mm: stop kswapd's infinite loop at high order allocation
[linux-2.6-block.git] / mm / hugetlb.c
CommitLineData
1da177e4
LT
1/*
2 * Generic hugetlb support.
3 * (C) William Irwin, April 2004
4 */
5#include <linux/gfp.h>
6#include <linux/list.h>
7#include <linux/init.h>
8#include <linux/module.h>
9#include <linux/mm.h>
e1759c21 10#include <linux/seq_file.h>
1da177e4
LT
11#include <linux/sysctl.h>
12#include <linux/highmem.h>
cddb8a5c 13#include <linux/mmu_notifier.h>
1da177e4 14#include <linux/nodemask.h>
63551ae0 15#include <linux/pagemap.h>
5da7ca86 16#include <linux/mempolicy.h>
aea47ff3 17#include <linux/cpuset.h>
3935baa9 18#include <linux/mutex.h>
aa888a74 19#include <linux/bootmem.h>
a3437870 20#include <linux/sysfs.h>
d6606683 21
63551ae0
DG
22#include <asm/page.h>
23#include <asm/pgtable.h>
78a34ae2 24#include <asm/io.h>
63551ae0
DG
25
26#include <linux/hugetlb.h>
7835e98b 27#include "internal.h"
1da177e4
LT
28
29const unsigned long hugetlb_zero = 0, hugetlb_infinity = ~0UL;
396faf03
MG
30static gfp_t htlb_alloc_mask = GFP_HIGHUSER;
31unsigned long hugepages_treat_as_movable;
a5516438 32
e5ff2159
AK
33static int max_hstate;
34unsigned int default_hstate_idx;
35struct hstate hstates[HUGE_MAX_HSTATE];
36
53ba51d2
JT
37__initdata LIST_HEAD(huge_boot_pages);
38
e5ff2159
AK
39/* for command line parsing */
40static struct hstate * __initdata parsed_hstate;
41static unsigned long __initdata default_hstate_max_huge_pages;
e11bfbfc 42static unsigned long __initdata default_hstate_size;
e5ff2159
AK
43
44#define for_each_hstate(h) \
45 for ((h) = hstates; (h) < &hstates[max_hstate]; (h)++)
396faf03 46
3935baa9
DG
47/*
48 * Protects updates to hugepage_freelists, nr_huge_pages, and free_huge_pages
49 */
50static DEFINE_SPINLOCK(hugetlb_lock);
0bd0f9fb 51
96822904
AW
52/*
53 * Region tracking -- allows tracking of reservations and instantiated pages
54 * across the pages in a mapping.
84afd99b
AW
55 *
56 * The region data structures are protected by a combination of the mmap_sem
57 * and the hugetlb_instantion_mutex. To access or modify a region the caller
58 * must either hold the mmap_sem for write, or the mmap_sem for read and
59 * the hugetlb_instantiation mutex:
60 *
61 * down_write(&mm->mmap_sem);
62 * or
63 * down_read(&mm->mmap_sem);
64 * mutex_lock(&hugetlb_instantiation_mutex);
96822904
AW
65 */
66struct file_region {
67 struct list_head link;
68 long from;
69 long to;
70};
71
72static long region_add(struct list_head *head, long f, long t)
73{
74 struct file_region *rg, *nrg, *trg;
75
76 /* Locate the region we are either in or before. */
77 list_for_each_entry(rg, head, link)
78 if (f <= rg->to)
79 break;
80
81 /* Round our left edge to the current segment if it encloses us. */
82 if (f > rg->from)
83 f = rg->from;
84
85 /* Check for and consume any regions we now overlap with. */
86 nrg = rg;
87 list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
88 if (&rg->link == head)
89 break;
90 if (rg->from > t)
91 break;
92
93 /* If this area reaches higher then extend our area to
94 * include it completely. If this is not the first area
95 * which we intend to reuse, free it. */
96 if (rg->to > t)
97 t = rg->to;
98 if (rg != nrg) {
99 list_del(&rg->link);
100 kfree(rg);
101 }
102 }
103 nrg->from = f;
104 nrg->to = t;
105 return 0;
106}
107
108static long region_chg(struct list_head *head, long f, long t)
109{
110 struct file_region *rg, *nrg;
111 long chg = 0;
112
113 /* Locate the region we are before or in. */
114 list_for_each_entry(rg, head, link)
115 if (f <= rg->to)
116 break;
117
118 /* If we are below the current region then a new region is required.
119 * Subtle, allocate a new region at the position but make it zero
120 * size such that we can guarantee to record the reservation. */
121 if (&rg->link == head || t < rg->from) {
122 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
123 if (!nrg)
124 return -ENOMEM;
125 nrg->from = f;
126 nrg->to = f;
127 INIT_LIST_HEAD(&nrg->link);
128 list_add(&nrg->link, rg->link.prev);
129
130 return t - f;
131 }
132
133 /* Round our left edge to the current segment if it encloses us. */
134 if (f > rg->from)
135 f = rg->from;
136 chg = t - f;
137
138 /* Check for and consume any regions we now overlap with. */
139 list_for_each_entry(rg, rg->link.prev, link) {
140 if (&rg->link == head)
141 break;
142 if (rg->from > t)
143 return chg;
144
145 /* We overlap with this area, if it extends futher than
146 * us then we must extend ourselves. Account for its
147 * existing reservation. */
148 if (rg->to > t) {
149 chg += rg->to - t;
150 t = rg->to;
151 }
152 chg -= rg->to - rg->from;
153 }
154 return chg;
155}
156
157static long region_truncate(struct list_head *head, long end)
158{
159 struct file_region *rg, *trg;
160 long chg = 0;
161
162 /* Locate the region we are either in or before. */
163 list_for_each_entry(rg, head, link)
164 if (end <= rg->to)
165 break;
166 if (&rg->link == head)
167 return 0;
168
169 /* If we are in the middle of a region then adjust it. */
170 if (end > rg->from) {
171 chg = rg->to - end;
172 rg->to = end;
173 rg = list_entry(rg->link.next, typeof(*rg), link);
174 }
175
176 /* Drop any remaining regions. */
177 list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
178 if (&rg->link == head)
179 break;
180 chg += rg->to - rg->from;
181 list_del(&rg->link);
182 kfree(rg);
183 }
184 return chg;
185}
186
84afd99b
AW
187static long region_count(struct list_head *head, long f, long t)
188{
189 struct file_region *rg;
190 long chg = 0;
191
192 /* Locate each segment we overlap with, and count that overlap. */
193 list_for_each_entry(rg, head, link) {
194 int seg_from;
195 int seg_to;
196
197 if (rg->to <= f)
198 continue;
199 if (rg->from >= t)
200 break;
201
202 seg_from = max(rg->from, f);
203 seg_to = min(rg->to, t);
204
205 chg += seg_to - seg_from;
206 }
207
208 return chg;
209}
210
e7c4b0bf
AW
211/*
212 * Convert the address within this vma to the page offset within
213 * the mapping, in pagecache page units; huge pages here.
214 */
a5516438
AK
215static pgoff_t vma_hugecache_offset(struct hstate *h,
216 struct vm_area_struct *vma, unsigned long address)
e7c4b0bf 217{
a5516438
AK
218 return ((address - vma->vm_start) >> huge_page_shift(h)) +
219 (vma->vm_pgoff >> huge_page_order(h));
e7c4b0bf
AW
220}
221
08fba699
MG
222/*
223 * Return the size of the pages allocated when backing a VMA. In the majority
224 * cases this will be same size as used by the page table entries.
225 */
226unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
227{
228 struct hstate *hstate;
229
230 if (!is_vm_hugetlb_page(vma))
231 return PAGE_SIZE;
232
233 hstate = hstate_vma(vma);
234
235 return 1UL << (hstate->order + PAGE_SHIFT);
236}
237
3340289d
MG
238/*
239 * Return the page size being used by the MMU to back a VMA. In the majority
240 * of cases, the page size used by the kernel matches the MMU size. On
241 * architectures where it differs, an architecture-specific version of this
242 * function is required.
243 */
244#ifndef vma_mmu_pagesize
245unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
246{
247 return vma_kernel_pagesize(vma);
248}
249#endif
250
84afd99b
AW
251/*
252 * Flags for MAP_PRIVATE reservations. These are stored in the bottom
253 * bits of the reservation map pointer, which are always clear due to
254 * alignment.
255 */
256#define HPAGE_RESV_OWNER (1UL << 0)
257#define HPAGE_RESV_UNMAPPED (1UL << 1)
04f2cbe3 258#define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
84afd99b 259
a1e78772
MG
260/*
261 * These helpers are used to track how many pages are reserved for
262 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
263 * is guaranteed to have their future faults succeed.
264 *
265 * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
266 * the reserve counters are updated with the hugetlb_lock held. It is safe
267 * to reset the VMA at fork() time as it is not in use yet and there is no
268 * chance of the global counters getting corrupted as a result of the values.
84afd99b
AW
269 *
270 * The private mapping reservation is represented in a subtly different
271 * manner to a shared mapping. A shared mapping has a region map associated
272 * with the underlying file, this region map represents the backing file
273 * pages which have ever had a reservation assigned which this persists even
274 * after the page is instantiated. A private mapping has a region map
275 * associated with the original mmap which is attached to all VMAs which
276 * reference it, this region map represents those offsets which have consumed
277 * reservation ie. where pages have been instantiated.
a1e78772 278 */
e7c4b0bf
AW
279static unsigned long get_vma_private_data(struct vm_area_struct *vma)
280{
281 return (unsigned long)vma->vm_private_data;
282}
283
284static void set_vma_private_data(struct vm_area_struct *vma,
285 unsigned long value)
286{
287 vma->vm_private_data = (void *)value;
288}
289
84afd99b
AW
290struct resv_map {
291 struct kref refs;
292 struct list_head regions;
293};
294
2a4b3ded 295static struct resv_map *resv_map_alloc(void)
84afd99b
AW
296{
297 struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
298 if (!resv_map)
299 return NULL;
300
301 kref_init(&resv_map->refs);
302 INIT_LIST_HEAD(&resv_map->regions);
303
304 return resv_map;
305}
306
2a4b3ded 307static void resv_map_release(struct kref *ref)
84afd99b
AW
308{
309 struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
310
311 /* Clear out any active regions before we release the map. */
312 region_truncate(&resv_map->regions, 0);
313 kfree(resv_map);
314}
315
316static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
a1e78772
MG
317{
318 VM_BUG_ON(!is_vm_hugetlb_page(vma));
319 if (!(vma->vm_flags & VM_SHARED))
84afd99b
AW
320 return (struct resv_map *)(get_vma_private_data(vma) &
321 ~HPAGE_RESV_MASK);
2a4b3ded 322 return NULL;
a1e78772
MG
323}
324
84afd99b 325static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
a1e78772
MG
326{
327 VM_BUG_ON(!is_vm_hugetlb_page(vma));
328 VM_BUG_ON(vma->vm_flags & VM_SHARED);
329
84afd99b
AW
330 set_vma_private_data(vma, (get_vma_private_data(vma) &
331 HPAGE_RESV_MASK) | (unsigned long)map);
04f2cbe3
MG
332}
333
334static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
335{
04f2cbe3 336 VM_BUG_ON(!is_vm_hugetlb_page(vma));
e7c4b0bf
AW
337 VM_BUG_ON(vma->vm_flags & VM_SHARED);
338
339 set_vma_private_data(vma, get_vma_private_data(vma) | flags);
04f2cbe3
MG
340}
341
342static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
343{
344 VM_BUG_ON(!is_vm_hugetlb_page(vma));
e7c4b0bf
AW
345
346 return (get_vma_private_data(vma) & flag) != 0;
a1e78772
MG
347}
348
349/* Decrement the reserved pages in the hugepage pool by one */
a5516438
AK
350static void decrement_hugepage_resv_vma(struct hstate *h,
351 struct vm_area_struct *vma)
a1e78772 352{
c37f9fb1
AW
353 if (vma->vm_flags & VM_NORESERVE)
354 return;
355
a1e78772
MG
356 if (vma->vm_flags & VM_SHARED) {
357 /* Shared mappings always use reserves */
a5516438 358 h->resv_huge_pages--;
84afd99b 359 } else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
a1e78772
MG
360 /*
361 * Only the process that called mmap() has reserves for
362 * private mappings.
363 */
a5516438 364 h->resv_huge_pages--;
a1e78772
MG
365 }
366}
367
04f2cbe3 368/* Reset counters to 0 and clear all HPAGE_RESV_* flags */
a1e78772
MG
369void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
370{
371 VM_BUG_ON(!is_vm_hugetlb_page(vma));
372 if (!(vma->vm_flags & VM_SHARED))
373 vma->vm_private_data = (void *)0;
374}
375
376/* Returns true if the VMA has associated reserve pages */
7f09ca51 377static int vma_has_reserves(struct vm_area_struct *vma)
a1e78772
MG
378{
379 if (vma->vm_flags & VM_SHARED)
7f09ca51
MG
380 return 1;
381 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER))
382 return 1;
383 return 0;
a1e78772
MG
384}
385
69d177c2
AW
386static void clear_gigantic_page(struct page *page,
387 unsigned long addr, unsigned long sz)
388{
389 int i;
390 struct page *p = page;
391
392 might_sleep();
393 for (i = 0; i < sz/PAGE_SIZE; i++, p = mem_map_next(p, page, i)) {
394 cond_resched();
395 clear_user_highpage(p, addr + i * PAGE_SIZE);
396 }
397}
a5516438
AK
398static void clear_huge_page(struct page *page,
399 unsigned long addr, unsigned long sz)
79ac6ba4
DG
400{
401 int i;
402
ebdd4aea
HE
403 if (unlikely(sz > MAX_ORDER_NR_PAGES)) {
404 clear_gigantic_page(page, addr, sz);
405 return;
406 }
69d177c2 407
79ac6ba4 408 might_sleep();
a5516438 409 for (i = 0; i < sz/PAGE_SIZE; i++) {
79ac6ba4 410 cond_resched();
281e0e3b 411 clear_user_highpage(page + i, addr + i * PAGE_SIZE);
79ac6ba4
DG
412 }
413}
414
69d177c2
AW
415static void copy_gigantic_page(struct page *dst, struct page *src,
416 unsigned long addr, struct vm_area_struct *vma)
417{
418 int i;
419 struct hstate *h = hstate_vma(vma);
420 struct page *dst_base = dst;
421 struct page *src_base = src;
422 might_sleep();
423 for (i = 0; i < pages_per_huge_page(h); ) {
424 cond_resched();
425 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
426
427 i++;
428 dst = mem_map_next(dst, dst_base, i);
429 src = mem_map_next(src, src_base, i);
430 }
431}
79ac6ba4 432static void copy_huge_page(struct page *dst, struct page *src,
9de455b2 433 unsigned long addr, struct vm_area_struct *vma)
79ac6ba4
DG
434{
435 int i;
a5516438 436 struct hstate *h = hstate_vma(vma);
79ac6ba4 437
ebdd4aea
HE
438 if (unlikely(pages_per_huge_page(h) > MAX_ORDER_NR_PAGES)) {
439 copy_gigantic_page(dst, src, addr, vma);
440 return;
441 }
69d177c2 442
79ac6ba4 443 might_sleep();
a5516438 444 for (i = 0; i < pages_per_huge_page(h); i++) {
79ac6ba4 445 cond_resched();
9de455b2 446 copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
79ac6ba4
DG
447 }
448}
449
a5516438 450static void enqueue_huge_page(struct hstate *h, struct page *page)
1da177e4
LT
451{
452 int nid = page_to_nid(page);
a5516438
AK
453 list_add(&page->lru, &h->hugepage_freelists[nid]);
454 h->free_huge_pages++;
455 h->free_huge_pages_node[nid]++;
1da177e4
LT
456}
457
a5516438 458static struct page *dequeue_huge_page(struct hstate *h)
348e1e04
NA
459{
460 int nid;
461 struct page *page = NULL;
462
463 for (nid = 0; nid < MAX_NUMNODES; ++nid) {
a5516438
AK
464 if (!list_empty(&h->hugepage_freelists[nid])) {
465 page = list_entry(h->hugepage_freelists[nid].next,
348e1e04
NA
466 struct page, lru);
467 list_del(&page->lru);
a5516438
AK
468 h->free_huge_pages--;
469 h->free_huge_pages_node[nid]--;
348e1e04
NA
470 break;
471 }
472 }
473 return page;
474}
475
a5516438
AK
476static struct page *dequeue_huge_page_vma(struct hstate *h,
477 struct vm_area_struct *vma,
04f2cbe3 478 unsigned long address, int avoid_reserve)
1da177e4 479{
31a5c6e4 480 int nid;
1da177e4 481 struct page *page = NULL;
480eccf9 482 struct mempolicy *mpol;
19770b32 483 nodemask_t *nodemask;
396faf03 484 struct zonelist *zonelist = huge_zonelist(vma, address,
19770b32 485 htlb_alloc_mask, &mpol, &nodemask);
dd1a239f
MG
486 struct zone *zone;
487 struct zoneref *z;
1da177e4 488
a1e78772
MG
489 /*
490 * A child process with MAP_PRIVATE mappings created by their parent
491 * have no page reserves. This check ensures that reservations are
492 * not "stolen". The child may still get SIGKILLed
493 */
7f09ca51 494 if (!vma_has_reserves(vma) &&
a5516438 495 h->free_huge_pages - h->resv_huge_pages == 0)
a1e78772
MG
496 return NULL;
497
04f2cbe3 498 /* If reserves cannot be used, ensure enough pages are in the pool */
a5516438 499 if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
04f2cbe3
MG
500 return NULL;
501
19770b32
MG
502 for_each_zone_zonelist_nodemask(zone, z, zonelist,
503 MAX_NR_ZONES - 1, nodemask) {
54a6eb5c
MG
504 nid = zone_to_nid(zone);
505 if (cpuset_zone_allowed_softwall(zone, htlb_alloc_mask) &&
a5516438
AK
506 !list_empty(&h->hugepage_freelists[nid])) {
507 page = list_entry(h->hugepage_freelists[nid].next,
3abf7afd
AM
508 struct page, lru);
509 list_del(&page->lru);
a5516438
AK
510 h->free_huge_pages--;
511 h->free_huge_pages_node[nid]--;
04f2cbe3
MG
512
513 if (!avoid_reserve)
a5516438 514 decrement_hugepage_resv_vma(h, vma);
a1e78772 515
5ab3ee7b 516 break;
3abf7afd 517 }
1da177e4 518 }
52cd3b07 519 mpol_cond_put(mpol);
1da177e4
LT
520 return page;
521}
522
a5516438 523static void update_and_free_page(struct hstate *h, struct page *page)
6af2acb6
AL
524{
525 int i;
a5516438 526
18229df5
AW
527 VM_BUG_ON(h->order >= MAX_ORDER);
528
a5516438
AK
529 h->nr_huge_pages--;
530 h->nr_huge_pages_node[page_to_nid(page)]--;
531 for (i = 0; i < pages_per_huge_page(h); i++) {
6af2acb6
AL
532 page[i].flags &= ~(1 << PG_locked | 1 << PG_error | 1 << PG_referenced |
533 1 << PG_dirty | 1 << PG_active | 1 << PG_reserved |
534 1 << PG_private | 1<< PG_writeback);
535 }
536 set_compound_page_dtor(page, NULL);
537 set_page_refcounted(page);
7f2e9525 538 arch_release_hugepage(page);
a5516438 539 __free_pages(page, huge_page_order(h));
6af2acb6
AL
540}
541
e5ff2159
AK
542struct hstate *size_to_hstate(unsigned long size)
543{
544 struct hstate *h;
545
546 for_each_hstate(h) {
547 if (huge_page_size(h) == size)
548 return h;
549 }
550 return NULL;
551}
552
27a85ef1
DG
553static void free_huge_page(struct page *page)
554{
a5516438
AK
555 /*
556 * Can't pass hstate in here because it is called from the
557 * compound page destructor.
558 */
e5ff2159 559 struct hstate *h = page_hstate(page);
7893d1d5 560 int nid = page_to_nid(page);
c79fb75e 561 struct address_space *mapping;
27a85ef1 562
c79fb75e 563 mapping = (struct address_space *) page_private(page);
e5df70ab 564 set_page_private(page, 0);
7893d1d5 565 BUG_ON(page_count(page));
27a85ef1
DG
566 INIT_LIST_HEAD(&page->lru);
567
568 spin_lock(&hugetlb_lock);
aa888a74 569 if (h->surplus_huge_pages_node[nid] && huge_page_order(h) < MAX_ORDER) {
a5516438
AK
570 update_and_free_page(h, page);
571 h->surplus_huge_pages--;
572 h->surplus_huge_pages_node[nid]--;
7893d1d5 573 } else {
a5516438 574 enqueue_huge_page(h, page);
7893d1d5 575 }
27a85ef1 576 spin_unlock(&hugetlb_lock);
c79fb75e 577 if (mapping)
9a119c05 578 hugetlb_put_quota(mapping, 1);
27a85ef1
DG
579}
580
7893d1d5
AL
581/*
582 * Increment or decrement surplus_huge_pages. Keep node-specific counters
583 * balanced by operating on them in a round-robin fashion.
584 * Returns 1 if an adjustment was made.
585 */
a5516438 586static int adjust_pool_surplus(struct hstate *h, int delta)
7893d1d5
AL
587{
588 static int prev_nid;
589 int nid = prev_nid;
590 int ret = 0;
591
592 VM_BUG_ON(delta != -1 && delta != 1);
593 do {
594 nid = next_node(nid, node_online_map);
595 if (nid == MAX_NUMNODES)
596 nid = first_node(node_online_map);
597
598 /* To shrink on this node, there must be a surplus page */
a5516438 599 if (delta < 0 && !h->surplus_huge_pages_node[nid])
7893d1d5
AL
600 continue;
601 /* Surplus cannot exceed the total number of pages */
a5516438
AK
602 if (delta > 0 && h->surplus_huge_pages_node[nid] >=
603 h->nr_huge_pages_node[nid])
7893d1d5
AL
604 continue;
605
a5516438
AK
606 h->surplus_huge_pages += delta;
607 h->surplus_huge_pages_node[nid] += delta;
7893d1d5
AL
608 ret = 1;
609 break;
610 } while (nid != prev_nid);
611
612 prev_nid = nid;
613 return ret;
614}
615
a5516438 616static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
b7ba30c6
AK
617{
618 set_compound_page_dtor(page, free_huge_page);
619 spin_lock(&hugetlb_lock);
a5516438
AK
620 h->nr_huge_pages++;
621 h->nr_huge_pages_node[nid]++;
b7ba30c6
AK
622 spin_unlock(&hugetlb_lock);
623 put_page(page); /* free it into the hugepage allocator */
624}
625
a5516438 626static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid)
1da177e4 627{
1da177e4 628 struct page *page;
f96efd58 629
aa888a74
AK
630 if (h->order >= MAX_ORDER)
631 return NULL;
632
63b4613c 633 page = alloc_pages_node(nid,
551883ae
NA
634 htlb_alloc_mask|__GFP_COMP|__GFP_THISNODE|
635 __GFP_REPEAT|__GFP_NOWARN,
a5516438 636 huge_page_order(h));
1da177e4 637 if (page) {
7f2e9525 638 if (arch_prepare_hugepage(page)) {
caff3a2c 639 __free_pages(page, huge_page_order(h));
7b8ee84d 640 return NULL;
7f2e9525 641 }
a5516438 642 prep_new_huge_page(h, page, nid);
1da177e4 643 }
63b4613c
NA
644
645 return page;
646}
647
5ced66c9
AK
648/*
649 * Use a helper variable to find the next node and then
650 * copy it back to hugetlb_next_nid afterwards:
651 * otherwise there's a window in which a racer might
652 * pass invalid nid MAX_NUMNODES to alloc_pages_node.
653 * But we don't need to use a spin_lock here: it really
654 * doesn't matter if occasionally a racer chooses the
655 * same nid as we do. Move nid forward in the mask even
656 * if we just successfully allocated a hugepage so that
657 * the next caller gets hugepages on the next node.
658 */
659static int hstate_next_node(struct hstate *h)
660{
661 int next_nid;
662 next_nid = next_node(h->hugetlb_next_nid, node_online_map);
663 if (next_nid == MAX_NUMNODES)
664 next_nid = first_node(node_online_map);
665 h->hugetlb_next_nid = next_nid;
666 return next_nid;
667}
668
a5516438 669static int alloc_fresh_huge_page(struct hstate *h)
63b4613c
NA
670{
671 struct page *page;
672 int start_nid;
673 int next_nid;
674 int ret = 0;
675
a5516438 676 start_nid = h->hugetlb_next_nid;
63b4613c
NA
677
678 do {
a5516438 679 page = alloc_fresh_huge_page_node(h, h->hugetlb_next_nid);
63b4613c
NA
680 if (page)
681 ret = 1;
5ced66c9 682 next_nid = hstate_next_node(h);
a5516438 683 } while (!page && h->hugetlb_next_nid != start_nid);
63b4613c 684
3b116300
AL
685 if (ret)
686 count_vm_event(HTLB_BUDDY_PGALLOC);
687 else
688 count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
689
63b4613c 690 return ret;
1da177e4
LT
691}
692
a5516438
AK
693static struct page *alloc_buddy_huge_page(struct hstate *h,
694 struct vm_area_struct *vma, unsigned long address)
7893d1d5
AL
695{
696 struct page *page;
d1c3fb1f 697 unsigned int nid;
7893d1d5 698
aa888a74
AK
699 if (h->order >= MAX_ORDER)
700 return NULL;
701
d1c3fb1f
NA
702 /*
703 * Assume we will successfully allocate the surplus page to
704 * prevent racing processes from causing the surplus to exceed
705 * overcommit
706 *
707 * This however introduces a different race, where a process B
708 * tries to grow the static hugepage pool while alloc_pages() is
709 * called by process A. B will only examine the per-node
710 * counters in determining if surplus huge pages can be
711 * converted to normal huge pages in adjust_pool_surplus(). A
712 * won't be able to increment the per-node counter, until the
713 * lock is dropped by B, but B doesn't drop hugetlb_lock until
714 * no more huge pages can be converted from surplus to normal
715 * state (and doesn't try to convert again). Thus, we have a
716 * case where a surplus huge page exists, the pool is grown, and
717 * the surplus huge page still exists after, even though it
718 * should just have been converted to a normal huge page. This
719 * does not leak memory, though, as the hugepage will be freed
720 * once it is out of use. It also does not allow the counters to
721 * go out of whack in adjust_pool_surplus() as we don't modify
722 * the node values until we've gotten the hugepage and only the
723 * per-node value is checked there.
724 */
725 spin_lock(&hugetlb_lock);
a5516438 726 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
d1c3fb1f
NA
727 spin_unlock(&hugetlb_lock);
728 return NULL;
729 } else {
a5516438
AK
730 h->nr_huge_pages++;
731 h->surplus_huge_pages++;
d1c3fb1f
NA
732 }
733 spin_unlock(&hugetlb_lock);
734
551883ae
NA
735 page = alloc_pages(htlb_alloc_mask|__GFP_COMP|
736 __GFP_REPEAT|__GFP_NOWARN,
a5516438 737 huge_page_order(h));
d1c3fb1f 738
caff3a2c
GS
739 if (page && arch_prepare_hugepage(page)) {
740 __free_pages(page, huge_page_order(h));
741 return NULL;
742 }
743
d1c3fb1f 744 spin_lock(&hugetlb_lock);
7893d1d5 745 if (page) {
2668db91
AL
746 /*
747 * This page is now managed by the hugetlb allocator and has
748 * no users -- drop the buddy allocator's reference.
749 */
750 put_page_testzero(page);
751 VM_BUG_ON(page_count(page));
d1c3fb1f 752 nid = page_to_nid(page);
7893d1d5 753 set_compound_page_dtor(page, free_huge_page);
d1c3fb1f
NA
754 /*
755 * We incremented the global counters already
756 */
a5516438
AK
757 h->nr_huge_pages_node[nid]++;
758 h->surplus_huge_pages_node[nid]++;
3b116300 759 __count_vm_event(HTLB_BUDDY_PGALLOC);
d1c3fb1f 760 } else {
a5516438
AK
761 h->nr_huge_pages--;
762 h->surplus_huge_pages--;
3b116300 763 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
7893d1d5 764 }
d1c3fb1f 765 spin_unlock(&hugetlb_lock);
7893d1d5
AL
766
767 return page;
768}
769
e4e574b7
AL
770/*
771 * Increase the hugetlb pool such that it can accomodate a reservation
772 * of size 'delta'.
773 */
a5516438 774static int gather_surplus_pages(struct hstate *h, int delta)
e4e574b7
AL
775{
776 struct list_head surplus_list;
777 struct page *page, *tmp;
778 int ret, i;
779 int needed, allocated;
780
a5516438 781 needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
ac09b3a1 782 if (needed <= 0) {
a5516438 783 h->resv_huge_pages += delta;
e4e574b7 784 return 0;
ac09b3a1 785 }
e4e574b7
AL
786
787 allocated = 0;
788 INIT_LIST_HEAD(&surplus_list);
789
790 ret = -ENOMEM;
791retry:
792 spin_unlock(&hugetlb_lock);
793 for (i = 0; i < needed; i++) {
a5516438 794 page = alloc_buddy_huge_page(h, NULL, 0);
e4e574b7
AL
795 if (!page) {
796 /*
797 * We were not able to allocate enough pages to
798 * satisfy the entire reservation so we free what
799 * we've allocated so far.
800 */
801 spin_lock(&hugetlb_lock);
802 needed = 0;
803 goto free;
804 }
805
806 list_add(&page->lru, &surplus_list);
807 }
808 allocated += needed;
809
810 /*
811 * After retaking hugetlb_lock, we need to recalculate 'needed'
812 * because either resv_huge_pages or free_huge_pages may have changed.
813 */
814 spin_lock(&hugetlb_lock);
a5516438
AK
815 needed = (h->resv_huge_pages + delta) -
816 (h->free_huge_pages + allocated);
e4e574b7
AL
817 if (needed > 0)
818 goto retry;
819
820 /*
821 * The surplus_list now contains _at_least_ the number of extra pages
822 * needed to accomodate the reservation. Add the appropriate number
823 * of pages to the hugetlb pool and free the extras back to the buddy
ac09b3a1
AL
824 * allocator. Commit the entire reservation here to prevent another
825 * process from stealing the pages as they are added to the pool but
826 * before they are reserved.
e4e574b7
AL
827 */
828 needed += allocated;
a5516438 829 h->resv_huge_pages += delta;
e4e574b7
AL
830 ret = 0;
831free:
19fc3f0a 832 /* Free the needed pages to the hugetlb pool */
e4e574b7 833 list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
19fc3f0a
AL
834 if ((--needed) < 0)
835 break;
e4e574b7 836 list_del(&page->lru);
a5516438 837 enqueue_huge_page(h, page);
19fc3f0a
AL
838 }
839
840 /* Free unnecessary surplus pages to the buddy allocator */
841 if (!list_empty(&surplus_list)) {
842 spin_unlock(&hugetlb_lock);
843 list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
844 list_del(&page->lru);
af767cbd 845 /*
2668db91
AL
846 * The page has a reference count of zero already, so
847 * call free_huge_page directly instead of using
848 * put_page. This must be done with hugetlb_lock
af767cbd
AL
849 * unlocked which is safe because free_huge_page takes
850 * hugetlb_lock before deciding how to free the page.
851 */
2668db91 852 free_huge_page(page);
af767cbd 853 }
19fc3f0a 854 spin_lock(&hugetlb_lock);
e4e574b7
AL
855 }
856
857 return ret;
858}
859
860/*
861 * When releasing a hugetlb pool reservation, any surplus pages that were
862 * allocated to satisfy the reservation must be explicitly freed if they were
863 * never used.
864 */
a5516438
AK
865static void return_unused_surplus_pages(struct hstate *h,
866 unsigned long unused_resv_pages)
e4e574b7
AL
867{
868 static int nid = -1;
869 struct page *page;
870 unsigned long nr_pages;
871
11320d17
NA
872 /*
873 * We want to release as many surplus pages as possible, spread
874 * evenly across all nodes. Iterate across all nodes until we
875 * can no longer free unreserved surplus pages. This occurs when
876 * the nodes with surplus pages have no free pages.
877 */
878 unsigned long remaining_iterations = num_online_nodes();
879
ac09b3a1 880 /* Uncommit the reservation */
a5516438 881 h->resv_huge_pages -= unused_resv_pages;
ac09b3a1 882
aa888a74
AK
883 /* Cannot return gigantic pages currently */
884 if (h->order >= MAX_ORDER)
885 return;
886
a5516438 887 nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
e4e574b7 888
11320d17 889 while (remaining_iterations-- && nr_pages) {
e4e574b7
AL
890 nid = next_node(nid, node_online_map);
891 if (nid == MAX_NUMNODES)
892 nid = first_node(node_online_map);
893
a5516438 894 if (!h->surplus_huge_pages_node[nid])
e4e574b7
AL
895 continue;
896
a5516438
AK
897 if (!list_empty(&h->hugepage_freelists[nid])) {
898 page = list_entry(h->hugepage_freelists[nid].next,
e4e574b7
AL
899 struct page, lru);
900 list_del(&page->lru);
a5516438
AK
901 update_and_free_page(h, page);
902 h->free_huge_pages--;
903 h->free_huge_pages_node[nid]--;
904 h->surplus_huge_pages--;
905 h->surplus_huge_pages_node[nid]--;
e4e574b7 906 nr_pages--;
11320d17 907 remaining_iterations = num_online_nodes();
e4e574b7
AL
908 }
909 }
910}
911
c37f9fb1
AW
912/*
913 * Determine if the huge page at addr within the vma has an associated
914 * reservation. Where it does not we will need to logically increase
915 * reservation and actually increase quota before an allocation can occur.
916 * Where any new reservation would be required the reservation change is
917 * prepared, but not committed. Once the page has been quota'd allocated
918 * an instantiated the change should be committed via vma_commit_reservation.
919 * No action is required on failure.
920 */
a5516438
AK
921static int vma_needs_reservation(struct hstate *h,
922 struct vm_area_struct *vma, unsigned long addr)
c37f9fb1
AW
923{
924 struct address_space *mapping = vma->vm_file->f_mapping;
925 struct inode *inode = mapping->host;
926
927 if (vma->vm_flags & VM_SHARED) {
a5516438 928 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
c37f9fb1
AW
929 return region_chg(&inode->i_mapping->private_list,
930 idx, idx + 1);
931
84afd99b
AW
932 } else if (!is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
933 return 1;
c37f9fb1 934
84afd99b
AW
935 } else {
936 int err;
a5516438 937 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
84afd99b
AW
938 struct resv_map *reservations = vma_resv_map(vma);
939
940 err = region_chg(&reservations->regions, idx, idx + 1);
941 if (err < 0)
942 return err;
943 return 0;
944 }
c37f9fb1 945}
a5516438
AK
946static void vma_commit_reservation(struct hstate *h,
947 struct vm_area_struct *vma, unsigned long addr)
c37f9fb1
AW
948{
949 struct address_space *mapping = vma->vm_file->f_mapping;
950 struct inode *inode = mapping->host;
951
952 if (vma->vm_flags & VM_SHARED) {
a5516438 953 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
c37f9fb1 954 region_add(&inode->i_mapping->private_list, idx, idx + 1);
84afd99b
AW
955
956 } else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
a5516438 957 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
84afd99b
AW
958 struct resv_map *reservations = vma_resv_map(vma);
959
960 /* Mark this page used in the map. */
961 region_add(&reservations->regions, idx, idx + 1);
c37f9fb1
AW
962 }
963}
964
a1e78772 965static struct page *alloc_huge_page(struct vm_area_struct *vma,
04f2cbe3 966 unsigned long addr, int avoid_reserve)
1da177e4 967{
a5516438 968 struct hstate *h = hstate_vma(vma);
348ea204 969 struct page *page;
a1e78772
MG
970 struct address_space *mapping = vma->vm_file->f_mapping;
971 struct inode *inode = mapping->host;
c37f9fb1 972 unsigned int chg;
a1e78772
MG
973
974 /*
975 * Processes that did not create the mapping will have no reserves and
976 * will not have accounted against quota. Check that the quota can be
977 * made before satisfying the allocation
c37f9fb1
AW
978 * MAP_NORESERVE mappings may also need pages and quota allocated
979 * if no reserve mapping overlaps.
a1e78772 980 */
a5516438 981 chg = vma_needs_reservation(h, vma, addr);
c37f9fb1
AW
982 if (chg < 0)
983 return ERR_PTR(chg);
984 if (chg)
a1e78772
MG
985 if (hugetlb_get_quota(inode->i_mapping, chg))
986 return ERR_PTR(-ENOSPC);
1da177e4
LT
987
988 spin_lock(&hugetlb_lock);
a5516438 989 page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve);
1da177e4 990 spin_unlock(&hugetlb_lock);
b45b5bd6 991
68842c9b 992 if (!page) {
a5516438 993 page = alloc_buddy_huge_page(h, vma, addr);
68842c9b 994 if (!page) {
a1e78772 995 hugetlb_put_quota(inode->i_mapping, chg);
68842c9b
KC
996 return ERR_PTR(-VM_FAULT_OOM);
997 }
998 }
348ea204 999
a1e78772
MG
1000 set_page_refcounted(page);
1001 set_page_private(page, (unsigned long) mapping);
90d8b7e6 1002
a5516438 1003 vma_commit_reservation(h, vma, addr);
c37f9fb1 1004
90d8b7e6 1005 return page;
b45b5bd6
DG
1006}
1007
53ba51d2 1008__attribute__((weak)) int alloc_bootmem_huge_page(struct hstate *h)
aa888a74
AK
1009{
1010 struct huge_bootmem_page *m;
1011 int nr_nodes = nodes_weight(node_online_map);
1012
1013 while (nr_nodes) {
1014 void *addr;
1015
1016 addr = __alloc_bootmem_node_nopanic(
1017 NODE_DATA(h->hugetlb_next_nid),
1018 huge_page_size(h), huge_page_size(h), 0);
1019
1020 if (addr) {
1021 /*
1022 * Use the beginning of the huge page to store the
1023 * huge_bootmem_page struct (until gather_bootmem
1024 * puts them into the mem_map).
1025 */
1026 m = addr;
1027 if (m)
1028 goto found;
1029 }
1030 hstate_next_node(h);
1031 nr_nodes--;
1032 }
1033 return 0;
1034
1035found:
1036 BUG_ON((unsigned long)virt_to_phys(m) & (huge_page_size(h) - 1));
1037 /* Put them into a private list first because mem_map is not up yet */
1038 list_add(&m->list, &huge_boot_pages);
1039 m->hstate = h;
1040 return 1;
1041}
1042
18229df5
AW
1043static void prep_compound_huge_page(struct page *page, int order)
1044{
1045 if (unlikely(order > (MAX_ORDER - 1)))
1046 prep_compound_gigantic_page(page, order);
1047 else
1048 prep_compound_page(page, order);
1049}
1050
aa888a74
AK
1051/* Put bootmem huge pages into the standard lists after mem_map is up */
1052static void __init gather_bootmem_prealloc(void)
1053{
1054 struct huge_bootmem_page *m;
1055
1056 list_for_each_entry(m, &huge_boot_pages, list) {
1057 struct page *page = virt_to_page(m);
1058 struct hstate *h = m->hstate;
1059 __ClearPageReserved(page);
1060 WARN_ON(page_count(page) != 1);
18229df5 1061 prep_compound_huge_page(page, h->order);
aa888a74
AK
1062 prep_new_huge_page(h, page, page_to_nid(page));
1063 }
1064}
1065
8faa8b07 1066static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
1da177e4
LT
1067{
1068 unsigned long i;
a5516438 1069
e5ff2159 1070 for (i = 0; i < h->max_huge_pages; ++i) {
aa888a74
AK
1071 if (h->order >= MAX_ORDER) {
1072 if (!alloc_bootmem_huge_page(h))
1073 break;
1074 } else if (!alloc_fresh_huge_page(h))
1da177e4 1075 break;
1da177e4 1076 }
8faa8b07 1077 h->max_huge_pages = i;
e5ff2159
AK
1078}
1079
1080static void __init hugetlb_init_hstates(void)
1081{
1082 struct hstate *h;
1083
1084 for_each_hstate(h) {
8faa8b07
AK
1085 /* oversize hugepages were init'ed in early boot */
1086 if (h->order < MAX_ORDER)
1087 hugetlb_hstate_alloc_pages(h);
e5ff2159
AK
1088 }
1089}
1090
4abd32db
AK
1091static char * __init memfmt(char *buf, unsigned long n)
1092{
1093 if (n >= (1UL << 30))
1094 sprintf(buf, "%lu GB", n >> 30);
1095 else if (n >= (1UL << 20))
1096 sprintf(buf, "%lu MB", n >> 20);
1097 else
1098 sprintf(buf, "%lu KB", n >> 10);
1099 return buf;
1100}
1101
e5ff2159
AK
1102static void __init report_hugepages(void)
1103{
1104 struct hstate *h;
1105
1106 for_each_hstate(h) {
4abd32db
AK
1107 char buf[32];
1108 printk(KERN_INFO "HugeTLB registered %s page size, "
1109 "pre-allocated %ld pages\n",
1110 memfmt(buf, huge_page_size(h)),
1111 h->free_huge_pages);
e5ff2159
AK
1112 }
1113}
1114
1da177e4 1115#ifdef CONFIG_HIGHMEM
a5516438 1116static void try_to_free_low(struct hstate *h, unsigned long count)
1da177e4 1117{
4415cc8d
CL
1118 int i;
1119
aa888a74
AK
1120 if (h->order >= MAX_ORDER)
1121 return;
1122
1da177e4
LT
1123 for (i = 0; i < MAX_NUMNODES; ++i) {
1124 struct page *page, *next;
a5516438
AK
1125 struct list_head *freel = &h->hugepage_freelists[i];
1126 list_for_each_entry_safe(page, next, freel, lru) {
1127 if (count >= h->nr_huge_pages)
6b0c880d 1128 return;
1da177e4
LT
1129 if (PageHighMem(page))
1130 continue;
1131 list_del(&page->lru);
e5ff2159 1132 update_and_free_page(h, page);
a5516438
AK
1133 h->free_huge_pages--;
1134 h->free_huge_pages_node[page_to_nid(page)]--;
1da177e4
LT
1135 }
1136 }
1137}
1138#else
a5516438 1139static inline void try_to_free_low(struct hstate *h, unsigned long count)
1da177e4
LT
1140{
1141}
1142#endif
1143
a5516438 1144#define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
e5ff2159 1145static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count)
1da177e4 1146{
7893d1d5 1147 unsigned long min_count, ret;
1da177e4 1148
aa888a74
AK
1149 if (h->order >= MAX_ORDER)
1150 return h->max_huge_pages;
1151
7893d1d5
AL
1152 /*
1153 * Increase the pool size
1154 * First take pages out of surplus state. Then make up the
1155 * remaining difference by allocating fresh huge pages.
d1c3fb1f
NA
1156 *
1157 * We might race with alloc_buddy_huge_page() here and be unable
1158 * to convert a surplus huge page to a normal huge page. That is
1159 * not critical, though, it just means the overall size of the
1160 * pool might be one hugepage larger than it needs to be, but
1161 * within all the constraints specified by the sysctls.
7893d1d5 1162 */
1da177e4 1163 spin_lock(&hugetlb_lock);
a5516438
AK
1164 while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
1165 if (!adjust_pool_surplus(h, -1))
7893d1d5
AL
1166 break;
1167 }
1168
a5516438 1169 while (count > persistent_huge_pages(h)) {
7893d1d5
AL
1170 /*
1171 * If this allocation races such that we no longer need the
1172 * page, free_huge_page will handle it by freeing the page
1173 * and reducing the surplus.
1174 */
1175 spin_unlock(&hugetlb_lock);
a5516438 1176 ret = alloc_fresh_huge_page(h);
7893d1d5
AL
1177 spin_lock(&hugetlb_lock);
1178 if (!ret)
1179 goto out;
1180
1181 }
7893d1d5
AL
1182
1183 /*
1184 * Decrease the pool size
1185 * First return free pages to the buddy allocator (being careful
1186 * to keep enough around to satisfy reservations). Then place
1187 * pages into surplus state as needed so the pool will shrink
1188 * to the desired size as pages become free.
d1c3fb1f
NA
1189 *
1190 * By placing pages into the surplus state independent of the
1191 * overcommit value, we are allowing the surplus pool size to
1192 * exceed overcommit. There are few sane options here. Since
1193 * alloc_buddy_huge_page() is checking the global counter,
1194 * though, we'll note that we're not allowed to exceed surplus
1195 * and won't grow the pool anywhere else. Not until one of the
1196 * sysctls are changed, or the surplus pages go out of use.
7893d1d5 1197 */
a5516438 1198 min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
6b0c880d 1199 min_count = max(count, min_count);
a5516438
AK
1200 try_to_free_low(h, min_count);
1201 while (min_count < persistent_huge_pages(h)) {
1202 struct page *page = dequeue_huge_page(h);
1da177e4
LT
1203 if (!page)
1204 break;
a5516438 1205 update_and_free_page(h, page);
1da177e4 1206 }
a5516438
AK
1207 while (count < persistent_huge_pages(h)) {
1208 if (!adjust_pool_surplus(h, 1))
7893d1d5
AL
1209 break;
1210 }
1211out:
a5516438 1212 ret = persistent_huge_pages(h);
1da177e4 1213 spin_unlock(&hugetlb_lock);
7893d1d5 1214 return ret;
1da177e4
LT
1215}
1216
a3437870
NA
1217#define HSTATE_ATTR_RO(_name) \
1218 static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
1219
1220#define HSTATE_ATTR(_name) \
1221 static struct kobj_attribute _name##_attr = \
1222 __ATTR(_name, 0644, _name##_show, _name##_store)
1223
1224static struct kobject *hugepages_kobj;
1225static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
1226
1227static struct hstate *kobj_to_hstate(struct kobject *kobj)
1228{
1229 int i;
1230 for (i = 0; i < HUGE_MAX_HSTATE; i++)
1231 if (hstate_kobjs[i] == kobj)
1232 return &hstates[i];
1233 BUG();
1234 return NULL;
1235}
1236
1237static ssize_t nr_hugepages_show(struct kobject *kobj,
1238 struct kobj_attribute *attr, char *buf)
1239{
1240 struct hstate *h = kobj_to_hstate(kobj);
1241 return sprintf(buf, "%lu\n", h->nr_huge_pages);
1242}
1243static ssize_t nr_hugepages_store(struct kobject *kobj,
1244 struct kobj_attribute *attr, const char *buf, size_t count)
1245{
1246 int err;
1247 unsigned long input;
1248 struct hstate *h = kobj_to_hstate(kobj);
1249
1250 err = strict_strtoul(buf, 10, &input);
1251 if (err)
1252 return 0;
1253
1254 h->max_huge_pages = set_max_huge_pages(h, input);
1255
1256 return count;
1257}
1258HSTATE_ATTR(nr_hugepages);
1259
1260static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
1261 struct kobj_attribute *attr, char *buf)
1262{
1263 struct hstate *h = kobj_to_hstate(kobj);
1264 return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
1265}
1266static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
1267 struct kobj_attribute *attr, const char *buf, size_t count)
1268{
1269 int err;
1270 unsigned long input;
1271 struct hstate *h = kobj_to_hstate(kobj);
1272
1273 err = strict_strtoul(buf, 10, &input);
1274 if (err)
1275 return 0;
1276
1277 spin_lock(&hugetlb_lock);
1278 h->nr_overcommit_huge_pages = input;
1279 spin_unlock(&hugetlb_lock);
1280
1281 return count;
1282}
1283HSTATE_ATTR(nr_overcommit_hugepages);
1284
1285static ssize_t free_hugepages_show(struct kobject *kobj,
1286 struct kobj_attribute *attr, char *buf)
1287{
1288 struct hstate *h = kobj_to_hstate(kobj);
1289 return sprintf(buf, "%lu\n", h->free_huge_pages);
1290}
1291HSTATE_ATTR_RO(free_hugepages);
1292
1293static ssize_t resv_hugepages_show(struct kobject *kobj,
1294 struct kobj_attribute *attr, char *buf)
1295{
1296 struct hstate *h = kobj_to_hstate(kobj);
1297 return sprintf(buf, "%lu\n", h->resv_huge_pages);
1298}
1299HSTATE_ATTR_RO(resv_hugepages);
1300
1301static ssize_t surplus_hugepages_show(struct kobject *kobj,
1302 struct kobj_attribute *attr, char *buf)
1303{
1304 struct hstate *h = kobj_to_hstate(kobj);
1305 return sprintf(buf, "%lu\n", h->surplus_huge_pages);
1306}
1307HSTATE_ATTR_RO(surplus_hugepages);
1308
1309static struct attribute *hstate_attrs[] = {
1310 &nr_hugepages_attr.attr,
1311 &nr_overcommit_hugepages_attr.attr,
1312 &free_hugepages_attr.attr,
1313 &resv_hugepages_attr.attr,
1314 &surplus_hugepages_attr.attr,
1315 NULL,
1316};
1317
1318static struct attribute_group hstate_attr_group = {
1319 .attrs = hstate_attrs,
1320};
1321
1322static int __init hugetlb_sysfs_add_hstate(struct hstate *h)
1323{
1324 int retval;
1325
1326 hstate_kobjs[h - hstates] = kobject_create_and_add(h->name,
1327 hugepages_kobj);
1328 if (!hstate_kobjs[h - hstates])
1329 return -ENOMEM;
1330
1331 retval = sysfs_create_group(hstate_kobjs[h - hstates],
1332 &hstate_attr_group);
1333 if (retval)
1334 kobject_put(hstate_kobjs[h - hstates]);
1335
1336 return retval;
1337}
1338
1339static void __init hugetlb_sysfs_init(void)
1340{
1341 struct hstate *h;
1342 int err;
1343
1344 hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
1345 if (!hugepages_kobj)
1346 return;
1347
1348 for_each_hstate(h) {
1349 err = hugetlb_sysfs_add_hstate(h);
1350 if (err)
1351 printk(KERN_ERR "Hugetlb: Unable to add hstate %s",
1352 h->name);
1353 }
1354}
1355
1356static void __exit hugetlb_exit(void)
1357{
1358 struct hstate *h;
1359
1360 for_each_hstate(h) {
1361 kobject_put(hstate_kobjs[h - hstates]);
1362 }
1363
1364 kobject_put(hugepages_kobj);
1365}
1366module_exit(hugetlb_exit);
1367
1368static int __init hugetlb_init(void)
1369{
0ef89d25
BH
1370 /* Some platform decide whether they support huge pages at boot
1371 * time. On these, such as powerpc, HPAGE_SHIFT is set to 0 when
1372 * there is no such support
1373 */
1374 if (HPAGE_SHIFT == 0)
1375 return 0;
a3437870 1376
e11bfbfc
NP
1377 if (!size_to_hstate(default_hstate_size)) {
1378 default_hstate_size = HPAGE_SIZE;
1379 if (!size_to_hstate(default_hstate_size))
1380 hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
a3437870 1381 }
e11bfbfc
NP
1382 default_hstate_idx = size_to_hstate(default_hstate_size) - hstates;
1383 if (default_hstate_max_huge_pages)
1384 default_hstate.max_huge_pages = default_hstate_max_huge_pages;
a3437870
NA
1385
1386 hugetlb_init_hstates();
1387
aa888a74
AK
1388 gather_bootmem_prealloc();
1389
a3437870
NA
1390 report_hugepages();
1391
1392 hugetlb_sysfs_init();
1393
1394 return 0;
1395}
1396module_init(hugetlb_init);
1397
1398/* Should be called on processing a hugepagesz=... option */
1399void __init hugetlb_add_hstate(unsigned order)
1400{
1401 struct hstate *h;
8faa8b07
AK
1402 unsigned long i;
1403
a3437870
NA
1404 if (size_to_hstate(PAGE_SIZE << order)) {
1405 printk(KERN_WARNING "hugepagesz= specified twice, ignoring\n");
1406 return;
1407 }
1408 BUG_ON(max_hstate >= HUGE_MAX_HSTATE);
1409 BUG_ON(order == 0);
1410 h = &hstates[max_hstate++];
1411 h->order = order;
1412 h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
8faa8b07
AK
1413 h->nr_huge_pages = 0;
1414 h->free_huge_pages = 0;
1415 for (i = 0; i < MAX_NUMNODES; ++i)
1416 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
1417 h->hugetlb_next_nid = first_node(node_online_map);
a3437870
NA
1418 snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
1419 huge_page_size(h)/1024);
8faa8b07 1420
a3437870
NA
1421 parsed_hstate = h;
1422}
1423
e11bfbfc 1424static int __init hugetlb_nrpages_setup(char *s)
a3437870
NA
1425{
1426 unsigned long *mhp;
8faa8b07 1427 static unsigned long *last_mhp;
a3437870
NA
1428
1429 /*
1430 * !max_hstate means we haven't parsed a hugepagesz= parameter yet,
1431 * so this hugepages= parameter goes to the "default hstate".
1432 */
1433 if (!max_hstate)
1434 mhp = &default_hstate_max_huge_pages;
1435 else
1436 mhp = &parsed_hstate->max_huge_pages;
1437
8faa8b07
AK
1438 if (mhp == last_mhp) {
1439 printk(KERN_WARNING "hugepages= specified twice without "
1440 "interleaving hugepagesz=, ignoring\n");
1441 return 1;
1442 }
1443
a3437870
NA
1444 if (sscanf(s, "%lu", mhp) <= 0)
1445 *mhp = 0;
1446
8faa8b07
AK
1447 /*
1448 * Global state is always initialized later in hugetlb_init.
1449 * But we need to allocate >= MAX_ORDER hstates here early to still
1450 * use the bootmem allocator.
1451 */
1452 if (max_hstate && parsed_hstate->order >= MAX_ORDER)
1453 hugetlb_hstate_alloc_pages(parsed_hstate);
1454
1455 last_mhp = mhp;
1456
a3437870
NA
1457 return 1;
1458}
e11bfbfc
NP
1459__setup("hugepages=", hugetlb_nrpages_setup);
1460
1461static int __init hugetlb_default_setup(char *s)
1462{
1463 default_hstate_size = memparse(s, &s);
1464 return 1;
1465}
1466__setup("default_hugepagesz=", hugetlb_default_setup);
a3437870 1467
8a213460
NA
1468static unsigned int cpuset_mems_nr(unsigned int *array)
1469{
1470 int node;
1471 unsigned int nr = 0;
1472
1473 for_each_node_mask(node, cpuset_current_mems_allowed)
1474 nr += array[node];
1475
1476 return nr;
1477}
1478
1479#ifdef CONFIG_SYSCTL
1da177e4
LT
1480int hugetlb_sysctl_handler(struct ctl_table *table, int write,
1481 struct file *file, void __user *buffer,
1482 size_t *length, loff_t *ppos)
1483{
e5ff2159
AK
1484 struct hstate *h = &default_hstate;
1485 unsigned long tmp;
1486
1487 if (!write)
1488 tmp = h->max_huge_pages;
1489
1490 table->data = &tmp;
1491 table->maxlen = sizeof(unsigned long);
1da177e4 1492 proc_doulongvec_minmax(table, write, file, buffer, length, ppos);
e5ff2159
AK
1493
1494 if (write)
1495 h->max_huge_pages = set_max_huge_pages(h, tmp);
1496
1da177e4
LT
1497 return 0;
1498}
396faf03
MG
1499
1500int hugetlb_treat_movable_handler(struct ctl_table *table, int write,
1501 struct file *file, void __user *buffer,
1502 size_t *length, loff_t *ppos)
1503{
1504 proc_dointvec(table, write, file, buffer, length, ppos);
1505 if (hugepages_treat_as_movable)
1506 htlb_alloc_mask = GFP_HIGHUSER_MOVABLE;
1507 else
1508 htlb_alloc_mask = GFP_HIGHUSER;
1509 return 0;
1510}
1511
a3d0c6aa
NA
1512int hugetlb_overcommit_handler(struct ctl_table *table, int write,
1513 struct file *file, void __user *buffer,
1514 size_t *length, loff_t *ppos)
1515{
a5516438 1516 struct hstate *h = &default_hstate;
e5ff2159
AK
1517 unsigned long tmp;
1518
1519 if (!write)
1520 tmp = h->nr_overcommit_huge_pages;
1521
1522 table->data = &tmp;
1523 table->maxlen = sizeof(unsigned long);
a3d0c6aa 1524 proc_doulongvec_minmax(table, write, file, buffer, length, ppos);
e5ff2159
AK
1525
1526 if (write) {
1527 spin_lock(&hugetlb_lock);
1528 h->nr_overcommit_huge_pages = tmp;
1529 spin_unlock(&hugetlb_lock);
1530 }
1531
a3d0c6aa
NA
1532 return 0;
1533}
1534
1da177e4
LT
1535#endif /* CONFIG_SYSCTL */
1536
e1759c21 1537void hugetlb_report_meminfo(struct seq_file *m)
1da177e4 1538{
a5516438 1539 struct hstate *h = &default_hstate;
e1759c21 1540 seq_printf(m,
4f98a2fe
RR
1541 "HugePages_Total: %5lu\n"
1542 "HugePages_Free: %5lu\n"
1543 "HugePages_Rsvd: %5lu\n"
1544 "HugePages_Surp: %5lu\n"
1545 "Hugepagesize: %8lu kB\n",
a5516438
AK
1546 h->nr_huge_pages,
1547 h->free_huge_pages,
1548 h->resv_huge_pages,
1549 h->surplus_huge_pages,
1550 1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
1da177e4
LT
1551}
1552
1553int hugetlb_report_node_meminfo(int nid, char *buf)
1554{
a5516438 1555 struct hstate *h = &default_hstate;
1da177e4
LT
1556 return sprintf(buf,
1557 "Node %d HugePages_Total: %5u\n"
a1de0919
NA
1558 "Node %d HugePages_Free: %5u\n"
1559 "Node %d HugePages_Surp: %5u\n",
a5516438
AK
1560 nid, h->nr_huge_pages_node[nid],
1561 nid, h->free_huge_pages_node[nid],
1562 nid, h->surplus_huge_pages_node[nid]);
1da177e4
LT
1563}
1564
1da177e4
LT
1565/* Return the number pages of memory we physically have, in PAGE_SIZE units. */
1566unsigned long hugetlb_total_pages(void)
1567{
a5516438
AK
1568 struct hstate *h = &default_hstate;
1569 return h->nr_huge_pages * pages_per_huge_page(h);
1da177e4 1570}
1da177e4 1571
a5516438 1572static int hugetlb_acct_memory(struct hstate *h, long delta)
fc1b8a73
MG
1573{
1574 int ret = -ENOMEM;
1575
1576 spin_lock(&hugetlb_lock);
1577 /*
1578 * When cpuset is configured, it breaks the strict hugetlb page
1579 * reservation as the accounting is done on a global variable. Such
1580 * reservation is completely rubbish in the presence of cpuset because
1581 * the reservation is not checked against page availability for the
1582 * current cpuset. Application can still potentially OOM'ed by kernel
1583 * with lack of free htlb page in cpuset that the task is in.
1584 * Attempt to enforce strict accounting with cpuset is almost
1585 * impossible (or too ugly) because cpuset is too fluid that
1586 * task or memory node can be dynamically moved between cpusets.
1587 *
1588 * The change of semantics for shared hugetlb mapping with cpuset is
1589 * undesirable. However, in order to preserve some of the semantics,
1590 * we fall back to check against current free page availability as
1591 * a best attempt and hopefully to minimize the impact of changing
1592 * semantics that cpuset has.
1593 */
1594 if (delta > 0) {
a5516438 1595 if (gather_surplus_pages(h, delta) < 0)
fc1b8a73
MG
1596 goto out;
1597
a5516438
AK
1598 if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
1599 return_unused_surplus_pages(h, delta);
fc1b8a73
MG
1600 goto out;
1601 }
1602 }
1603
1604 ret = 0;
1605 if (delta < 0)
a5516438 1606 return_unused_surplus_pages(h, (unsigned long) -delta);
fc1b8a73
MG
1607
1608out:
1609 spin_unlock(&hugetlb_lock);
1610 return ret;
1611}
1612
84afd99b
AW
1613static void hugetlb_vm_op_open(struct vm_area_struct *vma)
1614{
1615 struct resv_map *reservations = vma_resv_map(vma);
1616
1617 /*
1618 * This new VMA should share its siblings reservation map if present.
1619 * The VMA will only ever have a valid reservation map pointer where
1620 * it is being copied for another still existing VMA. As that VMA
1621 * has a reference to the reservation map it cannot dissappear until
1622 * after this open call completes. It is therefore safe to take a
1623 * new reference here without additional locking.
1624 */
1625 if (reservations)
1626 kref_get(&reservations->refs);
1627}
1628
a1e78772
MG
1629static void hugetlb_vm_op_close(struct vm_area_struct *vma)
1630{
a5516438 1631 struct hstate *h = hstate_vma(vma);
84afd99b
AW
1632 struct resv_map *reservations = vma_resv_map(vma);
1633 unsigned long reserve;
1634 unsigned long start;
1635 unsigned long end;
1636
1637 if (reservations) {
a5516438
AK
1638 start = vma_hugecache_offset(h, vma, vma->vm_start);
1639 end = vma_hugecache_offset(h, vma, vma->vm_end);
84afd99b
AW
1640
1641 reserve = (end - start) -
1642 region_count(&reservations->regions, start, end);
1643
1644 kref_put(&reservations->refs, resv_map_release);
1645
7251ff78 1646 if (reserve) {
a5516438 1647 hugetlb_acct_memory(h, -reserve);
7251ff78
AL
1648 hugetlb_put_quota(vma->vm_file->f_mapping, reserve);
1649 }
84afd99b 1650 }
a1e78772
MG
1651}
1652
1da177e4
LT
1653/*
1654 * We cannot handle pagefaults against hugetlb pages at all. They cause
1655 * handle_mm_fault() to try to instantiate regular-sized pages in the
1656 * hugegpage VMA. do_page_fault() is supposed to trap this, so BUG is we get
1657 * this far.
1658 */
d0217ac0 1659static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1da177e4
LT
1660{
1661 BUG();
d0217ac0 1662 return 0;
1da177e4
LT
1663}
1664
1665struct vm_operations_struct hugetlb_vm_ops = {
d0217ac0 1666 .fault = hugetlb_vm_op_fault,
84afd99b 1667 .open = hugetlb_vm_op_open,
a1e78772 1668 .close = hugetlb_vm_op_close,
1da177e4
LT
1669};
1670
1e8f889b
DG
1671static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
1672 int writable)
63551ae0
DG
1673{
1674 pte_t entry;
1675
1e8f889b 1676 if (writable) {
63551ae0
DG
1677 entry =
1678 pte_mkwrite(pte_mkdirty(mk_pte(page, vma->vm_page_prot)));
1679 } else {
7f2e9525 1680 entry = huge_pte_wrprotect(mk_pte(page, vma->vm_page_prot));
63551ae0
DG
1681 }
1682 entry = pte_mkyoung(entry);
1683 entry = pte_mkhuge(entry);
1684
1685 return entry;
1686}
1687
1e8f889b
DG
1688static void set_huge_ptep_writable(struct vm_area_struct *vma,
1689 unsigned long address, pte_t *ptep)
1690{
1691 pte_t entry;
1692
7f2e9525
GS
1693 entry = pte_mkwrite(pte_mkdirty(huge_ptep_get(ptep)));
1694 if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1)) {
8dab5241 1695 update_mmu_cache(vma, address, entry);
8dab5241 1696 }
1e8f889b
DG
1697}
1698
1699
63551ae0
DG
1700int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
1701 struct vm_area_struct *vma)
1702{
1703 pte_t *src_pte, *dst_pte, entry;
1704 struct page *ptepage;
1c59827d 1705 unsigned long addr;
1e8f889b 1706 int cow;
a5516438
AK
1707 struct hstate *h = hstate_vma(vma);
1708 unsigned long sz = huge_page_size(h);
1e8f889b
DG
1709
1710 cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
63551ae0 1711
a5516438 1712 for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
c74df32c
HD
1713 src_pte = huge_pte_offset(src, addr);
1714 if (!src_pte)
1715 continue;
a5516438 1716 dst_pte = huge_pte_alloc(dst, addr, sz);
63551ae0
DG
1717 if (!dst_pte)
1718 goto nomem;
c5c99429
LW
1719
1720 /* If the pagetables are shared don't copy or take references */
1721 if (dst_pte == src_pte)
1722 continue;
1723
c74df32c 1724 spin_lock(&dst->page_table_lock);
46478758 1725 spin_lock_nested(&src->page_table_lock, SINGLE_DEPTH_NESTING);
7f2e9525 1726 if (!huge_pte_none(huge_ptep_get(src_pte))) {
1e8f889b 1727 if (cow)
7f2e9525
GS
1728 huge_ptep_set_wrprotect(src, addr, src_pte);
1729 entry = huge_ptep_get(src_pte);
1c59827d
HD
1730 ptepage = pte_page(entry);
1731 get_page(ptepage);
1c59827d
HD
1732 set_huge_pte_at(dst, addr, dst_pte, entry);
1733 }
1734 spin_unlock(&src->page_table_lock);
c74df32c 1735 spin_unlock(&dst->page_table_lock);
63551ae0
DG
1736 }
1737 return 0;
1738
1739nomem:
1740 return -ENOMEM;
1741}
1742
502717f4 1743void __unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
04f2cbe3 1744 unsigned long end, struct page *ref_page)
63551ae0
DG
1745{
1746 struct mm_struct *mm = vma->vm_mm;
1747 unsigned long address;
c7546f8f 1748 pte_t *ptep;
63551ae0
DG
1749 pte_t pte;
1750 struct page *page;
fe1668ae 1751 struct page *tmp;
a5516438
AK
1752 struct hstate *h = hstate_vma(vma);
1753 unsigned long sz = huge_page_size(h);
1754
c0a499c2
CK
1755 /*
1756 * A page gathering list, protected by per file i_mmap_lock. The
1757 * lock is used to avoid list corruption from multiple unmapping
1758 * of the same page since we are using page->lru.
1759 */
fe1668ae 1760 LIST_HEAD(page_list);
63551ae0
DG
1761
1762 WARN_ON(!is_vm_hugetlb_page(vma));
a5516438
AK
1763 BUG_ON(start & ~huge_page_mask(h));
1764 BUG_ON(end & ~huge_page_mask(h));
63551ae0 1765
cddb8a5c 1766 mmu_notifier_invalidate_range_start(mm, start, end);
508034a3 1767 spin_lock(&mm->page_table_lock);
a5516438 1768 for (address = start; address < end; address += sz) {
c7546f8f 1769 ptep = huge_pte_offset(mm, address);
4c887265 1770 if (!ptep)
c7546f8f
DG
1771 continue;
1772
39dde65c
CK
1773 if (huge_pmd_unshare(mm, &address, ptep))
1774 continue;
1775
04f2cbe3
MG
1776 /*
1777 * If a reference page is supplied, it is because a specific
1778 * page is being unmapped, not a range. Ensure the page we
1779 * are about to unmap is the actual page of interest.
1780 */
1781 if (ref_page) {
1782 pte = huge_ptep_get(ptep);
1783 if (huge_pte_none(pte))
1784 continue;
1785 page = pte_page(pte);
1786 if (page != ref_page)
1787 continue;
1788
1789 /*
1790 * Mark the VMA as having unmapped its page so that
1791 * future faults in this VMA will fail rather than
1792 * looking like data was lost
1793 */
1794 set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
1795 }
1796
c7546f8f 1797 pte = huge_ptep_get_and_clear(mm, address, ptep);
7f2e9525 1798 if (huge_pte_none(pte))
63551ae0 1799 continue;
c7546f8f 1800
63551ae0 1801 page = pte_page(pte);
6649a386
KC
1802 if (pte_dirty(pte))
1803 set_page_dirty(page);
fe1668ae 1804 list_add(&page->lru, &page_list);
63551ae0 1805 }
1da177e4 1806 spin_unlock(&mm->page_table_lock);
508034a3 1807 flush_tlb_range(vma, start, end);
cddb8a5c 1808 mmu_notifier_invalidate_range_end(mm, start, end);
fe1668ae
CK
1809 list_for_each_entry_safe(page, tmp, &page_list, lru) {
1810 list_del(&page->lru);
1811 put_page(page);
1812 }
1da177e4 1813}
63551ae0 1814
502717f4 1815void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
04f2cbe3 1816 unsigned long end, struct page *ref_page)
502717f4 1817{
a137e1cc
AK
1818 spin_lock(&vma->vm_file->f_mapping->i_mmap_lock);
1819 __unmap_hugepage_range(vma, start, end, ref_page);
1820 spin_unlock(&vma->vm_file->f_mapping->i_mmap_lock);
502717f4
CK
1821}
1822
04f2cbe3
MG
1823/*
1824 * This is called when the original mapper is failing to COW a MAP_PRIVATE
1825 * mappping it owns the reserve page for. The intention is to unmap the page
1826 * from other VMAs and let the children be SIGKILLed if they are faulting the
1827 * same region.
1828 */
2a4b3ded
HH
1829static int unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
1830 struct page *page, unsigned long address)
04f2cbe3 1831{
7526674d 1832 struct hstate *h = hstate_vma(vma);
04f2cbe3
MG
1833 struct vm_area_struct *iter_vma;
1834 struct address_space *mapping;
1835 struct prio_tree_iter iter;
1836 pgoff_t pgoff;
1837
1838 /*
1839 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
1840 * from page cache lookup which is in HPAGE_SIZE units.
1841 */
7526674d 1842 address = address & huge_page_mask(h);
04f2cbe3
MG
1843 pgoff = ((address - vma->vm_start) >> PAGE_SHIFT)
1844 + (vma->vm_pgoff >> PAGE_SHIFT);
1845 mapping = (struct address_space *)page_private(page);
1846
1847 vma_prio_tree_foreach(iter_vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
1848 /* Do not unmap the current VMA */
1849 if (iter_vma == vma)
1850 continue;
1851
1852 /*
1853 * Unmap the page from other VMAs without their own reserves.
1854 * They get marked to be SIGKILLed if they fault in these
1855 * areas. This is because a future no-page fault on this VMA
1856 * could insert a zeroed page instead of the data existing
1857 * from the time of fork. This would look like data corruption
1858 */
1859 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
1860 unmap_hugepage_range(iter_vma,
7526674d 1861 address, address + huge_page_size(h),
04f2cbe3
MG
1862 page);
1863 }
1864
1865 return 1;
1866}
1867
1e8f889b 1868static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
04f2cbe3
MG
1869 unsigned long address, pte_t *ptep, pte_t pte,
1870 struct page *pagecache_page)
1e8f889b 1871{
a5516438 1872 struct hstate *h = hstate_vma(vma);
1e8f889b 1873 struct page *old_page, *new_page;
79ac6ba4 1874 int avoidcopy;
04f2cbe3 1875 int outside_reserve = 0;
1e8f889b
DG
1876
1877 old_page = pte_page(pte);
1878
04f2cbe3 1879retry_avoidcopy:
1e8f889b
DG
1880 /* If no-one else is actually using this page, avoid the copy
1881 * and just make the page writable */
1882 avoidcopy = (page_count(old_page) == 1);
1883 if (avoidcopy) {
1884 set_huge_ptep_writable(vma, address, ptep);
83c54070 1885 return 0;
1e8f889b
DG
1886 }
1887
04f2cbe3
MG
1888 /*
1889 * If the process that created a MAP_PRIVATE mapping is about to
1890 * perform a COW due to a shared page count, attempt to satisfy
1891 * the allocation without using the existing reserves. The pagecache
1892 * page is used to determine if the reserve at this address was
1893 * consumed or not. If reserves were used, a partial faulted mapping
1894 * at the time of fork() could consume its reserves on COW instead
1895 * of the full address range.
1896 */
1897 if (!(vma->vm_flags & VM_SHARED) &&
1898 is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
1899 old_page != pagecache_page)
1900 outside_reserve = 1;
1901
1e8f889b 1902 page_cache_get(old_page);
04f2cbe3 1903 new_page = alloc_huge_page(vma, address, outside_reserve);
1e8f889b 1904
2fc39cec 1905 if (IS_ERR(new_page)) {
1e8f889b 1906 page_cache_release(old_page);
04f2cbe3
MG
1907
1908 /*
1909 * If a process owning a MAP_PRIVATE mapping fails to COW,
1910 * it is due to references held by a child and an insufficient
1911 * huge page pool. To guarantee the original mappers
1912 * reliability, unmap the page from child processes. The child
1913 * may get SIGKILLed if it later faults.
1914 */
1915 if (outside_reserve) {
1916 BUG_ON(huge_pte_none(pte));
1917 if (unmap_ref_private(mm, vma, old_page, address)) {
1918 BUG_ON(page_count(old_page) != 1);
1919 BUG_ON(huge_pte_none(pte));
1920 goto retry_avoidcopy;
1921 }
1922 WARN_ON_ONCE(1);
1923 }
1924
2fc39cec 1925 return -PTR_ERR(new_page);
1e8f889b
DG
1926 }
1927
1928 spin_unlock(&mm->page_table_lock);
9de455b2 1929 copy_huge_page(new_page, old_page, address, vma);
0ed361de 1930 __SetPageUptodate(new_page);
1e8f889b
DG
1931 spin_lock(&mm->page_table_lock);
1932
a5516438 1933 ptep = huge_pte_offset(mm, address & huge_page_mask(h));
7f2e9525 1934 if (likely(pte_same(huge_ptep_get(ptep), pte))) {
1e8f889b 1935 /* Break COW */
8fe627ec 1936 huge_ptep_clear_flush(vma, address, ptep);
1e8f889b
DG
1937 set_huge_pte_at(mm, address, ptep,
1938 make_huge_pte(vma, new_page, 1));
1939 /* Make the old page be freed below */
1940 new_page = old_page;
1941 }
1942 page_cache_release(new_page);
1943 page_cache_release(old_page);
83c54070 1944 return 0;
1e8f889b
DG
1945}
1946
04f2cbe3 1947/* Return the pagecache page at a given address within a VMA */
a5516438
AK
1948static struct page *hugetlbfs_pagecache_page(struct hstate *h,
1949 struct vm_area_struct *vma, unsigned long address)
04f2cbe3
MG
1950{
1951 struct address_space *mapping;
e7c4b0bf 1952 pgoff_t idx;
04f2cbe3
MG
1953
1954 mapping = vma->vm_file->f_mapping;
a5516438 1955 idx = vma_hugecache_offset(h, vma, address);
04f2cbe3
MG
1956
1957 return find_lock_page(mapping, idx);
1958}
1959
a1ed3dda 1960static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
1e8f889b 1961 unsigned long address, pte_t *ptep, int write_access)
ac9b9c66 1962{
a5516438 1963 struct hstate *h = hstate_vma(vma);
ac9b9c66 1964 int ret = VM_FAULT_SIGBUS;
e7c4b0bf 1965 pgoff_t idx;
4c887265 1966 unsigned long size;
4c887265
AL
1967 struct page *page;
1968 struct address_space *mapping;
1e8f889b 1969 pte_t new_pte;
4c887265 1970
04f2cbe3
MG
1971 /*
1972 * Currently, we are forced to kill the process in the event the
1973 * original mapper has unmapped pages from the child due to a failed
1974 * COW. Warn that such a situation has occured as it may not be obvious
1975 */
1976 if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
1977 printk(KERN_WARNING
1978 "PID %d killed due to inadequate hugepage pool\n",
1979 current->pid);
1980 return ret;
1981 }
1982
4c887265 1983 mapping = vma->vm_file->f_mapping;
a5516438 1984 idx = vma_hugecache_offset(h, vma, address);
4c887265
AL
1985
1986 /*
1987 * Use page lock to guard against racing truncation
1988 * before we get page_table_lock.
1989 */
6bda666a
CL
1990retry:
1991 page = find_lock_page(mapping, idx);
1992 if (!page) {
a5516438 1993 size = i_size_read(mapping->host) >> huge_page_shift(h);
ebed4bfc
HD
1994 if (idx >= size)
1995 goto out;
04f2cbe3 1996 page = alloc_huge_page(vma, address, 0);
2fc39cec
AL
1997 if (IS_ERR(page)) {
1998 ret = -PTR_ERR(page);
6bda666a
CL
1999 goto out;
2000 }
a5516438 2001 clear_huge_page(page, address, huge_page_size(h));
0ed361de 2002 __SetPageUptodate(page);
ac9b9c66 2003
6bda666a
CL
2004 if (vma->vm_flags & VM_SHARED) {
2005 int err;
45c682a6 2006 struct inode *inode = mapping->host;
6bda666a
CL
2007
2008 err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
2009 if (err) {
2010 put_page(page);
6bda666a
CL
2011 if (err == -EEXIST)
2012 goto retry;
2013 goto out;
2014 }
45c682a6
KC
2015
2016 spin_lock(&inode->i_lock);
a5516438 2017 inode->i_blocks += blocks_per_huge_page(h);
45c682a6 2018 spin_unlock(&inode->i_lock);
6bda666a
CL
2019 } else
2020 lock_page(page);
2021 }
1e8f889b 2022
57303d80
AW
2023 /*
2024 * If we are going to COW a private mapping later, we examine the
2025 * pending reservations for this page now. This will ensure that
2026 * any allocations necessary to record that reservation occur outside
2027 * the spinlock.
2028 */
2029 if (write_access && !(vma->vm_flags & VM_SHARED))
2b26736c
AW
2030 if (vma_needs_reservation(h, vma, address) < 0) {
2031 ret = VM_FAULT_OOM;
2032 goto backout_unlocked;
2033 }
57303d80 2034
ac9b9c66 2035 spin_lock(&mm->page_table_lock);
a5516438 2036 size = i_size_read(mapping->host) >> huge_page_shift(h);
4c887265
AL
2037 if (idx >= size)
2038 goto backout;
2039
83c54070 2040 ret = 0;
7f2e9525 2041 if (!huge_pte_none(huge_ptep_get(ptep)))
4c887265
AL
2042 goto backout;
2043
1e8f889b
DG
2044 new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
2045 && (vma->vm_flags & VM_SHARED)));
2046 set_huge_pte_at(mm, address, ptep, new_pte);
2047
2048 if (write_access && !(vma->vm_flags & VM_SHARED)) {
2049 /* Optimization, do the COW without a second fault */
04f2cbe3 2050 ret = hugetlb_cow(mm, vma, address, ptep, new_pte, page);
1e8f889b
DG
2051 }
2052
ac9b9c66 2053 spin_unlock(&mm->page_table_lock);
4c887265
AL
2054 unlock_page(page);
2055out:
ac9b9c66 2056 return ret;
4c887265
AL
2057
2058backout:
2059 spin_unlock(&mm->page_table_lock);
2b26736c 2060backout_unlocked:
4c887265
AL
2061 unlock_page(page);
2062 put_page(page);
2063 goto out;
ac9b9c66
HD
2064}
2065
86e5216f
AL
2066int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2067 unsigned long address, int write_access)
2068{
2069 pte_t *ptep;
2070 pte_t entry;
1e8f889b 2071 int ret;
57303d80 2072 struct page *pagecache_page = NULL;
3935baa9 2073 static DEFINE_MUTEX(hugetlb_instantiation_mutex);
a5516438 2074 struct hstate *h = hstate_vma(vma);
86e5216f 2075
a5516438 2076 ptep = huge_pte_alloc(mm, address, huge_page_size(h));
86e5216f
AL
2077 if (!ptep)
2078 return VM_FAULT_OOM;
2079
3935baa9
DG
2080 /*
2081 * Serialize hugepage allocation and instantiation, so that we don't
2082 * get spurious allocation failures if two CPUs race to instantiate
2083 * the same page in the page cache.
2084 */
2085 mutex_lock(&hugetlb_instantiation_mutex);
7f2e9525
GS
2086 entry = huge_ptep_get(ptep);
2087 if (huge_pte_none(entry)) {
3935baa9 2088 ret = hugetlb_no_page(mm, vma, address, ptep, write_access);
b4d1d99f 2089 goto out_mutex;
3935baa9 2090 }
86e5216f 2091
83c54070 2092 ret = 0;
1e8f889b 2093
57303d80
AW
2094 /*
2095 * If we are going to COW the mapping later, we examine the pending
2096 * reservations for this page now. This will ensure that any
2097 * allocations necessary to record that reservation occur outside the
2098 * spinlock. For private mappings, we also lookup the pagecache
2099 * page now as it is used to determine if a reservation has been
2100 * consumed.
2101 */
2102 if (write_access && !pte_write(entry)) {
2b26736c
AW
2103 if (vma_needs_reservation(h, vma, address) < 0) {
2104 ret = VM_FAULT_OOM;
b4d1d99f 2105 goto out_mutex;
2b26736c 2106 }
57303d80
AW
2107
2108 if (!(vma->vm_flags & VM_SHARED))
2109 pagecache_page = hugetlbfs_pagecache_page(h,
2110 vma, address);
2111 }
2112
1e8f889b
DG
2113 spin_lock(&mm->page_table_lock);
2114 /* Check for a racing update before calling hugetlb_cow */
b4d1d99f
DG
2115 if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
2116 goto out_page_table_lock;
2117
2118
2119 if (write_access) {
2120 if (!pte_write(entry)) {
57303d80
AW
2121 ret = hugetlb_cow(mm, vma, address, ptep, entry,
2122 pagecache_page);
b4d1d99f
DG
2123 goto out_page_table_lock;
2124 }
2125 entry = pte_mkdirty(entry);
2126 }
2127 entry = pte_mkyoung(entry);
2128 if (huge_ptep_set_access_flags(vma, address, ptep, entry, write_access))
2129 update_mmu_cache(vma, address, entry);
2130
2131out_page_table_lock:
1e8f889b 2132 spin_unlock(&mm->page_table_lock);
57303d80
AW
2133
2134 if (pagecache_page) {
2135 unlock_page(pagecache_page);
2136 put_page(pagecache_page);
2137 }
2138
b4d1d99f 2139out_mutex:
3935baa9 2140 mutex_unlock(&hugetlb_instantiation_mutex);
1e8f889b
DG
2141
2142 return ret;
86e5216f
AL
2143}
2144
ceb86879
AK
2145/* Can be overriden by architectures */
2146__attribute__((weak)) struct page *
2147follow_huge_pud(struct mm_struct *mm, unsigned long address,
2148 pud_t *pud, int write)
2149{
2150 BUG();
2151 return NULL;
2152}
2153
4b2e38ad
KM
2154static int huge_zeropage_ok(pte_t *ptep, int write, int shared)
2155{
2156 if (!ptep || write || shared)
2157 return 0;
2158 else
2159 return huge_pte_none(huge_ptep_get(ptep));
2160}
2161
63551ae0
DG
2162int follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
2163 struct page **pages, struct vm_area_struct **vmas,
5b23dbe8
AL
2164 unsigned long *position, int *length, int i,
2165 int write)
63551ae0 2166{
d5d4b0aa
CK
2167 unsigned long pfn_offset;
2168 unsigned long vaddr = *position;
63551ae0 2169 int remainder = *length;
a5516438 2170 struct hstate *h = hstate_vma(vma);
4b2e38ad
KM
2171 int zeropage_ok = 0;
2172 int shared = vma->vm_flags & VM_SHARED;
63551ae0 2173
1c59827d 2174 spin_lock(&mm->page_table_lock);
63551ae0 2175 while (vaddr < vma->vm_end && remainder) {
4c887265
AL
2176 pte_t *pte;
2177 struct page *page;
63551ae0 2178
4c887265
AL
2179 /*
2180 * Some archs (sparc64, sh*) have multiple pte_ts to
2181 * each hugepage. We have to make * sure we get the
2182 * first, for the page indexing below to work.
2183 */
a5516438 2184 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h));
4b2e38ad
KM
2185 if (huge_zeropage_ok(pte, write, shared))
2186 zeropage_ok = 1;
63551ae0 2187
4b2e38ad
KM
2188 if (!pte ||
2189 (huge_pte_none(huge_ptep_get(pte)) && !zeropage_ok) ||
7f2e9525 2190 (write && !pte_write(huge_ptep_get(pte)))) {
4c887265 2191 int ret;
63551ae0 2192
4c887265 2193 spin_unlock(&mm->page_table_lock);
5b23dbe8 2194 ret = hugetlb_fault(mm, vma, vaddr, write);
4c887265 2195 spin_lock(&mm->page_table_lock);
a89182c7 2196 if (!(ret & VM_FAULT_ERROR))
4c887265 2197 continue;
63551ae0 2198
4c887265
AL
2199 remainder = 0;
2200 if (!i)
2201 i = -EFAULT;
2202 break;
2203 }
2204
a5516438 2205 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
7f2e9525 2206 page = pte_page(huge_ptep_get(pte));
d5d4b0aa 2207same_page:
d6692183 2208 if (pages) {
4b2e38ad
KM
2209 if (zeropage_ok)
2210 pages[i] = ZERO_PAGE(0);
2211 else
69d177c2 2212 pages[i] = mem_map_offset(page, pfn_offset);
4b2e38ad 2213 get_page(pages[i]);
d6692183 2214 }
63551ae0
DG
2215
2216 if (vmas)
2217 vmas[i] = vma;
2218
2219 vaddr += PAGE_SIZE;
d5d4b0aa 2220 ++pfn_offset;
63551ae0
DG
2221 --remainder;
2222 ++i;
d5d4b0aa 2223 if (vaddr < vma->vm_end && remainder &&
a5516438 2224 pfn_offset < pages_per_huge_page(h)) {
d5d4b0aa
CK
2225 /*
2226 * We use pfn_offset to avoid touching the pageframes
2227 * of this compound page.
2228 */
2229 goto same_page;
2230 }
63551ae0 2231 }
1c59827d 2232 spin_unlock(&mm->page_table_lock);
63551ae0
DG
2233 *length = remainder;
2234 *position = vaddr;
2235
2236 return i;
2237}
8f860591
ZY
2238
2239void hugetlb_change_protection(struct vm_area_struct *vma,
2240 unsigned long address, unsigned long end, pgprot_t newprot)
2241{
2242 struct mm_struct *mm = vma->vm_mm;
2243 unsigned long start = address;
2244 pte_t *ptep;
2245 pte_t pte;
a5516438 2246 struct hstate *h = hstate_vma(vma);
8f860591
ZY
2247
2248 BUG_ON(address >= end);
2249 flush_cache_range(vma, address, end);
2250
39dde65c 2251 spin_lock(&vma->vm_file->f_mapping->i_mmap_lock);
8f860591 2252 spin_lock(&mm->page_table_lock);
a5516438 2253 for (; address < end; address += huge_page_size(h)) {
8f860591
ZY
2254 ptep = huge_pte_offset(mm, address);
2255 if (!ptep)
2256 continue;
39dde65c
CK
2257 if (huge_pmd_unshare(mm, &address, ptep))
2258 continue;
7f2e9525 2259 if (!huge_pte_none(huge_ptep_get(ptep))) {
8f860591
ZY
2260 pte = huge_ptep_get_and_clear(mm, address, ptep);
2261 pte = pte_mkhuge(pte_modify(pte, newprot));
2262 set_huge_pte_at(mm, address, ptep, pte);
8f860591
ZY
2263 }
2264 }
2265 spin_unlock(&mm->page_table_lock);
39dde65c 2266 spin_unlock(&vma->vm_file->f_mapping->i_mmap_lock);
8f860591
ZY
2267
2268 flush_tlb_range(vma, start, end);
2269}
2270
a1e78772
MG
2271int hugetlb_reserve_pages(struct inode *inode,
2272 long from, long to,
2273 struct vm_area_struct *vma)
e4e574b7
AL
2274{
2275 long ret, chg;
a5516438 2276 struct hstate *h = hstate_inode(inode);
e4e574b7 2277
c37f9fb1
AW
2278 if (vma && vma->vm_flags & VM_NORESERVE)
2279 return 0;
2280
a1e78772
MG
2281 /*
2282 * Shared mappings base their reservation on the number of pages that
2283 * are already allocated on behalf of the file. Private mappings need
2284 * to reserve the full area even if read-only as mprotect() may be
2285 * called to make the mapping read-write. Assume !vma is a shm mapping
2286 */
2287 if (!vma || vma->vm_flags & VM_SHARED)
2288 chg = region_chg(&inode->i_mapping->private_list, from, to);
2289 else {
84afd99b
AW
2290 struct resv_map *resv_map = resv_map_alloc();
2291 if (!resv_map)
2292 return -ENOMEM;
2293
a1e78772 2294 chg = to - from;
84afd99b
AW
2295
2296 set_vma_resv_map(vma, resv_map);
04f2cbe3 2297 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
a1e78772
MG
2298 }
2299
e4e574b7
AL
2300 if (chg < 0)
2301 return chg;
8a630112 2302
90d8b7e6
AL
2303 if (hugetlb_get_quota(inode->i_mapping, chg))
2304 return -ENOSPC;
a5516438 2305 ret = hugetlb_acct_memory(h, chg);
68842c9b
KC
2306 if (ret < 0) {
2307 hugetlb_put_quota(inode->i_mapping, chg);
a43a8c39 2308 return ret;
68842c9b 2309 }
a1e78772
MG
2310 if (!vma || vma->vm_flags & VM_SHARED)
2311 region_add(&inode->i_mapping->private_list, from, to);
a43a8c39
CK
2312 return 0;
2313}
2314
2315void hugetlb_unreserve_pages(struct inode *inode, long offset, long freed)
2316{
a5516438 2317 struct hstate *h = hstate_inode(inode);
a43a8c39 2318 long chg = region_truncate(&inode->i_mapping->private_list, offset);
45c682a6
KC
2319
2320 spin_lock(&inode->i_lock);
a5516438 2321 inode->i_blocks -= blocks_per_huge_page(h);
45c682a6
KC
2322 spin_unlock(&inode->i_lock);
2323
90d8b7e6 2324 hugetlb_put_quota(inode->i_mapping, (chg - freed));
a5516438 2325 hugetlb_acct_memory(h, -(chg - freed));
a43a8c39 2326}