mm: per-thread vma caching
[linux-2.6-block.git] / mm / hugetlb.c
CommitLineData
1da177e4
LT
1/*
2 * Generic hugetlb support.
6d49e352 3 * (C) Nadia Yvette Chambers, April 2004
1da177e4 4 */
1da177e4
LT
5#include <linux/list.h>
6#include <linux/init.h>
7#include <linux/module.h>
8#include <linux/mm.h>
e1759c21 9#include <linux/seq_file.h>
1da177e4
LT
10#include <linux/sysctl.h>
11#include <linux/highmem.h>
cddb8a5c 12#include <linux/mmu_notifier.h>
1da177e4 13#include <linux/nodemask.h>
63551ae0 14#include <linux/pagemap.h>
5da7ca86 15#include <linux/mempolicy.h>
aea47ff3 16#include <linux/cpuset.h>
3935baa9 17#include <linux/mutex.h>
aa888a74 18#include <linux/bootmem.h>
a3437870 19#include <linux/sysfs.h>
5a0e3ad6 20#include <linux/slab.h>
0fe6e20b 21#include <linux/rmap.h>
fd6a03ed
NH
22#include <linux/swap.h>
23#include <linux/swapops.h>
c8721bbb 24#include <linux/page-isolation.h>
8382d914 25#include <linux/jhash.h>
d6606683 26
63551ae0
DG
27#include <asm/page.h>
28#include <asm/pgtable.h>
24669e58 29#include <asm/tlb.h>
63551ae0 30
24669e58 31#include <linux/io.h>
63551ae0 32#include <linux/hugetlb.h>
9dd540e2 33#include <linux/hugetlb_cgroup.h>
9a305230 34#include <linux/node.h>
7835e98b 35#include "internal.h"
1da177e4
LT
36
37const unsigned long hugetlb_zero = 0, hugetlb_infinity = ~0UL;
396faf03 38unsigned long hugepages_treat_as_movable;
a5516438 39
c3f38a38 40int hugetlb_max_hstate __read_mostly;
e5ff2159
AK
41unsigned int default_hstate_idx;
42struct hstate hstates[HUGE_MAX_HSTATE];
43
53ba51d2
JT
44__initdata LIST_HEAD(huge_boot_pages);
45
e5ff2159
AK
46/* for command line parsing */
47static struct hstate * __initdata parsed_hstate;
48static unsigned long __initdata default_hstate_max_huge_pages;
e11bfbfc 49static unsigned long __initdata default_hstate_size;
e5ff2159 50
3935baa9 51/*
31caf665
NH
52 * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
53 * free_huge_pages, and surplus_huge_pages.
3935baa9 54 */
c3f38a38 55DEFINE_SPINLOCK(hugetlb_lock);
0bd0f9fb 56
8382d914
DB
57/*
58 * Serializes faults on the same logical page. This is used to
59 * prevent spurious OOMs when the hugepage pool is fully utilized.
60 */
61static int num_fault_mutexes;
62static struct mutex *htlb_fault_mutex_table ____cacheline_aligned_in_smp;
63
90481622
DG
64static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
65{
66 bool free = (spool->count == 0) && (spool->used_hpages == 0);
67
68 spin_unlock(&spool->lock);
69
70 /* If no pages are used, and no other handles to the subpool
71 * remain, free the subpool the subpool remain */
72 if (free)
73 kfree(spool);
74}
75
76struct hugepage_subpool *hugepage_new_subpool(long nr_blocks)
77{
78 struct hugepage_subpool *spool;
79
80 spool = kmalloc(sizeof(*spool), GFP_KERNEL);
81 if (!spool)
82 return NULL;
83
84 spin_lock_init(&spool->lock);
85 spool->count = 1;
86 spool->max_hpages = nr_blocks;
87 spool->used_hpages = 0;
88
89 return spool;
90}
91
92void hugepage_put_subpool(struct hugepage_subpool *spool)
93{
94 spin_lock(&spool->lock);
95 BUG_ON(!spool->count);
96 spool->count--;
97 unlock_or_release_subpool(spool);
98}
99
100static int hugepage_subpool_get_pages(struct hugepage_subpool *spool,
101 long delta)
102{
103 int ret = 0;
104
105 if (!spool)
106 return 0;
107
108 spin_lock(&spool->lock);
109 if ((spool->used_hpages + delta) <= spool->max_hpages) {
110 spool->used_hpages += delta;
111 } else {
112 ret = -ENOMEM;
113 }
114 spin_unlock(&spool->lock);
115
116 return ret;
117}
118
119static void hugepage_subpool_put_pages(struct hugepage_subpool *spool,
120 long delta)
121{
122 if (!spool)
123 return;
124
125 spin_lock(&spool->lock);
126 spool->used_hpages -= delta;
127 /* If hugetlbfs_put_super couldn't free spool due to
128 * an outstanding quota reference, free it now. */
129 unlock_or_release_subpool(spool);
130}
131
132static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
133{
134 return HUGETLBFS_SB(inode->i_sb)->spool;
135}
136
137static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
138{
496ad9aa 139 return subpool_inode(file_inode(vma->vm_file));
90481622
DG
140}
141
96822904
AW
142/*
143 * Region tracking -- allows tracking of reservations and instantiated pages
144 * across the pages in a mapping.
84afd99b 145 *
7b24d861
DB
146 * The region data structures are embedded into a resv_map and
147 * protected by a resv_map's lock
96822904
AW
148 */
149struct file_region {
150 struct list_head link;
151 long from;
152 long to;
153};
154
1406ec9b 155static long region_add(struct resv_map *resv, long f, long t)
96822904 156{
1406ec9b 157 struct list_head *head = &resv->regions;
96822904
AW
158 struct file_region *rg, *nrg, *trg;
159
7b24d861 160 spin_lock(&resv->lock);
96822904
AW
161 /* Locate the region we are either in or before. */
162 list_for_each_entry(rg, head, link)
163 if (f <= rg->to)
164 break;
165
166 /* Round our left edge to the current segment if it encloses us. */
167 if (f > rg->from)
168 f = rg->from;
169
170 /* Check for and consume any regions we now overlap with. */
171 nrg = rg;
172 list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
173 if (&rg->link == head)
174 break;
175 if (rg->from > t)
176 break;
177
178 /* If this area reaches higher then extend our area to
179 * include it completely. If this is not the first area
180 * which we intend to reuse, free it. */
181 if (rg->to > t)
182 t = rg->to;
183 if (rg != nrg) {
184 list_del(&rg->link);
185 kfree(rg);
186 }
187 }
188 nrg->from = f;
189 nrg->to = t;
7b24d861 190 spin_unlock(&resv->lock);
96822904
AW
191 return 0;
192}
193
1406ec9b 194static long region_chg(struct resv_map *resv, long f, long t)
96822904 195{
1406ec9b 196 struct list_head *head = &resv->regions;
7b24d861 197 struct file_region *rg, *nrg = NULL;
96822904
AW
198 long chg = 0;
199
7b24d861
DB
200retry:
201 spin_lock(&resv->lock);
96822904
AW
202 /* Locate the region we are before or in. */
203 list_for_each_entry(rg, head, link)
204 if (f <= rg->to)
205 break;
206
207 /* If we are below the current region then a new region is required.
208 * Subtle, allocate a new region at the position but make it zero
209 * size such that we can guarantee to record the reservation. */
210 if (&rg->link == head || t < rg->from) {
7b24d861
DB
211 if (!nrg) {
212 spin_unlock(&resv->lock);
213 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
214 if (!nrg)
215 return -ENOMEM;
216
217 nrg->from = f;
218 nrg->to = f;
219 INIT_LIST_HEAD(&nrg->link);
220 goto retry;
221 }
96822904 222
7b24d861
DB
223 list_add(&nrg->link, rg->link.prev);
224 chg = t - f;
225 goto out_nrg;
96822904
AW
226 }
227
228 /* Round our left edge to the current segment if it encloses us. */
229 if (f > rg->from)
230 f = rg->from;
231 chg = t - f;
232
233 /* Check for and consume any regions we now overlap with. */
234 list_for_each_entry(rg, rg->link.prev, link) {
235 if (&rg->link == head)
236 break;
237 if (rg->from > t)
7b24d861 238 goto out;
96822904 239
25985edc 240 /* We overlap with this area, if it extends further than
96822904
AW
241 * us then we must extend ourselves. Account for its
242 * existing reservation. */
243 if (rg->to > t) {
244 chg += rg->to - t;
245 t = rg->to;
246 }
247 chg -= rg->to - rg->from;
248 }
7b24d861
DB
249
250out:
251 spin_unlock(&resv->lock);
252 /* We already know we raced and no longer need the new region */
253 kfree(nrg);
254 return chg;
255out_nrg:
256 spin_unlock(&resv->lock);
96822904
AW
257 return chg;
258}
259
1406ec9b 260static long region_truncate(struct resv_map *resv, long end)
96822904 261{
1406ec9b 262 struct list_head *head = &resv->regions;
96822904
AW
263 struct file_region *rg, *trg;
264 long chg = 0;
265
7b24d861 266 spin_lock(&resv->lock);
96822904
AW
267 /* Locate the region we are either in or before. */
268 list_for_each_entry(rg, head, link)
269 if (end <= rg->to)
270 break;
271 if (&rg->link == head)
7b24d861 272 goto out;
96822904
AW
273
274 /* If we are in the middle of a region then adjust it. */
275 if (end > rg->from) {
276 chg = rg->to - end;
277 rg->to = end;
278 rg = list_entry(rg->link.next, typeof(*rg), link);
279 }
280
281 /* Drop any remaining regions. */
282 list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
283 if (&rg->link == head)
284 break;
285 chg += rg->to - rg->from;
286 list_del(&rg->link);
287 kfree(rg);
288 }
7b24d861
DB
289
290out:
291 spin_unlock(&resv->lock);
96822904
AW
292 return chg;
293}
294
1406ec9b 295static long region_count(struct resv_map *resv, long f, long t)
84afd99b 296{
1406ec9b 297 struct list_head *head = &resv->regions;
84afd99b
AW
298 struct file_region *rg;
299 long chg = 0;
300
7b24d861 301 spin_lock(&resv->lock);
84afd99b
AW
302 /* Locate each segment we overlap with, and count that overlap. */
303 list_for_each_entry(rg, head, link) {
f2135a4a
WSH
304 long seg_from;
305 long seg_to;
84afd99b
AW
306
307 if (rg->to <= f)
308 continue;
309 if (rg->from >= t)
310 break;
311
312 seg_from = max(rg->from, f);
313 seg_to = min(rg->to, t);
314
315 chg += seg_to - seg_from;
316 }
7b24d861 317 spin_unlock(&resv->lock);
84afd99b
AW
318
319 return chg;
320}
321
e7c4b0bf
AW
322/*
323 * Convert the address within this vma to the page offset within
324 * the mapping, in pagecache page units; huge pages here.
325 */
a5516438
AK
326static pgoff_t vma_hugecache_offset(struct hstate *h,
327 struct vm_area_struct *vma, unsigned long address)
e7c4b0bf 328{
a5516438
AK
329 return ((address - vma->vm_start) >> huge_page_shift(h)) +
330 (vma->vm_pgoff >> huge_page_order(h));
e7c4b0bf
AW
331}
332
0fe6e20b
NH
333pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
334 unsigned long address)
335{
336 return vma_hugecache_offset(hstate_vma(vma), vma, address);
337}
338
08fba699
MG
339/*
340 * Return the size of the pages allocated when backing a VMA. In the majority
341 * cases this will be same size as used by the page table entries.
342 */
343unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
344{
345 struct hstate *hstate;
346
347 if (!is_vm_hugetlb_page(vma))
348 return PAGE_SIZE;
349
350 hstate = hstate_vma(vma);
351
2415cf12 352 return 1UL << huge_page_shift(hstate);
08fba699 353}
f340ca0f 354EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
08fba699 355
3340289d
MG
356/*
357 * Return the page size being used by the MMU to back a VMA. In the majority
358 * of cases, the page size used by the kernel matches the MMU size. On
359 * architectures where it differs, an architecture-specific version of this
360 * function is required.
361 */
362#ifndef vma_mmu_pagesize
363unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
364{
365 return vma_kernel_pagesize(vma);
366}
367#endif
368
84afd99b
AW
369/*
370 * Flags for MAP_PRIVATE reservations. These are stored in the bottom
371 * bits of the reservation map pointer, which are always clear due to
372 * alignment.
373 */
374#define HPAGE_RESV_OWNER (1UL << 0)
375#define HPAGE_RESV_UNMAPPED (1UL << 1)
04f2cbe3 376#define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
84afd99b 377
a1e78772
MG
378/*
379 * These helpers are used to track how many pages are reserved for
380 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
381 * is guaranteed to have their future faults succeed.
382 *
383 * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
384 * the reserve counters are updated with the hugetlb_lock held. It is safe
385 * to reset the VMA at fork() time as it is not in use yet and there is no
386 * chance of the global counters getting corrupted as a result of the values.
84afd99b
AW
387 *
388 * The private mapping reservation is represented in a subtly different
389 * manner to a shared mapping. A shared mapping has a region map associated
390 * with the underlying file, this region map represents the backing file
391 * pages which have ever had a reservation assigned which this persists even
392 * after the page is instantiated. A private mapping has a region map
393 * associated with the original mmap which is attached to all VMAs which
394 * reference it, this region map represents those offsets which have consumed
395 * reservation ie. where pages have been instantiated.
a1e78772 396 */
e7c4b0bf
AW
397static unsigned long get_vma_private_data(struct vm_area_struct *vma)
398{
399 return (unsigned long)vma->vm_private_data;
400}
401
402static void set_vma_private_data(struct vm_area_struct *vma,
403 unsigned long value)
404{
405 vma->vm_private_data = (void *)value;
406}
407
9119a41e 408struct resv_map *resv_map_alloc(void)
84afd99b
AW
409{
410 struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
411 if (!resv_map)
412 return NULL;
413
414 kref_init(&resv_map->refs);
7b24d861 415 spin_lock_init(&resv_map->lock);
84afd99b
AW
416 INIT_LIST_HEAD(&resv_map->regions);
417
418 return resv_map;
419}
420
9119a41e 421void resv_map_release(struct kref *ref)
84afd99b
AW
422{
423 struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
424
425 /* Clear out any active regions before we release the map. */
1406ec9b 426 region_truncate(resv_map, 0);
84afd99b
AW
427 kfree(resv_map);
428}
429
4e35f483
JK
430static inline struct resv_map *inode_resv_map(struct inode *inode)
431{
432 return inode->i_mapping->private_data;
433}
434
84afd99b 435static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
a1e78772
MG
436{
437 VM_BUG_ON(!is_vm_hugetlb_page(vma));
4e35f483
JK
438 if (vma->vm_flags & VM_MAYSHARE) {
439 struct address_space *mapping = vma->vm_file->f_mapping;
440 struct inode *inode = mapping->host;
441
442 return inode_resv_map(inode);
443
444 } else {
84afd99b
AW
445 return (struct resv_map *)(get_vma_private_data(vma) &
446 ~HPAGE_RESV_MASK);
4e35f483 447 }
a1e78772
MG
448}
449
84afd99b 450static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
a1e78772
MG
451{
452 VM_BUG_ON(!is_vm_hugetlb_page(vma));
f83a275d 453 VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
a1e78772 454
84afd99b
AW
455 set_vma_private_data(vma, (get_vma_private_data(vma) &
456 HPAGE_RESV_MASK) | (unsigned long)map);
04f2cbe3
MG
457}
458
459static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
460{
04f2cbe3 461 VM_BUG_ON(!is_vm_hugetlb_page(vma));
f83a275d 462 VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
e7c4b0bf
AW
463
464 set_vma_private_data(vma, get_vma_private_data(vma) | flags);
04f2cbe3
MG
465}
466
467static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
468{
469 VM_BUG_ON(!is_vm_hugetlb_page(vma));
e7c4b0bf
AW
470
471 return (get_vma_private_data(vma) & flag) != 0;
a1e78772
MG
472}
473
04f2cbe3 474/* Reset counters to 0 and clear all HPAGE_RESV_* flags */
a1e78772
MG
475void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
476{
477 VM_BUG_ON(!is_vm_hugetlb_page(vma));
f83a275d 478 if (!(vma->vm_flags & VM_MAYSHARE))
a1e78772
MG
479 vma->vm_private_data = (void *)0;
480}
481
482/* Returns true if the VMA has associated reserve pages */
af0ed73e 483static int vma_has_reserves(struct vm_area_struct *vma, long chg)
a1e78772 484{
af0ed73e
JK
485 if (vma->vm_flags & VM_NORESERVE) {
486 /*
487 * This address is already reserved by other process(chg == 0),
488 * so, we should decrement reserved count. Without decrementing,
489 * reserve count remains after releasing inode, because this
490 * allocated page will go into page cache and is regarded as
491 * coming from reserved pool in releasing step. Currently, we
492 * don't have any other solution to deal with this situation
493 * properly, so add work-around here.
494 */
495 if (vma->vm_flags & VM_MAYSHARE && chg == 0)
496 return 1;
497 else
498 return 0;
499 }
a63884e9
JK
500
501 /* Shared mappings always use reserves */
f83a275d 502 if (vma->vm_flags & VM_MAYSHARE)
7f09ca51 503 return 1;
a63884e9
JK
504
505 /*
506 * Only the process that called mmap() has reserves for
507 * private mappings.
508 */
7f09ca51
MG
509 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER))
510 return 1;
a63884e9 511
7f09ca51 512 return 0;
a1e78772
MG
513}
514
a5516438 515static void enqueue_huge_page(struct hstate *h, struct page *page)
1da177e4
LT
516{
517 int nid = page_to_nid(page);
0edaecfa 518 list_move(&page->lru, &h->hugepage_freelists[nid]);
a5516438
AK
519 h->free_huge_pages++;
520 h->free_huge_pages_node[nid]++;
1da177e4
LT
521}
522
bf50bab2
NH
523static struct page *dequeue_huge_page_node(struct hstate *h, int nid)
524{
525 struct page *page;
526
c8721bbb
NH
527 list_for_each_entry(page, &h->hugepage_freelists[nid], lru)
528 if (!is_migrate_isolate_page(page))
529 break;
530 /*
531 * if 'non-isolated free hugepage' not found on the list,
532 * the allocation fails.
533 */
534 if (&h->hugepage_freelists[nid] == &page->lru)
bf50bab2 535 return NULL;
0edaecfa 536 list_move(&page->lru, &h->hugepage_activelist);
a9869b83 537 set_page_refcounted(page);
bf50bab2
NH
538 h->free_huge_pages--;
539 h->free_huge_pages_node[nid]--;
540 return page;
541}
542
86cdb465
NH
543/* Movability of hugepages depends on migration support. */
544static inline gfp_t htlb_alloc_mask(struct hstate *h)
545{
546 if (hugepages_treat_as_movable || hugepage_migration_support(h))
547 return GFP_HIGHUSER_MOVABLE;
548 else
549 return GFP_HIGHUSER;
550}
551
a5516438
AK
552static struct page *dequeue_huge_page_vma(struct hstate *h,
553 struct vm_area_struct *vma,
af0ed73e
JK
554 unsigned long address, int avoid_reserve,
555 long chg)
1da177e4 556{
b1c12cbc 557 struct page *page = NULL;
480eccf9 558 struct mempolicy *mpol;
19770b32 559 nodemask_t *nodemask;
c0ff7453 560 struct zonelist *zonelist;
dd1a239f
MG
561 struct zone *zone;
562 struct zoneref *z;
cc9a6c87 563 unsigned int cpuset_mems_cookie;
1da177e4 564
a1e78772
MG
565 /*
566 * A child process with MAP_PRIVATE mappings created by their parent
567 * have no page reserves. This check ensures that reservations are
568 * not "stolen". The child may still get SIGKILLed
569 */
af0ed73e 570 if (!vma_has_reserves(vma, chg) &&
a5516438 571 h->free_huge_pages - h->resv_huge_pages == 0)
c0ff7453 572 goto err;
a1e78772 573
04f2cbe3 574 /* If reserves cannot be used, ensure enough pages are in the pool */
a5516438 575 if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
6eab04a8 576 goto err;
04f2cbe3 577
9966c4bb 578retry_cpuset:
d26914d1 579 cpuset_mems_cookie = read_mems_allowed_begin();
9966c4bb 580 zonelist = huge_zonelist(vma, address,
86cdb465 581 htlb_alloc_mask(h), &mpol, &nodemask);
9966c4bb 582
19770b32
MG
583 for_each_zone_zonelist_nodemask(zone, z, zonelist,
584 MAX_NR_ZONES - 1, nodemask) {
86cdb465 585 if (cpuset_zone_allowed_softwall(zone, htlb_alloc_mask(h))) {
bf50bab2
NH
586 page = dequeue_huge_page_node(h, zone_to_nid(zone));
587 if (page) {
af0ed73e
JK
588 if (avoid_reserve)
589 break;
590 if (!vma_has_reserves(vma, chg))
591 break;
592
07443a85 593 SetPagePrivate(page);
af0ed73e 594 h->resv_huge_pages--;
bf50bab2
NH
595 break;
596 }
3abf7afd 597 }
1da177e4 598 }
cc9a6c87 599
52cd3b07 600 mpol_cond_put(mpol);
d26914d1 601 if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie)))
cc9a6c87 602 goto retry_cpuset;
1da177e4 603 return page;
cc9a6c87
MG
604
605err:
cc9a6c87 606 return NULL;
1da177e4
LT
607}
608
a5516438 609static void update_and_free_page(struct hstate *h, struct page *page)
6af2acb6
AL
610{
611 int i;
a5516438 612
18229df5
AW
613 VM_BUG_ON(h->order >= MAX_ORDER);
614
a5516438
AK
615 h->nr_huge_pages--;
616 h->nr_huge_pages_node[page_to_nid(page)]--;
617 for (i = 0; i < pages_per_huge_page(h); i++) {
32f84528
CF
618 page[i].flags &= ~(1 << PG_locked | 1 << PG_error |
619 1 << PG_referenced | 1 << PG_dirty |
620 1 << PG_active | 1 << PG_reserved |
621 1 << PG_private | 1 << PG_writeback);
6af2acb6 622 }
309381fe 623 VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page);
6af2acb6
AL
624 set_compound_page_dtor(page, NULL);
625 set_page_refcounted(page);
7f2e9525 626 arch_release_hugepage(page);
a5516438 627 __free_pages(page, huge_page_order(h));
6af2acb6
AL
628}
629
e5ff2159
AK
630struct hstate *size_to_hstate(unsigned long size)
631{
632 struct hstate *h;
633
634 for_each_hstate(h) {
635 if (huge_page_size(h) == size)
636 return h;
637 }
638 return NULL;
639}
640
27a85ef1
DG
641static void free_huge_page(struct page *page)
642{
a5516438
AK
643 /*
644 * Can't pass hstate in here because it is called from the
645 * compound page destructor.
646 */
e5ff2159 647 struct hstate *h = page_hstate(page);
7893d1d5 648 int nid = page_to_nid(page);
90481622
DG
649 struct hugepage_subpool *spool =
650 (struct hugepage_subpool *)page_private(page);
07443a85 651 bool restore_reserve;
27a85ef1 652
e5df70ab 653 set_page_private(page, 0);
23be7468 654 page->mapping = NULL;
7893d1d5 655 BUG_ON(page_count(page));
0fe6e20b 656 BUG_ON(page_mapcount(page));
07443a85 657 restore_reserve = PagePrivate(page);
16c794b4 658 ClearPagePrivate(page);
27a85ef1
DG
659
660 spin_lock(&hugetlb_lock);
6d76dcf4
AK
661 hugetlb_cgroup_uncharge_page(hstate_index(h),
662 pages_per_huge_page(h), page);
07443a85
JK
663 if (restore_reserve)
664 h->resv_huge_pages++;
665
aa888a74 666 if (h->surplus_huge_pages_node[nid] && huge_page_order(h) < MAX_ORDER) {
0edaecfa
AK
667 /* remove the page from active list */
668 list_del(&page->lru);
a5516438
AK
669 update_and_free_page(h, page);
670 h->surplus_huge_pages--;
671 h->surplus_huge_pages_node[nid]--;
7893d1d5 672 } else {
5d3a551c 673 arch_clear_hugepage_flags(page);
a5516438 674 enqueue_huge_page(h, page);
7893d1d5 675 }
27a85ef1 676 spin_unlock(&hugetlb_lock);
90481622 677 hugepage_subpool_put_pages(spool, 1);
27a85ef1
DG
678}
679
a5516438 680static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
b7ba30c6 681{
0edaecfa 682 INIT_LIST_HEAD(&page->lru);
b7ba30c6
AK
683 set_compound_page_dtor(page, free_huge_page);
684 spin_lock(&hugetlb_lock);
9dd540e2 685 set_hugetlb_cgroup(page, NULL);
a5516438
AK
686 h->nr_huge_pages++;
687 h->nr_huge_pages_node[nid]++;
b7ba30c6
AK
688 spin_unlock(&hugetlb_lock);
689 put_page(page); /* free it into the hugepage allocator */
690}
691
f412c97a
DR
692static void __init prep_compound_gigantic_page(struct page *page,
693 unsigned long order)
20a0307c
WF
694{
695 int i;
696 int nr_pages = 1 << order;
697 struct page *p = page + 1;
698
699 /* we rely on prep_new_huge_page to set the destructor */
700 set_compound_order(page, order);
701 __SetPageHead(page);
ef5a22be 702 __ClearPageReserved(page);
20a0307c
WF
703 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
704 __SetPageTail(p);
ef5a22be
AA
705 /*
706 * For gigantic hugepages allocated through bootmem at
707 * boot, it's safer to be consistent with the not-gigantic
708 * hugepages and clear the PG_reserved bit from all tail pages
709 * too. Otherwse drivers using get_user_pages() to access tail
710 * pages may get the reference counting wrong if they see
711 * PG_reserved set on a tail page (despite the head page not
712 * having PG_reserved set). Enforcing this consistency between
713 * head and tail pages allows drivers to optimize away a check
714 * on the head page when they need know if put_page() is needed
715 * after get_user_pages().
716 */
717 __ClearPageReserved(p);
58a84aa9 718 set_page_count(p, 0);
20a0307c
WF
719 p->first_page = page;
720 }
721}
722
7795912c
AM
723/*
724 * PageHuge() only returns true for hugetlbfs pages, but not for normal or
725 * transparent huge pages. See the PageTransHuge() documentation for more
726 * details.
727 */
20a0307c
WF
728int PageHuge(struct page *page)
729{
20a0307c
WF
730 if (!PageCompound(page))
731 return 0;
732
733 page = compound_head(page);
758f66a2 734 return get_compound_page_dtor(page) == free_huge_page;
20a0307c 735}
43131e14
NH
736EXPORT_SYMBOL_GPL(PageHuge);
737
27c73ae7
AA
738/*
739 * PageHeadHuge() only returns true for hugetlbfs head page, but not for
740 * normal or transparent huge pages.
741 */
742int PageHeadHuge(struct page *page_head)
743{
27c73ae7
AA
744 if (!PageHead(page_head))
745 return 0;
746
758f66a2 747 return get_compound_page_dtor(page_head) == free_huge_page;
27c73ae7 748}
27c73ae7 749
13d60f4b
ZY
750pgoff_t __basepage_index(struct page *page)
751{
752 struct page *page_head = compound_head(page);
753 pgoff_t index = page_index(page_head);
754 unsigned long compound_idx;
755
756 if (!PageHuge(page_head))
757 return page_index(page);
758
759 if (compound_order(page_head) >= MAX_ORDER)
760 compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
761 else
762 compound_idx = page - page_head;
763
764 return (index << compound_order(page_head)) + compound_idx;
765}
766
a5516438 767static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid)
1da177e4 768{
1da177e4 769 struct page *page;
f96efd58 770
aa888a74
AK
771 if (h->order >= MAX_ORDER)
772 return NULL;
773
6484eb3e 774 page = alloc_pages_exact_node(nid,
86cdb465 775 htlb_alloc_mask(h)|__GFP_COMP|__GFP_THISNODE|
551883ae 776 __GFP_REPEAT|__GFP_NOWARN,
a5516438 777 huge_page_order(h));
1da177e4 778 if (page) {
7f2e9525 779 if (arch_prepare_hugepage(page)) {
caff3a2c 780 __free_pages(page, huge_page_order(h));
7b8ee84d 781 return NULL;
7f2e9525 782 }
a5516438 783 prep_new_huge_page(h, page, nid);
1da177e4 784 }
63b4613c
NA
785
786 return page;
787}
788
9a76db09 789/*
6ae11b27
LS
790 * common helper functions for hstate_next_node_to_{alloc|free}.
791 * We may have allocated or freed a huge page based on a different
792 * nodes_allowed previously, so h->next_node_to_{alloc|free} might
793 * be outside of *nodes_allowed. Ensure that we use an allowed
794 * node for alloc or free.
9a76db09 795 */
6ae11b27 796static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
9a76db09 797{
6ae11b27 798 nid = next_node(nid, *nodes_allowed);
9a76db09 799 if (nid == MAX_NUMNODES)
6ae11b27 800 nid = first_node(*nodes_allowed);
9a76db09
LS
801 VM_BUG_ON(nid >= MAX_NUMNODES);
802
803 return nid;
804}
805
6ae11b27
LS
806static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
807{
808 if (!node_isset(nid, *nodes_allowed))
809 nid = next_node_allowed(nid, nodes_allowed);
810 return nid;
811}
812
5ced66c9 813/*
6ae11b27
LS
814 * returns the previously saved node ["this node"] from which to
815 * allocate a persistent huge page for the pool and advance the
816 * next node from which to allocate, handling wrap at end of node
817 * mask.
5ced66c9 818 */
6ae11b27
LS
819static int hstate_next_node_to_alloc(struct hstate *h,
820 nodemask_t *nodes_allowed)
5ced66c9 821{
6ae11b27
LS
822 int nid;
823
824 VM_BUG_ON(!nodes_allowed);
825
826 nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
827 h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
9a76db09 828
9a76db09 829 return nid;
5ced66c9
AK
830}
831
e8c5c824 832/*
6ae11b27
LS
833 * helper for free_pool_huge_page() - return the previously saved
834 * node ["this node"] from which to free a huge page. Advance the
835 * next node id whether or not we find a free huge page to free so
836 * that the next attempt to free addresses the next node.
e8c5c824 837 */
6ae11b27 838static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
e8c5c824 839{
6ae11b27
LS
840 int nid;
841
842 VM_BUG_ON(!nodes_allowed);
843
844 nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
845 h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
9a76db09 846
9a76db09 847 return nid;
e8c5c824
LS
848}
849
b2261026
JK
850#define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask) \
851 for (nr_nodes = nodes_weight(*mask); \
852 nr_nodes > 0 && \
853 ((node = hstate_next_node_to_alloc(hs, mask)) || 1); \
854 nr_nodes--)
855
856#define for_each_node_mask_to_free(hs, nr_nodes, node, mask) \
857 for (nr_nodes = nodes_weight(*mask); \
858 nr_nodes > 0 && \
859 ((node = hstate_next_node_to_free(hs, mask)) || 1); \
860 nr_nodes--)
861
862static int alloc_fresh_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
863{
864 struct page *page;
865 int nr_nodes, node;
866 int ret = 0;
867
868 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
869 page = alloc_fresh_huge_page_node(h, node);
870 if (page) {
871 ret = 1;
872 break;
873 }
874 }
875
876 if (ret)
877 count_vm_event(HTLB_BUDDY_PGALLOC);
878 else
879 count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
880
881 return ret;
882}
883
e8c5c824
LS
884/*
885 * Free huge page from pool from next node to free.
886 * Attempt to keep persistent huge pages more or less
887 * balanced over allowed nodes.
888 * Called with hugetlb_lock locked.
889 */
6ae11b27
LS
890static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
891 bool acct_surplus)
e8c5c824 892{
b2261026 893 int nr_nodes, node;
e8c5c824
LS
894 int ret = 0;
895
b2261026 896 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
685f3457
LS
897 /*
898 * If we're returning unused surplus pages, only examine
899 * nodes with surplus pages.
900 */
b2261026
JK
901 if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
902 !list_empty(&h->hugepage_freelists[node])) {
e8c5c824 903 struct page *page =
b2261026 904 list_entry(h->hugepage_freelists[node].next,
e8c5c824
LS
905 struct page, lru);
906 list_del(&page->lru);
907 h->free_huge_pages--;
b2261026 908 h->free_huge_pages_node[node]--;
685f3457
LS
909 if (acct_surplus) {
910 h->surplus_huge_pages--;
b2261026 911 h->surplus_huge_pages_node[node]--;
685f3457 912 }
e8c5c824
LS
913 update_and_free_page(h, page);
914 ret = 1;
9a76db09 915 break;
e8c5c824 916 }
b2261026 917 }
e8c5c824
LS
918
919 return ret;
920}
921
c8721bbb
NH
922/*
923 * Dissolve a given free hugepage into free buddy pages. This function does
924 * nothing for in-use (including surplus) hugepages.
925 */
926static void dissolve_free_huge_page(struct page *page)
927{
928 spin_lock(&hugetlb_lock);
929 if (PageHuge(page) && !page_count(page)) {
930 struct hstate *h = page_hstate(page);
931 int nid = page_to_nid(page);
932 list_del(&page->lru);
933 h->free_huge_pages--;
934 h->free_huge_pages_node[nid]--;
935 update_and_free_page(h, page);
936 }
937 spin_unlock(&hugetlb_lock);
938}
939
940/*
941 * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
942 * make specified memory blocks removable from the system.
943 * Note that start_pfn should aligned with (minimum) hugepage size.
944 */
945void dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
946{
947 unsigned int order = 8 * sizeof(void *);
948 unsigned long pfn;
949 struct hstate *h;
950
951 /* Set scan step to minimum hugepage size */
952 for_each_hstate(h)
953 if (order > huge_page_order(h))
954 order = huge_page_order(h);
955 VM_BUG_ON(!IS_ALIGNED(start_pfn, 1 << order));
956 for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << order)
957 dissolve_free_huge_page(pfn_to_page(pfn));
958}
959
bf50bab2 960static struct page *alloc_buddy_huge_page(struct hstate *h, int nid)
7893d1d5
AL
961{
962 struct page *page;
bf50bab2 963 unsigned int r_nid;
7893d1d5 964
aa888a74
AK
965 if (h->order >= MAX_ORDER)
966 return NULL;
967
d1c3fb1f
NA
968 /*
969 * Assume we will successfully allocate the surplus page to
970 * prevent racing processes from causing the surplus to exceed
971 * overcommit
972 *
973 * This however introduces a different race, where a process B
974 * tries to grow the static hugepage pool while alloc_pages() is
975 * called by process A. B will only examine the per-node
976 * counters in determining if surplus huge pages can be
977 * converted to normal huge pages in adjust_pool_surplus(). A
978 * won't be able to increment the per-node counter, until the
979 * lock is dropped by B, but B doesn't drop hugetlb_lock until
980 * no more huge pages can be converted from surplus to normal
981 * state (and doesn't try to convert again). Thus, we have a
982 * case where a surplus huge page exists, the pool is grown, and
983 * the surplus huge page still exists after, even though it
984 * should just have been converted to a normal huge page. This
985 * does not leak memory, though, as the hugepage will be freed
986 * once it is out of use. It also does not allow the counters to
987 * go out of whack in adjust_pool_surplus() as we don't modify
988 * the node values until we've gotten the hugepage and only the
989 * per-node value is checked there.
990 */
991 spin_lock(&hugetlb_lock);
a5516438 992 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
d1c3fb1f
NA
993 spin_unlock(&hugetlb_lock);
994 return NULL;
995 } else {
a5516438
AK
996 h->nr_huge_pages++;
997 h->surplus_huge_pages++;
d1c3fb1f
NA
998 }
999 spin_unlock(&hugetlb_lock);
1000
bf50bab2 1001 if (nid == NUMA_NO_NODE)
86cdb465 1002 page = alloc_pages(htlb_alloc_mask(h)|__GFP_COMP|
bf50bab2
NH
1003 __GFP_REPEAT|__GFP_NOWARN,
1004 huge_page_order(h));
1005 else
1006 page = alloc_pages_exact_node(nid,
86cdb465 1007 htlb_alloc_mask(h)|__GFP_COMP|__GFP_THISNODE|
bf50bab2 1008 __GFP_REPEAT|__GFP_NOWARN, huge_page_order(h));
d1c3fb1f 1009
caff3a2c
GS
1010 if (page && arch_prepare_hugepage(page)) {
1011 __free_pages(page, huge_page_order(h));
ea5768c7 1012 page = NULL;
caff3a2c
GS
1013 }
1014
d1c3fb1f 1015 spin_lock(&hugetlb_lock);
7893d1d5 1016 if (page) {
0edaecfa 1017 INIT_LIST_HEAD(&page->lru);
bf50bab2 1018 r_nid = page_to_nid(page);
7893d1d5 1019 set_compound_page_dtor(page, free_huge_page);
9dd540e2 1020 set_hugetlb_cgroup(page, NULL);
d1c3fb1f
NA
1021 /*
1022 * We incremented the global counters already
1023 */
bf50bab2
NH
1024 h->nr_huge_pages_node[r_nid]++;
1025 h->surplus_huge_pages_node[r_nid]++;
3b116300 1026 __count_vm_event(HTLB_BUDDY_PGALLOC);
d1c3fb1f 1027 } else {
a5516438
AK
1028 h->nr_huge_pages--;
1029 h->surplus_huge_pages--;
3b116300 1030 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
7893d1d5 1031 }
d1c3fb1f 1032 spin_unlock(&hugetlb_lock);
7893d1d5
AL
1033
1034 return page;
1035}
1036
bf50bab2
NH
1037/*
1038 * This allocation function is useful in the context where vma is irrelevant.
1039 * E.g. soft-offlining uses this function because it only cares physical
1040 * address of error page.
1041 */
1042struct page *alloc_huge_page_node(struct hstate *h, int nid)
1043{
4ef91848 1044 struct page *page = NULL;
bf50bab2
NH
1045
1046 spin_lock(&hugetlb_lock);
4ef91848
JK
1047 if (h->free_huge_pages - h->resv_huge_pages > 0)
1048 page = dequeue_huge_page_node(h, nid);
bf50bab2
NH
1049 spin_unlock(&hugetlb_lock);
1050
94ae8ba7 1051 if (!page)
bf50bab2
NH
1052 page = alloc_buddy_huge_page(h, nid);
1053
1054 return page;
1055}
1056
e4e574b7 1057/*
25985edc 1058 * Increase the hugetlb pool such that it can accommodate a reservation
e4e574b7
AL
1059 * of size 'delta'.
1060 */
a5516438 1061static int gather_surplus_pages(struct hstate *h, int delta)
e4e574b7
AL
1062{
1063 struct list_head surplus_list;
1064 struct page *page, *tmp;
1065 int ret, i;
1066 int needed, allocated;
28073b02 1067 bool alloc_ok = true;
e4e574b7 1068
a5516438 1069 needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
ac09b3a1 1070 if (needed <= 0) {
a5516438 1071 h->resv_huge_pages += delta;
e4e574b7 1072 return 0;
ac09b3a1 1073 }
e4e574b7
AL
1074
1075 allocated = 0;
1076 INIT_LIST_HEAD(&surplus_list);
1077
1078 ret = -ENOMEM;
1079retry:
1080 spin_unlock(&hugetlb_lock);
1081 for (i = 0; i < needed; i++) {
bf50bab2 1082 page = alloc_buddy_huge_page(h, NUMA_NO_NODE);
28073b02
HD
1083 if (!page) {
1084 alloc_ok = false;
1085 break;
1086 }
e4e574b7
AL
1087 list_add(&page->lru, &surplus_list);
1088 }
28073b02 1089 allocated += i;
e4e574b7
AL
1090
1091 /*
1092 * After retaking hugetlb_lock, we need to recalculate 'needed'
1093 * because either resv_huge_pages or free_huge_pages may have changed.
1094 */
1095 spin_lock(&hugetlb_lock);
a5516438
AK
1096 needed = (h->resv_huge_pages + delta) -
1097 (h->free_huge_pages + allocated);
28073b02
HD
1098 if (needed > 0) {
1099 if (alloc_ok)
1100 goto retry;
1101 /*
1102 * We were not able to allocate enough pages to
1103 * satisfy the entire reservation so we free what
1104 * we've allocated so far.
1105 */
1106 goto free;
1107 }
e4e574b7
AL
1108 /*
1109 * The surplus_list now contains _at_least_ the number of extra pages
25985edc 1110 * needed to accommodate the reservation. Add the appropriate number
e4e574b7 1111 * of pages to the hugetlb pool and free the extras back to the buddy
ac09b3a1
AL
1112 * allocator. Commit the entire reservation here to prevent another
1113 * process from stealing the pages as they are added to the pool but
1114 * before they are reserved.
e4e574b7
AL
1115 */
1116 needed += allocated;
a5516438 1117 h->resv_huge_pages += delta;
e4e574b7 1118 ret = 0;
a9869b83 1119
19fc3f0a 1120 /* Free the needed pages to the hugetlb pool */
e4e574b7 1121 list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
19fc3f0a
AL
1122 if ((--needed) < 0)
1123 break;
a9869b83
NH
1124 /*
1125 * This page is now managed by the hugetlb allocator and has
1126 * no users -- drop the buddy allocator's reference.
1127 */
1128 put_page_testzero(page);
309381fe 1129 VM_BUG_ON_PAGE(page_count(page), page);
a5516438 1130 enqueue_huge_page(h, page);
19fc3f0a 1131 }
28073b02 1132free:
b0365c8d 1133 spin_unlock(&hugetlb_lock);
19fc3f0a
AL
1134
1135 /* Free unnecessary surplus pages to the buddy allocator */
c0d934ba
JK
1136 list_for_each_entry_safe(page, tmp, &surplus_list, lru)
1137 put_page(page);
a9869b83 1138 spin_lock(&hugetlb_lock);
e4e574b7
AL
1139
1140 return ret;
1141}
1142
1143/*
1144 * When releasing a hugetlb pool reservation, any surplus pages that were
1145 * allocated to satisfy the reservation must be explicitly freed if they were
1146 * never used.
685f3457 1147 * Called with hugetlb_lock held.
e4e574b7 1148 */
a5516438
AK
1149static void return_unused_surplus_pages(struct hstate *h,
1150 unsigned long unused_resv_pages)
e4e574b7 1151{
e4e574b7
AL
1152 unsigned long nr_pages;
1153
ac09b3a1 1154 /* Uncommit the reservation */
a5516438 1155 h->resv_huge_pages -= unused_resv_pages;
ac09b3a1 1156
aa888a74
AK
1157 /* Cannot return gigantic pages currently */
1158 if (h->order >= MAX_ORDER)
1159 return;
1160
a5516438 1161 nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
e4e574b7 1162
685f3457
LS
1163 /*
1164 * We want to release as many surplus pages as possible, spread
9b5e5d0f
LS
1165 * evenly across all nodes with memory. Iterate across these nodes
1166 * until we can no longer free unreserved surplus pages. This occurs
1167 * when the nodes with surplus pages have no free pages.
1168 * free_pool_huge_page() will balance the the freed pages across the
1169 * on-line nodes with memory and will handle the hstate accounting.
685f3457
LS
1170 */
1171 while (nr_pages--) {
8cebfcd0 1172 if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1))
685f3457 1173 break;
e4e574b7
AL
1174 }
1175}
1176
c37f9fb1
AW
1177/*
1178 * Determine if the huge page at addr within the vma has an associated
1179 * reservation. Where it does not we will need to logically increase
90481622
DG
1180 * reservation and actually increase subpool usage before an allocation
1181 * can occur. Where any new reservation would be required the
1182 * reservation change is prepared, but not committed. Once the page
1183 * has been allocated from the subpool and instantiated the change should
1184 * be committed via vma_commit_reservation. No action is required on
1185 * failure.
c37f9fb1 1186 */
e2f17d94 1187static long vma_needs_reservation(struct hstate *h,
a5516438 1188 struct vm_area_struct *vma, unsigned long addr)
c37f9fb1 1189{
4e35f483
JK
1190 struct resv_map *resv;
1191 pgoff_t idx;
1192 long chg;
c37f9fb1 1193
4e35f483
JK
1194 resv = vma_resv_map(vma);
1195 if (!resv)
84afd99b 1196 return 1;
c37f9fb1 1197
4e35f483
JK
1198 idx = vma_hugecache_offset(h, vma, addr);
1199 chg = region_chg(resv, idx, idx + 1);
84afd99b 1200
4e35f483
JK
1201 if (vma->vm_flags & VM_MAYSHARE)
1202 return chg;
1203 else
1204 return chg < 0 ? chg : 0;
c37f9fb1 1205}
a5516438
AK
1206static void vma_commit_reservation(struct hstate *h,
1207 struct vm_area_struct *vma, unsigned long addr)
c37f9fb1 1208{
4e35f483
JK
1209 struct resv_map *resv;
1210 pgoff_t idx;
84afd99b 1211
4e35f483
JK
1212 resv = vma_resv_map(vma);
1213 if (!resv)
1214 return;
84afd99b 1215
4e35f483
JK
1216 idx = vma_hugecache_offset(h, vma, addr);
1217 region_add(resv, idx, idx + 1);
c37f9fb1
AW
1218}
1219
a1e78772 1220static struct page *alloc_huge_page(struct vm_area_struct *vma,
04f2cbe3 1221 unsigned long addr, int avoid_reserve)
1da177e4 1222{
90481622 1223 struct hugepage_subpool *spool = subpool_vma(vma);
a5516438 1224 struct hstate *h = hstate_vma(vma);
348ea204 1225 struct page *page;
e2f17d94 1226 long chg;
6d76dcf4
AK
1227 int ret, idx;
1228 struct hugetlb_cgroup *h_cg;
a1e78772 1229
6d76dcf4 1230 idx = hstate_index(h);
a1e78772 1231 /*
90481622
DG
1232 * Processes that did not create the mapping will have no
1233 * reserves and will not have accounted against subpool
1234 * limit. Check that the subpool limit can be made before
1235 * satisfying the allocation MAP_NORESERVE mappings may also
1236 * need pages and subpool limit allocated allocated if no reserve
1237 * mapping overlaps.
a1e78772 1238 */
a5516438 1239 chg = vma_needs_reservation(h, vma, addr);
c37f9fb1 1240 if (chg < 0)
76dcee75 1241 return ERR_PTR(-ENOMEM);
8bb3f12e
JK
1242 if (chg || avoid_reserve)
1243 if (hugepage_subpool_get_pages(spool, 1))
76dcee75 1244 return ERR_PTR(-ENOSPC);
1da177e4 1245
6d76dcf4
AK
1246 ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
1247 if (ret) {
8bb3f12e
JK
1248 if (chg || avoid_reserve)
1249 hugepage_subpool_put_pages(spool, 1);
6d76dcf4
AK
1250 return ERR_PTR(-ENOSPC);
1251 }
1da177e4 1252 spin_lock(&hugetlb_lock);
af0ed73e 1253 page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, chg);
81a6fcae 1254 if (!page) {
94ae8ba7 1255 spin_unlock(&hugetlb_lock);
bf50bab2 1256 page = alloc_buddy_huge_page(h, NUMA_NO_NODE);
68842c9b 1257 if (!page) {
6d76dcf4
AK
1258 hugetlb_cgroup_uncharge_cgroup(idx,
1259 pages_per_huge_page(h),
1260 h_cg);
8bb3f12e
JK
1261 if (chg || avoid_reserve)
1262 hugepage_subpool_put_pages(spool, 1);
76dcee75 1263 return ERR_PTR(-ENOSPC);
68842c9b 1264 }
79dbb236
AK
1265 spin_lock(&hugetlb_lock);
1266 list_move(&page->lru, &h->hugepage_activelist);
81a6fcae 1267 /* Fall through */
68842c9b 1268 }
81a6fcae
JK
1269 hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
1270 spin_unlock(&hugetlb_lock);
348ea204 1271
90481622 1272 set_page_private(page, (unsigned long)spool);
90d8b7e6 1273
a5516438 1274 vma_commit_reservation(h, vma, addr);
90d8b7e6 1275 return page;
b45b5bd6
DG
1276}
1277
74060e4d
NH
1278/*
1279 * alloc_huge_page()'s wrapper which simply returns the page if allocation
1280 * succeeds, otherwise NULL. This function is called from new_vma_page(),
1281 * where no ERR_VALUE is expected to be returned.
1282 */
1283struct page *alloc_huge_page_noerr(struct vm_area_struct *vma,
1284 unsigned long addr, int avoid_reserve)
1285{
1286 struct page *page = alloc_huge_page(vma, addr, avoid_reserve);
1287 if (IS_ERR(page))
1288 page = NULL;
1289 return page;
1290}
1291
91f47662 1292int __weak alloc_bootmem_huge_page(struct hstate *h)
aa888a74
AK
1293{
1294 struct huge_bootmem_page *m;
b2261026 1295 int nr_nodes, node;
aa888a74 1296
b2261026 1297 for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
aa888a74
AK
1298 void *addr;
1299
8b89a116
GS
1300 addr = memblock_virt_alloc_try_nid_nopanic(
1301 huge_page_size(h), huge_page_size(h),
1302 0, BOOTMEM_ALLOC_ACCESSIBLE, node);
aa888a74
AK
1303 if (addr) {
1304 /*
1305 * Use the beginning of the huge page to store the
1306 * huge_bootmem_page struct (until gather_bootmem
1307 * puts them into the mem_map).
1308 */
1309 m = addr;
91f47662 1310 goto found;
aa888a74 1311 }
aa888a74
AK
1312 }
1313 return 0;
1314
1315found:
1316 BUG_ON((unsigned long)virt_to_phys(m) & (huge_page_size(h) - 1));
1317 /* Put them into a private list first because mem_map is not up yet */
1318 list_add(&m->list, &huge_boot_pages);
1319 m->hstate = h;
1320 return 1;
1321}
1322
f412c97a 1323static void __init prep_compound_huge_page(struct page *page, int order)
18229df5
AW
1324{
1325 if (unlikely(order > (MAX_ORDER - 1)))
1326 prep_compound_gigantic_page(page, order);
1327 else
1328 prep_compound_page(page, order);
1329}
1330
aa888a74
AK
1331/* Put bootmem huge pages into the standard lists after mem_map is up */
1332static void __init gather_bootmem_prealloc(void)
1333{
1334 struct huge_bootmem_page *m;
1335
1336 list_for_each_entry(m, &huge_boot_pages, list) {
aa888a74 1337 struct hstate *h = m->hstate;
ee8f248d
BB
1338 struct page *page;
1339
1340#ifdef CONFIG_HIGHMEM
1341 page = pfn_to_page(m->phys >> PAGE_SHIFT);
8b89a116
GS
1342 memblock_free_late(__pa(m),
1343 sizeof(struct huge_bootmem_page));
ee8f248d
BB
1344#else
1345 page = virt_to_page(m);
1346#endif
aa888a74 1347 WARN_ON(page_count(page) != 1);
18229df5 1348 prep_compound_huge_page(page, h->order);
ef5a22be 1349 WARN_ON(PageReserved(page));
aa888a74 1350 prep_new_huge_page(h, page, page_to_nid(page));
b0320c7b
RA
1351 /*
1352 * If we had gigantic hugepages allocated at boot time, we need
1353 * to restore the 'stolen' pages to totalram_pages in order to
1354 * fix confusing memory reports from free(1) and another
1355 * side-effects, like CommitLimit going negative.
1356 */
1357 if (h->order > (MAX_ORDER - 1))
3dcc0571 1358 adjust_managed_page_count(page, 1 << h->order);
aa888a74
AK
1359 }
1360}
1361
8faa8b07 1362static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
1da177e4
LT
1363{
1364 unsigned long i;
a5516438 1365
e5ff2159 1366 for (i = 0; i < h->max_huge_pages; ++i) {
aa888a74
AK
1367 if (h->order >= MAX_ORDER) {
1368 if (!alloc_bootmem_huge_page(h))
1369 break;
9b5e5d0f 1370 } else if (!alloc_fresh_huge_page(h,
8cebfcd0 1371 &node_states[N_MEMORY]))
1da177e4 1372 break;
1da177e4 1373 }
8faa8b07 1374 h->max_huge_pages = i;
e5ff2159
AK
1375}
1376
1377static void __init hugetlb_init_hstates(void)
1378{
1379 struct hstate *h;
1380
1381 for_each_hstate(h) {
8faa8b07
AK
1382 /* oversize hugepages were init'ed in early boot */
1383 if (h->order < MAX_ORDER)
1384 hugetlb_hstate_alloc_pages(h);
e5ff2159
AK
1385 }
1386}
1387
4abd32db
AK
1388static char * __init memfmt(char *buf, unsigned long n)
1389{
1390 if (n >= (1UL << 30))
1391 sprintf(buf, "%lu GB", n >> 30);
1392 else if (n >= (1UL << 20))
1393 sprintf(buf, "%lu MB", n >> 20);
1394 else
1395 sprintf(buf, "%lu KB", n >> 10);
1396 return buf;
1397}
1398
e5ff2159
AK
1399static void __init report_hugepages(void)
1400{
1401 struct hstate *h;
1402
1403 for_each_hstate(h) {
4abd32db 1404 char buf[32];
ffb22af5 1405 pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
4abd32db
AK
1406 memfmt(buf, huge_page_size(h)),
1407 h->free_huge_pages);
e5ff2159
AK
1408 }
1409}
1410
1da177e4 1411#ifdef CONFIG_HIGHMEM
6ae11b27
LS
1412static void try_to_free_low(struct hstate *h, unsigned long count,
1413 nodemask_t *nodes_allowed)
1da177e4 1414{
4415cc8d
CL
1415 int i;
1416
aa888a74
AK
1417 if (h->order >= MAX_ORDER)
1418 return;
1419
6ae11b27 1420 for_each_node_mask(i, *nodes_allowed) {
1da177e4 1421 struct page *page, *next;
a5516438
AK
1422 struct list_head *freel = &h->hugepage_freelists[i];
1423 list_for_each_entry_safe(page, next, freel, lru) {
1424 if (count >= h->nr_huge_pages)
6b0c880d 1425 return;
1da177e4
LT
1426 if (PageHighMem(page))
1427 continue;
1428 list_del(&page->lru);
e5ff2159 1429 update_and_free_page(h, page);
a5516438
AK
1430 h->free_huge_pages--;
1431 h->free_huge_pages_node[page_to_nid(page)]--;
1da177e4
LT
1432 }
1433 }
1434}
1435#else
6ae11b27
LS
1436static inline void try_to_free_low(struct hstate *h, unsigned long count,
1437 nodemask_t *nodes_allowed)
1da177e4
LT
1438{
1439}
1440#endif
1441
20a0307c
WF
1442/*
1443 * Increment or decrement surplus_huge_pages. Keep node-specific counters
1444 * balanced by operating on them in a round-robin fashion.
1445 * Returns 1 if an adjustment was made.
1446 */
6ae11b27
LS
1447static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
1448 int delta)
20a0307c 1449{
b2261026 1450 int nr_nodes, node;
20a0307c
WF
1451
1452 VM_BUG_ON(delta != -1 && delta != 1);
20a0307c 1453
b2261026
JK
1454 if (delta < 0) {
1455 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1456 if (h->surplus_huge_pages_node[node])
1457 goto found;
e8c5c824 1458 }
b2261026
JK
1459 } else {
1460 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
1461 if (h->surplus_huge_pages_node[node] <
1462 h->nr_huge_pages_node[node])
1463 goto found;
e8c5c824 1464 }
b2261026
JK
1465 }
1466 return 0;
20a0307c 1467
b2261026
JK
1468found:
1469 h->surplus_huge_pages += delta;
1470 h->surplus_huge_pages_node[node] += delta;
1471 return 1;
20a0307c
WF
1472}
1473
a5516438 1474#define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
6ae11b27
LS
1475static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count,
1476 nodemask_t *nodes_allowed)
1da177e4 1477{
7893d1d5 1478 unsigned long min_count, ret;
1da177e4 1479
aa888a74
AK
1480 if (h->order >= MAX_ORDER)
1481 return h->max_huge_pages;
1482
7893d1d5
AL
1483 /*
1484 * Increase the pool size
1485 * First take pages out of surplus state. Then make up the
1486 * remaining difference by allocating fresh huge pages.
d1c3fb1f
NA
1487 *
1488 * We might race with alloc_buddy_huge_page() here and be unable
1489 * to convert a surplus huge page to a normal huge page. That is
1490 * not critical, though, it just means the overall size of the
1491 * pool might be one hugepage larger than it needs to be, but
1492 * within all the constraints specified by the sysctls.
7893d1d5 1493 */
1da177e4 1494 spin_lock(&hugetlb_lock);
a5516438 1495 while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
6ae11b27 1496 if (!adjust_pool_surplus(h, nodes_allowed, -1))
7893d1d5
AL
1497 break;
1498 }
1499
a5516438 1500 while (count > persistent_huge_pages(h)) {
7893d1d5
AL
1501 /*
1502 * If this allocation races such that we no longer need the
1503 * page, free_huge_page will handle it by freeing the page
1504 * and reducing the surplus.
1505 */
1506 spin_unlock(&hugetlb_lock);
6ae11b27 1507 ret = alloc_fresh_huge_page(h, nodes_allowed);
7893d1d5
AL
1508 spin_lock(&hugetlb_lock);
1509 if (!ret)
1510 goto out;
1511
536240f2
MG
1512 /* Bail for signals. Probably ctrl-c from user */
1513 if (signal_pending(current))
1514 goto out;
7893d1d5 1515 }
7893d1d5
AL
1516
1517 /*
1518 * Decrease the pool size
1519 * First return free pages to the buddy allocator (being careful
1520 * to keep enough around to satisfy reservations). Then place
1521 * pages into surplus state as needed so the pool will shrink
1522 * to the desired size as pages become free.
d1c3fb1f
NA
1523 *
1524 * By placing pages into the surplus state independent of the
1525 * overcommit value, we are allowing the surplus pool size to
1526 * exceed overcommit. There are few sane options here. Since
1527 * alloc_buddy_huge_page() is checking the global counter,
1528 * though, we'll note that we're not allowed to exceed surplus
1529 * and won't grow the pool anywhere else. Not until one of the
1530 * sysctls are changed, or the surplus pages go out of use.
7893d1d5 1531 */
a5516438 1532 min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
6b0c880d 1533 min_count = max(count, min_count);
6ae11b27 1534 try_to_free_low(h, min_count, nodes_allowed);
a5516438 1535 while (min_count < persistent_huge_pages(h)) {
6ae11b27 1536 if (!free_pool_huge_page(h, nodes_allowed, 0))
1da177e4 1537 break;
1da177e4 1538 }
a5516438 1539 while (count < persistent_huge_pages(h)) {
6ae11b27 1540 if (!adjust_pool_surplus(h, nodes_allowed, 1))
7893d1d5
AL
1541 break;
1542 }
1543out:
a5516438 1544 ret = persistent_huge_pages(h);
1da177e4 1545 spin_unlock(&hugetlb_lock);
7893d1d5 1546 return ret;
1da177e4
LT
1547}
1548
a3437870
NA
1549#define HSTATE_ATTR_RO(_name) \
1550 static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
1551
1552#define HSTATE_ATTR(_name) \
1553 static struct kobj_attribute _name##_attr = \
1554 __ATTR(_name, 0644, _name##_show, _name##_store)
1555
1556static struct kobject *hugepages_kobj;
1557static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
1558
9a305230
LS
1559static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
1560
1561static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
a3437870
NA
1562{
1563 int i;
9a305230 1564
a3437870 1565 for (i = 0; i < HUGE_MAX_HSTATE; i++)
9a305230
LS
1566 if (hstate_kobjs[i] == kobj) {
1567 if (nidp)
1568 *nidp = NUMA_NO_NODE;
a3437870 1569 return &hstates[i];
9a305230
LS
1570 }
1571
1572 return kobj_to_node_hstate(kobj, nidp);
a3437870
NA
1573}
1574
06808b08 1575static ssize_t nr_hugepages_show_common(struct kobject *kobj,
a3437870
NA
1576 struct kobj_attribute *attr, char *buf)
1577{
9a305230
LS
1578 struct hstate *h;
1579 unsigned long nr_huge_pages;
1580 int nid;
1581
1582 h = kobj_to_hstate(kobj, &nid);
1583 if (nid == NUMA_NO_NODE)
1584 nr_huge_pages = h->nr_huge_pages;
1585 else
1586 nr_huge_pages = h->nr_huge_pages_node[nid];
1587
1588 return sprintf(buf, "%lu\n", nr_huge_pages);
a3437870 1589}
adbe8726 1590
06808b08
LS
1591static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
1592 struct kobject *kobj, struct kobj_attribute *attr,
1593 const char *buf, size_t len)
a3437870
NA
1594{
1595 int err;
9a305230 1596 int nid;
06808b08 1597 unsigned long count;
9a305230 1598 struct hstate *h;
bad44b5b 1599 NODEMASK_ALLOC(nodemask_t, nodes_allowed, GFP_KERNEL | __GFP_NORETRY);
a3437870 1600
3dbb95f7 1601 err = kstrtoul(buf, 10, &count);
73ae31e5 1602 if (err)
adbe8726 1603 goto out;
a3437870 1604
9a305230 1605 h = kobj_to_hstate(kobj, &nid);
adbe8726
EM
1606 if (h->order >= MAX_ORDER) {
1607 err = -EINVAL;
1608 goto out;
1609 }
1610
9a305230
LS
1611 if (nid == NUMA_NO_NODE) {
1612 /*
1613 * global hstate attribute
1614 */
1615 if (!(obey_mempolicy &&
1616 init_nodemask_of_mempolicy(nodes_allowed))) {
1617 NODEMASK_FREE(nodes_allowed);
8cebfcd0 1618 nodes_allowed = &node_states[N_MEMORY];
9a305230
LS
1619 }
1620 } else if (nodes_allowed) {
1621 /*
1622 * per node hstate attribute: adjust count to global,
1623 * but restrict alloc/free to the specified node.
1624 */
1625 count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
1626 init_nodemask_of_node(nodes_allowed, nid);
1627 } else
8cebfcd0 1628 nodes_allowed = &node_states[N_MEMORY];
9a305230 1629
06808b08 1630 h->max_huge_pages = set_max_huge_pages(h, count, nodes_allowed);
a3437870 1631
8cebfcd0 1632 if (nodes_allowed != &node_states[N_MEMORY])
06808b08
LS
1633 NODEMASK_FREE(nodes_allowed);
1634
1635 return len;
adbe8726
EM
1636out:
1637 NODEMASK_FREE(nodes_allowed);
1638 return err;
06808b08
LS
1639}
1640
1641static ssize_t nr_hugepages_show(struct kobject *kobj,
1642 struct kobj_attribute *attr, char *buf)
1643{
1644 return nr_hugepages_show_common(kobj, attr, buf);
1645}
1646
1647static ssize_t nr_hugepages_store(struct kobject *kobj,
1648 struct kobj_attribute *attr, const char *buf, size_t len)
1649{
1650 return nr_hugepages_store_common(false, kobj, attr, buf, len);
a3437870
NA
1651}
1652HSTATE_ATTR(nr_hugepages);
1653
06808b08
LS
1654#ifdef CONFIG_NUMA
1655
1656/*
1657 * hstate attribute for optionally mempolicy-based constraint on persistent
1658 * huge page alloc/free.
1659 */
1660static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
1661 struct kobj_attribute *attr, char *buf)
1662{
1663 return nr_hugepages_show_common(kobj, attr, buf);
1664}
1665
1666static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
1667 struct kobj_attribute *attr, const char *buf, size_t len)
1668{
1669 return nr_hugepages_store_common(true, kobj, attr, buf, len);
1670}
1671HSTATE_ATTR(nr_hugepages_mempolicy);
1672#endif
1673
1674
a3437870
NA
1675static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
1676 struct kobj_attribute *attr, char *buf)
1677{
9a305230 1678 struct hstate *h = kobj_to_hstate(kobj, NULL);
a3437870
NA
1679 return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
1680}
adbe8726 1681
a3437870
NA
1682static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
1683 struct kobj_attribute *attr, const char *buf, size_t count)
1684{
1685 int err;
1686 unsigned long input;
9a305230 1687 struct hstate *h = kobj_to_hstate(kobj, NULL);
a3437870 1688
adbe8726
EM
1689 if (h->order >= MAX_ORDER)
1690 return -EINVAL;
1691
3dbb95f7 1692 err = kstrtoul(buf, 10, &input);
a3437870 1693 if (err)
73ae31e5 1694 return err;
a3437870
NA
1695
1696 spin_lock(&hugetlb_lock);
1697 h->nr_overcommit_huge_pages = input;
1698 spin_unlock(&hugetlb_lock);
1699
1700 return count;
1701}
1702HSTATE_ATTR(nr_overcommit_hugepages);
1703
1704static ssize_t free_hugepages_show(struct kobject *kobj,
1705 struct kobj_attribute *attr, char *buf)
1706{
9a305230
LS
1707 struct hstate *h;
1708 unsigned long free_huge_pages;
1709 int nid;
1710
1711 h = kobj_to_hstate(kobj, &nid);
1712 if (nid == NUMA_NO_NODE)
1713 free_huge_pages = h->free_huge_pages;
1714 else
1715 free_huge_pages = h->free_huge_pages_node[nid];
1716
1717 return sprintf(buf, "%lu\n", free_huge_pages);
a3437870
NA
1718}
1719HSTATE_ATTR_RO(free_hugepages);
1720
1721static ssize_t resv_hugepages_show(struct kobject *kobj,
1722 struct kobj_attribute *attr, char *buf)
1723{
9a305230 1724 struct hstate *h = kobj_to_hstate(kobj, NULL);
a3437870
NA
1725 return sprintf(buf, "%lu\n", h->resv_huge_pages);
1726}
1727HSTATE_ATTR_RO(resv_hugepages);
1728
1729static ssize_t surplus_hugepages_show(struct kobject *kobj,
1730 struct kobj_attribute *attr, char *buf)
1731{
9a305230
LS
1732 struct hstate *h;
1733 unsigned long surplus_huge_pages;
1734 int nid;
1735
1736 h = kobj_to_hstate(kobj, &nid);
1737 if (nid == NUMA_NO_NODE)
1738 surplus_huge_pages = h->surplus_huge_pages;
1739 else
1740 surplus_huge_pages = h->surplus_huge_pages_node[nid];
1741
1742 return sprintf(buf, "%lu\n", surplus_huge_pages);
a3437870
NA
1743}
1744HSTATE_ATTR_RO(surplus_hugepages);
1745
1746static struct attribute *hstate_attrs[] = {
1747 &nr_hugepages_attr.attr,
1748 &nr_overcommit_hugepages_attr.attr,
1749 &free_hugepages_attr.attr,
1750 &resv_hugepages_attr.attr,
1751 &surplus_hugepages_attr.attr,
06808b08
LS
1752#ifdef CONFIG_NUMA
1753 &nr_hugepages_mempolicy_attr.attr,
1754#endif
a3437870
NA
1755 NULL,
1756};
1757
1758static struct attribute_group hstate_attr_group = {
1759 .attrs = hstate_attrs,
1760};
1761
094e9539
JM
1762static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
1763 struct kobject **hstate_kobjs,
1764 struct attribute_group *hstate_attr_group)
a3437870
NA
1765{
1766 int retval;
972dc4de 1767 int hi = hstate_index(h);
a3437870 1768
9a305230
LS
1769 hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
1770 if (!hstate_kobjs[hi])
a3437870
NA
1771 return -ENOMEM;
1772
9a305230 1773 retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
a3437870 1774 if (retval)
9a305230 1775 kobject_put(hstate_kobjs[hi]);
a3437870
NA
1776
1777 return retval;
1778}
1779
1780static void __init hugetlb_sysfs_init(void)
1781{
1782 struct hstate *h;
1783 int err;
1784
1785 hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
1786 if (!hugepages_kobj)
1787 return;
1788
1789 for_each_hstate(h) {
9a305230
LS
1790 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
1791 hstate_kobjs, &hstate_attr_group);
a3437870 1792 if (err)
ffb22af5 1793 pr_err("Hugetlb: Unable to add hstate %s", h->name);
a3437870
NA
1794 }
1795}
1796
9a305230
LS
1797#ifdef CONFIG_NUMA
1798
1799/*
1800 * node_hstate/s - associate per node hstate attributes, via their kobjects,
10fbcf4c
KS
1801 * with node devices in node_devices[] using a parallel array. The array
1802 * index of a node device or _hstate == node id.
1803 * This is here to avoid any static dependency of the node device driver, in
9a305230
LS
1804 * the base kernel, on the hugetlb module.
1805 */
1806struct node_hstate {
1807 struct kobject *hugepages_kobj;
1808 struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
1809};
1810struct node_hstate node_hstates[MAX_NUMNODES];
1811
1812/*
10fbcf4c 1813 * A subset of global hstate attributes for node devices
9a305230
LS
1814 */
1815static struct attribute *per_node_hstate_attrs[] = {
1816 &nr_hugepages_attr.attr,
1817 &free_hugepages_attr.attr,
1818 &surplus_hugepages_attr.attr,
1819 NULL,
1820};
1821
1822static struct attribute_group per_node_hstate_attr_group = {
1823 .attrs = per_node_hstate_attrs,
1824};
1825
1826/*
10fbcf4c 1827 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
9a305230
LS
1828 * Returns node id via non-NULL nidp.
1829 */
1830static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
1831{
1832 int nid;
1833
1834 for (nid = 0; nid < nr_node_ids; nid++) {
1835 struct node_hstate *nhs = &node_hstates[nid];
1836 int i;
1837 for (i = 0; i < HUGE_MAX_HSTATE; i++)
1838 if (nhs->hstate_kobjs[i] == kobj) {
1839 if (nidp)
1840 *nidp = nid;
1841 return &hstates[i];
1842 }
1843 }
1844
1845 BUG();
1846 return NULL;
1847}
1848
1849/*
10fbcf4c 1850 * Unregister hstate attributes from a single node device.
9a305230
LS
1851 * No-op if no hstate attributes attached.
1852 */
3cd8b44f 1853static void hugetlb_unregister_node(struct node *node)
9a305230
LS
1854{
1855 struct hstate *h;
10fbcf4c 1856 struct node_hstate *nhs = &node_hstates[node->dev.id];
9a305230
LS
1857
1858 if (!nhs->hugepages_kobj)
9b5e5d0f 1859 return; /* no hstate attributes */
9a305230 1860
972dc4de
AK
1861 for_each_hstate(h) {
1862 int idx = hstate_index(h);
1863 if (nhs->hstate_kobjs[idx]) {
1864 kobject_put(nhs->hstate_kobjs[idx]);
1865 nhs->hstate_kobjs[idx] = NULL;
9a305230 1866 }
972dc4de 1867 }
9a305230
LS
1868
1869 kobject_put(nhs->hugepages_kobj);
1870 nhs->hugepages_kobj = NULL;
1871}
1872
1873/*
10fbcf4c 1874 * hugetlb module exit: unregister hstate attributes from node devices
9a305230
LS
1875 * that have them.
1876 */
1877static void hugetlb_unregister_all_nodes(void)
1878{
1879 int nid;
1880
1881 /*
10fbcf4c 1882 * disable node device registrations.
9a305230
LS
1883 */
1884 register_hugetlbfs_with_node(NULL, NULL);
1885
1886 /*
1887 * remove hstate attributes from any nodes that have them.
1888 */
1889 for (nid = 0; nid < nr_node_ids; nid++)
8732794b 1890 hugetlb_unregister_node(node_devices[nid]);
9a305230
LS
1891}
1892
1893/*
10fbcf4c 1894 * Register hstate attributes for a single node device.
9a305230
LS
1895 * No-op if attributes already registered.
1896 */
3cd8b44f 1897static void hugetlb_register_node(struct node *node)
9a305230
LS
1898{
1899 struct hstate *h;
10fbcf4c 1900 struct node_hstate *nhs = &node_hstates[node->dev.id];
9a305230
LS
1901 int err;
1902
1903 if (nhs->hugepages_kobj)
1904 return; /* already allocated */
1905
1906 nhs->hugepages_kobj = kobject_create_and_add("hugepages",
10fbcf4c 1907 &node->dev.kobj);
9a305230
LS
1908 if (!nhs->hugepages_kobj)
1909 return;
1910
1911 for_each_hstate(h) {
1912 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
1913 nhs->hstate_kobjs,
1914 &per_node_hstate_attr_group);
1915 if (err) {
ffb22af5
AM
1916 pr_err("Hugetlb: Unable to add hstate %s for node %d\n",
1917 h->name, node->dev.id);
9a305230
LS
1918 hugetlb_unregister_node(node);
1919 break;
1920 }
1921 }
1922}
1923
1924/*
9b5e5d0f 1925 * hugetlb init time: register hstate attributes for all registered node
10fbcf4c
KS
1926 * devices of nodes that have memory. All on-line nodes should have
1927 * registered their associated device by this time.
9a305230
LS
1928 */
1929static void hugetlb_register_all_nodes(void)
1930{
1931 int nid;
1932
8cebfcd0 1933 for_each_node_state(nid, N_MEMORY) {
8732794b 1934 struct node *node = node_devices[nid];
10fbcf4c 1935 if (node->dev.id == nid)
9a305230
LS
1936 hugetlb_register_node(node);
1937 }
1938
1939 /*
10fbcf4c 1940 * Let the node device driver know we're here so it can
9a305230
LS
1941 * [un]register hstate attributes on node hotplug.
1942 */
1943 register_hugetlbfs_with_node(hugetlb_register_node,
1944 hugetlb_unregister_node);
1945}
1946#else /* !CONFIG_NUMA */
1947
1948static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
1949{
1950 BUG();
1951 if (nidp)
1952 *nidp = -1;
1953 return NULL;
1954}
1955
1956static void hugetlb_unregister_all_nodes(void) { }
1957
1958static void hugetlb_register_all_nodes(void) { }
1959
1960#endif
1961
a3437870
NA
1962static void __exit hugetlb_exit(void)
1963{
1964 struct hstate *h;
1965
9a305230
LS
1966 hugetlb_unregister_all_nodes();
1967
a3437870 1968 for_each_hstate(h) {
972dc4de 1969 kobject_put(hstate_kobjs[hstate_index(h)]);
a3437870
NA
1970 }
1971
1972 kobject_put(hugepages_kobj);
8382d914 1973 kfree(htlb_fault_mutex_table);
a3437870
NA
1974}
1975module_exit(hugetlb_exit);
1976
1977static int __init hugetlb_init(void)
1978{
8382d914
DB
1979 int i;
1980
0ef89d25
BH
1981 /* Some platform decide whether they support huge pages at boot
1982 * time. On these, such as powerpc, HPAGE_SHIFT is set to 0 when
1983 * there is no such support
1984 */
1985 if (HPAGE_SHIFT == 0)
1986 return 0;
a3437870 1987
e11bfbfc
NP
1988 if (!size_to_hstate(default_hstate_size)) {
1989 default_hstate_size = HPAGE_SIZE;
1990 if (!size_to_hstate(default_hstate_size))
1991 hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
a3437870 1992 }
972dc4de 1993 default_hstate_idx = hstate_index(size_to_hstate(default_hstate_size));
e11bfbfc
NP
1994 if (default_hstate_max_huge_pages)
1995 default_hstate.max_huge_pages = default_hstate_max_huge_pages;
a3437870
NA
1996
1997 hugetlb_init_hstates();
aa888a74 1998 gather_bootmem_prealloc();
a3437870
NA
1999 report_hugepages();
2000
2001 hugetlb_sysfs_init();
9a305230 2002 hugetlb_register_all_nodes();
7179e7bf 2003 hugetlb_cgroup_file_init();
9a305230 2004
8382d914
DB
2005#ifdef CONFIG_SMP
2006 num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
2007#else
2008 num_fault_mutexes = 1;
2009#endif
2010 htlb_fault_mutex_table =
2011 kmalloc(sizeof(struct mutex) * num_fault_mutexes, GFP_KERNEL);
2012 BUG_ON(!htlb_fault_mutex_table);
2013
2014 for (i = 0; i < num_fault_mutexes; i++)
2015 mutex_init(&htlb_fault_mutex_table[i]);
a3437870
NA
2016 return 0;
2017}
2018module_init(hugetlb_init);
2019
2020/* Should be called on processing a hugepagesz=... option */
2021void __init hugetlb_add_hstate(unsigned order)
2022{
2023 struct hstate *h;
8faa8b07
AK
2024 unsigned long i;
2025
a3437870 2026 if (size_to_hstate(PAGE_SIZE << order)) {
ffb22af5 2027 pr_warning("hugepagesz= specified twice, ignoring\n");
a3437870
NA
2028 return;
2029 }
47d38344 2030 BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
a3437870 2031 BUG_ON(order == 0);
47d38344 2032 h = &hstates[hugetlb_max_hstate++];
a3437870
NA
2033 h->order = order;
2034 h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
8faa8b07
AK
2035 h->nr_huge_pages = 0;
2036 h->free_huge_pages = 0;
2037 for (i = 0; i < MAX_NUMNODES; ++i)
2038 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
0edaecfa 2039 INIT_LIST_HEAD(&h->hugepage_activelist);
8cebfcd0
LJ
2040 h->next_nid_to_alloc = first_node(node_states[N_MEMORY]);
2041 h->next_nid_to_free = first_node(node_states[N_MEMORY]);
a3437870
NA
2042 snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
2043 huge_page_size(h)/1024);
8faa8b07 2044
a3437870
NA
2045 parsed_hstate = h;
2046}
2047
e11bfbfc 2048static int __init hugetlb_nrpages_setup(char *s)
a3437870
NA
2049{
2050 unsigned long *mhp;
8faa8b07 2051 static unsigned long *last_mhp;
a3437870
NA
2052
2053 /*
47d38344 2054 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter yet,
a3437870
NA
2055 * so this hugepages= parameter goes to the "default hstate".
2056 */
47d38344 2057 if (!hugetlb_max_hstate)
a3437870
NA
2058 mhp = &default_hstate_max_huge_pages;
2059 else
2060 mhp = &parsed_hstate->max_huge_pages;
2061
8faa8b07 2062 if (mhp == last_mhp) {
ffb22af5
AM
2063 pr_warning("hugepages= specified twice without "
2064 "interleaving hugepagesz=, ignoring\n");
8faa8b07
AK
2065 return 1;
2066 }
2067
a3437870
NA
2068 if (sscanf(s, "%lu", mhp) <= 0)
2069 *mhp = 0;
2070
8faa8b07
AK
2071 /*
2072 * Global state is always initialized later in hugetlb_init.
2073 * But we need to allocate >= MAX_ORDER hstates here early to still
2074 * use the bootmem allocator.
2075 */
47d38344 2076 if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER)
8faa8b07
AK
2077 hugetlb_hstate_alloc_pages(parsed_hstate);
2078
2079 last_mhp = mhp;
2080
a3437870
NA
2081 return 1;
2082}
e11bfbfc
NP
2083__setup("hugepages=", hugetlb_nrpages_setup);
2084
2085static int __init hugetlb_default_setup(char *s)
2086{
2087 default_hstate_size = memparse(s, &s);
2088 return 1;
2089}
2090__setup("default_hugepagesz=", hugetlb_default_setup);
a3437870 2091
8a213460
NA
2092static unsigned int cpuset_mems_nr(unsigned int *array)
2093{
2094 int node;
2095 unsigned int nr = 0;
2096
2097 for_each_node_mask(node, cpuset_current_mems_allowed)
2098 nr += array[node];
2099
2100 return nr;
2101}
2102
2103#ifdef CONFIG_SYSCTL
06808b08
LS
2104static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
2105 struct ctl_table *table, int write,
2106 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 2107{
e5ff2159
AK
2108 struct hstate *h = &default_hstate;
2109 unsigned long tmp;
08d4a246 2110 int ret;
e5ff2159 2111
c033a93c 2112 tmp = h->max_huge_pages;
e5ff2159 2113
adbe8726
EM
2114 if (write && h->order >= MAX_ORDER)
2115 return -EINVAL;
2116
e5ff2159
AK
2117 table->data = &tmp;
2118 table->maxlen = sizeof(unsigned long);
08d4a246
MH
2119 ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2120 if (ret)
2121 goto out;
e5ff2159 2122
06808b08 2123 if (write) {
bad44b5b
DR
2124 NODEMASK_ALLOC(nodemask_t, nodes_allowed,
2125 GFP_KERNEL | __GFP_NORETRY);
06808b08
LS
2126 if (!(obey_mempolicy &&
2127 init_nodemask_of_mempolicy(nodes_allowed))) {
2128 NODEMASK_FREE(nodes_allowed);
8cebfcd0 2129 nodes_allowed = &node_states[N_MEMORY];
06808b08
LS
2130 }
2131 h->max_huge_pages = set_max_huge_pages(h, tmp, nodes_allowed);
2132
8cebfcd0 2133 if (nodes_allowed != &node_states[N_MEMORY])
06808b08
LS
2134 NODEMASK_FREE(nodes_allowed);
2135 }
08d4a246
MH
2136out:
2137 return ret;
1da177e4 2138}
396faf03 2139
06808b08
LS
2140int hugetlb_sysctl_handler(struct ctl_table *table, int write,
2141 void __user *buffer, size_t *length, loff_t *ppos)
2142{
2143
2144 return hugetlb_sysctl_handler_common(false, table, write,
2145 buffer, length, ppos);
2146}
2147
2148#ifdef CONFIG_NUMA
2149int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
2150 void __user *buffer, size_t *length, loff_t *ppos)
2151{
2152 return hugetlb_sysctl_handler_common(true, table, write,
2153 buffer, length, ppos);
2154}
2155#endif /* CONFIG_NUMA */
2156
a3d0c6aa 2157int hugetlb_overcommit_handler(struct ctl_table *table, int write,
8d65af78 2158 void __user *buffer,
a3d0c6aa
NA
2159 size_t *length, loff_t *ppos)
2160{
a5516438 2161 struct hstate *h = &default_hstate;
e5ff2159 2162 unsigned long tmp;
08d4a246 2163 int ret;
e5ff2159 2164
c033a93c 2165 tmp = h->nr_overcommit_huge_pages;
e5ff2159 2166
adbe8726
EM
2167 if (write && h->order >= MAX_ORDER)
2168 return -EINVAL;
2169
e5ff2159
AK
2170 table->data = &tmp;
2171 table->maxlen = sizeof(unsigned long);
08d4a246
MH
2172 ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2173 if (ret)
2174 goto out;
e5ff2159
AK
2175
2176 if (write) {
2177 spin_lock(&hugetlb_lock);
2178 h->nr_overcommit_huge_pages = tmp;
2179 spin_unlock(&hugetlb_lock);
2180 }
08d4a246
MH
2181out:
2182 return ret;
a3d0c6aa
NA
2183}
2184
1da177e4
LT
2185#endif /* CONFIG_SYSCTL */
2186
e1759c21 2187void hugetlb_report_meminfo(struct seq_file *m)
1da177e4 2188{
a5516438 2189 struct hstate *h = &default_hstate;
e1759c21 2190 seq_printf(m,
4f98a2fe
RR
2191 "HugePages_Total: %5lu\n"
2192 "HugePages_Free: %5lu\n"
2193 "HugePages_Rsvd: %5lu\n"
2194 "HugePages_Surp: %5lu\n"
2195 "Hugepagesize: %8lu kB\n",
a5516438
AK
2196 h->nr_huge_pages,
2197 h->free_huge_pages,
2198 h->resv_huge_pages,
2199 h->surplus_huge_pages,
2200 1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
1da177e4
LT
2201}
2202
2203int hugetlb_report_node_meminfo(int nid, char *buf)
2204{
a5516438 2205 struct hstate *h = &default_hstate;
1da177e4
LT
2206 return sprintf(buf,
2207 "Node %d HugePages_Total: %5u\n"
a1de0919
NA
2208 "Node %d HugePages_Free: %5u\n"
2209 "Node %d HugePages_Surp: %5u\n",
a5516438
AK
2210 nid, h->nr_huge_pages_node[nid],
2211 nid, h->free_huge_pages_node[nid],
2212 nid, h->surplus_huge_pages_node[nid]);
1da177e4
LT
2213}
2214
949f7ec5
DR
2215void hugetlb_show_meminfo(void)
2216{
2217 struct hstate *h;
2218 int nid;
2219
2220 for_each_node_state(nid, N_MEMORY)
2221 for_each_hstate(h)
2222 pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
2223 nid,
2224 h->nr_huge_pages_node[nid],
2225 h->free_huge_pages_node[nid],
2226 h->surplus_huge_pages_node[nid],
2227 1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
2228}
2229
1da177e4
LT
2230/* Return the number pages of memory we physically have, in PAGE_SIZE units. */
2231unsigned long hugetlb_total_pages(void)
2232{
d0028588
WL
2233 struct hstate *h;
2234 unsigned long nr_total_pages = 0;
2235
2236 for_each_hstate(h)
2237 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
2238 return nr_total_pages;
1da177e4 2239}
1da177e4 2240
a5516438 2241static int hugetlb_acct_memory(struct hstate *h, long delta)
fc1b8a73
MG
2242{
2243 int ret = -ENOMEM;
2244
2245 spin_lock(&hugetlb_lock);
2246 /*
2247 * When cpuset is configured, it breaks the strict hugetlb page
2248 * reservation as the accounting is done on a global variable. Such
2249 * reservation is completely rubbish in the presence of cpuset because
2250 * the reservation is not checked against page availability for the
2251 * current cpuset. Application can still potentially OOM'ed by kernel
2252 * with lack of free htlb page in cpuset that the task is in.
2253 * Attempt to enforce strict accounting with cpuset is almost
2254 * impossible (or too ugly) because cpuset is too fluid that
2255 * task or memory node can be dynamically moved between cpusets.
2256 *
2257 * The change of semantics for shared hugetlb mapping with cpuset is
2258 * undesirable. However, in order to preserve some of the semantics,
2259 * we fall back to check against current free page availability as
2260 * a best attempt and hopefully to minimize the impact of changing
2261 * semantics that cpuset has.
2262 */
2263 if (delta > 0) {
a5516438 2264 if (gather_surplus_pages(h, delta) < 0)
fc1b8a73
MG
2265 goto out;
2266
a5516438
AK
2267 if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
2268 return_unused_surplus_pages(h, delta);
fc1b8a73
MG
2269 goto out;
2270 }
2271 }
2272
2273 ret = 0;
2274 if (delta < 0)
a5516438 2275 return_unused_surplus_pages(h, (unsigned long) -delta);
fc1b8a73
MG
2276
2277out:
2278 spin_unlock(&hugetlb_lock);
2279 return ret;
2280}
2281
84afd99b
AW
2282static void hugetlb_vm_op_open(struct vm_area_struct *vma)
2283{
f522c3ac 2284 struct resv_map *resv = vma_resv_map(vma);
84afd99b
AW
2285
2286 /*
2287 * This new VMA should share its siblings reservation map if present.
2288 * The VMA will only ever have a valid reservation map pointer where
2289 * it is being copied for another still existing VMA. As that VMA
25985edc 2290 * has a reference to the reservation map it cannot disappear until
84afd99b
AW
2291 * after this open call completes. It is therefore safe to take a
2292 * new reference here without additional locking.
2293 */
4e35f483 2294 if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
f522c3ac 2295 kref_get(&resv->refs);
84afd99b
AW
2296}
2297
a1e78772
MG
2298static void hugetlb_vm_op_close(struct vm_area_struct *vma)
2299{
a5516438 2300 struct hstate *h = hstate_vma(vma);
f522c3ac 2301 struct resv_map *resv = vma_resv_map(vma);
90481622 2302 struct hugepage_subpool *spool = subpool_vma(vma);
4e35f483 2303 unsigned long reserve, start, end;
84afd99b 2304
4e35f483
JK
2305 if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
2306 return;
84afd99b 2307
4e35f483
JK
2308 start = vma_hugecache_offset(h, vma, vma->vm_start);
2309 end = vma_hugecache_offset(h, vma, vma->vm_end);
84afd99b 2310
4e35f483 2311 reserve = (end - start) - region_count(resv, start, end);
84afd99b 2312
4e35f483
JK
2313 kref_put(&resv->refs, resv_map_release);
2314
2315 if (reserve) {
2316 hugetlb_acct_memory(h, -reserve);
2317 hugepage_subpool_put_pages(spool, reserve);
84afd99b 2318 }
a1e78772
MG
2319}
2320
1da177e4
LT
2321/*
2322 * We cannot handle pagefaults against hugetlb pages at all. They cause
2323 * handle_mm_fault() to try to instantiate regular-sized pages in the
2324 * hugegpage VMA. do_page_fault() is supposed to trap this, so BUG is we get
2325 * this far.
2326 */
d0217ac0 2327static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1da177e4
LT
2328{
2329 BUG();
d0217ac0 2330 return 0;
1da177e4
LT
2331}
2332
f0f37e2f 2333const struct vm_operations_struct hugetlb_vm_ops = {
d0217ac0 2334 .fault = hugetlb_vm_op_fault,
84afd99b 2335 .open = hugetlb_vm_op_open,
a1e78772 2336 .close = hugetlb_vm_op_close,
1da177e4
LT
2337};
2338
1e8f889b
DG
2339static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
2340 int writable)
63551ae0
DG
2341{
2342 pte_t entry;
2343
1e8f889b 2344 if (writable) {
106c992a
GS
2345 entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
2346 vma->vm_page_prot)));
63551ae0 2347 } else {
106c992a
GS
2348 entry = huge_pte_wrprotect(mk_huge_pte(page,
2349 vma->vm_page_prot));
63551ae0
DG
2350 }
2351 entry = pte_mkyoung(entry);
2352 entry = pte_mkhuge(entry);
d9ed9faa 2353 entry = arch_make_huge_pte(entry, vma, page, writable);
63551ae0
DG
2354
2355 return entry;
2356}
2357
1e8f889b
DG
2358static void set_huge_ptep_writable(struct vm_area_struct *vma,
2359 unsigned long address, pte_t *ptep)
2360{
2361 pte_t entry;
2362
106c992a 2363 entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
32f84528 2364 if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
4b3073e1 2365 update_mmu_cache(vma, address, ptep);
1e8f889b
DG
2366}
2367
2368
63551ae0
DG
2369int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
2370 struct vm_area_struct *vma)
2371{
2372 pte_t *src_pte, *dst_pte, entry;
2373 struct page *ptepage;
1c59827d 2374 unsigned long addr;
1e8f889b 2375 int cow;
a5516438
AK
2376 struct hstate *h = hstate_vma(vma);
2377 unsigned long sz = huge_page_size(h);
e8569dd2
AS
2378 unsigned long mmun_start; /* For mmu_notifiers */
2379 unsigned long mmun_end; /* For mmu_notifiers */
2380 int ret = 0;
1e8f889b
DG
2381
2382 cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
63551ae0 2383
e8569dd2
AS
2384 mmun_start = vma->vm_start;
2385 mmun_end = vma->vm_end;
2386 if (cow)
2387 mmu_notifier_invalidate_range_start(src, mmun_start, mmun_end);
2388
a5516438 2389 for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
cb900f41 2390 spinlock_t *src_ptl, *dst_ptl;
c74df32c
HD
2391 src_pte = huge_pte_offset(src, addr);
2392 if (!src_pte)
2393 continue;
a5516438 2394 dst_pte = huge_pte_alloc(dst, addr, sz);
e8569dd2
AS
2395 if (!dst_pte) {
2396 ret = -ENOMEM;
2397 break;
2398 }
c5c99429
LW
2399
2400 /* If the pagetables are shared don't copy or take references */
2401 if (dst_pte == src_pte)
2402 continue;
2403
cb900f41
KS
2404 dst_ptl = huge_pte_lock(h, dst, dst_pte);
2405 src_ptl = huge_pte_lockptr(h, src, src_pte);
2406 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
7f2e9525 2407 if (!huge_pte_none(huge_ptep_get(src_pte))) {
1e8f889b 2408 if (cow)
7f2e9525
GS
2409 huge_ptep_set_wrprotect(src, addr, src_pte);
2410 entry = huge_ptep_get(src_pte);
1c59827d
HD
2411 ptepage = pte_page(entry);
2412 get_page(ptepage);
0fe6e20b 2413 page_dup_rmap(ptepage);
1c59827d
HD
2414 set_huge_pte_at(dst, addr, dst_pte, entry);
2415 }
cb900f41
KS
2416 spin_unlock(src_ptl);
2417 spin_unlock(dst_ptl);
63551ae0 2418 }
63551ae0 2419
e8569dd2
AS
2420 if (cow)
2421 mmu_notifier_invalidate_range_end(src, mmun_start, mmun_end);
2422
2423 return ret;
63551ae0
DG
2424}
2425
290408d4
NH
2426static int is_hugetlb_entry_migration(pte_t pte)
2427{
2428 swp_entry_t swp;
2429
2430 if (huge_pte_none(pte) || pte_present(pte))
2431 return 0;
2432 swp = pte_to_swp_entry(pte);
32f84528 2433 if (non_swap_entry(swp) && is_migration_entry(swp))
290408d4 2434 return 1;
32f84528 2435 else
290408d4
NH
2436 return 0;
2437}
2438
fd6a03ed
NH
2439static int is_hugetlb_entry_hwpoisoned(pte_t pte)
2440{
2441 swp_entry_t swp;
2442
2443 if (huge_pte_none(pte) || pte_present(pte))
2444 return 0;
2445 swp = pte_to_swp_entry(pte);
32f84528 2446 if (non_swap_entry(swp) && is_hwpoison_entry(swp))
fd6a03ed 2447 return 1;
32f84528 2448 else
fd6a03ed
NH
2449 return 0;
2450}
2451
24669e58
AK
2452void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
2453 unsigned long start, unsigned long end,
2454 struct page *ref_page)
63551ae0 2455{
24669e58 2456 int force_flush = 0;
63551ae0
DG
2457 struct mm_struct *mm = vma->vm_mm;
2458 unsigned long address;
c7546f8f 2459 pte_t *ptep;
63551ae0 2460 pte_t pte;
cb900f41 2461 spinlock_t *ptl;
63551ae0 2462 struct page *page;
a5516438
AK
2463 struct hstate *h = hstate_vma(vma);
2464 unsigned long sz = huge_page_size(h);
2ec74c3e
SG
2465 const unsigned long mmun_start = start; /* For mmu_notifiers */
2466 const unsigned long mmun_end = end; /* For mmu_notifiers */
a5516438 2467
63551ae0 2468 WARN_ON(!is_vm_hugetlb_page(vma));
a5516438
AK
2469 BUG_ON(start & ~huge_page_mask(h));
2470 BUG_ON(end & ~huge_page_mask(h));
63551ae0 2471
24669e58 2472 tlb_start_vma(tlb, vma);
2ec74c3e 2473 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
24669e58 2474again:
a5516438 2475 for (address = start; address < end; address += sz) {
c7546f8f 2476 ptep = huge_pte_offset(mm, address);
4c887265 2477 if (!ptep)
c7546f8f
DG
2478 continue;
2479
cb900f41 2480 ptl = huge_pte_lock(h, mm, ptep);
39dde65c 2481 if (huge_pmd_unshare(mm, &address, ptep))
cb900f41 2482 goto unlock;
39dde65c 2483
6629326b
HD
2484 pte = huge_ptep_get(ptep);
2485 if (huge_pte_none(pte))
cb900f41 2486 goto unlock;
6629326b
HD
2487
2488 /*
2489 * HWPoisoned hugepage is already unmapped and dropped reference
2490 */
8c4894c6 2491 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
106c992a 2492 huge_pte_clear(mm, address, ptep);
cb900f41 2493 goto unlock;
8c4894c6 2494 }
6629326b
HD
2495
2496 page = pte_page(pte);
04f2cbe3
MG
2497 /*
2498 * If a reference page is supplied, it is because a specific
2499 * page is being unmapped, not a range. Ensure the page we
2500 * are about to unmap is the actual page of interest.
2501 */
2502 if (ref_page) {
04f2cbe3 2503 if (page != ref_page)
cb900f41 2504 goto unlock;
04f2cbe3
MG
2505
2506 /*
2507 * Mark the VMA as having unmapped its page so that
2508 * future faults in this VMA will fail rather than
2509 * looking like data was lost
2510 */
2511 set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
2512 }
2513
c7546f8f 2514 pte = huge_ptep_get_and_clear(mm, address, ptep);
24669e58 2515 tlb_remove_tlb_entry(tlb, ptep, address);
106c992a 2516 if (huge_pte_dirty(pte))
6649a386 2517 set_page_dirty(page);
9e81130b 2518
24669e58
AK
2519 page_remove_rmap(page);
2520 force_flush = !__tlb_remove_page(tlb, page);
cb900f41
KS
2521 if (force_flush) {
2522 spin_unlock(ptl);
24669e58 2523 break;
cb900f41 2524 }
9e81130b 2525 /* Bail out after unmapping reference page if supplied */
cb900f41
KS
2526 if (ref_page) {
2527 spin_unlock(ptl);
9e81130b 2528 break;
cb900f41
KS
2529 }
2530unlock:
2531 spin_unlock(ptl);
63551ae0 2532 }
24669e58
AK
2533 /*
2534 * mmu_gather ran out of room to batch pages, we break out of
2535 * the PTE lock to avoid doing the potential expensive TLB invalidate
2536 * and page-free while holding it.
2537 */
2538 if (force_flush) {
2539 force_flush = 0;
2540 tlb_flush_mmu(tlb);
2541 if (address < end && !ref_page)
2542 goto again;
fe1668ae 2543 }
2ec74c3e 2544 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
24669e58 2545 tlb_end_vma(tlb, vma);
1da177e4 2546}
63551ae0 2547
d833352a
MG
2548void __unmap_hugepage_range_final(struct mmu_gather *tlb,
2549 struct vm_area_struct *vma, unsigned long start,
2550 unsigned long end, struct page *ref_page)
2551{
2552 __unmap_hugepage_range(tlb, vma, start, end, ref_page);
2553
2554 /*
2555 * Clear this flag so that x86's huge_pmd_share page_table_shareable
2556 * test will fail on a vma being torn down, and not grab a page table
2557 * on its way out. We're lucky that the flag has such an appropriate
2558 * name, and can in fact be safely cleared here. We could clear it
2559 * before the __unmap_hugepage_range above, but all that's necessary
2560 * is to clear it before releasing the i_mmap_mutex. This works
2561 * because in the context this is called, the VMA is about to be
2562 * destroyed and the i_mmap_mutex is held.
2563 */
2564 vma->vm_flags &= ~VM_MAYSHARE;
2565}
2566
502717f4 2567void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
04f2cbe3 2568 unsigned long end, struct page *ref_page)
502717f4 2569{
24669e58
AK
2570 struct mm_struct *mm;
2571 struct mmu_gather tlb;
2572
2573 mm = vma->vm_mm;
2574
2b047252 2575 tlb_gather_mmu(&tlb, mm, start, end);
24669e58
AK
2576 __unmap_hugepage_range(&tlb, vma, start, end, ref_page);
2577 tlb_finish_mmu(&tlb, start, end);
502717f4
CK
2578}
2579
04f2cbe3
MG
2580/*
2581 * This is called when the original mapper is failing to COW a MAP_PRIVATE
2582 * mappping it owns the reserve page for. The intention is to unmap the page
2583 * from other VMAs and let the children be SIGKILLed if they are faulting the
2584 * same region.
2585 */
2a4b3ded
HH
2586static int unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
2587 struct page *page, unsigned long address)
04f2cbe3 2588{
7526674d 2589 struct hstate *h = hstate_vma(vma);
04f2cbe3
MG
2590 struct vm_area_struct *iter_vma;
2591 struct address_space *mapping;
04f2cbe3
MG
2592 pgoff_t pgoff;
2593
2594 /*
2595 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
2596 * from page cache lookup which is in HPAGE_SIZE units.
2597 */
7526674d 2598 address = address & huge_page_mask(h);
36e4f20a
MH
2599 pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
2600 vma->vm_pgoff;
496ad9aa 2601 mapping = file_inode(vma->vm_file)->i_mapping;
04f2cbe3 2602
4eb2b1dc
MG
2603 /*
2604 * Take the mapping lock for the duration of the table walk. As
2605 * this mapping should be shared between all the VMAs,
2606 * __unmap_hugepage_range() is called as the lock is already held
2607 */
3d48ae45 2608 mutex_lock(&mapping->i_mmap_mutex);
6b2dbba8 2609 vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
04f2cbe3
MG
2610 /* Do not unmap the current VMA */
2611 if (iter_vma == vma)
2612 continue;
2613
2614 /*
2615 * Unmap the page from other VMAs without their own reserves.
2616 * They get marked to be SIGKILLed if they fault in these
2617 * areas. This is because a future no-page fault on this VMA
2618 * could insert a zeroed page instead of the data existing
2619 * from the time of fork. This would look like data corruption
2620 */
2621 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
24669e58
AK
2622 unmap_hugepage_range(iter_vma, address,
2623 address + huge_page_size(h), page);
04f2cbe3 2624 }
3d48ae45 2625 mutex_unlock(&mapping->i_mmap_mutex);
04f2cbe3
MG
2626
2627 return 1;
2628}
2629
0fe6e20b
NH
2630/*
2631 * Hugetlb_cow() should be called with page lock of the original hugepage held.
ef009b25
MH
2632 * Called with hugetlb_instantiation_mutex held and pte_page locked so we
2633 * cannot race with other handlers or page migration.
2634 * Keep the pte_same checks anyway to make transition from the mutex easier.
0fe6e20b 2635 */
1e8f889b 2636static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
04f2cbe3 2637 unsigned long address, pte_t *ptep, pte_t pte,
cb900f41 2638 struct page *pagecache_page, spinlock_t *ptl)
1e8f889b 2639{
a5516438 2640 struct hstate *h = hstate_vma(vma);
1e8f889b 2641 struct page *old_page, *new_page;
04f2cbe3 2642 int outside_reserve = 0;
2ec74c3e
SG
2643 unsigned long mmun_start; /* For mmu_notifiers */
2644 unsigned long mmun_end; /* For mmu_notifiers */
1e8f889b
DG
2645
2646 old_page = pte_page(pte);
2647
04f2cbe3 2648retry_avoidcopy:
1e8f889b
DG
2649 /* If no-one else is actually using this page, avoid the copy
2650 * and just make the page writable */
37a2140d
JK
2651 if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
2652 page_move_anon_rmap(old_page, vma, address);
1e8f889b 2653 set_huge_ptep_writable(vma, address, ptep);
83c54070 2654 return 0;
1e8f889b
DG
2655 }
2656
04f2cbe3
MG
2657 /*
2658 * If the process that created a MAP_PRIVATE mapping is about to
2659 * perform a COW due to a shared page count, attempt to satisfy
2660 * the allocation without using the existing reserves. The pagecache
2661 * page is used to determine if the reserve at this address was
2662 * consumed or not. If reserves were used, a partial faulted mapping
2663 * at the time of fork() could consume its reserves on COW instead
2664 * of the full address range.
2665 */
5944d011 2666 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
04f2cbe3
MG
2667 old_page != pagecache_page)
2668 outside_reserve = 1;
2669
1e8f889b 2670 page_cache_get(old_page);
b76c8cfb 2671
cb900f41
KS
2672 /* Drop page table lock as buddy allocator may be called */
2673 spin_unlock(ptl);
04f2cbe3 2674 new_page = alloc_huge_page(vma, address, outside_reserve);
1e8f889b 2675
2fc39cec 2676 if (IS_ERR(new_page)) {
76dcee75 2677 long err = PTR_ERR(new_page);
1e8f889b 2678 page_cache_release(old_page);
04f2cbe3
MG
2679
2680 /*
2681 * If a process owning a MAP_PRIVATE mapping fails to COW,
2682 * it is due to references held by a child and an insufficient
2683 * huge page pool. To guarantee the original mappers
2684 * reliability, unmap the page from child processes. The child
2685 * may get SIGKILLed if it later faults.
2686 */
2687 if (outside_reserve) {
2688 BUG_ON(huge_pte_none(pte));
2689 if (unmap_ref_private(mm, vma, old_page, address)) {
04f2cbe3 2690 BUG_ON(huge_pte_none(pte));
cb900f41 2691 spin_lock(ptl);
a734bcc8 2692 ptep = huge_pte_offset(mm, address & huge_page_mask(h));
a9af0c5d
NH
2693 if (likely(ptep &&
2694 pte_same(huge_ptep_get(ptep), pte)))
a734bcc8
HD
2695 goto retry_avoidcopy;
2696 /*
cb900f41
KS
2697 * race occurs while re-acquiring page table
2698 * lock, and our job is done.
a734bcc8
HD
2699 */
2700 return 0;
04f2cbe3
MG
2701 }
2702 WARN_ON_ONCE(1);
2703 }
2704
b76c8cfb 2705 /* Caller expects lock to be held */
cb900f41 2706 spin_lock(ptl);
76dcee75
AK
2707 if (err == -ENOMEM)
2708 return VM_FAULT_OOM;
2709 else
2710 return VM_FAULT_SIGBUS;
1e8f889b
DG
2711 }
2712
0fe6e20b
NH
2713 /*
2714 * When the original hugepage is shared one, it does not have
2715 * anon_vma prepared.
2716 */
44e2aa93 2717 if (unlikely(anon_vma_prepare(vma))) {
ea4039a3
HD
2718 page_cache_release(new_page);
2719 page_cache_release(old_page);
44e2aa93 2720 /* Caller expects lock to be held */
cb900f41 2721 spin_lock(ptl);
0fe6e20b 2722 return VM_FAULT_OOM;
44e2aa93 2723 }
0fe6e20b 2724
47ad8475
AA
2725 copy_user_huge_page(new_page, old_page, address, vma,
2726 pages_per_huge_page(h));
0ed361de 2727 __SetPageUptodate(new_page);
1e8f889b 2728
2ec74c3e
SG
2729 mmun_start = address & huge_page_mask(h);
2730 mmun_end = mmun_start + huge_page_size(h);
2731 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
b76c8cfb 2732 /*
cb900f41 2733 * Retake the page table lock to check for racing updates
b76c8cfb
LW
2734 * before the page tables are altered
2735 */
cb900f41 2736 spin_lock(ptl);
a5516438 2737 ptep = huge_pte_offset(mm, address & huge_page_mask(h));
a9af0c5d 2738 if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
07443a85
JK
2739 ClearPagePrivate(new_page);
2740
1e8f889b 2741 /* Break COW */
8fe627ec 2742 huge_ptep_clear_flush(vma, address, ptep);
1e8f889b
DG
2743 set_huge_pte_at(mm, address, ptep,
2744 make_huge_pte(vma, new_page, 1));
0fe6e20b 2745 page_remove_rmap(old_page);
cd67f0d2 2746 hugepage_add_new_anon_rmap(new_page, vma, address);
1e8f889b
DG
2747 /* Make the old page be freed below */
2748 new_page = old_page;
2749 }
cb900f41 2750 spin_unlock(ptl);
2ec74c3e 2751 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1e8f889b
DG
2752 page_cache_release(new_page);
2753 page_cache_release(old_page);
8312034f
JK
2754
2755 /* Caller expects lock to be held */
cb900f41 2756 spin_lock(ptl);
83c54070 2757 return 0;
1e8f889b
DG
2758}
2759
04f2cbe3 2760/* Return the pagecache page at a given address within a VMA */
a5516438
AK
2761static struct page *hugetlbfs_pagecache_page(struct hstate *h,
2762 struct vm_area_struct *vma, unsigned long address)
04f2cbe3
MG
2763{
2764 struct address_space *mapping;
e7c4b0bf 2765 pgoff_t idx;
04f2cbe3
MG
2766
2767 mapping = vma->vm_file->f_mapping;
a5516438 2768 idx = vma_hugecache_offset(h, vma, address);
04f2cbe3
MG
2769
2770 return find_lock_page(mapping, idx);
2771}
2772
3ae77f43
HD
2773/*
2774 * Return whether there is a pagecache page to back given address within VMA.
2775 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
2776 */
2777static bool hugetlbfs_pagecache_present(struct hstate *h,
2a15efc9
HD
2778 struct vm_area_struct *vma, unsigned long address)
2779{
2780 struct address_space *mapping;
2781 pgoff_t idx;
2782 struct page *page;
2783
2784 mapping = vma->vm_file->f_mapping;
2785 idx = vma_hugecache_offset(h, vma, address);
2786
2787 page = find_get_page(mapping, idx);
2788 if (page)
2789 put_page(page);
2790 return page != NULL;
2791}
2792
a1ed3dda 2793static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
8382d914
DB
2794 struct address_space *mapping, pgoff_t idx,
2795 unsigned long address, pte_t *ptep, unsigned int flags)
ac9b9c66 2796{
a5516438 2797 struct hstate *h = hstate_vma(vma);
ac9b9c66 2798 int ret = VM_FAULT_SIGBUS;
409eb8c2 2799 int anon_rmap = 0;
4c887265 2800 unsigned long size;
4c887265 2801 struct page *page;
1e8f889b 2802 pte_t new_pte;
cb900f41 2803 spinlock_t *ptl;
4c887265 2804
04f2cbe3
MG
2805 /*
2806 * Currently, we are forced to kill the process in the event the
2807 * original mapper has unmapped pages from the child due to a failed
25985edc 2808 * COW. Warn that such a situation has occurred as it may not be obvious
04f2cbe3
MG
2809 */
2810 if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
ffb22af5
AM
2811 pr_warning("PID %d killed due to inadequate hugepage pool\n",
2812 current->pid);
04f2cbe3
MG
2813 return ret;
2814 }
2815
4c887265
AL
2816 /*
2817 * Use page lock to guard against racing truncation
2818 * before we get page_table_lock.
2819 */
6bda666a
CL
2820retry:
2821 page = find_lock_page(mapping, idx);
2822 if (!page) {
a5516438 2823 size = i_size_read(mapping->host) >> huge_page_shift(h);
ebed4bfc
HD
2824 if (idx >= size)
2825 goto out;
04f2cbe3 2826 page = alloc_huge_page(vma, address, 0);
2fc39cec 2827 if (IS_ERR(page)) {
76dcee75
AK
2828 ret = PTR_ERR(page);
2829 if (ret == -ENOMEM)
2830 ret = VM_FAULT_OOM;
2831 else
2832 ret = VM_FAULT_SIGBUS;
6bda666a
CL
2833 goto out;
2834 }
47ad8475 2835 clear_huge_page(page, address, pages_per_huge_page(h));
0ed361de 2836 __SetPageUptodate(page);
ac9b9c66 2837
f83a275d 2838 if (vma->vm_flags & VM_MAYSHARE) {
6bda666a 2839 int err;
45c682a6 2840 struct inode *inode = mapping->host;
6bda666a
CL
2841
2842 err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
2843 if (err) {
2844 put_page(page);
6bda666a
CL
2845 if (err == -EEXIST)
2846 goto retry;
2847 goto out;
2848 }
07443a85 2849 ClearPagePrivate(page);
45c682a6
KC
2850
2851 spin_lock(&inode->i_lock);
a5516438 2852 inode->i_blocks += blocks_per_huge_page(h);
45c682a6 2853 spin_unlock(&inode->i_lock);
23be7468 2854 } else {
6bda666a 2855 lock_page(page);
0fe6e20b
NH
2856 if (unlikely(anon_vma_prepare(vma))) {
2857 ret = VM_FAULT_OOM;
2858 goto backout_unlocked;
2859 }
409eb8c2 2860 anon_rmap = 1;
23be7468 2861 }
0fe6e20b 2862 } else {
998b4382
NH
2863 /*
2864 * If memory error occurs between mmap() and fault, some process
2865 * don't have hwpoisoned swap entry for errored virtual address.
2866 * So we need to block hugepage fault by PG_hwpoison bit check.
2867 */
2868 if (unlikely(PageHWPoison(page))) {
32f84528 2869 ret = VM_FAULT_HWPOISON |
972dc4de 2870 VM_FAULT_SET_HINDEX(hstate_index(h));
998b4382
NH
2871 goto backout_unlocked;
2872 }
6bda666a 2873 }
1e8f889b 2874
57303d80
AW
2875 /*
2876 * If we are going to COW a private mapping later, we examine the
2877 * pending reservations for this page now. This will ensure that
2878 * any allocations necessary to record that reservation occur outside
2879 * the spinlock.
2880 */
788c7df4 2881 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED))
2b26736c
AW
2882 if (vma_needs_reservation(h, vma, address) < 0) {
2883 ret = VM_FAULT_OOM;
2884 goto backout_unlocked;
2885 }
57303d80 2886
cb900f41
KS
2887 ptl = huge_pte_lockptr(h, mm, ptep);
2888 spin_lock(ptl);
a5516438 2889 size = i_size_read(mapping->host) >> huge_page_shift(h);
4c887265
AL
2890 if (idx >= size)
2891 goto backout;
2892
83c54070 2893 ret = 0;
7f2e9525 2894 if (!huge_pte_none(huge_ptep_get(ptep)))
4c887265
AL
2895 goto backout;
2896
07443a85
JK
2897 if (anon_rmap) {
2898 ClearPagePrivate(page);
409eb8c2 2899 hugepage_add_new_anon_rmap(page, vma, address);
07443a85 2900 }
409eb8c2
HD
2901 else
2902 page_dup_rmap(page);
1e8f889b
DG
2903 new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
2904 && (vma->vm_flags & VM_SHARED)));
2905 set_huge_pte_at(mm, address, ptep, new_pte);
2906
788c7df4 2907 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
1e8f889b 2908 /* Optimization, do the COW without a second fault */
cb900f41 2909 ret = hugetlb_cow(mm, vma, address, ptep, new_pte, page, ptl);
1e8f889b
DG
2910 }
2911
cb900f41 2912 spin_unlock(ptl);
4c887265
AL
2913 unlock_page(page);
2914out:
ac9b9c66 2915 return ret;
4c887265
AL
2916
2917backout:
cb900f41 2918 spin_unlock(ptl);
2b26736c 2919backout_unlocked:
4c887265
AL
2920 unlock_page(page);
2921 put_page(page);
2922 goto out;
ac9b9c66
HD
2923}
2924
8382d914
DB
2925#ifdef CONFIG_SMP
2926static u32 fault_mutex_hash(struct hstate *h, struct mm_struct *mm,
2927 struct vm_area_struct *vma,
2928 struct address_space *mapping,
2929 pgoff_t idx, unsigned long address)
2930{
2931 unsigned long key[2];
2932 u32 hash;
2933
2934 if (vma->vm_flags & VM_SHARED) {
2935 key[0] = (unsigned long) mapping;
2936 key[1] = idx;
2937 } else {
2938 key[0] = (unsigned long) mm;
2939 key[1] = address >> huge_page_shift(h);
2940 }
2941
2942 hash = jhash2((u32 *)&key, sizeof(key)/sizeof(u32), 0);
2943
2944 return hash & (num_fault_mutexes - 1);
2945}
2946#else
2947/*
2948 * For uniprocesor systems we always use a single mutex, so just
2949 * return 0 and avoid the hashing overhead.
2950 */
2951static u32 fault_mutex_hash(struct hstate *h, struct mm_struct *mm,
2952 struct vm_area_struct *vma,
2953 struct address_space *mapping,
2954 pgoff_t idx, unsigned long address)
2955{
2956 return 0;
2957}
2958#endif
2959
86e5216f 2960int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
788c7df4 2961 unsigned long address, unsigned int flags)
86e5216f 2962{
8382d914 2963 pte_t *ptep, entry;
cb900f41 2964 spinlock_t *ptl;
1e8f889b 2965 int ret;
8382d914
DB
2966 u32 hash;
2967 pgoff_t idx;
0fe6e20b 2968 struct page *page = NULL;
57303d80 2969 struct page *pagecache_page = NULL;
a5516438 2970 struct hstate *h = hstate_vma(vma);
8382d914 2971 struct address_space *mapping;
86e5216f 2972
1e16a539
KH
2973 address &= huge_page_mask(h);
2974
fd6a03ed
NH
2975 ptep = huge_pte_offset(mm, address);
2976 if (ptep) {
2977 entry = huge_ptep_get(ptep);
290408d4 2978 if (unlikely(is_hugetlb_entry_migration(entry))) {
cb900f41 2979 migration_entry_wait_huge(vma, mm, ptep);
290408d4
NH
2980 return 0;
2981 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
32f84528 2982 return VM_FAULT_HWPOISON_LARGE |
972dc4de 2983 VM_FAULT_SET_HINDEX(hstate_index(h));
fd6a03ed
NH
2984 }
2985
a5516438 2986 ptep = huge_pte_alloc(mm, address, huge_page_size(h));
86e5216f
AL
2987 if (!ptep)
2988 return VM_FAULT_OOM;
2989
8382d914
DB
2990 mapping = vma->vm_file->f_mapping;
2991 idx = vma_hugecache_offset(h, vma, address);
2992
3935baa9
DG
2993 /*
2994 * Serialize hugepage allocation and instantiation, so that we don't
2995 * get spurious allocation failures if two CPUs race to instantiate
2996 * the same page in the page cache.
2997 */
8382d914
DB
2998 hash = fault_mutex_hash(h, mm, vma, mapping, idx, address);
2999 mutex_lock(&htlb_fault_mutex_table[hash]);
3000
7f2e9525
GS
3001 entry = huge_ptep_get(ptep);
3002 if (huge_pte_none(entry)) {
8382d914 3003 ret = hugetlb_no_page(mm, vma, mapping, idx, address, ptep, flags);
b4d1d99f 3004 goto out_mutex;
3935baa9 3005 }
86e5216f 3006
83c54070 3007 ret = 0;
1e8f889b 3008
57303d80
AW
3009 /*
3010 * If we are going to COW the mapping later, we examine the pending
3011 * reservations for this page now. This will ensure that any
3012 * allocations necessary to record that reservation occur outside the
3013 * spinlock. For private mappings, we also lookup the pagecache
3014 * page now as it is used to determine if a reservation has been
3015 * consumed.
3016 */
106c992a 3017 if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
2b26736c
AW
3018 if (vma_needs_reservation(h, vma, address) < 0) {
3019 ret = VM_FAULT_OOM;
b4d1d99f 3020 goto out_mutex;
2b26736c 3021 }
57303d80 3022
f83a275d 3023 if (!(vma->vm_flags & VM_MAYSHARE))
57303d80
AW
3024 pagecache_page = hugetlbfs_pagecache_page(h,
3025 vma, address);
3026 }
3027
56c9cfb1
NH
3028 /*
3029 * hugetlb_cow() requires page locks of pte_page(entry) and
3030 * pagecache_page, so here we need take the former one
3031 * when page != pagecache_page or !pagecache_page.
3032 * Note that locking order is always pagecache_page -> page,
3033 * so no worry about deadlock.
3034 */
3035 page = pte_page(entry);
66aebce7 3036 get_page(page);
56c9cfb1 3037 if (page != pagecache_page)
0fe6e20b 3038 lock_page(page);
0fe6e20b 3039
cb900f41
KS
3040 ptl = huge_pte_lockptr(h, mm, ptep);
3041 spin_lock(ptl);
1e8f889b 3042 /* Check for a racing update before calling hugetlb_cow */
b4d1d99f 3043 if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
cb900f41 3044 goto out_ptl;
b4d1d99f
DG
3045
3046
788c7df4 3047 if (flags & FAULT_FLAG_WRITE) {
106c992a 3048 if (!huge_pte_write(entry)) {
57303d80 3049 ret = hugetlb_cow(mm, vma, address, ptep, entry,
cb900f41
KS
3050 pagecache_page, ptl);
3051 goto out_ptl;
b4d1d99f 3052 }
106c992a 3053 entry = huge_pte_mkdirty(entry);
b4d1d99f
DG
3054 }
3055 entry = pte_mkyoung(entry);
788c7df4
HD
3056 if (huge_ptep_set_access_flags(vma, address, ptep, entry,
3057 flags & FAULT_FLAG_WRITE))
4b3073e1 3058 update_mmu_cache(vma, address, ptep);
b4d1d99f 3059
cb900f41
KS
3060out_ptl:
3061 spin_unlock(ptl);
57303d80
AW
3062
3063 if (pagecache_page) {
3064 unlock_page(pagecache_page);
3065 put_page(pagecache_page);
3066 }
1f64d69c
DN
3067 if (page != pagecache_page)
3068 unlock_page(page);
66aebce7 3069 put_page(page);
57303d80 3070
b4d1d99f 3071out_mutex:
8382d914 3072 mutex_unlock(&htlb_fault_mutex_table[hash]);
1e8f889b 3073 return ret;
86e5216f
AL
3074}
3075
28a35716
ML
3076long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
3077 struct page **pages, struct vm_area_struct **vmas,
3078 unsigned long *position, unsigned long *nr_pages,
3079 long i, unsigned int flags)
63551ae0 3080{
d5d4b0aa
CK
3081 unsigned long pfn_offset;
3082 unsigned long vaddr = *position;
28a35716 3083 unsigned long remainder = *nr_pages;
a5516438 3084 struct hstate *h = hstate_vma(vma);
63551ae0 3085
63551ae0 3086 while (vaddr < vma->vm_end && remainder) {
4c887265 3087 pte_t *pte;
cb900f41 3088 spinlock_t *ptl = NULL;
2a15efc9 3089 int absent;
4c887265 3090 struct page *page;
63551ae0 3091
4c887265
AL
3092 /*
3093 * Some archs (sparc64, sh*) have multiple pte_ts to
2a15efc9 3094 * each hugepage. We have to make sure we get the
4c887265 3095 * first, for the page indexing below to work.
cb900f41
KS
3096 *
3097 * Note that page table lock is not held when pte is null.
4c887265 3098 */
a5516438 3099 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h));
cb900f41
KS
3100 if (pte)
3101 ptl = huge_pte_lock(h, mm, pte);
2a15efc9
HD
3102 absent = !pte || huge_pte_none(huge_ptep_get(pte));
3103
3104 /*
3105 * When coredumping, it suits get_dump_page if we just return
3ae77f43
HD
3106 * an error where there's an empty slot with no huge pagecache
3107 * to back it. This way, we avoid allocating a hugepage, and
3108 * the sparse dumpfile avoids allocating disk blocks, but its
3109 * huge holes still show up with zeroes where they need to be.
2a15efc9 3110 */
3ae77f43
HD
3111 if (absent && (flags & FOLL_DUMP) &&
3112 !hugetlbfs_pagecache_present(h, vma, vaddr)) {
cb900f41
KS
3113 if (pte)
3114 spin_unlock(ptl);
2a15efc9
HD
3115 remainder = 0;
3116 break;
3117 }
63551ae0 3118
9cc3a5bd
NH
3119 /*
3120 * We need call hugetlb_fault for both hugepages under migration
3121 * (in which case hugetlb_fault waits for the migration,) and
3122 * hwpoisoned hugepages (in which case we need to prevent the
3123 * caller from accessing to them.) In order to do this, we use
3124 * here is_swap_pte instead of is_hugetlb_entry_migration and
3125 * is_hugetlb_entry_hwpoisoned. This is because it simply covers
3126 * both cases, and because we can't follow correct pages
3127 * directly from any kind of swap entries.
3128 */
3129 if (absent || is_swap_pte(huge_ptep_get(pte)) ||
106c992a
GS
3130 ((flags & FOLL_WRITE) &&
3131 !huge_pte_write(huge_ptep_get(pte)))) {
4c887265 3132 int ret;
63551ae0 3133
cb900f41
KS
3134 if (pte)
3135 spin_unlock(ptl);
2a15efc9
HD
3136 ret = hugetlb_fault(mm, vma, vaddr,
3137 (flags & FOLL_WRITE) ? FAULT_FLAG_WRITE : 0);
a89182c7 3138 if (!(ret & VM_FAULT_ERROR))
4c887265 3139 continue;
63551ae0 3140
4c887265 3141 remainder = 0;
4c887265
AL
3142 break;
3143 }
3144
a5516438 3145 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
7f2e9525 3146 page = pte_page(huge_ptep_get(pte));
d5d4b0aa 3147same_page:
d6692183 3148 if (pages) {
2a15efc9 3149 pages[i] = mem_map_offset(page, pfn_offset);
a0368d4e 3150 get_page_foll(pages[i]);
d6692183 3151 }
63551ae0
DG
3152
3153 if (vmas)
3154 vmas[i] = vma;
3155
3156 vaddr += PAGE_SIZE;
d5d4b0aa 3157 ++pfn_offset;
63551ae0
DG
3158 --remainder;
3159 ++i;
d5d4b0aa 3160 if (vaddr < vma->vm_end && remainder &&
a5516438 3161 pfn_offset < pages_per_huge_page(h)) {
d5d4b0aa
CK
3162 /*
3163 * We use pfn_offset to avoid touching the pageframes
3164 * of this compound page.
3165 */
3166 goto same_page;
3167 }
cb900f41 3168 spin_unlock(ptl);
63551ae0 3169 }
28a35716 3170 *nr_pages = remainder;
63551ae0
DG
3171 *position = vaddr;
3172
2a15efc9 3173 return i ? i : -EFAULT;
63551ae0 3174}
8f860591 3175
7da4d641 3176unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
8f860591
ZY
3177 unsigned long address, unsigned long end, pgprot_t newprot)
3178{
3179 struct mm_struct *mm = vma->vm_mm;
3180 unsigned long start = address;
3181 pte_t *ptep;
3182 pte_t pte;
a5516438 3183 struct hstate *h = hstate_vma(vma);
7da4d641 3184 unsigned long pages = 0;
8f860591
ZY
3185
3186 BUG_ON(address >= end);
3187 flush_cache_range(vma, address, end);
3188
a5338093 3189 mmu_notifier_invalidate_range_start(mm, start, end);
3d48ae45 3190 mutex_lock(&vma->vm_file->f_mapping->i_mmap_mutex);
a5516438 3191 for (; address < end; address += huge_page_size(h)) {
cb900f41 3192 spinlock_t *ptl;
8f860591
ZY
3193 ptep = huge_pte_offset(mm, address);
3194 if (!ptep)
3195 continue;
cb900f41 3196 ptl = huge_pte_lock(h, mm, ptep);
7da4d641
PZ
3197 if (huge_pmd_unshare(mm, &address, ptep)) {
3198 pages++;
cb900f41 3199 spin_unlock(ptl);
39dde65c 3200 continue;
7da4d641 3201 }
7f2e9525 3202 if (!huge_pte_none(huge_ptep_get(ptep))) {
8f860591 3203 pte = huge_ptep_get_and_clear(mm, address, ptep);
106c992a 3204 pte = pte_mkhuge(huge_pte_modify(pte, newprot));
be7517d6 3205 pte = arch_make_huge_pte(pte, vma, NULL, 0);
8f860591 3206 set_huge_pte_at(mm, address, ptep, pte);
7da4d641 3207 pages++;
8f860591 3208 }
cb900f41 3209 spin_unlock(ptl);
8f860591 3210 }
d833352a
MG
3211 /*
3212 * Must flush TLB before releasing i_mmap_mutex: x86's huge_pmd_unshare
3213 * may have cleared our pud entry and done put_page on the page table:
3214 * once we release i_mmap_mutex, another task can do the final put_page
3215 * and that page table be reused and filled with junk.
3216 */
8f860591 3217 flush_tlb_range(vma, start, end);
d833352a 3218 mutex_unlock(&vma->vm_file->f_mapping->i_mmap_mutex);
a5338093 3219 mmu_notifier_invalidate_range_end(mm, start, end);
7da4d641
PZ
3220
3221 return pages << h->order;
8f860591
ZY
3222}
3223
a1e78772
MG
3224int hugetlb_reserve_pages(struct inode *inode,
3225 long from, long to,
5a6fe125 3226 struct vm_area_struct *vma,
ca16d140 3227 vm_flags_t vm_flags)
e4e574b7 3228{
17c9d12e 3229 long ret, chg;
a5516438 3230 struct hstate *h = hstate_inode(inode);
90481622 3231 struct hugepage_subpool *spool = subpool_inode(inode);
9119a41e 3232 struct resv_map *resv_map;
e4e574b7 3233
17c9d12e
MG
3234 /*
3235 * Only apply hugepage reservation if asked. At fault time, an
3236 * attempt will be made for VM_NORESERVE to allocate a page
90481622 3237 * without using reserves
17c9d12e 3238 */
ca16d140 3239 if (vm_flags & VM_NORESERVE)
17c9d12e
MG
3240 return 0;
3241
a1e78772
MG
3242 /*
3243 * Shared mappings base their reservation on the number of pages that
3244 * are already allocated on behalf of the file. Private mappings need
3245 * to reserve the full area even if read-only as mprotect() may be
3246 * called to make the mapping read-write. Assume !vma is a shm mapping
3247 */
9119a41e 3248 if (!vma || vma->vm_flags & VM_MAYSHARE) {
4e35f483 3249 resv_map = inode_resv_map(inode);
9119a41e 3250
1406ec9b 3251 chg = region_chg(resv_map, from, to);
9119a41e
JK
3252
3253 } else {
3254 resv_map = resv_map_alloc();
17c9d12e
MG
3255 if (!resv_map)
3256 return -ENOMEM;
3257
a1e78772 3258 chg = to - from;
84afd99b 3259
17c9d12e
MG
3260 set_vma_resv_map(vma, resv_map);
3261 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
3262 }
3263
c50ac050
DH
3264 if (chg < 0) {
3265 ret = chg;
3266 goto out_err;
3267 }
8a630112 3268
90481622 3269 /* There must be enough pages in the subpool for the mapping */
c50ac050
DH
3270 if (hugepage_subpool_get_pages(spool, chg)) {
3271 ret = -ENOSPC;
3272 goto out_err;
3273 }
5a6fe125
MG
3274
3275 /*
17c9d12e 3276 * Check enough hugepages are available for the reservation.
90481622 3277 * Hand the pages back to the subpool if there are not
5a6fe125 3278 */
a5516438 3279 ret = hugetlb_acct_memory(h, chg);
68842c9b 3280 if (ret < 0) {
90481622 3281 hugepage_subpool_put_pages(spool, chg);
c50ac050 3282 goto out_err;
68842c9b 3283 }
17c9d12e
MG
3284
3285 /*
3286 * Account for the reservations made. Shared mappings record regions
3287 * that have reservations as they are shared by multiple VMAs.
3288 * When the last VMA disappears, the region map says how much
3289 * the reservation was and the page cache tells how much of
3290 * the reservation was consumed. Private mappings are per-VMA and
3291 * only the consumed reservations are tracked. When the VMA
3292 * disappears, the original reservation is the VMA size and the
3293 * consumed reservations are stored in the map. Hence, nothing
3294 * else has to be done for private mappings here
3295 */
f83a275d 3296 if (!vma || vma->vm_flags & VM_MAYSHARE)
1406ec9b 3297 region_add(resv_map, from, to);
a43a8c39 3298 return 0;
c50ac050 3299out_err:
f031dd27
JK
3300 if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
3301 kref_put(&resv_map->refs, resv_map_release);
c50ac050 3302 return ret;
a43a8c39
CK
3303}
3304
3305void hugetlb_unreserve_pages(struct inode *inode, long offset, long freed)
3306{
a5516438 3307 struct hstate *h = hstate_inode(inode);
4e35f483 3308 struct resv_map *resv_map = inode_resv_map(inode);
9119a41e 3309 long chg = 0;
90481622 3310 struct hugepage_subpool *spool = subpool_inode(inode);
45c682a6 3311
9119a41e 3312 if (resv_map)
1406ec9b 3313 chg = region_truncate(resv_map, offset);
45c682a6 3314 spin_lock(&inode->i_lock);
e4c6f8be 3315 inode->i_blocks -= (blocks_per_huge_page(h) * freed);
45c682a6
KC
3316 spin_unlock(&inode->i_lock);
3317
90481622 3318 hugepage_subpool_put_pages(spool, (chg - freed));
a5516438 3319 hugetlb_acct_memory(h, -(chg - freed));
a43a8c39 3320}
93f70f90 3321
3212b535
SC
3322#ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
3323static unsigned long page_table_shareable(struct vm_area_struct *svma,
3324 struct vm_area_struct *vma,
3325 unsigned long addr, pgoff_t idx)
3326{
3327 unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
3328 svma->vm_start;
3329 unsigned long sbase = saddr & PUD_MASK;
3330 unsigned long s_end = sbase + PUD_SIZE;
3331
3332 /* Allow segments to share if only one is marked locked */
3333 unsigned long vm_flags = vma->vm_flags & ~VM_LOCKED;
3334 unsigned long svm_flags = svma->vm_flags & ~VM_LOCKED;
3335
3336 /*
3337 * match the virtual addresses, permission and the alignment of the
3338 * page table page.
3339 */
3340 if (pmd_index(addr) != pmd_index(saddr) ||
3341 vm_flags != svm_flags ||
3342 sbase < svma->vm_start || svma->vm_end < s_end)
3343 return 0;
3344
3345 return saddr;
3346}
3347
3348static int vma_shareable(struct vm_area_struct *vma, unsigned long addr)
3349{
3350 unsigned long base = addr & PUD_MASK;
3351 unsigned long end = base + PUD_SIZE;
3352
3353 /*
3354 * check on proper vm_flags and page table alignment
3355 */
3356 if (vma->vm_flags & VM_MAYSHARE &&
3357 vma->vm_start <= base && end <= vma->vm_end)
3358 return 1;
3359 return 0;
3360}
3361
3362/*
3363 * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
3364 * and returns the corresponding pte. While this is not necessary for the
3365 * !shared pmd case because we can allocate the pmd later as well, it makes the
3366 * code much cleaner. pmd allocation is essential for the shared case because
3367 * pud has to be populated inside the same i_mmap_mutex section - otherwise
3368 * racing tasks could either miss the sharing (see huge_pte_offset) or select a
3369 * bad pmd for sharing.
3370 */
3371pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
3372{
3373 struct vm_area_struct *vma = find_vma(mm, addr);
3374 struct address_space *mapping = vma->vm_file->f_mapping;
3375 pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
3376 vma->vm_pgoff;
3377 struct vm_area_struct *svma;
3378 unsigned long saddr;
3379 pte_t *spte = NULL;
3380 pte_t *pte;
cb900f41 3381 spinlock_t *ptl;
3212b535
SC
3382
3383 if (!vma_shareable(vma, addr))
3384 return (pte_t *)pmd_alloc(mm, pud, addr);
3385
3386 mutex_lock(&mapping->i_mmap_mutex);
3387 vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
3388 if (svma == vma)
3389 continue;
3390
3391 saddr = page_table_shareable(svma, vma, addr, idx);
3392 if (saddr) {
3393 spte = huge_pte_offset(svma->vm_mm, saddr);
3394 if (spte) {
3395 get_page(virt_to_page(spte));
3396 break;
3397 }
3398 }
3399 }
3400
3401 if (!spte)
3402 goto out;
3403
cb900f41
KS
3404 ptl = huge_pte_lockptr(hstate_vma(vma), mm, spte);
3405 spin_lock(ptl);
3212b535
SC
3406 if (pud_none(*pud))
3407 pud_populate(mm, pud,
3408 (pmd_t *)((unsigned long)spte & PAGE_MASK));
3409 else
3410 put_page(virt_to_page(spte));
cb900f41 3411 spin_unlock(ptl);
3212b535
SC
3412out:
3413 pte = (pte_t *)pmd_alloc(mm, pud, addr);
3414 mutex_unlock(&mapping->i_mmap_mutex);
3415 return pte;
3416}
3417
3418/*
3419 * unmap huge page backed by shared pte.
3420 *
3421 * Hugetlb pte page is ref counted at the time of mapping. If pte is shared
3422 * indicated by page_count > 1, unmap is achieved by clearing pud and
3423 * decrementing the ref count. If count == 1, the pte page is not shared.
3424 *
cb900f41 3425 * called with page table lock held.
3212b535
SC
3426 *
3427 * returns: 1 successfully unmapped a shared pte page
3428 * 0 the underlying pte page is not shared, or it is the last user
3429 */
3430int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
3431{
3432 pgd_t *pgd = pgd_offset(mm, *addr);
3433 pud_t *pud = pud_offset(pgd, *addr);
3434
3435 BUG_ON(page_count(virt_to_page(ptep)) == 0);
3436 if (page_count(virt_to_page(ptep)) == 1)
3437 return 0;
3438
3439 pud_clear(pud);
3440 put_page(virt_to_page(ptep));
3441 *addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE;
3442 return 1;
3443}
9e5fc74c
SC
3444#define want_pmd_share() (1)
3445#else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
3446pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
3447{
3448 return NULL;
3449}
3450#define want_pmd_share() (0)
3212b535
SC
3451#endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
3452
9e5fc74c
SC
3453#ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
3454pte_t *huge_pte_alloc(struct mm_struct *mm,
3455 unsigned long addr, unsigned long sz)
3456{
3457 pgd_t *pgd;
3458 pud_t *pud;
3459 pte_t *pte = NULL;
3460
3461 pgd = pgd_offset(mm, addr);
3462 pud = pud_alloc(mm, pgd, addr);
3463 if (pud) {
3464 if (sz == PUD_SIZE) {
3465 pte = (pte_t *)pud;
3466 } else {
3467 BUG_ON(sz != PMD_SIZE);
3468 if (want_pmd_share() && pud_none(*pud))
3469 pte = huge_pmd_share(mm, addr, pud);
3470 else
3471 pte = (pte_t *)pmd_alloc(mm, pud, addr);
3472 }
3473 }
3474 BUG_ON(pte && !pte_none(*pte) && !pte_huge(*pte));
3475
3476 return pte;
3477}
3478
3479pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr)
3480{
3481 pgd_t *pgd;
3482 pud_t *pud;
3483 pmd_t *pmd = NULL;
3484
3485 pgd = pgd_offset(mm, addr);
3486 if (pgd_present(*pgd)) {
3487 pud = pud_offset(pgd, addr);
3488 if (pud_present(*pud)) {
3489 if (pud_huge(*pud))
3490 return (pte_t *)pud;
3491 pmd = pmd_offset(pud, addr);
3492 }
3493 }
3494 return (pte_t *) pmd;
3495}
3496
3497struct page *
3498follow_huge_pmd(struct mm_struct *mm, unsigned long address,
3499 pmd_t *pmd, int write)
3500{
3501 struct page *page;
3502
3503 page = pte_page(*(pte_t *)pmd);
3504 if (page)
3505 page += ((address & ~PMD_MASK) >> PAGE_SHIFT);
3506 return page;
3507}
3508
3509struct page *
3510follow_huge_pud(struct mm_struct *mm, unsigned long address,
3511 pud_t *pud, int write)
3512{
3513 struct page *page;
3514
3515 page = pte_page(*(pte_t *)pud);
3516 if (page)
3517 page += ((address & ~PUD_MASK) >> PAGE_SHIFT);
3518 return page;
3519}
3520
3521#else /* !CONFIG_ARCH_WANT_GENERAL_HUGETLB */
3522
3523/* Can be overriden by architectures */
3524__attribute__((weak)) struct page *
3525follow_huge_pud(struct mm_struct *mm, unsigned long address,
3526 pud_t *pud, int write)
3527{
3528 BUG();
3529 return NULL;
3530}
3531
3532#endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
3533
d5bd9106
AK
3534#ifdef CONFIG_MEMORY_FAILURE
3535
6de2b1aa
NH
3536/* Should be called in hugetlb_lock */
3537static int is_hugepage_on_freelist(struct page *hpage)
3538{
3539 struct page *page;
3540 struct page *tmp;
3541 struct hstate *h = page_hstate(hpage);
3542 int nid = page_to_nid(hpage);
3543
3544 list_for_each_entry_safe(page, tmp, &h->hugepage_freelists[nid], lru)
3545 if (page == hpage)
3546 return 1;
3547 return 0;
3548}
3549
93f70f90
NH
3550/*
3551 * This function is called from memory failure code.
3552 * Assume the caller holds page lock of the head page.
3553 */
6de2b1aa 3554int dequeue_hwpoisoned_huge_page(struct page *hpage)
93f70f90
NH
3555{
3556 struct hstate *h = page_hstate(hpage);
3557 int nid = page_to_nid(hpage);
6de2b1aa 3558 int ret = -EBUSY;
93f70f90
NH
3559
3560 spin_lock(&hugetlb_lock);
6de2b1aa 3561 if (is_hugepage_on_freelist(hpage)) {
56f2fb14
NH
3562 /*
3563 * Hwpoisoned hugepage isn't linked to activelist or freelist,
3564 * but dangling hpage->lru can trigger list-debug warnings
3565 * (this happens when we call unpoison_memory() on it),
3566 * so let it point to itself with list_del_init().
3567 */
3568 list_del_init(&hpage->lru);
8c6c2ecb 3569 set_page_refcounted(hpage);
6de2b1aa
NH
3570 h->free_huge_pages--;
3571 h->free_huge_pages_node[nid]--;
3572 ret = 0;
3573 }
93f70f90 3574 spin_unlock(&hugetlb_lock);
6de2b1aa 3575 return ret;
93f70f90 3576}
6de2b1aa 3577#endif
31caf665
NH
3578
3579bool isolate_huge_page(struct page *page, struct list_head *list)
3580{
309381fe 3581 VM_BUG_ON_PAGE(!PageHead(page), page);
31caf665
NH
3582 if (!get_page_unless_zero(page))
3583 return false;
3584 spin_lock(&hugetlb_lock);
3585 list_move_tail(&page->lru, list);
3586 spin_unlock(&hugetlb_lock);
3587 return true;
3588}
3589
3590void putback_active_hugepage(struct page *page)
3591{
309381fe 3592 VM_BUG_ON_PAGE(!PageHead(page), page);
31caf665
NH
3593 spin_lock(&hugetlb_lock);
3594 list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
3595 spin_unlock(&hugetlb_lock);
3596 put_page(page);
3597}
c8721bbb
NH
3598
3599bool is_hugepage_active(struct page *page)
3600{
309381fe 3601 VM_BUG_ON_PAGE(!PageHuge(page), page);
c8721bbb
NH
3602 /*
3603 * This function can be called for a tail page because the caller,
3604 * scan_movable_pages, scans through a given pfn-range which typically
3605 * covers one memory block. In systems using gigantic hugepage (1GB
3606 * for x86_64,) a hugepage is larger than a memory block, and we don't
3607 * support migrating such large hugepages for now, so return false
3608 * when called for tail pages.
3609 */
3610 if (PageTail(page))
3611 return false;
3612 /*
3613 * Refcount of a hwpoisoned hugepages is 1, but they are not active,
3614 * so we should return false for them.
3615 */
3616 if (unlikely(PageHWPoison(page)))
3617 return false;
3618 return page_count(page) > 0;
3619}