mm: migrate: remove VM_HUGETLB from vma flag check in vma_migratable()
[linux-2.6-block.git] / mm / hugetlb.c
CommitLineData
1da177e4
LT
1/*
2 * Generic hugetlb support.
6d49e352 3 * (C) Nadia Yvette Chambers, April 2004
1da177e4 4 */
1da177e4
LT
5#include <linux/list.h>
6#include <linux/init.h>
7#include <linux/module.h>
8#include <linux/mm.h>
e1759c21 9#include <linux/seq_file.h>
1da177e4
LT
10#include <linux/sysctl.h>
11#include <linux/highmem.h>
cddb8a5c 12#include <linux/mmu_notifier.h>
1da177e4 13#include <linux/nodemask.h>
63551ae0 14#include <linux/pagemap.h>
5da7ca86 15#include <linux/mempolicy.h>
aea47ff3 16#include <linux/cpuset.h>
3935baa9 17#include <linux/mutex.h>
aa888a74 18#include <linux/bootmem.h>
a3437870 19#include <linux/sysfs.h>
5a0e3ad6 20#include <linux/slab.h>
0fe6e20b 21#include <linux/rmap.h>
fd6a03ed
NH
22#include <linux/swap.h>
23#include <linux/swapops.h>
d6606683 24
63551ae0
DG
25#include <asm/page.h>
26#include <asm/pgtable.h>
24669e58 27#include <asm/tlb.h>
63551ae0 28
24669e58 29#include <linux/io.h>
63551ae0 30#include <linux/hugetlb.h>
9dd540e2 31#include <linux/hugetlb_cgroup.h>
9a305230 32#include <linux/node.h>
7835e98b 33#include "internal.h"
1da177e4
LT
34
35const unsigned long hugetlb_zero = 0, hugetlb_infinity = ~0UL;
396faf03
MG
36static gfp_t htlb_alloc_mask = GFP_HIGHUSER;
37unsigned long hugepages_treat_as_movable;
a5516438 38
c3f38a38 39int hugetlb_max_hstate __read_mostly;
e5ff2159
AK
40unsigned int default_hstate_idx;
41struct hstate hstates[HUGE_MAX_HSTATE];
42
53ba51d2
JT
43__initdata LIST_HEAD(huge_boot_pages);
44
e5ff2159
AK
45/* for command line parsing */
46static struct hstate * __initdata parsed_hstate;
47static unsigned long __initdata default_hstate_max_huge_pages;
e11bfbfc 48static unsigned long __initdata default_hstate_size;
e5ff2159 49
3935baa9 50/*
31caf665
NH
51 * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
52 * free_huge_pages, and surplus_huge_pages.
3935baa9 53 */
c3f38a38 54DEFINE_SPINLOCK(hugetlb_lock);
0bd0f9fb 55
90481622
DG
56static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
57{
58 bool free = (spool->count == 0) && (spool->used_hpages == 0);
59
60 spin_unlock(&spool->lock);
61
62 /* If no pages are used, and no other handles to the subpool
63 * remain, free the subpool the subpool remain */
64 if (free)
65 kfree(spool);
66}
67
68struct hugepage_subpool *hugepage_new_subpool(long nr_blocks)
69{
70 struct hugepage_subpool *spool;
71
72 spool = kmalloc(sizeof(*spool), GFP_KERNEL);
73 if (!spool)
74 return NULL;
75
76 spin_lock_init(&spool->lock);
77 spool->count = 1;
78 spool->max_hpages = nr_blocks;
79 spool->used_hpages = 0;
80
81 return spool;
82}
83
84void hugepage_put_subpool(struct hugepage_subpool *spool)
85{
86 spin_lock(&spool->lock);
87 BUG_ON(!spool->count);
88 spool->count--;
89 unlock_or_release_subpool(spool);
90}
91
92static int hugepage_subpool_get_pages(struct hugepage_subpool *spool,
93 long delta)
94{
95 int ret = 0;
96
97 if (!spool)
98 return 0;
99
100 spin_lock(&spool->lock);
101 if ((spool->used_hpages + delta) <= spool->max_hpages) {
102 spool->used_hpages += delta;
103 } else {
104 ret = -ENOMEM;
105 }
106 spin_unlock(&spool->lock);
107
108 return ret;
109}
110
111static void hugepage_subpool_put_pages(struct hugepage_subpool *spool,
112 long delta)
113{
114 if (!spool)
115 return;
116
117 spin_lock(&spool->lock);
118 spool->used_hpages -= delta;
119 /* If hugetlbfs_put_super couldn't free spool due to
120 * an outstanding quota reference, free it now. */
121 unlock_or_release_subpool(spool);
122}
123
124static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
125{
126 return HUGETLBFS_SB(inode->i_sb)->spool;
127}
128
129static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
130{
496ad9aa 131 return subpool_inode(file_inode(vma->vm_file));
90481622
DG
132}
133
96822904
AW
134/*
135 * Region tracking -- allows tracking of reservations and instantiated pages
136 * across the pages in a mapping.
84afd99b
AW
137 *
138 * The region data structures are protected by a combination of the mmap_sem
c748c262 139 * and the hugetlb_instantiation_mutex. To access or modify a region the caller
84afd99b 140 * must either hold the mmap_sem for write, or the mmap_sem for read and
c748c262 141 * the hugetlb_instantiation_mutex:
84afd99b 142 *
32f84528 143 * down_write(&mm->mmap_sem);
84afd99b 144 * or
32f84528
CF
145 * down_read(&mm->mmap_sem);
146 * mutex_lock(&hugetlb_instantiation_mutex);
96822904
AW
147 */
148struct file_region {
149 struct list_head link;
150 long from;
151 long to;
152};
153
154static long region_add(struct list_head *head, long f, long t)
155{
156 struct file_region *rg, *nrg, *trg;
157
158 /* Locate the region we are either in or before. */
159 list_for_each_entry(rg, head, link)
160 if (f <= rg->to)
161 break;
162
163 /* Round our left edge to the current segment if it encloses us. */
164 if (f > rg->from)
165 f = rg->from;
166
167 /* Check for and consume any regions we now overlap with. */
168 nrg = rg;
169 list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
170 if (&rg->link == head)
171 break;
172 if (rg->from > t)
173 break;
174
175 /* If this area reaches higher then extend our area to
176 * include it completely. If this is not the first area
177 * which we intend to reuse, free it. */
178 if (rg->to > t)
179 t = rg->to;
180 if (rg != nrg) {
181 list_del(&rg->link);
182 kfree(rg);
183 }
184 }
185 nrg->from = f;
186 nrg->to = t;
187 return 0;
188}
189
190static long region_chg(struct list_head *head, long f, long t)
191{
192 struct file_region *rg, *nrg;
193 long chg = 0;
194
195 /* Locate the region we are before or in. */
196 list_for_each_entry(rg, head, link)
197 if (f <= rg->to)
198 break;
199
200 /* If we are below the current region then a new region is required.
201 * Subtle, allocate a new region at the position but make it zero
202 * size such that we can guarantee to record the reservation. */
203 if (&rg->link == head || t < rg->from) {
204 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
205 if (!nrg)
206 return -ENOMEM;
207 nrg->from = f;
208 nrg->to = f;
209 INIT_LIST_HEAD(&nrg->link);
210 list_add(&nrg->link, rg->link.prev);
211
212 return t - f;
213 }
214
215 /* Round our left edge to the current segment if it encloses us. */
216 if (f > rg->from)
217 f = rg->from;
218 chg = t - f;
219
220 /* Check for and consume any regions we now overlap with. */
221 list_for_each_entry(rg, rg->link.prev, link) {
222 if (&rg->link == head)
223 break;
224 if (rg->from > t)
225 return chg;
226
25985edc 227 /* We overlap with this area, if it extends further than
96822904
AW
228 * us then we must extend ourselves. Account for its
229 * existing reservation. */
230 if (rg->to > t) {
231 chg += rg->to - t;
232 t = rg->to;
233 }
234 chg -= rg->to - rg->from;
235 }
236 return chg;
237}
238
239static long region_truncate(struct list_head *head, long end)
240{
241 struct file_region *rg, *trg;
242 long chg = 0;
243
244 /* Locate the region we are either in or before. */
245 list_for_each_entry(rg, head, link)
246 if (end <= rg->to)
247 break;
248 if (&rg->link == head)
249 return 0;
250
251 /* If we are in the middle of a region then adjust it. */
252 if (end > rg->from) {
253 chg = rg->to - end;
254 rg->to = end;
255 rg = list_entry(rg->link.next, typeof(*rg), link);
256 }
257
258 /* Drop any remaining regions. */
259 list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
260 if (&rg->link == head)
261 break;
262 chg += rg->to - rg->from;
263 list_del(&rg->link);
264 kfree(rg);
265 }
266 return chg;
267}
268
84afd99b
AW
269static long region_count(struct list_head *head, long f, long t)
270{
271 struct file_region *rg;
272 long chg = 0;
273
274 /* Locate each segment we overlap with, and count that overlap. */
275 list_for_each_entry(rg, head, link) {
f2135a4a
WSH
276 long seg_from;
277 long seg_to;
84afd99b
AW
278
279 if (rg->to <= f)
280 continue;
281 if (rg->from >= t)
282 break;
283
284 seg_from = max(rg->from, f);
285 seg_to = min(rg->to, t);
286
287 chg += seg_to - seg_from;
288 }
289
290 return chg;
291}
292
e7c4b0bf
AW
293/*
294 * Convert the address within this vma to the page offset within
295 * the mapping, in pagecache page units; huge pages here.
296 */
a5516438
AK
297static pgoff_t vma_hugecache_offset(struct hstate *h,
298 struct vm_area_struct *vma, unsigned long address)
e7c4b0bf 299{
a5516438
AK
300 return ((address - vma->vm_start) >> huge_page_shift(h)) +
301 (vma->vm_pgoff >> huge_page_order(h));
e7c4b0bf
AW
302}
303
0fe6e20b
NH
304pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
305 unsigned long address)
306{
307 return vma_hugecache_offset(hstate_vma(vma), vma, address);
308}
309
08fba699
MG
310/*
311 * Return the size of the pages allocated when backing a VMA. In the majority
312 * cases this will be same size as used by the page table entries.
313 */
314unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
315{
316 struct hstate *hstate;
317
318 if (!is_vm_hugetlb_page(vma))
319 return PAGE_SIZE;
320
321 hstate = hstate_vma(vma);
322
2415cf12 323 return 1UL << huge_page_shift(hstate);
08fba699 324}
f340ca0f 325EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
08fba699 326
3340289d
MG
327/*
328 * Return the page size being used by the MMU to back a VMA. In the majority
329 * of cases, the page size used by the kernel matches the MMU size. On
330 * architectures where it differs, an architecture-specific version of this
331 * function is required.
332 */
333#ifndef vma_mmu_pagesize
334unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
335{
336 return vma_kernel_pagesize(vma);
337}
338#endif
339
84afd99b
AW
340/*
341 * Flags for MAP_PRIVATE reservations. These are stored in the bottom
342 * bits of the reservation map pointer, which are always clear due to
343 * alignment.
344 */
345#define HPAGE_RESV_OWNER (1UL << 0)
346#define HPAGE_RESV_UNMAPPED (1UL << 1)
04f2cbe3 347#define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
84afd99b 348
a1e78772
MG
349/*
350 * These helpers are used to track how many pages are reserved for
351 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
352 * is guaranteed to have their future faults succeed.
353 *
354 * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
355 * the reserve counters are updated with the hugetlb_lock held. It is safe
356 * to reset the VMA at fork() time as it is not in use yet and there is no
357 * chance of the global counters getting corrupted as a result of the values.
84afd99b
AW
358 *
359 * The private mapping reservation is represented in a subtly different
360 * manner to a shared mapping. A shared mapping has a region map associated
361 * with the underlying file, this region map represents the backing file
362 * pages which have ever had a reservation assigned which this persists even
363 * after the page is instantiated. A private mapping has a region map
364 * associated with the original mmap which is attached to all VMAs which
365 * reference it, this region map represents those offsets which have consumed
366 * reservation ie. where pages have been instantiated.
a1e78772 367 */
e7c4b0bf
AW
368static unsigned long get_vma_private_data(struct vm_area_struct *vma)
369{
370 return (unsigned long)vma->vm_private_data;
371}
372
373static void set_vma_private_data(struct vm_area_struct *vma,
374 unsigned long value)
375{
376 vma->vm_private_data = (void *)value;
377}
378
84afd99b
AW
379struct resv_map {
380 struct kref refs;
381 struct list_head regions;
382};
383
2a4b3ded 384static struct resv_map *resv_map_alloc(void)
84afd99b
AW
385{
386 struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
387 if (!resv_map)
388 return NULL;
389
390 kref_init(&resv_map->refs);
391 INIT_LIST_HEAD(&resv_map->regions);
392
393 return resv_map;
394}
395
2a4b3ded 396static void resv_map_release(struct kref *ref)
84afd99b
AW
397{
398 struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
399
400 /* Clear out any active regions before we release the map. */
401 region_truncate(&resv_map->regions, 0);
402 kfree(resv_map);
403}
404
405static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
a1e78772
MG
406{
407 VM_BUG_ON(!is_vm_hugetlb_page(vma));
f83a275d 408 if (!(vma->vm_flags & VM_MAYSHARE))
84afd99b
AW
409 return (struct resv_map *)(get_vma_private_data(vma) &
410 ~HPAGE_RESV_MASK);
2a4b3ded 411 return NULL;
a1e78772
MG
412}
413
84afd99b 414static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
a1e78772
MG
415{
416 VM_BUG_ON(!is_vm_hugetlb_page(vma));
f83a275d 417 VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
a1e78772 418
84afd99b
AW
419 set_vma_private_data(vma, (get_vma_private_data(vma) &
420 HPAGE_RESV_MASK) | (unsigned long)map);
04f2cbe3
MG
421}
422
423static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
424{
04f2cbe3 425 VM_BUG_ON(!is_vm_hugetlb_page(vma));
f83a275d 426 VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
e7c4b0bf
AW
427
428 set_vma_private_data(vma, get_vma_private_data(vma) | flags);
04f2cbe3
MG
429}
430
431static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
432{
433 VM_BUG_ON(!is_vm_hugetlb_page(vma));
e7c4b0bf
AW
434
435 return (get_vma_private_data(vma) & flag) != 0;
a1e78772
MG
436}
437
04f2cbe3 438/* Reset counters to 0 and clear all HPAGE_RESV_* flags */
a1e78772
MG
439void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
440{
441 VM_BUG_ON(!is_vm_hugetlb_page(vma));
f83a275d 442 if (!(vma->vm_flags & VM_MAYSHARE))
a1e78772
MG
443 vma->vm_private_data = (void *)0;
444}
445
446/* Returns true if the VMA has associated reserve pages */
af0ed73e 447static int vma_has_reserves(struct vm_area_struct *vma, long chg)
a1e78772 448{
af0ed73e
JK
449 if (vma->vm_flags & VM_NORESERVE) {
450 /*
451 * This address is already reserved by other process(chg == 0),
452 * so, we should decrement reserved count. Without decrementing,
453 * reserve count remains after releasing inode, because this
454 * allocated page will go into page cache and is regarded as
455 * coming from reserved pool in releasing step. Currently, we
456 * don't have any other solution to deal with this situation
457 * properly, so add work-around here.
458 */
459 if (vma->vm_flags & VM_MAYSHARE && chg == 0)
460 return 1;
461 else
462 return 0;
463 }
a63884e9
JK
464
465 /* Shared mappings always use reserves */
f83a275d 466 if (vma->vm_flags & VM_MAYSHARE)
7f09ca51 467 return 1;
a63884e9
JK
468
469 /*
470 * Only the process that called mmap() has reserves for
471 * private mappings.
472 */
7f09ca51
MG
473 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER))
474 return 1;
a63884e9 475
7f09ca51 476 return 0;
a1e78772
MG
477}
478
0ebabb41
NH
479static void copy_gigantic_page(struct page *dst, struct page *src)
480{
481 int i;
482 struct hstate *h = page_hstate(src);
483 struct page *dst_base = dst;
484 struct page *src_base = src;
485
486 for (i = 0; i < pages_per_huge_page(h); ) {
487 cond_resched();
488 copy_highpage(dst, src);
489
490 i++;
491 dst = mem_map_next(dst, dst_base, i);
492 src = mem_map_next(src, src_base, i);
493 }
494}
495
496void copy_huge_page(struct page *dst, struct page *src)
497{
498 int i;
499 struct hstate *h = page_hstate(src);
500
501 if (unlikely(pages_per_huge_page(h) > MAX_ORDER_NR_PAGES)) {
502 copy_gigantic_page(dst, src);
503 return;
504 }
505
506 might_sleep();
507 for (i = 0; i < pages_per_huge_page(h); i++) {
508 cond_resched();
509 copy_highpage(dst + i, src + i);
510 }
511}
512
a5516438 513static void enqueue_huge_page(struct hstate *h, struct page *page)
1da177e4
LT
514{
515 int nid = page_to_nid(page);
0edaecfa 516 list_move(&page->lru, &h->hugepage_freelists[nid]);
a5516438
AK
517 h->free_huge_pages++;
518 h->free_huge_pages_node[nid]++;
1da177e4
LT
519}
520
bf50bab2
NH
521static struct page *dequeue_huge_page_node(struct hstate *h, int nid)
522{
523 struct page *page;
524
525 if (list_empty(&h->hugepage_freelists[nid]))
526 return NULL;
527 page = list_entry(h->hugepage_freelists[nid].next, struct page, lru);
0edaecfa 528 list_move(&page->lru, &h->hugepage_activelist);
a9869b83 529 set_page_refcounted(page);
bf50bab2
NH
530 h->free_huge_pages--;
531 h->free_huge_pages_node[nid]--;
532 return page;
533}
534
a5516438
AK
535static struct page *dequeue_huge_page_vma(struct hstate *h,
536 struct vm_area_struct *vma,
af0ed73e
JK
537 unsigned long address, int avoid_reserve,
538 long chg)
1da177e4 539{
b1c12cbc 540 struct page *page = NULL;
480eccf9 541 struct mempolicy *mpol;
19770b32 542 nodemask_t *nodemask;
c0ff7453 543 struct zonelist *zonelist;
dd1a239f
MG
544 struct zone *zone;
545 struct zoneref *z;
cc9a6c87 546 unsigned int cpuset_mems_cookie;
1da177e4 547
a1e78772
MG
548 /*
549 * A child process with MAP_PRIVATE mappings created by their parent
550 * have no page reserves. This check ensures that reservations are
551 * not "stolen". The child may still get SIGKILLed
552 */
af0ed73e 553 if (!vma_has_reserves(vma, chg) &&
a5516438 554 h->free_huge_pages - h->resv_huge_pages == 0)
c0ff7453 555 goto err;
a1e78772 556
04f2cbe3 557 /* If reserves cannot be used, ensure enough pages are in the pool */
a5516438 558 if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
6eab04a8 559 goto err;
04f2cbe3 560
9966c4bb
JK
561retry_cpuset:
562 cpuset_mems_cookie = get_mems_allowed();
563 zonelist = huge_zonelist(vma, address,
564 htlb_alloc_mask, &mpol, &nodemask);
565
19770b32
MG
566 for_each_zone_zonelist_nodemask(zone, z, zonelist,
567 MAX_NR_ZONES - 1, nodemask) {
bf50bab2
NH
568 if (cpuset_zone_allowed_softwall(zone, htlb_alloc_mask)) {
569 page = dequeue_huge_page_node(h, zone_to_nid(zone));
570 if (page) {
af0ed73e
JK
571 if (avoid_reserve)
572 break;
573 if (!vma_has_reserves(vma, chg))
574 break;
575
07443a85 576 SetPagePrivate(page);
af0ed73e 577 h->resv_huge_pages--;
bf50bab2
NH
578 break;
579 }
3abf7afd 580 }
1da177e4 581 }
cc9a6c87 582
52cd3b07 583 mpol_cond_put(mpol);
cc9a6c87
MG
584 if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !page))
585 goto retry_cpuset;
1da177e4 586 return page;
cc9a6c87
MG
587
588err:
cc9a6c87 589 return NULL;
1da177e4
LT
590}
591
a5516438 592static void update_and_free_page(struct hstate *h, struct page *page)
6af2acb6
AL
593{
594 int i;
a5516438 595
18229df5
AW
596 VM_BUG_ON(h->order >= MAX_ORDER);
597
a5516438
AK
598 h->nr_huge_pages--;
599 h->nr_huge_pages_node[page_to_nid(page)]--;
600 for (i = 0; i < pages_per_huge_page(h); i++) {
32f84528
CF
601 page[i].flags &= ~(1 << PG_locked | 1 << PG_error |
602 1 << PG_referenced | 1 << PG_dirty |
603 1 << PG_active | 1 << PG_reserved |
604 1 << PG_private | 1 << PG_writeback);
6af2acb6 605 }
9dd540e2 606 VM_BUG_ON(hugetlb_cgroup_from_page(page));
6af2acb6
AL
607 set_compound_page_dtor(page, NULL);
608 set_page_refcounted(page);
7f2e9525 609 arch_release_hugepage(page);
a5516438 610 __free_pages(page, huge_page_order(h));
6af2acb6
AL
611}
612
e5ff2159
AK
613struct hstate *size_to_hstate(unsigned long size)
614{
615 struct hstate *h;
616
617 for_each_hstate(h) {
618 if (huge_page_size(h) == size)
619 return h;
620 }
621 return NULL;
622}
623
27a85ef1
DG
624static void free_huge_page(struct page *page)
625{
a5516438
AK
626 /*
627 * Can't pass hstate in here because it is called from the
628 * compound page destructor.
629 */
e5ff2159 630 struct hstate *h = page_hstate(page);
7893d1d5 631 int nid = page_to_nid(page);
90481622
DG
632 struct hugepage_subpool *spool =
633 (struct hugepage_subpool *)page_private(page);
07443a85 634 bool restore_reserve;
27a85ef1 635
e5df70ab 636 set_page_private(page, 0);
23be7468 637 page->mapping = NULL;
7893d1d5 638 BUG_ON(page_count(page));
0fe6e20b 639 BUG_ON(page_mapcount(page));
07443a85 640 restore_reserve = PagePrivate(page);
27a85ef1
DG
641
642 spin_lock(&hugetlb_lock);
6d76dcf4
AK
643 hugetlb_cgroup_uncharge_page(hstate_index(h),
644 pages_per_huge_page(h), page);
07443a85
JK
645 if (restore_reserve)
646 h->resv_huge_pages++;
647
aa888a74 648 if (h->surplus_huge_pages_node[nid] && huge_page_order(h) < MAX_ORDER) {
0edaecfa
AK
649 /* remove the page from active list */
650 list_del(&page->lru);
a5516438
AK
651 update_and_free_page(h, page);
652 h->surplus_huge_pages--;
653 h->surplus_huge_pages_node[nid]--;
7893d1d5 654 } else {
5d3a551c 655 arch_clear_hugepage_flags(page);
a5516438 656 enqueue_huge_page(h, page);
7893d1d5 657 }
27a85ef1 658 spin_unlock(&hugetlb_lock);
90481622 659 hugepage_subpool_put_pages(spool, 1);
27a85ef1
DG
660}
661
a5516438 662static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
b7ba30c6 663{
0edaecfa 664 INIT_LIST_HEAD(&page->lru);
b7ba30c6
AK
665 set_compound_page_dtor(page, free_huge_page);
666 spin_lock(&hugetlb_lock);
9dd540e2 667 set_hugetlb_cgroup(page, NULL);
a5516438
AK
668 h->nr_huge_pages++;
669 h->nr_huge_pages_node[nid]++;
b7ba30c6
AK
670 spin_unlock(&hugetlb_lock);
671 put_page(page); /* free it into the hugepage allocator */
672}
673
20a0307c
WF
674static void prep_compound_gigantic_page(struct page *page, unsigned long order)
675{
676 int i;
677 int nr_pages = 1 << order;
678 struct page *p = page + 1;
679
680 /* we rely on prep_new_huge_page to set the destructor */
681 set_compound_order(page, order);
682 __SetPageHead(page);
683 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
684 __SetPageTail(p);
58a84aa9 685 set_page_count(p, 0);
20a0307c
WF
686 p->first_page = page;
687 }
688}
689
7795912c
AM
690/*
691 * PageHuge() only returns true for hugetlbfs pages, but not for normal or
692 * transparent huge pages. See the PageTransHuge() documentation for more
693 * details.
694 */
20a0307c
WF
695int PageHuge(struct page *page)
696{
697 compound_page_dtor *dtor;
698
699 if (!PageCompound(page))
700 return 0;
701
702 page = compound_head(page);
703 dtor = get_compound_page_dtor(page);
704
705 return dtor == free_huge_page;
706}
43131e14
NH
707EXPORT_SYMBOL_GPL(PageHuge);
708
13d60f4b
ZY
709pgoff_t __basepage_index(struct page *page)
710{
711 struct page *page_head = compound_head(page);
712 pgoff_t index = page_index(page_head);
713 unsigned long compound_idx;
714
715 if (!PageHuge(page_head))
716 return page_index(page);
717
718 if (compound_order(page_head) >= MAX_ORDER)
719 compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
720 else
721 compound_idx = page - page_head;
722
723 return (index << compound_order(page_head)) + compound_idx;
724}
725
a5516438 726static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid)
1da177e4 727{
1da177e4 728 struct page *page;
f96efd58 729
aa888a74
AK
730 if (h->order >= MAX_ORDER)
731 return NULL;
732
6484eb3e 733 page = alloc_pages_exact_node(nid,
551883ae
NA
734 htlb_alloc_mask|__GFP_COMP|__GFP_THISNODE|
735 __GFP_REPEAT|__GFP_NOWARN,
a5516438 736 huge_page_order(h));
1da177e4 737 if (page) {
7f2e9525 738 if (arch_prepare_hugepage(page)) {
caff3a2c 739 __free_pages(page, huge_page_order(h));
7b8ee84d 740 return NULL;
7f2e9525 741 }
a5516438 742 prep_new_huge_page(h, page, nid);
1da177e4 743 }
63b4613c
NA
744
745 return page;
746}
747
9a76db09 748/*
6ae11b27
LS
749 * common helper functions for hstate_next_node_to_{alloc|free}.
750 * We may have allocated or freed a huge page based on a different
751 * nodes_allowed previously, so h->next_node_to_{alloc|free} might
752 * be outside of *nodes_allowed. Ensure that we use an allowed
753 * node for alloc or free.
9a76db09 754 */
6ae11b27 755static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
9a76db09 756{
6ae11b27 757 nid = next_node(nid, *nodes_allowed);
9a76db09 758 if (nid == MAX_NUMNODES)
6ae11b27 759 nid = first_node(*nodes_allowed);
9a76db09
LS
760 VM_BUG_ON(nid >= MAX_NUMNODES);
761
762 return nid;
763}
764
6ae11b27
LS
765static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
766{
767 if (!node_isset(nid, *nodes_allowed))
768 nid = next_node_allowed(nid, nodes_allowed);
769 return nid;
770}
771
5ced66c9 772/*
6ae11b27
LS
773 * returns the previously saved node ["this node"] from which to
774 * allocate a persistent huge page for the pool and advance the
775 * next node from which to allocate, handling wrap at end of node
776 * mask.
5ced66c9 777 */
6ae11b27
LS
778static int hstate_next_node_to_alloc(struct hstate *h,
779 nodemask_t *nodes_allowed)
5ced66c9 780{
6ae11b27
LS
781 int nid;
782
783 VM_BUG_ON(!nodes_allowed);
784
785 nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
786 h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
9a76db09 787
9a76db09 788 return nid;
5ced66c9
AK
789}
790
e8c5c824 791/*
6ae11b27
LS
792 * helper for free_pool_huge_page() - return the previously saved
793 * node ["this node"] from which to free a huge page. Advance the
794 * next node id whether or not we find a free huge page to free so
795 * that the next attempt to free addresses the next node.
e8c5c824 796 */
6ae11b27 797static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
e8c5c824 798{
6ae11b27
LS
799 int nid;
800
801 VM_BUG_ON(!nodes_allowed);
802
803 nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
804 h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
9a76db09 805
9a76db09 806 return nid;
e8c5c824
LS
807}
808
b2261026
JK
809#define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask) \
810 for (nr_nodes = nodes_weight(*mask); \
811 nr_nodes > 0 && \
812 ((node = hstate_next_node_to_alloc(hs, mask)) || 1); \
813 nr_nodes--)
814
815#define for_each_node_mask_to_free(hs, nr_nodes, node, mask) \
816 for (nr_nodes = nodes_weight(*mask); \
817 nr_nodes > 0 && \
818 ((node = hstate_next_node_to_free(hs, mask)) || 1); \
819 nr_nodes--)
820
821static int alloc_fresh_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
822{
823 struct page *page;
824 int nr_nodes, node;
825 int ret = 0;
826
827 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
828 page = alloc_fresh_huge_page_node(h, node);
829 if (page) {
830 ret = 1;
831 break;
832 }
833 }
834
835 if (ret)
836 count_vm_event(HTLB_BUDDY_PGALLOC);
837 else
838 count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
839
840 return ret;
841}
842
e8c5c824
LS
843/*
844 * Free huge page from pool from next node to free.
845 * Attempt to keep persistent huge pages more or less
846 * balanced over allowed nodes.
847 * Called with hugetlb_lock locked.
848 */
6ae11b27
LS
849static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
850 bool acct_surplus)
e8c5c824 851{
b2261026 852 int nr_nodes, node;
e8c5c824
LS
853 int ret = 0;
854
b2261026 855 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
685f3457
LS
856 /*
857 * If we're returning unused surplus pages, only examine
858 * nodes with surplus pages.
859 */
b2261026
JK
860 if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
861 !list_empty(&h->hugepage_freelists[node])) {
e8c5c824 862 struct page *page =
b2261026 863 list_entry(h->hugepage_freelists[node].next,
e8c5c824
LS
864 struct page, lru);
865 list_del(&page->lru);
866 h->free_huge_pages--;
b2261026 867 h->free_huge_pages_node[node]--;
685f3457
LS
868 if (acct_surplus) {
869 h->surplus_huge_pages--;
b2261026 870 h->surplus_huge_pages_node[node]--;
685f3457 871 }
e8c5c824
LS
872 update_and_free_page(h, page);
873 ret = 1;
9a76db09 874 break;
e8c5c824 875 }
b2261026 876 }
e8c5c824
LS
877
878 return ret;
879}
880
bf50bab2 881static struct page *alloc_buddy_huge_page(struct hstate *h, int nid)
7893d1d5
AL
882{
883 struct page *page;
bf50bab2 884 unsigned int r_nid;
7893d1d5 885
aa888a74
AK
886 if (h->order >= MAX_ORDER)
887 return NULL;
888
d1c3fb1f
NA
889 /*
890 * Assume we will successfully allocate the surplus page to
891 * prevent racing processes from causing the surplus to exceed
892 * overcommit
893 *
894 * This however introduces a different race, where a process B
895 * tries to grow the static hugepage pool while alloc_pages() is
896 * called by process A. B will only examine the per-node
897 * counters in determining if surplus huge pages can be
898 * converted to normal huge pages in adjust_pool_surplus(). A
899 * won't be able to increment the per-node counter, until the
900 * lock is dropped by B, but B doesn't drop hugetlb_lock until
901 * no more huge pages can be converted from surplus to normal
902 * state (and doesn't try to convert again). Thus, we have a
903 * case where a surplus huge page exists, the pool is grown, and
904 * the surplus huge page still exists after, even though it
905 * should just have been converted to a normal huge page. This
906 * does not leak memory, though, as the hugepage will be freed
907 * once it is out of use. It also does not allow the counters to
908 * go out of whack in adjust_pool_surplus() as we don't modify
909 * the node values until we've gotten the hugepage and only the
910 * per-node value is checked there.
911 */
912 spin_lock(&hugetlb_lock);
a5516438 913 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
d1c3fb1f
NA
914 spin_unlock(&hugetlb_lock);
915 return NULL;
916 } else {
a5516438
AK
917 h->nr_huge_pages++;
918 h->surplus_huge_pages++;
d1c3fb1f
NA
919 }
920 spin_unlock(&hugetlb_lock);
921
bf50bab2
NH
922 if (nid == NUMA_NO_NODE)
923 page = alloc_pages(htlb_alloc_mask|__GFP_COMP|
924 __GFP_REPEAT|__GFP_NOWARN,
925 huge_page_order(h));
926 else
927 page = alloc_pages_exact_node(nid,
928 htlb_alloc_mask|__GFP_COMP|__GFP_THISNODE|
929 __GFP_REPEAT|__GFP_NOWARN, huge_page_order(h));
d1c3fb1f 930
caff3a2c
GS
931 if (page && arch_prepare_hugepage(page)) {
932 __free_pages(page, huge_page_order(h));
ea5768c7 933 page = NULL;
caff3a2c
GS
934 }
935
d1c3fb1f 936 spin_lock(&hugetlb_lock);
7893d1d5 937 if (page) {
0edaecfa 938 INIT_LIST_HEAD(&page->lru);
bf50bab2 939 r_nid = page_to_nid(page);
7893d1d5 940 set_compound_page_dtor(page, free_huge_page);
9dd540e2 941 set_hugetlb_cgroup(page, NULL);
d1c3fb1f
NA
942 /*
943 * We incremented the global counters already
944 */
bf50bab2
NH
945 h->nr_huge_pages_node[r_nid]++;
946 h->surplus_huge_pages_node[r_nid]++;
3b116300 947 __count_vm_event(HTLB_BUDDY_PGALLOC);
d1c3fb1f 948 } else {
a5516438
AK
949 h->nr_huge_pages--;
950 h->surplus_huge_pages--;
3b116300 951 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
7893d1d5 952 }
d1c3fb1f 953 spin_unlock(&hugetlb_lock);
7893d1d5
AL
954
955 return page;
956}
957
bf50bab2
NH
958/*
959 * This allocation function is useful in the context where vma is irrelevant.
960 * E.g. soft-offlining uses this function because it only cares physical
961 * address of error page.
962 */
963struct page *alloc_huge_page_node(struct hstate *h, int nid)
964{
4ef91848 965 struct page *page = NULL;
bf50bab2
NH
966
967 spin_lock(&hugetlb_lock);
4ef91848
JK
968 if (h->free_huge_pages - h->resv_huge_pages > 0)
969 page = dequeue_huge_page_node(h, nid);
bf50bab2
NH
970 spin_unlock(&hugetlb_lock);
971
94ae8ba7 972 if (!page)
bf50bab2
NH
973 page = alloc_buddy_huge_page(h, nid);
974
975 return page;
976}
977
e4e574b7 978/*
25985edc 979 * Increase the hugetlb pool such that it can accommodate a reservation
e4e574b7
AL
980 * of size 'delta'.
981 */
a5516438 982static int gather_surplus_pages(struct hstate *h, int delta)
e4e574b7
AL
983{
984 struct list_head surplus_list;
985 struct page *page, *tmp;
986 int ret, i;
987 int needed, allocated;
28073b02 988 bool alloc_ok = true;
e4e574b7 989
a5516438 990 needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
ac09b3a1 991 if (needed <= 0) {
a5516438 992 h->resv_huge_pages += delta;
e4e574b7 993 return 0;
ac09b3a1 994 }
e4e574b7
AL
995
996 allocated = 0;
997 INIT_LIST_HEAD(&surplus_list);
998
999 ret = -ENOMEM;
1000retry:
1001 spin_unlock(&hugetlb_lock);
1002 for (i = 0; i < needed; i++) {
bf50bab2 1003 page = alloc_buddy_huge_page(h, NUMA_NO_NODE);
28073b02
HD
1004 if (!page) {
1005 alloc_ok = false;
1006 break;
1007 }
e4e574b7
AL
1008 list_add(&page->lru, &surplus_list);
1009 }
28073b02 1010 allocated += i;
e4e574b7
AL
1011
1012 /*
1013 * After retaking hugetlb_lock, we need to recalculate 'needed'
1014 * because either resv_huge_pages or free_huge_pages may have changed.
1015 */
1016 spin_lock(&hugetlb_lock);
a5516438
AK
1017 needed = (h->resv_huge_pages + delta) -
1018 (h->free_huge_pages + allocated);
28073b02
HD
1019 if (needed > 0) {
1020 if (alloc_ok)
1021 goto retry;
1022 /*
1023 * We were not able to allocate enough pages to
1024 * satisfy the entire reservation so we free what
1025 * we've allocated so far.
1026 */
1027 goto free;
1028 }
e4e574b7
AL
1029 /*
1030 * The surplus_list now contains _at_least_ the number of extra pages
25985edc 1031 * needed to accommodate the reservation. Add the appropriate number
e4e574b7 1032 * of pages to the hugetlb pool and free the extras back to the buddy
ac09b3a1
AL
1033 * allocator. Commit the entire reservation here to prevent another
1034 * process from stealing the pages as they are added to the pool but
1035 * before they are reserved.
e4e574b7
AL
1036 */
1037 needed += allocated;
a5516438 1038 h->resv_huge_pages += delta;
e4e574b7 1039 ret = 0;
a9869b83 1040
19fc3f0a 1041 /* Free the needed pages to the hugetlb pool */
e4e574b7 1042 list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
19fc3f0a
AL
1043 if ((--needed) < 0)
1044 break;
a9869b83
NH
1045 /*
1046 * This page is now managed by the hugetlb allocator and has
1047 * no users -- drop the buddy allocator's reference.
1048 */
1049 put_page_testzero(page);
1050 VM_BUG_ON(page_count(page));
a5516438 1051 enqueue_huge_page(h, page);
19fc3f0a 1052 }
28073b02 1053free:
b0365c8d 1054 spin_unlock(&hugetlb_lock);
19fc3f0a
AL
1055
1056 /* Free unnecessary surplus pages to the buddy allocator */
c0d934ba
JK
1057 list_for_each_entry_safe(page, tmp, &surplus_list, lru)
1058 put_page(page);
a9869b83 1059 spin_lock(&hugetlb_lock);
e4e574b7
AL
1060
1061 return ret;
1062}
1063
1064/*
1065 * When releasing a hugetlb pool reservation, any surplus pages that were
1066 * allocated to satisfy the reservation must be explicitly freed if they were
1067 * never used.
685f3457 1068 * Called with hugetlb_lock held.
e4e574b7 1069 */
a5516438
AK
1070static void return_unused_surplus_pages(struct hstate *h,
1071 unsigned long unused_resv_pages)
e4e574b7 1072{
e4e574b7
AL
1073 unsigned long nr_pages;
1074
ac09b3a1 1075 /* Uncommit the reservation */
a5516438 1076 h->resv_huge_pages -= unused_resv_pages;
ac09b3a1 1077
aa888a74
AK
1078 /* Cannot return gigantic pages currently */
1079 if (h->order >= MAX_ORDER)
1080 return;
1081
a5516438 1082 nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
e4e574b7 1083
685f3457
LS
1084 /*
1085 * We want to release as many surplus pages as possible, spread
9b5e5d0f
LS
1086 * evenly across all nodes with memory. Iterate across these nodes
1087 * until we can no longer free unreserved surplus pages. This occurs
1088 * when the nodes with surplus pages have no free pages.
1089 * free_pool_huge_page() will balance the the freed pages across the
1090 * on-line nodes with memory and will handle the hstate accounting.
685f3457
LS
1091 */
1092 while (nr_pages--) {
8cebfcd0 1093 if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1))
685f3457 1094 break;
e4e574b7
AL
1095 }
1096}
1097
c37f9fb1
AW
1098/*
1099 * Determine if the huge page at addr within the vma has an associated
1100 * reservation. Where it does not we will need to logically increase
90481622
DG
1101 * reservation and actually increase subpool usage before an allocation
1102 * can occur. Where any new reservation would be required the
1103 * reservation change is prepared, but not committed. Once the page
1104 * has been allocated from the subpool and instantiated the change should
1105 * be committed via vma_commit_reservation. No action is required on
1106 * failure.
c37f9fb1 1107 */
e2f17d94 1108static long vma_needs_reservation(struct hstate *h,
a5516438 1109 struct vm_area_struct *vma, unsigned long addr)
c37f9fb1
AW
1110{
1111 struct address_space *mapping = vma->vm_file->f_mapping;
1112 struct inode *inode = mapping->host;
1113
f83a275d 1114 if (vma->vm_flags & VM_MAYSHARE) {
a5516438 1115 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
c37f9fb1
AW
1116 return region_chg(&inode->i_mapping->private_list,
1117 idx, idx + 1);
1118
84afd99b
AW
1119 } else if (!is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1120 return 1;
c37f9fb1 1121
84afd99b 1122 } else {
e2f17d94 1123 long err;
a5516438 1124 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
f522c3ac 1125 struct resv_map *resv = vma_resv_map(vma);
84afd99b 1126
f522c3ac 1127 err = region_chg(&resv->regions, idx, idx + 1);
84afd99b
AW
1128 if (err < 0)
1129 return err;
1130 return 0;
1131 }
c37f9fb1 1132}
a5516438
AK
1133static void vma_commit_reservation(struct hstate *h,
1134 struct vm_area_struct *vma, unsigned long addr)
c37f9fb1
AW
1135{
1136 struct address_space *mapping = vma->vm_file->f_mapping;
1137 struct inode *inode = mapping->host;
1138
f83a275d 1139 if (vma->vm_flags & VM_MAYSHARE) {
a5516438 1140 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
c37f9fb1 1141 region_add(&inode->i_mapping->private_list, idx, idx + 1);
84afd99b
AW
1142
1143 } else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
a5516438 1144 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
f522c3ac 1145 struct resv_map *resv = vma_resv_map(vma);
84afd99b
AW
1146
1147 /* Mark this page used in the map. */
f522c3ac 1148 region_add(&resv->regions, idx, idx + 1);
c37f9fb1
AW
1149 }
1150}
1151
a1e78772 1152static struct page *alloc_huge_page(struct vm_area_struct *vma,
04f2cbe3 1153 unsigned long addr, int avoid_reserve)
1da177e4 1154{
90481622 1155 struct hugepage_subpool *spool = subpool_vma(vma);
a5516438 1156 struct hstate *h = hstate_vma(vma);
348ea204 1157 struct page *page;
e2f17d94 1158 long chg;
6d76dcf4
AK
1159 int ret, idx;
1160 struct hugetlb_cgroup *h_cg;
a1e78772 1161
6d76dcf4 1162 idx = hstate_index(h);
a1e78772 1163 /*
90481622
DG
1164 * Processes that did not create the mapping will have no
1165 * reserves and will not have accounted against subpool
1166 * limit. Check that the subpool limit can be made before
1167 * satisfying the allocation MAP_NORESERVE mappings may also
1168 * need pages and subpool limit allocated allocated if no reserve
1169 * mapping overlaps.
a1e78772 1170 */
a5516438 1171 chg = vma_needs_reservation(h, vma, addr);
c37f9fb1 1172 if (chg < 0)
76dcee75 1173 return ERR_PTR(-ENOMEM);
8bb3f12e
JK
1174 if (chg || avoid_reserve)
1175 if (hugepage_subpool_get_pages(spool, 1))
76dcee75 1176 return ERR_PTR(-ENOSPC);
1da177e4 1177
6d76dcf4
AK
1178 ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
1179 if (ret) {
8bb3f12e
JK
1180 if (chg || avoid_reserve)
1181 hugepage_subpool_put_pages(spool, 1);
6d76dcf4
AK
1182 return ERR_PTR(-ENOSPC);
1183 }
1da177e4 1184 spin_lock(&hugetlb_lock);
af0ed73e 1185 page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, chg);
81a6fcae 1186 if (!page) {
94ae8ba7 1187 spin_unlock(&hugetlb_lock);
bf50bab2 1188 page = alloc_buddy_huge_page(h, NUMA_NO_NODE);
68842c9b 1189 if (!page) {
6d76dcf4
AK
1190 hugetlb_cgroup_uncharge_cgroup(idx,
1191 pages_per_huge_page(h),
1192 h_cg);
8bb3f12e
JK
1193 if (chg || avoid_reserve)
1194 hugepage_subpool_put_pages(spool, 1);
76dcee75 1195 return ERR_PTR(-ENOSPC);
68842c9b 1196 }
79dbb236
AK
1197 spin_lock(&hugetlb_lock);
1198 list_move(&page->lru, &h->hugepage_activelist);
81a6fcae 1199 /* Fall through */
68842c9b 1200 }
81a6fcae
JK
1201 hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
1202 spin_unlock(&hugetlb_lock);
348ea204 1203
90481622 1204 set_page_private(page, (unsigned long)spool);
90d8b7e6 1205
a5516438 1206 vma_commit_reservation(h, vma, addr);
90d8b7e6 1207 return page;
b45b5bd6
DG
1208}
1209
74060e4d
NH
1210/*
1211 * alloc_huge_page()'s wrapper which simply returns the page if allocation
1212 * succeeds, otherwise NULL. This function is called from new_vma_page(),
1213 * where no ERR_VALUE is expected to be returned.
1214 */
1215struct page *alloc_huge_page_noerr(struct vm_area_struct *vma,
1216 unsigned long addr, int avoid_reserve)
1217{
1218 struct page *page = alloc_huge_page(vma, addr, avoid_reserve);
1219 if (IS_ERR(page))
1220 page = NULL;
1221 return page;
1222}
1223
91f47662 1224int __weak alloc_bootmem_huge_page(struct hstate *h)
aa888a74
AK
1225{
1226 struct huge_bootmem_page *m;
b2261026 1227 int nr_nodes, node;
aa888a74 1228
b2261026 1229 for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
aa888a74
AK
1230 void *addr;
1231
b2261026 1232 addr = __alloc_bootmem_node_nopanic(NODE_DATA(node),
aa888a74
AK
1233 huge_page_size(h), huge_page_size(h), 0);
1234
1235 if (addr) {
1236 /*
1237 * Use the beginning of the huge page to store the
1238 * huge_bootmem_page struct (until gather_bootmem
1239 * puts them into the mem_map).
1240 */
1241 m = addr;
91f47662 1242 goto found;
aa888a74 1243 }
aa888a74
AK
1244 }
1245 return 0;
1246
1247found:
1248 BUG_ON((unsigned long)virt_to_phys(m) & (huge_page_size(h) - 1));
1249 /* Put them into a private list first because mem_map is not up yet */
1250 list_add(&m->list, &huge_boot_pages);
1251 m->hstate = h;
1252 return 1;
1253}
1254
18229df5
AW
1255static void prep_compound_huge_page(struct page *page, int order)
1256{
1257 if (unlikely(order > (MAX_ORDER - 1)))
1258 prep_compound_gigantic_page(page, order);
1259 else
1260 prep_compound_page(page, order);
1261}
1262
aa888a74
AK
1263/* Put bootmem huge pages into the standard lists after mem_map is up */
1264static void __init gather_bootmem_prealloc(void)
1265{
1266 struct huge_bootmem_page *m;
1267
1268 list_for_each_entry(m, &huge_boot_pages, list) {
aa888a74 1269 struct hstate *h = m->hstate;
ee8f248d
BB
1270 struct page *page;
1271
1272#ifdef CONFIG_HIGHMEM
1273 page = pfn_to_page(m->phys >> PAGE_SHIFT);
1274 free_bootmem_late((unsigned long)m,
1275 sizeof(struct huge_bootmem_page));
1276#else
1277 page = virt_to_page(m);
1278#endif
aa888a74
AK
1279 __ClearPageReserved(page);
1280 WARN_ON(page_count(page) != 1);
18229df5 1281 prep_compound_huge_page(page, h->order);
aa888a74 1282 prep_new_huge_page(h, page, page_to_nid(page));
b0320c7b
RA
1283 /*
1284 * If we had gigantic hugepages allocated at boot time, we need
1285 * to restore the 'stolen' pages to totalram_pages in order to
1286 * fix confusing memory reports from free(1) and another
1287 * side-effects, like CommitLimit going negative.
1288 */
1289 if (h->order > (MAX_ORDER - 1))
3dcc0571 1290 adjust_managed_page_count(page, 1 << h->order);
aa888a74
AK
1291 }
1292}
1293
8faa8b07 1294static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
1da177e4
LT
1295{
1296 unsigned long i;
a5516438 1297
e5ff2159 1298 for (i = 0; i < h->max_huge_pages; ++i) {
aa888a74
AK
1299 if (h->order >= MAX_ORDER) {
1300 if (!alloc_bootmem_huge_page(h))
1301 break;
9b5e5d0f 1302 } else if (!alloc_fresh_huge_page(h,
8cebfcd0 1303 &node_states[N_MEMORY]))
1da177e4 1304 break;
1da177e4 1305 }
8faa8b07 1306 h->max_huge_pages = i;
e5ff2159
AK
1307}
1308
1309static void __init hugetlb_init_hstates(void)
1310{
1311 struct hstate *h;
1312
1313 for_each_hstate(h) {
8faa8b07
AK
1314 /* oversize hugepages were init'ed in early boot */
1315 if (h->order < MAX_ORDER)
1316 hugetlb_hstate_alloc_pages(h);
e5ff2159
AK
1317 }
1318}
1319
4abd32db
AK
1320static char * __init memfmt(char *buf, unsigned long n)
1321{
1322 if (n >= (1UL << 30))
1323 sprintf(buf, "%lu GB", n >> 30);
1324 else if (n >= (1UL << 20))
1325 sprintf(buf, "%lu MB", n >> 20);
1326 else
1327 sprintf(buf, "%lu KB", n >> 10);
1328 return buf;
1329}
1330
e5ff2159
AK
1331static void __init report_hugepages(void)
1332{
1333 struct hstate *h;
1334
1335 for_each_hstate(h) {
4abd32db 1336 char buf[32];
ffb22af5 1337 pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
4abd32db
AK
1338 memfmt(buf, huge_page_size(h)),
1339 h->free_huge_pages);
e5ff2159
AK
1340 }
1341}
1342
1da177e4 1343#ifdef CONFIG_HIGHMEM
6ae11b27
LS
1344static void try_to_free_low(struct hstate *h, unsigned long count,
1345 nodemask_t *nodes_allowed)
1da177e4 1346{
4415cc8d
CL
1347 int i;
1348
aa888a74
AK
1349 if (h->order >= MAX_ORDER)
1350 return;
1351
6ae11b27 1352 for_each_node_mask(i, *nodes_allowed) {
1da177e4 1353 struct page *page, *next;
a5516438
AK
1354 struct list_head *freel = &h->hugepage_freelists[i];
1355 list_for_each_entry_safe(page, next, freel, lru) {
1356 if (count >= h->nr_huge_pages)
6b0c880d 1357 return;
1da177e4
LT
1358 if (PageHighMem(page))
1359 continue;
1360 list_del(&page->lru);
e5ff2159 1361 update_and_free_page(h, page);
a5516438
AK
1362 h->free_huge_pages--;
1363 h->free_huge_pages_node[page_to_nid(page)]--;
1da177e4
LT
1364 }
1365 }
1366}
1367#else
6ae11b27
LS
1368static inline void try_to_free_low(struct hstate *h, unsigned long count,
1369 nodemask_t *nodes_allowed)
1da177e4
LT
1370{
1371}
1372#endif
1373
20a0307c
WF
1374/*
1375 * Increment or decrement surplus_huge_pages. Keep node-specific counters
1376 * balanced by operating on them in a round-robin fashion.
1377 * Returns 1 if an adjustment was made.
1378 */
6ae11b27
LS
1379static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
1380 int delta)
20a0307c 1381{
b2261026 1382 int nr_nodes, node;
20a0307c
WF
1383
1384 VM_BUG_ON(delta != -1 && delta != 1);
20a0307c 1385
b2261026
JK
1386 if (delta < 0) {
1387 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1388 if (h->surplus_huge_pages_node[node])
1389 goto found;
e8c5c824 1390 }
b2261026
JK
1391 } else {
1392 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
1393 if (h->surplus_huge_pages_node[node] <
1394 h->nr_huge_pages_node[node])
1395 goto found;
e8c5c824 1396 }
b2261026
JK
1397 }
1398 return 0;
20a0307c 1399
b2261026
JK
1400found:
1401 h->surplus_huge_pages += delta;
1402 h->surplus_huge_pages_node[node] += delta;
1403 return 1;
20a0307c
WF
1404}
1405
a5516438 1406#define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
6ae11b27
LS
1407static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count,
1408 nodemask_t *nodes_allowed)
1da177e4 1409{
7893d1d5 1410 unsigned long min_count, ret;
1da177e4 1411
aa888a74
AK
1412 if (h->order >= MAX_ORDER)
1413 return h->max_huge_pages;
1414
7893d1d5
AL
1415 /*
1416 * Increase the pool size
1417 * First take pages out of surplus state. Then make up the
1418 * remaining difference by allocating fresh huge pages.
d1c3fb1f
NA
1419 *
1420 * We might race with alloc_buddy_huge_page() here and be unable
1421 * to convert a surplus huge page to a normal huge page. That is
1422 * not critical, though, it just means the overall size of the
1423 * pool might be one hugepage larger than it needs to be, but
1424 * within all the constraints specified by the sysctls.
7893d1d5 1425 */
1da177e4 1426 spin_lock(&hugetlb_lock);
a5516438 1427 while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
6ae11b27 1428 if (!adjust_pool_surplus(h, nodes_allowed, -1))
7893d1d5
AL
1429 break;
1430 }
1431
a5516438 1432 while (count > persistent_huge_pages(h)) {
7893d1d5
AL
1433 /*
1434 * If this allocation races such that we no longer need the
1435 * page, free_huge_page will handle it by freeing the page
1436 * and reducing the surplus.
1437 */
1438 spin_unlock(&hugetlb_lock);
6ae11b27 1439 ret = alloc_fresh_huge_page(h, nodes_allowed);
7893d1d5
AL
1440 spin_lock(&hugetlb_lock);
1441 if (!ret)
1442 goto out;
1443
536240f2
MG
1444 /* Bail for signals. Probably ctrl-c from user */
1445 if (signal_pending(current))
1446 goto out;
7893d1d5 1447 }
7893d1d5
AL
1448
1449 /*
1450 * Decrease the pool size
1451 * First return free pages to the buddy allocator (being careful
1452 * to keep enough around to satisfy reservations). Then place
1453 * pages into surplus state as needed so the pool will shrink
1454 * to the desired size as pages become free.
d1c3fb1f
NA
1455 *
1456 * By placing pages into the surplus state independent of the
1457 * overcommit value, we are allowing the surplus pool size to
1458 * exceed overcommit. There are few sane options here. Since
1459 * alloc_buddy_huge_page() is checking the global counter,
1460 * though, we'll note that we're not allowed to exceed surplus
1461 * and won't grow the pool anywhere else. Not until one of the
1462 * sysctls are changed, or the surplus pages go out of use.
7893d1d5 1463 */
a5516438 1464 min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
6b0c880d 1465 min_count = max(count, min_count);
6ae11b27 1466 try_to_free_low(h, min_count, nodes_allowed);
a5516438 1467 while (min_count < persistent_huge_pages(h)) {
6ae11b27 1468 if (!free_pool_huge_page(h, nodes_allowed, 0))
1da177e4 1469 break;
1da177e4 1470 }
a5516438 1471 while (count < persistent_huge_pages(h)) {
6ae11b27 1472 if (!adjust_pool_surplus(h, nodes_allowed, 1))
7893d1d5
AL
1473 break;
1474 }
1475out:
a5516438 1476 ret = persistent_huge_pages(h);
1da177e4 1477 spin_unlock(&hugetlb_lock);
7893d1d5 1478 return ret;
1da177e4
LT
1479}
1480
a3437870
NA
1481#define HSTATE_ATTR_RO(_name) \
1482 static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
1483
1484#define HSTATE_ATTR(_name) \
1485 static struct kobj_attribute _name##_attr = \
1486 __ATTR(_name, 0644, _name##_show, _name##_store)
1487
1488static struct kobject *hugepages_kobj;
1489static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
1490
9a305230
LS
1491static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
1492
1493static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
a3437870
NA
1494{
1495 int i;
9a305230 1496
a3437870 1497 for (i = 0; i < HUGE_MAX_HSTATE; i++)
9a305230
LS
1498 if (hstate_kobjs[i] == kobj) {
1499 if (nidp)
1500 *nidp = NUMA_NO_NODE;
a3437870 1501 return &hstates[i];
9a305230
LS
1502 }
1503
1504 return kobj_to_node_hstate(kobj, nidp);
a3437870
NA
1505}
1506
06808b08 1507static ssize_t nr_hugepages_show_common(struct kobject *kobj,
a3437870
NA
1508 struct kobj_attribute *attr, char *buf)
1509{
9a305230
LS
1510 struct hstate *h;
1511 unsigned long nr_huge_pages;
1512 int nid;
1513
1514 h = kobj_to_hstate(kobj, &nid);
1515 if (nid == NUMA_NO_NODE)
1516 nr_huge_pages = h->nr_huge_pages;
1517 else
1518 nr_huge_pages = h->nr_huge_pages_node[nid];
1519
1520 return sprintf(buf, "%lu\n", nr_huge_pages);
a3437870 1521}
adbe8726 1522
06808b08
LS
1523static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
1524 struct kobject *kobj, struct kobj_attribute *attr,
1525 const char *buf, size_t len)
a3437870
NA
1526{
1527 int err;
9a305230 1528 int nid;
06808b08 1529 unsigned long count;
9a305230 1530 struct hstate *h;
bad44b5b 1531 NODEMASK_ALLOC(nodemask_t, nodes_allowed, GFP_KERNEL | __GFP_NORETRY);
a3437870 1532
3dbb95f7 1533 err = kstrtoul(buf, 10, &count);
73ae31e5 1534 if (err)
adbe8726 1535 goto out;
a3437870 1536
9a305230 1537 h = kobj_to_hstate(kobj, &nid);
adbe8726
EM
1538 if (h->order >= MAX_ORDER) {
1539 err = -EINVAL;
1540 goto out;
1541 }
1542
9a305230
LS
1543 if (nid == NUMA_NO_NODE) {
1544 /*
1545 * global hstate attribute
1546 */
1547 if (!(obey_mempolicy &&
1548 init_nodemask_of_mempolicy(nodes_allowed))) {
1549 NODEMASK_FREE(nodes_allowed);
8cebfcd0 1550 nodes_allowed = &node_states[N_MEMORY];
9a305230
LS
1551 }
1552 } else if (nodes_allowed) {
1553 /*
1554 * per node hstate attribute: adjust count to global,
1555 * but restrict alloc/free to the specified node.
1556 */
1557 count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
1558 init_nodemask_of_node(nodes_allowed, nid);
1559 } else
8cebfcd0 1560 nodes_allowed = &node_states[N_MEMORY];
9a305230 1561
06808b08 1562 h->max_huge_pages = set_max_huge_pages(h, count, nodes_allowed);
a3437870 1563
8cebfcd0 1564 if (nodes_allowed != &node_states[N_MEMORY])
06808b08
LS
1565 NODEMASK_FREE(nodes_allowed);
1566
1567 return len;
adbe8726
EM
1568out:
1569 NODEMASK_FREE(nodes_allowed);
1570 return err;
06808b08
LS
1571}
1572
1573static ssize_t nr_hugepages_show(struct kobject *kobj,
1574 struct kobj_attribute *attr, char *buf)
1575{
1576 return nr_hugepages_show_common(kobj, attr, buf);
1577}
1578
1579static ssize_t nr_hugepages_store(struct kobject *kobj,
1580 struct kobj_attribute *attr, const char *buf, size_t len)
1581{
1582 return nr_hugepages_store_common(false, kobj, attr, buf, len);
a3437870
NA
1583}
1584HSTATE_ATTR(nr_hugepages);
1585
06808b08
LS
1586#ifdef CONFIG_NUMA
1587
1588/*
1589 * hstate attribute for optionally mempolicy-based constraint on persistent
1590 * huge page alloc/free.
1591 */
1592static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
1593 struct kobj_attribute *attr, char *buf)
1594{
1595 return nr_hugepages_show_common(kobj, attr, buf);
1596}
1597
1598static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
1599 struct kobj_attribute *attr, const char *buf, size_t len)
1600{
1601 return nr_hugepages_store_common(true, kobj, attr, buf, len);
1602}
1603HSTATE_ATTR(nr_hugepages_mempolicy);
1604#endif
1605
1606
a3437870
NA
1607static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
1608 struct kobj_attribute *attr, char *buf)
1609{
9a305230 1610 struct hstate *h = kobj_to_hstate(kobj, NULL);
a3437870
NA
1611 return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
1612}
adbe8726 1613
a3437870
NA
1614static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
1615 struct kobj_attribute *attr, const char *buf, size_t count)
1616{
1617 int err;
1618 unsigned long input;
9a305230 1619 struct hstate *h = kobj_to_hstate(kobj, NULL);
a3437870 1620
adbe8726
EM
1621 if (h->order >= MAX_ORDER)
1622 return -EINVAL;
1623
3dbb95f7 1624 err = kstrtoul(buf, 10, &input);
a3437870 1625 if (err)
73ae31e5 1626 return err;
a3437870
NA
1627
1628 spin_lock(&hugetlb_lock);
1629 h->nr_overcommit_huge_pages = input;
1630 spin_unlock(&hugetlb_lock);
1631
1632 return count;
1633}
1634HSTATE_ATTR(nr_overcommit_hugepages);
1635
1636static ssize_t free_hugepages_show(struct kobject *kobj,
1637 struct kobj_attribute *attr, char *buf)
1638{
9a305230
LS
1639 struct hstate *h;
1640 unsigned long free_huge_pages;
1641 int nid;
1642
1643 h = kobj_to_hstate(kobj, &nid);
1644 if (nid == NUMA_NO_NODE)
1645 free_huge_pages = h->free_huge_pages;
1646 else
1647 free_huge_pages = h->free_huge_pages_node[nid];
1648
1649 return sprintf(buf, "%lu\n", free_huge_pages);
a3437870
NA
1650}
1651HSTATE_ATTR_RO(free_hugepages);
1652
1653static ssize_t resv_hugepages_show(struct kobject *kobj,
1654 struct kobj_attribute *attr, char *buf)
1655{
9a305230 1656 struct hstate *h = kobj_to_hstate(kobj, NULL);
a3437870
NA
1657 return sprintf(buf, "%lu\n", h->resv_huge_pages);
1658}
1659HSTATE_ATTR_RO(resv_hugepages);
1660
1661static ssize_t surplus_hugepages_show(struct kobject *kobj,
1662 struct kobj_attribute *attr, char *buf)
1663{
9a305230
LS
1664 struct hstate *h;
1665 unsigned long surplus_huge_pages;
1666 int nid;
1667
1668 h = kobj_to_hstate(kobj, &nid);
1669 if (nid == NUMA_NO_NODE)
1670 surplus_huge_pages = h->surplus_huge_pages;
1671 else
1672 surplus_huge_pages = h->surplus_huge_pages_node[nid];
1673
1674 return sprintf(buf, "%lu\n", surplus_huge_pages);
a3437870
NA
1675}
1676HSTATE_ATTR_RO(surplus_hugepages);
1677
1678static struct attribute *hstate_attrs[] = {
1679 &nr_hugepages_attr.attr,
1680 &nr_overcommit_hugepages_attr.attr,
1681 &free_hugepages_attr.attr,
1682 &resv_hugepages_attr.attr,
1683 &surplus_hugepages_attr.attr,
06808b08
LS
1684#ifdef CONFIG_NUMA
1685 &nr_hugepages_mempolicy_attr.attr,
1686#endif
a3437870
NA
1687 NULL,
1688};
1689
1690static struct attribute_group hstate_attr_group = {
1691 .attrs = hstate_attrs,
1692};
1693
094e9539
JM
1694static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
1695 struct kobject **hstate_kobjs,
1696 struct attribute_group *hstate_attr_group)
a3437870
NA
1697{
1698 int retval;
972dc4de 1699 int hi = hstate_index(h);
a3437870 1700
9a305230
LS
1701 hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
1702 if (!hstate_kobjs[hi])
a3437870
NA
1703 return -ENOMEM;
1704
9a305230 1705 retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
a3437870 1706 if (retval)
9a305230 1707 kobject_put(hstate_kobjs[hi]);
a3437870
NA
1708
1709 return retval;
1710}
1711
1712static void __init hugetlb_sysfs_init(void)
1713{
1714 struct hstate *h;
1715 int err;
1716
1717 hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
1718 if (!hugepages_kobj)
1719 return;
1720
1721 for_each_hstate(h) {
9a305230
LS
1722 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
1723 hstate_kobjs, &hstate_attr_group);
a3437870 1724 if (err)
ffb22af5 1725 pr_err("Hugetlb: Unable to add hstate %s", h->name);
a3437870
NA
1726 }
1727}
1728
9a305230
LS
1729#ifdef CONFIG_NUMA
1730
1731/*
1732 * node_hstate/s - associate per node hstate attributes, via their kobjects,
10fbcf4c
KS
1733 * with node devices in node_devices[] using a parallel array. The array
1734 * index of a node device or _hstate == node id.
1735 * This is here to avoid any static dependency of the node device driver, in
9a305230
LS
1736 * the base kernel, on the hugetlb module.
1737 */
1738struct node_hstate {
1739 struct kobject *hugepages_kobj;
1740 struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
1741};
1742struct node_hstate node_hstates[MAX_NUMNODES];
1743
1744/*
10fbcf4c 1745 * A subset of global hstate attributes for node devices
9a305230
LS
1746 */
1747static struct attribute *per_node_hstate_attrs[] = {
1748 &nr_hugepages_attr.attr,
1749 &free_hugepages_attr.attr,
1750 &surplus_hugepages_attr.attr,
1751 NULL,
1752};
1753
1754static struct attribute_group per_node_hstate_attr_group = {
1755 .attrs = per_node_hstate_attrs,
1756};
1757
1758/*
10fbcf4c 1759 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
9a305230
LS
1760 * Returns node id via non-NULL nidp.
1761 */
1762static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
1763{
1764 int nid;
1765
1766 for (nid = 0; nid < nr_node_ids; nid++) {
1767 struct node_hstate *nhs = &node_hstates[nid];
1768 int i;
1769 for (i = 0; i < HUGE_MAX_HSTATE; i++)
1770 if (nhs->hstate_kobjs[i] == kobj) {
1771 if (nidp)
1772 *nidp = nid;
1773 return &hstates[i];
1774 }
1775 }
1776
1777 BUG();
1778 return NULL;
1779}
1780
1781/*
10fbcf4c 1782 * Unregister hstate attributes from a single node device.
9a305230
LS
1783 * No-op if no hstate attributes attached.
1784 */
3cd8b44f 1785static void hugetlb_unregister_node(struct node *node)
9a305230
LS
1786{
1787 struct hstate *h;
10fbcf4c 1788 struct node_hstate *nhs = &node_hstates[node->dev.id];
9a305230
LS
1789
1790 if (!nhs->hugepages_kobj)
9b5e5d0f 1791 return; /* no hstate attributes */
9a305230 1792
972dc4de
AK
1793 for_each_hstate(h) {
1794 int idx = hstate_index(h);
1795 if (nhs->hstate_kobjs[idx]) {
1796 kobject_put(nhs->hstate_kobjs[idx]);
1797 nhs->hstate_kobjs[idx] = NULL;
9a305230 1798 }
972dc4de 1799 }
9a305230
LS
1800
1801 kobject_put(nhs->hugepages_kobj);
1802 nhs->hugepages_kobj = NULL;
1803}
1804
1805/*
10fbcf4c 1806 * hugetlb module exit: unregister hstate attributes from node devices
9a305230
LS
1807 * that have them.
1808 */
1809static void hugetlb_unregister_all_nodes(void)
1810{
1811 int nid;
1812
1813 /*
10fbcf4c 1814 * disable node device registrations.
9a305230
LS
1815 */
1816 register_hugetlbfs_with_node(NULL, NULL);
1817
1818 /*
1819 * remove hstate attributes from any nodes that have them.
1820 */
1821 for (nid = 0; nid < nr_node_ids; nid++)
8732794b 1822 hugetlb_unregister_node(node_devices[nid]);
9a305230
LS
1823}
1824
1825/*
10fbcf4c 1826 * Register hstate attributes for a single node device.
9a305230
LS
1827 * No-op if attributes already registered.
1828 */
3cd8b44f 1829static void hugetlb_register_node(struct node *node)
9a305230
LS
1830{
1831 struct hstate *h;
10fbcf4c 1832 struct node_hstate *nhs = &node_hstates[node->dev.id];
9a305230
LS
1833 int err;
1834
1835 if (nhs->hugepages_kobj)
1836 return; /* already allocated */
1837
1838 nhs->hugepages_kobj = kobject_create_and_add("hugepages",
10fbcf4c 1839 &node->dev.kobj);
9a305230
LS
1840 if (!nhs->hugepages_kobj)
1841 return;
1842
1843 for_each_hstate(h) {
1844 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
1845 nhs->hstate_kobjs,
1846 &per_node_hstate_attr_group);
1847 if (err) {
ffb22af5
AM
1848 pr_err("Hugetlb: Unable to add hstate %s for node %d\n",
1849 h->name, node->dev.id);
9a305230
LS
1850 hugetlb_unregister_node(node);
1851 break;
1852 }
1853 }
1854}
1855
1856/*
9b5e5d0f 1857 * hugetlb init time: register hstate attributes for all registered node
10fbcf4c
KS
1858 * devices of nodes that have memory. All on-line nodes should have
1859 * registered their associated device by this time.
9a305230
LS
1860 */
1861static void hugetlb_register_all_nodes(void)
1862{
1863 int nid;
1864
8cebfcd0 1865 for_each_node_state(nid, N_MEMORY) {
8732794b 1866 struct node *node = node_devices[nid];
10fbcf4c 1867 if (node->dev.id == nid)
9a305230
LS
1868 hugetlb_register_node(node);
1869 }
1870
1871 /*
10fbcf4c 1872 * Let the node device driver know we're here so it can
9a305230
LS
1873 * [un]register hstate attributes on node hotplug.
1874 */
1875 register_hugetlbfs_with_node(hugetlb_register_node,
1876 hugetlb_unregister_node);
1877}
1878#else /* !CONFIG_NUMA */
1879
1880static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
1881{
1882 BUG();
1883 if (nidp)
1884 *nidp = -1;
1885 return NULL;
1886}
1887
1888static void hugetlb_unregister_all_nodes(void) { }
1889
1890static void hugetlb_register_all_nodes(void) { }
1891
1892#endif
1893
a3437870
NA
1894static void __exit hugetlb_exit(void)
1895{
1896 struct hstate *h;
1897
9a305230
LS
1898 hugetlb_unregister_all_nodes();
1899
a3437870 1900 for_each_hstate(h) {
972dc4de 1901 kobject_put(hstate_kobjs[hstate_index(h)]);
a3437870
NA
1902 }
1903
1904 kobject_put(hugepages_kobj);
1905}
1906module_exit(hugetlb_exit);
1907
1908static int __init hugetlb_init(void)
1909{
0ef89d25
BH
1910 /* Some platform decide whether they support huge pages at boot
1911 * time. On these, such as powerpc, HPAGE_SHIFT is set to 0 when
1912 * there is no such support
1913 */
1914 if (HPAGE_SHIFT == 0)
1915 return 0;
a3437870 1916
e11bfbfc
NP
1917 if (!size_to_hstate(default_hstate_size)) {
1918 default_hstate_size = HPAGE_SIZE;
1919 if (!size_to_hstate(default_hstate_size))
1920 hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
a3437870 1921 }
972dc4de 1922 default_hstate_idx = hstate_index(size_to_hstate(default_hstate_size));
e11bfbfc
NP
1923 if (default_hstate_max_huge_pages)
1924 default_hstate.max_huge_pages = default_hstate_max_huge_pages;
a3437870
NA
1925
1926 hugetlb_init_hstates();
aa888a74 1927 gather_bootmem_prealloc();
a3437870
NA
1928 report_hugepages();
1929
1930 hugetlb_sysfs_init();
9a305230 1931 hugetlb_register_all_nodes();
7179e7bf 1932 hugetlb_cgroup_file_init();
9a305230 1933
a3437870
NA
1934 return 0;
1935}
1936module_init(hugetlb_init);
1937
1938/* Should be called on processing a hugepagesz=... option */
1939void __init hugetlb_add_hstate(unsigned order)
1940{
1941 struct hstate *h;
8faa8b07
AK
1942 unsigned long i;
1943
a3437870 1944 if (size_to_hstate(PAGE_SIZE << order)) {
ffb22af5 1945 pr_warning("hugepagesz= specified twice, ignoring\n");
a3437870
NA
1946 return;
1947 }
47d38344 1948 BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
a3437870 1949 BUG_ON(order == 0);
47d38344 1950 h = &hstates[hugetlb_max_hstate++];
a3437870
NA
1951 h->order = order;
1952 h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
8faa8b07
AK
1953 h->nr_huge_pages = 0;
1954 h->free_huge_pages = 0;
1955 for (i = 0; i < MAX_NUMNODES; ++i)
1956 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
0edaecfa 1957 INIT_LIST_HEAD(&h->hugepage_activelist);
8cebfcd0
LJ
1958 h->next_nid_to_alloc = first_node(node_states[N_MEMORY]);
1959 h->next_nid_to_free = first_node(node_states[N_MEMORY]);
a3437870
NA
1960 snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
1961 huge_page_size(h)/1024);
8faa8b07 1962
a3437870
NA
1963 parsed_hstate = h;
1964}
1965
e11bfbfc 1966static int __init hugetlb_nrpages_setup(char *s)
a3437870
NA
1967{
1968 unsigned long *mhp;
8faa8b07 1969 static unsigned long *last_mhp;
a3437870
NA
1970
1971 /*
47d38344 1972 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter yet,
a3437870
NA
1973 * so this hugepages= parameter goes to the "default hstate".
1974 */
47d38344 1975 if (!hugetlb_max_hstate)
a3437870
NA
1976 mhp = &default_hstate_max_huge_pages;
1977 else
1978 mhp = &parsed_hstate->max_huge_pages;
1979
8faa8b07 1980 if (mhp == last_mhp) {
ffb22af5
AM
1981 pr_warning("hugepages= specified twice without "
1982 "interleaving hugepagesz=, ignoring\n");
8faa8b07
AK
1983 return 1;
1984 }
1985
a3437870
NA
1986 if (sscanf(s, "%lu", mhp) <= 0)
1987 *mhp = 0;
1988
8faa8b07
AK
1989 /*
1990 * Global state is always initialized later in hugetlb_init.
1991 * But we need to allocate >= MAX_ORDER hstates here early to still
1992 * use the bootmem allocator.
1993 */
47d38344 1994 if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER)
8faa8b07
AK
1995 hugetlb_hstate_alloc_pages(parsed_hstate);
1996
1997 last_mhp = mhp;
1998
a3437870
NA
1999 return 1;
2000}
e11bfbfc
NP
2001__setup("hugepages=", hugetlb_nrpages_setup);
2002
2003static int __init hugetlb_default_setup(char *s)
2004{
2005 default_hstate_size = memparse(s, &s);
2006 return 1;
2007}
2008__setup("default_hugepagesz=", hugetlb_default_setup);
a3437870 2009
8a213460
NA
2010static unsigned int cpuset_mems_nr(unsigned int *array)
2011{
2012 int node;
2013 unsigned int nr = 0;
2014
2015 for_each_node_mask(node, cpuset_current_mems_allowed)
2016 nr += array[node];
2017
2018 return nr;
2019}
2020
2021#ifdef CONFIG_SYSCTL
06808b08
LS
2022static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
2023 struct ctl_table *table, int write,
2024 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 2025{
e5ff2159
AK
2026 struct hstate *h = &default_hstate;
2027 unsigned long tmp;
08d4a246 2028 int ret;
e5ff2159 2029
c033a93c 2030 tmp = h->max_huge_pages;
e5ff2159 2031
adbe8726
EM
2032 if (write && h->order >= MAX_ORDER)
2033 return -EINVAL;
2034
e5ff2159
AK
2035 table->data = &tmp;
2036 table->maxlen = sizeof(unsigned long);
08d4a246
MH
2037 ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2038 if (ret)
2039 goto out;
e5ff2159 2040
06808b08 2041 if (write) {
bad44b5b
DR
2042 NODEMASK_ALLOC(nodemask_t, nodes_allowed,
2043 GFP_KERNEL | __GFP_NORETRY);
06808b08
LS
2044 if (!(obey_mempolicy &&
2045 init_nodemask_of_mempolicy(nodes_allowed))) {
2046 NODEMASK_FREE(nodes_allowed);
8cebfcd0 2047 nodes_allowed = &node_states[N_MEMORY];
06808b08
LS
2048 }
2049 h->max_huge_pages = set_max_huge_pages(h, tmp, nodes_allowed);
2050
8cebfcd0 2051 if (nodes_allowed != &node_states[N_MEMORY])
06808b08
LS
2052 NODEMASK_FREE(nodes_allowed);
2053 }
08d4a246
MH
2054out:
2055 return ret;
1da177e4 2056}
396faf03 2057
06808b08
LS
2058int hugetlb_sysctl_handler(struct ctl_table *table, int write,
2059 void __user *buffer, size_t *length, loff_t *ppos)
2060{
2061
2062 return hugetlb_sysctl_handler_common(false, table, write,
2063 buffer, length, ppos);
2064}
2065
2066#ifdef CONFIG_NUMA
2067int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
2068 void __user *buffer, size_t *length, loff_t *ppos)
2069{
2070 return hugetlb_sysctl_handler_common(true, table, write,
2071 buffer, length, ppos);
2072}
2073#endif /* CONFIG_NUMA */
2074
396faf03 2075int hugetlb_treat_movable_handler(struct ctl_table *table, int write,
8d65af78 2076 void __user *buffer,
396faf03
MG
2077 size_t *length, loff_t *ppos)
2078{
8d65af78 2079 proc_dointvec(table, write, buffer, length, ppos);
396faf03
MG
2080 if (hugepages_treat_as_movable)
2081 htlb_alloc_mask = GFP_HIGHUSER_MOVABLE;
2082 else
2083 htlb_alloc_mask = GFP_HIGHUSER;
2084 return 0;
2085}
2086
a3d0c6aa 2087int hugetlb_overcommit_handler(struct ctl_table *table, int write,
8d65af78 2088 void __user *buffer,
a3d0c6aa
NA
2089 size_t *length, loff_t *ppos)
2090{
a5516438 2091 struct hstate *h = &default_hstate;
e5ff2159 2092 unsigned long tmp;
08d4a246 2093 int ret;
e5ff2159 2094
c033a93c 2095 tmp = h->nr_overcommit_huge_pages;
e5ff2159 2096
adbe8726
EM
2097 if (write && h->order >= MAX_ORDER)
2098 return -EINVAL;
2099
e5ff2159
AK
2100 table->data = &tmp;
2101 table->maxlen = sizeof(unsigned long);
08d4a246
MH
2102 ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2103 if (ret)
2104 goto out;
e5ff2159
AK
2105
2106 if (write) {
2107 spin_lock(&hugetlb_lock);
2108 h->nr_overcommit_huge_pages = tmp;
2109 spin_unlock(&hugetlb_lock);
2110 }
08d4a246
MH
2111out:
2112 return ret;
a3d0c6aa
NA
2113}
2114
1da177e4
LT
2115#endif /* CONFIG_SYSCTL */
2116
e1759c21 2117void hugetlb_report_meminfo(struct seq_file *m)
1da177e4 2118{
a5516438 2119 struct hstate *h = &default_hstate;
e1759c21 2120 seq_printf(m,
4f98a2fe
RR
2121 "HugePages_Total: %5lu\n"
2122 "HugePages_Free: %5lu\n"
2123 "HugePages_Rsvd: %5lu\n"
2124 "HugePages_Surp: %5lu\n"
2125 "Hugepagesize: %8lu kB\n",
a5516438
AK
2126 h->nr_huge_pages,
2127 h->free_huge_pages,
2128 h->resv_huge_pages,
2129 h->surplus_huge_pages,
2130 1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
1da177e4
LT
2131}
2132
2133int hugetlb_report_node_meminfo(int nid, char *buf)
2134{
a5516438 2135 struct hstate *h = &default_hstate;
1da177e4
LT
2136 return sprintf(buf,
2137 "Node %d HugePages_Total: %5u\n"
a1de0919
NA
2138 "Node %d HugePages_Free: %5u\n"
2139 "Node %d HugePages_Surp: %5u\n",
a5516438
AK
2140 nid, h->nr_huge_pages_node[nid],
2141 nid, h->free_huge_pages_node[nid],
2142 nid, h->surplus_huge_pages_node[nid]);
1da177e4
LT
2143}
2144
949f7ec5
DR
2145void hugetlb_show_meminfo(void)
2146{
2147 struct hstate *h;
2148 int nid;
2149
2150 for_each_node_state(nid, N_MEMORY)
2151 for_each_hstate(h)
2152 pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
2153 nid,
2154 h->nr_huge_pages_node[nid],
2155 h->free_huge_pages_node[nid],
2156 h->surplus_huge_pages_node[nid],
2157 1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
2158}
2159
1da177e4
LT
2160/* Return the number pages of memory we physically have, in PAGE_SIZE units. */
2161unsigned long hugetlb_total_pages(void)
2162{
d0028588
WL
2163 struct hstate *h;
2164 unsigned long nr_total_pages = 0;
2165
2166 for_each_hstate(h)
2167 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
2168 return nr_total_pages;
1da177e4 2169}
1da177e4 2170
a5516438 2171static int hugetlb_acct_memory(struct hstate *h, long delta)
fc1b8a73
MG
2172{
2173 int ret = -ENOMEM;
2174
2175 spin_lock(&hugetlb_lock);
2176 /*
2177 * When cpuset is configured, it breaks the strict hugetlb page
2178 * reservation as the accounting is done on a global variable. Such
2179 * reservation is completely rubbish in the presence of cpuset because
2180 * the reservation is not checked against page availability for the
2181 * current cpuset. Application can still potentially OOM'ed by kernel
2182 * with lack of free htlb page in cpuset that the task is in.
2183 * Attempt to enforce strict accounting with cpuset is almost
2184 * impossible (or too ugly) because cpuset is too fluid that
2185 * task or memory node can be dynamically moved between cpusets.
2186 *
2187 * The change of semantics for shared hugetlb mapping with cpuset is
2188 * undesirable. However, in order to preserve some of the semantics,
2189 * we fall back to check against current free page availability as
2190 * a best attempt and hopefully to minimize the impact of changing
2191 * semantics that cpuset has.
2192 */
2193 if (delta > 0) {
a5516438 2194 if (gather_surplus_pages(h, delta) < 0)
fc1b8a73
MG
2195 goto out;
2196
a5516438
AK
2197 if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
2198 return_unused_surplus_pages(h, delta);
fc1b8a73
MG
2199 goto out;
2200 }
2201 }
2202
2203 ret = 0;
2204 if (delta < 0)
a5516438 2205 return_unused_surplus_pages(h, (unsigned long) -delta);
fc1b8a73
MG
2206
2207out:
2208 spin_unlock(&hugetlb_lock);
2209 return ret;
2210}
2211
84afd99b
AW
2212static void hugetlb_vm_op_open(struct vm_area_struct *vma)
2213{
f522c3ac 2214 struct resv_map *resv = vma_resv_map(vma);
84afd99b
AW
2215
2216 /*
2217 * This new VMA should share its siblings reservation map if present.
2218 * The VMA will only ever have a valid reservation map pointer where
2219 * it is being copied for another still existing VMA. As that VMA
25985edc 2220 * has a reference to the reservation map it cannot disappear until
84afd99b
AW
2221 * after this open call completes. It is therefore safe to take a
2222 * new reference here without additional locking.
2223 */
f522c3ac
JK
2224 if (resv)
2225 kref_get(&resv->refs);
84afd99b
AW
2226}
2227
c50ac050
DH
2228static void resv_map_put(struct vm_area_struct *vma)
2229{
f522c3ac 2230 struct resv_map *resv = vma_resv_map(vma);
c50ac050 2231
f522c3ac 2232 if (!resv)
c50ac050 2233 return;
f522c3ac 2234 kref_put(&resv->refs, resv_map_release);
c50ac050
DH
2235}
2236
a1e78772
MG
2237static void hugetlb_vm_op_close(struct vm_area_struct *vma)
2238{
a5516438 2239 struct hstate *h = hstate_vma(vma);
f522c3ac 2240 struct resv_map *resv = vma_resv_map(vma);
90481622 2241 struct hugepage_subpool *spool = subpool_vma(vma);
84afd99b
AW
2242 unsigned long reserve;
2243 unsigned long start;
2244 unsigned long end;
2245
f522c3ac 2246 if (resv) {
a5516438
AK
2247 start = vma_hugecache_offset(h, vma, vma->vm_start);
2248 end = vma_hugecache_offset(h, vma, vma->vm_end);
84afd99b
AW
2249
2250 reserve = (end - start) -
f522c3ac 2251 region_count(&resv->regions, start, end);
84afd99b 2252
c50ac050 2253 resv_map_put(vma);
84afd99b 2254
7251ff78 2255 if (reserve) {
a5516438 2256 hugetlb_acct_memory(h, -reserve);
90481622 2257 hugepage_subpool_put_pages(spool, reserve);
7251ff78 2258 }
84afd99b 2259 }
a1e78772
MG
2260}
2261
1da177e4
LT
2262/*
2263 * We cannot handle pagefaults against hugetlb pages at all. They cause
2264 * handle_mm_fault() to try to instantiate regular-sized pages in the
2265 * hugegpage VMA. do_page_fault() is supposed to trap this, so BUG is we get
2266 * this far.
2267 */
d0217ac0 2268static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1da177e4
LT
2269{
2270 BUG();
d0217ac0 2271 return 0;
1da177e4
LT
2272}
2273
f0f37e2f 2274const struct vm_operations_struct hugetlb_vm_ops = {
d0217ac0 2275 .fault = hugetlb_vm_op_fault,
84afd99b 2276 .open = hugetlb_vm_op_open,
a1e78772 2277 .close = hugetlb_vm_op_close,
1da177e4
LT
2278};
2279
1e8f889b
DG
2280static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
2281 int writable)
63551ae0
DG
2282{
2283 pte_t entry;
2284
1e8f889b 2285 if (writable) {
106c992a
GS
2286 entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
2287 vma->vm_page_prot)));
63551ae0 2288 } else {
106c992a
GS
2289 entry = huge_pte_wrprotect(mk_huge_pte(page,
2290 vma->vm_page_prot));
63551ae0
DG
2291 }
2292 entry = pte_mkyoung(entry);
2293 entry = pte_mkhuge(entry);
d9ed9faa 2294 entry = arch_make_huge_pte(entry, vma, page, writable);
63551ae0
DG
2295
2296 return entry;
2297}
2298
1e8f889b
DG
2299static void set_huge_ptep_writable(struct vm_area_struct *vma,
2300 unsigned long address, pte_t *ptep)
2301{
2302 pte_t entry;
2303
106c992a 2304 entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
32f84528 2305 if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
4b3073e1 2306 update_mmu_cache(vma, address, ptep);
1e8f889b
DG
2307}
2308
2309
63551ae0
DG
2310int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
2311 struct vm_area_struct *vma)
2312{
2313 pte_t *src_pte, *dst_pte, entry;
2314 struct page *ptepage;
1c59827d 2315 unsigned long addr;
1e8f889b 2316 int cow;
a5516438
AK
2317 struct hstate *h = hstate_vma(vma);
2318 unsigned long sz = huge_page_size(h);
1e8f889b
DG
2319
2320 cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
63551ae0 2321
a5516438 2322 for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
c74df32c
HD
2323 src_pte = huge_pte_offset(src, addr);
2324 if (!src_pte)
2325 continue;
a5516438 2326 dst_pte = huge_pte_alloc(dst, addr, sz);
63551ae0
DG
2327 if (!dst_pte)
2328 goto nomem;
c5c99429
LW
2329
2330 /* If the pagetables are shared don't copy or take references */
2331 if (dst_pte == src_pte)
2332 continue;
2333
c74df32c 2334 spin_lock(&dst->page_table_lock);
46478758 2335 spin_lock_nested(&src->page_table_lock, SINGLE_DEPTH_NESTING);
7f2e9525 2336 if (!huge_pte_none(huge_ptep_get(src_pte))) {
1e8f889b 2337 if (cow)
7f2e9525
GS
2338 huge_ptep_set_wrprotect(src, addr, src_pte);
2339 entry = huge_ptep_get(src_pte);
1c59827d
HD
2340 ptepage = pte_page(entry);
2341 get_page(ptepage);
0fe6e20b 2342 page_dup_rmap(ptepage);
1c59827d
HD
2343 set_huge_pte_at(dst, addr, dst_pte, entry);
2344 }
2345 spin_unlock(&src->page_table_lock);
c74df32c 2346 spin_unlock(&dst->page_table_lock);
63551ae0
DG
2347 }
2348 return 0;
2349
2350nomem:
2351 return -ENOMEM;
2352}
2353
290408d4
NH
2354static int is_hugetlb_entry_migration(pte_t pte)
2355{
2356 swp_entry_t swp;
2357
2358 if (huge_pte_none(pte) || pte_present(pte))
2359 return 0;
2360 swp = pte_to_swp_entry(pte);
32f84528 2361 if (non_swap_entry(swp) && is_migration_entry(swp))
290408d4 2362 return 1;
32f84528 2363 else
290408d4
NH
2364 return 0;
2365}
2366
fd6a03ed
NH
2367static int is_hugetlb_entry_hwpoisoned(pte_t pte)
2368{
2369 swp_entry_t swp;
2370
2371 if (huge_pte_none(pte) || pte_present(pte))
2372 return 0;
2373 swp = pte_to_swp_entry(pte);
32f84528 2374 if (non_swap_entry(swp) && is_hwpoison_entry(swp))
fd6a03ed 2375 return 1;
32f84528 2376 else
fd6a03ed
NH
2377 return 0;
2378}
2379
24669e58
AK
2380void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
2381 unsigned long start, unsigned long end,
2382 struct page *ref_page)
63551ae0 2383{
24669e58 2384 int force_flush = 0;
63551ae0
DG
2385 struct mm_struct *mm = vma->vm_mm;
2386 unsigned long address;
c7546f8f 2387 pte_t *ptep;
63551ae0
DG
2388 pte_t pte;
2389 struct page *page;
a5516438
AK
2390 struct hstate *h = hstate_vma(vma);
2391 unsigned long sz = huge_page_size(h);
2ec74c3e
SG
2392 const unsigned long mmun_start = start; /* For mmu_notifiers */
2393 const unsigned long mmun_end = end; /* For mmu_notifiers */
a5516438 2394
63551ae0 2395 WARN_ON(!is_vm_hugetlb_page(vma));
a5516438
AK
2396 BUG_ON(start & ~huge_page_mask(h));
2397 BUG_ON(end & ~huge_page_mask(h));
63551ae0 2398
24669e58 2399 tlb_start_vma(tlb, vma);
2ec74c3e 2400 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
24669e58 2401again:
508034a3 2402 spin_lock(&mm->page_table_lock);
a5516438 2403 for (address = start; address < end; address += sz) {
c7546f8f 2404 ptep = huge_pte_offset(mm, address);
4c887265 2405 if (!ptep)
c7546f8f
DG
2406 continue;
2407
39dde65c
CK
2408 if (huge_pmd_unshare(mm, &address, ptep))
2409 continue;
2410
6629326b
HD
2411 pte = huge_ptep_get(ptep);
2412 if (huge_pte_none(pte))
2413 continue;
2414
2415 /*
2416 * HWPoisoned hugepage is already unmapped and dropped reference
2417 */
8c4894c6 2418 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
106c992a 2419 huge_pte_clear(mm, address, ptep);
6629326b 2420 continue;
8c4894c6 2421 }
6629326b
HD
2422
2423 page = pte_page(pte);
04f2cbe3
MG
2424 /*
2425 * If a reference page is supplied, it is because a specific
2426 * page is being unmapped, not a range. Ensure the page we
2427 * are about to unmap is the actual page of interest.
2428 */
2429 if (ref_page) {
04f2cbe3
MG
2430 if (page != ref_page)
2431 continue;
2432
2433 /*
2434 * Mark the VMA as having unmapped its page so that
2435 * future faults in this VMA will fail rather than
2436 * looking like data was lost
2437 */
2438 set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
2439 }
2440
c7546f8f 2441 pte = huge_ptep_get_and_clear(mm, address, ptep);
24669e58 2442 tlb_remove_tlb_entry(tlb, ptep, address);
106c992a 2443 if (huge_pte_dirty(pte))
6649a386 2444 set_page_dirty(page);
9e81130b 2445
24669e58
AK
2446 page_remove_rmap(page);
2447 force_flush = !__tlb_remove_page(tlb, page);
2448 if (force_flush)
2449 break;
9e81130b
HD
2450 /* Bail out after unmapping reference page if supplied */
2451 if (ref_page)
2452 break;
63551ae0 2453 }
cd2934a3 2454 spin_unlock(&mm->page_table_lock);
24669e58
AK
2455 /*
2456 * mmu_gather ran out of room to batch pages, we break out of
2457 * the PTE lock to avoid doing the potential expensive TLB invalidate
2458 * and page-free while holding it.
2459 */
2460 if (force_flush) {
2461 force_flush = 0;
2462 tlb_flush_mmu(tlb);
2463 if (address < end && !ref_page)
2464 goto again;
fe1668ae 2465 }
2ec74c3e 2466 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
24669e58 2467 tlb_end_vma(tlb, vma);
1da177e4 2468}
63551ae0 2469
d833352a
MG
2470void __unmap_hugepage_range_final(struct mmu_gather *tlb,
2471 struct vm_area_struct *vma, unsigned long start,
2472 unsigned long end, struct page *ref_page)
2473{
2474 __unmap_hugepage_range(tlb, vma, start, end, ref_page);
2475
2476 /*
2477 * Clear this flag so that x86's huge_pmd_share page_table_shareable
2478 * test will fail on a vma being torn down, and not grab a page table
2479 * on its way out. We're lucky that the flag has such an appropriate
2480 * name, and can in fact be safely cleared here. We could clear it
2481 * before the __unmap_hugepage_range above, but all that's necessary
2482 * is to clear it before releasing the i_mmap_mutex. This works
2483 * because in the context this is called, the VMA is about to be
2484 * destroyed and the i_mmap_mutex is held.
2485 */
2486 vma->vm_flags &= ~VM_MAYSHARE;
2487}
2488
502717f4 2489void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
04f2cbe3 2490 unsigned long end, struct page *ref_page)
502717f4 2491{
24669e58
AK
2492 struct mm_struct *mm;
2493 struct mmu_gather tlb;
2494
2495 mm = vma->vm_mm;
2496
2b047252 2497 tlb_gather_mmu(&tlb, mm, start, end);
24669e58
AK
2498 __unmap_hugepage_range(&tlb, vma, start, end, ref_page);
2499 tlb_finish_mmu(&tlb, start, end);
502717f4
CK
2500}
2501
04f2cbe3
MG
2502/*
2503 * This is called when the original mapper is failing to COW a MAP_PRIVATE
2504 * mappping it owns the reserve page for. The intention is to unmap the page
2505 * from other VMAs and let the children be SIGKILLed if they are faulting the
2506 * same region.
2507 */
2a4b3ded
HH
2508static int unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
2509 struct page *page, unsigned long address)
04f2cbe3 2510{
7526674d 2511 struct hstate *h = hstate_vma(vma);
04f2cbe3
MG
2512 struct vm_area_struct *iter_vma;
2513 struct address_space *mapping;
04f2cbe3
MG
2514 pgoff_t pgoff;
2515
2516 /*
2517 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
2518 * from page cache lookup which is in HPAGE_SIZE units.
2519 */
7526674d 2520 address = address & huge_page_mask(h);
36e4f20a
MH
2521 pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
2522 vma->vm_pgoff;
496ad9aa 2523 mapping = file_inode(vma->vm_file)->i_mapping;
04f2cbe3 2524
4eb2b1dc
MG
2525 /*
2526 * Take the mapping lock for the duration of the table walk. As
2527 * this mapping should be shared between all the VMAs,
2528 * __unmap_hugepage_range() is called as the lock is already held
2529 */
3d48ae45 2530 mutex_lock(&mapping->i_mmap_mutex);
6b2dbba8 2531 vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
04f2cbe3
MG
2532 /* Do not unmap the current VMA */
2533 if (iter_vma == vma)
2534 continue;
2535
2536 /*
2537 * Unmap the page from other VMAs without their own reserves.
2538 * They get marked to be SIGKILLed if they fault in these
2539 * areas. This is because a future no-page fault on this VMA
2540 * could insert a zeroed page instead of the data existing
2541 * from the time of fork. This would look like data corruption
2542 */
2543 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
24669e58
AK
2544 unmap_hugepage_range(iter_vma, address,
2545 address + huge_page_size(h), page);
04f2cbe3 2546 }
3d48ae45 2547 mutex_unlock(&mapping->i_mmap_mutex);
04f2cbe3
MG
2548
2549 return 1;
2550}
2551
0fe6e20b
NH
2552/*
2553 * Hugetlb_cow() should be called with page lock of the original hugepage held.
ef009b25
MH
2554 * Called with hugetlb_instantiation_mutex held and pte_page locked so we
2555 * cannot race with other handlers or page migration.
2556 * Keep the pte_same checks anyway to make transition from the mutex easier.
0fe6e20b 2557 */
1e8f889b 2558static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
04f2cbe3
MG
2559 unsigned long address, pte_t *ptep, pte_t pte,
2560 struct page *pagecache_page)
1e8f889b 2561{
a5516438 2562 struct hstate *h = hstate_vma(vma);
1e8f889b 2563 struct page *old_page, *new_page;
04f2cbe3 2564 int outside_reserve = 0;
2ec74c3e
SG
2565 unsigned long mmun_start; /* For mmu_notifiers */
2566 unsigned long mmun_end; /* For mmu_notifiers */
1e8f889b
DG
2567
2568 old_page = pte_page(pte);
2569
04f2cbe3 2570retry_avoidcopy:
1e8f889b
DG
2571 /* If no-one else is actually using this page, avoid the copy
2572 * and just make the page writable */
37a2140d
JK
2573 if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
2574 page_move_anon_rmap(old_page, vma, address);
1e8f889b 2575 set_huge_ptep_writable(vma, address, ptep);
83c54070 2576 return 0;
1e8f889b
DG
2577 }
2578
04f2cbe3
MG
2579 /*
2580 * If the process that created a MAP_PRIVATE mapping is about to
2581 * perform a COW due to a shared page count, attempt to satisfy
2582 * the allocation without using the existing reserves. The pagecache
2583 * page is used to determine if the reserve at this address was
2584 * consumed or not. If reserves were used, a partial faulted mapping
2585 * at the time of fork() could consume its reserves on COW instead
2586 * of the full address range.
2587 */
5944d011 2588 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
04f2cbe3
MG
2589 old_page != pagecache_page)
2590 outside_reserve = 1;
2591
1e8f889b 2592 page_cache_get(old_page);
b76c8cfb
LW
2593
2594 /* Drop page_table_lock as buddy allocator may be called */
2595 spin_unlock(&mm->page_table_lock);
04f2cbe3 2596 new_page = alloc_huge_page(vma, address, outside_reserve);
1e8f889b 2597
2fc39cec 2598 if (IS_ERR(new_page)) {
76dcee75 2599 long err = PTR_ERR(new_page);
1e8f889b 2600 page_cache_release(old_page);
04f2cbe3
MG
2601
2602 /*
2603 * If a process owning a MAP_PRIVATE mapping fails to COW,
2604 * it is due to references held by a child and an insufficient
2605 * huge page pool. To guarantee the original mappers
2606 * reliability, unmap the page from child processes. The child
2607 * may get SIGKILLed if it later faults.
2608 */
2609 if (outside_reserve) {
2610 BUG_ON(huge_pte_none(pte));
2611 if (unmap_ref_private(mm, vma, old_page, address)) {
04f2cbe3 2612 BUG_ON(huge_pte_none(pte));
b76c8cfb 2613 spin_lock(&mm->page_table_lock);
a734bcc8
HD
2614 ptep = huge_pte_offset(mm, address & huge_page_mask(h));
2615 if (likely(pte_same(huge_ptep_get(ptep), pte)))
2616 goto retry_avoidcopy;
2617 /*
2618 * race occurs while re-acquiring page_table_lock, and
2619 * our job is done.
2620 */
2621 return 0;
04f2cbe3
MG
2622 }
2623 WARN_ON_ONCE(1);
2624 }
2625
b76c8cfb
LW
2626 /* Caller expects lock to be held */
2627 spin_lock(&mm->page_table_lock);
76dcee75
AK
2628 if (err == -ENOMEM)
2629 return VM_FAULT_OOM;
2630 else
2631 return VM_FAULT_SIGBUS;
1e8f889b
DG
2632 }
2633
0fe6e20b
NH
2634 /*
2635 * When the original hugepage is shared one, it does not have
2636 * anon_vma prepared.
2637 */
44e2aa93 2638 if (unlikely(anon_vma_prepare(vma))) {
ea4039a3
HD
2639 page_cache_release(new_page);
2640 page_cache_release(old_page);
44e2aa93
DN
2641 /* Caller expects lock to be held */
2642 spin_lock(&mm->page_table_lock);
0fe6e20b 2643 return VM_FAULT_OOM;
44e2aa93 2644 }
0fe6e20b 2645
47ad8475
AA
2646 copy_user_huge_page(new_page, old_page, address, vma,
2647 pages_per_huge_page(h));
0ed361de 2648 __SetPageUptodate(new_page);
1e8f889b 2649
2ec74c3e
SG
2650 mmun_start = address & huge_page_mask(h);
2651 mmun_end = mmun_start + huge_page_size(h);
2652 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
b76c8cfb
LW
2653 /*
2654 * Retake the page_table_lock to check for racing updates
2655 * before the page tables are altered
2656 */
2657 spin_lock(&mm->page_table_lock);
a5516438 2658 ptep = huge_pte_offset(mm, address & huge_page_mask(h));
7f2e9525 2659 if (likely(pte_same(huge_ptep_get(ptep), pte))) {
07443a85
JK
2660 ClearPagePrivate(new_page);
2661
1e8f889b 2662 /* Break COW */
8fe627ec 2663 huge_ptep_clear_flush(vma, address, ptep);
1e8f889b
DG
2664 set_huge_pte_at(mm, address, ptep,
2665 make_huge_pte(vma, new_page, 1));
0fe6e20b 2666 page_remove_rmap(old_page);
cd67f0d2 2667 hugepage_add_new_anon_rmap(new_page, vma, address);
1e8f889b
DG
2668 /* Make the old page be freed below */
2669 new_page = old_page;
2670 }
2ec74c3e
SG
2671 spin_unlock(&mm->page_table_lock);
2672 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1e8f889b
DG
2673 page_cache_release(new_page);
2674 page_cache_release(old_page);
8312034f
JK
2675
2676 /* Caller expects lock to be held */
2677 spin_lock(&mm->page_table_lock);
83c54070 2678 return 0;
1e8f889b
DG
2679}
2680
04f2cbe3 2681/* Return the pagecache page at a given address within a VMA */
a5516438
AK
2682static struct page *hugetlbfs_pagecache_page(struct hstate *h,
2683 struct vm_area_struct *vma, unsigned long address)
04f2cbe3
MG
2684{
2685 struct address_space *mapping;
e7c4b0bf 2686 pgoff_t idx;
04f2cbe3
MG
2687
2688 mapping = vma->vm_file->f_mapping;
a5516438 2689 idx = vma_hugecache_offset(h, vma, address);
04f2cbe3
MG
2690
2691 return find_lock_page(mapping, idx);
2692}
2693
3ae77f43
HD
2694/*
2695 * Return whether there is a pagecache page to back given address within VMA.
2696 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
2697 */
2698static bool hugetlbfs_pagecache_present(struct hstate *h,
2a15efc9
HD
2699 struct vm_area_struct *vma, unsigned long address)
2700{
2701 struct address_space *mapping;
2702 pgoff_t idx;
2703 struct page *page;
2704
2705 mapping = vma->vm_file->f_mapping;
2706 idx = vma_hugecache_offset(h, vma, address);
2707
2708 page = find_get_page(mapping, idx);
2709 if (page)
2710 put_page(page);
2711 return page != NULL;
2712}
2713
a1ed3dda 2714static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
788c7df4 2715 unsigned long address, pte_t *ptep, unsigned int flags)
ac9b9c66 2716{
a5516438 2717 struct hstate *h = hstate_vma(vma);
ac9b9c66 2718 int ret = VM_FAULT_SIGBUS;
409eb8c2 2719 int anon_rmap = 0;
e7c4b0bf 2720 pgoff_t idx;
4c887265 2721 unsigned long size;
4c887265
AL
2722 struct page *page;
2723 struct address_space *mapping;
1e8f889b 2724 pte_t new_pte;
4c887265 2725
04f2cbe3
MG
2726 /*
2727 * Currently, we are forced to kill the process in the event the
2728 * original mapper has unmapped pages from the child due to a failed
25985edc 2729 * COW. Warn that such a situation has occurred as it may not be obvious
04f2cbe3
MG
2730 */
2731 if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
ffb22af5
AM
2732 pr_warning("PID %d killed due to inadequate hugepage pool\n",
2733 current->pid);
04f2cbe3
MG
2734 return ret;
2735 }
2736
4c887265 2737 mapping = vma->vm_file->f_mapping;
a5516438 2738 idx = vma_hugecache_offset(h, vma, address);
4c887265
AL
2739
2740 /*
2741 * Use page lock to guard against racing truncation
2742 * before we get page_table_lock.
2743 */
6bda666a
CL
2744retry:
2745 page = find_lock_page(mapping, idx);
2746 if (!page) {
a5516438 2747 size = i_size_read(mapping->host) >> huge_page_shift(h);
ebed4bfc
HD
2748 if (idx >= size)
2749 goto out;
04f2cbe3 2750 page = alloc_huge_page(vma, address, 0);
2fc39cec 2751 if (IS_ERR(page)) {
76dcee75
AK
2752 ret = PTR_ERR(page);
2753 if (ret == -ENOMEM)
2754 ret = VM_FAULT_OOM;
2755 else
2756 ret = VM_FAULT_SIGBUS;
6bda666a
CL
2757 goto out;
2758 }
47ad8475 2759 clear_huge_page(page, address, pages_per_huge_page(h));
0ed361de 2760 __SetPageUptodate(page);
ac9b9c66 2761
f83a275d 2762 if (vma->vm_flags & VM_MAYSHARE) {
6bda666a 2763 int err;
45c682a6 2764 struct inode *inode = mapping->host;
6bda666a
CL
2765
2766 err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
2767 if (err) {
2768 put_page(page);
6bda666a
CL
2769 if (err == -EEXIST)
2770 goto retry;
2771 goto out;
2772 }
07443a85 2773 ClearPagePrivate(page);
45c682a6
KC
2774
2775 spin_lock(&inode->i_lock);
a5516438 2776 inode->i_blocks += blocks_per_huge_page(h);
45c682a6 2777 spin_unlock(&inode->i_lock);
23be7468 2778 } else {
6bda666a 2779 lock_page(page);
0fe6e20b
NH
2780 if (unlikely(anon_vma_prepare(vma))) {
2781 ret = VM_FAULT_OOM;
2782 goto backout_unlocked;
2783 }
409eb8c2 2784 anon_rmap = 1;
23be7468 2785 }
0fe6e20b 2786 } else {
998b4382
NH
2787 /*
2788 * If memory error occurs between mmap() and fault, some process
2789 * don't have hwpoisoned swap entry for errored virtual address.
2790 * So we need to block hugepage fault by PG_hwpoison bit check.
2791 */
2792 if (unlikely(PageHWPoison(page))) {
32f84528 2793 ret = VM_FAULT_HWPOISON |
972dc4de 2794 VM_FAULT_SET_HINDEX(hstate_index(h));
998b4382
NH
2795 goto backout_unlocked;
2796 }
6bda666a 2797 }
1e8f889b 2798
57303d80
AW
2799 /*
2800 * If we are going to COW a private mapping later, we examine the
2801 * pending reservations for this page now. This will ensure that
2802 * any allocations necessary to record that reservation occur outside
2803 * the spinlock.
2804 */
788c7df4 2805 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED))
2b26736c
AW
2806 if (vma_needs_reservation(h, vma, address) < 0) {
2807 ret = VM_FAULT_OOM;
2808 goto backout_unlocked;
2809 }
57303d80 2810
ac9b9c66 2811 spin_lock(&mm->page_table_lock);
a5516438 2812 size = i_size_read(mapping->host) >> huge_page_shift(h);
4c887265
AL
2813 if (idx >= size)
2814 goto backout;
2815
83c54070 2816 ret = 0;
7f2e9525 2817 if (!huge_pte_none(huge_ptep_get(ptep)))
4c887265
AL
2818 goto backout;
2819
07443a85
JK
2820 if (anon_rmap) {
2821 ClearPagePrivate(page);
409eb8c2 2822 hugepage_add_new_anon_rmap(page, vma, address);
07443a85 2823 }
409eb8c2
HD
2824 else
2825 page_dup_rmap(page);
1e8f889b
DG
2826 new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
2827 && (vma->vm_flags & VM_SHARED)));
2828 set_huge_pte_at(mm, address, ptep, new_pte);
2829
788c7df4 2830 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
1e8f889b 2831 /* Optimization, do the COW without a second fault */
04f2cbe3 2832 ret = hugetlb_cow(mm, vma, address, ptep, new_pte, page);
1e8f889b
DG
2833 }
2834
ac9b9c66 2835 spin_unlock(&mm->page_table_lock);
4c887265
AL
2836 unlock_page(page);
2837out:
ac9b9c66 2838 return ret;
4c887265
AL
2839
2840backout:
2841 spin_unlock(&mm->page_table_lock);
2b26736c 2842backout_unlocked:
4c887265
AL
2843 unlock_page(page);
2844 put_page(page);
2845 goto out;
ac9b9c66
HD
2846}
2847
86e5216f 2848int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
788c7df4 2849 unsigned long address, unsigned int flags)
86e5216f
AL
2850{
2851 pte_t *ptep;
2852 pte_t entry;
1e8f889b 2853 int ret;
0fe6e20b 2854 struct page *page = NULL;
57303d80 2855 struct page *pagecache_page = NULL;
3935baa9 2856 static DEFINE_MUTEX(hugetlb_instantiation_mutex);
a5516438 2857 struct hstate *h = hstate_vma(vma);
86e5216f 2858
1e16a539
KH
2859 address &= huge_page_mask(h);
2860
fd6a03ed
NH
2861 ptep = huge_pte_offset(mm, address);
2862 if (ptep) {
2863 entry = huge_ptep_get(ptep);
290408d4 2864 if (unlikely(is_hugetlb_entry_migration(entry))) {
30dad309 2865 migration_entry_wait_huge(mm, ptep);
290408d4
NH
2866 return 0;
2867 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
32f84528 2868 return VM_FAULT_HWPOISON_LARGE |
972dc4de 2869 VM_FAULT_SET_HINDEX(hstate_index(h));
fd6a03ed
NH
2870 }
2871
a5516438 2872 ptep = huge_pte_alloc(mm, address, huge_page_size(h));
86e5216f
AL
2873 if (!ptep)
2874 return VM_FAULT_OOM;
2875
3935baa9
DG
2876 /*
2877 * Serialize hugepage allocation and instantiation, so that we don't
2878 * get spurious allocation failures if two CPUs race to instantiate
2879 * the same page in the page cache.
2880 */
2881 mutex_lock(&hugetlb_instantiation_mutex);
7f2e9525
GS
2882 entry = huge_ptep_get(ptep);
2883 if (huge_pte_none(entry)) {
788c7df4 2884 ret = hugetlb_no_page(mm, vma, address, ptep, flags);
b4d1d99f 2885 goto out_mutex;
3935baa9 2886 }
86e5216f 2887
83c54070 2888 ret = 0;
1e8f889b 2889
57303d80
AW
2890 /*
2891 * If we are going to COW the mapping later, we examine the pending
2892 * reservations for this page now. This will ensure that any
2893 * allocations necessary to record that reservation occur outside the
2894 * spinlock. For private mappings, we also lookup the pagecache
2895 * page now as it is used to determine if a reservation has been
2896 * consumed.
2897 */
106c992a 2898 if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
2b26736c
AW
2899 if (vma_needs_reservation(h, vma, address) < 0) {
2900 ret = VM_FAULT_OOM;
b4d1d99f 2901 goto out_mutex;
2b26736c 2902 }
57303d80 2903
f83a275d 2904 if (!(vma->vm_flags & VM_MAYSHARE))
57303d80
AW
2905 pagecache_page = hugetlbfs_pagecache_page(h,
2906 vma, address);
2907 }
2908
56c9cfb1
NH
2909 /*
2910 * hugetlb_cow() requires page locks of pte_page(entry) and
2911 * pagecache_page, so here we need take the former one
2912 * when page != pagecache_page or !pagecache_page.
2913 * Note that locking order is always pagecache_page -> page,
2914 * so no worry about deadlock.
2915 */
2916 page = pte_page(entry);
66aebce7 2917 get_page(page);
56c9cfb1 2918 if (page != pagecache_page)
0fe6e20b 2919 lock_page(page);
0fe6e20b 2920
1e8f889b
DG
2921 spin_lock(&mm->page_table_lock);
2922 /* Check for a racing update before calling hugetlb_cow */
b4d1d99f
DG
2923 if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
2924 goto out_page_table_lock;
2925
2926
788c7df4 2927 if (flags & FAULT_FLAG_WRITE) {
106c992a 2928 if (!huge_pte_write(entry)) {
57303d80
AW
2929 ret = hugetlb_cow(mm, vma, address, ptep, entry,
2930 pagecache_page);
b4d1d99f
DG
2931 goto out_page_table_lock;
2932 }
106c992a 2933 entry = huge_pte_mkdirty(entry);
b4d1d99f
DG
2934 }
2935 entry = pte_mkyoung(entry);
788c7df4
HD
2936 if (huge_ptep_set_access_flags(vma, address, ptep, entry,
2937 flags & FAULT_FLAG_WRITE))
4b3073e1 2938 update_mmu_cache(vma, address, ptep);
b4d1d99f
DG
2939
2940out_page_table_lock:
1e8f889b 2941 spin_unlock(&mm->page_table_lock);
57303d80
AW
2942
2943 if (pagecache_page) {
2944 unlock_page(pagecache_page);
2945 put_page(pagecache_page);
2946 }
1f64d69c
DN
2947 if (page != pagecache_page)
2948 unlock_page(page);
66aebce7 2949 put_page(page);
57303d80 2950
b4d1d99f 2951out_mutex:
3935baa9 2952 mutex_unlock(&hugetlb_instantiation_mutex);
1e8f889b
DG
2953
2954 return ret;
86e5216f
AL
2955}
2956
28a35716
ML
2957long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
2958 struct page **pages, struct vm_area_struct **vmas,
2959 unsigned long *position, unsigned long *nr_pages,
2960 long i, unsigned int flags)
63551ae0 2961{
d5d4b0aa
CK
2962 unsigned long pfn_offset;
2963 unsigned long vaddr = *position;
28a35716 2964 unsigned long remainder = *nr_pages;
a5516438 2965 struct hstate *h = hstate_vma(vma);
63551ae0 2966
1c59827d 2967 spin_lock(&mm->page_table_lock);
63551ae0 2968 while (vaddr < vma->vm_end && remainder) {
4c887265 2969 pte_t *pte;
2a15efc9 2970 int absent;
4c887265 2971 struct page *page;
63551ae0 2972
4c887265
AL
2973 /*
2974 * Some archs (sparc64, sh*) have multiple pte_ts to
2a15efc9 2975 * each hugepage. We have to make sure we get the
4c887265
AL
2976 * first, for the page indexing below to work.
2977 */
a5516438 2978 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h));
2a15efc9
HD
2979 absent = !pte || huge_pte_none(huge_ptep_get(pte));
2980
2981 /*
2982 * When coredumping, it suits get_dump_page if we just return
3ae77f43
HD
2983 * an error where there's an empty slot with no huge pagecache
2984 * to back it. This way, we avoid allocating a hugepage, and
2985 * the sparse dumpfile avoids allocating disk blocks, but its
2986 * huge holes still show up with zeroes where they need to be.
2a15efc9 2987 */
3ae77f43
HD
2988 if (absent && (flags & FOLL_DUMP) &&
2989 !hugetlbfs_pagecache_present(h, vma, vaddr)) {
2a15efc9
HD
2990 remainder = 0;
2991 break;
2992 }
63551ae0 2993
9cc3a5bd
NH
2994 /*
2995 * We need call hugetlb_fault for both hugepages under migration
2996 * (in which case hugetlb_fault waits for the migration,) and
2997 * hwpoisoned hugepages (in which case we need to prevent the
2998 * caller from accessing to them.) In order to do this, we use
2999 * here is_swap_pte instead of is_hugetlb_entry_migration and
3000 * is_hugetlb_entry_hwpoisoned. This is because it simply covers
3001 * both cases, and because we can't follow correct pages
3002 * directly from any kind of swap entries.
3003 */
3004 if (absent || is_swap_pte(huge_ptep_get(pte)) ||
106c992a
GS
3005 ((flags & FOLL_WRITE) &&
3006 !huge_pte_write(huge_ptep_get(pte)))) {
4c887265 3007 int ret;
63551ae0 3008
4c887265 3009 spin_unlock(&mm->page_table_lock);
2a15efc9
HD
3010 ret = hugetlb_fault(mm, vma, vaddr,
3011 (flags & FOLL_WRITE) ? FAULT_FLAG_WRITE : 0);
4c887265 3012 spin_lock(&mm->page_table_lock);
a89182c7 3013 if (!(ret & VM_FAULT_ERROR))
4c887265 3014 continue;
63551ae0 3015
4c887265 3016 remainder = 0;
4c887265
AL
3017 break;
3018 }
3019
a5516438 3020 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
7f2e9525 3021 page = pte_page(huge_ptep_get(pte));
d5d4b0aa 3022same_page:
d6692183 3023 if (pages) {
2a15efc9 3024 pages[i] = mem_map_offset(page, pfn_offset);
4b2e38ad 3025 get_page(pages[i]);
d6692183 3026 }
63551ae0
DG
3027
3028 if (vmas)
3029 vmas[i] = vma;
3030
3031 vaddr += PAGE_SIZE;
d5d4b0aa 3032 ++pfn_offset;
63551ae0
DG
3033 --remainder;
3034 ++i;
d5d4b0aa 3035 if (vaddr < vma->vm_end && remainder &&
a5516438 3036 pfn_offset < pages_per_huge_page(h)) {
d5d4b0aa
CK
3037 /*
3038 * We use pfn_offset to avoid touching the pageframes
3039 * of this compound page.
3040 */
3041 goto same_page;
3042 }
63551ae0 3043 }
1c59827d 3044 spin_unlock(&mm->page_table_lock);
28a35716 3045 *nr_pages = remainder;
63551ae0
DG
3046 *position = vaddr;
3047
2a15efc9 3048 return i ? i : -EFAULT;
63551ae0 3049}
8f860591 3050
7da4d641 3051unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
8f860591
ZY
3052 unsigned long address, unsigned long end, pgprot_t newprot)
3053{
3054 struct mm_struct *mm = vma->vm_mm;
3055 unsigned long start = address;
3056 pte_t *ptep;
3057 pte_t pte;
a5516438 3058 struct hstate *h = hstate_vma(vma);
7da4d641 3059 unsigned long pages = 0;
8f860591
ZY
3060
3061 BUG_ON(address >= end);
3062 flush_cache_range(vma, address, end);
3063
3d48ae45 3064 mutex_lock(&vma->vm_file->f_mapping->i_mmap_mutex);
8f860591 3065 spin_lock(&mm->page_table_lock);
a5516438 3066 for (; address < end; address += huge_page_size(h)) {
8f860591
ZY
3067 ptep = huge_pte_offset(mm, address);
3068 if (!ptep)
3069 continue;
7da4d641
PZ
3070 if (huge_pmd_unshare(mm, &address, ptep)) {
3071 pages++;
39dde65c 3072 continue;
7da4d641 3073 }
7f2e9525 3074 if (!huge_pte_none(huge_ptep_get(ptep))) {
8f860591 3075 pte = huge_ptep_get_and_clear(mm, address, ptep);
106c992a 3076 pte = pte_mkhuge(huge_pte_modify(pte, newprot));
be7517d6 3077 pte = arch_make_huge_pte(pte, vma, NULL, 0);
8f860591 3078 set_huge_pte_at(mm, address, ptep, pte);
7da4d641 3079 pages++;
8f860591
ZY
3080 }
3081 }
3082 spin_unlock(&mm->page_table_lock);
d833352a
MG
3083 /*
3084 * Must flush TLB before releasing i_mmap_mutex: x86's huge_pmd_unshare
3085 * may have cleared our pud entry and done put_page on the page table:
3086 * once we release i_mmap_mutex, another task can do the final put_page
3087 * and that page table be reused and filled with junk.
3088 */
8f860591 3089 flush_tlb_range(vma, start, end);
d833352a 3090 mutex_unlock(&vma->vm_file->f_mapping->i_mmap_mutex);
7da4d641
PZ
3091
3092 return pages << h->order;
8f860591
ZY
3093}
3094
a1e78772
MG
3095int hugetlb_reserve_pages(struct inode *inode,
3096 long from, long to,
5a6fe125 3097 struct vm_area_struct *vma,
ca16d140 3098 vm_flags_t vm_flags)
e4e574b7 3099{
17c9d12e 3100 long ret, chg;
a5516438 3101 struct hstate *h = hstate_inode(inode);
90481622 3102 struct hugepage_subpool *spool = subpool_inode(inode);
e4e574b7 3103
17c9d12e
MG
3104 /*
3105 * Only apply hugepage reservation if asked. At fault time, an
3106 * attempt will be made for VM_NORESERVE to allocate a page
90481622 3107 * without using reserves
17c9d12e 3108 */
ca16d140 3109 if (vm_flags & VM_NORESERVE)
17c9d12e
MG
3110 return 0;
3111
a1e78772
MG
3112 /*
3113 * Shared mappings base their reservation on the number of pages that
3114 * are already allocated on behalf of the file. Private mappings need
3115 * to reserve the full area even if read-only as mprotect() may be
3116 * called to make the mapping read-write. Assume !vma is a shm mapping
3117 */
f83a275d 3118 if (!vma || vma->vm_flags & VM_MAYSHARE)
a1e78772 3119 chg = region_chg(&inode->i_mapping->private_list, from, to);
17c9d12e
MG
3120 else {
3121 struct resv_map *resv_map = resv_map_alloc();
3122 if (!resv_map)
3123 return -ENOMEM;
3124
a1e78772 3125 chg = to - from;
84afd99b 3126
17c9d12e
MG
3127 set_vma_resv_map(vma, resv_map);
3128 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
3129 }
3130
c50ac050
DH
3131 if (chg < 0) {
3132 ret = chg;
3133 goto out_err;
3134 }
8a630112 3135
90481622 3136 /* There must be enough pages in the subpool for the mapping */
c50ac050
DH
3137 if (hugepage_subpool_get_pages(spool, chg)) {
3138 ret = -ENOSPC;
3139 goto out_err;
3140 }
5a6fe125
MG
3141
3142 /*
17c9d12e 3143 * Check enough hugepages are available for the reservation.
90481622 3144 * Hand the pages back to the subpool if there are not
5a6fe125 3145 */
a5516438 3146 ret = hugetlb_acct_memory(h, chg);
68842c9b 3147 if (ret < 0) {
90481622 3148 hugepage_subpool_put_pages(spool, chg);
c50ac050 3149 goto out_err;
68842c9b 3150 }
17c9d12e
MG
3151
3152 /*
3153 * Account for the reservations made. Shared mappings record regions
3154 * that have reservations as they are shared by multiple VMAs.
3155 * When the last VMA disappears, the region map says how much
3156 * the reservation was and the page cache tells how much of
3157 * the reservation was consumed. Private mappings are per-VMA and
3158 * only the consumed reservations are tracked. When the VMA
3159 * disappears, the original reservation is the VMA size and the
3160 * consumed reservations are stored in the map. Hence, nothing
3161 * else has to be done for private mappings here
3162 */
f83a275d 3163 if (!vma || vma->vm_flags & VM_MAYSHARE)
a1e78772 3164 region_add(&inode->i_mapping->private_list, from, to);
a43a8c39 3165 return 0;
c50ac050 3166out_err:
4523e145
DH
3167 if (vma)
3168 resv_map_put(vma);
c50ac050 3169 return ret;
a43a8c39
CK
3170}
3171
3172void hugetlb_unreserve_pages(struct inode *inode, long offset, long freed)
3173{
a5516438 3174 struct hstate *h = hstate_inode(inode);
a43a8c39 3175 long chg = region_truncate(&inode->i_mapping->private_list, offset);
90481622 3176 struct hugepage_subpool *spool = subpool_inode(inode);
45c682a6
KC
3177
3178 spin_lock(&inode->i_lock);
e4c6f8be 3179 inode->i_blocks -= (blocks_per_huge_page(h) * freed);
45c682a6
KC
3180 spin_unlock(&inode->i_lock);
3181
90481622 3182 hugepage_subpool_put_pages(spool, (chg - freed));
a5516438 3183 hugetlb_acct_memory(h, -(chg - freed));
a43a8c39 3184}
93f70f90 3185
3212b535
SC
3186#ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
3187static unsigned long page_table_shareable(struct vm_area_struct *svma,
3188 struct vm_area_struct *vma,
3189 unsigned long addr, pgoff_t idx)
3190{
3191 unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
3192 svma->vm_start;
3193 unsigned long sbase = saddr & PUD_MASK;
3194 unsigned long s_end = sbase + PUD_SIZE;
3195
3196 /* Allow segments to share if only one is marked locked */
3197 unsigned long vm_flags = vma->vm_flags & ~VM_LOCKED;
3198 unsigned long svm_flags = svma->vm_flags & ~VM_LOCKED;
3199
3200 /*
3201 * match the virtual addresses, permission and the alignment of the
3202 * page table page.
3203 */
3204 if (pmd_index(addr) != pmd_index(saddr) ||
3205 vm_flags != svm_flags ||
3206 sbase < svma->vm_start || svma->vm_end < s_end)
3207 return 0;
3208
3209 return saddr;
3210}
3211
3212static int vma_shareable(struct vm_area_struct *vma, unsigned long addr)
3213{
3214 unsigned long base = addr & PUD_MASK;
3215 unsigned long end = base + PUD_SIZE;
3216
3217 /*
3218 * check on proper vm_flags and page table alignment
3219 */
3220 if (vma->vm_flags & VM_MAYSHARE &&
3221 vma->vm_start <= base && end <= vma->vm_end)
3222 return 1;
3223 return 0;
3224}
3225
3226/*
3227 * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
3228 * and returns the corresponding pte. While this is not necessary for the
3229 * !shared pmd case because we can allocate the pmd later as well, it makes the
3230 * code much cleaner. pmd allocation is essential for the shared case because
3231 * pud has to be populated inside the same i_mmap_mutex section - otherwise
3232 * racing tasks could either miss the sharing (see huge_pte_offset) or select a
3233 * bad pmd for sharing.
3234 */
3235pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
3236{
3237 struct vm_area_struct *vma = find_vma(mm, addr);
3238 struct address_space *mapping = vma->vm_file->f_mapping;
3239 pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
3240 vma->vm_pgoff;
3241 struct vm_area_struct *svma;
3242 unsigned long saddr;
3243 pte_t *spte = NULL;
3244 pte_t *pte;
3245
3246 if (!vma_shareable(vma, addr))
3247 return (pte_t *)pmd_alloc(mm, pud, addr);
3248
3249 mutex_lock(&mapping->i_mmap_mutex);
3250 vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
3251 if (svma == vma)
3252 continue;
3253
3254 saddr = page_table_shareable(svma, vma, addr, idx);
3255 if (saddr) {
3256 spte = huge_pte_offset(svma->vm_mm, saddr);
3257 if (spte) {
3258 get_page(virt_to_page(spte));
3259 break;
3260 }
3261 }
3262 }
3263
3264 if (!spte)
3265 goto out;
3266
3267 spin_lock(&mm->page_table_lock);
3268 if (pud_none(*pud))
3269 pud_populate(mm, pud,
3270 (pmd_t *)((unsigned long)spte & PAGE_MASK));
3271 else
3272 put_page(virt_to_page(spte));
3273 spin_unlock(&mm->page_table_lock);
3274out:
3275 pte = (pte_t *)pmd_alloc(mm, pud, addr);
3276 mutex_unlock(&mapping->i_mmap_mutex);
3277 return pte;
3278}
3279
3280/*
3281 * unmap huge page backed by shared pte.
3282 *
3283 * Hugetlb pte page is ref counted at the time of mapping. If pte is shared
3284 * indicated by page_count > 1, unmap is achieved by clearing pud and
3285 * decrementing the ref count. If count == 1, the pte page is not shared.
3286 *
3287 * called with vma->vm_mm->page_table_lock held.
3288 *
3289 * returns: 1 successfully unmapped a shared pte page
3290 * 0 the underlying pte page is not shared, or it is the last user
3291 */
3292int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
3293{
3294 pgd_t *pgd = pgd_offset(mm, *addr);
3295 pud_t *pud = pud_offset(pgd, *addr);
3296
3297 BUG_ON(page_count(virt_to_page(ptep)) == 0);
3298 if (page_count(virt_to_page(ptep)) == 1)
3299 return 0;
3300
3301 pud_clear(pud);
3302 put_page(virt_to_page(ptep));
3303 *addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE;
3304 return 1;
3305}
9e5fc74c
SC
3306#define want_pmd_share() (1)
3307#else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
3308pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
3309{
3310 return NULL;
3311}
3312#define want_pmd_share() (0)
3212b535
SC
3313#endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
3314
9e5fc74c
SC
3315#ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
3316pte_t *huge_pte_alloc(struct mm_struct *mm,
3317 unsigned long addr, unsigned long sz)
3318{
3319 pgd_t *pgd;
3320 pud_t *pud;
3321 pte_t *pte = NULL;
3322
3323 pgd = pgd_offset(mm, addr);
3324 pud = pud_alloc(mm, pgd, addr);
3325 if (pud) {
3326 if (sz == PUD_SIZE) {
3327 pte = (pte_t *)pud;
3328 } else {
3329 BUG_ON(sz != PMD_SIZE);
3330 if (want_pmd_share() && pud_none(*pud))
3331 pte = huge_pmd_share(mm, addr, pud);
3332 else
3333 pte = (pte_t *)pmd_alloc(mm, pud, addr);
3334 }
3335 }
3336 BUG_ON(pte && !pte_none(*pte) && !pte_huge(*pte));
3337
3338 return pte;
3339}
3340
3341pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr)
3342{
3343 pgd_t *pgd;
3344 pud_t *pud;
3345 pmd_t *pmd = NULL;
3346
3347 pgd = pgd_offset(mm, addr);
3348 if (pgd_present(*pgd)) {
3349 pud = pud_offset(pgd, addr);
3350 if (pud_present(*pud)) {
3351 if (pud_huge(*pud))
3352 return (pte_t *)pud;
3353 pmd = pmd_offset(pud, addr);
3354 }
3355 }
3356 return (pte_t *) pmd;
3357}
3358
3359struct page *
3360follow_huge_pmd(struct mm_struct *mm, unsigned long address,
3361 pmd_t *pmd, int write)
3362{
3363 struct page *page;
3364
3365 page = pte_page(*(pte_t *)pmd);
3366 if (page)
3367 page += ((address & ~PMD_MASK) >> PAGE_SHIFT);
3368 return page;
3369}
3370
3371struct page *
3372follow_huge_pud(struct mm_struct *mm, unsigned long address,
3373 pud_t *pud, int write)
3374{
3375 struct page *page;
3376
3377 page = pte_page(*(pte_t *)pud);
3378 if (page)
3379 page += ((address & ~PUD_MASK) >> PAGE_SHIFT);
3380 return page;
3381}
3382
3383#else /* !CONFIG_ARCH_WANT_GENERAL_HUGETLB */
3384
3385/* Can be overriden by architectures */
3386__attribute__((weak)) struct page *
3387follow_huge_pud(struct mm_struct *mm, unsigned long address,
3388 pud_t *pud, int write)
3389{
3390 BUG();
3391 return NULL;
3392}
3393
3394#endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
3395
d5bd9106
AK
3396#ifdef CONFIG_MEMORY_FAILURE
3397
6de2b1aa
NH
3398/* Should be called in hugetlb_lock */
3399static int is_hugepage_on_freelist(struct page *hpage)
3400{
3401 struct page *page;
3402 struct page *tmp;
3403 struct hstate *h = page_hstate(hpage);
3404 int nid = page_to_nid(hpage);
3405
3406 list_for_each_entry_safe(page, tmp, &h->hugepage_freelists[nid], lru)
3407 if (page == hpage)
3408 return 1;
3409 return 0;
3410}
3411
93f70f90
NH
3412/*
3413 * This function is called from memory failure code.
3414 * Assume the caller holds page lock of the head page.
3415 */
6de2b1aa 3416int dequeue_hwpoisoned_huge_page(struct page *hpage)
93f70f90
NH
3417{
3418 struct hstate *h = page_hstate(hpage);
3419 int nid = page_to_nid(hpage);
6de2b1aa 3420 int ret = -EBUSY;
93f70f90
NH
3421
3422 spin_lock(&hugetlb_lock);
6de2b1aa 3423 if (is_hugepage_on_freelist(hpage)) {
56f2fb14
NH
3424 /*
3425 * Hwpoisoned hugepage isn't linked to activelist or freelist,
3426 * but dangling hpage->lru can trigger list-debug warnings
3427 * (this happens when we call unpoison_memory() on it),
3428 * so let it point to itself with list_del_init().
3429 */
3430 list_del_init(&hpage->lru);
8c6c2ecb 3431 set_page_refcounted(hpage);
6de2b1aa
NH
3432 h->free_huge_pages--;
3433 h->free_huge_pages_node[nid]--;
3434 ret = 0;
3435 }
93f70f90 3436 spin_unlock(&hugetlb_lock);
6de2b1aa 3437 return ret;
93f70f90 3438}
6de2b1aa 3439#endif
31caf665
NH
3440
3441bool isolate_huge_page(struct page *page, struct list_head *list)
3442{
3443 VM_BUG_ON(!PageHead(page));
3444 if (!get_page_unless_zero(page))
3445 return false;
3446 spin_lock(&hugetlb_lock);
3447 list_move_tail(&page->lru, list);
3448 spin_unlock(&hugetlb_lock);
3449 return true;
3450}
3451
3452void putback_active_hugepage(struct page *page)
3453{
3454 VM_BUG_ON(!PageHead(page));
3455 spin_lock(&hugetlb_lock);
3456 list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
3457 spin_unlock(&hugetlb_lock);
3458 put_page(page);
3459}