } else {
a5516438
AK
986 h->nr_huge_pages--;
987 h->surplus_huge_pages--;
3b116300 988 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
7893d1d5 989 }
d1c3fb1f 990 spin_unlock(&hugetlb_lock);
7893d1d5
AL
991
992 return page;
993}
994
bf50bab2
NH
995/*
996 * This allocation function is useful in the context where vma is irrelevant.
997 * E.g. soft-offlining uses this function because it only cares physical
998 * address of error page.
999 */
1000struct page *alloc_huge_page_node(struct hstate *h, int nid)
1001{
4ef91848 1002 struct page *page = NULL;
bf50bab2
NH
1003
1004 spin_lock(&hugetlb_lock);
4ef91848
JK
1005 if (h->free_huge_pages - h->resv_huge_pages > 0)
1006 page = dequeue_huge_page_node(h, nid);
bf50bab2
NH
1007 spin_unlock(&hugetlb_lock);
1008
94ae8ba7 1009 if (!page)
bf50bab2
NH
1010 page = alloc_buddy_huge_page(h, nid);
1011
1012 return page;
1013}
1014
e4e574b7 1015/*
25985edc 1016 * Increase the hugetlb pool such that it can accommodate a reservation
e4e574b7
AL
1017 * of size 'delta'.
1018 */
a5516438 1019static int gather_surplus_pages(struct hstate *h, int delta)
e4e574b7
AL
1020{
1021 struct list_head surplus_list;
1022 struct page *page, *tmp;
1023 int ret, i;
1024 int needed, allocated;
28073b02 1025 bool alloc_ok = true;
e4e574b7 1026
a5516438 1027 needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
ac09b3a1 1028 if (needed <= 0) {
a5516438 1029 h->resv_huge_pages += delta;
e4e574b7 1030 return 0;
ac09b3a1 1031 }
e4e574b7
AL
1032
1033 allocated = 0;
1034 INIT_LIST_HEAD(&surplus_list);
1035
1036 ret = -ENOMEM;
1037retry:
1038 spin_unlock(&hugetlb_lock);
1039 for (i = 0; i < needed; i++) {
bf50bab2 1040 page = alloc_buddy_huge_page(h, NUMA_NO_NODE);
28073b02
HD
1041 if (!page) {
1042 alloc_ok = false;
1043 break;
1044 }
e4e574b7
AL
1045 list_add(&page->lru, &surplus_list);
1046 }
28073b02 1047 allocated += i;
e4e574b7
AL
1048
1049 /*
1050 * After retaking hugetlb_lock, we need to recalculate 'needed'
1051 * because either resv_huge_pages or free_huge_pages may have changed.
1052 */
1053 spin_lock(&hugetlb_lock);
a5516438
AK
1054 needed = (h->resv_huge_pages + delta) -
1055 (h->free_huge_pages + allocated);
28073b02
HD
1056 if (needed > 0) {
1057 if (alloc_ok)
1058 goto retry;
1059 /*
1060 * We were not able to allocate enough pages to
1061 * satisfy the entire reservation so we free what
1062 * we've allocated so far.
1063 */
1064 goto free;
1065 }
e4e574b7
AL
1066 /*
1067 * The surplus_list now contains _at_least_ the number of extra pages
25985edc 1068 * needed to accommodate the reservation. Add the appropriate number
e4e574b7 1069 * of pages to the hugetlb pool and free the extras back to the buddy
ac09b3a1
AL
1070 * allocator. Commit the entire reservation here to prevent another
1071 * process from stealing the pages as they are added to the pool but
1072 * before they are reserved.
e4e574b7
AL
1073 */
1074 needed += allocated;
a5516438 1075 h->resv_huge_pages += delta;
e4e574b7 1076 ret = 0;
a9869b83 1077
19fc3f0a 1078 /* Free the needed pages to the hugetlb pool */
e4e574b7 1079 list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
19fc3f0a
AL
1080 if ((--needed) < 0)
1081 break;
a9869b83
NH
1082 /*
1083 * This page is now managed by the hugetlb allocator and has
1084 * no users -- drop the buddy allocator's reference.
1085 */
1086 put_page_testzero(page);
309381fe 1087 VM_BUG_ON_PAGE(page_count(page), page);
a5516438 1088 enqueue_huge_page(h, page);
19fc3f0a 1089 }
28073b02 1090free:
b0365c8d 1091 spin_unlock(&hugetlb_lock);
19fc3f0a
AL
1092
1093 /* Free unnecessary surplus pages to the buddy allocator */
c0d934ba
JK
1094 list_for_each_entry_safe(page, tmp, &surplus_list, lru)
1095 put_page(page);
a9869b83 1096 spin_lock(&hugetlb_lock);
e4e574b7
AL
1097
1098 return ret;
1099}
1100
1101/*
1102 * When releasing a hugetlb pool reservation, any surplus pages that were
1103 * allocated to satisfy the reservation must be explicitly freed if they were
1104 * never used.
685f3457 1105 * Called with hugetlb_lock held.
e4e574b7 1106 */
a5516438
AK
1107static void return_unused_surplus_pages(struct hstate *h,
1108 unsigned long unused_resv_pages)
e4e574b7 1109{
e4e574b7
AL
1110 unsigned long nr_pages;
1111
ac09b3a1 1112 /* Uncommit the reservation */
a5516438 1113 h->resv_huge_pages -= unused_resv_pages;
ac09b3a1 1114
aa888a74
AK
1115 /* Cannot return gigantic pages currently */
1116 if (h->order >= MAX_ORDER)
1117 return;
1118
a5516438 1119 nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
e4e574b7 1120
685f3457
LS
1121 /*
1122 * We want to release as many surplus pages as possible, spread
9b5e5d0f
LS
1123 * evenly across all nodes with memory. Iterate across these nodes
1124 * until we can no longer free unreserved surplus pages. This occurs
1125 * when the nodes with surplus pages have no free pages.
1126 * free_pool_huge_page() will balance the the freed pages across the
1127 * on-line nodes with memory and will handle the hstate accounting.
685f3457
LS
1128 */
1129 while (nr_pages--) {
8cebfcd0 1130 if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1))
685f3457 1131 break;
e4e574b7
AL
1132 }
1133}
1134
c37f9fb1
AW
1135/*
1136 * Determine if the huge page at addr within the vma has an associated
1137 * reservation. Where it does not we will need to logically increase
90481622
DG
1138 * reservation and actually increase subpool usage before an allocation
1139 * can occur. Where any new reservation would be required the
1140 * reservation change is prepared, but not committed. Once the page
1141 * has been allocated from the subpool and instantiated the change should
1142 * be committed via vma_commit_reservation. No action is required on
1143 * failure.
c37f9fb1 1144 */
e2f17d94 1145static long vma_needs_reservation(struct hstate *h,
a5516438 1146 struct vm_area_struct *vma, unsigned long addr)
c37f9fb1
AW
1147{
1148 struct address_space *mapping = vma->vm_file->f_mapping;
1149 struct inode *inode = mapping->host;
1150
f83a275d 1151 if (vma->vm_flags & VM_MAYSHARE) {
a5516438 1152 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
9119a41e
JK
1153 struct resv_map *resv = inode->i_mapping->private_data;
1154
1155 return region_chg(&resv->regions, idx, idx + 1);
c37f9fb1 1156
84afd99b
AW
1157 } else if (!is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1158 return 1;
c37f9fb1 1159
84afd99b 1160 } else {
e2f17d94 1161 long err;
a5516438 1162 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
f522c3ac 1163 struct resv_map *resv = vma_resv_map(vma);
84afd99b 1164
f522c3ac 1165 err = region_chg(&resv->regions, idx, idx + 1);
84afd99b
AW
1166 if (err < 0)
1167 return err;
1168 return 0;
1169 }
c37f9fb1 1170}
a5516438
AK
1171static void vma_commit_reservation(struct hstate *h,
1172 struct vm_area_struct *vma, unsigned long addr)
c37f9fb1
AW
1173{
1174 struct address_space *mapping = vma->vm_file->f_mapping;
1175 struct inode *inode = mapping->host;
1176
f83a275d 1177 if (vma->vm_flags & VM_MAYSHARE) {
a5516438 1178 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
9119a41e
JK
1179 struct resv_map *resv = inode->i_mapping->private_data;
1180
1181 region_add(&resv->regions, idx, idx + 1);
84afd99b
AW
1182
1183 } else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
a5516438 1184 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
f522c3ac 1185 struct resv_map *resv = vma_resv_map(vma);
84afd99b
AW
1186
1187 /* Mark this page used in the map. */
f522c3ac 1188 region_add(&resv->regions, idx, idx + 1);
c37f9fb1
AW
1189 }
1190}
1191
a1e78772 1192static struct page *alloc_huge_page(struct vm_area_struct *vma,
04f2cbe3 1193 unsigned long addr, int avoid_reserve)
1da177e4 1194{
90481622 1195 struct hugepage_subpool *spool = subpool_vma(vma);
a5516438 1196 struct hstate *h = hstate_vma(vma);
348ea204 1197 struct page *page;
e2f17d94 1198 long chg;
6d76dcf4
AK
1199 int ret, idx;
1200 struct hugetlb_cgroup *h_cg;
a1e78772 1201
6d76dcf4 1202 idx = hstate_index(h);
a1e78772 1203 /*
90481622
DG
1204 * Processes that did not create the mapping will have no
1205 * reserves and will not have accounted against subpool
1206 * limit. Check that the subpool limit can be made before
1207 * satisfying the allocation MAP_NORESERVE mappings may also
1208 * need pages and subpool limit allocated allocated if no reserve
1209 * mapping overlaps.
a1e78772 1210 */
a5516438 1211 chg = vma_needs_reservation(h, vma, addr);
c37f9fb1 1212 if (chg < 0)
76dcee75 1213 return ERR_PTR(-ENOMEM);
8bb3f12e
JK
1214 if (chg || avoid_reserve)
1215 if (hugepage_subpool_get_pages(spool, 1))
76dcee75 1216 return ERR_PTR(-ENOSPC);
1da177e4 1217
6d76dcf4
AK
1218 ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
1219 if (ret) {
8bb3f12e
JK
1220 if (chg || avoid_reserve)
1221 hugepage_subpool_put_pages(spool, 1);
6d76dcf4
AK
1222 return ERR_PTR(-ENOSPC);
1223 }
1da177e4 1224 spin_lock(&hugetlb_lock);
af0ed73e 1225 page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, chg);
81a6fcae 1226 if (!page) {
94ae8ba7 1227 spin_unlock(&hugetlb_lock);
bf50bab2 1228 page = alloc_buddy_huge_page(h, NUMA_NO_NODE);
68842c9b 1229 if (!page) {
6d76dcf4
AK
1230 hugetlb_cgroup_uncharge_cgroup(idx,
1231 pages_per_huge_page(h),
1232 h_cg);
8bb3f12e
JK
1233 if (chg || avoid_reserve)
1234 hugepage_subpool_put_pages(spool, 1);
76dcee75 1235 return ERR_PTR(-ENOSPC);
68842c9b 1236 }
79dbb236
AK
1237 spin_lock(&hugetlb_lock);
1238 list_move(&page->lru, &h->hugepage_activelist);
81a6fcae 1239 /* Fall through */
68842c9b 1240 }
81a6fcae
JK
1241 hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
1242 spin_unlock(&hugetlb_lock);
348ea204 1243
90481622 1244 set_page_private(page, (unsigned long)spool);
90d8b7e6 1245
a5516438 1246 vma_commit_reservation(h, vma, addr);
90d8b7e6 1247 return page;
b45b5bd6
DG
1248}
1249
74060e4d
NH
1250/*
1251 * alloc_huge_page()'s wrapper which simply returns the page if allocation
1252 * succeeds, otherwise NULL. This function is called from new_vma_page(),
1253 * where no ERR_VALUE is expected to be returned.
1254 */
1255struct page *alloc_huge_page_noerr(struct vm_area_struct *vma,
1256 unsigned long addr, int avoid_reserve)
1257{
1258 struct page *page = alloc_huge_page(vma, addr, avoid_reserve);
1259 if (IS_ERR(page))
1260 page = NULL;
1261 return page;
1262}
1263
91f47662 1264int __weak alloc_bootmem_huge_page(struct hstate *h)
aa888a74
AK
1265{
1266 struct huge_bootmem_page *m;
b2261026 1267 int nr_nodes, node;
aa888a74 1268
b2261026 1269 for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
aa888a74
AK
1270 void *addr;
1271
8b89a116
GS
1272 addr = memblock_virt_alloc_try_nid_nopanic(
1273 huge_page_size(h), huge_page_size(h),
1274 0, BOOTMEM_ALLOC_ACCESSIBLE, node);
aa888a74
AK
1275 if (addr) {
1276 /*
1277 * Use the beginning of the huge page to store the
1278 * huge_bootmem_page struct (until gather_bootmem
1279 * puts them into the mem_map).
1280 */
1281 m = addr;
91f47662 1282 goto found;
aa888a74 1283 }
aa888a74
AK
1284 }
1285 return 0;
1286
1287found:
1288 BUG_ON((unsigned long)virt_to_phys(m) & (huge_page_size(h) - 1));
1289 /* Put them into a private list first because mem_map is not up yet */
1290 list_add(&m->list, &huge_boot_pages);
1291 m->hstate = h;
1292 return 1;
1293}
1294
18229df5
AW
1295static void prep_compound_huge_page(struct page *page, int order)
1296{
1297 if (unlikely(order > (MAX_ORDER - 1)))
1298 prep_compound_gigantic_page(page, order);
1299 else
1300 prep_compound_page(page, order);
1301}
1302
aa888a74
AK
1303/* Put bootmem huge pages into the standard lists after mem_map is up */
1304static void __init gather_bootmem_prealloc(void)
1305{
1306 struct huge_bootmem_page *m;
1307
1308 list_for_each_entry(m, &huge_boot_pages, list) {
aa888a74 1309 struct hstate *h = m->hstate;
ee8f248d
BB
1310 struct page *page;
1311
1312#ifdef CONFIG_HIGHMEM
1313 page = pfn_to_page(m->phys >> PAGE_SHIFT);
8b89a116
GS
1314 memblock_free_late(__pa(m),
1315 sizeof(struct huge_bootmem_page));
ee8f248d
BB
1316#else
1317 page = virt_to_page(m);
1318#endif
aa888a74 1319 WARN_ON(page_count(page) != 1);
18229df5 1320 prep_compound_huge_page(page, h->order);
ef5a22be 1321 WARN_ON(PageReserved(page));
aa888a74 1322 prep_new_huge_page(h, page, page_to_nid(page));
b0320c7b
RA
1323 /*
1324 * If we had gigantic hugepages allocated at boot time, we need
1325 * to restore the 'stolen' pages to totalram_pages in order to
1326 * fix confusing memory reports from free(1) and another
1327 * side-effects, like CommitLimit going negative.
1328 */
1329 if (h->order > (MAX_ORDER - 1))
3dcc0571 1330 adjust_managed_page_count(page, 1 << h->order);
aa888a74
AK
1331 }
1332}
1333
8faa8b07 1334static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
1da177e4
LT
1335{
1336 unsigned long i;
a5516438 1337
e5ff2159 1338 for (i = 0; i < h->max_huge_pages; ++i) {
aa888a74
AK
1339 if (h->order >= MAX_ORDER) {
1340 if (!alloc_bootmem_huge_page(h))
1341 break;
9b5e5d0f 1342 } else if (!alloc_fresh_huge_page(h,
8cebfcd0 1343 &node_states[N_MEMORY]))
1da177e4 1344 break;
1da177e4 1345 }
8faa8b07 1346 h->max_huge_pages = i;
e5ff2159
AK
1347}
1348
1349static void __init hugetlb_init_hstates(void)
1350{
1351 struct hstate *h;
1352
1353 for_each_hstate(h) {
8faa8b07
AK
1354 /* oversize hugepages were init'ed in early boot */
1355 if (h->order < MAX_ORDER)
1356 hugetlb_hstate_alloc_pages(h);
e5ff2159
AK
1357 }
1358}
1359
4abd32db
AK
1360static char * __init memfmt(char *buf, unsigned long n)
1361{
1362 if (n >= (1UL << 30))
1363 sprintf(buf, "%lu GB", n >> 30);
1364 else if (n >= (1UL << 20))
1365 sprintf(buf, "%lu MB", n >> 20);
1366 else
1367 sprintf(buf, "%lu KB", n >> 10);
1368 return buf;
1369}
1370
e5ff2159
AK
1371static void __init report_hugepages(void)
1372{
1373 struct hstate *h;
1374
1375 for_each_hstate(h) {
4abd32db 1376 char buf[32];
ffb22af5 1377 pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
4abd32db
AK
1378 memfmt(buf, huge_page_size(h)),
1379 h->free_huge_pages);
e5ff2159
AK
1380 }
1381}
1382
1da177e4 1383#ifdef CONFIG_HIGHMEM
6ae11b27
LS
1384static void try_to_free_low(struct hstate *h, unsigned long count,
1385 nodemask_t *nodes_allowed)
1da177e4 1386{
4415cc8d
CL
1387 int i;
1388
aa888a74
AK
1389 if (h->order >= MAX_ORDER)
1390 return;
1391
6ae11b27 1392 for_each_node_mask(i, *nodes_allowed) {
1da177e4 1393 struct page *page, *next;
a5516438
AK
1394 struct list_head *freel = &h->hugepage_freelists[i];
1395 list_for_each_entry_safe(page, next, freel, lru) {
1396 if (count >= h->nr_huge_pages)
6b0c880d 1397 return;
1da177e4
LT
1398 if (PageHighMem(page))
1399 continue;
1400 list_del(&page->lru);
e5ff2159 1401 update_and_free_page(h, page);
a5516438
AK
1402 h->free_huge_pages--;
1403 h->free_huge_pages_node[page_to_nid(page)]--;
1da177e4
LT
1404 }
1405 }
1406}
1407#else
6ae11b27
LS
1408static inline void try_to_free_low(struct hstate *h, unsigned long count,
1409 nodemask_t *nodes_allowed)
1da177e4
LT
1410{
1411}
1412#endif
1413
20a0307c
WF
1414/*
1415 * Increment or decrement surplus_huge_pages. Keep node-specific counters
1416 * balanced by operating on them in a round-robin fashion.
1417 * Returns 1 if an adjustment was made.
1418 */
6ae11b27
LS
1419static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
1420 int delta)
20a0307c 1421{
b2261026 1422 int nr_nodes, node;
20a0307c
WF
1423
1424 VM_BUG_ON(delta != -1 && delta != 1);
20a0307c 1425
b2261026
JK
1426 if (delta < 0) {
1427 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1428 if (h->surplus_huge_pages_node[node])
1429 goto found;
e8c5c824 1430 }
b2261026
JK
1431 } else {
1432 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
1433 if (h->surplus_huge_pages_node[node] <
1434 h->nr_huge_pages_node[node])
1435 goto found;
e8c5c824 1436 }
b2261026
JK
1437 }
1438 return 0;
20a0307c 1439
b2261026
JK
1440found:
1441 h->surplus_huge_pages += delta;
1442 h->surplus_huge_pages_node[node] += delta;
1443 return 1;
20a0307c
WF
1444}
1445
a5516438 1446#define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
6ae11b27
LS
1447static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count,
1448 nodemask_t *nodes_allowed)
1da177e4 1449{
7893d1d5 1450 unsigned long min_count, ret;
1da177e4 1451
aa888a74
AK
1452 if (h->order >= MAX_ORDER)
1453 return h->max_huge_pages;
1454
7893d1d5
AL
1455 /*
1456 * Increase the pool size
1457 * First take pages out of surplus state. Then make up the
1458 * remaining difference by allocating fresh huge pages.
d1c3fb1f
NA
1459 *
1460 * We might race with alloc_buddy_huge_page() here and be unable
1461 * to convert a surplus huge page to a normal huge page. That is
1462 * not critical, though, it just means the overall size of the
1463 * pool might be one hugepage larger than it needs to be, but
1464 * within all the constraints specified by the sysctls.
7893d1d5 1465 */
1da177e4 1466 spin_lock(&hugetlb_lock);
a5516438 1467 while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
6ae11b27 1468 if (!adjust_pool_surplus(h, nodes_allowed, -1))
7893d1d5
AL
1469 break;
1470 }
1471
a5516438 1472 while (count > persistent_huge_pages(h)) {
7893d1d5
AL
1473 /*
1474 * If this allocation races such that we no longer need the
1475 * page, free_huge_page will handle it by freeing the page
1476 * and reducing the surplus.
1477 */
1478 spin_unlock(&hugetlb_lock);
6ae11b27 1479 ret = alloc_fresh_huge_page(h, nodes_allowed);
7893d1d5
AL
1480 spin_lock(&hugetlb_lock);
1481 if (!ret)
1482 goto out;
1483
536240f2
MG
1484 /* Bail for signals. Probably ctrl-c from user */
1485 if (signal_pending(current))
1486 goto out;
7893d1d5 1487 }
7893d1d5
AL
1488
1489 /*
1490 * Decrease the pool size
1491 * First return free pages to the buddy allocator (being careful
1492 * to keep enough around to satisfy reservations). Then place
1493 * pages into surplus state as needed so the pool will shrink
1494 * to the desired size as pages become free.
d1c3fb1f
NA
1495 *
1496 * By placing pages into the surplus state independent of the
1497 * overcommit value, we are allowing the surplus pool size to
1498 * exceed overcommit. There are few sane options here. Since
1499 * alloc_buddy_huge_page() is checking the global counter,
1500 * though, we'll note that we're not allowed to exceed surplus
1501 * and won't grow the pool anywhere else. Not until one of the
1502 * sysctls are changed, or the surplus pages go out of use.
7893d1d5 1503 */
a5516438 1504 min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
6b0c880d 1505 min_count = max(count, min_count);
6ae11b27 1506 try_to_free_low(h, min_count, nodes_allowed);
a5516438 1507 while (min_count < persistent_huge_pages(h)) {
6ae11b27 1508 if (!free_pool_huge_page(h, nodes_allowed, 0))
1da177e4 1509 break;
1da177e4 1510 }
a5516438 1511 while (count < persistent_huge_pages(h)) {
6ae11b27 1512 if (!adjust_pool_surplus(h, nodes_allowed, 1))
7893d1d5
AL
1513 break;
1514 }
1515out:
a5516438 1516 ret = persistent_huge_pages(h);
1da177e4 1517 spin_unlock(&hugetlb_lock);
7893d1d5 1518 return ret;
1da177e4
LT
1519}
1520
a3437870
NA
1521#define HSTATE_ATTR_RO(_name) \
1522 static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
1523
1524#define HSTATE_ATTR(_name) \
1525 static struct kobj_attribute _name##_attr = \
1526 __ATTR(_name, 0644, _name##_show, _name##_store)
1527
1528static struct kobject *hugepages_kobj;
1529static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
1530
9a305230
LS
1531static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
1532
1533static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
a3437870
NA
1534{
1535 int i;
9a305230 1536
a3437870 1537 for (i = 0; i < HUGE_MAX_HSTATE; i++)
9a305230
LS
1538 if (hstate_kobjs[i] == kobj) {
1539 if (nidp)
1540 *nidp = NUMA_NO_NODE;
a3437870 1541 return &hstates[i];
9a305230
LS
1542 }
1543
1544 return kobj_to_node_hstate(kobj, nidp);
a3437870
NA
1545}
1546
06808b08 1547static ssize_t nr_hugepages_show_common(struct kobject *kobj,
a3437870
NA
1548 struct kobj_attribute *attr, char *buf)
1549{
9a305230
LS
1550 struct hstate *h;
1551 unsigned long nr_huge_pages;
1552 int nid;
1553
1554 h = kobj_to_hstate(kobj, &nid);
1555 if (nid == NUMA_NO_NODE)
1556 nr_huge_pages = h->nr_huge_pages;
1557 else
1558 nr_huge_pages = h->nr_huge_pages_node[nid];
1559
1560 return sprintf(buf, "%lu\n", nr_huge_pages);
a3437870 1561}
adbe8726 1562
06808b08
LS
1563static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
1564 struct kobject *kobj, struct kobj_attribute *attr,
1565 const char *buf, size_t len)
a3437870
NA
1566{
1567 int err;
9a305230 1568 int nid;
06808b08 1569 unsigned long count;
9a305230 1570 struct hstate *h;
bad44b5b 1571 NODEMASK_ALLOC(nodemask_t, nodes_allowed, GFP_KERNEL | __GFP_NORETRY);
a3437870 1572
3dbb95f7 1573 err = kstrtoul(buf, 10, &count);
73ae31e5 1574 if (err)
adbe8726 1575 goto out;
a3437870 1576
9a305230 1577 h = kobj_to_hstate(kobj, &nid);
adbe8726
EM
1578 if (h->order >= MAX_ORDER) {
1579 err = -EINVAL;
1580 goto out;
1581 }
1582
9a305230
LS
1583 if (nid == NUMA_NO_NODE) {
1584 /*
1585 * global hstate attribute
1586 */
1587 if (!(obey_mempolicy &&
1588 init_nodemask_of_mempolicy(nodes_allowed))) {
1589 NODEMASK_FREE(nodes_allowed);
8cebfcd0 1590 nodes_allowed = &node_states[N_MEMORY];
9a305230
LS
1591 }
1592 } else if (nodes_allowed) {
1593 /*
1594 * per node hstate attribute: adjust count to global,
1595 * but restrict alloc/free to the specified node.
1596 */
1597 count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
1598 init_nodemask_of_node(nodes_allowed, nid);
1599 } else
8cebfcd0 1600 nodes_allowed = &node_states[N_MEMORY];
9a305230 1601
06808b08 1602 h->max_huge_pages = set_max_huge_pages(h, count, nodes_allowed);
a3437870 1603
8cebfcd0 1604 if (nodes_allowed != &node_states[N_MEMORY])
06808b08
LS
1605 NODEMASK_FREE(nodes_allowed);
1606
1607 return len;
adbe8726
EM
1608out:
1609 NODEMASK_FREE(nodes_allowed);
1610 return err;
06808b08
LS
1611}
1612
1613static ssize_t nr_hugepages_show(struct kobject *kobj,
1614 struct kobj_attribute *attr, char *buf)
1615{
1616 return nr_hugepages_show_common(kobj, attr, buf);
1617}
1618
1619static ssize_t nr_hugepages_store(struct kobject *kobj,
1620 struct kobj_attribute *attr, const char *buf, size_t len)
1621{
1622 return nr_hugepages_store_common(false, kobj, attr, buf, len);
a3437870
NA
1623}
1624HSTATE_ATTR(nr_hugepages);
1625
06808b08
LS
1626#ifdef CONFIG_NUMA
1627
1628/*
1629 * hstate attribute for optionally mempolicy-based constraint on persistent
1630 * huge page alloc/free.
1631 */
1632static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
1633 struct kobj_attribute *attr, char *buf)
1634{
1635 return nr_hugepages_show_common(kobj, attr, buf);
1636}
1637
1638static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
1639 struct kobj_attribute *attr, const char *buf, size_t len)
1640{
1641 return nr_hugepages_store_common(true, kobj, attr, buf, len);
1642}
1643HSTATE_ATTR(nr_hugepages_mempolicy);
1644#endif
1645
1646
a3437870
NA
1647static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
1648 struct kobj_attribute *attr, char *buf)
1649{
9a305230 1650 struct hstate *h = kobj_to_hstate(kobj, NULL);
a3437870
NA
1651 return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
1652}
adbe8726 1653
a3437870
NA
1654static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
1655 struct kobj_attribute *attr, const char *buf, size_t count)
1656{
1657 int err;
1658 unsigned long input;
9a305230 1659 struct hstate *h = kobj_to_hstate(kobj, NULL);
a3437870 1660
adbe8726
EM
1661 if (h->order >= MAX_ORDER)
1662 return -EINVAL;
1663
3dbb95f7 1664 err = kstrtoul(buf, 10, &input);
a3437870 1665 if (err)
73ae31e5 1666 return err;
a3437870
NA
1667
1668 spin_lock(&hugetlb_lock);
1669 h->nr_overcommit_huge_pages = input;
1670 spin_unlock(&hugetlb_lock);
1671
1672 return count;
1673}
1674HSTATE_ATTR(nr_overcommit_hugepages);
1675
1676static ssize_t free_hugepages_show(struct kobject *kobj,
1677 struct kobj_attribute *attr, char *buf)
1678{
9a305230
LS
1679 struct hstate *h;
1680 unsigned long free_huge_pages;
1681 int nid;
1682
1683 h = kobj_to_hstate(kobj, &nid);
1684 if (nid == NUMA_NO_NODE)
1685 free_huge_pages = h->free_huge_pages;
1686 else
1687 free_huge_pages = h->free_huge_pages_node[nid];
1688
1689 return sprintf(buf, "%lu\n", free_huge_pages);
a3437870
NA
1690}
1691HSTATE_ATTR_RO(free_hugepages);
1692
1693static ssize_t resv_hugepages_show(struct kobject *kobj,
1694 struct kobj_attribute *attr, char *buf)
1695{
9a305230 1696 struct hstate *h = kobj_to_hstate(kobj, NULL);
a3437870
NA
1697 return sprintf(buf, "%lu\n", h->resv_huge_pages);
1698}
1699HSTATE_ATTR_RO(resv_hugepages);
1700
1701static ssize_t surplus_hugepages_show(struct kobject *kobj,
1702 struct kobj_attribute *attr, char *buf)
1703{
9a305230
LS
1704 struct hstate *h;
1705 unsigned long surplus_huge_pages;
1706 int nid;
1707
1708 h = kobj_to_hstate(kobj, &nid);
1709 if (nid == NUMA_NO_NODE)
1710 surplus_huge_pages = h->surplus_huge_pages;
1711 else
1712 surplus_huge_pages = h->surplus_huge_pages_node[nid];
1713
1714 return sprintf(buf, "%lu\n", surplus_huge_pages);
a3437870
NA
1715}
1716HSTATE_ATTR_RO(surplus_hugepages);
1717
1718static struct attribute *hstate_attrs[] = {
1719 &nr_hugepages_attr.attr,
1720 &nr_overcommit_hugepages_attr.attr,
1721 &free_hugepages_attr.attr,
1722 &resv_hugepages_attr.attr,
1723 &surplus_hugepages_attr.attr,
06808b08
LS
1724#ifdef CONFIG_NUMA
1725 &nr_hugepages_mempolicy_attr.attr,
1726#endif
a3437870
NA
1727 NULL,
1728};
1729
1730static struct attribute_group hstate_attr_group = {
1731 .attrs = hstate_attrs,
1732};
1733
094e9539
JM
1734static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
1735 struct kobject **hstate_kobjs,
1736 struct attribute_group *hstate_attr_group)
a3437870
NA
1737{
1738 int retval;
972dc4de 1739 int hi = hstate_index(h);
a3437870 1740
9a305230
LS
1741 hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
1742 if (!hstate_kobjs[hi])
a3437870
NA
1743 return -ENOMEM;
1744
9a305230 1745 retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
a3437870 1746 if (retval)
9a305230 1747 kobject_put(hstate_kobjs[hi]);
a3437870
NA
1748
1749 return retval;
1750}
1751
1752static void __init hugetlb_sysfs_init(void)
1753{
1754 struct hstate *h;
1755 int err;
1756
1757 hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
1758 if (!hugepages_kobj)
1759 return;
1760
1761 for_each_hstate(h) {
9a305230
LS
1762 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
1763 hstate_kobjs, &hstate_attr_group);
a3437870 1764 if (err)
ffb22af5 1765 pr_err("Hugetlb: Unable to add hstate %s", h->name);
a3437870
NA
1766 }
1767}
1768
9a305230
LS
1769#ifdef CONFIG_NUMA
1770
1771/*
1772 * node_hstate/s - associate per node hstate attributes, via their kobjects,
10fbcf4c
KS
1773 * with node devices in node_devices[] using a parallel array. The array
1774 * index of a node device or _hstate == node id.
1775 * This is here to avoid any static dependency of the node device driver, in
9a305230
LS
1776 * the base kernel, on the hugetlb module.
1777 */
1778struct node_hstate {
1779 struct kobject *hugepages_kobj;
1780 struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
1781};
1782struct node_hstate node_hstates[MAX_NUMNODES];
1783
1784/*
10fbcf4c 1785 * A subset of global hstate attributes for node devices
9a305230
LS
1786 */
1787static struct attribute *per_node_hstate_attrs[] = {
1788 &nr_hugepages_attr.attr,
1789 &free_hugepages_attr.attr,
1790 &surplus_hugepages_attr.attr,
1791 NULL,
1792};
1793
1794static struct attribute_group per_node_hstate_attr_group = {
1795 .attrs = per_node_hstate_attrs,
1796};
1797
1798/*
10fbcf4c 1799 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
9a305230
LS
1800 * Returns node id via non-NULL nidp.
1801 */
1802static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
1803{
1804 int nid;
1805
1806 for (nid = 0; nid < nr_node_ids; nid++) {
1807 struct node_hstate *nhs = &node_hstates[nid];
1808 int i;
1809 for (i = 0; i < HUGE_MAX_HSTATE; i++)
1810 if (nhs->hstate_kobjs[i] == kobj) {
1811 if (nidp)
1812 *nidp = nid;
1813 return &hstates[i];
1814 }
1815 }
1816
1817 BUG();
1818 return NULL;
1819}
1820
1821/*
10fbcf4c 1822 * Unregister hstate attributes from a single node device.
9a305230
LS
1823 * No-op if no hstate attributes attached.
1824 */
3cd8b44f 1825static void hugetlb_unregister_node(struct node *node)
9a305230
LS
1826{
1827 struct hstate *h;
10fbcf4c 1828 struct node_hstate *nhs = &node_hstates[node->dev.id];
9a305230
LS
1829
1830 if (!nhs->hugepages_kobj)
9b5e5d0f 1831 return; /* no hstate attributes */
9a305230 1832
972dc4de
AK
1833 for_each_hstate(h) {
1834 int idx = hstate_index(h);
1835 if (nhs->hstate_kobjs[idx]) {
1836 kobject_put(nhs->hstate_kobjs[idx]);
1837 nhs->hstate_kobjs[idx] = NULL;
9a305230 1838 }
972dc4de 1839 }
9a305230
LS
1840
1841 kobject_put(nhs->hugepages_kobj);
1842 nhs->hugepages_kobj = NULL;
1843}
1844
1845/*
10fbcf4c 1846 * hugetlb module exit: unregister hstate attributes from node devices
9a305230
LS
1847 * that have them.
1848 */
1849static void hugetlb_unregister_all_nodes(void)
1850{
1851 int nid;
1852
1853 /*
10fbcf4c 1854 * disable node device registrations.
9a305230
LS
1855 */
1856 register_hugetlbfs_with_node(NULL, NULL);
1857
1858 /*
1859 * remove hstate attributes from any nodes that have them.
1860 */
1861 for (nid = 0; nid < nr_node_ids; nid++)
8732794b 1862 hugetlb_unregister_node(node_devices[nid]);
9a305230
LS
1863}
1864
1865/*
10fbcf4c 1866 * Register hstate attributes for a single node device.
9a305230
LS
1867 * No-op if attributes already registered.
1868 */
3cd8b44f 1869static void hugetlb_register_node(struct node *node)
9a305230
LS
1870{
1871 struct hstate *h;
10fbcf4c 1872 struct node_hstate *nhs = &node_hstates[node->dev.id];
9a305230
LS
1873 int err;
1874
1875 if (nhs->hugepages_kobj)
1876 return; /* already allocated */
1877
1878 nhs->hugepages_kobj = kobject_create_and_add("hugepages",
10fbcf4c 1879 &node->dev.kobj);
9a305230
LS
1880 if (!nhs->hugepages_kobj)
1881 return;
1882
1883 for_each_hstate(h) {
1884 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
1885 nhs->hstate_kobjs,
1886 &per_node_hstate_attr_group);
1887 if (err) {
ffb22af5
AM
1888 pr_err("Hugetlb: Unable to add hstate %s for node %d\n",
1889 h->name, node->dev.id);
9a305230
LS
1890 hugetlb_unregister_node(node);
1891 break;
1892 }
1893 }
1894}
1895
1896/*
9b5e5d0f 1897 * hugetlb init time: register hstate attributes for all registered node
10fbcf4c
KS
1898 * devices of nodes that have memory. All on-line nodes should have
1899 * registered their associated device by this time.
9a305230
LS
1900 */
1901static void hugetlb_register_all_nodes(void)
1902{
1903 int nid;
1904
8cebfcd0 1905 for_each_node_state(nid, N_MEMORY) {
8732794b 1906 struct node *node = node_devices[nid];
10fbcf4c 1907 if (node->dev.id == nid)
9a305230
LS
1908 hugetlb_register_node(node);
1909 }
1910
1911 /*
10fbcf4c 1912 * Let the node device driver know we're here so it can
9a305230
LS
1913 * [un]register hstate attributes on node hotplug.
1914 */
1915 register_hugetlbfs_with_node(hugetlb_register_node,
1916 hugetlb_unregister_node);
1917}
1918#else /* !CONFIG_NUMA */
1919
1920static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
1921{
1922 BUG();
1923 if (nidp)
1924 *nidp = -1;
1925 return NULL;
1926}
1927
1928static void hugetlb_unregister_all_nodes(void) { }
1929
1930static void hugetlb_register_all_nodes(void) { }
1931
1932#endif
1933
a3437870
NA
1934static void __exit hugetlb_exit(void)
1935{
1936 struct hstate *h;
1937
9a305230
LS
1938 hugetlb_unregister_all_nodes();
1939
a3437870 1940 for_each_hstate(h) {
972dc4de 1941 kobject_put(hstate_kobjs[hstate_index(h)]);
a3437870
NA
1942 }
1943
1944 kobject_put(hugepages_kobj);
1945}
1946module_exit(hugetlb_exit);
1947
1948static int __init hugetlb_init(void)
1949{
0ef89d25
BH
1950 /* Some platform decide whether they support huge pages at boot
1951 * time. On these, such as powerpc, HPAGE_SHIFT is set to 0 when
1952 * there is no such support
1953 */
1954 if (HPAGE_SHIFT == 0)
1955 return 0;
a3437870 1956
e11bfbfc
NP
1957 if (!size_to_hstate(default_hstate_size)) {
1958 default_hstate_size = HPAGE_SIZE;
1959 if (!size_to_hstate(default_hstate_size))
1960 hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
a3437870 1961 }
972dc4de 1962 default_hstate_idx = hstate_index(size_to_hstate(default_hstate_size));
e11bfbfc
NP
1963 if (default_hstate_max_huge_pages)
1964 default_hstate.max_huge_pages = default_hstate_max_huge_pages;
a3437870
NA
1965
1966 hugetlb_init_hstates();
aa888a74 1967 gather_bootmem_prealloc();
a3437870
NA
1968 report_hugepages();
1969
1970 hugetlb_sysfs_init();
9a305230 1971 hugetlb_register_all_nodes();
7179e7bf 1972 hugetlb_cgroup_file_init();
9a305230 1973
a3437870
NA
1974 return 0;
1975}
1976module_init(hugetlb_init);
1977
1978/* Should be called on processing a hugepagesz=... option */
1979void __init hugetlb_add_hstate(unsigned order)
1980{
1981 struct hstate *h;
8faa8b07
AK
1982 unsigned long i;
1983
a3437870 1984 if (size_to_hstate(PAGE_SIZE << order)) {
ffb22af5 1985 pr_warning("hugepagesz= specified twice, ignoring\n");
a3437870
NA
1986 return;
1987 }
47d38344 1988 BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
a3437870 1989 BUG_ON(order == 0);
47d38344 1990 h = &hstates[hugetlb_max_hstate++];
a3437870
NA
1991 h->order = order;
1992 h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
8faa8b07
AK
1993 h->nr_huge_pages = 0;
1994 h->free_huge_pages = 0;
1995 for (i = 0; i < MAX_NUMNODES; ++i)
1996 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
0edaecfa 1997 INIT_LIST_HEAD(&h->hugepage_activelist);
8cebfcd0
LJ
1998 h->next_nid_to_alloc = first_node(node_states[N_MEMORY]);
1999 h->next_nid_to_free = first_node(node_states[N_MEMORY]);
a3437870
NA
2000 snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
2001 huge_page_size(h)/1024);
8faa8b07 2002
a3437870
NA
2003 parsed_hstate = h;
2004}
2005
e11bfbfc 2006static int __init hugetlb_nrpages_setup(char *s)
a3437870
NA
2007{
2008 unsigned long *mhp;
8faa8b07 2009 static unsigned long *last_mhp;
a3437870
NA
2010
2011 /*
47d38344 2012 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter yet,
a3437870
NA
2013 * so this hugepages= parameter goes to the "default hstate".
2014 */
47d38344 2015 if (!hugetlb_max_hstate)
a3437870
NA
2016 mhp = &default_hstate_max_huge_pages;
2017 else
2018 mhp = &parsed_hstate->max_huge_pages;
2019
8faa8b07 2020 if (mhp == last_mhp) {
ffb22af5
AM
2021 pr_warning("hugepages= specified twice without "
2022 "interleaving hugepagesz=, ignoring\n");
8faa8b07
AK
2023 return 1;
2024 }
2025
a3437870
NA
2026 if (sscanf(s, "%lu", mhp) <= 0)
2027 *mhp = 0;
2028
8faa8b07
AK
2029 /*
2030 * Global state is always initialized later in hugetlb_init.
2031 * But we need to allocate >= MAX_ORDER hstates here early to still
2032 * use the bootmem allocator.
2033 */
47d38344 2034 if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER)
8faa8b07
AK
2035 hugetlb_hstate_alloc_pages(parsed_hstate);
2036
2037 last_mhp = mhp;
2038
a3437870
NA
2039 return 1;
2040}
e11bfbfc
NP
2041__setup("hugepages=", hugetlb_nrpages_setup);
2042
2043static int __init hugetlb_default_setup(char *s)
2044{
2045 default_hstate_size = memparse(s, &s);
2046 return 1;
2047}
2048__setup("default_hugepagesz=", hugetlb_default_setup);
a3437870 2049
8a213460
NA
2050static unsigned int cpuset_mems_nr(unsigned int *array)
2051{
2052 int node;
2053 unsigned int nr = 0;
2054
2055 for_each_node_mask(node, cpuset_current_mems_allowed)
2056 nr += array[node];
2057
2058 return nr;
2059}
2060
2061#ifdef CONFIG_SYSCTL
06808b08
LS
2062static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
2063 struct ctl_table *table, int write,
2064 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 2065{
e5ff2159
AK
2066 struct hstate *h = &default_hstate;
2067 unsigned long tmp;
08d4a246 2068 int ret;
e5ff2159 2069
c033a93c 2070 tmp = h->max_huge_pages;
e5ff2159 2071
adbe8726
EM
2072 if (write && h->order >= MAX_ORDER)
2073 return -EINVAL;
2074
e5ff2159
AK
2075 table->data = &tmp;
2076 table->maxlen = sizeof(unsigned long);
08d4a246
MH
2077 ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2078 if (ret)
2079 goto out;
e5ff2159 2080
06808b08 2081 if (write) {
bad44b5b
DR
2082 NODEMASK_ALLOC(nodemask_t, nodes_allowed,
2083 GFP_KERNEL | __GFP_NORETRY);
06808b08
LS
2084 if (!(obey_mempolicy &&
2085 init_nodemask_of_mempolicy(nodes_allowed))) {
2086 NODEMASK_FREE(nodes_allowed);
8cebfcd0 2087 nodes_allowed = &node_states[N_MEMORY];
06808b08
LS
2088 }
2089 h->max_huge_pages = set_max_huge_pages(h, tmp, nodes_allowed);
2090
8cebfcd0 2091 if (nodes_allowed != &node_states[N_MEMORY])
06808b08
LS
2092 NODEMASK_FREE(nodes_allowed);
2093 }
08d4a246
MH
2094out:
2095 return ret;
1da177e4 2096}
396faf03 2097
06808b08
LS
2098int hugetlb_sysctl_handler(struct ctl_table *table, int write,
2099 void __user *buffer, size_t *length, loff_t *ppos)
2100{
2101
2102 return hugetlb_sysctl_handler_common(false, table, write,
2103 buffer, length, ppos);
2104}
2105
2106#ifdef CONFIG_NUMA
2107int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
2108 void __user *buffer, size_t *length, loff_t *ppos)
2109{
2110 return hugetlb_sysctl_handler_common(true, table, write,
2111 buffer, length, ppos);
2112}
2113#endif /* CONFIG_NUMA */
2114
a3d0c6aa 2115int hugetlb_overcommit_handler(struct ctl_table *table, int write,
8d65af78 2116 void __user *buffer,
a3d0c6aa
NA
2117 size_t *length, loff_t *ppos)
2118{
a5516438 2119 struct hstate *h = &default_hstate;
e5ff2159 2120 unsigned long tmp;
08d4a246 2121 int ret;
e5ff2159 2122
c033a93c 2123 tmp = h->nr_overcommit_huge_pages;
e5ff2159 2124
adbe8726
EM
2125 if (write && h->order >= MAX_ORDER)
2126 return -EINVAL;
2127
e5ff2159
AK
2128 table->data = &tmp;
2129 table->maxlen = sizeof(unsigned long);
08d4a246
MH
2130 ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2131 if (ret)
2132 goto out;
e5ff2159
AK
2133
2134 if (write) {
2135 spin_lock(&hugetlb_lock);
2136 h->nr_overcommit_huge_pages = tmp;
2137 spin_unlock(&hugetlb_lock);
2138 }
08d4a246
MH
2139out:
2140 return ret;
a3d0c6aa
NA
2141}
2142
1da177e4
LT
2143#endif /* CONFIG_SYSCTL */
2144
e1759c21 2145void hugetlb_report_meminfo(struct seq_file *m)
1da177e4 2146{
a5516438 2147 struct hstate *h = &default_hstate;
e1759c21 2148 seq_printf(m,
4f98a2fe
RR
2149 "HugePages_Total: %5lu\n"
2150 "HugePages_Free: %5lu\n"
2151 "HugePages_Rsvd: %5lu\n"
2152 "HugePages_Surp: %5lu\n"
2153 "Hugepagesize: %8lu kB\n",
a5516438
AK
2154 h->nr_huge_pages,
2155 h->free_huge_pages,
2156 h->resv_huge_pages,
2157 h->surplus_huge_pages,
2158 1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
1da177e4
LT
2159}
2160
2161int hugetlb_report_node_meminfo(int nid, char *buf)
2162{
a5516438 2163 struct hstate *h = &default_hstate;
1da177e4
LT
2164 return sprintf(buf,
2165 "Node %d HugePages_Total: %5u\n"
a1de0919
NA
2166 "Node %d HugePages_Free: %5u\n"
2167 "Node %d HugePages_Surp: %5u\n",
a5516438
AK
2168 nid, h->nr_huge_pages_node[nid],
2169 nid, h->free_huge_pages_node[nid],
2170 nid, h->surplus_huge_pages_node[nid]);
1da177e4
LT
2171}
2172
949f7ec5
DR
2173void hugetlb_show_meminfo(void)
2174{
2175 struct hstate *h;
2176 int nid;
2177
2178 for_each_node_state(nid, N_MEMORY)
2179 for_each_hstate(h)
2180 pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
2181 nid,
2182 h->nr_huge_pages_node[nid],
2183 h->free_huge_pages_node[nid],
2184 h->surplus_huge_pages_node[nid],
2185 1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
2186}
2187
1da177e4
LT
2188/* Return the number pages of memory we physically have, in PAGE_SIZE units. */
2189unsigned long hugetlb_total_pages(void)
2190{
d0028588
WL
2191 struct hstate *h;
2192 unsigned long nr_total_pages = 0;
2193
2194 for_each_hstate(h)
2195 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
2196 return nr_total_pages;
1da177e4 2197}
1da177e4 2198
a5516438 2199static int hugetlb_acct_memory(struct hstate *h, long delta)
fc1b8a73
MG
2200{
2201 int ret = -ENOMEM;
2202
2203 spin_lock(&hugetlb_lock);
2204 /*
2205 * When cpuset is configured, it breaks the strict hugetlb page
2206 * reservation as the accounting is done on a global variable. Such
2207 * reservation is completely rubbish in the presence of cpuset because
2208 * the reservation is not checked against page availability for the
2209 * current cpuset. Application can still potentially OOM'ed by kernel
2210 * with lack of free htlb page in cpuset that the task is in.
2211 * Attempt to enforce strict accounting with cpuset is almost
2212 * impossible (or too ugly) because cpuset is too fluid that
2213 * task or memory node can be dynamically moved between cpusets.
2214 *
2215 * The change of semantics for shared hugetlb mapping with cpuset is
2216 * undesirable. However, in order to preserve some of the semantics,
2217 * we fall back to check against current free page availability as
2218 * a best attempt and hopefully to minimize the impact of changing
2219 * semantics that cpuset has.
2220 */
2221 if (delta > 0) {
a5516438 2222 if (gather_surplus_pages(h, delta) < 0)
fc1b8a73
MG
2223 goto out;
2224
a5516438
AK
2225 if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
2226 return_unused_surplus_pages(h, delta);
fc1b8a73
MG
2227 goto out;
2228 }
2229 }
2230
2231 ret = 0;
2232 if (delta < 0)
a5516438 2233 return_unused_surplus_pages(h, (unsigned long) -delta);
fc1b8a73
MG
2234
2235out:
2236 spin_unlock(&hugetlb_lock);
2237 return ret;
2238}
2239
84afd99b
AW
2240static void hugetlb_vm_op_open(struct vm_area_struct *vma)
2241{
f522c3ac 2242 struct resv_map *resv = vma_resv_map(vma);
84afd99b
AW
2243
2244 /*
2245 * This new VMA should share its siblings reservation map if present.
2246 * The VMA will only ever have a valid reservation map pointer where
2247 * it is being copied for another still existing VMA. As that VMA
25985edc 2248 * has a reference to the reservation map it cannot disappear until
84afd99b
AW
2249 * after this open call completes. It is therefore safe to take a
2250 * new reference here without additional locking.
2251 */
f522c3ac
JK
2252 if (resv)
2253 kref_get(&resv->refs);
84afd99b
AW
2254}
2255
c50ac050
DH
2256static void resv_map_put(struct vm_area_struct *vma)
2257{
f522c3ac 2258 struct resv_map *resv = vma_resv_map(vma);
c50ac050 2259
f522c3ac 2260 if (!resv)
c50ac050 2261 return;
f522c3ac 2262 kref_put(&resv->refs, resv_map_release);
c50ac050
DH
2263}
2264
a1e78772
MG
2265static void hugetlb_vm_op_close(struct vm_area_struct *vma)
2266{
a5516438 2267 struct hstate *h = hstate_vma(vma);
f522c3ac 2268 struct resv_map *resv = vma_resv_map(vma);
90481622 2269 struct hugepage_subpool *spool = subpool_vma(vma);
84afd99b
AW
2270 unsigned long reserve;
2271 unsigned long start;
2272 unsigned long end;
2273
f522c3ac 2274 if (resv) {
a5516438
AK
2275 start = vma_hugecache_offset(h, vma, vma->vm_start);
2276 end = vma_hugecache_offset(h, vma, vma->vm_end);
84afd99b
AW
2277
2278 reserve = (end - start) -
f522c3ac 2279 region_count(&resv->regions, start, end);
84afd99b 2280
c50ac050 2281 resv_map_put(vma);
84afd99b 2282
7251ff78 2283 if (reserve) {
a5516438 2284 hugetlb_acct_memory(h, -reserve);
90481622 2285 hugepage_subpool_put_pages(spool, reserve);
7251ff78 2286 }
84afd99b 2287 }
a1e78772
MG
2288}
2289
1da177e4
LT
2290/*
2291 * We cannot handle pagefaults against hugetlb pages at all. They cause
2292 * handle_mm_fault() to try to instantiate regular-sized pages in the
2293 * hugegpage VMA. do_page_fault() is supposed to trap this, so BUG is we get
2294 * this far.
2295 */
d0217ac0 2296static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1da177e4
LT
2297{
2298 BUG();
d0217ac0 2299 return 0;
1da177e4
LT
2300}
2301
f0f37e2f 2302const struct vm_operations_struct hugetlb_vm_ops = {
d0217ac0 2303 .fault = hugetlb_vm_op_fault,
84afd99b 2304 .open = hugetlb_vm_op_open,
a1e78772 2305 .close = hugetlb_vm_op_close,
1da177e4
LT
2306};
2307
1e8f889b
DG
2308static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
2309 int writable)
63551ae0
DG
2310{
2311 pte_t entry;
2312
1e8f889b 2313 if (writable) {
106c992a
GS
2314 entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
2315 vma->vm_page_prot)));
63551ae0 2316 } else {
106c992a
GS
2317 entry = huge_pte_wrprotect(mk_huge_pte(page,
2318 vma->vm_page_prot));
63551ae0
DG
2319 }
2320 entry = pte_mkyoung(entry);
2321 entry = pte_mkhuge(entry);
d9ed9faa 2322 entry = arch_make_huge_pte(entry, vma, page, writable);
63551ae0
DG
2323
2324 return entry;
2325}
2326
1e8f889b
DG
2327static void set_huge_ptep_writable(struct vm_area_struct *vma,
2328 unsigned long address, pte_t *ptep)
2329{
2330 pte_t entry;
2331
106c992a 2332 entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
32f84528 2333 if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
4b3073e1 2334 update_mmu_cache(vma, address, ptep);
1e8f889b
DG
2335}
2336
2337
63551ae0
DG
2338int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
2339 struct vm_area_struct *vma)
2340{
2341 pte_t *src_pte, *dst_pte, entry;
2342 struct page *ptepage;
1c59827d 2343 unsigned long addr;
1e8f889b 2344 int cow;
a5516438
AK
2345 struct hstate *h = hstate_vma(vma);
2346 unsigned long sz = huge_page_size(h);
e8569dd2
AS
2347 unsigned long mmun_start; /* For mmu_notifiers */
2348 unsigned long mmun_end; /* For mmu_notifiers */
2349 int ret = 0;
1e8f889b
DG
2350
2351 cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
63551ae0 2352
e8569dd2
AS
2353 mmun_start = vma->vm_start;
2354 mmun_end = vma->vm_end;
2355 if (cow)
2356 mmu_notifier_invalidate_range_start(src, mmun_start, mmun_end);
2357
a5516438 2358 for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
cb900f41 2359 spinlock_t *src_ptl, *dst_ptl;
c74df32c
HD
2360 src_pte = huge_pte_offset(src, addr);
2361 if (!src_pte)
2362 continue;
a5516438 2363 dst_pte = huge_pte_alloc(dst, addr, sz);
e8569dd2
AS
2364 if (!dst_pte) {
2365 ret = -ENOMEM;
2366 break;
2367 }
c5c99429
LW
2368
2369 /* If the pagetables are shared don't copy or take references */
2370 if (dst_pte == src_pte)
2371 continue;
2372
cb900f41
KS
2373 dst_ptl = huge_pte_lock(h, dst, dst_pte);
2374 src_ptl = huge_pte_lockptr(h, src, src_pte);
2375 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
7f2e9525 2376 if (!huge_pte_none(huge_ptep_get(src_pte))) {
1e8f889b 2377 if (cow)
7f2e9525
GS
2378 huge_ptep_set_wrprotect(src, addr, src_pte);
2379 entry = huge_ptep_get(src_pte);
1c59827d
HD
2380 ptepage = pte_page(entry);
2381 get_page(ptepage);
0fe6e20b 2382 page_dup_rmap(ptepage);
1c59827d
HD
2383 set_huge_pte_at(dst, addr, dst_pte, entry);
2384 }
cb900f41
KS
2385 spin_unlock(src_ptl);
2386 spin_unlock(dst_ptl);
63551ae0 2387 }
63551ae0 2388
e8569dd2
AS
2389 if (cow)
2390 mmu_notifier_invalidate_range_end(src, mmun_start, mmun_end);
2391
2392 return ret;
63551ae0
DG
2393}
2394
290408d4
NH
2395static int is_hugetlb_entry_migration(pte_t pte)
2396{
2397 swp_entry_t swp;
2398
2399 if (huge_pte_none(pte) || pte_present(pte))
2400 return 0;
2401 swp = pte_to_swp_entry(pte);
32f84528 2402 if (non_swap_entry(swp) && is_migration_entry(swp))
290408d4 2403 return 1;
32f84528 2404 else
290408d4
NH
2405 return 0;
2406}
2407
fd6a03ed
NH
2408static int is_hugetlb_entry_hwpoisoned(pte_t pte)
2409{
2410 swp_entry_t swp;
2411
2412 if (huge_pte_none(pte) || pte_present(pte))
2413 return 0;
2414 swp = pte_to_swp_entry(pte);
32f84528 2415 if (non_swap_entry(swp) && is_hwpoison_entry(swp))
fd6a03ed 2416 return 1;
32f84528 2417 else
fd6a03ed
NH
2418 return 0;
2419}
2420
24669e58
AK
2421void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
2422 unsigned long start, unsigned long end,
2423 struct page *ref_page)
63551ae0 2424{
24669e58 2425 int force_flush = 0;
63551ae0
DG
2426 struct mm_struct *mm = vma->vm_mm;
2427 unsigned long address;
c7546f8f 2428 pte_t *ptep;
63551ae0 2429 pte_t pte;
cb900f41 2430 spinlock_t *ptl;
63551ae0 2431 struct page *page;
a5516438
AK
2432 struct hstate *h = hstate_vma(vma);
2433 unsigned long sz = huge_page_size(h);
2ec74c3e
SG
2434 const unsigned long mmun_start = start; /* For mmu_notifiers */
2435 const unsigned long mmun_end = end; /* For mmu_notifiers */
a5516438 2436
63551ae0 2437 WARN_ON(!is_vm_hugetlb_page(vma));
a5516438
AK
2438 BUG_ON(start & ~huge_page_mask(h));
2439 BUG_ON(end & ~huge_page_mask(h));
63551ae0 2440
24669e58 2441 tlb_start_vma(tlb, vma);
2ec74c3e 2442 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
24669e58 2443again:
a5516438 2444 for (address = start; address < end; address += sz) {
c7546f8f 2445 ptep = huge_pte_offset(mm, address);
4c887265 2446 if (!ptep)
c7546f8f
DG
2447 continue;
2448
cb900f41 2449 ptl = huge_pte_lock(h, mm, ptep);
39dde65c 2450 if (huge_pmd_unshare(mm, &address, ptep))
cb900f41 2451 goto unlock;
39dde65c 2452
6629326b
HD
2453 pte = huge_ptep_get(ptep);
2454 if (huge_pte_none(pte))
cb900f41 2455 goto unlock;
6629326b
HD
2456
2457 /*
2458 * HWPoisoned hugepage is already unmapped and dropped reference
2459 */
8c4894c6 2460 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
106c992a 2461 huge_pte_clear(mm, address, ptep);
cb900f41 2462 goto unlock;
8c4894c6 2463 }
6629326b
HD
2464
2465 page = pte_page(pte);
04f2cbe3
MG
2466 /*
2467 * If a reference page is supplied, it is because a specific
2468 * page is being unmapped, not a range. Ensure the page we
2469 * are about to unmap is the actual page of interest.
2470 */
2471 if (ref_page) {
04f2cbe3 2472 if (page != ref_page)
cb900f41 2473 goto unlock;
04f2cbe3
MG
2474
2475 /*
2476 * Mark the VMA as having unmapped its page so that
2477 * future faults in this VMA will fail rather than
2478 * looking like data was lost
2479 */
2480 set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
2481 }
2482
c7546f8f 2483 pte = huge_ptep_get_and_clear(mm, address, ptep);
24669e58 2484 tlb_remove_tlb_entry(tlb, ptep, address);
106c992a 2485 if (huge_pte_dirty(pte))
6649a386 2486 set_page_dirty(page);
9e81130b 2487
24669e58
AK
2488 page_remove_rmap(page);
2489 force_flush = !__tlb_remove_page(tlb, page);
cb900f41
KS
2490 if (force_flush) {
2491 spin_unlock(ptl);
24669e58 2492 break;
cb900f41 2493 }
9e81130b 2494 /* Bail out after unmapping reference page if supplied */
cb900f41
KS
2495 if (ref_page) {
2496 spin_unlock(ptl);
9e81130b 2497 break;
cb900f41
KS
2498 }
2499unlock:
2500 spin_unlock(ptl);
63551ae0 2501 }
24669e58
AK
2502 /*
2503 * mmu_gather ran out of room to batch pages, we break out of
2504 * the PTE lock to avoid doing the potential expensive TLB invalidate
2505 * and page-free while holding it.
2506 */
2507 if (force_flush) {
2508 force_flush = 0;
2509 tlb_flush_mmu(tlb);
2510 if (address < end && !ref_page)
2511 goto again;
fe1668ae 2512 }
2ec74c3e 2513 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
24669e58 2514 tlb_end_vma(tlb, vma);
1da177e4 2515}
63551ae0 2516
d833352a
MG
2517void __unmap_hugepage_range_final(struct mmu_gather *tlb,
2518 struct vm_area_struct *vma, unsigned long start,
2519 unsigned long end, struct page *ref_page)
2520{
2521 __unmap_hugepage_range(tlb, vma, start, end, ref_page);
2522
2523 /*
2524 * Clear this flag so that x86's huge_pmd_share page_table_shareable
2525 * test will fail on a vma being torn down, and not grab a page table
2526 * on its way out. We're lucky that the flag has such an appropriate
2527 * name, and can in fact be safely cleared here. We could clear it
2528 * before the __unmap_hugepage_range above, but all that's necessary
2529 * is to clear it before releasing the i_mmap_mutex. This works
2530 * because in the context this is called, the VMA is about to be
2531 * destroyed and the i_mmap_mutex is held.
2532 */
2533 vma->vm_flags &= ~VM_MAYSHARE;
2534}
2535
502717f4 2536void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
04f2cbe3 2537 unsigned long end, struct page *ref_page)
502717f4 2538{
24669e58
AK
2539 struct mm_struct *mm;
2540 struct mmu_gather tlb;
2541
2542 mm = vma->vm_mm;
2543
2b047252 2544 tlb_gather_mmu(&tlb, mm, start, end);
24669e58
AK
2545 __unmap_hugepage_range(&tlb, vma, start, end, ref_page);
2546 tlb_finish_mmu(&tlb, start, end);
502717f4
CK
2547}
2548
04f2cbe3
MG
2549/*
2550 * This is called when the original mapper is failing to COW a MAP_PRIVATE
2551 * mappping it owns the reserve page for. The intention is to unmap the page
2552 * from other VMAs and let the children be SIGKILLed if they are faulting the
2553 * same region.
2554 */
2a4b3ded
HH
2555static int unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
2556 struct page *page, unsigned long address)
04f2cbe3 2557{
7526674d 2558 struct hstate *h = hstate_vma(vma);
04f2cbe3
MG
2559 struct vm_area_struct *iter_vma;
2560 struct address_space *mapping;
04f2cbe3
MG
2561 pgoff_t pgoff;
2562
2563 /*
2564 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
2565 * from page cache lookup which is in HPAGE_SIZE units.
2566 */
7526674d 2567 address = address & huge_page_mask(h);
36e4f20a
MH
2568 pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
2569 vma->vm_pgoff;
496ad9aa 2570 mapping = file_inode(vma->vm_file)->i_mapping;
04f2cbe3 2571
4eb2b1dc
MG
2572 /*
2573 * Take the mapping lock for the duration of the table walk. As
2574 * this mapping should be shared between all the VMAs,
2575 * __unmap_hugepage_range() is called as the lock is already held
2576 */
3d48ae45 2577 mutex_lock(&mapping->i_mmap_mutex);
6b2dbba8 2578 vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
04f2cbe3
MG
2579 /* Do not unmap the current VMA */
2580 if (iter_vma == vma)
2581 continue;
2582
2583 /*
2584 * Unmap the page from other VMAs without their own reserves.
2585 * They get marked to be SIGKILLed if they fault in these
2586 * areas. This is because a future no-page fault on this VMA
2587 * could insert a zeroed page instead of the data existing
2588 * from the time of fork. This would look like data corruption
2589 */
2590 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
24669e58
AK
2591 unmap_hugepage_range(iter_vma, address,
2592 address + huge_page_size(h), page);
04f2cbe3 2593 }
3d48ae45 2594 mutex_unlock(&mapping->i_mmap_mutex);
04f2cbe3
MG
2595
2596 return 1;
2597}
2598
0fe6e20b
NH
2599/*
2600 * Hugetlb_cow() should be called with page lock of the original hugepage held.
ef009b25
MH
2601 * Called with hugetlb_instantiation_mutex held and pte_page locked so we
2602 * cannot race with other handlers or page migration.
2603 * Keep the pte_same checks anyway to make transition from the mutex easier.
0fe6e20b 2604 */
1e8f889b 2605static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
04f2cbe3 2606 unsigned long address, pte_t *ptep, pte_t pte,
cb900f41 2607 struct page *pagecache_page, spinlock_t *ptl)
1e8f889b 2608{
a5516438 2609 struct hstate *h = hstate_vma(vma);
1e8f889b 2610 struct page *old_page, *new_page;
04f2cbe3 2611 int outside_reserve = 0;
2ec74c3e
SG
2612 unsigned long mmun_start; /* For mmu_notifiers */
2613 unsigned long mmun_end; /* For mmu_notifiers */
1e8f889b
DG
2614
2615 old_page = pte_page(pte);
2616
04f2cbe3 2617retry_avoidcopy:
1e8f889b
DG
2618 /* If no-one else is actually using this page, avoid the copy
2619 * and just make the page writable */
37a2140d
JK
2620 if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
2621 page_move_anon_rmap(old_page, vma, address);
1e8f889b 2622 set_huge_ptep_writable(vma, address, ptep);
83c54070 2623 return 0;
1e8f889b
DG
2624 }
2625
04f2cbe3
MG
2626 /*
2627 * If the process that created a MAP_PRIVATE mapping is about to
2628 * perform a COW due to a shared page count, attempt to satisfy
2629 * the allocation without using the existing reserves. The pagecache
2630 * page is used to determine if the reserve at this address was
2631 * consumed or not. If reserves were used, a partial faulted mapping
2632 * at the time of fork() could consume its reserves on COW instead
2633 * of the full address range.
2634 */
5944d011 2635 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
04f2cbe3
MG
2636 old_page != pagecache_page)
2637 outside_reserve = 1;
2638
1e8f889b 2639 page_cache_get(old_page);
b76c8cfb 2640
cb900f41
KS
2641 /* Drop page table lock as buddy allocator may be called */
2642 spin_unlock(ptl);
04f2cbe3 2643 new_page = alloc_huge_page(vma, address, outside_reserve);
1e8f889b 2644
2fc39cec 2645 if (IS_ERR(new_page)) {
76dcee75 2646 long err = PTR_ERR(new_page);
1e8f889b 2647 page_cache_release(old_page);
04f2cbe3
MG
2648
2649 /*
2650 * If a process owning a MAP_PRIVATE mapping fails to COW,
2651 * it is due to references held by a child and an insufficient
2652 * huge page pool. To guarantee the original mappers
2653 * reliability, unmap the page from child processes. The child
2654 * may get SIGKILLed if it later faults.
2655 */
2656 if (outside_reserve) {
2657 BUG_ON(huge_pte_none(pte));
2658 if (unmap_ref_private(mm, vma, old_page, address)) {
04f2cbe3 2659 BUG_ON(huge_pte_none(pte));
cb900f41 2660 spin_lock(ptl);
a734bcc8
HD
2661 ptep = huge_pte_offset(mm, address & huge_page_mask(h));
2662 if (likely(pte_same(huge_ptep_get(ptep), pte)))
2663 goto retry_avoidcopy;
2664 /*
cb900f41
KS
2665 * race occurs while re-acquiring page table
2666 * lock, and our job is done.
a734bcc8
HD
2667 */
2668 return 0;
04f2cbe3
MG
2669 }
2670 WARN_ON_ONCE(1);
2671 }
2672
b76c8cfb 2673 /* Caller expects lock to be held */
cb900f41 2674 spin_lock(ptl);
76dcee75
AK
2675 if (err == -ENOMEM)
2676 return VM_FAULT_OOM;
2677 else
2678 return VM_FAULT_SIGBUS;
1e8f889b
DG
2679 }
2680
0fe6e20b
NH
2681 /*
2682 * When the original hugepage is shared one, it does not have
2683 * anon_vma prepared.
2684 */
44e2aa93 2685 if (unlikely(anon_vma_prepare(vma))) {
ea4039a3
HD
2686 page_cache_release(new_page);
2687 page_cache_release(old_page);
44e2aa93 2688 /* Caller expects lock to be held */
cb900f41 2689 spin_lock(ptl);
0fe6e20b 2690 return VM_FAULT_OOM;
44e2aa93 2691 }
0fe6e20b 2692
47ad8475
AA
2693 copy_user_huge_page(new_page, old_page, address, vma,
2694 pages_per_huge_page(h));
0ed361de 2695 __SetPageUptodate(new_page);
1e8f889b 2696
2ec74c3e
SG
2697 mmun_start = address & huge_page_mask(h);
2698 mmun_end = mmun_start + huge_page_size(h);
2699 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
b76c8cfb 2700 /*
cb900f41 2701 * Retake the page table lock to check for racing updates
b76c8cfb
LW
2702 * before the page tables are altered
2703 */
cb900f41 2704 spin_lock(ptl);
a5516438 2705 ptep = huge_pte_offset(mm, address & huge_page_mask(h));
7f2e9525 2706 if (likely(pte_same(huge_ptep_get(ptep), pte))) {
07443a85
JK
2707 ClearPagePrivate(new_page);
2708
1e8f889b 2709 /* Break COW */
8fe627ec 2710 huge_ptep_clear_flush(vma, address, ptep);
1e8f889b
DG
2711 set_huge_pte_at(mm, address, ptep,
2712 make_huge_pte(vma, new_page, 1));
0fe6e20b 2713 page_remove_rmap(old_page);
cd67f0d2 2714 hugepage_add_new_anon_rmap(new_page, vma, address);
1e8f889b
DG
2715 /* Make the old page be freed below */
2716 new_page = old_page;
2717 }
cb900f41 2718 spin_unlock(ptl);
2ec74c3e 2719 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1e8f889b
DG
2720 page_cache_release(new_page);
2721 page_cache_release(old_page);
8312034f
JK
2722
2723 /* Caller expects lock to be held */
cb900f41 2724 spin_lock(ptl);
83c54070 2725 return 0;
1e8f889b
DG
2726}
2727
04f2cbe3 2728/* Return the pagecache page at a given address within a VMA */
a5516438
AK
2729static struct page *hugetlbfs_pagecache_page(struct hstate *h,
2730 struct vm_area_struct *vma, unsigned long address)
04f2cbe3
MG
2731{
2732 struct address_space *mapping;
e7c4b0bf 2733 pgoff_t idx;
04f2cbe3
MG
2734
2735 mapping = vma->vm_file->f_mapping;
a5516438 2736 idx = vma_hugecache_offset(h, vma, address);
04f2cbe3
MG
2737
2738 return find_lock_page(mapping, idx);
2739}
2740
3ae77f43
HD
2741/*
2742 * Return whether there is a pagecache page to back given address within VMA.
2743 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
2744 */
2745static bool hugetlbfs_pagecache_present(struct hstate *h,
2a15efc9
HD
2746 struct vm_area_struct *vma, unsigned long address)
2747{
2748 struct address_space *mapping;
2749 pgoff_t idx;
2750 struct page *page;
2751
2752 mapping = vma->vm_file->f_mapping;
2753 idx = vma_hugecache_offset(h, vma, address);
2754
2755 page = find_get_page(mapping, idx);
2756 if (page)
2757 put_page(page);
2758 return page != NULL;
2759}
2760
a1ed3dda 2761static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
788c7df4 2762 unsigned long address, pte_t *ptep, unsigned int flags)
ac9b9c66 2763{
a5516438 2764 struct hstate *h = hstate_vma(vma);
ac9b9c66 2765 int ret = VM_FAULT_SIGBUS;
409eb8c2 2766 int anon_rmap = 0;
e7c4b0bf 2767 pgoff_t idx;
4c887265 2768 unsigned long size;
4c887265
AL
2769 struct page *page;
2770 struct address_space *mapping;
1e8f889b 2771 pte_t new_pte;
cb900f41 2772 spinlock_t *ptl;
4c887265 2773
04f2cbe3
MG
2774 /*
2775 * Currently, we are forced to kill the process in the event the
2776 * original mapper has unmapped pages from the child due to a failed
25985edc 2777 * COW. Warn that such a situation has occurred as it may not be obvious
04f2cbe3
MG
2778 */
2779 if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
ffb22af5
AM
2780 pr_warning("PID %d killed due to inadequate hugepage pool\n",
2781 current->pid);
04f2cbe3
MG
2782 return ret;
2783 }
2784
4c887265 2785 mapping = vma->vm_file->f_mapping;
a5516438 2786 idx = vma_hugecache_offset(h, vma, address);
4c887265
AL
2787
2788 /*
2789 * Use page lock to guard against racing truncation
2790 * before we get page_table_lock.
2791 */
6bda666a
CL
2792retry:
2793 page = find_lock_page(mapping, idx);
2794 if (!page) {
a5516438 2795 size = i_size_read(mapping->host) >> huge_page_shift(h);
ebed4bfc
HD
2796 if (idx >= size)
2797 goto out;
04f2cbe3 2798 page = alloc_huge_page(vma, address, 0);
2fc39cec 2799 if (IS_ERR(page)) {
76dcee75
AK
2800 ret = PTR_ERR(page);
2801 if (ret == -ENOMEM)
2802 ret = VM_FAULT_OOM;
2803 else
2804 ret = VM_FAULT_SIGBUS;
6bda666a
CL
2805 goto out;
2806 }
47ad8475 2807 clear_huge_page(page, address, pages_per_huge_page(h));
0ed361de 2808 __SetPageUptodate(page);
ac9b9c66 2809
f83a275d 2810 if (vma->vm_flags & VM_MAYSHARE) {
6bda666a 2811 int err;
45c682a6 2812 struct inode *inode = mapping->host;
6bda666a
CL
2813
2814 err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
2815 if (err) {
2816 put_page(page);
6bda666a
CL
2817 if (err == -EEXIST)
2818 goto retry;
2819 goto out;
2820 }
07443a85 2821 ClearPagePrivate(page);
45c682a6
KC
2822
2823 spin_lock(&inode->i_lock);
a5516438 2824 inode->i_blocks += blocks_per_huge_page(h);
45c682a6 2825 spin_unlock(&inode->i_lock);
23be7468 2826 } else {
6bda666a 2827 lock_page(page);
0fe6e20b
NH
2828 if (unlikely(anon_vma_prepare(vma))) {
2829 ret = VM_FAULT_OOM;
2830 goto backout_unlocked;
2831 }
409eb8c2 2832 anon_rmap = 1;
23be7468 2833 }
0fe6e20b 2834 } else {
998b4382
NH
2835 /*
2836 * If memory error occurs between mmap() and fault, some process
2837 * don't have hwpoisoned swap entry for errored virtual address.
2838 * So we need to block hugepage fault by PG_hwpoison bit check.
2839 */
2840 if (unlikely(PageHWPoison(page))) {
32f84528 2841 ret = VM_FAULT_HWPOISON |
972dc4de 2842 VM_FAULT_SET_HINDEX(hstate_index(h));
998b4382
NH
2843 goto backout_unlocked;
2844 }
6bda666a 2845 }
1e8f889b 2846
57303d80
AW
2847 /*
2848 * If we are going to COW a private mapping later, we examine the
2849 * pending reservations for this page now. This will ensure that
2850 * any allocations necessary to record that reservation occur outside
2851 * the spinlock.
2852 */
788c7df4 2853 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED))
2b26736c
AW
2854 if (vma_needs_reservation(h, vma, address) < 0) {
2855 ret = VM_FAULT_OOM;
2856 goto backout_unlocked;
2857 }
57303d80 2858
cb900f41
KS
2859 ptl = huge_pte_lockptr(h, mm, ptep);
2860 spin_lock(ptl);
a5516438 2861 size = i_size_read(mapping->host) >> huge_page_shift(h);
4c887265
AL
2862 if (idx >= size)
2863 goto backout;
2864
83c54070 2865 ret = 0;
7f2e9525 2866 if (!huge_pte_none(huge_ptep_get(ptep)))
4c887265
AL
2867 goto backout;
2868
07443a85
JK
2869 if (anon_rmap) {
2870 ClearPagePrivate(page);
409eb8c2 2871 hugepage_add_new_anon_rmap(page, vma, address);
07443a85 2872 }
409eb8c2
HD
2873 else
2874 page_dup_rmap(page);
1e8f889b
DG
2875 new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
2876 && (vma->vm_flags & VM_SHARED)));
2877 set_huge_pte_at(mm, address, ptep, new_pte);
2878
788c7df4 2879 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
1e8f889b 2880 /* Optimization, do the COW without a second fault */
cb900f41 2881 ret = hugetlb_cow(mm, vma, address, ptep, new_pte, page, ptl);
1e8f889b
DG
2882 }
2883
cb900f41 2884 spin_unlock(ptl);
4c887265
AL
2885 unlock_page(page);
2886out:
ac9b9c66 2887 return ret;
4c887265
AL
2888
2889backout:
cb900f41 2890 spin_unlock(ptl);
2b26736c 2891backout_unlocked:
4c887265
AL
2892 unlock_page(page);
2893 put_page(page);
2894 goto out;
ac9b9c66
HD
2895}
2896
86e5216f 2897int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
788c7df4 2898 unsigned long address, unsigned int flags)
86e5216f
AL
2899{
2900 pte_t *ptep;
2901 pte_t entry;
cb900f41 2902 spinlock_t *ptl;
1e8f889b 2903 int ret;
0fe6e20b 2904 struct page *page = NULL;
57303d80 2905 struct page *pagecache_page = NULL;
3935baa9 2906 static DEFINE_MUTEX(hugetlb_instantiation_mutex);
a5516438 2907 struct hstate *h = hstate_vma(vma);
86e5216f 2908
1e16a539
KH
2909 address &= huge_page_mask(h);
2910
fd6a03ed
NH
2911 ptep = huge_pte_offset(mm, address);
2912 if (ptep) {
2913 entry = huge_ptep_get(ptep);
290408d4 2914 if (unlikely(is_hugetlb_entry_migration(entry))) {
cb900f41 2915 migration_entry_wait_huge(vma, mm, ptep);
290408d4
NH
2916 return 0;
2917 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
32f84528 2918 return VM_FAULT_HWPOISON_LARGE |
972dc4de 2919 VM_FAULT_SET_HINDEX(hstate_index(h));
fd6a03ed
NH
2920 }
2921
a5516438 2922 ptep = huge_pte_alloc(mm, address, huge_page_size(h));
86e5216f
AL
2923 if (!ptep)
2924 return VM_FAULT_OOM;
2925
3935baa9
DG
2926 /*
2927 * Serialize hugepage allocation and instantiation, so that we don't
2928 * get spurious allocation failures if two CPUs race to instantiate
2929 * the same page in the page cache.
2930 */
2931 mutex_lock(&hugetlb_instantiation_mutex);
7f2e9525
GS
2932 entry = huge_ptep_get(ptep);
2933 if (huge_pte_none(entry)) {
788c7df4 2934 ret = hugetlb_no_page(mm, vma, address, ptep, flags);
b4d1d99f 2935 goto out_mutex;
3935baa9 2936 }
86e5216f 2937
83c54070 2938 ret = 0;
1e8f889b 2939
57303d80
AW
2940 /*
2941 * If we are going to COW the mapping later, we examine the pending
2942 * reservations for this page now. This will ensure that any
2943 * allocations necessary to record that reservation occur outside the
2944 * spinlock. For private mappings, we also lookup the pagecache
2945 * page now as it is used to determine if a reservation has been
2946 * consumed.
2947 */
106c992a 2948 if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
2b26736c
AW
2949 if (vma_needs_reservation(h, vma, address) < 0) {
2950 ret = VM_FAULT_OOM;
b4d1d99f 2951 goto out_mutex;
2b26736c 2952 }
57303d80 2953
f83a275d 2954 if (!(vma->vm_flags & VM_MAYSHARE))
57303d80
AW
2955 pagecache_page = hugetlbfs_pagecache_page(h,
2956 vma, address);
2957 }
2958
56c9cfb1
NH
2959 /*
2960 * hugetlb_cow() requires page locks of pte_page(entry) and
2961 * pagecache_page, so here we need take the former one
2962 * when page != pagecache_page or !pagecache_page.
2963 * Note that locking order is always pagecache_page -> page,
2964 * so no worry about deadlock.
2965 */
2966 page = pte_page(entry);
66aebce7 2967 get_page(page);
56c9cfb1 2968 if (page != pagecache_page)
0fe6e20b 2969 lock_page(page);
0fe6e20b 2970
cb900f41
KS
2971 ptl = huge_pte_lockptr(h, mm, ptep);
2972 spin_lock(ptl);
1e8f889b 2973 /* Check for a racing update before calling hugetlb_cow */
b4d1d99f 2974 if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
cb900f41 2975 goto out_ptl;
b4d1d99f
DG
2976
2977
788c7df4 2978 if (flags & FAULT_FLAG_WRITE) {
106c992a 2979 if (!huge_pte_write(entry)) {
57303d80 2980 ret = hugetlb_cow(mm, vma, address, ptep, entry,
cb900f41
KS
2981 pagecache_page, ptl);
2982 goto out_ptl;
b4d1d99f 2983 }
106c992a 2984 entry = huge_pte_mkdirty(entry);
b4d1d99f
DG
2985 }
2986 entry = pte_mkyoung(entry);
788c7df4
HD
2987 if (huge_ptep_set_access_flags(vma, address, ptep, entry,
2988 flags & FAULT_FLAG_WRITE))
4b3073e1 2989 update_mmu_cache(vma, address, ptep);
b4d1d99f 2990
cb900f41
KS
2991out_ptl:
2992 spin_unlock(ptl);
57303d80
AW
2993
2994 if (pagecache_page) {
2995 unlock_page(pagecache_page);
2996 put_page(pagecache_page);
2997 }
1f64d69c
DN
2998 if (page != pagecache_page)
2999 unlock_page(page);
66aebce7 3000 put_page(page);
57303d80 3001
b4d1d99f 3002out_mutex:
3935baa9 3003 mutex_unlock(&hugetlb_instantiation_mutex);
1e8f889b
DG
3004
3005 return ret;
86e5216f
AL
3006}
3007
28a35716
ML
3008long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
3009 struct page **pages, struct vm_area_struct **vmas,
3010 unsigned long *position, unsigned long *nr_pages,
3011 long i, unsigned int flags)
63551ae0 3012{
d5d4b0aa
CK
3013 unsigned long pfn_offset;
3014 unsigned long vaddr = *position;
28a35716 3015 unsigned long remainder = *nr_pages;
a5516438 3016 struct hstate *h = hstate_vma(vma);
63551ae0 3017
63551ae0 3018 while (vaddr < vma->vm_end && remainder) {
4c887265 3019 pte_t *pte;
cb900f41 3020 spinlock_t *ptl = NULL;
2a15efc9 3021 int absent;
4c887265 3022 struct page *page;
63551ae0 3023
4c887265
AL
3024 /*
3025 * Some archs (sparc64, sh*) have multiple pte_ts to
2a15efc9 3026 * each hugepage. We have to make sure we get the
4c887265 3027 * first, for the page indexing below to work.
cb900f41
KS
3028 *
3029 * Note that page table lock is not held when pte is null.
4c887265 3030 */
a5516438 3031 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h));
cb900f41
KS
3032 if (pte)
3033 ptl = huge_pte_lock(h, mm, pte);
2a15efc9
HD
3034 absent = !pte || huge_pte_none(huge_ptep_get(pte));
3035
3036 /*
3037 * When coredumping, it suits get_dump_page if we just return
3ae77f43
HD
3038 * an error where there's an empty slot with no huge pagecache
3039 * to back it. This way, we avoid allocating a hugepage, and
3040 * the sparse dumpfile avoids allocating disk blocks, but its
3041 * huge holes still show up with zeroes where they need to be.
2a15efc9 3042 */
3ae77f43
HD
3043 if (absent && (flags & FOLL_DUMP) &&
3044 !hugetlbfs_pagecache_present(h, vma, vaddr)) {
cb900f41
KS
3045 if (pte)
3046 spin_unlock(ptl);
2a15efc9
HD
3047 remainder = 0;
3048 break;
3049 }
63551ae0 3050
9cc3a5bd
NH
3051 /*
3052 * We need call hugetlb_fault for both hugepages under migration
3053 * (in which case hugetlb_fault waits for the migration,) and
3054 * hwpoisoned hugepages (in which case we need to prevent the
3055 * caller from accessing to them.) In order to do this, we use
3056 * here is_swap_pte instead of is_hugetlb_entry_migration and
3057 * is_hugetlb_entry_hwpoisoned. This is because it simply covers
3058 * both cases, and because we can't follow correct pages
3059 * directly from any kind of swap entries.
3060 */
3061 if (absent || is_swap_pte(huge_ptep_get(pte)) ||
106c992a
GS
3062 ((flags & FOLL_WRITE) &&
3063 !huge_pte_write(huge_ptep_get(pte)))) {
4c887265 3064 int ret;
63551ae0 3065
cb900f41
KS
3066 if (pte)
3067 spin_unlock(ptl);
2a15efc9
HD
3068 ret = hugetlb_fault(mm, vma, vaddr,
3069 (flags & FOLL_WRITE) ? FAULT_FLAG_WRITE : 0);
a89182c7 3070 if (!(ret & VM_FAULT_ERROR))
4c887265 3071 continue;
63551ae0 3072
4c887265 3073 remainder = 0;
4c887265
AL
3074 break;
3075 }
3076
a5516438 3077 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
7f2e9525 3078 page = pte_page(huge_ptep_get(pte));
d5d4b0aa 3079same_page:
d6692183 3080 if (pages) {
2a15efc9 3081 pages[i] = mem_map_offset(page, pfn_offset);
a0368d4e 3082 get_page_foll(pages[i]);
d6692183 3083 }
63551ae0
DG
3084
3085 if (vmas)
3086 vmas[i] = vma;
3087
3088 vaddr += PAGE_SIZE;
d5d4b0aa 3089 ++pfn_offset;
63551ae0
DG
3090 --remainder;
3091 ++i;
d5d4b0aa 3092 if (vaddr < vma->vm_end && remainder &&
a5516438 3093 pfn_offset < pages_per_huge_page(h)) {
d5d4b0aa
CK
3094 /*
3095 * We use pfn_offset to avoid touching the pageframes
3096 * of this compound page.
3097 */
3098 goto same_page;
3099 }
cb900f41 3100 spin_unlock(ptl);
63551ae0 3101 }
28a35716 3102 *nr_pages = remainder;
63551ae0
DG
3103 *position = vaddr;
3104
2a15efc9 3105 return i ? i : -EFAULT;
63551ae0 3106}
8f860591 3107
7da4d641 3108unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
8f860591
ZY
3109 unsigned long address, unsigned long end, pgprot_t newprot)
3110{
3111 struct mm_struct *mm = vma->vm_mm;
3112 unsigned long start = address;
3113 pte_t *ptep;
3114 pte_t pte;
a5516438 3115 struct hstate *h = hstate_vma(vma);
7da4d641 3116 unsigned long pages = 0;
8f860591
ZY
3117
3118 BUG_ON(address >= end);
3119 flush_cache_range(vma, address, end);
3120
3d48ae45 3121 mutex_lock(&vma->vm_file->f_mapping->i_mmap_mutex);
a5516438 3122 for (; address < end; address += huge_page_size(h)) {
cb900f41 3123 spinlock_t *ptl;
8f860591
ZY
3124 ptep = huge_pte_offset(mm, address);
3125 if (!ptep)
3126 continue;
cb900f41 3127 ptl = huge_pte_lock(h, mm, ptep);
7da4d641
PZ
3128 if (huge_pmd_unshare(mm, &address, ptep)) {
3129 pages++;
cb900f41 3130 spin_unlock(ptl);
39dde65c 3131 continue;
7da4d641 3132 }
7f2e9525 3133 if (!huge_pte_none(huge_ptep_get(ptep))) {
8f860591 3134 pte = huge_ptep_get_and_clear(mm, address, ptep);
106c992a 3135 pte = pte_mkhuge(huge_pte_modify(pte, newprot));
be7517d6 3136 pte = arch_make_huge_pte(pte, vma, NULL, 0);
8f860591 3137 set_huge_pte_at(mm, address, ptep, pte);
7da4d641 3138 pages++;
8f860591 3139 }
cb900f41 3140 spin_unlock(ptl);
8f860591 3141 }
d833352a
MG
3142 /*
3143 * Must flush TLB before releasing i_mmap_mutex: x86's huge_pmd_unshare
3144 * may have cleared our pud entry and done put_page on the page table:
3145 * once we release i_mmap_mutex, another task can do the final put_page
3146 * and that page table be reused and filled with junk.
3147 */
8f860591 3148 flush_tlb_range(vma, start, end);
d833352a 3149 mutex_unlock(&vma->vm_file->f_mapping->i_mmap_mutex);
7da4d641
PZ
3150
3151 return pages << h->order;
8f860591
ZY
3152}
3153
a1e78772
MG
3154int hugetlb_reserve_pages(struct inode *inode,
3155 long from, long to,
5a6fe125 3156 struct vm_area_struct *vma,
ca16d140 3157 vm_flags_t vm_flags)
e4e574b7 3158{
17c9d12e 3159 long ret, chg;
a5516438 3160 struct hstate *h = hstate_inode(inode);
90481622 3161 struct hugepage_subpool *spool = subpool_inode(inode);
9119a41e 3162 struct resv_map *resv_map;
e4e574b7 3163
17c9d12e
MG
3164 /*
3165 * Only apply hugepage reservation if asked. At fault time, an
3166 * attempt will be made for VM_NORESERVE to allocate a page
90481622 3167 * without using reserves
17c9d12e 3168 */
ca16d140 3169 if (vm_flags & VM_NORESERVE)
17c9d12e
MG
3170 return 0;
3171
a1e78772
MG
3172 /*
3173 * Shared mappings base their reservation on the number of pages that
3174 * are already allocated on behalf of the file. Private mappings need
3175 * to reserve the full area even if read-only as mprotect() may be
3176 * called to make the mapping read-write. Assume !vma is a shm mapping
3177 */
9119a41e
JK
3178 if (!vma || vma->vm_flags & VM_MAYSHARE) {
3179 resv_map = inode->i_mapping->private_data;
3180
3181 chg = region_chg(&resv_map->regions, from, to);
3182
3183 } else {
3184 resv_map = resv_map_alloc();
17c9d12e
MG
3185 if (!resv_map)
3186 return -ENOMEM;
3187
a1e78772 3188 chg = to - from;
84afd99b 3189
17c9d12e
MG
3190 set_vma_resv_map(vma, resv_map);
3191 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
3192 }
3193
c50ac050
DH
3194 if (chg < 0) {
3195 ret = chg;
3196 goto out_err;
3197 }
8a630112 3198
90481622 3199 /* There must be enough pages in the subpool for the mapping */
c50ac050
DH
3200 if (hugepage_subpool_get_pages(spool, chg)) {
3201 ret = -ENOSPC;
3202 goto out_err;
3203 }
5a6fe125
MG
3204
3205 /*
17c9d12e 3206 * Check enough hugepages are available for the reservation.
90481622 3207 * Hand the pages back to the subpool if there are not
5a6fe125 3208 */
a5516438 3209 ret = hugetlb_acct_memory(h, chg);
68842c9b 3210 if (ret < 0) {
90481622 3211 hugepage_subpool_put_pages(spool, chg);
c50ac050 3212 goto out_err;
68842c9b 3213 }
17c9d12e
MG
3214
3215 /*
3216 * Account for the reservations made. Shared mappings record regions
3217 * that have reservations as they are shared by multiple VMAs.
3218 * When the last VMA disappears, the region map says how much
3219 * the reservation was and the page cache tells how much of
3220 * the reservation was consumed. Private mappings are per-VMA and
3221 * only the consumed reservations are tracked. When the VMA
3222 * disappears, the original reservation is the VMA size and the
3223 * consumed reservations are stored in the map. Hence, nothing
3224 * else has to be done for private mappings here
3225 */
f83a275d 3226 if (!vma || vma->vm_flags & VM_MAYSHARE)
9119a41e 3227 region_add(&resv_map->regions, from, to);
a43a8c39 3228 return 0;
c50ac050 3229out_err:
4523e145
DH
3230 if (vma)
3231 resv_map_put(vma);
c50ac050 3232 return ret;
a43a8c39
CK
3233}
3234
3235void hugetlb_unreserve_pages(struct inode *inode, long offset, long freed)
3236{
a5516438 3237 struct hstate *h = hstate_inode(inode);
9119a41e
JK
3238 struct resv_map *resv_map = inode->i_mapping->private_data;
3239 long chg = 0;
90481622 3240 struct hugepage_subpool *spool = subpool_inode(inode);
45c682a6 3241
9119a41e
JK
3242 if (resv_map)
3243 chg = region_truncate(&resv_map->regions, offset);
45c682a6 3244 spin_lock(&inode->i_lock);
e4c6f8be 3245 inode->i_blocks -= (blocks_per_huge_page(h) * freed);
45c682a6
KC
3246 spin_unlock(&inode->i_lock);
3247
90481622 3248 hugepage_subpool_put_pages(spool, (chg - freed));
a5516438 3249 hugetlb_acct_memory(h, -(chg - freed));
a43a8c39 3250}
93f70f90 3251
3212b535
SC
3252#ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
3253static unsigned long page_table_shareable(struct vm_area_struct *svma,
3254 struct vm_area_struct *vma,
3255 unsigned long addr, pgoff_t idx)
3256{
3257 unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
3258 svma->vm_start;
3259 unsigned long sbase = saddr & PUD_MASK;
3260 unsigned long s_end = sbase + PUD_SIZE;
3261
3262 /* Allow segments to share if only one is marked locked */
3263 unsigned long vm_flags = vma->vm_flags & ~VM_LOCKED;
3264 unsigned long svm_flags = svma->vm_flags & ~VM_LOCKED;
3265
3266 /*
3267 * match the virtual addresses, permission and the alignment of the
3268 * page table page.
3269 */
3270 if (pmd_index(addr) != pmd_index(saddr) ||
3271 vm_flags != svm_flags ||
3272 sbase < svma->vm_start || svma->vm_end < s_end)
3273 return 0;
3274
3275 return saddr;
3276}
3277
3278static int vma_shareable(struct vm_area_struct *vma, unsigned long addr)
3279{
3280 unsigned long base = addr & PUD_MASK;
3281 unsigned long end = base + PUD_SIZE;
3282
3283 /*
3284 * check on proper vm_flags and page table alignment
3285 */
3286 if (vma->vm_flags & VM_MAYSHARE &&
3287 vma->vm_start <= base && end <= vma->vm_end)
3288 return 1;
3289 return 0;
3290}
3291
3292/*
3293 * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
3294 * and returns the corresponding pte. While this is not necessary for the
3295 * !shared pmd case because we can allocate the pmd later as well, it makes the
3296 * code much cleaner. pmd allocation is essential for the shared case because
3297 * pud has to be populated inside the same i_mmap_mutex section - otherwise
3298 * racing tasks could either miss the sharing (see huge_pte_offset) or select a
3299 * bad pmd for sharing.
3300 */
3301pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
3302{
3303 struct vm_area_struct *vma = find_vma(mm, addr);
3304 struct address_space *mapping = vma->vm_file->f_mapping;
3305 pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
3306 vma->vm_pgoff;
3307 struct vm_area_struct *svma;
3308 unsigned long saddr;
3309 pte_t *spte = NULL;
3310 pte_t *pte;
cb900f41 3311 spinlock_t *ptl;
3212b535
SC
3312
3313 if (!vma_shareable(vma, addr))
3314 return (pte_t *)pmd_alloc(mm, pud, addr);
3315
3316 mutex_lock(&mapping->i_mmap_mutex);
3317 vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
3318 if (svma == vma)
3319 continue;
3320
3321 saddr = page_table_shareable(svma, vma, addr, idx);
3322 if (saddr) {
3323 spte = huge_pte_offset(svma->vm_mm, saddr);
3324 if (spte) {
3325 get_page(virt_to_page(spte));
3326 break;
3327 }
3328 }
3329 }
3330
3331 if (!spte)
3332 goto out;
3333
cb900f41
KS
3334 ptl = huge_pte_lockptr(hstate_vma(vma), mm, spte);
3335 spin_lock(ptl);
3212b535
SC
3336 if (pud_none(*pud))
3337 pud_populate(mm, pud,
3338 (pmd_t *)((unsigned long)spte & PAGE_MASK));
3339 else
3340 put_page(virt_to_page(spte));
cb900f41 3341 spin_unlock(ptl);
3212b535
SC
3342out:
3343 pte = (pte_t *)pmd_alloc(mm, pud, addr);
3344 mutex_unlock(&mapping->i_mmap_mutex);
3345 return pte;
3346}
3347
3348/*
3349 * unmap huge page backed by shared pte.
3350 *
3351 * Hugetlb pte page is ref counted at the time of mapping. If pte is shared
3352 * indicated by page_count > 1, unmap is achieved by clearing pud and
3353 * decrementing the ref count. If count == 1, the pte page is not shared.
3354 *
cb900f41 3355 * called with page table lock held.
3212b535
SC
3356 *
3357 * returns: 1 successfully unmapped a shared pte page
3358 * 0 the underlying pte page is not shared, or it is the last user
3359 */
3360int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
3361{
3362 pgd_t *pgd = pgd_offset(mm, *addr);
3363 pud_t *pud = pud_offset(pgd, *addr);
3364
3365 BUG_ON(page_count(virt_to_page(ptep)) == 0);
3366 if (page_count(virt_to_page(ptep)) == 1)
3367 return 0;
3368
3369 pud_clear(pud);
3370 put_page(virt_to_page(ptep));
3371 *addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE;
3372 return 1;
3373}
9e5fc74c
SC
3374#define want_pmd_share() (1)
3375#else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
3376pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
3377{
3378 return NULL;
3379}
3380#define want_pmd_share() (0)
3212b535
SC
3381#endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
3382
9e5fc74c
SC
3383#ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
3384pte_t *huge_pte_alloc(struct mm_struct *mm,
3385 unsigned long addr, unsigned long sz)
3386{
3387 pgd_t *pgd;
3388 pud_t *pud;
3389 pte_t *pte = NULL;
3390
3391 pgd = pgd_offset(mm, addr);
3392 pud = pud_alloc(mm, pgd, addr);
3393 if (pud) {
3394 if (sz == PUD_SIZE) {
3395 pte = (pte_t *)pud;
3396 } else {
3397 BUG_ON(sz != PMD_SIZE);
3398 if (want_pmd_share() && pud_none(*pud))
3399 pte = huge_pmd_share(mm, addr, pud);
3400 else
3401 pte = (pte_t *)pmd_alloc(mm, pud, addr);
3402 }
3403 }
3404 BUG_ON(pte && !pte_none(*pte) && !pte_huge(*pte));
3405
3406 return pte;
3407}
3408
3409pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr)
3410{
3411 pgd_t *pgd;
3412 pud_t *pud;
3413 pmd_t *pmd = NULL;
3414
3415 pgd = pgd_offset(mm, addr);
3416 if (pgd_present(*pgd)) {
3417 pud = pud_offset(pgd, addr);
3418 if (pud_present(*pud)) {
3419 if (pud_huge(*pud))
3420 return (pte_t *)pud;
3421 pmd = pmd_offset(pud, addr);
3422 }
3423 }
3424 return (pte_t *) pmd;
3425}
3426
3427struct page *
3428follow_huge_pmd(struct mm_struct *mm, unsigned long address,
3429 pmd_t *pmd, int write)
3430{
3431 struct page *page;
3432
3433 page = pte_page(*(pte_t *)pmd);
3434 if (page)
3435 page += ((address & ~PMD_MASK) >> PAGE_SHIFT);
3436 return page;
3437}
3438
3439struct page *
3440follow_huge_pud(struct mm_struct *mm, unsigned long address,
3441 pud_t *pud, int write)
3442{
3443 struct page *page;
3444
3445 page = pte_page(*(pte_t *)pud);
3446 if (page)
3447 page += ((address & ~PUD_MASK) >> PAGE_SHIFT);
3448 return page;
3449}
3450
3451#else /* !CONFIG_ARCH_WANT_GENERAL_HUGETLB */
3452
3453/* Can be overriden by architectures */
3454__attribute__((weak)) struct page *
3455follow_huge_pud(struct mm_struct *mm, unsigned long address,
3456 pud_t *pud, int write)
3457{
3458 BUG();
3459 return NULL;
3460}
3461
3462#endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
3463
d5bd9106
AK
3464#ifdef CONFIG_MEMORY_FAILURE
3465
6de2b1aa
NH
3466/* Should be called in hugetlb_lock */
3467static int is_hugepage_on_freelist(struct page *hpage)
3468{
3469 struct page *page;
3470 struct page *tmp;
3471 struct hstate *h = page_hstate(hpage);
3472 int nid = page_to_nid(hpage);
3473
3474 list_for_each_entry_safe(page, tmp, &h->hugepage_freelists[nid], lru)
3475 if (page == hpage)
3476 return 1;
3477 return 0;
3478}
3479
93f70f90
NH
3480/*
3481 * This function is called from memory failure code.
3482 * Assume the caller holds page lock of the head page.
3483 */
6de2b1aa 3484int dequeue_hwpoisoned_huge_page(struct page *hpage)
93f70f90
NH
3485{
3486 struct hstate *h = page_hstate(hpage);
3487 int nid = page_to_nid(hpage);
6de2b1aa 3488 int ret = -EBUSY;
93f70f90
NH
3489
3490 spin_lock(&hugetlb_lock);
6de2b1aa 3491 if (is_hugepage_on_freelist(hpage)) {
56f2fb14
NH
3492 /*
3493 * Hwpoisoned hugepage isn't linked to activelist or freelist,
3494 * but dangling hpage->lru can trigger list-debug warnings
3495 * (this happens when we call unpoison_memory() on it),
3496 * so let it point to itself with list_del_init().
3497 */
3498 list_del_init(&hpage->lru);
8c6c2ecb 3499 set_page_refcounted(hpage);
6de2b1aa
NH
3500 h->free_huge_pages--;
3501 h->free_huge_pages_node[nid]--;
3502 ret = 0;
3503 }
93f70f90 3504 spin_unlock(&hugetlb_lock);
6de2b1aa 3505 return ret;
93f70f90 3506}
6de2b1aa 3507#endif
31caf665
NH
3508
3509bool isolate_huge_page(struct page *page, struct list_head *list)
3510{
309381fe 3511 VM_BUG_ON_PAGE(!PageHead(page), page);
31caf665
NH
3512 if (!get_page_unless_zero(page))
3513 return false;
3514 spin_lock(&hugetlb_lock);
3515 list_move_tail(&page->lru, list);
3516 spin_unlock(&hugetlb_lock);
3517 return true;
3518}
3519
3520void putback_active_hugepage(struct page *page)
3521{
309381fe 3522 VM_BUG_ON_PAGE(!PageHead(page), page);
31caf665
NH
3523 spin_lock(&hugetlb_lock);
3524 list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
3525 spin_unlock(&hugetlb_lock);
3526 put_page(page);
3527}
c8721bbb
NH
3528
3529bool is_hugepage_active(struct page *page)
3530{
309381fe 3531 VM_BUG_ON_PAGE(!PageHuge(page), page);
c8721bbb
NH
3532 /*
3533 * This function can be called for a tail page because the caller,
3534 * scan_movable_pages, scans through a given pfn-range which typically
3535 * covers one memory block. In systems using gigantic hugepage (1GB
3536 * for x86_64,) a hugepage is larger than a memory block, and we don't
3537 * support migrating such large hugepages for now, so return false
3538 * when called for tail pages.
3539 */
3540 if (PageTail(page))
3541 return false;
3542 /*
3543 * Refcount of a hwpoisoned hugepages is 1, but they are not active,
3544 * so we should return false for them.
3545 */
3546 if (unlikely(PageHWPoison(page)))
3547 return false;
3548 return page_count(page) > 0;
3549}