kprobes: MAINTAINERS update
[linux-2.6-block.git] / mm / hugetlb.c
CommitLineData
1da177e4
LT
1/*
2 * Generic hugetlb support.
3 * (C) William Irwin, April 2004
4 */
5#include <linux/gfp.h>
6#include <linux/list.h>
7#include <linux/init.h>
8#include <linux/module.h>
9#include <linux/mm.h>
1da177e4
LT
10#include <linux/sysctl.h>
11#include <linux/highmem.h>
12#include <linux/nodemask.h>
63551ae0 13#include <linux/pagemap.h>
5da7ca86 14#include <linux/mempolicy.h>
aea47ff3 15#include <linux/cpuset.h>
3935baa9 16#include <linux/mutex.h>
5da7ca86 17
63551ae0
DG
18#include <asm/page.h>
19#include <asm/pgtable.h>
20
21#include <linux/hugetlb.h>
7835e98b 22#include "internal.h"
1da177e4
LT
23
24const unsigned long hugetlb_zero = 0, hugetlb_infinity = ~0UL;
a43a8c39 25static unsigned long nr_huge_pages, free_huge_pages, resv_huge_pages;
7893d1d5 26static unsigned long surplus_huge_pages;
064d9efe 27static unsigned long nr_overcommit_huge_pages;
1da177e4 28unsigned long max_huge_pages;
064d9efe 29unsigned long sysctl_overcommit_huge_pages;
1da177e4
LT
30static struct list_head hugepage_freelists[MAX_NUMNODES];
31static unsigned int nr_huge_pages_node[MAX_NUMNODES];
32static unsigned int free_huge_pages_node[MAX_NUMNODES];
7893d1d5 33static unsigned int surplus_huge_pages_node[MAX_NUMNODES];
396faf03
MG
34static gfp_t htlb_alloc_mask = GFP_HIGHUSER;
35unsigned long hugepages_treat_as_movable;
63b4613c 36static int hugetlb_next_nid;
396faf03 37
3935baa9
DG
38/*
39 * Protects updates to hugepage_freelists, nr_huge_pages, and free_huge_pages
40 */
41static DEFINE_SPINLOCK(hugetlb_lock);
0bd0f9fb 42
79ac6ba4
DG
43static void clear_huge_page(struct page *page, unsigned long addr)
44{
45 int i;
46
47 might_sleep();
48 for (i = 0; i < (HPAGE_SIZE/PAGE_SIZE); i++) {
49 cond_resched();
281e0e3b 50 clear_user_highpage(page + i, addr + i * PAGE_SIZE);
79ac6ba4
DG
51 }
52}
53
54static void copy_huge_page(struct page *dst, struct page *src,
9de455b2 55 unsigned long addr, struct vm_area_struct *vma)
79ac6ba4
DG
56{
57 int i;
58
59 might_sleep();
60 for (i = 0; i < HPAGE_SIZE/PAGE_SIZE; i++) {
61 cond_resched();
9de455b2 62 copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
79ac6ba4
DG
63 }
64}
65
1da177e4
LT
66static void enqueue_huge_page(struct page *page)
67{
68 int nid = page_to_nid(page);
69 list_add(&page->lru, &hugepage_freelists[nid]);
70 free_huge_pages++;
71 free_huge_pages_node[nid]++;
72}
73
348e1e04
NA
74static struct page *dequeue_huge_page(void)
75{
76 int nid;
77 struct page *page = NULL;
78
79 for (nid = 0; nid < MAX_NUMNODES; ++nid) {
80 if (!list_empty(&hugepage_freelists[nid])) {
81 page = list_entry(hugepage_freelists[nid].next,
82 struct page, lru);
83 list_del(&page->lru);
84 free_huge_pages--;
85 free_huge_pages_node[nid]--;
86 break;
87 }
88 }
89 return page;
90}
91
92static struct page *dequeue_huge_page_vma(struct vm_area_struct *vma,
5da7ca86 93 unsigned long address)
1da177e4 94{
31a5c6e4 95 int nid;
1da177e4 96 struct page *page = NULL;
480eccf9 97 struct mempolicy *mpol;
396faf03 98 struct zonelist *zonelist = huge_zonelist(vma, address,
480eccf9 99 htlb_alloc_mask, &mpol);
96df9333 100 struct zone **z;
1da177e4 101
96df9333 102 for (z = zonelist->zones; *z; z++) {
89fa3024 103 nid = zone_to_nid(*z);
396faf03 104 if (cpuset_zone_allowed_softwall(*z, htlb_alloc_mask) &&
3abf7afd
AM
105 !list_empty(&hugepage_freelists[nid])) {
106 page = list_entry(hugepage_freelists[nid].next,
107 struct page, lru);
108 list_del(&page->lru);
109 free_huge_pages--;
110 free_huge_pages_node[nid]--;
e4e574b7
AL
111 if (vma && vma->vm_flags & VM_MAYSHARE)
112 resv_huge_pages--;
5ab3ee7b 113 break;
3abf7afd 114 }
1da177e4 115 }
480eccf9 116 mpol_free(mpol); /* unref if mpol !NULL */
1da177e4
LT
117 return page;
118}
119
6af2acb6
AL
120static void update_and_free_page(struct page *page)
121{
122 int i;
123 nr_huge_pages--;
124 nr_huge_pages_node[page_to_nid(page)]--;
125 for (i = 0; i < (HPAGE_SIZE / PAGE_SIZE); i++) {
126 page[i].flags &= ~(1 << PG_locked | 1 << PG_error | 1 << PG_referenced |
127 1 << PG_dirty | 1 << PG_active | 1 << PG_reserved |
128 1 << PG_private | 1<< PG_writeback);
129 }
130 set_compound_page_dtor(page, NULL);
131 set_page_refcounted(page);
132 __free_pages(page, HUGETLB_PAGE_ORDER);
133}
134
27a85ef1
DG
135static void free_huge_page(struct page *page)
136{
7893d1d5 137 int nid = page_to_nid(page);
c79fb75e 138 struct address_space *mapping;
27a85ef1 139
c79fb75e 140 mapping = (struct address_space *) page_private(page);
e5df70ab 141 set_page_private(page, 0);
7893d1d5 142 BUG_ON(page_count(page));
27a85ef1
DG
143 INIT_LIST_HEAD(&page->lru);
144
145 spin_lock(&hugetlb_lock);
7893d1d5
AL
146 if (surplus_huge_pages_node[nid]) {
147 update_and_free_page(page);
148 surplus_huge_pages--;
149 surplus_huge_pages_node[nid]--;
150 } else {
151 enqueue_huge_page(page);
152 }
27a85ef1 153 spin_unlock(&hugetlb_lock);
c79fb75e 154 if (mapping)
9a119c05 155 hugetlb_put_quota(mapping, 1);
27a85ef1
DG
156}
157
7893d1d5
AL
158/*
159 * Increment or decrement surplus_huge_pages. Keep node-specific counters
160 * balanced by operating on them in a round-robin fashion.
161 * Returns 1 if an adjustment was made.
162 */
163static int adjust_pool_surplus(int delta)
164{
165 static int prev_nid;
166 int nid = prev_nid;
167 int ret = 0;
168
169 VM_BUG_ON(delta != -1 && delta != 1);
170 do {
171 nid = next_node(nid, node_online_map);
172 if (nid == MAX_NUMNODES)
173 nid = first_node(node_online_map);
174
175 /* To shrink on this node, there must be a surplus page */
176 if (delta < 0 && !surplus_huge_pages_node[nid])
177 continue;
178 /* Surplus cannot exceed the total number of pages */
179 if (delta > 0 && surplus_huge_pages_node[nid] >=
180 nr_huge_pages_node[nid])
181 continue;
182
183 surplus_huge_pages += delta;
184 surplus_huge_pages_node[nid] += delta;
185 ret = 1;
186 break;
187 } while (nid != prev_nid);
188
189 prev_nid = nid;
190 return ret;
191}
192
63b4613c 193static struct page *alloc_fresh_huge_page_node(int nid)
1da177e4 194{
1da177e4 195 struct page *page;
f96efd58 196
63b4613c
NA
197 page = alloc_pages_node(nid,
198 htlb_alloc_mask|__GFP_COMP|__GFP_THISNODE|__GFP_NOWARN,
199 HUGETLB_PAGE_ORDER);
1da177e4 200 if (page) {
33f2ef89 201 set_compound_page_dtor(page, free_huge_page);
0bd0f9fb 202 spin_lock(&hugetlb_lock);
1da177e4 203 nr_huge_pages++;
63b4613c 204 nr_huge_pages_node[nid]++;
0bd0f9fb 205 spin_unlock(&hugetlb_lock);
a482289d 206 put_page(page); /* free it into the hugepage allocator */
1da177e4 207 }
63b4613c
NA
208
209 return page;
210}
211
212static int alloc_fresh_huge_page(void)
213{
214 struct page *page;
215 int start_nid;
216 int next_nid;
217 int ret = 0;
218
219 start_nid = hugetlb_next_nid;
220
221 do {
222 page = alloc_fresh_huge_page_node(hugetlb_next_nid);
223 if (page)
224 ret = 1;
225 /*
226 * Use a helper variable to find the next node and then
227 * copy it back to hugetlb_next_nid afterwards:
228 * otherwise there's a window in which a racer might
229 * pass invalid nid MAX_NUMNODES to alloc_pages_node.
230 * But we don't need to use a spin_lock here: it really
231 * doesn't matter if occasionally a racer chooses the
232 * same nid as we do. Move nid forward in the mask even
233 * if we just successfully allocated a hugepage so that
234 * the next caller gets hugepages on the next node.
235 */
236 next_nid = next_node(hugetlb_next_nid, node_online_map);
237 if (next_nid == MAX_NUMNODES)
238 next_nid = first_node(node_online_map);
239 hugetlb_next_nid = next_nid;
240 } while (!page && hugetlb_next_nid != start_nid);
241
242 return ret;
1da177e4
LT
243}
244
7893d1d5
AL
245static struct page *alloc_buddy_huge_page(struct vm_area_struct *vma,
246 unsigned long address)
247{
248 struct page *page;
d1c3fb1f 249 unsigned int nid;
7893d1d5 250
d1c3fb1f
NA
251 /*
252 * Assume we will successfully allocate the surplus page to
253 * prevent racing processes from causing the surplus to exceed
254 * overcommit
255 *
256 * This however introduces a different race, where a process B
257 * tries to grow the static hugepage pool while alloc_pages() is
258 * called by process A. B will only examine the per-node
259 * counters in determining if surplus huge pages can be
260 * converted to normal huge pages in adjust_pool_surplus(). A
261 * won't be able to increment the per-node counter, until the
262 * lock is dropped by B, but B doesn't drop hugetlb_lock until
263 * no more huge pages can be converted from surplus to normal
264 * state (and doesn't try to convert again). Thus, we have a
265 * case where a surplus huge page exists, the pool is grown, and
266 * the surplus huge page still exists after, even though it
267 * should just have been converted to a normal huge page. This
268 * does not leak memory, though, as the hugepage will be freed
269 * once it is out of use. It also does not allow the counters to
270 * go out of whack in adjust_pool_surplus() as we don't modify
271 * the node values until we've gotten the hugepage and only the
272 * per-node value is checked there.
273 */
274 spin_lock(&hugetlb_lock);
275 if (surplus_huge_pages >= nr_overcommit_huge_pages) {
276 spin_unlock(&hugetlb_lock);
277 return NULL;
278 } else {
279 nr_huge_pages++;
280 surplus_huge_pages++;
281 }
282 spin_unlock(&hugetlb_lock);
283
7893d1d5
AL
284 page = alloc_pages(htlb_alloc_mask|__GFP_COMP|__GFP_NOWARN,
285 HUGETLB_PAGE_ORDER);
d1c3fb1f
NA
286
287 spin_lock(&hugetlb_lock);
7893d1d5 288 if (page) {
2668db91
AL
289 /*
290 * This page is now managed by the hugetlb allocator and has
291 * no users -- drop the buddy allocator's reference.
292 */
293 put_page_testzero(page);
294 VM_BUG_ON(page_count(page));
d1c3fb1f 295 nid = page_to_nid(page);
7893d1d5 296 set_compound_page_dtor(page, free_huge_page);
d1c3fb1f
NA
297 /*
298 * We incremented the global counters already
299 */
300 nr_huge_pages_node[nid]++;
301 surplus_huge_pages_node[nid]++;
302 } else {
303 nr_huge_pages--;
304 surplus_huge_pages--;
7893d1d5 305 }
d1c3fb1f 306 spin_unlock(&hugetlb_lock);
7893d1d5
AL
307
308 return page;
309}
310
e4e574b7
AL
311/*
312 * Increase the hugetlb pool such that it can accomodate a reservation
313 * of size 'delta'.
314 */
315static int gather_surplus_pages(int delta)
316{
317 struct list_head surplus_list;
318 struct page *page, *tmp;
319 int ret, i;
320 int needed, allocated;
321
322 needed = (resv_huge_pages + delta) - free_huge_pages;
ac09b3a1
AL
323 if (needed <= 0) {
324 resv_huge_pages += delta;
e4e574b7 325 return 0;
ac09b3a1 326 }
e4e574b7
AL
327
328 allocated = 0;
329 INIT_LIST_HEAD(&surplus_list);
330
331 ret = -ENOMEM;
332retry:
333 spin_unlock(&hugetlb_lock);
334 for (i = 0; i < needed; i++) {
335 page = alloc_buddy_huge_page(NULL, 0);
336 if (!page) {
337 /*
338 * We were not able to allocate enough pages to
339 * satisfy the entire reservation so we free what
340 * we've allocated so far.
341 */
342 spin_lock(&hugetlb_lock);
343 needed = 0;
344 goto free;
345 }
346
347 list_add(&page->lru, &surplus_list);
348 }
349 allocated += needed;
350
351 /*
352 * After retaking hugetlb_lock, we need to recalculate 'needed'
353 * because either resv_huge_pages or free_huge_pages may have changed.
354 */
355 spin_lock(&hugetlb_lock);
356 needed = (resv_huge_pages + delta) - (free_huge_pages + allocated);
357 if (needed > 0)
358 goto retry;
359
360 /*
361 * The surplus_list now contains _at_least_ the number of extra pages
362 * needed to accomodate the reservation. Add the appropriate number
363 * of pages to the hugetlb pool and free the extras back to the buddy
ac09b3a1
AL
364 * allocator. Commit the entire reservation here to prevent another
365 * process from stealing the pages as they are added to the pool but
366 * before they are reserved.
e4e574b7
AL
367 */
368 needed += allocated;
ac09b3a1 369 resv_huge_pages += delta;
e4e574b7
AL
370 ret = 0;
371free:
372 list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
373 list_del(&page->lru);
374 if ((--needed) >= 0)
375 enqueue_huge_page(page);
af767cbd
AL
376 else {
377 /*
2668db91
AL
378 * The page has a reference count of zero already, so
379 * call free_huge_page directly instead of using
380 * put_page. This must be done with hugetlb_lock
af767cbd
AL
381 * unlocked which is safe because free_huge_page takes
382 * hugetlb_lock before deciding how to free the page.
383 */
384 spin_unlock(&hugetlb_lock);
2668db91 385 free_huge_page(page);
af767cbd
AL
386 spin_lock(&hugetlb_lock);
387 }
e4e574b7
AL
388 }
389
390 return ret;
391}
392
393/*
394 * When releasing a hugetlb pool reservation, any surplus pages that were
395 * allocated to satisfy the reservation must be explicitly freed if they were
396 * never used.
397 */
8cde045c 398static void return_unused_surplus_pages(unsigned long unused_resv_pages)
e4e574b7
AL
399{
400 static int nid = -1;
401 struct page *page;
402 unsigned long nr_pages;
403
ac09b3a1
AL
404 /* Uncommit the reservation */
405 resv_huge_pages -= unused_resv_pages;
406
e4e574b7
AL
407 nr_pages = min(unused_resv_pages, surplus_huge_pages);
408
409 while (nr_pages) {
410 nid = next_node(nid, node_online_map);
411 if (nid == MAX_NUMNODES)
412 nid = first_node(node_online_map);
413
414 if (!surplus_huge_pages_node[nid])
415 continue;
416
417 if (!list_empty(&hugepage_freelists[nid])) {
418 page = list_entry(hugepage_freelists[nid].next,
419 struct page, lru);
420 list_del(&page->lru);
421 update_and_free_page(page);
422 free_huge_pages--;
423 free_huge_pages_node[nid]--;
424 surplus_huge_pages--;
425 surplus_huge_pages_node[nid]--;
426 nr_pages--;
427 }
428 }
429}
430
348ea204
AL
431
432static struct page *alloc_huge_page_shared(struct vm_area_struct *vma,
433 unsigned long addr)
1da177e4 434{
348ea204 435 struct page *page;
1da177e4
LT
436
437 spin_lock(&hugetlb_lock);
348e1e04 438 page = dequeue_huge_page_vma(vma, addr);
1da177e4 439 spin_unlock(&hugetlb_lock);
90d8b7e6 440 return page ? page : ERR_PTR(-VM_FAULT_OOM);
348ea204 441}
b45b5bd6 442
348ea204
AL
443static struct page *alloc_huge_page_private(struct vm_area_struct *vma,
444 unsigned long addr)
445{
446 struct page *page = NULL;
7893d1d5 447
90d8b7e6
AL
448 if (hugetlb_get_quota(vma->vm_file->f_mapping, 1))
449 return ERR_PTR(-VM_FAULT_SIGBUS);
450
348ea204
AL
451 spin_lock(&hugetlb_lock);
452 if (free_huge_pages > resv_huge_pages)
348e1e04 453 page = dequeue_huge_page_vma(vma, addr);
348ea204 454 spin_unlock(&hugetlb_lock);
68842c9b 455 if (!page) {
7893d1d5 456 page = alloc_buddy_huge_page(vma, addr);
68842c9b
KC
457 if (!page) {
458 hugetlb_put_quota(vma->vm_file->f_mapping, 1);
459 return ERR_PTR(-VM_FAULT_OOM);
460 }
461 }
462 return page;
348ea204
AL
463}
464
465static struct page *alloc_huge_page(struct vm_area_struct *vma,
466 unsigned long addr)
467{
468 struct page *page;
2fc39cec
AL
469 struct address_space *mapping = vma->vm_file->f_mapping;
470
348ea204
AL
471 if (vma->vm_flags & VM_MAYSHARE)
472 page = alloc_huge_page_shared(vma, addr);
473 else
474 page = alloc_huge_page_private(vma, addr);
90d8b7e6
AL
475
476 if (!IS_ERR(page)) {
348ea204 477 set_page_refcounted(page);
2fc39cec 478 set_page_private(page, (unsigned long) mapping);
90d8b7e6
AL
479 }
480 return page;
b45b5bd6
DG
481}
482
1da177e4
LT
483static int __init hugetlb_init(void)
484{
485 unsigned long i;
1da177e4 486
3c726f8d
BH
487 if (HPAGE_SHIFT == 0)
488 return 0;
489
1da177e4
LT
490 for (i = 0; i < MAX_NUMNODES; ++i)
491 INIT_LIST_HEAD(&hugepage_freelists[i]);
492
63b4613c
NA
493 hugetlb_next_nid = first_node(node_online_map);
494
1da177e4 495 for (i = 0; i < max_huge_pages; ++i) {
a482289d 496 if (!alloc_fresh_huge_page())
1da177e4 497 break;
1da177e4
LT
498 }
499 max_huge_pages = free_huge_pages = nr_huge_pages = i;
500 printk("Total HugeTLB memory allocated, %ld\n", free_huge_pages);
501 return 0;
502}
503module_init(hugetlb_init);
504
505static int __init hugetlb_setup(char *s)
506{
507 if (sscanf(s, "%lu", &max_huge_pages) <= 0)
508 max_huge_pages = 0;
509 return 1;
510}
511__setup("hugepages=", hugetlb_setup);
512
8a630112
KC
513static unsigned int cpuset_mems_nr(unsigned int *array)
514{
515 int node;
516 unsigned int nr = 0;
517
518 for_each_node_mask(node, cpuset_current_mems_allowed)
519 nr += array[node];
520
521 return nr;
522}
523
1da177e4 524#ifdef CONFIG_SYSCTL
1da177e4
LT
525#ifdef CONFIG_HIGHMEM
526static void try_to_free_low(unsigned long count)
527{
4415cc8d
CL
528 int i;
529
1da177e4
LT
530 for (i = 0; i < MAX_NUMNODES; ++i) {
531 struct page *page, *next;
532 list_for_each_entry_safe(page, next, &hugepage_freelists[i], lru) {
6b0c880d
AL
533 if (count >= nr_huge_pages)
534 return;
1da177e4
LT
535 if (PageHighMem(page))
536 continue;
537 list_del(&page->lru);
538 update_and_free_page(page);
1da177e4 539 free_huge_pages--;
4415cc8d 540 free_huge_pages_node[page_to_nid(page)]--;
1da177e4
LT
541 }
542 }
543}
544#else
545static inline void try_to_free_low(unsigned long count)
546{
547}
548#endif
549
7893d1d5 550#define persistent_huge_pages (nr_huge_pages - surplus_huge_pages)
1da177e4
LT
551static unsigned long set_max_huge_pages(unsigned long count)
552{
7893d1d5 553 unsigned long min_count, ret;
1da177e4 554
7893d1d5
AL
555 /*
556 * Increase the pool size
557 * First take pages out of surplus state. Then make up the
558 * remaining difference by allocating fresh huge pages.
d1c3fb1f
NA
559 *
560 * We might race with alloc_buddy_huge_page() here and be unable
561 * to convert a surplus huge page to a normal huge page. That is
562 * not critical, though, it just means the overall size of the
563 * pool might be one hugepage larger than it needs to be, but
564 * within all the constraints specified by the sysctls.
7893d1d5 565 */
1da177e4 566 spin_lock(&hugetlb_lock);
7893d1d5
AL
567 while (surplus_huge_pages && count > persistent_huge_pages) {
568 if (!adjust_pool_surplus(-1))
569 break;
570 }
571
572 while (count > persistent_huge_pages) {
573 int ret;
574 /*
575 * If this allocation races such that we no longer need the
576 * page, free_huge_page will handle it by freeing the page
577 * and reducing the surplus.
578 */
579 spin_unlock(&hugetlb_lock);
580 ret = alloc_fresh_huge_page();
581 spin_lock(&hugetlb_lock);
582 if (!ret)
583 goto out;
584
585 }
7893d1d5
AL
586
587 /*
588 * Decrease the pool size
589 * First return free pages to the buddy allocator (being careful
590 * to keep enough around to satisfy reservations). Then place
591 * pages into surplus state as needed so the pool will shrink
592 * to the desired size as pages become free.
d1c3fb1f
NA
593 *
594 * By placing pages into the surplus state independent of the
595 * overcommit value, we are allowing the surplus pool size to
596 * exceed overcommit. There are few sane options here. Since
597 * alloc_buddy_huge_page() is checking the global counter,
598 * though, we'll note that we're not allowed to exceed surplus
599 * and won't grow the pool anywhere else. Not until one of the
600 * sysctls are changed, or the surplus pages go out of use.
7893d1d5 601 */
6b0c880d
AL
602 min_count = resv_huge_pages + nr_huge_pages - free_huge_pages;
603 min_count = max(count, min_count);
7893d1d5
AL
604 try_to_free_low(min_count);
605 while (min_count < persistent_huge_pages) {
348e1e04 606 struct page *page = dequeue_huge_page();
1da177e4
LT
607 if (!page)
608 break;
609 update_and_free_page(page);
610 }
7893d1d5
AL
611 while (count < persistent_huge_pages) {
612 if (!adjust_pool_surplus(1))
613 break;
614 }
615out:
616 ret = persistent_huge_pages;
1da177e4 617 spin_unlock(&hugetlb_lock);
7893d1d5 618 return ret;
1da177e4
LT
619}
620
621int hugetlb_sysctl_handler(struct ctl_table *table, int write,
622 struct file *file, void __user *buffer,
623 size_t *length, loff_t *ppos)
624{
625 proc_doulongvec_minmax(table, write, file, buffer, length, ppos);
626 max_huge_pages = set_max_huge_pages(max_huge_pages);
627 return 0;
628}
396faf03
MG
629
630int hugetlb_treat_movable_handler(struct ctl_table *table, int write,
631 struct file *file, void __user *buffer,
632 size_t *length, loff_t *ppos)
633{
634 proc_dointvec(table, write, file, buffer, length, ppos);
635 if (hugepages_treat_as_movable)
636 htlb_alloc_mask = GFP_HIGHUSER_MOVABLE;
637 else
638 htlb_alloc_mask = GFP_HIGHUSER;
639 return 0;
640}
641
a3d0c6aa
NA
642int hugetlb_overcommit_handler(struct ctl_table *table, int write,
643 struct file *file, void __user *buffer,
644 size_t *length, loff_t *ppos)
645{
a3d0c6aa 646 proc_doulongvec_minmax(table, write, file, buffer, length, ppos);
064d9efe
NA
647 spin_lock(&hugetlb_lock);
648 nr_overcommit_huge_pages = sysctl_overcommit_huge_pages;
a3d0c6aa
NA
649 spin_unlock(&hugetlb_lock);
650 return 0;
651}
652
1da177e4
LT
653#endif /* CONFIG_SYSCTL */
654
655int hugetlb_report_meminfo(char *buf)
656{
657 return sprintf(buf,
658 "HugePages_Total: %5lu\n"
659 "HugePages_Free: %5lu\n"
a43a8c39 660 "HugePages_Rsvd: %5lu\n"
7893d1d5 661 "HugePages_Surp: %5lu\n"
1da177e4
LT
662 "Hugepagesize: %5lu kB\n",
663 nr_huge_pages,
664 free_huge_pages,
a43a8c39 665 resv_huge_pages,
7893d1d5 666 surplus_huge_pages,
1da177e4
LT
667 HPAGE_SIZE/1024);
668}
669
670int hugetlb_report_node_meminfo(int nid, char *buf)
671{
672 return sprintf(buf,
673 "Node %d HugePages_Total: %5u\n"
674 "Node %d HugePages_Free: %5u\n",
675 nid, nr_huge_pages_node[nid],
676 nid, free_huge_pages_node[nid]);
677}
678
1da177e4
LT
679/* Return the number pages of memory we physically have, in PAGE_SIZE units. */
680unsigned long hugetlb_total_pages(void)
681{
682 return nr_huge_pages * (HPAGE_SIZE / PAGE_SIZE);
683}
1da177e4
LT
684
685/*
686 * We cannot handle pagefaults against hugetlb pages at all. They cause
687 * handle_mm_fault() to try to instantiate regular-sized pages in the
688 * hugegpage VMA. do_page_fault() is supposed to trap this, so BUG is we get
689 * this far.
690 */
d0217ac0 691static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1da177e4
LT
692{
693 BUG();
d0217ac0 694 return 0;
1da177e4
LT
695}
696
697struct vm_operations_struct hugetlb_vm_ops = {
d0217ac0 698 .fault = hugetlb_vm_op_fault,
1da177e4
LT
699};
700
1e8f889b
DG
701static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
702 int writable)
63551ae0
DG
703{
704 pte_t entry;
705
1e8f889b 706 if (writable) {
63551ae0
DG
707 entry =
708 pte_mkwrite(pte_mkdirty(mk_pte(page, vma->vm_page_prot)));
709 } else {
710 entry = pte_wrprotect(mk_pte(page, vma->vm_page_prot));
711 }
712 entry = pte_mkyoung(entry);
713 entry = pte_mkhuge(entry);
714
715 return entry;
716}
717
1e8f889b
DG
718static void set_huge_ptep_writable(struct vm_area_struct *vma,
719 unsigned long address, pte_t *ptep)
720{
721 pte_t entry;
722
723 entry = pte_mkwrite(pte_mkdirty(*ptep));
8dab5241
BH
724 if (ptep_set_access_flags(vma, address, ptep, entry, 1)) {
725 update_mmu_cache(vma, address, entry);
8dab5241 726 }
1e8f889b
DG
727}
728
729
63551ae0
DG
730int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
731 struct vm_area_struct *vma)
732{
733 pte_t *src_pte, *dst_pte, entry;
734 struct page *ptepage;
1c59827d 735 unsigned long addr;
1e8f889b
DG
736 int cow;
737
738 cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
63551ae0 739
1c59827d 740 for (addr = vma->vm_start; addr < vma->vm_end; addr += HPAGE_SIZE) {
c74df32c
HD
741 src_pte = huge_pte_offset(src, addr);
742 if (!src_pte)
743 continue;
63551ae0
DG
744 dst_pte = huge_pte_alloc(dst, addr);
745 if (!dst_pte)
746 goto nomem;
c5c99429
LW
747
748 /* If the pagetables are shared don't copy or take references */
749 if (dst_pte == src_pte)
750 continue;
751
c74df32c 752 spin_lock(&dst->page_table_lock);
1c59827d 753 spin_lock(&src->page_table_lock);
c74df32c 754 if (!pte_none(*src_pte)) {
1e8f889b
DG
755 if (cow)
756 ptep_set_wrprotect(src, addr, src_pte);
1c59827d
HD
757 entry = *src_pte;
758 ptepage = pte_page(entry);
759 get_page(ptepage);
1c59827d
HD
760 set_huge_pte_at(dst, addr, dst_pte, entry);
761 }
762 spin_unlock(&src->page_table_lock);
c74df32c 763 spin_unlock(&dst->page_table_lock);
63551ae0
DG
764 }
765 return 0;
766
767nomem:
768 return -ENOMEM;
769}
770
502717f4
CK
771void __unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
772 unsigned long end)
63551ae0
DG
773{
774 struct mm_struct *mm = vma->vm_mm;
775 unsigned long address;
c7546f8f 776 pte_t *ptep;
63551ae0
DG
777 pte_t pte;
778 struct page *page;
fe1668ae 779 struct page *tmp;
c0a499c2
CK
780 /*
781 * A page gathering list, protected by per file i_mmap_lock. The
782 * lock is used to avoid list corruption from multiple unmapping
783 * of the same page since we are using page->lru.
784 */
fe1668ae 785 LIST_HEAD(page_list);
63551ae0
DG
786
787 WARN_ON(!is_vm_hugetlb_page(vma));
788 BUG_ON(start & ~HPAGE_MASK);
789 BUG_ON(end & ~HPAGE_MASK);
790
508034a3 791 spin_lock(&mm->page_table_lock);
63551ae0 792 for (address = start; address < end; address += HPAGE_SIZE) {
c7546f8f 793 ptep = huge_pte_offset(mm, address);
4c887265 794 if (!ptep)
c7546f8f
DG
795 continue;
796
39dde65c
CK
797 if (huge_pmd_unshare(mm, &address, ptep))
798 continue;
799
c7546f8f 800 pte = huge_ptep_get_and_clear(mm, address, ptep);
63551ae0
DG
801 if (pte_none(pte))
802 continue;
c7546f8f 803
63551ae0 804 page = pte_page(pte);
6649a386
KC
805 if (pte_dirty(pte))
806 set_page_dirty(page);
fe1668ae 807 list_add(&page->lru, &page_list);
63551ae0 808 }
1da177e4 809 spin_unlock(&mm->page_table_lock);
508034a3 810 flush_tlb_range(vma, start, end);
fe1668ae
CK
811 list_for_each_entry_safe(page, tmp, &page_list, lru) {
812 list_del(&page->lru);
813 put_page(page);
814 }
1da177e4 815}
63551ae0 816
502717f4
CK
817void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
818 unsigned long end)
819{
820 /*
821 * It is undesirable to test vma->vm_file as it should be non-null
822 * for valid hugetlb area. However, vm_file will be NULL in the error
823 * cleanup path of do_mmap_pgoff. When hugetlbfs ->mmap method fails,
824 * do_mmap_pgoff() nullifies vma->vm_file before calling this function
825 * to clean up. Since no pte has actually been setup, it is safe to
826 * do nothing in this case.
827 */
828 if (vma->vm_file) {
829 spin_lock(&vma->vm_file->f_mapping->i_mmap_lock);
830 __unmap_hugepage_range(vma, start, end);
831 spin_unlock(&vma->vm_file->f_mapping->i_mmap_lock);
832 }
833}
834
1e8f889b
DG
835static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
836 unsigned long address, pte_t *ptep, pte_t pte)
837{
838 struct page *old_page, *new_page;
79ac6ba4 839 int avoidcopy;
1e8f889b
DG
840
841 old_page = pte_page(pte);
842
843 /* If no-one else is actually using this page, avoid the copy
844 * and just make the page writable */
845 avoidcopy = (page_count(old_page) == 1);
846 if (avoidcopy) {
847 set_huge_ptep_writable(vma, address, ptep);
83c54070 848 return 0;
1e8f889b
DG
849 }
850
851 page_cache_get(old_page);
5da7ca86 852 new_page = alloc_huge_page(vma, address);
1e8f889b 853
2fc39cec 854 if (IS_ERR(new_page)) {
1e8f889b 855 page_cache_release(old_page);
2fc39cec 856 return -PTR_ERR(new_page);
1e8f889b
DG
857 }
858
859 spin_unlock(&mm->page_table_lock);
9de455b2 860 copy_huge_page(new_page, old_page, address, vma);
0ed361de 861 __SetPageUptodate(new_page);
1e8f889b
DG
862 spin_lock(&mm->page_table_lock);
863
864 ptep = huge_pte_offset(mm, address & HPAGE_MASK);
865 if (likely(pte_same(*ptep, pte))) {
866 /* Break COW */
867 set_huge_pte_at(mm, address, ptep,
868 make_huge_pte(vma, new_page, 1));
869 /* Make the old page be freed below */
870 new_page = old_page;
871 }
872 page_cache_release(new_page);
873 page_cache_release(old_page);
83c54070 874 return 0;
1e8f889b
DG
875}
876
a1ed3dda 877static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
1e8f889b 878 unsigned long address, pte_t *ptep, int write_access)
ac9b9c66
HD
879{
880 int ret = VM_FAULT_SIGBUS;
4c887265
AL
881 unsigned long idx;
882 unsigned long size;
4c887265
AL
883 struct page *page;
884 struct address_space *mapping;
1e8f889b 885 pte_t new_pte;
4c887265 886
4c887265
AL
887 mapping = vma->vm_file->f_mapping;
888 idx = ((address - vma->vm_start) >> HPAGE_SHIFT)
889 + (vma->vm_pgoff >> (HPAGE_SHIFT - PAGE_SHIFT));
890
891 /*
892 * Use page lock to guard against racing truncation
893 * before we get page_table_lock.
894 */
6bda666a
CL
895retry:
896 page = find_lock_page(mapping, idx);
897 if (!page) {
ebed4bfc
HD
898 size = i_size_read(mapping->host) >> HPAGE_SHIFT;
899 if (idx >= size)
900 goto out;
6bda666a 901 page = alloc_huge_page(vma, address);
2fc39cec
AL
902 if (IS_ERR(page)) {
903 ret = -PTR_ERR(page);
6bda666a
CL
904 goto out;
905 }
79ac6ba4 906 clear_huge_page(page, address);
0ed361de 907 __SetPageUptodate(page);
ac9b9c66 908
6bda666a
CL
909 if (vma->vm_flags & VM_SHARED) {
910 int err;
45c682a6 911 struct inode *inode = mapping->host;
6bda666a
CL
912
913 err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
914 if (err) {
915 put_page(page);
6bda666a
CL
916 if (err == -EEXIST)
917 goto retry;
918 goto out;
919 }
45c682a6
KC
920
921 spin_lock(&inode->i_lock);
922 inode->i_blocks += BLOCKS_PER_HUGEPAGE;
923 spin_unlock(&inode->i_lock);
6bda666a
CL
924 } else
925 lock_page(page);
926 }
1e8f889b 927
ac9b9c66 928 spin_lock(&mm->page_table_lock);
4c887265
AL
929 size = i_size_read(mapping->host) >> HPAGE_SHIFT;
930 if (idx >= size)
931 goto backout;
932
83c54070 933 ret = 0;
86e5216f 934 if (!pte_none(*ptep))
4c887265
AL
935 goto backout;
936
1e8f889b
DG
937 new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
938 && (vma->vm_flags & VM_SHARED)));
939 set_huge_pte_at(mm, address, ptep, new_pte);
940
941 if (write_access && !(vma->vm_flags & VM_SHARED)) {
942 /* Optimization, do the COW without a second fault */
943 ret = hugetlb_cow(mm, vma, address, ptep, new_pte);
944 }
945
ac9b9c66 946 spin_unlock(&mm->page_table_lock);
4c887265
AL
947 unlock_page(page);
948out:
ac9b9c66 949 return ret;
4c887265
AL
950
951backout:
952 spin_unlock(&mm->page_table_lock);
4c887265
AL
953 unlock_page(page);
954 put_page(page);
955 goto out;
ac9b9c66
HD
956}
957
86e5216f
AL
958int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
959 unsigned long address, int write_access)
960{
961 pte_t *ptep;
962 pte_t entry;
1e8f889b 963 int ret;
3935baa9 964 static DEFINE_MUTEX(hugetlb_instantiation_mutex);
86e5216f
AL
965
966 ptep = huge_pte_alloc(mm, address);
967 if (!ptep)
968 return VM_FAULT_OOM;
969
3935baa9
DG
970 /*
971 * Serialize hugepage allocation and instantiation, so that we don't
972 * get spurious allocation failures if two CPUs race to instantiate
973 * the same page in the page cache.
974 */
975 mutex_lock(&hugetlb_instantiation_mutex);
86e5216f 976 entry = *ptep;
3935baa9
DG
977 if (pte_none(entry)) {
978 ret = hugetlb_no_page(mm, vma, address, ptep, write_access);
979 mutex_unlock(&hugetlb_instantiation_mutex);
980 return ret;
981 }
86e5216f 982
83c54070 983 ret = 0;
1e8f889b
DG
984
985 spin_lock(&mm->page_table_lock);
986 /* Check for a racing update before calling hugetlb_cow */
987 if (likely(pte_same(entry, *ptep)))
988 if (write_access && !pte_write(entry))
989 ret = hugetlb_cow(mm, vma, address, ptep, entry);
990 spin_unlock(&mm->page_table_lock);
3935baa9 991 mutex_unlock(&hugetlb_instantiation_mutex);
1e8f889b
DG
992
993 return ret;
86e5216f
AL
994}
995
63551ae0
DG
996int follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
997 struct page **pages, struct vm_area_struct **vmas,
5b23dbe8
AL
998 unsigned long *position, int *length, int i,
999 int write)
63551ae0 1000{
d5d4b0aa
CK
1001 unsigned long pfn_offset;
1002 unsigned long vaddr = *position;
63551ae0
DG
1003 int remainder = *length;
1004
1c59827d 1005 spin_lock(&mm->page_table_lock);
63551ae0 1006 while (vaddr < vma->vm_end && remainder) {
4c887265
AL
1007 pte_t *pte;
1008 struct page *page;
63551ae0 1009
4c887265
AL
1010 /*
1011 * Some archs (sparc64, sh*) have multiple pte_ts to
1012 * each hugepage. We have to make * sure we get the
1013 * first, for the page indexing below to work.
1014 */
1015 pte = huge_pte_offset(mm, vaddr & HPAGE_MASK);
63551ae0 1016
72fad713 1017 if (!pte || pte_none(*pte) || (write && !pte_write(*pte))) {
4c887265 1018 int ret;
63551ae0 1019
4c887265 1020 spin_unlock(&mm->page_table_lock);
5b23dbe8 1021 ret = hugetlb_fault(mm, vma, vaddr, write);
4c887265 1022 spin_lock(&mm->page_table_lock);
a89182c7 1023 if (!(ret & VM_FAULT_ERROR))
4c887265 1024 continue;
63551ae0 1025
4c887265
AL
1026 remainder = 0;
1027 if (!i)
1028 i = -EFAULT;
1029 break;
1030 }
1031
d5d4b0aa
CK
1032 pfn_offset = (vaddr & ~HPAGE_MASK) >> PAGE_SHIFT;
1033 page = pte_page(*pte);
1034same_page:
d6692183
CK
1035 if (pages) {
1036 get_page(page);
d5d4b0aa 1037 pages[i] = page + pfn_offset;
d6692183 1038 }
63551ae0
DG
1039
1040 if (vmas)
1041 vmas[i] = vma;
1042
1043 vaddr += PAGE_SIZE;
d5d4b0aa 1044 ++pfn_offset;
63551ae0
DG
1045 --remainder;
1046 ++i;
d5d4b0aa
CK
1047 if (vaddr < vma->vm_end && remainder &&
1048 pfn_offset < HPAGE_SIZE/PAGE_SIZE) {
1049 /*
1050 * We use pfn_offset to avoid touching the pageframes
1051 * of this compound page.
1052 */
1053 goto same_page;
1054 }
63551ae0 1055 }
1c59827d 1056 spin_unlock(&mm->page_table_lock);
63551ae0
DG
1057 *length = remainder;
1058 *position = vaddr;
1059
1060 return i;
1061}
8f860591
ZY
1062
1063void hugetlb_change_protection(struct vm_area_struct *vma,
1064 unsigned long address, unsigned long end, pgprot_t newprot)
1065{
1066 struct mm_struct *mm = vma->vm_mm;
1067 unsigned long start = address;
1068 pte_t *ptep;
1069 pte_t pte;
1070
1071 BUG_ON(address >= end);
1072 flush_cache_range(vma, address, end);
1073
39dde65c 1074 spin_lock(&vma->vm_file->f_mapping->i_mmap_lock);
8f860591
ZY
1075 spin_lock(&mm->page_table_lock);
1076 for (; address < end; address += HPAGE_SIZE) {
1077 ptep = huge_pte_offset(mm, address);
1078 if (!ptep)
1079 continue;
39dde65c
CK
1080 if (huge_pmd_unshare(mm, &address, ptep))
1081 continue;
8f860591
ZY
1082 if (!pte_none(*ptep)) {
1083 pte = huge_ptep_get_and_clear(mm, address, ptep);
1084 pte = pte_mkhuge(pte_modify(pte, newprot));
1085 set_huge_pte_at(mm, address, ptep, pte);
8f860591
ZY
1086 }
1087 }
1088 spin_unlock(&mm->page_table_lock);
39dde65c 1089 spin_unlock(&vma->vm_file->f_mapping->i_mmap_lock);
8f860591
ZY
1090
1091 flush_tlb_range(vma, start, end);
1092}
1093
a43a8c39
CK
1094struct file_region {
1095 struct list_head link;
1096 long from;
1097 long to;
1098};
1099
1100static long region_add(struct list_head *head, long f, long t)
1101{
1102 struct file_region *rg, *nrg, *trg;
1103
1104 /* Locate the region we are either in or before. */
1105 list_for_each_entry(rg, head, link)
1106 if (f <= rg->to)
1107 break;
1108
1109 /* Round our left edge to the current segment if it encloses us. */
1110 if (f > rg->from)
1111 f = rg->from;
1112
1113 /* Check for and consume any regions we now overlap with. */
1114 nrg = rg;
1115 list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
1116 if (&rg->link == head)
1117 break;
1118 if (rg->from > t)
1119 break;
1120
1121 /* If this area reaches higher then extend our area to
1122 * include it completely. If this is not the first area
1123 * which we intend to reuse, free it. */
1124 if (rg->to > t)
1125 t = rg->to;
1126 if (rg != nrg) {
1127 list_del(&rg->link);
1128 kfree(rg);
1129 }
1130 }
1131 nrg->from = f;
1132 nrg->to = t;
1133 return 0;
1134}
1135
1136static long region_chg(struct list_head *head, long f, long t)
1137{
1138 struct file_region *rg, *nrg;
1139 long chg = 0;
1140
1141 /* Locate the region we are before or in. */
1142 list_for_each_entry(rg, head, link)
1143 if (f <= rg->to)
1144 break;
1145
1146 /* If we are below the current region then a new region is required.
1147 * Subtle, allocate a new region at the position but make it zero
183ff22b 1148 * size such that we can guarantee to record the reservation. */
a43a8c39
CK
1149 if (&rg->link == head || t < rg->from) {
1150 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
c80544dc 1151 if (!nrg)
a43a8c39
CK
1152 return -ENOMEM;
1153 nrg->from = f;
1154 nrg->to = f;
1155 INIT_LIST_HEAD(&nrg->link);
1156 list_add(&nrg->link, rg->link.prev);
1157
1158 return t - f;
1159 }
1160
1161 /* Round our left edge to the current segment if it encloses us. */
1162 if (f > rg->from)
1163 f = rg->from;
1164 chg = t - f;
1165
1166 /* Check for and consume any regions we now overlap with. */
1167 list_for_each_entry(rg, rg->link.prev, link) {
1168 if (&rg->link == head)
1169 break;
1170 if (rg->from > t)
1171 return chg;
1172
1173 /* We overlap with this area, if it extends futher than
1174 * us then we must extend ourselves. Account for its
1175 * existing reservation. */
1176 if (rg->to > t) {
1177 chg += rg->to - t;
1178 t = rg->to;
1179 }
1180 chg -= rg->to - rg->from;
1181 }
1182 return chg;
1183}
1184
1185static long region_truncate(struct list_head *head, long end)
1186{
1187 struct file_region *rg, *trg;
1188 long chg = 0;
1189
1190 /* Locate the region we are either in or before. */
1191 list_for_each_entry(rg, head, link)
1192 if (end <= rg->to)
1193 break;
1194 if (&rg->link == head)
1195 return 0;
1196
1197 /* If we are in the middle of a region then adjust it. */
1198 if (end > rg->from) {
1199 chg = rg->to - end;
1200 rg->to = end;
1201 rg = list_entry(rg->link.next, typeof(*rg), link);
1202 }
1203
1204 /* Drop any remaining regions. */
1205 list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
1206 if (&rg->link == head)
1207 break;
1208 chg += rg->to - rg->from;
1209 list_del(&rg->link);
1210 kfree(rg);
1211 }
1212 return chg;
1213}
1214
1215static int hugetlb_acct_memory(long delta)
1216{
1217 int ret = -ENOMEM;
1218
1219 spin_lock(&hugetlb_lock);
8a630112
KC
1220 /*
1221 * When cpuset is configured, it breaks the strict hugetlb page
1222 * reservation as the accounting is done on a global variable. Such
1223 * reservation is completely rubbish in the presence of cpuset because
1224 * the reservation is not checked against page availability for the
1225 * current cpuset. Application can still potentially OOM'ed by kernel
1226 * with lack of free htlb page in cpuset that the task is in.
1227 * Attempt to enforce strict accounting with cpuset is almost
1228 * impossible (or too ugly) because cpuset is too fluid that
1229 * task or memory node can be dynamically moved between cpusets.
1230 *
1231 * The change of semantics for shared hugetlb mapping with cpuset is
1232 * undesirable. However, in order to preserve some of the semantics,
1233 * we fall back to check against current free page availability as
1234 * a best attempt and hopefully to minimize the impact of changing
1235 * semantics that cpuset has.
1236 */
e4e574b7
AL
1237 if (delta > 0) {
1238 if (gather_surplus_pages(delta) < 0)
1239 goto out;
1240
ac09b3a1
AL
1241 if (delta > cpuset_mems_nr(free_huge_pages_node)) {
1242 return_unused_surplus_pages(delta);
e4e574b7 1243 goto out;
ac09b3a1 1244 }
e4e574b7
AL
1245 }
1246
1247 ret = 0;
e4e574b7
AL
1248 if (delta < 0)
1249 return_unused_surplus_pages((unsigned long) -delta);
1250
1251out:
1252 spin_unlock(&hugetlb_lock);
1253 return ret;
1254}
1255
1256int hugetlb_reserve_pages(struct inode *inode, long from, long to)
1257{
1258 long ret, chg;
1259
1260 chg = region_chg(&inode->i_mapping->private_list, from, to);
1261 if (chg < 0)
1262 return chg;
8a630112 1263
90d8b7e6
AL
1264 if (hugetlb_get_quota(inode->i_mapping, chg))
1265 return -ENOSPC;
a43a8c39 1266 ret = hugetlb_acct_memory(chg);
68842c9b
KC
1267 if (ret < 0) {
1268 hugetlb_put_quota(inode->i_mapping, chg);
a43a8c39 1269 return ret;
68842c9b 1270 }
a43a8c39
CK
1271 region_add(&inode->i_mapping->private_list, from, to);
1272 return 0;
1273}
1274
1275void hugetlb_unreserve_pages(struct inode *inode, long offset, long freed)
1276{
1277 long chg = region_truncate(&inode->i_mapping->private_list, offset);
45c682a6
KC
1278
1279 spin_lock(&inode->i_lock);
1280 inode->i_blocks -= BLOCKS_PER_HUGEPAGE * freed;
1281 spin_unlock(&inode->i_lock);
1282
90d8b7e6
AL
1283 hugetlb_put_quota(inode->i_mapping, (chg - freed));
1284 hugetlb_acct_memory(-(chg - freed));
a43a8c39 1285}