mm: try both endianess when checking for endianess
[linux-2.6-block.git] / mm / hugetlb.c
CommitLineData
1da177e4
LT
1/*
2 * Generic hugetlb support.
3 * (C) William Irwin, April 2004
4 */
5#include <linux/gfp.h>
6#include <linux/list.h>
7#include <linux/init.h>
8#include <linux/module.h>
9#include <linux/mm.h>
1da177e4
LT
10#include <linux/sysctl.h>
11#include <linux/highmem.h>
12#include <linux/nodemask.h>
63551ae0 13#include <linux/pagemap.h>
5da7ca86 14#include <linux/mempolicy.h>
aea47ff3 15#include <linux/cpuset.h>
3935baa9 16#include <linux/mutex.h>
5da7ca86 17
63551ae0
DG
18#include <asm/page.h>
19#include <asm/pgtable.h>
20
21#include <linux/hugetlb.h>
7835e98b 22#include "internal.h"
1da177e4
LT
23
24const unsigned long hugetlb_zero = 0, hugetlb_infinity = ~0UL;
a43a8c39 25static unsigned long nr_huge_pages, free_huge_pages, resv_huge_pages;
7893d1d5 26static unsigned long surplus_huge_pages;
064d9efe 27static unsigned long nr_overcommit_huge_pages;
1da177e4 28unsigned long max_huge_pages;
064d9efe 29unsigned long sysctl_overcommit_huge_pages;
1da177e4
LT
30static struct list_head hugepage_freelists[MAX_NUMNODES];
31static unsigned int nr_huge_pages_node[MAX_NUMNODES];
32static unsigned int free_huge_pages_node[MAX_NUMNODES];
7893d1d5 33static unsigned int surplus_huge_pages_node[MAX_NUMNODES];
396faf03
MG
34static gfp_t htlb_alloc_mask = GFP_HIGHUSER;
35unsigned long hugepages_treat_as_movable;
63b4613c 36static int hugetlb_next_nid;
396faf03 37
3935baa9
DG
38/*
39 * Protects updates to hugepage_freelists, nr_huge_pages, and free_huge_pages
40 */
41static DEFINE_SPINLOCK(hugetlb_lock);
0bd0f9fb 42
79ac6ba4
DG
43static void clear_huge_page(struct page *page, unsigned long addr)
44{
45 int i;
46
47 might_sleep();
48 for (i = 0; i < (HPAGE_SIZE/PAGE_SIZE); i++) {
49 cond_resched();
281e0e3b 50 clear_user_highpage(page + i, addr + i * PAGE_SIZE);
79ac6ba4
DG
51 }
52}
53
54static void copy_huge_page(struct page *dst, struct page *src,
9de455b2 55 unsigned long addr, struct vm_area_struct *vma)
79ac6ba4
DG
56{
57 int i;
58
59 might_sleep();
60 for (i = 0; i < HPAGE_SIZE/PAGE_SIZE; i++) {
61 cond_resched();
9de455b2 62 copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
79ac6ba4
DG
63 }
64}
65
1da177e4
LT
66static void enqueue_huge_page(struct page *page)
67{
68 int nid = page_to_nid(page);
69 list_add(&page->lru, &hugepage_freelists[nid]);
70 free_huge_pages++;
71 free_huge_pages_node[nid]++;
72}
73
348e1e04
NA
74static struct page *dequeue_huge_page(void)
75{
76 int nid;
77 struct page *page = NULL;
78
79 for (nid = 0; nid < MAX_NUMNODES; ++nid) {
80 if (!list_empty(&hugepage_freelists[nid])) {
81 page = list_entry(hugepage_freelists[nid].next,
82 struct page, lru);
83 list_del(&page->lru);
84 free_huge_pages--;
85 free_huge_pages_node[nid]--;
86 break;
87 }
88 }
89 return page;
90}
91
92static struct page *dequeue_huge_page_vma(struct vm_area_struct *vma,
5da7ca86 93 unsigned long address)
1da177e4 94{
31a5c6e4 95 int nid;
1da177e4 96 struct page *page = NULL;
480eccf9 97 struct mempolicy *mpol;
19770b32 98 nodemask_t *nodemask;
396faf03 99 struct zonelist *zonelist = huge_zonelist(vma, address,
19770b32 100 htlb_alloc_mask, &mpol, &nodemask);
dd1a239f
MG
101 struct zone *zone;
102 struct zoneref *z;
1da177e4 103
19770b32
MG
104 for_each_zone_zonelist_nodemask(zone, z, zonelist,
105 MAX_NR_ZONES - 1, nodemask) {
54a6eb5c
MG
106 nid = zone_to_nid(zone);
107 if (cpuset_zone_allowed_softwall(zone, htlb_alloc_mask) &&
3abf7afd
AM
108 !list_empty(&hugepage_freelists[nid])) {
109 page = list_entry(hugepage_freelists[nid].next,
110 struct page, lru);
111 list_del(&page->lru);
112 free_huge_pages--;
113 free_huge_pages_node[nid]--;
e4e574b7
AL
114 if (vma && vma->vm_flags & VM_MAYSHARE)
115 resv_huge_pages--;
5ab3ee7b 116 break;
3abf7afd 117 }
1da177e4 118 }
480eccf9 119 mpol_free(mpol); /* unref if mpol !NULL */
1da177e4
LT
120 return page;
121}
122
6af2acb6
AL
123static void update_and_free_page(struct page *page)
124{
125 int i;
126 nr_huge_pages--;
127 nr_huge_pages_node[page_to_nid(page)]--;
128 for (i = 0; i < (HPAGE_SIZE / PAGE_SIZE); i++) {
129 page[i].flags &= ~(1 << PG_locked | 1 << PG_error | 1 << PG_referenced |
130 1 << PG_dirty | 1 << PG_active | 1 << PG_reserved |
131 1 << PG_private | 1<< PG_writeback);
132 }
133 set_compound_page_dtor(page, NULL);
134 set_page_refcounted(page);
135 __free_pages(page, HUGETLB_PAGE_ORDER);
136}
137
27a85ef1
DG
138static void free_huge_page(struct page *page)
139{
7893d1d5 140 int nid = page_to_nid(page);
c79fb75e 141 struct address_space *mapping;
27a85ef1 142
c79fb75e 143 mapping = (struct address_space *) page_private(page);
e5df70ab 144 set_page_private(page, 0);
7893d1d5 145 BUG_ON(page_count(page));
27a85ef1
DG
146 INIT_LIST_HEAD(&page->lru);
147
148 spin_lock(&hugetlb_lock);
7893d1d5
AL
149 if (surplus_huge_pages_node[nid]) {
150 update_and_free_page(page);
151 surplus_huge_pages--;
152 surplus_huge_pages_node[nid]--;
153 } else {
154 enqueue_huge_page(page);
155 }
27a85ef1 156 spin_unlock(&hugetlb_lock);
c79fb75e 157 if (mapping)
9a119c05 158 hugetlb_put_quota(mapping, 1);
27a85ef1
DG
159}
160
7893d1d5
AL
161/*
162 * Increment or decrement surplus_huge_pages. Keep node-specific counters
163 * balanced by operating on them in a round-robin fashion.
164 * Returns 1 if an adjustment was made.
165 */
166static int adjust_pool_surplus(int delta)
167{
168 static int prev_nid;
169 int nid = prev_nid;
170 int ret = 0;
171
172 VM_BUG_ON(delta != -1 && delta != 1);
173 do {
174 nid = next_node(nid, node_online_map);
175 if (nid == MAX_NUMNODES)
176 nid = first_node(node_online_map);
177
178 /* To shrink on this node, there must be a surplus page */
179 if (delta < 0 && !surplus_huge_pages_node[nid])
180 continue;
181 /* Surplus cannot exceed the total number of pages */
182 if (delta > 0 && surplus_huge_pages_node[nid] >=
183 nr_huge_pages_node[nid])
184 continue;
185
186 surplus_huge_pages += delta;
187 surplus_huge_pages_node[nid] += delta;
188 ret = 1;
189 break;
190 } while (nid != prev_nid);
191
192 prev_nid = nid;
193 return ret;
194}
195
63b4613c 196static struct page *alloc_fresh_huge_page_node(int nid)
1da177e4 197{
1da177e4 198 struct page *page;
f96efd58 199
63b4613c
NA
200 page = alloc_pages_node(nid,
201 htlb_alloc_mask|__GFP_COMP|__GFP_THISNODE|__GFP_NOWARN,
202 HUGETLB_PAGE_ORDER);
1da177e4 203 if (page) {
33f2ef89 204 set_compound_page_dtor(page, free_huge_page);
0bd0f9fb 205 spin_lock(&hugetlb_lock);
1da177e4 206 nr_huge_pages++;
63b4613c 207 nr_huge_pages_node[nid]++;
0bd0f9fb 208 spin_unlock(&hugetlb_lock);
a482289d 209 put_page(page); /* free it into the hugepage allocator */
1da177e4 210 }
63b4613c
NA
211
212 return page;
213}
214
215static int alloc_fresh_huge_page(void)
216{
217 struct page *page;
218 int start_nid;
219 int next_nid;
220 int ret = 0;
221
222 start_nid = hugetlb_next_nid;
223
224 do {
225 page = alloc_fresh_huge_page_node(hugetlb_next_nid);
226 if (page)
227 ret = 1;
228 /*
229 * Use a helper variable to find the next node and then
230 * copy it back to hugetlb_next_nid afterwards:
231 * otherwise there's a window in which a racer might
232 * pass invalid nid MAX_NUMNODES to alloc_pages_node.
233 * But we don't need to use a spin_lock here: it really
234 * doesn't matter if occasionally a racer chooses the
235 * same nid as we do. Move nid forward in the mask even
236 * if we just successfully allocated a hugepage so that
237 * the next caller gets hugepages on the next node.
238 */
239 next_nid = next_node(hugetlb_next_nid, node_online_map);
240 if (next_nid == MAX_NUMNODES)
241 next_nid = first_node(node_online_map);
242 hugetlb_next_nid = next_nid;
243 } while (!page && hugetlb_next_nid != start_nid);
244
245 return ret;
1da177e4
LT
246}
247
7893d1d5
AL
248static struct page *alloc_buddy_huge_page(struct vm_area_struct *vma,
249 unsigned long address)
250{
251 struct page *page;
d1c3fb1f 252 unsigned int nid;
7893d1d5 253
d1c3fb1f
NA
254 /*
255 * Assume we will successfully allocate the surplus page to
256 * prevent racing processes from causing the surplus to exceed
257 * overcommit
258 *
259 * This however introduces a different race, where a process B
260 * tries to grow the static hugepage pool while alloc_pages() is
261 * called by process A. B will only examine the per-node
262 * counters in determining if surplus huge pages can be
263 * converted to normal huge pages in adjust_pool_surplus(). A
264 * won't be able to increment the per-node counter, until the
265 * lock is dropped by B, but B doesn't drop hugetlb_lock until
266 * no more huge pages can be converted from surplus to normal
267 * state (and doesn't try to convert again). Thus, we have a
268 * case where a surplus huge page exists, the pool is grown, and
269 * the surplus huge page still exists after, even though it
270 * should just have been converted to a normal huge page. This
271 * does not leak memory, though, as the hugepage will be freed
272 * once it is out of use. It also does not allow the counters to
273 * go out of whack in adjust_pool_surplus() as we don't modify
274 * the node values until we've gotten the hugepage and only the
275 * per-node value is checked there.
276 */
277 spin_lock(&hugetlb_lock);
278 if (surplus_huge_pages >= nr_overcommit_huge_pages) {
279 spin_unlock(&hugetlb_lock);
280 return NULL;
281 } else {
282 nr_huge_pages++;
283 surplus_huge_pages++;
284 }
285 spin_unlock(&hugetlb_lock);
286
7893d1d5
AL
287 page = alloc_pages(htlb_alloc_mask|__GFP_COMP|__GFP_NOWARN,
288 HUGETLB_PAGE_ORDER);
d1c3fb1f
NA
289
290 spin_lock(&hugetlb_lock);
7893d1d5 291 if (page) {
2668db91
AL
292 /*
293 * This page is now managed by the hugetlb allocator and has
294 * no users -- drop the buddy allocator's reference.
295 */
296 put_page_testzero(page);
297 VM_BUG_ON(page_count(page));
d1c3fb1f 298 nid = page_to_nid(page);
7893d1d5 299 set_compound_page_dtor(page, free_huge_page);
d1c3fb1f
NA
300 /*
301 * We incremented the global counters already
302 */
303 nr_huge_pages_node[nid]++;
304 surplus_huge_pages_node[nid]++;
305 } else {
306 nr_huge_pages--;
307 surplus_huge_pages--;
7893d1d5 308 }
d1c3fb1f 309 spin_unlock(&hugetlb_lock);
7893d1d5
AL
310
311 return page;
312}
313
e4e574b7
AL
314/*
315 * Increase the hugetlb pool such that it can accomodate a reservation
316 * of size 'delta'.
317 */
318static int gather_surplus_pages(int delta)
319{
320 struct list_head surplus_list;
321 struct page *page, *tmp;
322 int ret, i;
323 int needed, allocated;
324
325 needed = (resv_huge_pages + delta) - free_huge_pages;
ac09b3a1
AL
326 if (needed <= 0) {
327 resv_huge_pages += delta;
e4e574b7 328 return 0;
ac09b3a1 329 }
e4e574b7
AL
330
331 allocated = 0;
332 INIT_LIST_HEAD(&surplus_list);
333
334 ret = -ENOMEM;
335retry:
336 spin_unlock(&hugetlb_lock);
337 for (i = 0; i < needed; i++) {
338 page = alloc_buddy_huge_page(NULL, 0);
339 if (!page) {
340 /*
341 * We were not able to allocate enough pages to
342 * satisfy the entire reservation so we free what
343 * we've allocated so far.
344 */
345 spin_lock(&hugetlb_lock);
346 needed = 0;
347 goto free;
348 }
349
350 list_add(&page->lru, &surplus_list);
351 }
352 allocated += needed;
353
354 /*
355 * After retaking hugetlb_lock, we need to recalculate 'needed'
356 * because either resv_huge_pages or free_huge_pages may have changed.
357 */
358 spin_lock(&hugetlb_lock);
359 needed = (resv_huge_pages + delta) - (free_huge_pages + allocated);
360 if (needed > 0)
361 goto retry;
362
363 /*
364 * The surplus_list now contains _at_least_ the number of extra pages
365 * needed to accomodate the reservation. Add the appropriate number
366 * of pages to the hugetlb pool and free the extras back to the buddy
ac09b3a1
AL
367 * allocator. Commit the entire reservation here to prevent another
368 * process from stealing the pages as they are added to the pool but
369 * before they are reserved.
e4e574b7
AL
370 */
371 needed += allocated;
ac09b3a1 372 resv_huge_pages += delta;
e4e574b7
AL
373 ret = 0;
374free:
375 list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
376 list_del(&page->lru);
377 if ((--needed) >= 0)
378 enqueue_huge_page(page);
af767cbd
AL
379 else {
380 /*
2668db91
AL
381 * The page has a reference count of zero already, so
382 * call free_huge_page directly instead of using
383 * put_page. This must be done with hugetlb_lock
af767cbd
AL
384 * unlocked which is safe because free_huge_page takes
385 * hugetlb_lock before deciding how to free the page.
386 */
387 spin_unlock(&hugetlb_lock);
2668db91 388 free_huge_page(page);
af767cbd
AL
389 spin_lock(&hugetlb_lock);
390 }
e4e574b7
AL
391 }
392
393 return ret;
394}
395
396/*
397 * When releasing a hugetlb pool reservation, any surplus pages that were
398 * allocated to satisfy the reservation must be explicitly freed if they were
399 * never used.
400 */
8cde045c 401static void return_unused_surplus_pages(unsigned long unused_resv_pages)
e4e574b7
AL
402{
403 static int nid = -1;
404 struct page *page;
405 unsigned long nr_pages;
406
11320d17
NA
407 /*
408 * We want to release as many surplus pages as possible, spread
409 * evenly across all nodes. Iterate across all nodes until we
410 * can no longer free unreserved surplus pages. This occurs when
411 * the nodes with surplus pages have no free pages.
412 */
413 unsigned long remaining_iterations = num_online_nodes();
414
ac09b3a1
AL
415 /* Uncommit the reservation */
416 resv_huge_pages -= unused_resv_pages;
417
e4e574b7
AL
418 nr_pages = min(unused_resv_pages, surplus_huge_pages);
419
11320d17 420 while (remaining_iterations-- && nr_pages) {
e4e574b7
AL
421 nid = next_node(nid, node_online_map);
422 if (nid == MAX_NUMNODES)
423 nid = first_node(node_online_map);
424
425 if (!surplus_huge_pages_node[nid])
426 continue;
427
428 if (!list_empty(&hugepage_freelists[nid])) {
429 page = list_entry(hugepage_freelists[nid].next,
430 struct page, lru);
431 list_del(&page->lru);
432 update_and_free_page(page);
433 free_huge_pages--;
434 free_huge_pages_node[nid]--;
435 surplus_huge_pages--;
436 surplus_huge_pages_node[nid]--;
437 nr_pages--;
11320d17 438 remaining_iterations = num_online_nodes();
e4e574b7
AL
439 }
440 }
441}
442
348ea204
AL
443
444static struct page *alloc_huge_page_shared(struct vm_area_struct *vma,
445 unsigned long addr)
1da177e4 446{
348ea204 447 struct page *page;
1da177e4
LT
448
449 spin_lock(&hugetlb_lock);
348e1e04 450 page = dequeue_huge_page_vma(vma, addr);
1da177e4 451 spin_unlock(&hugetlb_lock);
90d8b7e6 452 return page ? page : ERR_PTR(-VM_FAULT_OOM);
348ea204 453}
b45b5bd6 454
348ea204
AL
455static struct page *alloc_huge_page_private(struct vm_area_struct *vma,
456 unsigned long addr)
457{
458 struct page *page = NULL;
7893d1d5 459
90d8b7e6
AL
460 if (hugetlb_get_quota(vma->vm_file->f_mapping, 1))
461 return ERR_PTR(-VM_FAULT_SIGBUS);
462
348ea204
AL
463 spin_lock(&hugetlb_lock);
464 if (free_huge_pages > resv_huge_pages)
348e1e04 465 page = dequeue_huge_page_vma(vma, addr);
348ea204 466 spin_unlock(&hugetlb_lock);
68842c9b 467 if (!page) {
7893d1d5 468 page = alloc_buddy_huge_page(vma, addr);
68842c9b
KC
469 if (!page) {
470 hugetlb_put_quota(vma->vm_file->f_mapping, 1);
471 return ERR_PTR(-VM_FAULT_OOM);
472 }
473 }
474 return page;
348ea204
AL
475}
476
477static struct page *alloc_huge_page(struct vm_area_struct *vma,
478 unsigned long addr)
479{
480 struct page *page;
2fc39cec
AL
481 struct address_space *mapping = vma->vm_file->f_mapping;
482
348ea204
AL
483 if (vma->vm_flags & VM_MAYSHARE)
484 page = alloc_huge_page_shared(vma, addr);
485 else
486 page = alloc_huge_page_private(vma, addr);
90d8b7e6
AL
487
488 if (!IS_ERR(page)) {
348ea204 489 set_page_refcounted(page);
2fc39cec 490 set_page_private(page, (unsigned long) mapping);
90d8b7e6
AL
491 }
492 return page;
b45b5bd6
DG
493}
494
1da177e4
LT
495static int __init hugetlb_init(void)
496{
497 unsigned long i;
1da177e4 498
3c726f8d
BH
499 if (HPAGE_SHIFT == 0)
500 return 0;
501
1da177e4
LT
502 for (i = 0; i < MAX_NUMNODES; ++i)
503 INIT_LIST_HEAD(&hugepage_freelists[i]);
504
63b4613c
NA
505 hugetlb_next_nid = first_node(node_online_map);
506
1da177e4 507 for (i = 0; i < max_huge_pages; ++i) {
a482289d 508 if (!alloc_fresh_huge_page())
1da177e4 509 break;
1da177e4
LT
510 }
511 max_huge_pages = free_huge_pages = nr_huge_pages = i;
512 printk("Total HugeTLB memory allocated, %ld\n", free_huge_pages);
513 return 0;
514}
515module_init(hugetlb_init);
516
517static int __init hugetlb_setup(char *s)
518{
519 if (sscanf(s, "%lu", &max_huge_pages) <= 0)
520 max_huge_pages = 0;
521 return 1;
522}
523__setup("hugepages=", hugetlb_setup);
524
8a630112
KC
525static unsigned int cpuset_mems_nr(unsigned int *array)
526{
527 int node;
528 unsigned int nr = 0;
529
530 for_each_node_mask(node, cpuset_current_mems_allowed)
531 nr += array[node];
532
533 return nr;
534}
535
1da177e4 536#ifdef CONFIG_SYSCTL
1da177e4
LT
537#ifdef CONFIG_HIGHMEM
538static void try_to_free_low(unsigned long count)
539{
4415cc8d
CL
540 int i;
541
1da177e4
LT
542 for (i = 0; i < MAX_NUMNODES; ++i) {
543 struct page *page, *next;
544 list_for_each_entry_safe(page, next, &hugepage_freelists[i], lru) {
6b0c880d
AL
545 if (count >= nr_huge_pages)
546 return;
1da177e4
LT
547 if (PageHighMem(page))
548 continue;
549 list_del(&page->lru);
550 update_and_free_page(page);
1da177e4 551 free_huge_pages--;
4415cc8d 552 free_huge_pages_node[page_to_nid(page)]--;
1da177e4
LT
553 }
554 }
555}
556#else
557static inline void try_to_free_low(unsigned long count)
558{
559}
560#endif
561
7893d1d5 562#define persistent_huge_pages (nr_huge_pages - surplus_huge_pages)
1da177e4
LT
563static unsigned long set_max_huge_pages(unsigned long count)
564{
7893d1d5 565 unsigned long min_count, ret;
1da177e4 566
7893d1d5
AL
567 /*
568 * Increase the pool size
569 * First take pages out of surplus state. Then make up the
570 * remaining difference by allocating fresh huge pages.
d1c3fb1f
NA
571 *
572 * We might race with alloc_buddy_huge_page() here and be unable
573 * to convert a surplus huge page to a normal huge page. That is
574 * not critical, though, it just means the overall size of the
575 * pool might be one hugepage larger than it needs to be, but
576 * within all the constraints specified by the sysctls.
7893d1d5 577 */
1da177e4 578 spin_lock(&hugetlb_lock);
7893d1d5
AL
579 while (surplus_huge_pages && count > persistent_huge_pages) {
580 if (!adjust_pool_surplus(-1))
581 break;
582 }
583
584 while (count > persistent_huge_pages) {
585 int ret;
586 /*
587 * If this allocation races such that we no longer need the
588 * page, free_huge_page will handle it by freeing the page
589 * and reducing the surplus.
590 */
591 spin_unlock(&hugetlb_lock);
592 ret = alloc_fresh_huge_page();
593 spin_lock(&hugetlb_lock);
594 if (!ret)
595 goto out;
596
597 }
7893d1d5
AL
598
599 /*
600 * Decrease the pool size
601 * First return free pages to the buddy allocator (being careful
602 * to keep enough around to satisfy reservations). Then place
603 * pages into surplus state as needed so the pool will shrink
604 * to the desired size as pages become free.
d1c3fb1f
NA
605 *
606 * By placing pages into the surplus state independent of the
607 * overcommit value, we are allowing the surplus pool size to
608 * exceed overcommit. There are few sane options here. Since
609 * alloc_buddy_huge_page() is checking the global counter,
610 * though, we'll note that we're not allowed to exceed surplus
611 * and won't grow the pool anywhere else. Not until one of the
612 * sysctls are changed, or the surplus pages go out of use.
7893d1d5 613 */
6b0c880d
AL
614 min_count = resv_huge_pages + nr_huge_pages - free_huge_pages;
615 min_count = max(count, min_count);
7893d1d5
AL
616 try_to_free_low(min_count);
617 while (min_count < persistent_huge_pages) {
348e1e04 618 struct page *page = dequeue_huge_page();
1da177e4
LT
619 if (!page)
620 break;
621 update_and_free_page(page);
622 }
7893d1d5
AL
623 while (count < persistent_huge_pages) {
624 if (!adjust_pool_surplus(1))
625 break;
626 }
627out:
628 ret = persistent_huge_pages;
1da177e4 629 spin_unlock(&hugetlb_lock);
7893d1d5 630 return ret;
1da177e4
LT
631}
632
633int hugetlb_sysctl_handler(struct ctl_table *table, int write,
634 struct file *file, void __user *buffer,
635 size_t *length, loff_t *ppos)
636{
637 proc_doulongvec_minmax(table, write, file, buffer, length, ppos);
638 max_huge_pages = set_max_huge_pages(max_huge_pages);
639 return 0;
640}
396faf03
MG
641
642int hugetlb_treat_movable_handler(struct ctl_table *table, int write,
643 struct file *file, void __user *buffer,
644 size_t *length, loff_t *ppos)
645{
646 proc_dointvec(table, write, file, buffer, length, ppos);
647 if (hugepages_treat_as_movable)
648 htlb_alloc_mask = GFP_HIGHUSER_MOVABLE;
649 else
650 htlb_alloc_mask = GFP_HIGHUSER;
651 return 0;
652}
653
a3d0c6aa
NA
654int hugetlb_overcommit_handler(struct ctl_table *table, int write,
655 struct file *file, void __user *buffer,
656 size_t *length, loff_t *ppos)
657{
a3d0c6aa 658 proc_doulongvec_minmax(table, write, file, buffer, length, ppos);
064d9efe
NA
659 spin_lock(&hugetlb_lock);
660 nr_overcommit_huge_pages = sysctl_overcommit_huge_pages;
a3d0c6aa
NA
661 spin_unlock(&hugetlb_lock);
662 return 0;
663}
664
1da177e4
LT
665#endif /* CONFIG_SYSCTL */
666
667int hugetlb_report_meminfo(char *buf)
668{
669 return sprintf(buf,
670 "HugePages_Total: %5lu\n"
671 "HugePages_Free: %5lu\n"
a43a8c39 672 "HugePages_Rsvd: %5lu\n"
7893d1d5 673 "HugePages_Surp: %5lu\n"
1da177e4
LT
674 "Hugepagesize: %5lu kB\n",
675 nr_huge_pages,
676 free_huge_pages,
a43a8c39 677 resv_huge_pages,
7893d1d5 678 surplus_huge_pages,
1da177e4
LT
679 HPAGE_SIZE/1024);
680}
681
682int hugetlb_report_node_meminfo(int nid, char *buf)
683{
684 return sprintf(buf,
685 "Node %d HugePages_Total: %5u\n"
a1de0919
NA
686 "Node %d HugePages_Free: %5u\n"
687 "Node %d HugePages_Surp: %5u\n",
1da177e4 688 nid, nr_huge_pages_node[nid],
a1de0919
NA
689 nid, free_huge_pages_node[nid],
690 nid, surplus_huge_pages_node[nid]);
1da177e4
LT
691}
692
1da177e4
LT
693/* Return the number pages of memory we physically have, in PAGE_SIZE units. */
694unsigned long hugetlb_total_pages(void)
695{
696 return nr_huge_pages * (HPAGE_SIZE / PAGE_SIZE);
697}
1da177e4
LT
698
699/*
700 * We cannot handle pagefaults against hugetlb pages at all. They cause
701 * handle_mm_fault() to try to instantiate regular-sized pages in the
702 * hugegpage VMA. do_page_fault() is supposed to trap this, so BUG is we get
703 * this far.
704 */
d0217ac0 705static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1da177e4
LT
706{
707 BUG();
d0217ac0 708 return 0;
1da177e4
LT
709}
710
711struct vm_operations_struct hugetlb_vm_ops = {
d0217ac0 712 .fault = hugetlb_vm_op_fault,
1da177e4
LT
713};
714
1e8f889b
DG
715static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
716 int writable)
63551ae0
DG
717{
718 pte_t entry;
719
1e8f889b 720 if (writable) {
63551ae0
DG
721 entry =
722 pte_mkwrite(pte_mkdirty(mk_pte(page, vma->vm_page_prot)));
723 } else {
724 entry = pte_wrprotect(mk_pte(page, vma->vm_page_prot));
725 }
726 entry = pte_mkyoung(entry);
727 entry = pte_mkhuge(entry);
728
729 return entry;
730}
731
1e8f889b
DG
732static void set_huge_ptep_writable(struct vm_area_struct *vma,
733 unsigned long address, pte_t *ptep)
734{
735 pte_t entry;
736
737 entry = pte_mkwrite(pte_mkdirty(*ptep));
8dab5241
BH
738 if (ptep_set_access_flags(vma, address, ptep, entry, 1)) {
739 update_mmu_cache(vma, address, entry);
8dab5241 740 }
1e8f889b
DG
741}
742
743
63551ae0
DG
744int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
745 struct vm_area_struct *vma)
746{
747 pte_t *src_pte, *dst_pte, entry;
748 struct page *ptepage;
1c59827d 749 unsigned long addr;
1e8f889b
DG
750 int cow;
751
752 cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
63551ae0 753
1c59827d 754 for (addr = vma->vm_start; addr < vma->vm_end; addr += HPAGE_SIZE) {
c74df32c
HD
755 src_pte = huge_pte_offset(src, addr);
756 if (!src_pte)
757 continue;
63551ae0
DG
758 dst_pte = huge_pte_alloc(dst, addr);
759 if (!dst_pte)
760 goto nomem;
c5c99429
LW
761
762 /* If the pagetables are shared don't copy or take references */
763 if (dst_pte == src_pte)
764 continue;
765
c74df32c 766 spin_lock(&dst->page_table_lock);
1c59827d 767 spin_lock(&src->page_table_lock);
c74df32c 768 if (!pte_none(*src_pte)) {
1e8f889b
DG
769 if (cow)
770 ptep_set_wrprotect(src, addr, src_pte);
1c59827d
HD
771 entry = *src_pte;
772 ptepage = pte_page(entry);
773 get_page(ptepage);
1c59827d
HD
774 set_huge_pte_at(dst, addr, dst_pte, entry);
775 }
776 spin_unlock(&src->page_table_lock);
c74df32c 777 spin_unlock(&dst->page_table_lock);
63551ae0
DG
778 }
779 return 0;
780
781nomem:
782 return -ENOMEM;
783}
784
502717f4
CK
785void __unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
786 unsigned long end)
63551ae0
DG
787{
788 struct mm_struct *mm = vma->vm_mm;
789 unsigned long address;
c7546f8f 790 pte_t *ptep;
63551ae0
DG
791 pte_t pte;
792 struct page *page;
fe1668ae 793 struct page *tmp;
c0a499c2
CK
794 /*
795 * A page gathering list, protected by per file i_mmap_lock. The
796 * lock is used to avoid list corruption from multiple unmapping
797 * of the same page since we are using page->lru.
798 */
fe1668ae 799 LIST_HEAD(page_list);
63551ae0
DG
800
801 WARN_ON(!is_vm_hugetlb_page(vma));
802 BUG_ON(start & ~HPAGE_MASK);
803 BUG_ON(end & ~HPAGE_MASK);
804
508034a3 805 spin_lock(&mm->page_table_lock);
63551ae0 806 for (address = start; address < end; address += HPAGE_SIZE) {
c7546f8f 807 ptep = huge_pte_offset(mm, address);
4c887265 808 if (!ptep)
c7546f8f
DG
809 continue;
810
39dde65c
CK
811 if (huge_pmd_unshare(mm, &address, ptep))
812 continue;
813
c7546f8f 814 pte = huge_ptep_get_and_clear(mm, address, ptep);
63551ae0
DG
815 if (pte_none(pte))
816 continue;
c7546f8f 817
63551ae0 818 page = pte_page(pte);
6649a386
KC
819 if (pte_dirty(pte))
820 set_page_dirty(page);
fe1668ae 821 list_add(&page->lru, &page_list);
63551ae0 822 }
1da177e4 823 spin_unlock(&mm->page_table_lock);
508034a3 824 flush_tlb_range(vma, start, end);
fe1668ae
CK
825 list_for_each_entry_safe(page, tmp, &page_list, lru) {
826 list_del(&page->lru);
827 put_page(page);
828 }
1da177e4 829}
63551ae0 830
502717f4
CK
831void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
832 unsigned long end)
833{
834 /*
835 * It is undesirable to test vma->vm_file as it should be non-null
836 * for valid hugetlb area. However, vm_file will be NULL in the error
837 * cleanup path of do_mmap_pgoff. When hugetlbfs ->mmap method fails,
838 * do_mmap_pgoff() nullifies vma->vm_file before calling this function
839 * to clean up. Since no pte has actually been setup, it is safe to
840 * do nothing in this case.
841 */
842 if (vma->vm_file) {
843 spin_lock(&vma->vm_file->f_mapping->i_mmap_lock);
844 __unmap_hugepage_range(vma, start, end);
845 spin_unlock(&vma->vm_file->f_mapping->i_mmap_lock);
846 }
847}
848
1e8f889b
DG
849static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
850 unsigned long address, pte_t *ptep, pte_t pte)
851{
852 struct page *old_page, *new_page;
79ac6ba4 853 int avoidcopy;
1e8f889b
DG
854
855 old_page = pte_page(pte);
856
857 /* If no-one else is actually using this page, avoid the copy
858 * and just make the page writable */
859 avoidcopy = (page_count(old_page) == 1);
860 if (avoidcopy) {
861 set_huge_ptep_writable(vma, address, ptep);
83c54070 862 return 0;
1e8f889b
DG
863 }
864
865 page_cache_get(old_page);
5da7ca86 866 new_page = alloc_huge_page(vma, address);
1e8f889b 867
2fc39cec 868 if (IS_ERR(new_page)) {
1e8f889b 869 page_cache_release(old_page);
2fc39cec 870 return -PTR_ERR(new_page);
1e8f889b
DG
871 }
872
873 spin_unlock(&mm->page_table_lock);
9de455b2 874 copy_huge_page(new_page, old_page, address, vma);
0ed361de 875 __SetPageUptodate(new_page);
1e8f889b
DG
876 spin_lock(&mm->page_table_lock);
877
878 ptep = huge_pte_offset(mm, address & HPAGE_MASK);
879 if (likely(pte_same(*ptep, pte))) {
880 /* Break COW */
881 set_huge_pte_at(mm, address, ptep,
882 make_huge_pte(vma, new_page, 1));
883 /* Make the old page be freed below */
884 new_page = old_page;
885 }
886 page_cache_release(new_page);
887 page_cache_release(old_page);
83c54070 888 return 0;
1e8f889b
DG
889}
890
a1ed3dda 891static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
1e8f889b 892 unsigned long address, pte_t *ptep, int write_access)
ac9b9c66
HD
893{
894 int ret = VM_FAULT_SIGBUS;
4c887265
AL
895 unsigned long idx;
896 unsigned long size;
4c887265
AL
897 struct page *page;
898 struct address_space *mapping;
1e8f889b 899 pte_t new_pte;
4c887265 900
4c887265
AL
901 mapping = vma->vm_file->f_mapping;
902 idx = ((address - vma->vm_start) >> HPAGE_SHIFT)
903 + (vma->vm_pgoff >> (HPAGE_SHIFT - PAGE_SHIFT));
904
905 /*
906 * Use page lock to guard against racing truncation
907 * before we get page_table_lock.
908 */
6bda666a
CL
909retry:
910 page = find_lock_page(mapping, idx);
911 if (!page) {
ebed4bfc
HD
912 size = i_size_read(mapping->host) >> HPAGE_SHIFT;
913 if (idx >= size)
914 goto out;
6bda666a 915 page = alloc_huge_page(vma, address);
2fc39cec
AL
916 if (IS_ERR(page)) {
917 ret = -PTR_ERR(page);
6bda666a
CL
918 goto out;
919 }
79ac6ba4 920 clear_huge_page(page, address);
0ed361de 921 __SetPageUptodate(page);
ac9b9c66 922
6bda666a
CL
923 if (vma->vm_flags & VM_SHARED) {
924 int err;
45c682a6 925 struct inode *inode = mapping->host;
6bda666a
CL
926
927 err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
928 if (err) {
929 put_page(page);
6bda666a
CL
930 if (err == -EEXIST)
931 goto retry;
932 goto out;
933 }
45c682a6
KC
934
935 spin_lock(&inode->i_lock);
936 inode->i_blocks += BLOCKS_PER_HUGEPAGE;
937 spin_unlock(&inode->i_lock);
6bda666a
CL
938 } else
939 lock_page(page);
940 }
1e8f889b 941
ac9b9c66 942 spin_lock(&mm->page_table_lock);
4c887265
AL
943 size = i_size_read(mapping->host) >> HPAGE_SHIFT;
944 if (idx >= size)
945 goto backout;
946
83c54070 947 ret = 0;
86e5216f 948 if (!pte_none(*ptep))
4c887265
AL
949 goto backout;
950
1e8f889b
DG
951 new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
952 && (vma->vm_flags & VM_SHARED)));
953 set_huge_pte_at(mm, address, ptep, new_pte);
954
955 if (write_access && !(vma->vm_flags & VM_SHARED)) {
956 /* Optimization, do the COW without a second fault */
957 ret = hugetlb_cow(mm, vma, address, ptep, new_pte);
958 }
959
ac9b9c66 960 spin_unlock(&mm->page_table_lock);
4c887265
AL
961 unlock_page(page);
962out:
ac9b9c66 963 return ret;
4c887265
AL
964
965backout:
966 spin_unlock(&mm->page_table_lock);
4c887265
AL
967 unlock_page(page);
968 put_page(page);
969 goto out;
ac9b9c66
HD
970}
971
86e5216f
AL
972int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
973 unsigned long address, int write_access)
974{
975 pte_t *ptep;
976 pte_t entry;
1e8f889b 977 int ret;
3935baa9 978 static DEFINE_MUTEX(hugetlb_instantiation_mutex);
86e5216f
AL
979
980 ptep = huge_pte_alloc(mm, address);
981 if (!ptep)
982 return VM_FAULT_OOM;
983
3935baa9
DG
984 /*
985 * Serialize hugepage allocation and instantiation, so that we don't
986 * get spurious allocation failures if two CPUs race to instantiate
987 * the same page in the page cache.
988 */
989 mutex_lock(&hugetlb_instantiation_mutex);
86e5216f 990 entry = *ptep;
3935baa9
DG
991 if (pte_none(entry)) {
992 ret = hugetlb_no_page(mm, vma, address, ptep, write_access);
993 mutex_unlock(&hugetlb_instantiation_mutex);
994 return ret;
995 }
86e5216f 996
83c54070 997 ret = 0;
1e8f889b
DG
998
999 spin_lock(&mm->page_table_lock);
1000 /* Check for a racing update before calling hugetlb_cow */
1001 if (likely(pte_same(entry, *ptep)))
1002 if (write_access && !pte_write(entry))
1003 ret = hugetlb_cow(mm, vma, address, ptep, entry);
1004 spin_unlock(&mm->page_table_lock);
3935baa9 1005 mutex_unlock(&hugetlb_instantiation_mutex);
1e8f889b
DG
1006
1007 return ret;
86e5216f
AL
1008}
1009
63551ae0
DG
1010int follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
1011 struct page **pages, struct vm_area_struct **vmas,
5b23dbe8
AL
1012 unsigned long *position, int *length, int i,
1013 int write)
63551ae0 1014{
d5d4b0aa
CK
1015 unsigned long pfn_offset;
1016 unsigned long vaddr = *position;
63551ae0
DG
1017 int remainder = *length;
1018
1c59827d 1019 spin_lock(&mm->page_table_lock);
63551ae0 1020 while (vaddr < vma->vm_end && remainder) {
4c887265
AL
1021 pte_t *pte;
1022 struct page *page;
63551ae0 1023
4c887265
AL
1024 /*
1025 * Some archs (sparc64, sh*) have multiple pte_ts to
1026 * each hugepage. We have to make * sure we get the
1027 * first, for the page indexing below to work.
1028 */
1029 pte = huge_pte_offset(mm, vaddr & HPAGE_MASK);
63551ae0 1030
72fad713 1031 if (!pte || pte_none(*pte) || (write && !pte_write(*pte))) {
4c887265 1032 int ret;
63551ae0 1033
4c887265 1034 spin_unlock(&mm->page_table_lock);
5b23dbe8 1035 ret = hugetlb_fault(mm, vma, vaddr, write);
4c887265 1036 spin_lock(&mm->page_table_lock);
a89182c7 1037 if (!(ret & VM_FAULT_ERROR))
4c887265 1038 continue;
63551ae0 1039
4c887265
AL
1040 remainder = 0;
1041 if (!i)
1042 i = -EFAULT;
1043 break;
1044 }
1045
d5d4b0aa
CK
1046 pfn_offset = (vaddr & ~HPAGE_MASK) >> PAGE_SHIFT;
1047 page = pte_page(*pte);
1048same_page:
d6692183
CK
1049 if (pages) {
1050 get_page(page);
d5d4b0aa 1051 pages[i] = page + pfn_offset;
d6692183 1052 }
63551ae0
DG
1053
1054 if (vmas)
1055 vmas[i] = vma;
1056
1057 vaddr += PAGE_SIZE;
d5d4b0aa 1058 ++pfn_offset;
63551ae0
DG
1059 --remainder;
1060 ++i;
d5d4b0aa
CK
1061 if (vaddr < vma->vm_end && remainder &&
1062 pfn_offset < HPAGE_SIZE/PAGE_SIZE) {
1063 /*
1064 * We use pfn_offset to avoid touching the pageframes
1065 * of this compound page.
1066 */
1067 goto same_page;
1068 }
63551ae0 1069 }
1c59827d 1070 spin_unlock(&mm->page_table_lock);
63551ae0
DG
1071 *length = remainder;
1072 *position = vaddr;
1073
1074 return i;
1075}
8f860591
ZY
1076
1077void hugetlb_change_protection(struct vm_area_struct *vma,
1078 unsigned long address, unsigned long end, pgprot_t newprot)
1079{
1080 struct mm_struct *mm = vma->vm_mm;
1081 unsigned long start = address;
1082 pte_t *ptep;
1083 pte_t pte;
1084
1085 BUG_ON(address >= end);
1086 flush_cache_range(vma, address, end);
1087
39dde65c 1088 spin_lock(&vma->vm_file->f_mapping->i_mmap_lock);
8f860591
ZY
1089 spin_lock(&mm->page_table_lock);
1090 for (; address < end; address += HPAGE_SIZE) {
1091 ptep = huge_pte_offset(mm, address);
1092 if (!ptep)
1093 continue;
39dde65c
CK
1094 if (huge_pmd_unshare(mm, &address, ptep))
1095 continue;
8f860591
ZY
1096 if (!pte_none(*ptep)) {
1097 pte = huge_ptep_get_and_clear(mm, address, ptep);
1098 pte = pte_mkhuge(pte_modify(pte, newprot));
1099 set_huge_pte_at(mm, address, ptep, pte);
8f860591
ZY
1100 }
1101 }
1102 spin_unlock(&mm->page_table_lock);
39dde65c 1103 spin_unlock(&vma->vm_file->f_mapping->i_mmap_lock);
8f860591
ZY
1104
1105 flush_tlb_range(vma, start, end);
1106}
1107
a43a8c39
CK
1108struct file_region {
1109 struct list_head link;
1110 long from;
1111 long to;
1112};
1113
1114static long region_add(struct list_head *head, long f, long t)
1115{
1116 struct file_region *rg, *nrg, *trg;
1117
1118 /* Locate the region we are either in or before. */
1119 list_for_each_entry(rg, head, link)
1120 if (f <= rg->to)
1121 break;
1122
1123 /* Round our left edge to the current segment if it encloses us. */
1124 if (f > rg->from)
1125 f = rg->from;
1126
1127 /* Check for and consume any regions we now overlap with. */
1128 nrg = rg;
1129 list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
1130 if (&rg->link == head)
1131 break;
1132 if (rg->from > t)
1133 break;
1134
1135 /* If this area reaches higher then extend our area to
1136 * include it completely. If this is not the first area
1137 * which we intend to reuse, free it. */
1138 if (rg->to > t)
1139 t = rg->to;
1140 if (rg != nrg) {
1141 list_del(&rg->link);
1142 kfree(rg);
1143 }
1144 }
1145 nrg->from = f;
1146 nrg->to = t;
1147 return 0;
1148}
1149
1150static long region_chg(struct list_head *head, long f, long t)
1151{
1152 struct file_region *rg, *nrg;
1153 long chg = 0;
1154
1155 /* Locate the region we are before or in. */
1156 list_for_each_entry(rg, head, link)
1157 if (f <= rg->to)
1158 break;
1159
1160 /* If we are below the current region then a new region is required.
1161 * Subtle, allocate a new region at the position but make it zero
183ff22b 1162 * size such that we can guarantee to record the reservation. */
a43a8c39
CK
1163 if (&rg->link == head || t < rg->from) {
1164 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
c80544dc 1165 if (!nrg)
a43a8c39
CK
1166 return -ENOMEM;
1167 nrg->from = f;
1168 nrg->to = f;
1169 INIT_LIST_HEAD(&nrg->link);
1170 list_add(&nrg->link, rg->link.prev);
1171
1172 return t - f;
1173 }
1174
1175 /* Round our left edge to the current segment if it encloses us. */
1176 if (f > rg->from)
1177 f = rg->from;
1178 chg = t - f;
1179
1180 /* Check for and consume any regions we now overlap with. */
1181 list_for_each_entry(rg, rg->link.prev, link) {
1182 if (&rg->link == head)
1183 break;
1184 if (rg->from > t)
1185 return chg;
1186
1187 /* We overlap with this area, if it extends futher than
1188 * us then we must extend ourselves. Account for its
1189 * existing reservation. */
1190 if (rg->to > t) {
1191 chg += rg->to - t;
1192 t = rg->to;
1193 }
1194 chg -= rg->to - rg->from;
1195 }
1196 return chg;
1197}
1198
1199static long region_truncate(struct list_head *head, long end)
1200{
1201 struct file_region *rg, *trg;
1202 long chg = 0;
1203
1204 /* Locate the region we are either in or before. */
1205 list_for_each_entry(rg, head, link)
1206 if (end <= rg->to)
1207 break;
1208 if (&rg->link == head)
1209 return 0;
1210
1211 /* If we are in the middle of a region then adjust it. */
1212 if (end > rg->from) {
1213 chg = rg->to - end;
1214 rg->to = end;
1215 rg = list_entry(rg->link.next, typeof(*rg), link);
1216 }
1217
1218 /* Drop any remaining regions. */
1219 list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
1220 if (&rg->link == head)
1221 break;
1222 chg += rg->to - rg->from;
1223 list_del(&rg->link);
1224 kfree(rg);
1225 }
1226 return chg;
1227}
1228
1229static int hugetlb_acct_memory(long delta)
1230{
1231 int ret = -ENOMEM;
1232
1233 spin_lock(&hugetlb_lock);
8a630112
KC
1234 /*
1235 * When cpuset is configured, it breaks the strict hugetlb page
1236 * reservation as the accounting is done on a global variable. Such
1237 * reservation is completely rubbish in the presence of cpuset because
1238 * the reservation is not checked against page availability for the
1239 * current cpuset. Application can still potentially OOM'ed by kernel
1240 * with lack of free htlb page in cpuset that the task is in.
1241 * Attempt to enforce strict accounting with cpuset is almost
1242 * impossible (or too ugly) because cpuset is too fluid that
1243 * task or memory node can be dynamically moved between cpusets.
1244 *
1245 * The change of semantics for shared hugetlb mapping with cpuset is
1246 * undesirable. However, in order to preserve some of the semantics,
1247 * we fall back to check against current free page availability as
1248 * a best attempt and hopefully to minimize the impact of changing
1249 * semantics that cpuset has.
1250 */
e4e574b7
AL
1251 if (delta > 0) {
1252 if (gather_surplus_pages(delta) < 0)
1253 goto out;
1254
ac09b3a1
AL
1255 if (delta > cpuset_mems_nr(free_huge_pages_node)) {
1256 return_unused_surplus_pages(delta);
e4e574b7 1257 goto out;
ac09b3a1 1258 }
e4e574b7
AL
1259 }
1260
1261 ret = 0;
e4e574b7
AL
1262 if (delta < 0)
1263 return_unused_surplus_pages((unsigned long) -delta);
1264
1265out:
1266 spin_unlock(&hugetlb_lock);
1267 return ret;
1268}
1269
1270int hugetlb_reserve_pages(struct inode *inode, long from, long to)
1271{
1272 long ret, chg;
1273
1274 chg = region_chg(&inode->i_mapping->private_list, from, to);
1275 if (chg < 0)
1276 return chg;
8a630112 1277
90d8b7e6
AL
1278 if (hugetlb_get_quota(inode->i_mapping, chg))
1279 return -ENOSPC;
a43a8c39 1280 ret = hugetlb_acct_memory(chg);
68842c9b
KC
1281 if (ret < 0) {
1282 hugetlb_put_quota(inode->i_mapping, chg);
a43a8c39 1283 return ret;
68842c9b 1284 }
a43a8c39
CK
1285 region_add(&inode->i_mapping->private_list, from, to);
1286 return 0;
1287}
1288
1289void hugetlb_unreserve_pages(struct inode *inode, long offset, long freed)
1290{
1291 long chg = region_truncate(&inode->i_mapping->private_list, offset);
45c682a6
KC
1292
1293 spin_lock(&inode->i_lock);
1294 inode->i_blocks -= BLOCKS_PER_HUGEPAGE * freed;
1295 spin_unlock(&inode->i_lock);
1296
90d8b7e6
AL
1297 hugetlb_put_quota(inode->i_mapping, (chg - freed));
1298 hugetlb_acct_memory(-(chg - freed));
a43a8c39 1299}