'sysctl_max_map_count' should be non-negative
[linux-2.6-block.git] / mm / hugetlb.c
CommitLineData
1da177e4
LT
1/*
2 * Generic hugetlb support.
3 * (C) William Irwin, April 2004
4 */
5#include <linux/gfp.h>
6#include <linux/list.h>
7#include <linux/init.h>
8#include <linux/module.h>
9#include <linux/mm.h>
e1759c21 10#include <linux/seq_file.h>
1da177e4
LT
11#include <linux/sysctl.h>
12#include <linux/highmem.h>
cddb8a5c 13#include <linux/mmu_notifier.h>
1da177e4 14#include <linux/nodemask.h>
63551ae0 15#include <linux/pagemap.h>
5da7ca86 16#include <linux/mempolicy.h>
aea47ff3 17#include <linux/cpuset.h>
3935baa9 18#include <linux/mutex.h>
aa888a74 19#include <linux/bootmem.h>
a3437870 20#include <linux/sysfs.h>
d6606683 21
63551ae0
DG
22#include <asm/page.h>
23#include <asm/pgtable.h>
78a34ae2 24#include <asm/io.h>
63551ae0
DG
25
26#include <linux/hugetlb.h>
9a305230 27#include <linux/node.h>
7835e98b 28#include "internal.h"
1da177e4
LT
29
30const unsigned long hugetlb_zero = 0, hugetlb_infinity = ~0UL;
396faf03
MG
31static gfp_t htlb_alloc_mask = GFP_HIGHUSER;
32unsigned long hugepages_treat_as_movable;
a5516438 33
e5ff2159
AK
34static int max_hstate;
35unsigned int default_hstate_idx;
36struct hstate hstates[HUGE_MAX_HSTATE];
37
53ba51d2
JT
38__initdata LIST_HEAD(huge_boot_pages);
39
e5ff2159
AK
40/* for command line parsing */
41static struct hstate * __initdata parsed_hstate;
42static unsigned long __initdata default_hstate_max_huge_pages;
e11bfbfc 43static unsigned long __initdata default_hstate_size;
e5ff2159
AK
44
45#define for_each_hstate(h) \
46 for ((h) = hstates; (h) < &hstates[max_hstate]; (h)++)
396faf03 47
3935baa9
DG
48/*
49 * Protects updates to hugepage_freelists, nr_huge_pages, and free_huge_pages
50 */
51static DEFINE_SPINLOCK(hugetlb_lock);
0bd0f9fb 52
96822904
AW
53/*
54 * Region tracking -- allows tracking of reservations and instantiated pages
55 * across the pages in a mapping.
84afd99b
AW
56 *
57 * The region data structures are protected by a combination of the mmap_sem
58 * and the hugetlb_instantion_mutex. To access or modify a region the caller
59 * must either hold the mmap_sem for write, or the mmap_sem for read and
60 * the hugetlb_instantiation mutex:
61 *
62 * down_write(&mm->mmap_sem);
63 * or
64 * down_read(&mm->mmap_sem);
65 * mutex_lock(&hugetlb_instantiation_mutex);
96822904
AW
66 */
67struct file_region {
68 struct list_head link;
69 long from;
70 long to;
71};
72
73static long region_add(struct list_head *head, long f, long t)
74{
75 struct file_region *rg, *nrg, *trg;
76
77 /* Locate the region we are either in or before. */
78 list_for_each_entry(rg, head, link)
79 if (f <= rg->to)
80 break;
81
82 /* Round our left edge to the current segment if it encloses us. */
83 if (f > rg->from)
84 f = rg->from;
85
86 /* Check for and consume any regions we now overlap with. */
87 nrg = rg;
88 list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
89 if (&rg->link == head)
90 break;
91 if (rg->from > t)
92 break;
93
94 /* If this area reaches higher then extend our area to
95 * include it completely. If this is not the first area
96 * which we intend to reuse, free it. */
97 if (rg->to > t)
98 t = rg->to;
99 if (rg != nrg) {
100 list_del(&rg->link);
101 kfree(rg);
102 }
103 }
104 nrg->from = f;
105 nrg->to = t;
106 return 0;
107}
108
109static long region_chg(struct list_head *head, long f, long t)
110{
111 struct file_region *rg, *nrg;
112 long chg = 0;
113
114 /* Locate the region we are before or in. */
115 list_for_each_entry(rg, head, link)
116 if (f <= rg->to)
117 break;
118
119 /* If we are below the current region then a new region is required.
120 * Subtle, allocate a new region at the position but make it zero
121 * size such that we can guarantee to record the reservation. */
122 if (&rg->link == head || t < rg->from) {
123 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
124 if (!nrg)
125 return -ENOMEM;
126 nrg->from = f;
127 nrg->to = f;
128 INIT_LIST_HEAD(&nrg->link);
129 list_add(&nrg->link, rg->link.prev);
130
131 return t - f;
132 }
133
134 /* Round our left edge to the current segment if it encloses us. */
135 if (f > rg->from)
136 f = rg->from;
137 chg = t - f;
138
139 /* Check for and consume any regions we now overlap with. */
140 list_for_each_entry(rg, rg->link.prev, link) {
141 if (&rg->link == head)
142 break;
143 if (rg->from > t)
144 return chg;
145
146 /* We overlap with this area, if it extends futher than
147 * us then we must extend ourselves. Account for its
148 * existing reservation. */
149 if (rg->to > t) {
150 chg += rg->to - t;
151 t = rg->to;
152 }
153 chg -= rg->to - rg->from;
154 }
155 return chg;
156}
157
158static long region_truncate(struct list_head *head, long end)
159{
160 struct file_region *rg, *trg;
161 long chg = 0;
162
163 /* Locate the region we are either in or before. */
164 list_for_each_entry(rg, head, link)
165 if (end <= rg->to)
166 break;
167 if (&rg->link == head)
168 return 0;
169
170 /* If we are in the middle of a region then adjust it. */
171 if (end > rg->from) {
172 chg = rg->to - end;
173 rg->to = end;
174 rg = list_entry(rg->link.next, typeof(*rg), link);
175 }
176
177 /* Drop any remaining regions. */
178 list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
179 if (&rg->link == head)
180 break;
181 chg += rg->to - rg->from;
182 list_del(&rg->link);
183 kfree(rg);
184 }
185 return chg;
186}
187
84afd99b
AW
188static long region_count(struct list_head *head, long f, long t)
189{
190 struct file_region *rg;
191 long chg = 0;
192
193 /* Locate each segment we overlap with, and count that overlap. */
194 list_for_each_entry(rg, head, link) {
195 int seg_from;
196 int seg_to;
197
198 if (rg->to <= f)
199 continue;
200 if (rg->from >= t)
201 break;
202
203 seg_from = max(rg->from, f);
204 seg_to = min(rg->to, t);
205
206 chg += seg_to - seg_from;
207 }
208
209 return chg;
210}
211
e7c4b0bf
AW
212/*
213 * Convert the address within this vma to the page offset within
214 * the mapping, in pagecache page units; huge pages here.
215 */
a5516438
AK
216static pgoff_t vma_hugecache_offset(struct hstate *h,
217 struct vm_area_struct *vma, unsigned long address)
e7c4b0bf 218{
a5516438
AK
219 return ((address - vma->vm_start) >> huge_page_shift(h)) +
220 (vma->vm_pgoff >> huge_page_order(h));
e7c4b0bf
AW
221}
222
08fba699
MG
223/*
224 * Return the size of the pages allocated when backing a VMA. In the majority
225 * cases this will be same size as used by the page table entries.
226 */
227unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
228{
229 struct hstate *hstate;
230
231 if (!is_vm_hugetlb_page(vma))
232 return PAGE_SIZE;
233
234 hstate = hstate_vma(vma);
235
236 return 1UL << (hstate->order + PAGE_SHIFT);
237}
f340ca0f 238EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
08fba699 239
3340289d
MG
240/*
241 * Return the page size being used by the MMU to back a VMA. In the majority
242 * of cases, the page size used by the kernel matches the MMU size. On
243 * architectures where it differs, an architecture-specific version of this
244 * function is required.
245 */
246#ifndef vma_mmu_pagesize
247unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
248{
249 return vma_kernel_pagesize(vma);
250}
251#endif
252
84afd99b
AW
253/*
254 * Flags for MAP_PRIVATE reservations. These are stored in the bottom
255 * bits of the reservation map pointer, which are always clear due to
256 * alignment.
257 */
258#define HPAGE_RESV_OWNER (1UL << 0)
259#define HPAGE_RESV_UNMAPPED (1UL << 1)
04f2cbe3 260#define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
84afd99b 261
a1e78772
MG
262/*
263 * These helpers are used to track how many pages are reserved for
264 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
265 * is guaranteed to have their future faults succeed.
266 *
267 * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
268 * the reserve counters are updated with the hugetlb_lock held. It is safe
269 * to reset the VMA at fork() time as it is not in use yet and there is no
270 * chance of the global counters getting corrupted as a result of the values.
84afd99b
AW
271 *
272 * The private mapping reservation is represented in a subtly different
273 * manner to a shared mapping. A shared mapping has a region map associated
274 * with the underlying file, this region map represents the backing file
275 * pages which have ever had a reservation assigned which this persists even
276 * after the page is instantiated. A private mapping has a region map
277 * associated with the original mmap which is attached to all VMAs which
278 * reference it, this region map represents those offsets which have consumed
279 * reservation ie. where pages have been instantiated.
a1e78772 280 */
e7c4b0bf
AW
281static unsigned long get_vma_private_data(struct vm_area_struct *vma)
282{
283 return (unsigned long)vma->vm_private_data;
284}
285
286static void set_vma_private_data(struct vm_area_struct *vma,
287 unsigned long value)
288{
289 vma->vm_private_data = (void *)value;
290}
291
84afd99b
AW
292struct resv_map {
293 struct kref refs;
294 struct list_head regions;
295};
296
2a4b3ded 297static struct resv_map *resv_map_alloc(void)
84afd99b
AW
298{
299 struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
300 if (!resv_map)
301 return NULL;
302
303 kref_init(&resv_map->refs);
304 INIT_LIST_HEAD(&resv_map->regions);
305
306 return resv_map;
307}
308
2a4b3ded 309static void resv_map_release(struct kref *ref)
84afd99b
AW
310{
311 struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
312
313 /* Clear out any active regions before we release the map. */
314 region_truncate(&resv_map->regions, 0);
315 kfree(resv_map);
316}
317
318static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
a1e78772
MG
319{
320 VM_BUG_ON(!is_vm_hugetlb_page(vma));
f83a275d 321 if (!(vma->vm_flags & VM_MAYSHARE))
84afd99b
AW
322 return (struct resv_map *)(get_vma_private_data(vma) &
323 ~HPAGE_RESV_MASK);
2a4b3ded 324 return NULL;
a1e78772
MG
325}
326
84afd99b 327static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
a1e78772
MG
328{
329 VM_BUG_ON(!is_vm_hugetlb_page(vma));
f83a275d 330 VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
a1e78772 331
84afd99b
AW
332 set_vma_private_data(vma, (get_vma_private_data(vma) &
333 HPAGE_RESV_MASK) | (unsigned long)map);
04f2cbe3
MG
334}
335
336static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
337{
04f2cbe3 338 VM_BUG_ON(!is_vm_hugetlb_page(vma));
f83a275d 339 VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
e7c4b0bf
AW
340
341 set_vma_private_data(vma, get_vma_private_data(vma) | flags);
04f2cbe3
MG
342}
343
344static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
345{
346 VM_BUG_ON(!is_vm_hugetlb_page(vma));
e7c4b0bf
AW
347
348 return (get_vma_private_data(vma) & flag) != 0;
a1e78772
MG
349}
350
351/* Decrement the reserved pages in the hugepage pool by one */
a5516438
AK
352static void decrement_hugepage_resv_vma(struct hstate *h,
353 struct vm_area_struct *vma)
a1e78772 354{
c37f9fb1
AW
355 if (vma->vm_flags & VM_NORESERVE)
356 return;
357
f83a275d 358 if (vma->vm_flags & VM_MAYSHARE) {
a1e78772 359 /* Shared mappings always use reserves */
a5516438 360 h->resv_huge_pages--;
84afd99b 361 } else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
a1e78772
MG
362 /*
363 * Only the process that called mmap() has reserves for
364 * private mappings.
365 */
a5516438 366 h->resv_huge_pages--;
a1e78772
MG
367 }
368}
369
04f2cbe3 370/* Reset counters to 0 and clear all HPAGE_RESV_* flags */
a1e78772
MG
371void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
372{
373 VM_BUG_ON(!is_vm_hugetlb_page(vma));
f83a275d 374 if (!(vma->vm_flags & VM_MAYSHARE))
a1e78772
MG
375 vma->vm_private_data = (void *)0;
376}
377
378/* Returns true if the VMA has associated reserve pages */
7f09ca51 379static int vma_has_reserves(struct vm_area_struct *vma)
a1e78772 380{
f83a275d 381 if (vma->vm_flags & VM_MAYSHARE)
7f09ca51
MG
382 return 1;
383 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER))
384 return 1;
385 return 0;
a1e78772
MG
386}
387
69d177c2
AW
388static void clear_gigantic_page(struct page *page,
389 unsigned long addr, unsigned long sz)
390{
391 int i;
392 struct page *p = page;
393
394 might_sleep();
395 for (i = 0; i < sz/PAGE_SIZE; i++, p = mem_map_next(p, page, i)) {
396 cond_resched();
397 clear_user_highpage(p, addr + i * PAGE_SIZE);
398 }
399}
a5516438
AK
400static void clear_huge_page(struct page *page,
401 unsigned long addr, unsigned long sz)
79ac6ba4
DG
402{
403 int i;
404
ebdd4aea
HE
405 if (unlikely(sz > MAX_ORDER_NR_PAGES)) {
406 clear_gigantic_page(page, addr, sz);
407 return;
408 }
69d177c2 409
79ac6ba4 410 might_sleep();
a5516438 411 for (i = 0; i < sz/PAGE_SIZE; i++) {
79ac6ba4 412 cond_resched();
281e0e3b 413 clear_user_highpage(page + i, addr + i * PAGE_SIZE);
79ac6ba4
DG
414 }
415}
416
69d177c2
AW
417static void copy_gigantic_page(struct page *dst, struct page *src,
418 unsigned long addr, struct vm_area_struct *vma)
419{
420 int i;
421 struct hstate *h = hstate_vma(vma);
422 struct page *dst_base = dst;
423 struct page *src_base = src;
424 might_sleep();
425 for (i = 0; i < pages_per_huge_page(h); ) {
426 cond_resched();
427 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
428
429 i++;
430 dst = mem_map_next(dst, dst_base, i);
431 src = mem_map_next(src, src_base, i);
432 }
433}
79ac6ba4 434static void copy_huge_page(struct page *dst, struct page *src,
9de455b2 435 unsigned long addr, struct vm_area_struct *vma)
79ac6ba4
DG
436{
437 int i;
a5516438 438 struct hstate *h = hstate_vma(vma);
79ac6ba4 439
ebdd4aea
HE
440 if (unlikely(pages_per_huge_page(h) > MAX_ORDER_NR_PAGES)) {
441 copy_gigantic_page(dst, src, addr, vma);
442 return;
443 }
69d177c2 444
79ac6ba4 445 might_sleep();
a5516438 446 for (i = 0; i < pages_per_huge_page(h); i++) {
79ac6ba4 447 cond_resched();
9de455b2 448 copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
79ac6ba4
DG
449 }
450}
451
a5516438 452static void enqueue_huge_page(struct hstate *h, struct page *page)
1da177e4
LT
453{
454 int nid = page_to_nid(page);
a5516438
AK
455 list_add(&page->lru, &h->hugepage_freelists[nid]);
456 h->free_huge_pages++;
457 h->free_huge_pages_node[nid]++;
1da177e4
LT
458}
459
a5516438
AK
460static struct page *dequeue_huge_page_vma(struct hstate *h,
461 struct vm_area_struct *vma,
04f2cbe3 462 unsigned long address, int avoid_reserve)
1da177e4 463{
31a5c6e4 464 int nid;
1da177e4 465 struct page *page = NULL;
480eccf9 466 struct mempolicy *mpol;
19770b32 467 nodemask_t *nodemask;
396faf03 468 struct zonelist *zonelist = huge_zonelist(vma, address,
19770b32 469 htlb_alloc_mask, &mpol, &nodemask);
dd1a239f
MG
470 struct zone *zone;
471 struct zoneref *z;
1da177e4 472
a1e78772
MG
473 /*
474 * A child process with MAP_PRIVATE mappings created by their parent
475 * have no page reserves. This check ensures that reservations are
476 * not "stolen". The child may still get SIGKILLed
477 */
7f09ca51 478 if (!vma_has_reserves(vma) &&
a5516438 479 h->free_huge_pages - h->resv_huge_pages == 0)
a1e78772
MG
480 return NULL;
481
04f2cbe3 482 /* If reserves cannot be used, ensure enough pages are in the pool */
a5516438 483 if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
04f2cbe3
MG
484 return NULL;
485
19770b32
MG
486 for_each_zone_zonelist_nodemask(zone, z, zonelist,
487 MAX_NR_ZONES - 1, nodemask) {
54a6eb5c
MG
488 nid = zone_to_nid(zone);
489 if (cpuset_zone_allowed_softwall(zone, htlb_alloc_mask) &&
a5516438
AK
490 !list_empty(&h->hugepage_freelists[nid])) {
491 page = list_entry(h->hugepage_freelists[nid].next,
3abf7afd
AM
492 struct page, lru);
493 list_del(&page->lru);
a5516438
AK
494 h->free_huge_pages--;
495 h->free_huge_pages_node[nid]--;
04f2cbe3
MG
496
497 if (!avoid_reserve)
a5516438 498 decrement_hugepage_resv_vma(h, vma);
a1e78772 499
5ab3ee7b 500 break;
3abf7afd 501 }
1da177e4 502 }
52cd3b07 503 mpol_cond_put(mpol);
1da177e4
LT
504 return page;
505}
506
a5516438 507static void update_and_free_page(struct hstate *h, struct page *page)
6af2acb6
AL
508{
509 int i;
a5516438 510
18229df5
AW
511 VM_BUG_ON(h->order >= MAX_ORDER);
512
a5516438
AK
513 h->nr_huge_pages--;
514 h->nr_huge_pages_node[page_to_nid(page)]--;
515 for (i = 0; i < pages_per_huge_page(h); i++) {
6af2acb6
AL
516 page[i].flags &= ~(1 << PG_locked | 1 << PG_error | 1 << PG_referenced |
517 1 << PG_dirty | 1 << PG_active | 1 << PG_reserved |
518 1 << PG_private | 1<< PG_writeback);
519 }
520 set_compound_page_dtor(page, NULL);
521 set_page_refcounted(page);
7f2e9525 522 arch_release_hugepage(page);
a5516438 523 __free_pages(page, huge_page_order(h));
6af2acb6
AL
524}
525
e5ff2159
AK
526struct hstate *size_to_hstate(unsigned long size)
527{
528 struct hstate *h;
529
530 for_each_hstate(h) {
531 if (huge_page_size(h) == size)
532 return h;
533 }
534 return NULL;
535}
536
27a85ef1
DG
537static void free_huge_page(struct page *page)
538{
a5516438
AK
539 /*
540 * Can't pass hstate in here because it is called from the
541 * compound page destructor.
542 */
e5ff2159 543 struct hstate *h = page_hstate(page);
7893d1d5 544 int nid = page_to_nid(page);
c79fb75e 545 struct address_space *mapping;
27a85ef1 546
c79fb75e 547 mapping = (struct address_space *) page_private(page);
e5df70ab 548 set_page_private(page, 0);
7893d1d5 549 BUG_ON(page_count(page));
27a85ef1
DG
550 INIT_LIST_HEAD(&page->lru);
551
552 spin_lock(&hugetlb_lock);
aa888a74 553 if (h->surplus_huge_pages_node[nid] && huge_page_order(h) < MAX_ORDER) {
a5516438
AK
554 update_and_free_page(h, page);
555 h->surplus_huge_pages--;
556 h->surplus_huge_pages_node[nid]--;
7893d1d5 557 } else {
a5516438 558 enqueue_huge_page(h, page);
7893d1d5 559 }
27a85ef1 560 spin_unlock(&hugetlb_lock);
c79fb75e 561 if (mapping)
9a119c05 562 hugetlb_put_quota(mapping, 1);
27a85ef1
DG
563}
564
a5516438 565static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
b7ba30c6
AK
566{
567 set_compound_page_dtor(page, free_huge_page);
568 spin_lock(&hugetlb_lock);
a5516438
AK
569 h->nr_huge_pages++;
570 h->nr_huge_pages_node[nid]++;
b7ba30c6
AK
571 spin_unlock(&hugetlb_lock);
572 put_page(page); /* free it into the hugepage allocator */
573}
574
20a0307c
WF
575static void prep_compound_gigantic_page(struct page *page, unsigned long order)
576{
577 int i;
578 int nr_pages = 1 << order;
579 struct page *p = page + 1;
580
581 /* we rely on prep_new_huge_page to set the destructor */
582 set_compound_order(page, order);
583 __SetPageHead(page);
584 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
585 __SetPageTail(p);
586 p->first_page = page;
587 }
588}
589
590int PageHuge(struct page *page)
591{
592 compound_page_dtor *dtor;
593
594 if (!PageCompound(page))
595 return 0;
596
597 page = compound_head(page);
598 dtor = get_compound_page_dtor(page);
599
600 return dtor == free_huge_page;
601}
602
a5516438 603static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid)
1da177e4 604{
1da177e4 605 struct page *page;
f96efd58 606
aa888a74
AK
607 if (h->order >= MAX_ORDER)
608 return NULL;
609
6484eb3e 610 page = alloc_pages_exact_node(nid,
551883ae
NA
611 htlb_alloc_mask|__GFP_COMP|__GFP_THISNODE|
612 __GFP_REPEAT|__GFP_NOWARN,
a5516438 613 huge_page_order(h));
1da177e4 614 if (page) {
7f2e9525 615 if (arch_prepare_hugepage(page)) {
caff3a2c 616 __free_pages(page, huge_page_order(h));
7b8ee84d 617 return NULL;
7f2e9525 618 }
a5516438 619 prep_new_huge_page(h, page, nid);
1da177e4 620 }
63b4613c
NA
621
622 return page;
623}
624
9a76db09 625/*
6ae11b27
LS
626 * common helper functions for hstate_next_node_to_{alloc|free}.
627 * We may have allocated or freed a huge page based on a different
628 * nodes_allowed previously, so h->next_node_to_{alloc|free} might
629 * be outside of *nodes_allowed. Ensure that we use an allowed
630 * node for alloc or free.
9a76db09 631 */
6ae11b27 632static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
9a76db09 633{
6ae11b27 634 nid = next_node(nid, *nodes_allowed);
9a76db09 635 if (nid == MAX_NUMNODES)
6ae11b27 636 nid = first_node(*nodes_allowed);
9a76db09
LS
637 VM_BUG_ON(nid >= MAX_NUMNODES);
638
639 return nid;
640}
641
6ae11b27
LS
642static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
643{
644 if (!node_isset(nid, *nodes_allowed))
645 nid = next_node_allowed(nid, nodes_allowed);
646 return nid;
647}
648
5ced66c9 649/*
6ae11b27
LS
650 * returns the previously saved node ["this node"] from which to
651 * allocate a persistent huge page for the pool and advance the
652 * next node from which to allocate, handling wrap at end of node
653 * mask.
5ced66c9 654 */
6ae11b27
LS
655static int hstate_next_node_to_alloc(struct hstate *h,
656 nodemask_t *nodes_allowed)
5ced66c9 657{
6ae11b27
LS
658 int nid;
659
660 VM_BUG_ON(!nodes_allowed);
661
662 nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
663 h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
9a76db09 664
9a76db09 665 return nid;
5ced66c9
AK
666}
667
6ae11b27 668static int alloc_fresh_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
63b4613c
NA
669{
670 struct page *page;
671 int start_nid;
672 int next_nid;
673 int ret = 0;
674
6ae11b27 675 start_nid = hstate_next_node_to_alloc(h, nodes_allowed);
e8c5c824 676 next_nid = start_nid;
63b4613c
NA
677
678 do {
e8c5c824 679 page = alloc_fresh_huge_page_node(h, next_nid);
9a76db09 680 if (page) {
63b4613c 681 ret = 1;
9a76db09
LS
682 break;
683 }
6ae11b27 684 next_nid = hstate_next_node_to_alloc(h, nodes_allowed);
9a76db09 685 } while (next_nid != start_nid);
63b4613c 686
3b116300
AL
687 if (ret)
688 count_vm_event(HTLB_BUDDY_PGALLOC);
689 else
690 count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
691
63b4613c 692 return ret;
1da177e4
LT
693}
694
e8c5c824 695/*
6ae11b27
LS
696 * helper for free_pool_huge_page() - return the previously saved
697 * node ["this node"] from which to free a huge page. Advance the
698 * next node id whether or not we find a free huge page to free so
699 * that the next attempt to free addresses the next node.
e8c5c824 700 */
6ae11b27 701static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
e8c5c824 702{
6ae11b27
LS
703 int nid;
704
705 VM_BUG_ON(!nodes_allowed);
706
707 nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
708 h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
9a76db09 709
9a76db09 710 return nid;
e8c5c824
LS
711}
712
713/*
714 * Free huge page from pool from next node to free.
715 * Attempt to keep persistent huge pages more or less
716 * balanced over allowed nodes.
717 * Called with hugetlb_lock locked.
718 */
6ae11b27
LS
719static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
720 bool acct_surplus)
e8c5c824
LS
721{
722 int start_nid;
723 int next_nid;
724 int ret = 0;
725
6ae11b27 726 start_nid = hstate_next_node_to_free(h, nodes_allowed);
e8c5c824
LS
727 next_nid = start_nid;
728
729 do {
685f3457
LS
730 /*
731 * If we're returning unused surplus pages, only examine
732 * nodes with surplus pages.
733 */
734 if ((!acct_surplus || h->surplus_huge_pages_node[next_nid]) &&
735 !list_empty(&h->hugepage_freelists[next_nid])) {
e8c5c824
LS
736 struct page *page =
737 list_entry(h->hugepage_freelists[next_nid].next,
738 struct page, lru);
739 list_del(&page->lru);
740 h->free_huge_pages--;
741 h->free_huge_pages_node[next_nid]--;
685f3457
LS
742 if (acct_surplus) {
743 h->surplus_huge_pages--;
744 h->surplus_huge_pages_node[next_nid]--;
745 }
e8c5c824
LS
746 update_and_free_page(h, page);
747 ret = 1;
9a76db09 748 break;
e8c5c824 749 }
6ae11b27 750 next_nid = hstate_next_node_to_free(h, nodes_allowed);
9a76db09 751 } while (next_nid != start_nid);
e8c5c824
LS
752
753 return ret;
754}
755
a5516438
AK
756static struct page *alloc_buddy_huge_page(struct hstate *h,
757 struct vm_area_struct *vma, unsigned long address)
7893d1d5
AL
758{
759 struct page *page;
d1c3fb1f 760 unsigned int nid;
7893d1d5 761
aa888a74
AK
762 if (h->order >= MAX_ORDER)
763 return NULL;
764
d1c3fb1f
NA
765 /*
766 * Assume we will successfully allocate the surplus page to
767 * prevent racing processes from causing the surplus to exceed
768 * overcommit
769 *
770 * This however introduces a different race, where a process B
771 * tries to grow the static hugepage pool while alloc_pages() is
772 * called by process A. B will only examine the per-node
773 * counters in determining if surplus huge pages can be
774 * converted to normal huge pages in adjust_pool_surplus(). A
775 * won't be able to increment the per-node counter, until the
776 * lock is dropped by B, but B doesn't drop hugetlb_lock until
777 * no more huge pages can be converted from surplus to normal
778 * state (and doesn't try to convert again). Thus, we have a
779 * case where a surplus huge page exists, the pool is grown, and
780 * the surplus huge page still exists after, even though it
781 * should just have been converted to a normal huge page. This
782 * does not leak memory, though, as the hugepage will be freed
783 * once it is out of use. It also does not allow the counters to
784 * go out of whack in adjust_pool_surplus() as we don't modify
785 * the node values until we've gotten the hugepage and only the
786 * per-node value is checked there.
787 */
788 spin_lock(&hugetlb_lock);
a5516438 789 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
d1c3fb1f
NA
790 spin_unlock(&hugetlb_lock);
791 return NULL;
792 } else {
a5516438
AK
793 h->nr_huge_pages++;
794 h->surplus_huge_pages++;
d1c3fb1f
NA
795 }
796 spin_unlock(&hugetlb_lock);
797
551883ae
NA
798 page = alloc_pages(htlb_alloc_mask|__GFP_COMP|
799 __GFP_REPEAT|__GFP_NOWARN,
a5516438 800 huge_page_order(h));
d1c3fb1f 801
caff3a2c
GS
802 if (page && arch_prepare_hugepage(page)) {
803 __free_pages(page, huge_page_order(h));
804 return NULL;
805 }
806
d1c3fb1f 807 spin_lock(&hugetlb_lock);
7893d1d5 808 if (page) {
2668db91
AL
809 /*
810 * This page is now managed by the hugetlb allocator and has
811 * no users -- drop the buddy allocator's reference.
812 */
813 put_page_testzero(page);
814 VM_BUG_ON(page_count(page));
d1c3fb1f 815 nid = page_to_nid(page);
7893d1d5 816 set_compound_page_dtor(page, free_huge_page);
d1c3fb1f
NA
817 /*
818 * We incremented the global counters already
819 */
a5516438
AK
820 h->nr_huge_pages_node[nid]++;
821 h->surplus_huge_pages_node[nid]++;
3b116300 822 __count_vm_event(HTLB_BUDDY_PGALLOC);
d1c3fb1f 823 } else {
a5516438
AK
824 h->nr_huge_pages--;
825 h->surplus_huge_pages--;
3b116300 826 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
7893d1d5 827 }
d1c3fb1f 828 spin_unlock(&hugetlb_lock);
7893d1d5
AL
829
830 return page;
831}
832
e4e574b7
AL
833/*
834 * Increase the hugetlb pool such that it can accomodate a reservation
835 * of size 'delta'.
836 */
a5516438 837static int gather_surplus_pages(struct hstate *h, int delta)
e4e574b7
AL
838{
839 struct list_head surplus_list;
840 struct page *page, *tmp;
841 int ret, i;
842 int needed, allocated;
843
a5516438 844 needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
ac09b3a1 845 if (needed <= 0) {
a5516438 846 h->resv_huge_pages += delta;
e4e574b7 847 return 0;
ac09b3a1 848 }
e4e574b7
AL
849
850 allocated = 0;
851 INIT_LIST_HEAD(&surplus_list);
852
853 ret = -ENOMEM;
854retry:
855 spin_unlock(&hugetlb_lock);
856 for (i = 0; i < needed; i++) {
a5516438 857 page = alloc_buddy_huge_page(h, NULL, 0);
e4e574b7
AL
858 if (!page) {
859 /*
860 * We were not able to allocate enough pages to
861 * satisfy the entire reservation so we free what
862 * we've allocated so far.
863 */
864 spin_lock(&hugetlb_lock);
865 needed = 0;
866 goto free;
867 }
868
869 list_add(&page->lru, &surplus_list);
870 }
871 allocated += needed;
872
873 /*
874 * After retaking hugetlb_lock, we need to recalculate 'needed'
875 * because either resv_huge_pages or free_huge_pages may have changed.
876 */
877 spin_lock(&hugetlb_lock);
a5516438
AK
878 needed = (h->resv_huge_pages + delta) -
879 (h->free_huge_pages + allocated);
e4e574b7
AL
880 if (needed > 0)
881 goto retry;
882
883 /*
884 * The surplus_list now contains _at_least_ the number of extra pages
885 * needed to accomodate the reservation. Add the appropriate number
886 * of pages to the hugetlb pool and free the extras back to the buddy
ac09b3a1
AL
887 * allocator. Commit the entire reservation here to prevent another
888 * process from stealing the pages as they are added to the pool but
889 * before they are reserved.
e4e574b7
AL
890 */
891 needed += allocated;
a5516438 892 h->resv_huge_pages += delta;
e4e574b7
AL
893 ret = 0;
894free:
19fc3f0a 895 /* Free the needed pages to the hugetlb pool */
e4e574b7 896 list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
19fc3f0a
AL
897 if ((--needed) < 0)
898 break;
e4e574b7 899 list_del(&page->lru);
a5516438 900 enqueue_huge_page(h, page);
19fc3f0a
AL
901 }
902
903 /* Free unnecessary surplus pages to the buddy allocator */
904 if (!list_empty(&surplus_list)) {
905 spin_unlock(&hugetlb_lock);
906 list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
907 list_del(&page->lru);
af767cbd 908 /*
2668db91
AL
909 * The page has a reference count of zero already, so
910 * call free_huge_page directly instead of using
911 * put_page. This must be done with hugetlb_lock
af767cbd
AL
912 * unlocked which is safe because free_huge_page takes
913 * hugetlb_lock before deciding how to free the page.
914 */
2668db91 915 free_huge_page(page);
af767cbd 916 }
19fc3f0a 917 spin_lock(&hugetlb_lock);
e4e574b7
AL
918 }
919
920 return ret;
921}
922
923/*
924 * When releasing a hugetlb pool reservation, any surplus pages that were
925 * allocated to satisfy the reservation must be explicitly freed if they were
926 * never used.
685f3457 927 * Called with hugetlb_lock held.
e4e574b7 928 */
a5516438
AK
929static void return_unused_surplus_pages(struct hstate *h,
930 unsigned long unused_resv_pages)
e4e574b7 931{
e4e574b7
AL
932 unsigned long nr_pages;
933
ac09b3a1 934 /* Uncommit the reservation */
a5516438 935 h->resv_huge_pages -= unused_resv_pages;
ac09b3a1 936
aa888a74
AK
937 /* Cannot return gigantic pages currently */
938 if (h->order >= MAX_ORDER)
939 return;
940
a5516438 941 nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
e4e574b7 942
685f3457
LS
943 /*
944 * We want to release as many surplus pages as possible, spread
9b5e5d0f
LS
945 * evenly across all nodes with memory. Iterate across these nodes
946 * until we can no longer free unreserved surplus pages. This occurs
947 * when the nodes with surplus pages have no free pages.
948 * free_pool_huge_page() will balance the the freed pages across the
949 * on-line nodes with memory and will handle the hstate accounting.
685f3457
LS
950 */
951 while (nr_pages--) {
9b5e5d0f 952 if (!free_pool_huge_page(h, &node_states[N_HIGH_MEMORY], 1))
685f3457 953 break;
e4e574b7
AL
954 }
955}
956
c37f9fb1
AW
957/*
958 * Determine if the huge page at addr within the vma has an associated
959 * reservation. Where it does not we will need to logically increase
960 * reservation and actually increase quota before an allocation can occur.
961 * Where any new reservation would be required the reservation change is
962 * prepared, but not committed. Once the page has been quota'd allocated
963 * an instantiated the change should be committed via vma_commit_reservation.
964 * No action is required on failure.
965 */
e2f17d94 966static long vma_needs_reservation(struct hstate *h,
a5516438 967 struct vm_area_struct *vma, unsigned long addr)
c37f9fb1
AW
968{
969 struct address_space *mapping = vma->vm_file->f_mapping;
970 struct inode *inode = mapping->host;
971
f83a275d 972 if (vma->vm_flags & VM_MAYSHARE) {
a5516438 973 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
c37f9fb1
AW
974 return region_chg(&inode->i_mapping->private_list,
975 idx, idx + 1);
976
84afd99b
AW
977 } else if (!is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
978 return 1;
c37f9fb1 979
84afd99b 980 } else {
e2f17d94 981 long err;
a5516438 982 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
84afd99b
AW
983 struct resv_map *reservations = vma_resv_map(vma);
984
985 err = region_chg(&reservations->regions, idx, idx + 1);
986 if (err < 0)
987 return err;
988 return 0;
989 }
c37f9fb1 990}
a5516438
AK
991static void vma_commit_reservation(struct hstate *h,
992 struct vm_area_struct *vma, unsigned long addr)
c37f9fb1
AW
993{
994 struct address_space *mapping = vma->vm_file->f_mapping;
995 struct inode *inode = mapping->host;
996
f83a275d 997 if (vma->vm_flags & VM_MAYSHARE) {
a5516438 998 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
c37f9fb1 999 region_add(&inode->i_mapping->private_list, idx, idx + 1);
84afd99b
AW
1000
1001 } else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
a5516438 1002 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
84afd99b
AW
1003 struct resv_map *reservations = vma_resv_map(vma);
1004
1005 /* Mark this page used in the map. */
1006 region_add(&reservations->regions, idx, idx + 1);
c37f9fb1
AW
1007 }
1008}
1009
a1e78772 1010static struct page *alloc_huge_page(struct vm_area_struct *vma,
04f2cbe3 1011 unsigned long addr, int avoid_reserve)
1da177e4 1012{
a5516438 1013 struct hstate *h = hstate_vma(vma);
348ea204 1014 struct page *page;
a1e78772
MG
1015 struct address_space *mapping = vma->vm_file->f_mapping;
1016 struct inode *inode = mapping->host;
e2f17d94 1017 long chg;
a1e78772
MG
1018
1019 /*
1020 * Processes that did not create the mapping will have no reserves and
1021 * will not have accounted against quota. Check that the quota can be
1022 * made before satisfying the allocation
c37f9fb1
AW
1023 * MAP_NORESERVE mappings may also need pages and quota allocated
1024 * if no reserve mapping overlaps.
a1e78772 1025 */
a5516438 1026 chg = vma_needs_reservation(h, vma, addr);
c37f9fb1
AW
1027 if (chg < 0)
1028 return ERR_PTR(chg);
1029 if (chg)
a1e78772
MG
1030 if (hugetlb_get_quota(inode->i_mapping, chg))
1031 return ERR_PTR(-ENOSPC);
1da177e4
LT
1032
1033 spin_lock(&hugetlb_lock);
a5516438 1034 page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve);
1da177e4 1035 spin_unlock(&hugetlb_lock);
b45b5bd6 1036
68842c9b 1037 if (!page) {
a5516438 1038 page = alloc_buddy_huge_page(h, vma, addr);
68842c9b 1039 if (!page) {
a1e78772 1040 hugetlb_put_quota(inode->i_mapping, chg);
68842c9b
KC
1041 return ERR_PTR(-VM_FAULT_OOM);
1042 }
1043 }
348ea204 1044
a1e78772
MG
1045 set_page_refcounted(page);
1046 set_page_private(page, (unsigned long) mapping);
90d8b7e6 1047
a5516438 1048 vma_commit_reservation(h, vma, addr);
c37f9fb1 1049
90d8b7e6 1050 return page;
b45b5bd6
DG
1051}
1052
91f47662 1053int __weak alloc_bootmem_huge_page(struct hstate *h)
aa888a74
AK
1054{
1055 struct huge_bootmem_page *m;
9b5e5d0f 1056 int nr_nodes = nodes_weight(node_states[N_HIGH_MEMORY]);
aa888a74
AK
1057
1058 while (nr_nodes) {
1059 void *addr;
1060
1061 addr = __alloc_bootmem_node_nopanic(
6ae11b27 1062 NODE_DATA(hstate_next_node_to_alloc(h,
9b5e5d0f 1063 &node_states[N_HIGH_MEMORY])),
aa888a74
AK
1064 huge_page_size(h), huge_page_size(h), 0);
1065
1066 if (addr) {
1067 /*
1068 * Use the beginning of the huge page to store the
1069 * huge_bootmem_page struct (until gather_bootmem
1070 * puts them into the mem_map).
1071 */
1072 m = addr;
91f47662 1073 goto found;
aa888a74 1074 }
aa888a74
AK
1075 nr_nodes--;
1076 }
1077 return 0;
1078
1079found:
1080 BUG_ON((unsigned long)virt_to_phys(m) & (huge_page_size(h) - 1));
1081 /* Put them into a private list first because mem_map is not up yet */
1082 list_add(&m->list, &huge_boot_pages);
1083 m->hstate = h;
1084 return 1;
1085}
1086
18229df5
AW
1087static void prep_compound_huge_page(struct page *page, int order)
1088{
1089 if (unlikely(order > (MAX_ORDER - 1)))
1090 prep_compound_gigantic_page(page, order);
1091 else
1092 prep_compound_page(page, order);
1093}
1094
aa888a74
AK
1095/* Put bootmem huge pages into the standard lists after mem_map is up */
1096static void __init gather_bootmem_prealloc(void)
1097{
1098 struct huge_bootmem_page *m;
1099
1100 list_for_each_entry(m, &huge_boot_pages, list) {
1101 struct page *page = virt_to_page(m);
1102 struct hstate *h = m->hstate;
1103 __ClearPageReserved(page);
1104 WARN_ON(page_count(page) != 1);
18229df5 1105 prep_compound_huge_page(page, h->order);
aa888a74
AK
1106 prep_new_huge_page(h, page, page_to_nid(page));
1107 }
1108}
1109
8faa8b07 1110static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
1da177e4
LT
1111{
1112 unsigned long i;
a5516438 1113
e5ff2159 1114 for (i = 0; i < h->max_huge_pages; ++i) {
aa888a74
AK
1115 if (h->order >= MAX_ORDER) {
1116 if (!alloc_bootmem_huge_page(h))
1117 break;
9b5e5d0f
LS
1118 } else if (!alloc_fresh_huge_page(h,
1119 &node_states[N_HIGH_MEMORY]))
1da177e4 1120 break;
1da177e4 1121 }
8faa8b07 1122 h->max_huge_pages = i;
e5ff2159
AK
1123}
1124
1125static void __init hugetlb_init_hstates(void)
1126{
1127 struct hstate *h;
1128
1129 for_each_hstate(h) {
8faa8b07
AK
1130 /* oversize hugepages were init'ed in early boot */
1131 if (h->order < MAX_ORDER)
1132 hugetlb_hstate_alloc_pages(h);
e5ff2159
AK
1133 }
1134}
1135
4abd32db
AK
1136static char * __init memfmt(char *buf, unsigned long n)
1137{
1138 if (n >= (1UL << 30))
1139 sprintf(buf, "%lu GB", n >> 30);
1140 else if (n >= (1UL << 20))
1141 sprintf(buf, "%lu MB", n >> 20);
1142 else
1143 sprintf(buf, "%lu KB", n >> 10);
1144 return buf;
1145}
1146
e5ff2159
AK
1147static void __init report_hugepages(void)
1148{
1149 struct hstate *h;
1150
1151 for_each_hstate(h) {
4abd32db
AK
1152 char buf[32];
1153 printk(KERN_INFO "HugeTLB registered %s page size, "
1154 "pre-allocated %ld pages\n",
1155 memfmt(buf, huge_page_size(h)),
1156 h->free_huge_pages);
e5ff2159
AK
1157 }
1158}
1159
1da177e4 1160#ifdef CONFIG_HIGHMEM
6ae11b27
LS
1161static void try_to_free_low(struct hstate *h, unsigned long count,
1162 nodemask_t *nodes_allowed)
1da177e4 1163{
4415cc8d
CL
1164 int i;
1165
aa888a74
AK
1166 if (h->order >= MAX_ORDER)
1167 return;
1168
6ae11b27 1169 for_each_node_mask(i, *nodes_allowed) {
1da177e4 1170 struct page *page, *next;
a5516438
AK
1171 struct list_head *freel = &h->hugepage_freelists[i];
1172 list_for_each_entry_safe(page, next, freel, lru) {
1173 if (count >= h->nr_huge_pages)
6b0c880d 1174 return;
1da177e4
LT
1175 if (PageHighMem(page))
1176 continue;
1177 list_del(&page->lru);
e5ff2159 1178 update_and_free_page(h, page);
a5516438
AK
1179 h->free_huge_pages--;
1180 h->free_huge_pages_node[page_to_nid(page)]--;
1da177e4
LT
1181 }
1182 }
1183}
1184#else
6ae11b27
LS
1185static inline void try_to_free_low(struct hstate *h, unsigned long count,
1186 nodemask_t *nodes_allowed)
1da177e4
LT
1187{
1188}
1189#endif
1190
20a0307c
WF
1191/*
1192 * Increment or decrement surplus_huge_pages. Keep node-specific counters
1193 * balanced by operating on them in a round-robin fashion.
1194 * Returns 1 if an adjustment was made.
1195 */
6ae11b27
LS
1196static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
1197 int delta)
20a0307c 1198{
e8c5c824 1199 int start_nid, next_nid;
20a0307c
WF
1200 int ret = 0;
1201
1202 VM_BUG_ON(delta != -1 && delta != 1);
20a0307c 1203
e8c5c824 1204 if (delta < 0)
6ae11b27 1205 start_nid = hstate_next_node_to_alloc(h, nodes_allowed);
e8c5c824 1206 else
6ae11b27 1207 start_nid = hstate_next_node_to_free(h, nodes_allowed);
e8c5c824
LS
1208 next_nid = start_nid;
1209
1210 do {
1211 int nid = next_nid;
1212 if (delta < 0) {
e8c5c824
LS
1213 /*
1214 * To shrink on this node, there must be a surplus page
1215 */
9a76db09 1216 if (!h->surplus_huge_pages_node[nid]) {
6ae11b27
LS
1217 next_nid = hstate_next_node_to_alloc(h,
1218 nodes_allowed);
e8c5c824 1219 continue;
9a76db09 1220 }
e8c5c824
LS
1221 }
1222 if (delta > 0) {
e8c5c824
LS
1223 /*
1224 * Surplus cannot exceed the total number of pages
1225 */
1226 if (h->surplus_huge_pages_node[nid] >=
9a76db09 1227 h->nr_huge_pages_node[nid]) {
6ae11b27
LS
1228 next_nid = hstate_next_node_to_free(h,
1229 nodes_allowed);
e8c5c824 1230 continue;
9a76db09 1231 }
e8c5c824 1232 }
20a0307c
WF
1233
1234 h->surplus_huge_pages += delta;
1235 h->surplus_huge_pages_node[nid] += delta;
1236 ret = 1;
1237 break;
e8c5c824 1238 } while (next_nid != start_nid);
20a0307c 1239
20a0307c
WF
1240 return ret;
1241}
1242
a5516438 1243#define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
6ae11b27
LS
1244static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count,
1245 nodemask_t *nodes_allowed)
1da177e4 1246{
7893d1d5 1247 unsigned long min_count, ret;
1da177e4 1248
aa888a74
AK
1249 if (h->order >= MAX_ORDER)
1250 return h->max_huge_pages;
1251
7893d1d5
AL
1252 /*
1253 * Increase the pool size
1254 * First take pages out of surplus state. Then make up the
1255 * remaining difference by allocating fresh huge pages.
d1c3fb1f
NA
1256 *
1257 * We might race with alloc_buddy_huge_page() here and be unable
1258 * to convert a surplus huge page to a normal huge page. That is
1259 * not critical, though, it just means the overall size of the
1260 * pool might be one hugepage larger than it needs to be, but
1261 * within all the constraints specified by the sysctls.
7893d1d5 1262 */
1da177e4 1263 spin_lock(&hugetlb_lock);
a5516438 1264 while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
6ae11b27 1265 if (!adjust_pool_surplus(h, nodes_allowed, -1))
7893d1d5
AL
1266 break;
1267 }
1268
a5516438 1269 while (count > persistent_huge_pages(h)) {
7893d1d5
AL
1270 /*
1271 * If this allocation races such that we no longer need the
1272 * page, free_huge_page will handle it by freeing the page
1273 * and reducing the surplus.
1274 */
1275 spin_unlock(&hugetlb_lock);
6ae11b27 1276 ret = alloc_fresh_huge_page(h, nodes_allowed);
7893d1d5
AL
1277 spin_lock(&hugetlb_lock);
1278 if (!ret)
1279 goto out;
1280
1281 }
7893d1d5
AL
1282
1283 /*
1284 * Decrease the pool size
1285 * First return free pages to the buddy allocator (being careful
1286 * to keep enough around to satisfy reservations). Then place
1287 * pages into surplus state as needed so the pool will shrink
1288 * to the desired size as pages become free.
d1c3fb1f
NA
1289 *
1290 * By placing pages into the surplus state independent of the
1291 * overcommit value, we are allowing the surplus pool size to
1292 * exceed overcommit. There are few sane options here. Since
1293 * alloc_buddy_huge_page() is checking the global counter,
1294 * though, we'll note that we're not allowed to exceed surplus
1295 * and won't grow the pool anywhere else. Not until one of the
1296 * sysctls are changed, or the surplus pages go out of use.
7893d1d5 1297 */
a5516438 1298 min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
6b0c880d 1299 min_count = max(count, min_count);
6ae11b27 1300 try_to_free_low(h, min_count, nodes_allowed);
a5516438 1301 while (min_count < persistent_huge_pages(h)) {
6ae11b27 1302 if (!free_pool_huge_page(h, nodes_allowed, 0))
1da177e4 1303 break;
1da177e4 1304 }
a5516438 1305 while (count < persistent_huge_pages(h)) {
6ae11b27 1306 if (!adjust_pool_surplus(h, nodes_allowed, 1))
7893d1d5
AL
1307 break;
1308 }
1309out:
a5516438 1310 ret = persistent_huge_pages(h);
1da177e4 1311 spin_unlock(&hugetlb_lock);
7893d1d5 1312 return ret;
1da177e4
LT
1313}
1314
a3437870
NA
1315#define HSTATE_ATTR_RO(_name) \
1316 static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
1317
1318#define HSTATE_ATTR(_name) \
1319 static struct kobj_attribute _name##_attr = \
1320 __ATTR(_name, 0644, _name##_show, _name##_store)
1321
1322static struct kobject *hugepages_kobj;
1323static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
1324
9a305230
LS
1325static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
1326
1327static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
a3437870
NA
1328{
1329 int i;
9a305230 1330
a3437870 1331 for (i = 0; i < HUGE_MAX_HSTATE; i++)
9a305230
LS
1332 if (hstate_kobjs[i] == kobj) {
1333 if (nidp)
1334 *nidp = NUMA_NO_NODE;
a3437870 1335 return &hstates[i];
9a305230
LS
1336 }
1337
1338 return kobj_to_node_hstate(kobj, nidp);
a3437870
NA
1339}
1340
06808b08 1341static ssize_t nr_hugepages_show_common(struct kobject *kobj,
a3437870
NA
1342 struct kobj_attribute *attr, char *buf)
1343{
9a305230
LS
1344 struct hstate *h;
1345 unsigned long nr_huge_pages;
1346 int nid;
1347
1348 h = kobj_to_hstate(kobj, &nid);
1349 if (nid == NUMA_NO_NODE)
1350 nr_huge_pages = h->nr_huge_pages;
1351 else
1352 nr_huge_pages = h->nr_huge_pages_node[nid];
1353
1354 return sprintf(buf, "%lu\n", nr_huge_pages);
a3437870 1355}
06808b08
LS
1356static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
1357 struct kobject *kobj, struct kobj_attribute *attr,
1358 const char *buf, size_t len)
a3437870
NA
1359{
1360 int err;
9a305230 1361 int nid;
06808b08 1362 unsigned long count;
9a305230 1363 struct hstate *h;
bad44b5b 1364 NODEMASK_ALLOC(nodemask_t, nodes_allowed, GFP_KERNEL | __GFP_NORETRY);
a3437870 1365
06808b08 1366 err = strict_strtoul(buf, 10, &count);
a3437870
NA
1367 if (err)
1368 return 0;
1369
9a305230
LS
1370 h = kobj_to_hstate(kobj, &nid);
1371 if (nid == NUMA_NO_NODE) {
1372 /*
1373 * global hstate attribute
1374 */
1375 if (!(obey_mempolicy &&
1376 init_nodemask_of_mempolicy(nodes_allowed))) {
1377 NODEMASK_FREE(nodes_allowed);
1378 nodes_allowed = &node_states[N_HIGH_MEMORY];
1379 }
1380 } else if (nodes_allowed) {
1381 /*
1382 * per node hstate attribute: adjust count to global,
1383 * but restrict alloc/free to the specified node.
1384 */
1385 count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
1386 init_nodemask_of_node(nodes_allowed, nid);
1387 } else
1388 nodes_allowed = &node_states[N_HIGH_MEMORY];
1389
06808b08 1390 h->max_huge_pages = set_max_huge_pages(h, count, nodes_allowed);
a3437870 1391
9b5e5d0f 1392 if (nodes_allowed != &node_states[N_HIGH_MEMORY])
06808b08
LS
1393 NODEMASK_FREE(nodes_allowed);
1394
1395 return len;
1396}
1397
1398static ssize_t nr_hugepages_show(struct kobject *kobj,
1399 struct kobj_attribute *attr, char *buf)
1400{
1401 return nr_hugepages_show_common(kobj, attr, buf);
1402}
1403
1404static ssize_t nr_hugepages_store(struct kobject *kobj,
1405 struct kobj_attribute *attr, const char *buf, size_t len)
1406{
1407 return nr_hugepages_store_common(false, kobj, attr, buf, len);
a3437870
NA
1408}
1409HSTATE_ATTR(nr_hugepages);
1410
06808b08
LS
1411#ifdef CONFIG_NUMA
1412
1413/*
1414 * hstate attribute for optionally mempolicy-based constraint on persistent
1415 * huge page alloc/free.
1416 */
1417static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
1418 struct kobj_attribute *attr, char *buf)
1419{
1420 return nr_hugepages_show_common(kobj, attr, buf);
1421}
1422
1423static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
1424 struct kobj_attribute *attr, const char *buf, size_t len)
1425{
1426 return nr_hugepages_store_common(true, kobj, attr, buf, len);
1427}
1428HSTATE_ATTR(nr_hugepages_mempolicy);
1429#endif
1430
1431
a3437870
NA
1432static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
1433 struct kobj_attribute *attr, char *buf)
1434{
9a305230 1435 struct hstate *h = kobj_to_hstate(kobj, NULL);
a3437870
NA
1436 return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
1437}
1438static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
1439 struct kobj_attribute *attr, const char *buf, size_t count)
1440{
1441 int err;
1442 unsigned long input;
9a305230 1443 struct hstate *h = kobj_to_hstate(kobj, NULL);
a3437870
NA
1444
1445 err = strict_strtoul(buf, 10, &input);
1446 if (err)
1447 return 0;
1448
1449 spin_lock(&hugetlb_lock);
1450 h->nr_overcommit_huge_pages = input;
1451 spin_unlock(&hugetlb_lock);
1452
1453 return count;
1454}
1455HSTATE_ATTR(nr_overcommit_hugepages);
1456
1457static ssize_t free_hugepages_show(struct kobject *kobj,
1458 struct kobj_attribute *attr, char *buf)
1459{
9a305230
LS
1460 struct hstate *h;
1461 unsigned long free_huge_pages;
1462 int nid;
1463
1464 h = kobj_to_hstate(kobj, &nid);
1465 if (nid == NUMA_NO_NODE)
1466 free_huge_pages = h->free_huge_pages;
1467 else
1468 free_huge_pages = h->free_huge_pages_node[nid];
1469
1470 return sprintf(buf, "%lu\n", free_huge_pages);
a3437870
NA
1471}
1472HSTATE_ATTR_RO(free_hugepages);
1473
1474static ssize_t resv_hugepages_show(struct kobject *kobj,
1475 struct kobj_attribute *attr, char *buf)
1476{
9a305230 1477 struct hstate *h = kobj_to_hstate(kobj, NULL);
a3437870
NA
1478 return sprintf(buf, "%lu\n", h->resv_huge_pages);
1479}
1480HSTATE_ATTR_RO(resv_hugepages);
1481
1482static ssize_t surplus_hugepages_show(struct kobject *kobj,
1483 struct kobj_attribute *attr, char *buf)
1484{
9a305230
LS
1485 struct hstate *h;
1486 unsigned long surplus_huge_pages;
1487 int nid;
1488
1489 h = kobj_to_hstate(kobj, &nid);
1490 if (nid == NUMA_NO_NODE)
1491 surplus_huge_pages = h->surplus_huge_pages;
1492 else
1493 surplus_huge_pages = h->surplus_huge_pages_node[nid];
1494
1495 return sprintf(buf, "%lu\n", surplus_huge_pages);
a3437870
NA
1496}
1497HSTATE_ATTR_RO(surplus_hugepages);
1498
1499static struct attribute *hstate_attrs[] = {
1500 &nr_hugepages_attr.attr,
1501 &nr_overcommit_hugepages_attr.attr,
1502 &free_hugepages_attr.attr,
1503 &resv_hugepages_attr.attr,
1504 &surplus_hugepages_attr.attr,
06808b08
LS
1505#ifdef CONFIG_NUMA
1506 &nr_hugepages_mempolicy_attr.attr,
1507#endif
a3437870
NA
1508 NULL,
1509};
1510
1511static struct attribute_group hstate_attr_group = {
1512 .attrs = hstate_attrs,
1513};
1514
9a305230
LS
1515static int __init hugetlb_sysfs_add_hstate(struct hstate *h,
1516 struct kobject *parent,
1517 struct kobject **hstate_kobjs,
1518 struct attribute_group *hstate_attr_group)
a3437870
NA
1519{
1520 int retval;
9a305230 1521 int hi = h - hstates;
a3437870 1522
9a305230
LS
1523 hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
1524 if (!hstate_kobjs[hi])
a3437870
NA
1525 return -ENOMEM;
1526
9a305230 1527 retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
a3437870 1528 if (retval)
9a305230 1529 kobject_put(hstate_kobjs[hi]);
a3437870
NA
1530
1531 return retval;
1532}
1533
1534static void __init hugetlb_sysfs_init(void)
1535{
1536 struct hstate *h;
1537 int err;
1538
1539 hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
1540 if (!hugepages_kobj)
1541 return;
1542
1543 for_each_hstate(h) {
9a305230
LS
1544 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
1545 hstate_kobjs, &hstate_attr_group);
a3437870
NA
1546 if (err)
1547 printk(KERN_ERR "Hugetlb: Unable to add hstate %s",
1548 h->name);
1549 }
1550}
1551
9a305230
LS
1552#ifdef CONFIG_NUMA
1553
1554/*
1555 * node_hstate/s - associate per node hstate attributes, via their kobjects,
1556 * with node sysdevs in node_devices[] using a parallel array. The array
1557 * index of a node sysdev or _hstate == node id.
1558 * This is here to avoid any static dependency of the node sysdev driver, in
1559 * the base kernel, on the hugetlb module.
1560 */
1561struct node_hstate {
1562 struct kobject *hugepages_kobj;
1563 struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
1564};
1565struct node_hstate node_hstates[MAX_NUMNODES];
1566
1567/*
1568 * A subset of global hstate attributes for node sysdevs
1569 */
1570static struct attribute *per_node_hstate_attrs[] = {
1571 &nr_hugepages_attr.attr,
1572 &free_hugepages_attr.attr,
1573 &surplus_hugepages_attr.attr,
1574 NULL,
1575};
1576
1577static struct attribute_group per_node_hstate_attr_group = {
1578 .attrs = per_node_hstate_attrs,
1579};
1580
1581/*
1582 * kobj_to_node_hstate - lookup global hstate for node sysdev hstate attr kobj.
1583 * Returns node id via non-NULL nidp.
1584 */
1585static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
1586{
1587 int nid;
1588
1589 for (nid = 0; nid < nr_node_ids; nid++) {
1590 struct node_hstate *nhs = &node_hstates[nid];
1591 int i;
1592 for (i = 0; i < HUGE_MAX_HSTATE; i++)
1593 if (nhs->hstate_kobjs[i] == kobj) {
1594 if (nidp)
1595 *nidp = nid;
1596 return &hstates[i];
1597 }
1598 }
1599
1600 BUG();
1601 return NULL;
1602}
1603
1604/*
1605 * Unregister hstate attributes from a single node sysdev.
1606 * No-op if no hstate attributes attached.
1607 */
1608void hugetlb_unregister_node(struct node *node)
1609{
1610 struct hstate *h;
1611 struct node_hstate *nhs = &node_hstates[node->sysdev.id];
1612
1613 if (!nhs->hugepages_kobj)
9b5e5d0f 1614 return; /* no hstate attributes */
9a305230
LS
1615
1616 for_each_hstate(h)
1617 if (nhs->hstate_kobjs[h - hstates]) {
1618 kobject_put(nhs->hstate_kobjs[h - hstates]);
1619 nhs->hstate_kobjs[h - hstates] = NULL;
1620 }
1621
1622 kobject_put(nhs->hugepages_kobj);
1623 nhs->hugepages_kobj = NULL;
1624}
1625
1626/*
1627 * hugetlb module exit: unregister hstate attributes from node sysdevs
1628 * that have them.
1629 */
1630static void hugetlb_unregister_all_nodes(void)
1631{
1632 int nid;
1633
1634 /*
1635 * disable node sysdev registrations.
1636 */
1637 register_hugetlbfs_with_node(NULL, NULL);
1638
1639 /*
1640 * remove hstate attributes from any nodes that have them.
1641 */
1642 for (nid = 0; nid < nr_node_ids; nid++)
1643 hugetlb_unregister_node(&node_devices[nid]);
1644}
1645
1646/*
1647 * Register hstate attributes for a single node sysdev.
1648 * No-op if attributes already registered.
1649 */
1650void hugetlb_register_node(struct node *node)
1651{
1652 struct hstate *h;
1653 struct node_hstate *nhs = &node_hstates[node->sysdev.id];
1654 int err;
1655
1656 if (nhs->hugepages_kobj)
1657 return; /* already allocated */
1658
1659 nhs->hugepages_kobj = kobject_create_and_add("hugepages",
1660 &node->sysdev.kobj);
1661 if (!nhs->hugepages_kobj)
1662 return;
1663
1664 for_each_hstate(h) {
1665 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
1666 nhs->hstate_kobjs,
1667 &per_node_hstate_attr_group);
1668 if (err) {
1669 printk(KERN_ERR "Hugetlb: Unable to add hstate %s"
1670 " for node %d\n",
1671 h->name, node->sysdev.id);
1672 hugetlb_unregister_node(node);
1673 break;
1674 }
1675 }
1676}
1677
1678/*
9b5e5d0f
LS
1679 * hugetlb init time: register hstate attributes for all registered node
1680 * sysdevs of nodes that have memory. All on-line nodes should have
1681 * registered their associated sysdev by this time.
9a305230
LS
1682 */
1683static void hugetlb_register_all_nodes(void)
1684{
1685 int nid;
1686
9b5e5d0f 1687 for_each_node_state(nid, N_HIGH_MEMORY) {
9a305230
LS
1688 struct node *node = &node_devices[nid];
1689 if (node->sysdev.id == nid)
1690 hugetlb_register_node(node);
1691 }
1692
1693 /*
1694 * Let the node sysdev driver know we're here so it can
1695 * [un]register hstate attributes on node hotplug.
1696 */
1697 register_hugetlbfs_with_node(hugetlb_register_node,
1698 hugetlb_unregister_node);
1699}
1700#else /* !CONFIG_NUMA */
1701
1702static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
1703{
1704 BUG();
1705 if (nidp)
1706 *nidp = -1;
1707 return NULL;
1708}
1709
1710static void hugetlb_unregister_all_nodes(void) { }
1711
1712static void hugetlb_register_all_nodes(void) { }
1713
1714#endif
1715
a3437870
NA
1716static void __exit hugetlb_exit(void)
1717{
1718 struct hstate *h;
1719
9a305230
LS
1720 hugetlb_unregister_all_nodes();
1721
a3437870
NA
1722 for_each_hstate(h) {
1723 kobject_put(hstate_kobjs[h - hstates]);
1724 }
1725
1726 kobject_put(hugepages_kobj);
1727}
1728module_exit(hugetlb_exit);
1729
1730static int __init hugetlb_init(void)
1731{
0ef89d25
BH
1732 /* Some platform decide whether they support huge pages at boot
1733 * time. On these, such as powerpc, HPAGE_SHIFT is set to 0 when
1734 * there is no such support
1735 */
1736 if (HPAGE_SHIFT == 0)
1737 return 0;
a3437870 1738
e11bfbfc
NP
1739 if (!size_to_hstate(default_hstate_size)) {
1740 default_hstate_size = HPAGE_SIZE;
1741 if (!size_to_hstate(default_hstate_size))
1742 hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
a3437870 1743 }
e11bfbfc
NP
1744 default_hstate_idx = size_to_hstate(default_hstate_size) - hstates;
1745 if (default_hstate_max_huge_pages)
1746 default_hstate.max_huge_pages = default_hstate_max_huge_pages;
a3437870
NA
1747
1748 hugetlb_init_hstates();
1749
aa888a74
AK
1750 gather_bootmem_prealloc();
1751
a3437870
NA
1752 report_hugepages();
1753
1754 hugetlb_sysfs_init();
1755
9a305230
LS
1756 hugetlb_register_all_nodes();
1757
a3437870
NA
1758 return 0;
1759}
1760module_init(hugetlb_init);
1761
1762/* Should be called on processing a hugepagesz=... option */
1763void __init hugetlb_add_hstate(unsigned order)
1764{
1765 struct hstate *h;
8faa8b07
AK
1766 unsigned long i;
1767
a3437870
NA
1768 if (size_to_hstate(PAGE_SIZE << order)) {
1769 printk(KERN_WARNING "hugepagesz= specified twice, ignoring\n");
1770 return;
1771 }
1772 BUG_ON(max_hstate >= HUGE_MAX_HSTATE);
1773 BUG_ON(order == 0);
1774 h = &hstates[max_hstate++];
1775 h->order = order;
1776 h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
8faa8b07
AK
1777 h->nr_huge_pages = 0;
1778 h->free_huge_pages = 0;
1779 for (i = 0; i < MAX_NUMNODES; ++i)
1780 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
9b5e5d0f
LS
1781 h->next_nid_to_alloc = first_node(node_states[N_HIGH_MEMORY]);
1782 h->next_nid_to_free = first_node(node_states[N_HIGH_MEMORY]);
a3437870
NA
1783 snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
1784 huge_page_size(h)/1024);
8faa8b07 1785
a3437870
NA
1786 parsed_hstate = h;
1787}
1788
e11bfbfc 1789static int __init hugetlb_nrpages_setup(char *s)
a3437870
NA
1790{
1791 unsigned long *mhp;
8faa8b07 1792 static unsigned long *last_mhp;
a3437870
NA
1793
1794 /*
1795 * !max_hstate means we haven't parsed a hugepagesz= parameter yet,
1796 * so this hugepages= parameter goes to the "default hstate".
1797 */
1798 if (!max_hstate)
1799 mhp = &default_hstate_max_huge_pages;
1800 else
1801 mhp = &parsed_hstate->max_huge_pages;
1802
8faa8b07
AK
1803 if (mhp == last_mhp) {
1804 printk(KERN_WARNING "hugepages= specified twice without "
1805 "interleaving hugepagesz=, ignoring\n");
1806 return 1;
1807 }
1808
a3437870
NA
1809 if (sscanf(s, "%lu", mhp) <= 0)
1810 *mhp = 0;
1811
8faa8b07
AK
1812 /*
1813 * Global state is always initialized later in hugetlb_init.
1814 * But we need to allocate >= MAX_ORDER hstates here early to still
1815 * use the bootmem allocator.
1816 */
1817 if (max_hstate && parsed_hstate->order >= MAX_ORDER)
1818 hugetlb_hstate_alloc_pages(parsed_hstate);
1819
1820 last_mhp = mhp;
1821
a3437870
NA
1822 return 1;
1823}
e11bfbfc
NP
1824__setup("hugepages=", hugetlb_nrpages_setup);
1825
1826static int __init hugetlb_default_setup(char *s)
1827{
1828 default_hstate_size = memparse(s, &s);
1829 return 1;
1830}
1831__setup("default_hugepagesz=", hugetlb_default_setup);
a3437870 1832
8a213460
NA
1833static unsigned int cpuset_mems_nr(unsigned int *array)
1834{
1835 int node;
1836 unsigned int nr = 0;
1837
1838 for_each_node_mask(node, cpuset_current_mems_allowed)
1839 nr += array[node];
1840
1841 return nr;
1842}
1843
1844#ifdef CONFIG_SYSCTL
06808b08
LS
1845static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
1846 struct ctl_table *table, int write,
1847 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 1848{
e5ff2159
AK
1849 struct hstate *h = &default_hstate;
1850 unsigned long tmp;
1851
1852 if (!write)
1853 tmp = h->max_huge_pages;
1854
1855 table->data = &tmp;
1856 table->maxlen = sizeof(unsigned long);
8d65af78 1857 proc_doulongvec_minmax(table, write, buffer, length, ppos);
e5ff2159 1858
06808b08 1859 if (write) {
bad44b5b
DR
1860 NODEMASK_ALLOC(nodemask_t, nodes_allowed,
1861 GFP_KERNEL | __GFP_NORETRY);
06808b08
LS
1862 if (!(obey_mempolicy &&
1863 init_nodemask_of_mempolicy(nodes_allowed))) {
1864 NODEMASK_FREE(nodes_allowed);
1865 nodes_allowed = &node_states[N_HIGH_MEMORY];
1866 }
1867 h->max_huge_pages = set_max_huge_pages(h, tmp, nodes_allowed);
1868
1869 if (nodes_allowed != &node_states[N_HIGH_MEMORY])
1870 NODEMASK_FREE(nodes_allowed);
1871 }
e5ff2159 1872
1da177e4
LT
1873 return 0;
1874}
396faf03 1875
06808b08
LS
1876int hugetlb_sysctl_handler(struct ctl_table *table, int write,
1877 void __user *buffer, size_t *length, loff_t *ppos)
1878{
1879
1880 return hugetlb_sysctl_handler_common(false, table, write,
1881 buffer, length, ppos);
1882}
1883
1884#ifdef CONFIG_NUMA
1885int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
1886 void __user *buffer, size_t *length, loff_t *ppos)
1887{
1888 return hugetlb_sysctl_handler_common(true, table, write,
1889 buffer, length, ppos);
1890}
1891#endif /* CONFIG_NUMA */
1892
396faf03 1893int hugetlb_treat_movable_handler(struct ctl_table *table, int write,
8d65af78 1894 void __user *buffer,
396faf03
MG
1895 size_t *length, loff_t *ppos)
1896{
8d65af78 1897 proc_dointvec(table, write, buffer, length, ppos);
396faf03
MG
1898 if (hugepages_treat_as_movable)
1899 htlb_alloc_mask = GFP_HIGHUSER_MOVABLE;
1900 else
1901 htlb_alloc_mask = GFP_HIGHUSER;
1902 return 0;
1903}
1904
a3d0c6aa 1905int hugetlb_overcommit_handler(struct ctl_table *table, int write,
8d65af78 1906 void __user *buffer,
a3d0c6aa
NA
1907 size_t *length, loff_t *ppos)
1908{
a5516438 1909 struct hstate *h = &default_hstate;
e5ff2159
AK
1910 unsigned long tmp;
1911
1912 if (!write)
1913 tmp = h->nr_overcommit_huge_pages;
1914
1915 table->data = &tmp;
1916 table->maxlen = sizeof(unsigned long);
8d65af78 1917 proc_doulongvec_minmax(table, write, buffer, length, ppos);
e5ff2159
AK
1918
1919 if (write) {
1920 spin_lock(&hugetlb_lock);
1921 h->nr_overcommit_huge_pages = tmp;
1922 spin_unlock(&hugetlb_lock);
1923 }
1924
a3d0c6aa
NA
1925 return 0;
1926}
1927
1da177e4
LT
1928#endif /* CONFIG_SYSCTL */
1929
e1759c21 1930void hugetlb_report_meminfo(struct seq_file *m)
1da177e4 1931{
a5516438 1932 struct hstate *h = &default_hstate;
e1759c21 1933 seq_printf(m,
4f98a2fe
RR
1934 "HugePages_Total: %5lu\n"
1935 "HugePages_Free: %5lu\n"
1936 "HugePages_Rsvd: %5lu\n"
1937 "HugePages_Surp: %5lu\n"
1938 "Hugepagesize: %8lu kB\n",
a5516438
AK
1939 h->nr_huge_pages,
1940 h->free_huge_pages,
1941 h->resv_huge_pages,
1942 h->surplus_huge_pages,
1943 1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
1da177e4
LT
1944}
1945
1946int hugetlb_report_node_meminfo(int nid, char *buf)
1947{
a5516438 1948 struct hstate *h = &default_hstate;
1da177e4
LT
1949 return sprintf(buf,
1950 "Node %d HugePages_Total: %5u\n"
a1de0919
NA
1951 "Node %d HugePages_Free: %5u\n"
1952 "Node %d HugePages_Surp: %5u\n",
a5516438
AK
1953 nid, h->nr_huge_pages_node[nid],
1954 nid, h->free_huge_pages_node[nid],
1955 nid, h->surplus_huge_pages_node[nid]);
1da177e4
LT
1956}
1957
1da177e4
LT
1958/* Return the number pages of memory we physically have, in PAGE_SIZE units. */
1959unsigned long hugetlb_total_pages(void)
1960{
a5516438
AK
1961 struct hstate *h = &default_hstate;
1962 return h->nr_huge_pages * pages_per_huge_page(h);
1da177e4 1963}
1da177e4 1964
a5516438 1965static int hugetlb_acct_memory(struct hstate *h, long delta)
fc1b8a73
MG
1966{
1967 int ret = -ENOMEM;
1968
1969 spin_lock(&hugetlb_lock);
1970 /*
1971 * When cpuset is configured, it breaks the strict hugetlb page
1972 * reservation as the accounting is done on a global variable. Such
1973 * reservation is completely rubbish in the presence of cpuset because
1974 * the reservation is not checked against page availability for the
1975 * current cpuset. Application can still potentially OOM'ed by kernel
1976 * with lack of free htlb page in cpuset that the task is in.
1977 * Attempt to enforce strict accounting with cpuset is almost
1978 * impossible (or too ugly) because cpuset is too fluid that
1979 * task or memory node can be dynamically moved between cpusets.
1980 *
1981 * The change of semantics for shared hugetlb mapping with cpuset is
1982 * undesirable. However, in order to preserve some of the semantics,
1983 * we fall back to check against current free page availability as
1984 * a best attempt and hopefully to minimize the impact of changing
1985 * semantics that cpuset has.
1986 */
1987 if (delta > 0) {
a5516438 1988 if (gather_surplus_pages(h, delta) < 0)
fc1b8a73
MG
1989 goto out;
1990
a5516438
AK
1991 if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
1992 return_unused_surplus_pages(h, delta);
fc1b8a73
MG
1993 goto out;
1994 }
1995 }
1996
1997 ret = 0;
1998 if (delta < 0)
a5516438 1999 return_unused_surplus_pages(h, (unsigned long) -delta);
fc1b8a73
MG
2000
2001out:
2002 spin_unlock(&hugetlb_lock);
2003 return ret;
2004}
2005
84afd99b
AW
2006static void hugetlb_vm_op_open(struct vm_area_struct *vma)
2007{
2008 struct resv_map *reservations = vma_resv_map(vma);
2009
2010 /*
2011 * This new VMA should share its siblings reservation map if present.
2012 * The VMA will only ever have a valid reservation map pointer where
2013 * it is being copied for another still existing VMA. As that VMA
2014 * has a reference to the reservation map it cannot dissappear until
2015 * after this open call completes. It is therefore safe to take a
2016 * new reference here without additional locking.
2017 */
2018 if (reservations)
2019 kref_get(&reservations->refs);
2020}
2021
a1e78772
MG
2022static void hugetlb_vm_op_close(struct vm_area_struct *vma)
2023{
a5516438 2024 struct hstate *h = hstate_vma(vma);
84afd99b
AW
2025 struct resv_map *reservations = vma_resv_map(vma);
2026 unsigned long reserve;
2027 unsigned long start;
2028 unsigned long end;
2029
2030 if (reservations) {
a5516438
AK
2031 start = vma_hugecache_offset(h, vma, vma->vm_start);
2032 end = vma_hugecache_offset(h, vma, vma->vm_end);
84afd99b
AW
2033
2034 reserve = (end - start) -
2035 region_count(&reservations->regions, start, end);
2036
2037 kref_put(&reservations->refs, resv_map_release);
2038
7251ff78 2039 if (reserve) {
a5516438 2040 hugetlb_acct_memory(h, -reserve);
7251ff78
AL
2041 hugetlb_put_quota(vma->vm_file->f_mapping, reserve);
2042 }
84afd99b 2043 }
a1e78772
MG
2044}
2045
1da177e4
LT
2046/*
2047 * We cannot handle pagefaults against hugetlb pages at all. They cause
2048 * handle_mm_fault() to try to instantiate regular-sized pages in the
2049 * hugegpage VMA. do_page_fault() is supposed to trap this, so BUG is we get
2050 * this far.
2051 */
d0217ac0 2052static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1da177e4
LT
2053{
2054 BUG();
d0217ac0 2055 return 0;
1da177e4
LT
2056}
2057
f0f37e2f 2058const struct vm_operations_struct hugetlb_vm_ops = {
d0217ac0 2059 .fault = hugetlb_vm_op_fault,
84afd99b 2060 .open = hugetlb_vm_op_open,
a1e78772 2061 .close = hugetlb_vm_op_close,
1da177e4
LT
2062};
2063
1e8f889b
DG
2064static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
2065 int writable)
63551ae0
DG
2066{
2067 pte_t entry;
2068
1e8f889b 2069 if (writable) {
63551ae0
DG
2070 entry =
2071 pte_mkwrite(pte_mkdirty(mk_pte(page, vma->vm_page_prot)));
2072 } else {
7f2e9525 2073 entry = huge_pte_wrprotect(mk_pte(page, vma->vm_page_prot));
63551ae0
DG
2074 }
2075 entry = pte_mkyoung(entry);
2076 entry = pte_mkhuge(entry);
2077
2078 return entry;
2079}
2080
1e8f889b
DG
2081static void set_huge_ptep_writable(struct vm_area_struct *vma,
2082 unsigned long address, pte_t *ptep)
2083{
2084 pte_t entry;
2085
7f2e9525
GS
2086 entry = pte_mkwrite(pte_mkdirty(huge_ptep_get(ptep)));
2087 if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1)) {
8dab5241 2088 update_mmu_cache(vma, address, entry);
8dab5241 2089 }
1e8f889b
DG
2090}
2091
2092
63551ae0
DG
2093int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
2094 struct vm_area_struct *vma)
2095{
2096 pte_t *src_pte, *dst_pte, entry;
2097 struct page *ptepage;
1c59827d 2098 unsigned long addr;
1e8f889b 2099 int cow;
a5516438
AK
2100 struct hstate *h = hstate_vma(vma);
2101 unsigned long sz = huge_page_size(h);
1e8f889b
DG
2102
2103 cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
63551ae0 2104
a5516438 2105 for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
c74df32c
HD
2106 src_pte = huge_pte_offset(src, addr);
2107 if (!src_pte)
2108 continue;
a5516438 2109 dst_pte = huge_pte_alloc(dst, addr, sz);
63551ae0
DG
2110 if (!dst_pte)
2111 goto nomem;
c5c99429
LW
2112
2113 /* If the pagetables are shared don't copy or take references */
2114 if (dst_pte == src_pte)
2115 continue;
2116
c74df32c 2117 spin_lock(&dst->page_table_lock);
46478758 2118 spin_lock_nested(&src->page_table_lock, SINGLE_DEPTH_NESTING);
7f2e9525 2119 if (!huge_pte_none(huge_ptep_get(src_pte))) {
1e8f889b 2120 if (cow)
7f2e9525
GS
2121 huge_ptep_set_wrprotect(src, addr, src_pte);
2122 entry = huge_ptep_get(src_pte);
1c59827d
HD
2123 ptepage = pte_page(entry);
2124 get_page(ptepage);
1c59827d
HD
2125 set_huge_pte_at(dst, addr, dst_pte, entry);
2126 }
2127 spin_unlock(&src->page_table_lock);
c74df32c 2128 spin_unlock(&dst->page_table_lock);
63551ae0
DG
2129 }
2130 return 0;
2131
2132nomem:
2133 return -ENOMEM;
2134}
2135
502717f4 2136void __unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
04f2cbe3 2137 unsigned long end, struct page *ref_page)
63551ae0
DG
2138{
2139 struct mm_struct *mm = vma->vm_mm;
2140 unsigned long address;
c7546f8f 2141 pte_t *ptep;
63551ae0
DG
2142 pte_t pte;
2143 struct page *page;
fe1668ae 2144 struct page *tmp;
a5516438
AK
2145 struct hstate *h = hstate_vma(vma);
2146 unsigned long sz = huge_page_size(h);
2147
c0a499c2
CK
2148 /*
2149 * A page gathering list, protected by per file i_mmap_lock. The
2150 * lock is used to avoid list corruption from multiple unmapping
2151 * of the same page since we are using page->lru.
2152 */
fe1668ae 2153 LIST_HEAD(page_list);
63551ae0
DG
2154
2155 WARN_ON(!is_vm_hugetlb_page(vma));
a5516438
AK
2156 BUG_ON(start & ~huge_page_mask(h));
2157 BUG_ON(end & ~huge_page_mask(h));
63551ae0 2158
cddb8a5c 2159 mmu_notifier_invalidate_range_start(mm, start, end);
508034a3 2160 spin_lock(&mm->page_table_lock);
a5516438 2161 for (address = start; address < end; address += sz) {
c7546f8f 2162 ptep = huge_pte_offset(mm, address);
4c887265 2163 if (!ptep)
c7546f8f
DG
2164 continue;
2165
39dde65c
CK
2166 if (huge_pmd_unshare(mm, &address, ptep))
2167 continue;
2168
04f2cbe3
MG
2169 /*
2170 * If a reference page is supplied, it is because a specific
2171 * page is being unmapped, not a range. Ensure the page we
2172 * are about to unmap is the actual page of interest.
2173 */
2174 if (ref_page) {
2175 pte = huge_ptep_get(ptep);
2176 if (huge_pte_none(pte))
2177 continue;
2178 page = pte_page(pte);
2179 if (page != ref_page)
2180 continue;
2181
2182 /*
2183 * Mark the VMA as having unmapped its page so that
2184 * future faults in this VMA will fail rather than
2185 * looking like data was lost
2186 */
2187 set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
2188 }
2189
c7546f8f 2190 pte = huge_ptep_get_and_clear(mm, address, ptep);
7f2e9525 2191 if (huge_pte_none(pte))
63551ae0 2192 continue;
c7546f8f 2193
63551ae0 2194 page = pte_page(pte);
6649a386
KC
2195 if (pte_dirty(pte))
2196 set_page_dirty(page);
fe1668ae 2197 list_add(&page->lru, &page_list);
63551ae0 2198 }
1da177e4 2199 spin_unlock(&mm->page_table_lock);
508034a3 2200 flush_tlb_range(vma, start, end);
cddb8a5c 2201 mmu_notifier_invalidate_range_end(mm, start, end);
fe1668ae
CK
2202 list_for_each_entry_safe(page, tmp, &page_list, lru) {
2203 list_del(&page->lru);
2204 put_page(page);
2205 }
1da177e4 2206}
63551ae0 2207
502717f4 2208void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
04f2cbe3 2209 unsigned long end, struct page *ref_page)
502717f4 2210{
a137e1cc
AK
2211 spin_lock(&vma->vm_file->f_mapping->i_mmap_lock);
2212 __unmap_hugepage_range(vma, start, end, ref_page);
2213 spin_unlock(&vma->vm_file->f_mapping->i_mmap_lock);
502717f4
CK
2214}
2215
04f2cbe3
MG
2216/*
2217 * This is called when the original mapper is failing to COW a MAP_PRIVATE
2218 * mappping it owns the reserve page for. The intention is to unmap the page
2219 * from other VMAs and let the children be SIGKILLed if they are faulting the
2220 * same region.
2221 */
2a4b3ded
HH
2222static int unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
2223 struct page *page, unsigned long address)
04f2cbe3 2224{
7526674d 2225 struct hstate *h = hstate_vma(vma);
04f2cbe3
MG
2226 struct vm_area_struct *iter_vma;
2227 struct address_space *mapping;
2228 struct prio_tree_iter iter;
2229 pgoff_t pgoff;
2230
2231 /*
2232 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
2233 * from page cache lookup which is in HPAGE_SIZE units.
2234 */
7526674d 2235 address = address & huge_page_mask(h);
04f2cbe3
MG
2236 pgoff = ((address - vma->vm_start) >> PAGE_SHIFT)
2237 + (vma->vm_pgoff >> PAGE_SHIFT);
2238 mapping = (struct address_space *)page_private(page);
2239
2240 vma_prio_tree_foreach(iter_vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
2241 /* Do not unmap the current VMA */
2242 if (iter_vma == vma)
2243 continue;
2244
2245 /*
2246 * Unmap the page from other VMAs without their own reserves.
2247 * They get marked to be SIGKILLed if they fault in these
2248 * areas. This is because a future no-page fault on this VMA
2249 * could insert a zeroed page instead of the data existing
2250 * from the time of fork. This would look like data corruption
2251 */
2252 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
2253 unmap_hugepage_range(iter_vma,
7526674d 2254 address, address + huge_page_size(h),
04f2cbe3
MG
2255 page);
2256 }
2257
2258 return 1;
2259}
2260
1e8f889b 2261static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
04f2cbe3
MG
2262 unsigned long address, pte_t *ptep, pte_t pte,
2263 struct page *pagecache_page)
1e8f889b 2264{
a5516438 2265 struct hstate *h = hstate_vma(vma);
1e8f889b 2266 struct page *old_page, *new_page;
79ac6ba4 2267 int avoidcopy;
04f2cbe3 2268 int outside_reserve = 0;
1e8f889b
DG
2269
2270 old_page = pte_page(pte);
2271
04f2cbe3 2272retry_avoidcopy:
1e8f889b
DG
2273 /* If no-one else is actually using this page, avoid the copy
2274 * and just make the page writable */
2275 avoidcopy = (page_count(old_page) == 1);
2276 if (avoidcopy) {
2277 set_huge_ptep_writable(vma, address, ptep);
83c54070 2278 return 0;
1e8f889b
DG
2279 }
2280
04f2cbe3
MG
2281 /*
2282 * If the process that created a MAP_PRIVATE mapping is about to
2283 * perform a COW due to a shared page count, attempt to satisfy
2284 * the allocation without using the existing reserves. The pagecache
2285 * page is used to determine if the reserve at this address was
2286 * consumed or not. If reserves were used, a partial faulted mapping
2287 * at the time of fork() could consume its reserves on COW instead
2288 * of the full address range.
2289 */
f83a275d 2290 if (!(vma->vm_flags & VM_MAYSHARE) &&
04f2cbe3
MG
2291 is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
2292 old_page != pagecache_page)
2293 outside_reserve = 1;
2294
1e8f889b 2295 page_cache_get(old_page);
b76c8cfb
LW
2296
2297 /* Drop page_table_lock as buddy allocator may be called */
2298 spin_unlock(&mm->page_table_lock);
04f2cbe3 2299 new_page = alloc_huge_page(vma, address, outside_reserve);
1e8f889b 2300
2fc39cec 2301 if (IS_ERR(new_page)) {
1e8f889b 2302 page_cache_release(old_page);
04f2cbe3
MG
2303
2304 /*
2305 * If a process owning a MAP_PRIVATE mapping fails to COW,
2306 * it is due to references held by a child and an insufficient
2307 * huge page pool. To guarantee the original mappers
2308 * reliability, unmap the page from child processes. The child
2309 * may get SIGKILLed if it later faults.
2310 */
2311 if (outside_reserve) {
2312 BUG_ON(huge_pte_none(pte));
2313 if (unmap_ref_private(mm, vma, old_page, address)) {
2314 BUG_ON(page_count(old_page) != 1);
2315 BUG_ON(huge_pte_none(pte));
b76c8cfb 2316 spin_lock(&mm->page_table_lock);
04f2cbe3
MG
2317 goto retry_avoidcopy;
2318 }
2319 WARN_ON_ONCE(1);
2320 }
2321
b76c8cfb
LW
2322 /* Caller expects lock to be held */
2323 spin_lock(&mm->page_table_lock);
2fc39cec 2324 return -PTR_ERR(new_page);
1e8f889b
DG
2325 }
2326
9de455b2 2327 copy_huge_page(new_page, old_page, address, vma);
0ed361de 2328 __SetPageUptodate(new_page);
1e8f889b 2329
b76c8cfb
LW
2330 /*
2331 * Retake the page_table_lock to check for racing updates
2332 * before the page tables are altered
2333 */
2334 spin_lock(&mm->page_table_lock);
a5516438 2335 ptep = huge_pte_offset(mm, address & huge_page_mask(h));
7f2e9525 2336 if (likely(pte_same(huge_ptep_get(ptep), pte))) {
1e8f889b 2337 /* Break COW */
8fe627ec 2338 huge_ptep_clear_flush(vma, address, ptep);
1e8f889b
DG
2339 set_huge_pte_at(mm, address, ptep,
2340 make_huge_pte(vma, new_page, 1));
2341 /* Make the old page be freed below */
2342 new_page = old_page;
2343 }
2344 page_cache_release(new_page);
2345 page_cache_release(old_page);
83c54070 2346 return 0;
1e8f889b
DG
2347}
2348
04f2cbe3 2349/* Return the pagecache page at a given address within a VMA */
a5516438
AK
2350static struct page *hugetlbfs_pagecache_page(struct hstate *h,
2351 struct vm_area_struct *vma, unsigned long address)
04f2cbe3
MG
2352{
2353 struct address_space *mapping;
e7c4b0bf 2354 pgoff_t idx;
04f2cbe3
MG
2355
2356 mapping = vma->vm_file->f_mapping;
a5516438 2357 idx = vma_hugecache_offset(h, vma, address);
04f2cbe3
MG
2358
2359 return find_lock_page(mapping, idx);
2360}
2361
3ae77f43
HD
2362/*
2363 * Return whether there is a pagecache page to back given address within VMA.
2364 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
2365 */
2366static bool hugetlbfs_pagecache_present(struct hstate *h,
2a15efc9
HD
2367 struct vm_area_struct *vma, unsigned long address)
2368{
2369 struct address_space *mapping;
2370 pgoff_t idx;
2371 struct page *page;
2372
2373 mapping = vma->vm_file->f_mapping;
2374 idx = vma_hugecache_offset(h, vma, address);
2375
2376 page = find_get_page(mapping, idx);
2377 if (page)
2378 put_page(page);
2379 return page != NULL;
2380}
2381
a1ed3dda 2382static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
788c7df4 2383 unsigned long address, pte_t *ptep, unsigned int flags)
ac9b9c66 2384{
a5516438 2385 struct hstate *h = hstate_vma(vma);
ac9b9c66 2386 int ret = VM_FAULT_SIGBUS;
e7c4b0bf 2387 pgoff_t idx;
4c887265 2388 unsigned long size;
4c887265
AL
2389 struct page *page;
2390 struct address_space *mapping;
1e8f889b 2391 pte_t new_pte;
4c887265 2392
04f2cbe3
MG
2393 /*
2394 * Currently, we are forced to kill the process in the event the
2395 * original mapper has unmapped pages from the child due to a failed
2396 * COW. Warn that such a situation has occured as it may not be obvious
2397 */
2398 if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
2399 printk(KERN_WARNING
2400 "PID %d killed due to inadequate hugepage pool\n",
2401 current->pid);
2402 return ret;
2403 }
2404
4c887265 2405 mapping = vma->vm_file->f_mapping;
a5516438 2406 idx = vma_hugecache_offset(h, vma, address);
4c887265
AL
2407
2408 /*
2409 * Use page lock to guard against racing truncation
2410 * before we get page_table_lock.
2411 */
6bda666a
CL
2412retry:
2413 page = find_lock_page(mapping, idx);
2414 if (!page) {
a5516438 2415 size = i_size_read(mapping->host) >> huge_page_shift(h);
ebed4bfc
HD
2416 if (idx >= size)
2417 goto out;
04f2cbe3 2418 page = alloc_huge_page(vma, address, 0);
2fc39cec
AL
2419 if (IS_ERR(page)) {
2420 ret = -PTR_ERR(page);
6bda666a
CL
2421 goto out;
2422 }
a5516438 2423 clear_huge_page(page, address, huge_page_size(h));
0ed361de 2424 __SetPageUptodate(page);
ac9b9c66 2425
f83a275d 2426 if (vma->vm_flags & VM_MAYSHARE) {
6bda666a 2427 int err;
45c682a6 2428 struct inode *inode = mapping->host;
6bda666a
CL
2429
2430 err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
2431 if (err) {
2432 put_page(page);
6bda666a
CL
2433 if (err == -EEXIST)
2434 goto retry;
2435 goto out;
2436 }
45c682a6
KC
2437
2438 spin_lock(&inode->i_lock);
a5516438 2439 inode->i_blocks += blocks_per_huge_page(h);
45c682a6 2440 spin_unlock(&inode->i_lock);
6bda666a
CL
2441 } else
2442 lock_page(page);
2443 }
1e8f889b 2444
57303d80
AW
2445 /*
2446 * If we are going to COW a private mapping later, we examine the
2447 * pending reservations for this page now. This will ensure that
2448 * any allocations necessary to record that reservation occur outside
2449 * the spinlock.
2450 */
788c7df4 2451 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED))
2b26736c
AW
2452 if (vma_needs_reservation(h, vma, address) < 0) {
2453 ret = VM_FAULT_OOM;
2454 goto backout_unlocked;
2455 }
57303d80 2456
ac9b9c66 2457 spin_lock(&mm->page_table_lock);
a5516438 2458 size = i_size_read(mapping->host) >> huge_page_shift(h);
4c887265
AL
2459 if (idx >= size)
2460 goto backout;
2461
83c54070 2462 ret = 0;
7f2e9525 2463 if (!huge_pte_none(huge_ptep_get(ptep)))
4c887265
AL
2464 goto backout;
2465
1e8f889b
DG
2466 new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
2467 && (vma->vm_flags & VM_SHARED)));
2468 set_huge_pte_at(mm, address, ptep, new_pte);
2469
788c7df4 2470 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
1e8f889b 2471 /* Optimization, do the COW without a second fault */
04f2cbe3 2472 ret = hugetlb_cow(mm, vma, address, ptep, new_pte, page);
1e8f889b
DG
2473 }
2474
ac9b9c66 2475 spin_unlock(&mm->page_table_lock);
4c887265
AL
2476 unlock_page(page);
2477out:
ac9b9c66 2478 return ret;
4c887265
AL
2479
2480backout:
2481 spin_unlock(&mm->page_table_lock);
2b26736c 2482backout_unlocked:
4c887265
AL
2483 unlock_page(page);
2484 put_page(page);
2485 goto out;
ac9b9c66
HD
2486}
2487
86e5216f 2488int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
788c7df4 2489 unsigned long address, unsigned int flags)
86e5216f
AL
2490{
2491 pte_t *ptep;
2492 pte_t entry;
1e8f889b 2493 int ret;
57303d80 2494 struct page *pagecache_page = NULL;
3935baa9 2495 static DEFINE_MUTEX(hugetlb_instantiation_mutex);
a5516438 2496 struct hstate *h = hstate_vma(vma);
86e5216f 2497
a5516438 2498 ptep = huge_pte_alloc(mm, address, huge_page_size(h));
86e5216f
AL
2499 if (!ptep)
2500 return VM_FAULT_OOM;
2501
3935baa9
DG
2502 /*
2503 * Serialize hugepage allocation and instantiation, so that we don't
2504 * get spurious allocation failures if two CPUs race to instantiate
2505 * the same page in the page cache.
2506 */
2507 mutex_lock(&hugetlb_instantiation_mutex);
7f2e9525
GS
2508 entry = huge_ptep_get(ptep);
2509 if (huge_pte_none(entry)) {
788c7df4 2510 ret = hugetlb_no_page(mm, vma, address, ptep, flags);
b4d1d99f 2511 goto out_mutex;
3935baa9 2512 }
86e5216f 2513
83c54070 2514 ret = 0;
1e8f889b 2515
57303d80
AW
2516 /*
2517 * If we are going to COW the mapping later, we examine the pending
2518 * reservations for this page now. This will ensure that any
2519 * allocations necessary to record that reservation occur outside the
2520 * spinlock. For private mappings, we also lookup the pagecache
2521 * page now as it is used to determine if a reservation has been
2522 * consumed.
2523 */
788c7df4 2524 if ((flags & FAULT_FLAG_WRITE) && !pte_write(entry)) {
2b26736c
AW
2525 if (vma_needs_reservation(h, vma, address) < 0) {
2526 ret = VM_FAULT_OOM;
b4d1d99f 2527 goto out_mutex;
2b26736c 2528 }
57303d80 2529
f83a275d 2530 if (!(vma->vm_flags & VM_MAYSHARE))
57303d80
AW
2531 pagecache_page = hugetlbfs_pagecache_page(h,
2532 vma, address);
2533 }
2534
1e8f889b
DG
2535 spin_lock(&mm->page_table_lock);
2536 /* Check for a racing update before calling hugetlb_cow */
b4d1d99f
DG
2537 if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
2538 goto out_page_table_lock;
2539
2540
788c7df4 2541 if (flags & FAULT_FLAG_WRITE) {
b4d1d99f 2542 if (!pte_write(entry)) {
57303d80
AW
2543 ret = hugetlb_cow(mm, vma, address, ptep, entry,
2544 pagecache_page);
b4d1d99f
DG
2545 goto out_page_table_lock;
2546 }
2547 entry = pte_mkdirty(entry);
2548 }
2549 entry = pte_mkyoung(entry);
788c7df4
HD
2550 if (huge_ptep_set_access_flags(vma, address, ptep, entry,
2551 flags & FAULT_FLAG_WRITE))
b4d1d99f
DG
2552 update_mmu_cache(vma, address, entry);
2553
2554out_page_table_lock:
1e8f889b 2555 spin_unlock(&mm->page_table_lock);
57303d80
AW
2556
2557 if (pagecache_page) {
2558 unlock_page(pagecache_page);
2559 put_page(pagecache_page);
2560 }
2561
b4d1d99f 2562out_mutex:
3935baa9 2563 mutex_unlock(&hugetlb_instantiation_mutex);
1e8f889b
DG
2564
2565 return ret;
86e5216f
AL
2566}
2567
ceb86879
AK
2568/* Can be overriden by architectures */
2569__attribute__((weak)) struct page *
2570follow_huge_pud(struct mm_struct *mm, unsigned long address,
2571 pud_t *pud, int write)
2572{
2573 BUG();
2574 return NULL;
2575}
2576
63551ae0
DG
2577int follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
2578 struct page **pages, struct vm_area_struct **vmas,
5b23dbe8 2579 unsigned long *position, int *length, int i,
2a15efc9 2580 unsigned int flags)
63551ae0 2581{
d5d4b0aa
CK
2582 unsigned long pfn_offset;
2583 unsigned long vaddr = *position;
63551ae0 2584 int remainder = *length;
a5516438 2585 struct hstate *h = hstate_vma(vma);
63551ae0 2586
1c59827d 2587 spin_lock(&mm->page_table_lock);
63551ae0 2588 while (vaddr < vma->vm_end && remainder) {
4c887265 2589 pte_t *pte;
2a15efc9 2590 int absent;
4c887265 2591 struct page *page;
63551ae0 2592
4c887265
AL
2593 /*
2594 * Some archs (sparc64, sh*) have multiple pte_ts to
2a15efc9 2595 * each hugepage. We have to make sure we get the
4c887265
AL
2596 * first, for the page indexing below to work.
2597 */
a5516438 2598 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h));
2a15efc9
HD
2599 absent = !pte || huge_pte_none(huge_ptep_get(pte));
2600
2601 /*
2602 * When coredumping, it suits get_dump_page if we just return
3ae77f43
HD
2603 * an error where there's an empty slot with no huge pagecache
2604 * to back it. This way, we avoid allocating a hugepage, and
2605 * the sparse dumpfile avoids allocating disk blocks, but its
2606 * huge holes still show up with zeroes where they need to be.
2a15efc9 2607 */
3ae77f43
HD
2608 if (absent && (flags & FOLL_DUMP) &&
2609 !hugetlbfs_pagecache_present(h, vma, vaddr)) {
2a15efc9
HD
2610 remainder = 0;
2611 break;
2612 }
63551ae0 2613
2a15efc9
HD
2614 if (absent ||
2615 ((flags & FOLL_WRITE) && !pte_write(huge_ptep_get(pte)))) {
4c887265 2616 int ret;
63551ae0 2617
4c887265 2618 spin_unlock(&mm->page_table_lock);
2a15efc9
HD
2619 ret = hugetlb_fault(mm, vma, vaddr,
2620 (flags & FOLL_WRITE) ? FAULT_FLAG_WRITE : 0);
4c887265 2621 spin_lock(&mm->page_table_lock);
a89182c7 2622 if (!(ret & VM_FAULT_ERROR))
4c887265 2623 continue;
63551ae0 2624
4c887265 2625 remainder = 0;
4c887265
AL
2626 break;
2627 }
2628
a5516438 2629 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
7f2e9525 2630 page = pte_page(huge_ptep_get(pte));
d5d4b0aa 2631same_page:
d6692183 2632 if (pages) {
2a15efc9 2633 pages[i] = mem_map_offset(page, pfn_offset);
4b2e38ad 2634 get_page(pages[i]);
d6692183 2635 }
63551ae0
DG
2636
2637 if (vmas)
2638 vmas[i] = vma;
2639
2640 vaddr += PAGE_SIZE;
d5d4b0aa 2641 ++pfn_offset;
63551ae0
DG
2642 --remainder;
2643 ++i;
d5d4b0aa 2644 if (vaddr < vma->vm_end && remainder &&
a5516438 2645 pfn_offset < pages_per_huge_page(h)) {
d5d4b0aa
CK
2646 /*
2647 * We use pfn_offset to avoid touching the pageframes
2648 * of this compound page.
2649 */
2650 goto same_page;
2651 }
63551ae0 2652 }
1c59827d 2653 spin_unlock(&mm->page_table_lock);
63551ae0
DG
2654 *length = remainder;
2655 *position = vaddr;
2656
2a15efc9 2657 return i ? i : -EFAULT;
63551ae0 2658}
8f860591
ZY
2659
2660void hugetlb_change_protection(struct vm_area_struct *vma,
2661 unsigned long address, unsigned long end, pgprot_t newprot)
2662{
2663 struct mm_struct *mm = vma->vm_mm;
2664 unsigned long start = address;
2665 pte_t *ptep;
2666 pte_t pte;
a5516438 2667 struct hstate *h = hstate_vma(vma);
8f860591
ZY
2668
2669 BUG_ON(address >= end);
2670 flush_cache_range(vma, address, end);
2671
39dde65c 2672 spin_lock(&vma->vm_file->f_mapping->i_mmap_lock);
8f860591 2673 spin_lock(&mm->page_table_lock);
a5516438 2674 for (; address < end; address += huge_page_size(h)) {
8f860591
ZY
2675 ptep = huge_pte_offset(mm, address);
2676 if (!ptep)
2677 continue;
39dde65c
CK
2678 if (huge_pmd_unshare(mm, &address, ptep))
2679 continue;
7f2e9525 2680 if (!huge_pte_none(huge_ptep_get(ptep))) {
8f860591
ZY
2681 pte = huge_ptep_get_and_clear(mm, address, ptep);
2682 pte = pte_mkhuge(pte_modify(pte, newprot));
2683 set_huge_pte_at(mm, address, ptep, pte);
8f860591
ZY
2684 }
2685 }
2686 spin_unlock(&mm->page_table_lock);
39dde65c 2687 spin_unlock(&vma->vm_file->f_mapping->i_mmap_lock);
8f860591
ZY
2688
2689 flush_tlb_range(vma, start, end);
2690}
2691
a1e78772
MG
2692int hugetlb_reserve_pages(struct inode *inode,
2693 long from, long to,
5a6fe125
MG
2694 struct vm_area_struct *vma,
2695 int acctflag)
e4e574b7 2696{
17c9d12e 2697 long ret, chg;
a5516438 2698 struct hstate *h = hstate_inode(inode);
e4e574b7 2699
17c9d12e
MG
2700 /*
2701 * Only apply hugepage reservation if asked. At fault time, an
2702 * attempt will be made for VM_NORESERVE to allocate a page
2703 * and filesystem quota without using reserves
2704 */
2705 if (acctflag & VM_NORESERVE)
2706 return 0;
2707
a1e78772
MG
2708 /*
2709 * Shared mappings base their reservation on the number of pages that
2710 * are already allocated on behalf of the file. Private mappings need
2711 * to reserve the full area even if read-only as mprotect() may be
2712 * called to make the mapping read-write. Assume !vma is a shm mapping
2713 */
f83a275d 2714 if (!vma || vma->vm_flags & VM_MAYSHARE)
a1e78772 2715 chg = region_chg(&inode->i_mapping->private_list, from, to);
17c9d12e
MG
2716 else {
2717 struct resv_map *resv_map = resv_map_alloc();
2718 if (!resv_map)
2719 return -ENOMEM;
2720
a1e78772 2721 chg = to - from;
84afd99b 2722
17c9d12e
MG
2723 set_vma_resv_map(vma, resv_map);
2724 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
2725 }
2726
e4e574b7
AL
2727 if (chg < 0)
2728 return chg;
8a630112 2729
17c9d12e 2730 /* There must be enough filesystem quota for the mapping */
90d8b7e6
AL
2731 if (hugetlb_get_quota(inode->i_mapping, chg))
2732 return -ENOSPC;
5a6fe125
MG
2733
2734 /*
17c9d12e
MG
2735 * Check enough hugepages are available for the reservation.
2736 * Hand back the quota if there are not
5a6fe125 2737 */
a5516438 2738 ret = hugetlb_acct_memory(h, chg);
68842c9b
KC
2739 if (ret < 0) {
2740 hugetlb_put_quota(inode->i_mapping, chg);
a43a8c39 2741 return ret;
68842c9b 2742 }
17c9d12e
MG
2743
2744 /*
2745 * Account for the reservations made. Shared mappings record regions
2746 * that have reservations as they are shared by multiple VMAs.
2747 * When the last VMA disappears, the region map says how much
2748 * the reservation was and the page cache tells how much of
2749 * the reservation was consumed. Private mappings are per-VMA and
2750 * only the consumed reservations are tracked. When the VMA
2751 * disappears, the original reservation is the VMA size and the
2752 * consumed reservations are stored in the map. Hence, nothing
2753 * else has to be done for private mappings here
2754 */
f83a275d 2755 if (!vma || vma->vm_flags & VM_MAYSHARE)
a1e78772 2756 region_add(&inode->i_mapping->private_list, from, to);
a43a8c39
CK
2757 return 0;
2758}
2759
2760void hugetlb_unreserve_pages(struct inode *inode, long offset, long freed)
2761{
a5516438 2762 struct hstate *h = hstate_inode(inode);
a43a8c39 2763 long chg = region_truncate(&inode->i_mapping->private_list, offset);
45c682a6
KC
2764
2765 spin_lock(&inode->i_lock);
e4c6f8be 2766 inode->i_blocks -= (blocks_per_huge_page(h) * freed);
45c682a6
KC
2767 spin_unlock(&inode->i_lock);
2768
90d8b7e6 2769 hugetlb_put_quota(inode->i_mapping, (chg - freed));
a5516438 2770 hugetlb_acct_memory(h, -(chg - freed));
a43a8c39 2771}