mm/hugetlb: add cache of descriptors to resv_map for region_add
[linux-2.6-block.git] / mm / hugetlb.c
CommitLineData
1da177e4
LT
1/*
2 * Generic hugetlb support.
6d49e352 3 * (C) Nadia Yvette Chambers, April 2004
1da177e4 4 */
1da177e4
LT
5#include <linux/list.h>
6#include <linux/init.h>
7#include <linux/module.h>
8#include <linux/mm.h>
e1759c21 9#include <linux/seq_file.h>
1da177e4
LT
10#include <linux/sysctl.h>
11#include <linux/highmem.h>
cddb8a5c 12#include <linux/mmu_notifier.h>
1da177e4 13#include <linux/nodemask.h>
63551ae0 14#include <linux/pagemap.h>
5da7ca86 15#include <linux/mempolicy.h>
3b32123d 16#include <linux/compiler.h>
aea47ff3 17#include <linux/cpuset.h>
3935baa9 18#include <linux/mutex.h>
aa888a74 19#include <linux/bootmem.h>
a3437870 20#include <linux/sysfs.h>
5a0e3ad6 21#include <linux/slab.h>
0fe6e20b 22#include <linux/rmap.h>
fd6a03ed
NH
23#include <linux/swap.h>
24#include <linux/swapops.h>
c8721bbb 25#include <linux/page-isolation.h>
8382d914 26#include <linux/jhash.h>
d6606683 27
63551ae0
DG
28#include <asm/page.h>
29#include <asm/pgtable.h>
24669e58 30#include <asm/tlb.h>
63551ae0 31
24669e58 32#include <linux/io.h>
63551ae0 33#include <linux/hugetlb.h>
9dd540e2 34#include <linux/hugetlb_cgroup.h>
9a305230 35#include <linux/node.h>
7835e98b 36#include "internal.h"
1da177e4 37
753162cd 38int hugepages_treat_as_movable;
a5516438 39
c3f38a38 40int hugetlb_max_hstate __read_mostly;
e5ff2159
AK
41unsigned int default_hstate_idx;
42struct hstate hstates[HUGE_MAX_HSTATE];
641844f5
NH
43/*
44 * Minimum page order among possible hugepage sizes, set to a proper value
45 * at boot time.
46 */
47static unsigned int minimum_order __read_mostly = UINT_MAX;
e5ff2159 48
53ba51d2
JT
49__initdata LIST_HEAD(huge_boot_pages);
50
e5ff2159
AK
51/* for command line parsing */
52static struct hstate * __initdata parsed_hstate;
53static unsigned long __initdata default_hstate_max_huge_pages;
e11bfbfc 54static unsigned long __initdata default_hstate_size;
e5ff2159 55
3935baa9 56/*
31caf665
NH
57 * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
58 * free_huge_pages, and surplus_huge_pages.
3935baa9 59 */
c3f38a38 60DEFINE_SPINLOCK(hugetlb_lock);
0bd0f9fb 61
8382d914
DB
62/*
63 * Serializes faults on the same logical page. This is used to
64 * prevent spurious OOMs when the hugepage pool is fully utilized.
65 */
66static int num_fault_mutexes;
67static struct mutex *htlb_fault_mutex_table ____cacheline_aligned_in_smp;
68
7ca02d0a
MK
69/* Forward declaration */
70static int hugetlb_acct_memory(struct hstate *h, long delta);
71
90481622
DG
72static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
73{
74 bool free = (spool->count == 0) && (spool->used_hpages == 0);
75
76 spin_unlock(&spool->lock);
77
78 /* If no pages are used, and no other handles to the subpool
7ca02d0a
MK
79 * remain, give up any reservations mased on minimum size and
80 * free the subpool */
81 if (free) {
82 if (spool->min_hpages != -1)
83 hugetlb_acct_memory(spool->hstate,
84 -spool->min_hpages);
90481622 85 kfree(spool);
7ca02d0a 86 }
90481622
DG
87}
88
7ca02d0a
MK
89struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
90 long min_hpages)
90481622
DG
91{
92 struct hugepage_subpool *spool;
93
c6a91820 94 spool = kzalloc(sizeof(*spool), GFP_KERNEL);
90481622
DG
95 if (!spool)
96 return NULL;
97
98 spin_lock_init(&spool->lock);
99 spool->count = 1;
7ca02d0a
MK
100 spool->max_hpages = max_hpages;
101 spool->hstate = h;
102 spool->min_hpages = min_hpages;
103
104 if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
105 kfree(spool);
106 return NULL;
107 }
108 spool->rsv_hpages = min_hpages;
90481622
DG
109
110 return spool;
111}
112
113void hugepage_put_subpool(struct hugepage_subpool *spool)
114{
115 spin_lock(&spool->lock);
116 BUG_ON(!spool->count);
117 spool->count--;
118 unlock_or_release_subpool(spool);
119}
120
1c5ecae3
MK
121/*
122 * Subpool accounting for allocating and reserving pages.
123 * Return -ENOMEM if there are not enough resources to satisfy the
124 * the request. Otherwise, return the number of pages by which the
125 * global pools must be adjusted (upward). The returned value may
126 * only be different than the passed value (delta) in the case where
127 * a subpool minimum size must be manitained.
128 */
129static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
90481622
DG
130 long delta)
131{
1c5ecae3 132 long ret = delta;
90481622
DG
133
134 if (!spool)
1c5ecae3 135 return ret;
90481622
DG
136
137 spin_lock(&spool->lock);
1c5ecae3
MK
138
139 if (spool->max_hpages != -1) { /* maximum size accounting */
140 if ((spool->used_hpages + delta) <= spool->max_hpages)
141 spool->used_hpages += delta;
142 else {
143 ret = -ENOMEM;
144 goto unlock_ret;
145 }
90481622 146 }
90481622 147
1c5ecae3
MK
148 if (spool->min_hpages != -1) { /* minimum size accounting */
149 if (delta > spool->rsv_hpages) {
150 /*
151 * Asking for more reserves than those already taken on
152 * behalf of subpool. Return difference.
153 */
154 ret = delta - spool->rsv_hpages;
155 spool->rsv_hpages = 0;
156 } else {
157 ret = 0; /* reserves already accounted for */
158 spool->rsv_hpages -= delta;
159 }
160 }
161
162unlock_ret:
163 spin_unlock(&spool->lock);
90481622
DG
164 return ret;
165}
166
1c5ecae3
MK
167/*
168 * Subpool accounting for freeing and unreserving pages.
169 * Return the number of global page reservations that must be dropped.
170 * The return value may only be different than the passed value (delta)
171 * in the case where a subpool minimum size must be maintained.
172 */
173static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
90481622
DG
174 long delta)
175{
1c5ecae3
MK
176 long ret = delta;
177
90481622 178 if (!spool)
1c5ecae3 179 return delta;
90481622
DG
180
181 spin_lock(&spool->lock);
1c5ecae3
MK
182
183 if (spool->max_hpages != -1) /* maximum size accounting */
184 spool->used_hpages -= delta;
185
186 if (spool->min_hpages != -1) { /* minimum size accounting */
187 if (spool->rsv_hpages + delta <= spool->min_hpages)
188 ret = 0;
189 else
190 ret = spool->rsv_hpages + delta - spool->min_hpages;
191
192 spool->rsv_hpages += delta;
193 if (spool->rsv_hpages > spool->min_hpages)
194 spool->rsv_hpages = spool->min_hpages;
195 }
196
197 /*
198 * If hugetlbfs_put_super couldn't free spool due to an outstanding
199 * quota reference, free it now.
200 */
90481622 201 unlock_or_release_subpool(spool);
1c5ecae3
MK
202
203 return ret;
90481622
DG
204}
205
206static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
207{
208 return HUGETLBFS_SB(inode->i_sb)->spool;
209}
210
211static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
212{
496ad9aa 213 return subpool_inode(file_inode(vma->vm_file));
90481622
DG
214}
215
96822904
AW
216/*
217 * Region tracking -- allows tracking of reservations and instantiated pages
218 * across the pages in a mapping.
84afd99b 219 *
1dd308a7
MK
220 * The region data structures are embedded into a resv_map and protected
221 * by a resv_map's lock. The set of regions within the resv_map represent
222 * reservations for huge pages, or huge pages that have already been
223 * instantiated within the map. The from and to elements are huge page
224 * indicies into the associated mapping. from indicates the starting index
225 * of the region. to represents the first index past the end of the region.
226 *
227 * For example, a file region structure with from == 0 and to == 4 represents
228 * four huge pages in a mapping. It is important to note that the to element
229 * represents the first element past the end of the region. This is used in
230 * arithmetic as 4(to) - 0(from) = 4 huge pages in the region.
231 *
232 * Interval notation of the form [from, to) will be used to indicate that
233 * the endpoint from is inclusive and to is exclusive.
96822904
AW
234 */
235struct file_region {
236 struct list_head link;
237 long from;
238 long to;
239};
240
1dd308a7
MK
241/*
242 * Add the huge page range represented by [f, t) to the reserve
5e911373
MK
243 * map. In the normal case, existing regions will be expanded
244 * to accommodate the specified range. Sufficient regions should
245 * exist for expansion due to the previous call to region_chg
246 * with the same range. However, it is possible that region_del
247 * could have been called after region_chg and modifed the map
248 * in such a way that no region exists to be expanded. In this
249 * case, pull a region descriptor from the cache associated with
250 * the map and use that for the new range.
cf3ad20b
MK
251 *
252 * Return the number of new huge pages added to the map. This
253 * number is greater than or equal to zero.
1dd308a7 254 */
1406ec9b 255static long region_add(struct resv_map *resv, long f, long t)
96822904 256{
1406ec9b 257 struct list_head *head = &resv->regions;
96822904 258 struct file_region *rg, *nrg, *trg;
cf3ad20b 259 long add = 0;
96822904 260
7b24d861 261 spin_lock(&resv->lock);
96822904
AW
262 /* Locate the region we are either in or before. */
263 list_for_each_entry(rg, head, link)
264 if (f <= rg->to)
265 break;
266
5e911373
MK
267 /*
268 * If no region exists which can be expanded to include the
269 * specified range, the list must have been modified by an
270 * interleving call to region_del(). Pull a region descriptor
271 * from the cache and use it for this range.
272 */
273 if (&rg->link == head || t < rg->from) {
274 VM_BUG_ON(resv->region_cache_count <= 0);
275
276 resv->region_cache_count--;
277 nrg = list_first_entry(&resv->region_cache, struct file_region,
278 link);
279 list_del(&nrg->link);
280
281 nrg->from = f;
282 nrg->to = t;
283 list_add(&nrg->link, rg->link.prev);
284
285 add += t - f;
286 goto out_locked;
287 }
288
96822904
AW
289 /* Round our left edge to the current segment if it encloses us. */
290 if (f > rg->from)
291 f = rg->from;
292
293 /* Check for and consume any regions we now overlap with. */
294 nrg = rg;
295 list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
296 if (&rg->link == head)
297 break;
298 if (rg->from > t)
299 break;
300
301 /* If this area reaches higher then extend our area to
302 * include it completely. If this is not the first area
303 * which we intend to reuse, free it. */
304 if (rg->to > t)
305 t = rg->to;
306 if (rg != nrg) {
cf3ad20b
MK
307 /* Decrement return value by the deleted range.
308 * Another range will span this area so that by
309 * end of routine add will be >= zero
310 */
311 add -= (rg->to - rg->from);
96822904
AW
312 list_del(&rg->link);
313 kfree(rg);
314 }
315 }
cf3ad20b
MK
316
317 add += (nrg->from - f); /* Added to beginning of region */
96822904 318 nrg->from = f;
cf3ad20b 319 add += t - nrg->to; /* Added to end of region */
96822904 320 nrg->to = t;
cf3ad20b 321
5e911373
MK
322out_locked:
323 resv->adds_in_progress--;
7b24d861 324 spin_unlock(&resv->lock);
cf3ad20b
MK
325 VM_BUG_ON(add < 0);
326 return add;
96822904
AW
327}
328
1dd308a7
MK
329/*
330 * Examine the existing reserve map and determine how many
331 * huge pages in the specified range [f, t) are NOT currently
332 * represented. This routine is called before a subsequent
333 * call to region_add that will actually modify the reserve
334 * map to add the specified range [f, t). region_chg does
335 * not change the number of huge pages represented by the
336 * map. However, if the existing regions in the map can not
337 * be expanded to represent the new range, a new file_region
338 * structure is added to the map as a placeholder. This is
339 * so that the subsequent region_add call will have all the
340 * regions it needs and will not fail.
341 *
5e911373
MK
342 * Upon entry, region_chg will also examine the cache of region descriptors
343 * associated with the map. If there are not enough descriptors cached, one
344 * will be allocated for the in progress add operation.
345 *
346 * Returns the number of huge pages that need to be added to the existing
347 * reservation map for the range [f, t). This number is greater or equal to
348 * zero. -ENOMEM is returned if a new file_region structure or cache entry
349 * is needed and can not be allocated.
1dd308a7 350 */
1406ec9b 351static long region_chg(struct resv_map *resv, long f, long t)
96822904 352{
1406ec9b 353 struct list_head *head = &resv->regions;
7b24d861 354 struct file_region *rg, *nrg = NULL;
96822904
AW
355 long chg = 0;
356
7b24d861
DB
357retry:
358 spin_lock(&resv->lock);
5e911373
MK
359retry_locked:
360 resv->adds_in_progress++;
361
362 /*
363 * Check for sufficient descriptors in the cache to accommodate
364 * the number of in progress add operations.
365 */
366 if (resv->adds_in_progress > resv->region_cache_count) {
367 struct file_region *trg;
368
369 VM_BUG_ON(resv->adds_in_progress - resv->region_cache_count > 1);
370 /* Must drop lock to allocate a new descriptor. */
371 resv->adds_in_progress--;
372 spin_unlock(&resv->lock);
373
374 trg = kmalloc(sizeof(*trg), GFP_KERNEL);
375 if (!trg)
376 return -ENOMEM;
377
378 spin_lock(&resv->lock);
379 list_add(&trg->link, &resv->region_cache);
380 resv->region_cache_count++;
381 goto retry_locked;
382 }
383
96822904
AW
384 /* Locate the region we are before or in. */
385 list_for_each_entry(rg, head, link)
386 if (f <= rg->to)
387 break;
388
389 /* If we are below the current region then a new region is required.
390 * Subtle, allocate a new region at the position but make it zero
391 * size such that we can guarantee to record the reservation. */
392 if (&rg->link == head || t < rg->from) {
7b24d861 393 if (!nrg) {
5e911373 394 resv->adds_in_progress--;
7b24d861
DB
395 spin_unlock(&resv->lock);
396 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
397 if (!nrg)
398 return -ENOMEM;
399
400 nrg->from = f;
401 nrg->to = f;
402 INIT_LIST_HEAD(&nrg->link);
403 goto retry;
404 }
96822904 405
7b24d861
DB
406 list_add(&nrg->link, rg->link.prev);
407 chg = t - f;
408 goto out_nrg;
96822904
AW
409 }
410
411 /* Round our left edge to the current segment if it encloses us. */
412 if (f > rg->from)
413 f = rg->from;
414 chg = t - f;
415
416 /* Check for and consume any regions we now overlap with. */
417 list_for_each_entry(rg, rg->link.prev, link) {
418 if (&rg->link == head)
419 break;
420 if (rg->from > t)
7b24d861 421 goto out;
96822904 422
25985edc 423 /* We overlap with this area, if it extends further than
96822904
AW
424 * us then we must extend ourselves. Account for its
425 * existing reservation. */
426 if (rg->to > t) {
427 chg += rg->to - t;
428 t = rg->to;
429 }
430 chg -= rg->to - rg->from;
431 }
7b24d861
DB
432
433out:
434 spin_unlock(&resv->lock);
435 /* We already know we raced and no longer need the new region */
436 kfree(nrg);
437 return chg;
438out_nrg:
439 spin_unlock(&resv->lock);
96822904
AW
440 return chg;
441}
442
5e911373
MK
443/*
444 * Abort the in progress add operation. The adds_in_progress field
445 * of the resv_map keeps track of the operations in progress between
446 * calls to region_chg and region_add. Operations are sometimes
447 * aborted after the call to region_chg. In such cases, region_abort
448 * is called to decrement the adds_in_progress counter.
449 *
450 * NOTE: The range arguments [f, t) are not needed or used in this
451 * routine. They are kept to make reading the calling code easier as
452 * arguments will match the associated region_chg call.
453 */
454static void region_abort(struct resv_map *resv, long f, long t)
455{
456 spin_lock(&resv->lock);
457 VM_BUG_ON(!resv->region_cache_count);
458 resv->adds_in_progress--;
459 spin_unlock(&resv->lock);
460}
461
1dd308a7
MK
462/*
463 * Truncate the reserve map at index 'end'. Modify/truncate any
464 * region which contains end. Delete any regions past end.
465 * Return the number of huge pages removed from the map.
466 */
1406ec9b 467static long region_truncate(struct resv_map *resv, long end)
96822904 468{
1406ec9b 469 struct list_head *head = &resv->regions;
96822904
AW
470 struct file_region *rg, *trg;
471 long chg = 0;
472
7b24d861 473 spin_lock(&resv->lock);
96822904
AW
474 /* Locate the region we are either in or before. */
475 list_for_each_entry(rg, head, link)
476 if (end <= rg->to)
477 break;
478 if (&rg->link == head)
7b24d861 479 goto out;
96822904
AW
480
481 /* If we are in the middle of a region then adjust it. */
482 if (end > rg->from) {
483 chg = rg->to - end;
484 rg->to = end;
485 rg = list_entry(rg->link.next, typeof(*rg), link);
486 }
487
488 /* Drop any remaining regions. */
489 list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
490 if (&rg->link == head)
491 break;
492 chg += rg->to - rg->from;
493 list_del(&rg->link);
494 kfree(rg);
495 }
7b24d861
DB
496
497out:
498 spin_unlock(&resv->lock);
96822904
AW
499 return chg;
500}
501
1dd308a7
MK
502/*
503 * Count and return the number of huge pages in the reserve map
504 * that intersect with the range [f, t).
505 */
1406ec9b 506static long region_count(struct resv_map *resv, long f, long t)
84afd99b 507{
1406ec9b 508 struct list_head *head = &resv->regions;
84afd99b
AW
509 struct file_region *rg;
510 long chg = 0;
511
7b24d861 512 spin_lock(&resv->lock);
84afd99b
AW
513 /* Locate each segment we overlap with, and count that overlap. */
514 list_for_each_entry(rg, head, link) {
f2135a4a
WSH
515 long seg_from;
516 long seg_to;
84afd99b
AW
517
518 if (rg->to <= f)
519 continue;
520 if (rg->from >= t)
521 break;
522
523 seg_from = max(rg->from, f);
524 seg_to = min(rg->to, t);
525
526 chg += seg_to - seg_from;
527 }
7b24d861 528 spin_unlock(&resv->lock);
84afd99b
AW
529
530 return chg;
531}
532
e7c4b0bf
AW
533/*
534 * Convert the address within this vma to the page offset within
535 * the mapping, in pagecache page units; huge pages here.
536 */
a5516438
AK
537static pgoff_t vma_hugecache_offset(struct hstate *h,
538 struct vm_area_struct *vma, unsigned long address)
e7c4b0bf 539{
a5516438
AK
540 return ((address - vma->vm_start) >> huge_page_shift(h)) +
541 (vma->vm_pgoff >> huge_page_order(h));
e7c4b0bf
AW
542}
543
0fe6e20b
NH
544pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
545 unsigned long address)
546{
547 return vma_hugecache_offset(hstate_vma(vma), vma, address);
548}
549
08fba699
MG
550/*
551 * Return the size of the pages allocated when backing a VMA. In the majority
552 * cases this will be same size as used by the page table entries.
553 */
554unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
555{
556 struct hstate *hstate;
557
558 if (!is_vm_hugetlb_page(vma))
559 return PAGE_SIZE;
560
561 hstate = hstate_vma(vma);
562
2415cf12 563 return 1UL << huge_page_shift(hstate);
08fba699 564}
f340ca0f 565EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
08fba699 566
3340289d
MG
567/*
568 * Return the page size being used by the MMU to back a VMA. In the majority
569 * of cases, the page size used by the kernel matches the MMU size. On
570 * architectures where it differs, an architecture-specific version of this
571 * function is required.
572 */
573#ifndef vma_mmu_pagesize
574unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
575{
576 return vma_kernel_pagesize(vma);
577}
578#endif
579
84afd99b
AW
580/*
581 * Flags for MAP_PRIVATE reservations. These are stored in the bottom
582 * bits of the reservation map pointer, which are always clear due to
583 * alignment.
584 */
585#define HPAGE_RESV_OWNER (1UL << 0)
586#define HPAGE_RESV_UNMAPPED (1UL << 1)
04f2cbe3 587#define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
84afd99b 588
a1e78772
MG
589/*
590 * These helpers are used to track how many pages are reserved for
591 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
592 * is guaranteed to have their future faults succeed.
593 *
594 * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
595 * the reserve counters are updated with the hugetlb_lock held. It is safe
596 * to reset the VMA at fork() time as it is not in use yet and there is no
597 * chance of the global counters getting corrupted as a result of the values.
84afd99b
AW
598 *
599 * The private mapping reservation is represented in a subtly different
600 * manner to a shared mapping. A shared mapping has a region map associated
601 * with the underlying file, this region map represents the backing file
602 * pages which have ever had a reservation assigned which this persists even
603 * after the page is instantiated. A private mapping has a region map
604 * associated with the original mmap which is attached to all VMAs which
605 * reference it, this region map represents those offsets which have consumed
606 * reservation ie. where pages have been instantiated.
a1e78772 607 */
e7c4b0bf
AW
608static unsigned long get_vma_private_data(struct vm_area_struct *vma)
609{
610 return (unsigned long)vma->vm_private_data;
611}
612
613static void set_vma_private_data(struct vm_area_struct *vma,
614 unsigned long value)
615{
616 vma->vm_private_data = (void *)value;
617}
618
9119a41e 619struct resv_map *resv_map_alloc(void)
84afd99b
AW
620{
621 struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
5e911373
MK
622 struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);
623
624 if (!resv_map || !rg) {
625 kfree(resv_map);
626 kfree(rg);
84afd99b 627 return NULL;
5e911373 628 }
84afd99b
AW
629
630 kref_init(&resv_map->refs);
7b24d861 631 spin_lock_init(&resv_map->lock);
84afd99b
AW
632 INIT_LIST_HEAD(&resv_map->regions);
633
5e911373
MK
634 resv_map->adds_in_progress = 0;
635
636 INIT_LIST_HEAD(&resv_map->region_cache);
637 list_add(&rg->link, &resv_map->region_cache);
638 resv_map->region_cache_count = 1;
639
84afd99b
AW
640 return resv_map;
641}
642
9119a41e 643void resv_map_release(struct kref *ref)
84afd99b
AW
644{
645 struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
5e911373
MK
646 struct list_head *head = &resv_map->region_cache;
647 struct file_region *rg, *trg;
84afd99b
AW
648
649 /* Clear out any active regions before we release the map. */
1406ec9b 650 region_truncate(resv_map, 0);
5e911373
MK
651
652 /* ... and any entries left in the cache */
653 list_for_each_entry_safe(rg, trg, head, link) {
654 list_del(&rg->link);
655 kfree(rg);
656 }
657
658 VM_BUG_ON(resv_map->adds_in_progress);
659
84afd99b
AW
660 kfree(resv_map);
661}
662
4e35f483
JK
663static inline struct resv_map *inode_resv_map(struct inode *inode)
664{
665 return inode->i_mapping->private_data;
666}
667
84afd99b 668static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
a1e78772 669{
81d1b09c 670 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
4e35f483
JK
671 if (vma->vm_flags & VM_MAYSHARE) {
672 struct address_space *mapping = vma->vm_file->f_mapping;
673 struct inode *inode = mapping->host;
674
675 return inode_resv_map(inode);
676
677 } else {
84afd99b
AW
678 return (struct resv_map *)(get_vma_private_data(vma) &
679 ~HPAGE_RESV_MASK);
4e35f483 680 }
a1e78772
MG
681}
682
84afd99b 683static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
a1e78772 684{
81d1b09c
SL
685 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
686 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
a1e78772 687
84afd99b
AW
688 set_vma_private_data(vma, (get_vma_private_data(vma) &
689 HPAGE_RESV_MASK) | (unsigned long)map);
04f2cbe3
MG
690}
691
692static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
693{
81d1b09c
SL
694 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
695 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
e7c4b0bf
AW
696
697 set_vma_private_data(vma, get_vma_private_data(vma) | flags);
04f2cbe3
MG
698}
699
700static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
701{
81d1b09c 702 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
e7c4b0bf
AW
703
704 return (get_vma_private_data(vma) & flag) != 0;
a1e78772
MG
705}
706
04f2cbe3 707/* Reset counters to 0 and clear all HPAGE_RESV_* flags */
a1e78772
MG
708void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
709{
81d1b09c 710 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
f83a275d 711 if (!(vma->vm_flags & VM_MAYSHARE))
a1e78772
MG
712 vma->vm_private_data = (void *)0;
713}
714
715/* Returns true if the VMA has associated reserve pages */
559ec2f8 716static bool vma_has_reserves(struct vm_area_struct *vma, long chg)
a1e78772 717{
af0ed73e
JK
718 if (vma->vm_flags & VM_NORESERVE) {
719 /*
720 * This address is already reserved by other process(chg == 0),
721 * so, we should decrement reserved count. Without decrementing,
722 * reserve count remains after releasing inode, because this
723 * allocated page will go into page cache and is regarded as
724 * coming from reserved pool in releasing step. Currently, we
725 * don't have any other solution to deal with this situation
726 * properly, so add work-around here.
727 */
728 if (vma->vm_flags & VM_MAYSHARE && chg == 0)
559ec2f8 729 return true;
af0ed73e 730 else
559ec2f8 731 return false;
af0ed73e 732 }
a63884e9
JK
733
734 /* Shared mappings always use reserves */
f83a275d 735 if (vma->vm_flags & VM_MAYSHARE)
559ec2f8 736 return true;
a63884e9
JK
737
738 /*
739 * Only the process that called mmap() has reserves for
740 * private mappings.
741 */
7f09ca51 742 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER))
559ec2f8 743 return true;
a63884e9 744
559ec2f8 745 return false;
a1e78772
MG
746}
747
a5516438 748static void enqueue_huge_page(struct hstate *h, struct page *page)
1da177e4
LT
749{
750 int nid = page_to_nid(page);
0edaecfa 751 list_move(&page->lru, &h->hugepage_freelists[nid]);
a5516438
AK
752 h->free_huge_pages++;
753 h->free_huge_pages_node[nid]++;
1da177e4
LT
754}
755
bf50bab2
NH
756static struct page *dequeue_huge_page_node(struct hstate *h, int nid)
757{
758 struct page *page;
759
c8721bbb
NH
760 list_for_each_entry(page, &h->hugepage_freelists[nid], lru)
761 if (!is_migrate_isolate_page(page))
762 break;
763 /*
764 * if 'non-isolated free hugepage' not found on the list,
765 * the allocation fails.
766 */
767 if (&h->hugepage_freelists[nid] == &page->lru)
bf50bab2 768 return NULL;
0edaecfa 769 list_move(&page->lru, &h->hugepage_activelist);
a9869b83 770 set_page_refcounted(page);
bf50bab2
NH
771 h->free_huge_pages--;
772 h->free_huge_pages_node[nid]--;
773 return page;
774}
775
86cdb465
NH
776/* Movability of hugepages depends on migration support. */
777static inline gfp_t htlb_alloc_mask(struct hstate *h)
778{
100873d7 779 if (hugepages_treat_as_movable || hugepage_migration_supported(h))
86cdb465
NH
780 return GFP_HIGHUSER_MOVABLE;
781 else
782 return GFP_HIGHUSER;
783}
784
a5516438
AK
785static struct page *dequeue_huge_page_vma(struct hstate *h,
786 struct vm_area_struct *vma,
af0ed73e
JK
787 unsigned long address, int avoid_reserve,
788 long chg)
1da177e4 789{
b1c12cbc 790 struct page *page = NULL;
480eccf9 791 struct mempolicy *mpol;
19770b32 792 nodemask_t *nodemask;
c0ff7453 793 struct zonelist *zonelist;
dd1a239f
MG
794 struct zone *zone;
795 struct zoneref *z;
cc9a6c87 796 unsigned int cpuset_mems_cookie;
1da177e4 797
a1e78772
MG
798 /*
799 * A child process with MAP_PRIVATE mappings created by their parent
800 * have no page reserves. This check ensures that reservations are
801 * not "stolen". The child may still get SIGKILLed
802 */
af0ed73e 803 if (!vma_has_reserves(vma, chg) &&
a5516438 804 h->free_huge_pages - h->resv_huge_pages == 0)
c0ff7453 805 goto err;
a1e78772 806
04f2cbe3 807 /* If reserves cannot be used, ensure enough pages are in the pool */
a5516438 808 if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
6eab04a8 809 goto err;
04f2cbe3 810
9966c4bb 811retry_cpuset:
d26914d1 812 cpuset_mems_cookie = read_mems_allowed_begin();
9966c4bb 813 zonelist = huge_zonelist(vma, address,
86cdb465 814 htlb_alloc_mask(h), &mpol, &nodemask);
9966c4bb 815
19770b32
MG
816 for_each_zone_zonelist_nodemask(zone, z, zonelist,
817 MAX_NR_ZONES - 1, nodemask) {
344736f2 818 if (cpuset_zone_allowed(zone, htlb_alloc_mask(h))) {
bf50bab2
NH
819 page = dequeue_huge_page_node(h, zone_to_nid(zone));
820 if (page) {
af0ed73e
JK
821 if (avoid_reserve)
822 break;
823 if (!vma_has_reserves(vma, chg))
824 break;
825
07443a85 826 SetPagePrivate(page);
af0ed73e 827 h->resv_huge_pages--;
bf50bab2
NH
828 break;
829 }
3abf7afd 830 }
1da177e4 831 }
cc9a6c87 832
52cd3b07 833 mpol_cond_put(mpol);
d26914d1 834 if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie)))
cc9a6c87 835 goto retry_cpuset;
1da177e4 836 return page;
cc9a6c87
MG
837
838err:
cc9a6c87 839 return NULL;
1da177e4
LT
840}
841
1cac6f2c
LC
842/*
843 * common helper functions for hstate_next_node_to_{alloc|free}.
844 * We may have allocated or freed a huge page based on a different
845 * nodes_allowed previously, so h->next_node_to_{alloc|free} might
846 * be outside of *nodes_allowed. Ensure that we use an allowed
847 * node for alloc or free.
848 */
849static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
850{
851 nid = next_node(nid, *nodes_allowed);
852 if (nid == MAX_NUMNODES)
853 nid = first_node(*nodes_allowed);
854 VM_BUG_ON(nid >= MAX_NUMNODES);
855
856 return nid;
857}
858
859static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
860{
861 if (!node_isset(nid, *nodes_allowed))
862 nid = next_node_allowed(nid, nodes_allowed);
863 return nid;
864}
865
866/*
867 * returns the previously saved node ["this node"] from which to
868 * allocate a persistent huge page for the pool and advance the
869 * next node from which to allocate, handling wrap at end of node
870 * mask.
871 */
872static int hstate_next_node_to_alloc(struct hstate *h,
873 nodemask_t *nodes_allowed)
874{
875 int nid;
876
877 VM_BUG_ON(!nodes_allowed);
878
879 nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
880 h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
881
882 return nid;
883}
884
885/*
886 * helper for free_pool_huge_page() - return the previously saved
887 * node ["this node"] from which to free a huge page. Advance the
888 * next node id whether or not we find a free huge page to free so
889 * that the next attempt to free addresses the next node.
890 */
891static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
892{
893 int nid;
894
895 VM_BUG_ON(!nodes_allowed);
896
897 nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
898 h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
899
900 return nid;
901}
902
903#define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask) \
904 for (nr_nodes = nodes_weight(*mask); \
905 nr_nodes > 0 && \
906 ((node = hstate_next_node_to_alloc(hs, mask)) || 1); \
907 nr_nodes--)
908
909#define for_each_node_mask_to_free(hs, nr_nodes, node, mask) \
910 for (nr_nodes = nodes_weight(*mask); \
911 nr_nodes > 0 && \
912 ((node = hstate_next_node_to_free(hs, mask)) || 1); \
913 nr_nodes--)
914
944d9fec
LC
915#if defined(CONFIG_CMA) && defined(CONFIG_X86_64)
916static void destroy_compound_gigantic_page(struct page *page,
917 unsigned long order)
918{
919 int i;
920 int nr_pages = 1 << order;
921 struct page *p = page + 1;
922
923 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
924 __ClearPageTail(p);
925 set_page_refcounted(p);
926 p->first_page = NULL;
927 }
928
929 set_compound_order(page, 0);
930 __ClearPageHead(page);
931}
932
933static void free_gigantic_page(struct page *page, unsigned order)
934{
935 free_contig_range(page_to_pfn(page), 1 << order);
936}
937
938static int __alloc_gigantic_page(unsigned long start_pfn,
939 unsigned long nr_pages)
940{
941 unsigned long end_pfn = start_pfn + nr_pages;
942 return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE);
943}
944
945static bool pfn_range_valid_gigantic(unsigned long start_pfn,
946 unsigned long nr_pages)
947{
948 unsigned long i, end_pfn = start_pfn + nr_pages;
949 struct page *page;
950
951 for (i = start_pfn; i < end_pfn; i++) {
952 if (!pfn_valid(i))
953 return false;
954
955 page = pfn_to_page(i);
956
957 if (PageReserved(page))
958 return false;
959
960 if (page_count(page) > 0)
961 return false;
962
963 if (PageHuge(page))
964 return false;
965 }
966
967 return true;
968}
969
970static bool zone_spans_last_pfn(const struct zone *zone,
971 unsigned long start_pfn, unsigned long nr_pages)
972{
973 unsigned long last_pfn = start_pfn + nr_pages - 1;
974 return zone_spans_pfn(zone, last_pfn);
975}
976
977static struct page *alloc_gigantic_page(int nid, unsigned order)
978{
979 unsigned long nr_pages = 1 << order;
980 unsigned long ret, pfn, flags;
981 struct zone *z;
982
983 z = NODE_DATA(nid)->node_zones;
984 for (; z - NODE_DATA(nid)->node_zones < MAX_NR_ZONES; z++) {
985 spin_lock_irqsave(&z->lock, flags);
986
987 pfn = ALIGN(z->zone_start_pfn, nr_pages);
988 while (zone_spans_last_pfn(z, pfn, nr_pages)) {
989 if (pfn_range_valid_gigantic(pfn, nr_pages)) {
990 /*
991 * We release the zone lock here because
992 * alloc_contig_range() will also lock the zone
993 * at some point. If there's an allocation
994 * spinning on this lock, it may win the race
995 * and cause alloc_contig_range() to fail...
996 */
997 spin_unlock_irqrestore(&z->lock, flags);
998 ret = __alloc_gigantic_page(pfn, nr_pages);
999 if (!ret)
1000 return pfn_to_page(pfn);
1001 spin_lock_irqsave(&z->lock, flags);
1002 }
1003 pfn += nr_pages;
1004 }
1005
1006 spin_unlock_irqrestore(&z->lock, flags);
1007 }
1008
1009 return NULL;
1010}
1011
1012static void prep_new_huge_page(struct hstate *h, struct page *page, int nid);
1013static void prep_compound_gigantic_page(struct page *page, unsigned long order);
1014
1015static struct page *alloc_fresh_gigantic_page_node(struct hstate *h, int nid)
1016{
1017 struct page *page;
1018
1019 page = alloc_gigantic_page(nid, huge_page_order(h));
1020 if (page) {
1021 prep_compound_gigantic_page(page, huge_page_order(h));
1022 prep_new_huge_page(h, page, nid);
1023 }
1024
1025 return page;
1026}
1027
1028static int alloc_fresh_gigantic_page(struct hstate *h,
1029 nodemask_t *nodes_allowed)
1030{
1031 struct page *page = NULL;
1032 int nr_nodes, node;
1033
1034 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1035 page = alloc_fresh_gigantic_page_node(h, node);
1036 if (page)
1037 return 1;
1038 }
1039
1040 return 0;
1041}
1042
1043static inline bool gigantic_page_supported(void) { return true; }
1044#else
1045static inline bool gigantic_page_supported(void) { return false; }
1046static inline void free_gigantic_page(struct page *page, unsigned order) { }
1047static inline void destroy_compound_gigantic_page(struct page *page,
1048 unsigned long order) { }
1049static inline int alloc_fresh_gigantic_page(struct hstate *h,
1050 nodemask_t *nodes_allowed) { return 0; }
1051#endif
1052
a5516438 1053static void update_and_free_page(struct hstate *h, struct page *page)
6af2acb6
AL
1054{
1055 int i;
a5516438 1056
944d9fec
LC
1057 if (hstate_is_gigantic(h) && !gigantic_page_supported())
1058 return;
18229df5 1059
a5516438
AK
1060 h->nr_huge_pages--;
1061 h->nr_huge_pages_node[page_to_nid(page)]--;
1062 for (i = 0; i < pages_per_huge_page(h); i++) {
32f84528
CF
1063 page[i].flags &= ~(1 << PG_locked | 1 << PG_error |
1064 1 << PG_referenced | 1 << PG_dirty |
a7407a27
LC
1065 1 << PG_active | 1 << PG_private |
1066 1 << PG_writeback);
6af2acb6 1067 }
309381fe 1068 VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page);
6af2acb6
AL
1069 set_compound_page_dtor(page, NULL);
1070 set_page_refcounted(page);
944d9fec
LC
1071 if (hstate_is_gigantic(h)) {
1072 destroy_compound_gigantic_page(page, huge_page_order(h));
1073 free_gigantic_page(page, huge_page_order(h));
1074 } else {
944d9fec
LC
1075 __free_pages(page, huge_page_order(h));
1076 }
6af2acb6
AL
1077}
1078
e5ff2159
AK
1079struct hstate *size_to_hstate(unsigned long size)
1080{
1081 struct hstate *h;
1082
1083 for_each_hstate(h) {
1084 if (huge_page_size(h) == size)
1085 return h;
1086 }
1087 return NULL;
1088}
1089
bcc54222
NH
1090/*
1091 * Test to determine whether the hugepage is "active/in-use" (i.e. being linked
1092 * to hstate->hugepage_activelist.)
1093 *
1094 * This function can be called for tail pages, but never returns true for them.
1095 */
1096bool page_huge_active(struct page *page)
1097{
1098 VM_BUG_ON_PAGE(!PageHuge(page), page);
1099 return PageHead(page) && PagePrivate(&page[1]);
1100}
1101
1102/* never called for tail page */
1103static void set_page_huge_active(struct page *page)
1104{
1105 VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1106 SetPagePrivate(&page[1]);
1107}
1108
1109static void clear_page_huge_active(struct page *page)
1110{
1111 VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1112 ClearPagePrivate(&page[1]);
1113}
1114
8f1d26d0 1115void free_huge_page(struct page *page)
27a85ef1 1116{
a5516438
AK
1117 /*
1118 * Can't pass hstate in here because it is called from the
1119 * compound page destructor.
1120 */
e5ff2159 1121 struct hstate *h = page_hstate(page);
7893d1d5 1122 int nid = page_to_nid(page);
90481622
DG
1123 struct hugepage_subpool *spool =
1124 (struct hugepage_subpool *)page_private(page);
07443a85 1125 bool restore_reserve;
27a85ef1 1126
e5df70ab 1127 set_page_private(page, 0);
23be7468 1128 page->mapping = NULL;
7893d1d5 1129 BUG_ON(page_count(page));
0fe6e20b 1130 BUG_ON(page_mapcount(page));
07443a85 1131 restore_reserve = PagePrivate(page);
16c794b4 1132 ClearPagePrivate(page);
27a85ef1 1133
1c5ecae3
MK
1134 /*
1135 * A return code of zero implies that the subpool will be under its
1136 * minimum size if the reservation is not restored after page is free.
1137 * Therefore, force restore_reserve operation.
1138 */
1139 if (hugepage_subpool_put_pages(spool, 1) == 0)
1140 restore_reserve = true;
1141
27a85ef1 1142 spin_lock(&hugetlb_lock);
bcc54222 1143 clear_page_huge_active(page);
6d76dcf4
AK
1144 hugetlb_cgroup_uncharge_page(hstate_index(h),
1145 pages_per_huge_page(h), page);
07443a85
JK
1146 if (restore_reserve)
1147 h->resv_huge_pages++;
1148
944d9fec 1149 if (h->surplus_huge_pages_node[nid]) {
0edaecfa
AK
1150 /* remove the page from active list */
1151 list_del(&page->lru);
a5516438
AK
1152 update_and_free_page(h, page);
1153 h->surplus_huge_pages--;
1154 h->surplus_huge_pages_node[nid]--;
7893d1d5 1155 } else {
5d3a551c 1156 arch_clear_hugepage_flags(page);
a5516438 1157 enqueue_huge_page(h, page);
7893d1d5 1158 }
27a85ef1
DG
1159 spin_unlock(&hugetlb_lock);
1160}
1161
a5516438 1162static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
b7ba30c6 1163{
0edaecfa 1164 INIT_LIST_HEAD(&page->lru);
b7ba30c6
AK
1165 set_compound_page_dtor(page, free_huge_page);
1166 spin_lock(&hugetlb_lock);
9dd540e2 1167 set_hugetlb_cgroup(page, NULL);
a5516438
AK
1168 h->nr_huge_pages++;
1169 h->nr_huge_pages_node[nid]++;
b7ba30c6
AK
1170 spin_unlock(&hugetlb_lock);
1171 put_page(page); /* free it into the hugepage allocator */
1172}
1173
2906dd52 1174static void prep_compound_gigantic_page(struct page *page, unsigned long order)
20a0307c
WF
1175{
1176 int i;
1177 int nr_pages = 1 << order;
1178 struct page *p = page + 1;
1179
1180 /* we rely on prep_new_huge_page to set the destructor */
1181 set_compound_order(page, order);
1182 __SetPageHead(page);
ef5a22be 1183 __ClearPageReserved(page);
20a0307c 1184 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
ef5a22be
AA
1185 /*
1186 * For gigantic hugepages allocated through bootmem at
1187 * boot, it's safer to be consistent with the not-gigantic
1188 * hugepages and clear the PG_reserved bit from all tail pages
1189 * too. Otherwse drivers using get_user_pages() to access tail
1190 * pages may get the reference counting wrong if they see
1191 * PG_reserved set on a tail page (despite the head page not
1192 * having PG_reserved set). Enforcing this consistency between
1193 * head and tail pages allows drivers to optimize away a check
1194 * on the head page when they need know if put_page() is needed
1195 * after get_user_pages().
1196 */
1197 __ClearPageReserved(p);
58a84aa9 1198 set_page_count(p, 0);
20a0307c 1199 p->first_page = page;
44fc8057
DR
1200 /* Make sure p->first_page is always valid for PageTail() */
1201 smp_wmb();
1202 __SetPageTail(p);
20a0307c
WF
1203 }
1204}
1205
7795912c
AM
1206/*
1207 * PageHuge() only returns true for hugetlbfs pages, but not for normal or
1208 * transparent huge pages. See the PageTransHuge() documentation for more
1209 * details.
1210 */
20a0307c
WF
1211int PageHuge(struct page *page)
1212{
20a0307c
WF
1213 if (!PageCompound(page))
1214 return 0;
1215
1216 page = compound_head(page);
758f66a2 1217 return get_compound_page_dtor(page) == free_huge_page;
20a0307c 1218}
43131e14
NH
1219EXPORT_SYMBOL_GPL(PageHuge);
1220
27c73ae7
AA
1221/*
1222 * PageHeadHuge() only returns true for hugetlbfs head page, but not for
1223 * normal or transparent huge pages.
1224 */
1225int PageHeadHuge(struct page *page_head)
1226{
27c73ae7
AA
1227 if (!PageHead(page_head))
1228 return 0;
1229
758f66a2 1230 return get_compound_page_dtor(page_head) == free_huge_page;
27c73ae7 1231}
27c73ae7 1232
13d60f4b
ZY
1233pgoff_t __basepage_index(struct page *page)
1234{
1235 struct page *page_head = compound_head(page);
1236 pgoff_t index = page_index(page_head);
1237 unsigned long compound_idx;
1238
1239 if (!PageHuge(page_head))
1240 return page_index(page);
1241
1242 if (compound_order(page_head) >= MAX_ORDER)
1243 compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
1244 else
1245 compound_idx = page - page_head;
1246
1247 return (index << compound_order(page_head)) + compound_idx;
1248}
1249
a5516438 1250static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid)
1da177e4 1251{
1da177e4 1252 struct page *page;
f96efd58 1253
6484eb3e 1254 page = alloc_pages_exact_node(nid,
86cdb465 1255 htlb_alloc_mask(h)|__GFP_COMP|__GFP_THISNODE|
551883ae 1256 __GFP_REPEAT|__GFP_NOWARN,
a5516438 1257 huge_page_order(h));
1da177e4 1258 if (page) {
a5516438 1259 prep_new_huge_page(h, page, nid);
1da177e4 1260 }
63b4613c
NA
1261
1262 return page;
1263}
1264
b2261026
JK
1265static int alloc_fresh_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
1266{
1267 struct page *page;
1268 int nr_nodes, node;
1269 int ret = 0;
1270
1271 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1272 page = alloc_fresh_huge_page_node(h, node);
1273 if (page) {
1274 ret = 1;
1275 break;
1276 }
1277 }
1278
1279 if (ret)
1280 count_vm_event(HTLB_BUDDY_PGALLOC);
1281 else
1282 count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1283
1284 return ret;
1285}
1286
e8c5c824
LS
1287/*
1288 * Free huge page from pool from next node to free.
1289 * Attempt to keep persistent huge pages more or less
1290 * balanced over allowed nodes.
1291 * Called with hugetlb_lock locked.
1292 */
6ae11b27
LS
1293static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
1294 bool acct_surplus)
e8c5c824 1295{
b2261026 1296 int nr_nodes, node;
e8c5c824
LS
1297 int ret = 0;
1298
b2261026 1299 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
685f3457
LS
1300 /*
1301 * If we're returning unused surplus pages, only examine
1302 * nodes with surplus pages.
1303 */
b2261026
JK
1304 if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
1305 !list_empty(&h->hugepage_freelists[node])) {
e8c5c824 1306 struct page *page =
b2261026 1307 list_entry(h->hugepage_freelists[node].next,
e8c5c824
LS
1308 struct page, lru);
1309 list_del(&page->lru);
1310 h->free_huge_pages--;
b2261026 1311 h->free_huge_pages_node[node]--;
685f3457
LS
1312 if (acct_surplus) {
1313 h->surplus_huge_pages--;
b2261026 1314 h->surplus_huge_pages_node[node]--;
685f3457 1315 }
e8c5c824
LS
1316 update_and_free_page(h, page);
1317 ret = 1;
9a76db09 1318 break;
e8c5c824 1319 }
b2261026 1320 }
e8c5c824
LS
1321
1322 return ret;
1323}
1324
c8721bbb
NH
1325/*
1326 * Dissolve a given free hugepage into free buddy pages. This function does
1327 * nothing for in-use (including surplus) hugepages.
1328 */
1329static void dissolve_free_huge_page(struct page *page)
1330{
1331 spin_lock(&hugetlb_lock);
1332 if (PageHuge(page) && !page_count(page)) {
1333 struct hstate *h = page_hstate(page);
1334 int nid = page_to_nid(page);
1335 list_del(&page->lru);
1336 h->free_huge_pages--;
1337 h->free_huge_pages_node[nid]--;
1338 update_and_free_page(h, page);
1339 }
1340 spin_unlock(&hugetlb_lock);
1341}
1342
1343/*
1344 * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
1345 * make specified memory blocks removable from the system.
1346 * Note that start_pfn should aligned with (minimum) hugepage size.
1347 */
1348void dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
1349{
c8721bbb 1350 unsigned long pfn;
c8721bbb 1351
d0177639
LZ
1352 if (!hugepages_supported())
1353 return;
1354
641844f5
NH
1355 VM_BUG_ON(!IS_ALIGNED(start_pfn, 1 << minimum_order));
1356 for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << minimum_order)
c8721bbb
NH
1357 dissolve_free_huge_page(pfn_to_page(pfn));
1358}
1359
bf50bab2 1360static struct page *alloc_buddy_huge_page(struct hstate *h, int nid)
7893d1d5
AL
1361{
1362 struct page *page;
bf50bab2 1363 unsigned int r_nid;
7893d1d5 1364
bae7f4ae 1365 if (hstate_is_gigantic(h))
aa888a74
AK
1366 return NULL;
1367
d1c3fb1f
NA
1368 /*
1369 * Assume we will successfully allocate the surplus page to
1370 * prevent racing processes from causing the surplus to exceed
1371 * overcommit
1372 *
1373 * This however introduces a different race, where a process B
1374 * tries to grow the static hugepage pool while alloc_pages() is
1375 * called by process A. B will only examine the per-node
1376 * counters in determining if surplus huge pages can be
1377 * converted to normal huge pages in adjust_pool_surplus(). A
1378 * won't be able to increment the per-node counter, until the
1379 * lock is dropped by B, but B doesn't drop hugetlb_lock until
1380 * no more huge pages can be converted from surplus to normal
1381 * state (and doesn't try to convert again). Thus, we have a
1382 * case where a surplus huge page exists, the pool is grown, and
1383 * the surplus huge page still exists after, even though it
1384 * should just have been converted to a normal huge page. This
1385 * does not leak memory, though, as the hugepage will be freed
1386 * once it is out of use. It also does not allow the counters to
1387 * go out of whack in adjust_pool_surplus() as we don't modify
1388 * the node values until we've gotten the hugepage and only the
1389 * per-node value is checked there.
1390 */
1391 spin_lock(&hugetlb_lock);
a5516438 1392 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
d1c3fb1f
NA
1393 spin_unlock(&hugetlb_lock);
1394 return NULL;
1395 } else {
a5516438
AK
1396 h->nr_huge_pages++;
1397 h->surplus_huge_pages++;
d1c3fb1f
NA
1398 }
1399 spin_unlock(&hugetlb_lock);
1400
bf50bab2 1401 if (nid == NUMA_NO_NODE)
86cdb465 1402 page = alloc_pages(htlb_alloc_mask(h)|__GFP_COMP|
bf50bab2
NH
1403 __GFP_REPEAT|__GFP_NOWARN,
1404 huge_page_order(h));
1405 else
1406 page = alloc_pages_exact_node(nid,
86cdb465 1407 htlb_alloc_mask(h)|__GFP_COMP|__GFP_THISNODE|
bf50bab2 1408 __GFP_REPEAT|__GFP_NOWARN, huge_page_order(h));
d1c3fb1f
NA
1409
1410 spin_lock(&hugetlb_lock);
7893d1d5 1411 if (page) {
0edaecfa 1412 INIT_LIST_HEAD(&page->lru);
bf50bab2 1413 r_nid = page_to_nid(page);
7893d1d5 1414 set_compound_page_dtor(page, free_huge_page);
9dd540e2 1415 set_hugetlb_cgroup(page, NULL);
d1c3fb1f
NA
1416 /*
1417 * We incremented the global counters already
1418 */
bf50bab2
NH
1419 h->nr_huge_pages_node[r_nid]++;
1420 h->surplus_huge_pages_node[r_nid]++;
3b116300 1421 __count_vm_event(HTLB_BUDDY_PGALLOC);
d1c3fb1f 1422 } else {
a5516438
AK
1423 h->nr_huge_pages--;
1424 h->surplus_huge_pages--;
3b116300 1425 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
7893d1d5 1426 }
d1c3fb1f 1427 spin_unlock(&hugetlb_lock);
7893d1d5
AL
1428
1429 return page;
1430}
1431
bf50bab2
NH
1432/*
1433 * This allocation function is useful in the context where vma is irrelevant.
1434 * E.g. soft-offlining uses this function because it only cares physical
1435 * address of error page.
1436 */
1437struct page *alloc_huge_page_node(struct hstate *h, int nid)
1438{
4ef91848 1439 struct page *page = NULL;
bf50bab2
NH
1440
1441 spin_lock(&hugetlb_lock);
4ef91848
JK
1442 if (h->free_huge_pages - h->resv_huge_pages > 0)
1443 page = dequeue_huge_page_node(h, nid);
bf50bab2
NH
1444 spin_unlock(&hugetlb_lock);
1445
94ae8ba7 1446 if (!page)
bf50bab2
NH
1447 page = alloc_buddy_huge_page(h, nid);
1448
1449 return page;
1450}
1451
e4e574b7 1452/*
25985edc 1453 * Increase the hugetlb pool such that it can accommodate a reservation
e4e574b7
AL
1454 * of size 'delta'.
1455 */
a5516438 1456static int gather_surplus_pages(struct hstate *h, int delta)
e4e574b7
AL
1457{
1458 struct list_head surplus_list;
1459 struct page *page, *tmp;
1460 int ret, i;
1461 int needed, allocated;
28073b02 1462 bool alloc_ok = true;
e4e574b7 1463
a5516438 1464 needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
ac09b3a1 1465 if (needed <= 0) {
a5516438 1466 h->resv_huge_pages += delta;
e4e574b7 1467 return 0;
ac09b3a1 1468 }
e4e574b7
AL
1469
1470 allocated = 0;
1471 INIT_LIST_HEAD(&surplus_list);
1472
1473 ret = -ENOMEM;
1474retry:
1475 spin_unlock(&hugetlb_lock);
1476 for (i = 0; i < needed; i++) {
bf50bab2 1477 page = alloc_buddy_huge_page(h, NUMA_NO_NODE);
28073b02
HD
1478 if (!page) {
1479 alloc_ok = false;
1480 break;
1481 }
e4e574b7
AL
1482 list_add(&page->lru, &surplus_list);
1483 }
28073b02 1484 allocated += i;
e4e574b7
AL
1485
1486 /*
1487 * After retaking hugetlb_lock, we need to recalculate 'needed'
1488 * because either resv_huge_pages or free_huge_pages may have changed.
1489 */
1490 spin_lock(&hugetlb_lock);
a5516438
AK
1491 needed = (h->resv_huge_pages + delta) -
1492 (h->free_huge_pages + allocated);
28073b02
HD
1493 if (needed > 0) {
1494 if (alloc_ok)
1495 goto retry;
1496 /*
1497 * We were not able to allocate enough pages to
1498 * satisfy the entire reservation so we free what
1499 * we've allocated so far.
1500 */
1501 goto free;
1502 }
e4e574b7
AL
1503 /*
1504 * The surplus_list now contains _at_least_ the number of extra pages
25985edc 1505 * needed to accommodate the reservation. Add the appropriate number
e4e574b7 1506 * of pages to the hugetlb pool and free the extras back to the buddy
ac09b3a1
AL
1507 * allocator. Commit the entire reservation here to prevent another
1508 * process from stealing the pages as they are added to the pool but
1509 * before they are reserved.
e4e574b7
AL
1510 */
1511 needed += allocated;
a5516438 1512 h->resv_huge_pages += delta;
e4e574b7 1513 ret = 0;
a9869b83 1514
19fc3f0a 1515 /* Free the needed pages to the hugetlb pool */
e4e574b7 1516 list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
19fc3f0a
AL
1517 if ((--needed) < 0)
1518 break;
a9869b83
NH
1519 /*
1520 * This page is now managed by the hugetlb allocator and has
1521 * no users -- drop the buddy allocator's reference.
1522 */
1523 put_page_testzero(page);
309381fe 1524 VM_BUG_ON_PAGE(page_count(page), page);
a5516438 1525 enqueue_huge_page(h, page);
19fc3f0a 1526 }
28073b02 1527free:
b0365c8d 1528 spin_unlock(&hugetlb_lock);
19fc3f0a
AL
1529
1530 /* Free unnecessary surplus pages to the buddy allocator */
c0d934ba
JK
1531 list_for_each_entry_safe(page, tmp, &surplus_list, lru)
1532 put_page(page);
a9869b83 1533 spin_lock(&hugetlb_lock);
e4e574b7
AL
1534
1535 return ret;
1536}
1537
1538/*
1539 * When releasing a hugetlb pool reservation, any surplus pages that were
1540 * allocated to satisfy the reservation must be explicitly freed if they were
1541 * never used.
685f3457 1542 * Called with hugetlb_lock held.
e4e574b7 1543 */
a5516438
AK
1544static void return_unused_surplus_pages(struct hstate *h,
1545 unsigned long unused_resv_pages)
e4e574b7 1546{
e4e574b7
AL
1547 unsigned long nr_pages;
1548
ac09b3a1 1549 /* Uncommit the reservation */
a5516438 1550 h->resv_huge_pages -= unused_resv_pages;
ac09b3a1 1551
aa888a74 1552 /* Cannot return gigantic pages currently */
bae7f4ae 1553 if (hstate_is_gigantic(h))
aa888a74
AK
1554 return;
1555
a5516438 1556 nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
e4e574b7 1557
685f3457
LS
1558 /*
1559 * We want to release as many surplus pages as possible, spread
9b5e5d0f
LS
1560 * evenly across all nodes with memory. Iterate across these nodes
1561 * until we can no longer free unreserved surplus pages. This occurs
1562 * when the nodes with surplus pages have no free pages.
1563 * free_pool_huge_page() will balance the the freed pages across the
1564 * on-line nodes with memory and will handle the hstate accounting.
685f3457
LS
1565 */
1566 while (nr_pages--) {
8cebfcd0 1567 if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1))
685f3457 1568 break;
7848a4bf 1569 cond_resched_lock(&hugetlb_lock);
e4e574b7
AL
1570 }
1571}
1572
5e911373 1573
c37f9fb1 1574/*
5e911373
MK
1575 * vma_needs_reservation, vma_commit_reservation and vma_abort_reservation
1576 * are used by the huge page allocation routines to manage reservations.
cf3ad20b
MK
1577 *
1578 * vma_needs_reservation is called to determine if the huge page at addr
1579 * within the vma has an associated reservation. If a reservation is
1580 * needed, the value 1 is returned. The caller is then responsible for
1581 * managing the global reservation and subpool usage counts. After
1582 * the huge page has been allocated, vma_commit_reservation is called
5e911373
MK
1583 * to add the page to the reservation map. If the reservation must be
1584 * aborted instead of committed, vma_abort_reservation is called.
cf3ad20b
MK
1585 *
1586 * In the normal case, vma_commit_reservation returns the same value
1587 * as the preceding vma_needs_reservation call. The only time this
1588 * is not the case is if a reserve map was changed between calls. It
1589 * is the responsibility of the caller to notice the difference and
1590 * take appropriate action.
c37f9fb1 1591 */
5e911373
MK
1592enum vma_resv_mode {
1593 VMA_NEEDS_RESV,
1594 VMA_COMMIT_RESV,
1595 VMA_ABORT_RESV,
1596};
cf3ad20b
MK
1597static long __vma_reservation_common(struct hstate *h,
1598 struct vm_area_struct *vma, unsigned long addr,
5e911373 1599 enum vma_resv_mode mode)
c37f9fb1 1600{
4e35f483
JK
1601 struct resv_map *resv;
1602 pgoff_t idx;
cf3ad20b 1603 long ret;
c37f9fb1 1604
4e35f483
JK
1605 resv = vma_resv_map(vma);
1606 if (!resv)
84afd99b 1607 return 1;
c37f9fb1 1608
4e35f483 1609 idx = vma_hugecache_offset(h, vma, addr);
5e911373
MK
1610 switch (mode) {
1611 case VMA_NEEDS_RESV:
cf3ad20b 1612 ret = region_chg(resv, idx, idx + 1);
5e911373
MK
1613 break;
1614 case VMA_COMMIT_RESV:
1615 ret = region_add(resv, idx, idx + 1);
1616 break;
1617 case VMA_ABORT_RESV:
1618 region_abort(resv, idx, idx + 1);
1619 ret = 0;
1620 break;
1621 default:
1622 BUG();
1623 }
84afd99b 1624
4e35f483 1625 if (vma->vm_flags & VM_MAYSHARE)
cf3ad20b 1626 return ret;
4e35f483 1627 else
cf3ad20b 1628 return ret < 0 ? ret : 0;
c37f9fb1 1629}
cf3ad20b
MK
1630
1631static long vma_needs_reservation(struct hstate *h,
a5516438 1632 struct vm_area_struct *vma, unsigned long addr)
c37f9fb1 1633{
5e911373 1634 return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
cf3ad20b 1635}
84afd99b 1636
cf3ad20b
MK
1637static long vma_commit_reservation(struct hstate *h,
1638 struct vm_area_struct *vma, unsigned long addr)
1639{
5e911373
MK
1640 return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
1641}
1642
1643static void vma_abort_reservation(struct hstate *h,
1644 struct vm_area_struct *vma, unsigned long addr)
1645{
1646 (void)__vma_reservation_common(h, vma, addr, VMA_ABORT_RESV);
c37f9fb1
AW
1647}
1648
a1e78772 1649static struct page *alloc_huge_page(struct vm_area_struct *vma,
04f2cbe3 1650 unsigned long addr, int avoid_reserve)
1da177e4 1651{
90481622 1652 struct hugepage_subpool *spool = subpool_vma(vma);
a5516438 1653 struct hstate *h = hstate_vma(vma);
348ea204 1654 struct page *page;
33039678 1655 long chg, commit;
6d76dcf4
AK
1656 int ret, idx;
1657 struct hugetlb_cgroup *h_cg;
a1e78772 1658
6d76dcf4 1659 idx = hstate_index(h);
a1e78772 1660 /*
90481622
DG
1661 * Processes that did not create the mapping will have no
1662 * reserves and will not have accounted against subpool
1663 * limit. Check that the subpool limit can be made before
1664 * satisfying the allocation MAP_NORESERVE mappings may also
1665 * need pages and subpool limit allocated allocated if no reserve
1666 * mapping overlaps.
a1e78772 1667 */
a5516438 1668 chg = vma_needs_reservation(h, vma, addr);
c37f9fb1 1669 if (chg < 0)
76dcee75 1670 return ERR_PTR(-ENOMEM);
8bb3f12e 1671 if (chg || avoid_reserve)
5e911373
MK
1672 if (hugepage_subpool_get_pages(spool, 1) < 0) {
1673 vma_abort_reservation(h, vma, addr);
76dcee75 1674 return ERR_PTR(-ENOSPC);
5e911373 1675 }
1da177e4 1676
6d76dcf4 1677 ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
8f34af6f
JZ
1678 if (ret)
1679 goto out_subpool_put;
1680
1da177e4 1681 spin_lock(&hugetlb_lock);
af0ed73e 1682 page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, chg);
81a6fcae 1683 if (!page) {
94ae8ba7 1684 spin_unlock(&hugetlb_lock);
bf50bab2 1685 page = alloc_buddy_huge_page(h, NUMA_NO_NODE);
8f34af6f
JZ
1686 if (!page)
1687 goto out_uncharge_cgroup;
1688
79dbb236
AK
1689 spin_lock(&hugetlb_lock);
1690 list_move(&page->lru, &h->hugepage_activelist);
81a6fcae 1691 /* Fall through */
68842c9b 1692 }
81a6fcae
JK
1693 hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
1694 spin_unlock(&hugetlb_lock);
348ea204 1695
90481622 1696 set_page_private(page, (unsigned long)spool);
90d8b7e6 1697
33039678
MK
1698 commit = vma_commit_reservation(h, vma, addr);
1699 if (unlikely(chg > commit)) {
1700 /*
1701 * The page was added to the reservation map between
1702 * vma_needs_reservation and vma_commit_reservation.
1703 * This indicates a race with hugetlb_reserve_pages.
1704 * Adjust for the subpool count incremented above AND
1705 * in hugetlb_reserve_pages for the same page. Also,
1706 * the reservation count added in hugetlb_reserve_pages
1707 * no longer applies.
1708 */
1709 long rsv_adjust;
1710
1711 rsv_adjust = hugepage_subpool_put_pages(spool, 1);
1712 hugetlb_acct_memory(h, -rsv_adjust);
1713 }
90d8b7e6 1714 return page;
8f34af6f
JZ
1715
1716out_uncharge_cgroup:
1717 hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
1718out_subpool_put:
1719 if (chg || avoid_reserve)
1720 hugepage_subpool_put_pages(spool, 1);
5e911373 1721 vma_abort_reservation(h, vma, addr);
8f34af6f 1722 return ERR_PTR(-ENOSPC);
b45b5bd6
DG
1723}
1724
74060e4d
NH
1725/*
1726 * alloc_huge_page()'s wrapper which simply returns the page if allocation
1727 * succeeds, otherwise NULL. This function is called from new_vma_page(),
1728 * where no ERR_VALUE is expected to be returned.
1729 */
1730struct page *alloc_huge_page_noerr(struct vm_area_struct *vma,
1731 unsigned long addr, int avoid_reserve)
1732{
1733 struct page *page = alloc_huge_page(vma, addr, avoid_reserve);
1734 if (IS_ERR(page))
1735 page = NULL;
1736 return page;
1737}
1738
91f47662 1739int __weak alloc_bootmem_huge_page(struct hstate *h)
aa888a74
AK
1740{
1741 struct huge_bootmem_page *m;
b2261026 1742 int nr_nodes, node;
aa888a74 1743
b2261026 1744 for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
aa888a74
AK
1745 void *addr;
1746
8b89a116
GS
1747 addr = memblock_virt_alloc_try_nid_nopanic(
1748 huge_page_size(h), huge_page_size(h),
1749 0, BOOTMEM_ALLOC_ACCESSIBLE, node);
aa888a74
AK
1750 if (addr) {
1751 /*
1752 * Use the beginning of the huge page to store the
1753 * huge_bootmem_page struct (until gather_bootmem
1754 * puts them into the mem_map).
1755 */
1756 m = addr;
91f47662 1757 goto found;
aa888a74 1758 }
aa888a74
AK
1759 }
1760 return 0;
1761
1762found:
df994ead 1763 BUG_ON(!IS_ALIGNED(virt_to_phys(m), huge_page_size(h)));
aa888a74
AK
1764 /* Put them into a private list first because mem_map is not up yet */
1765 list_add(&m->list, &huge_boot_pages);
1766 m->hstate = h;
1767 return 1;
1768}
1769
f412c97a 1770static void __init prep_compound_huge_page(struct page *page, int order)
18229df5
AW
1771{
1772 if (unlikely(order > (MAX_ORDER - 1)))
1773 prep_compound_gigantic_page(page, order);
1774 else
1775 prep_compound_page(page, order);
1776}
1777
aa888a74
AK
1778/* Put bootmem huge pages into the standard lists after mem_map is up */
1779static void __init gather_bootmem_prealloc(void)
1780{
1781 struct huge_bootmem_page *m;
1782
1783 list_for_each_entry(m, &huge_boot_pages, list) {
aa888a74 1784 struct hstate *h = m->hstate;
ee8f248d
BB
1785 struct page *page;
1786
1787#ifdef CONFIG_HIGHMEM
1788 page = pfn_to_page(m->phys >> PAGE_SHIFT);
8b89a116
GS
1789 memblock_free_late(__pa(m),
1790 sizeof(struct huge_bootmem_page));
ee8f248d
BB
1791#else
1792 page = virt_to_page(m);
1793#endif
aa888a74 1794 WARN_ON(page_count(page) != 1);
18229df5 1795 prep_compound_huge_page(page, h->order);
ef5a22be 1796 WARN_ON(PageReserved(page));
aa888a74 1797 prep_new_huge_page(h, page, page_to_nid(page));
b0320c7b
RA
1798 /*
1799 * If we had gigantic hugepages allocated at boot time, we need
1800 * to restore the 'stolen' pages to totalram_pages in order to
1801 * fix confusing memory reports from free(1) and another
1802 * side-effects, like CommitLimit going negative.
1803 */
bae7f4ae 1804 if (hstate_is_gigantic(h))
3dcc0571 1805 adjust_managed_page_count(page, 1 << h->order);
aa888a74
AK
1806 }
1807}
1808
8faa8b07 1809static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
1da177e4
LT
1810{
1811 unsigned long i;
a5516438 1812
e5ff2159 1813 for (i = 0; i < h->max_huge_pages; ++i) {
bae7f4ae 1814 if (hstate_is_gigantic(h)) {
aa888a74
AK
1815 if (!alloc_bootmem_huge_page(h))
1816 break;
9b5e5d0f 1817 } else if (!alloc_fresh_huge_page(h,
8cebfcd0 1818 &node_states[N_MEMORY]))
1da177e4 1819 break;
1da177e4 1820 }
8faa8b07 1821 h->max_huge_pages = i;
e5ff2159
AK
1822}
1823
1824static void __init hugetlb_init_hstates(void)
1825{
1826 struct hstate *h;
1827
1828 for_each_hstate(h) {
641844f5
NH
1829 if (minimum_order > huge_page_order(h))
1830 minimum_order = huge_page_order(h);
1831
8faa8b07 1832 /* oversize hugepages were init'ed in early boot */
bae7f4ae 1833 if (!hstate_is_gigantic(h))
8faa8b07 1834 hugetlb_hstate_alloc_pages(h);
e5ff2159 1835 }
641844f5 1836 VM_BUG_ON(minimum_order == UINT_MAX);
e5ff2159
AK
1837}
1838
4abd32db
AK
1839static char * __init memfmt(char *buf, unsigned long n)
1840{
1841 if (n >= (1UL << 30))
1842 sprintf(buf, "%lu GB", n >> 30);
1843 else if (n >= (1UL << 20))
1844 sprintf(buf, "%lu MB", n >> 20);
1845 else
1846 sprintf(buf, "%lu KB", n >> 10);
1847 return buf;
1848}
1849
e5ff2159
AK
1850static void __init report_hugepages(void)
1851{
1852 struct hstate *h;
1853
1854 for_each_hstate(h) {
4abd32db 1855 char buf[32];
ffb22af5 1856 pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
4abd32db
AK
1857 memfmt(buf, huge_page_size(h)),
1858 h->free_huge_pages);
e5ff2159
AK
1859 }
1860}
1861
1da177e4 1862#ifdef CONFIG_HIGHMEM
6ae11b27
LS
1863static void try_to_free_low(struct hstate *h, unsigned long count,
1864 nodemask_t *nodes_allowed)
1da177e4 1865{
4415cc8d
CL
1866 int i;
1867
bae7f4ae 1868 if (hstate_is_gigantic(h))
aa888a74
AK
1869 return;
1870
6ae11b27 1871 for_each_node_mask(i, *nodes_allowed) {
1da177e4 1872 struct page *page, *next;
a5516438
AK
1873 struct list_head *freel = &h->hugepage_freelists[i];
1874 list_for_each_entry_safe(page, next, freel, lru) {
1875 if (count >= h->nr_huge_pages)
6b0c880d 1876 return;
1da177e4
LT
1877 if (PageHighMem(page))
1878 continue;
1879 list_del(&page->lru);
e5ff2159 1880 update_and_free_page(h, page);
a5516438
AK
1881 h->free_huge_pages--;
1882 h->free_huge_pages_node[page_to_nid(page)]--;
1da177e4
LT
1883 }
1884 }
1885}
1886#else
6ae11b27
LS
1887static inline void try_to_free_low(struct hstate *h, unsigned long count,
1888 nodemask_t *nodes_allowed)
1da177e4
LT
1889{
1890}
1891#endif
1892
20a0307c
WF
1893/*
1894 * Increment or decrement surplus_huge_pages. Keep node-specific counters
1895 * balanced by operating on them in a round-robin fashion.
1896 * Returns 1 if an adjustment was made.
1897 */
6ae11b27
LS
1898static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
1899 int delta)
20a0307c 1900{
b2261026 1901 int nr_nodes, node;
20a0307c
WF
1902
1903 VM_BUG_ON(delta != -1 && delta != 1);
20a0307c 1904
b2261026
JK
1905 if (delta < 0) {
1906 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1907 if (h->surplus_huge_pages_node[node])
1908 goto found;
e8c5c824 1909 }
b2261026
JK
1910 } else {
1911 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
1912 if (h->surplus_huge_pages_node[node] <
1913 h->nr_huge_pages_node[node])
1914 goto found;
e8c5c824 1915 }
b2261026
JK
1916 }
1917 return 0;
20a0307c 1918
b2261026
JK
1919found:
1920 h->surplus_huge_pages += delta;
1921 h->surplus_huge_pages_node[node] += delta;
1922 return 1;
20a0307c
WF
1923}
1924
a5516438 1925#define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
6ae11b27
LS
1926static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count,
1927 nodemask_t *nodes_allowed)
1da177e4 1928{
7893d1d5 1929 unsigned long min_count, ret;
1da177e4 1930
944d9fec 1931 if (hstate_is_gigantic(h) && !gigantic_page_supported())
aa888a74
AK
1932 return h->max_huge_pages;
1933
7893d1d5
AL
1934 /*
1935 * Increase the pool size
1936 * First take pages out of surplus state. Then make up the
1937 * remaining difference by allocating fresh huge pages.
d1c3fb1f
NA
1938 *
1939 * We might race with alloc_buddy_huge_page() here and be unable
1940 * to convert a surplus huge page to a normal huge page. That is
1941 * not critical, though, it just means the overall size of the
1942 * pool might be one hugepage larger than it needs to be, but
1943 * within all the constraints specified by the sysctls.
7893d1d5 1944 */
1da177e4 1945 spin_lock(&hugetlb_lock);
a5516438 1946 while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
6ae11b27 1947 if (!adjust_pool_surplus(h, nodes_allowed, -1))
7893d1d5
AL
1948 break;
1949 }
1950
a5516438 1951 while (count > persistent_huge_pages(h)) {
7893d1d5
AL
1952 /*
1953 * If this allocation races such that we no longer need the
1954 * page, free_huge_page will handle it by freeing the page
1955 * and reducing the surplus.
1956 */
1957 spin_unlock(&hugetlb_lock);
944d9fec
LC
1958 if (hstate_is_gigantic(h))
1959 ret = alloc_fresh_gigantic_page(h, nodes_allowed);
1960 else
1961 ret = alloc_fresh_huge_page(h, nodes_allowed);
7893d1d5
AL
1962 spin_lock(&hugetlb_lock);
1963 if (!ret)
1964 goto out;
1965
536240f2
MG
1966 /* Bail for signals. Probably ctrl-c from user */
1967 if (signal_pending(current))
1968 goto out;
7893d1d5 1969 }
7893d1d5
AL
1970
1971 /*
1972 * Decrease the pool size
1973 * First return free pages to the buddy allocator (being careful
1974 * to keep enough around to satisfy reservations). Then place
1975 * pages into surplus state as needed so the pool will shrink
1976 * to the desired size as pages become free.
d1c3fb1f
NA
1977 *
1978 * By placing pages into the surplus state independent of the
1979 * overcommit value, we are allowing the surplus pool size to
1980 * exceed overcommit. There are few sane options here. Since
1981 * alloc_buddy_huge_page() is checking the global counter,
1982 * though, we'll note that we're not allowed to exceed surplus
1983 * and won't grow the pool anywhere else. Not until one of the
1984 * sysctls are changed, or the surplus pages go out of use.
7893d1d5 1985 */
a5516438 1986 min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
6b0c880d 1987 min_count = max(count, min_count);
6ae11b27 1988 try_to_free_low(h, min_count, nodes_allowed);
a5516438 1989 while (min_count < persistent_huge_pages(h)) {
6ae11b27 1990 if (!free_pool_huge_page(h, nodes_allowed, 0))
1da177e4 1991 break;
55f67141 1992 cond_resched_lock(&hugetlb_lock);
1da177e4 1993 }
a5516438 1994 while (count < persistent_huge_pages(h)) {
6ae11b27 1995 if (!adjust_pool_surplus(h, nodes_allowed, 1))
7893d1d5
AL
1996 break;
1997 }
1998out:
a5516438 1999 ret = persistent_huge_pages(h);
1da177e4 2000 spin_unlock(&hugetlb_lock);
7893d1d5 2001 return ret;
1da177e4
LT
2002}
2003
a3437870
NA
2004#define HSTATE_ATTR_RO(_name) \
2005 static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
2006
2007#define HSTATE_ATTR(_name) \
2008 static struct kobj_attribute _name##_attr = \
2009 __ATTR(_name, 0644, _name##_show, _name##_store)
2010
2011static struct kobject *hugepages_kobj;
2012static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
2013
9a305230
LS
2014static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
2015
2016static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
a3437870
NA
2017{
2018 int i;
9a305230 2019
a3437870 2020 for (i = 0; i < HUGE_MAX_HSTATE; i++)
9a305230
LS
2021 if (hstate_kobjs[i] == kobj) {
2022 if (nidp)
2023 *nidp = NUMA_NO_NODE;
a3437870 2024 return &hstates[i];
9a305230
LS
2025 }
2026
2027 return kobj_to_node_hstate(kobj, nidp);
a3437870
NA
2028}
2029
06808b08 2030static ssize_t nr_hugepages_show_common(struct kobject *kobj,
a3437870
NA
2031 struct kobj_attribute *attr, char *buf)
2032{
9a305230
LS
2033 struct hstate *h;
2034 unsigned long nr_huge_pages;
2035 int nid;
2036
2037 h = kobj_to_hstate(kobj, &nid);
2038 if (nid == NUMA_NO_NODE)
2039 nr_huge_pages = h->nr_huge_pages;
2040 else
2041 nr_huge_pages = h->nr_huge_pages_node[nid];
2042
2043 return sprintf(buf, "%lu\n", nr_huge_pages);
a3437870 2044}
adbe8726 2045
238d3c13
DR
2046static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
2047 struct hstate *h, int nid,
2048 unsigned long count, size_t len)
a3437870
NA
2049{
2050 int err;
bad44b5b 2051 NODEMASK_ALLOC(nodemask_t, nodes_allowed, GFP_KERNEL | __GFP_NORETRY);
a3437870 2052
944d9fec 2053 if (hstate_is_gigantic(h) && !gigantic_page_supported()) {
adbe8726
EM
2054 err = -EINVAL;
2055 goto out;
2056 }
2057
9a305230
LS
2058 if (nid == NUMA_NO_NODE) {
2059 /*
2060 * global hstate attribute
2061 */
2062 if (!(obey_mempolicy &&
2063 init_nodemask_of_mempolicy(nodes_allowed))) {
2064 NODEMASK_FREE(nodes_allowed);
8cebfcd0 2065 nodes_allowed = &node_states[N_MEMORY];
9a305230
LS
2066 }
2067 } else if (nodes_allowed) {
2068 /*
2069 * per node hstate attribute: adjust count to global,
2070 * but restrict alloc/free to the specified node.
2071 */
2072 count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
2073 init_nodemask_of_node(nodes_allowed, nid);
2074 } else
8cebfcd0 2075 nodes_allowed = &node_states[N_MEMORY];
9a305230 2076
06808b08 2077 h->max_huge_pages = set_max_huge_pages(h, count, nodes_allowed);
a3437870 2078
8cebfcd0 2079 if (nodes_allowed != &node_states[N_MEMORY])
06808b08
LS
2080 NODEMASK_FREE(nodes_allowed);
2081
2082 return len;
adbe8726
EM
2083out:
2084 NODEMASK_FREE(nodes_allowed);
2085 return err;
06808b08
LS
2086}
2087
238d3c13
DR
2088static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
2089 struct kobject *kobj, const char *buf,
2090 size_t len)
2091{
2092 struct hstate *h;
2093 unsigned long count;
2094 int nid;
2095 int err;
2096
2097 err = kstrtoul(buf, 10, &count);
2098 if (err)
2099 return err;
2100
2101 h = kobj_to_hstate(kobj, &nid);
2102 return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
2103}
2104
06808b08
LS
2105static ssize_t nr_hugepages_show(struct kobject *kobj,
2106 struct kobj_attribute *attr, char *buf)
2107{
2108 return nr_hugepages_show_common(kobj, attr, buf);
2109}
2110
2111static ssize_t nr_hugepages_store(struct kobject *kobj,
2112 struct kobj_attribute *attr, const char *buf, size_t len)
2113{
238d3c13 2114 return nr_hugepages_store_common(false, kobj, buf, len);
a3437870
NA
2115}
2116HSTATE_ATTR(nr_hugepages);
2117
06808b08
LS
2118#ifdef CONFIG_NUMA
2119
2120/*
2121 * hstate attribute for optionally mempolicy-based constraint on persistent
2122 * huge page alloc/free.
2123 */
2124static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
2125 struct kobj_attribute *attr, char *buf)
2126{
2127 return nr_hugepages_show_common(kobj, attr, buf);
2128}
2129
2130static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
2131 struct kobj_attribute *attr, const char *buf, size_t len)
2132{
238d3c13 2133 return nr_hugepages_store_common(true, kobj, buf, len);
06808b08
LS
2134}
2135HSTATE_ATTR(nr_hugepages_mempolicy);
2136#endif
2137
2138
a3437870
NA
2139static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
2140 struct kobj_attribute *attr, char *buf)
2141{
9a305230 2142 struct hstate *h = kobj_to_hstate(kobj, NULL);
a3437870
NA
2143 return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
2144}
adbe8726 2145
a3437870
NA
2146static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
2147 struct kobj_attribute *attr, const char *buf, size_t count)
2148{
2149 int err;
2150 unsigned long input;
9a305230 2151 struct hstate *h = kobj_to_hstate(kobj, NULL);
a3437870 2152
bae7f4ae 2153 if (hstate_is_gigantic(h))
adbe8726
EM
2154 return -EINVAL;
2155
3dbb95f7 2156 err = kstrtoul(buf, 10, &input);
a3437870 2157 if (err)
73ae31e5 2158 return err;
a3437870
NA
2159
2160 spin_lock(&hugetlb_lock);
2161 h->nr_overcommit_huge_pages = input;
2162 spin_unlock(&hugetlb_lock);
2163
2164 return count;
2165}
2166HSTATE_ATTR(nr_overcommit_hugepages);
2167
2168static ssize_t free_hugepages_show(struct kobject *kobj,
2169 struct kobj_attribute *attr, char *buf)
2170{
9a305230
LS
2171 struct hstate *h;
2172 unsigned long free_huge_pages;
2173 int nid;
2174
2175 h = kobj_to_hstate(kobj, &nid);
2176 if (nid == NUMA_NO_NODE)
2177 free_huge_pages = h->free_huge_pages;
2178 else
2179 free_huge_pages = h->free_huge_pages_node[nid];
2180
2181 return sprintf(buf, "%lu\n", free_huge_pages);
a3437870
NA
2182}
2183HSTATE_ATTR_RO(free_hugepages);
2184
2185static ssize_t resv_hugepages_show(struct kobject *kobj,
2186 struct kobj_attribute *attr, char *buf)
2187{
9a305230 2188 struct hstate *h = kobj_to_hstate(kobj, NULL);
a3437870
NA
2189 return sprintf(buf, "%lu\n", h->resv_huge_pages);
2190}
2191HSTATE_ATTR_RO(resv_hugepages);
2192
2193static ssize_t surplus_hugepages_show(struct kobject *kobj,
2194 struct kobj_attribute *attr, char *buf)
2195{
9a305230
LS
2196 struct hstate *h;
2197 unsigned long surplus_huge_pages;
2198 int nid;
2199
2200 h = kobj_to_hstate(kobj, &nid);
2201 if (nid == NUMA_NO_NODE)
2202 surplus_huge_pages = h->surplus_huge_pages;
2203 else
2204 surplus_huge_pages = h->surplus_huge_pages_node[nid];
2205
2206 return sprintf(buf, "%lu\n", surplus_huge_pages);
a3437870
NA
2207}
2208HSTATE_ATTR_RO(surplus_hugepages);
2209
2210static struct attribute *hstate_attrs[] = {
2211 &nr_hugepages_attr.attr,
2212 &nr_overcommit_hugepages_attr.attr,
2213 &free_hugepages_attr.attr,
2214 &resv_hugepages_attr.attr,
2215 &surplus_hugepages_attr.attr,
06808b08
LS
2216#ifdef CONFIG_NUMA
2217 &nr_hugepages_mempolicy_attr.attr,
2218#endif
a3437870
NA
2219 NULL,
2220};
2221
2222static struct attribute_group hstate_attr_group = {
2223 .attrs = hstate_attrs,
2224};
2225
094e9539
JM
2226static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
2227 struct kobject **hstate_kobjs,
2228 struct attribute_group *hstate_attr_group)
a3437870
NA
2229{
2230 int retval;
972dc4de 2231 int hi = hstate_index(h);
a3437870 2232
9a305230
LS
2233 hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
2234 if (!hstate_kobjs[hi])
a3437870
NA
2235 return -ENOMEM;
2236
9a305230 2237 retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
a3437870 2238 if (retval)
9a305230 2239 kobject_put(hstate_kobjs[hi]);
a3437870
NA
2240
2241 return retval;
2242}
2243
2244static void __init hugetlb_sysfs_init(void)
2245{
2246 struct hstate *h;
2247 int err;
2248
2249 hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
2250 if (!hugepages_kobj)
2251 return;
2252
2253 for_each_hstate(h) {
9a305230
LS
2254 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
2255 hstate_kobjs, &hstate_attr_group);
a3437870 2256 if (err)
ffb22af5 2257 pr_err("Hugetlb: Unable to add hstate %s", h->name);
a3437870
NA
2258 }
2259}
2260
9a305230
LS
2261#ifdef CONFIG_NUMA
2262
2263/*
2264 * node_hstate/s - associate per node hstate attributes, via their kobjects,
10fbcf4c
KS
2265 * with node devices in node_devices[] using a parallel array. The array
2266 * index of a node device or _hstate == node id.
2267 * This is here to avoid any static dependency of the node device driver, in
9a305230
LS
2268 * the base kernel, on the hugetlb module.
2269 */
2270struct node_hstate {
2271 struct kobject *hugepages_kobj;
2272 struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
2273};
2274struct node_hstate node_hstates[MAX_NUMNODES];
2275
2276/*
10fbcf4c 2277 * A subset of global hstate attributes for node devices
9a305230
LS
2278 */
2279static struct attribute *per_node_hstate_attrs[] = {
2280 &nr_hugepages_attr.attr,
2281 &free_hugepages_attr.attr,
2282 &surplus_hugepages_attr.attr,
2283 NULL,
2284};
2285
2286static struct attribute_group per_node_hstate_attr_group = {
2287 .attrs = per_node_hstate_attrs,
2288};
2289
2290/*
10fbcf4c 2291 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
9a305230
LS
2292 * Returns node id via non-NULL nidp.
2293 */
2294static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
2295{
2296 int nid;
2297
2298 for (nid = 0; nid < nr_node_ids; nid++) {
2299 struct node_hstate *nhs = &node_hstates[nid];
2300 int i;
2301 for (i = 0; i < HUGE_MAX_HSTATE; i++)
2302 if (nhs->hstate_kobjs[i] == kobj) {
2303 if (nidp)
2304 *nidp = nid;
2305 return &hstates[i];
2306 }
2307 }
2308
2309 BUG();
2310 return NULL;
2311}
2312
2313/*
10fbcf4c 2314 * Unregister hstate attributes from a single node device.
9a305230
LS
2315 * No-op if no hstate attributes attached.
2316 */
3cd8b44f 2317static void hugetlb_unregister_node(struct node *node)
9a305230
LS
2318{
2319 struct hstate *h;
10fbcf4c 2320 struct node_hstate *nhs = &node_hstates[node->dev.id];
9a305230
LS
2321
2322 if (!nhs->hugepages_kobj)
9b5e5d0f 2323 return; /* no hstate attributes */
9a305230 2324
972dc4de
AK
2325 for_each_hstate(h) {
2326 int idx = hstate_index(h);
2327 if (nhs->hstate_kobjs[idx]) {
2328 kobject_put(nhs->hstate_kobjs[idx]);
2329 nhs->hstate_kobjs[idx] = NULL;
9a305230 2330 }
972dc4de 2331 }
9a305230
LS
2332
2333 kobject_put(nhs->hugepages_kobj);
2334 nhs->hugepages_kobj = NULL;
2335}
2336
2337/*
10fbcf4c 2338 * hugetlb module exit: unregister hstate attributes from node devices
9a305230
LS
2339 * that have them.
2340 */
2341static void hugetlb_unregister_all_nodes(void)
2342{
2343 int nid;
2344
2345 /*
10fbcf4c 2346 * disable node device registrations.
9a305230
LS
2347 */
2348 register_hugetlbfs_with_node(NULL, NULL);
2349
2350 /*
2351 * remove hstate attributes from any nodes that have them.
2352 */
2353 for (nid = 0; nid < nr_node_ids; nid++)
8732794b 2354 hugetlb_unregister_node(node_devices[nid]);
9a305230
LS
2355}
2356
2357/*
10fbcf4c 2358 * Register hstate attributes for a single node device.
9a305230
LS
2359 * No-op if attributes already registered.
2360 */
3cd8b44f 2361static void hugetlb_register_node(struct node *node)
9a305230
LS
2362{
2363 struct hstate *h;
10fbcf4c 2364 struct node_hstate *nhs = &node_hstates[node->dev.id];
9a305230
LS
2365 int err;
2366
2367 if (nhs->hugepages_kobj)
2368 return; /* already allocated */
2369
2370 nhs->hugepages_kobj = kobject_create_and_add("hugepages",
10fbcf4c 2371 &node->dev.kobj);
9a305230
LS
2372 if (!nhs->hugepages_kobj)
2373 return;
2374
2375 for_each_hstate(h) {
2376 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
2377 nhs->hstate_kobjs,
2378 &per_node_hstate_attr_group);
2379 if (err) {
ffb22af5
AM
2380 pr_err("Hugetlb: Unable to add hstate %s for node %d\n",
2381 h->name, node->dev.id);
9a305230
LS
2382 hugetlb_unregister_node(node);
2383 break;
2384 }
2385 }
2386}
2387
2388/*
9b5e5d0f 2389 * hugetlb init time: register hstate attributes for all registered node
10fbcf4c
KS
2390 * devices of nodes that have memory. All on-line nodes should have
2391 * registered their associated device by this time.
9a305230 2392 */
7d9ca000 2393static void __init hugetlb_register_all_nodes(void)
9a305230
LS
2394{
2395 int nid;
2396
8cebfcd0 2397 for_each_node_state(nid, N_MEMORY) {
8732794b 2398 struct node *node = node_devices[nid];
10fbcf4c 2399 if (node->dev.id == nid)
9a305230
LS
2400 hugetlb_register_node(node);
2401 }
2402
2403 /*
10fbcf4c 2404 * Let the node device driver know we're here so it can
9a305230
LS
2405 * [un]register hstate attributes on node hotplug.
2406 */
2407 register_hugetlbfs_with_node(hugetlb_register_node,
2408 hugetlb_unregister_node);
2409}
2410#else /* !CONFIG_NUMA */
2411
2412static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
2413{
2414 BUG();
2415 if (nidp)
2416 *nidp = -1;
2417 return NULL;
2418}
2419
2420static void hugetlb_unregister_all_nodes(void) { }
2421
2422static void hugetlb_register_all_nodes(void) { }
2423
2424#endif
2425
a3437870
NA
2426static void __exit hugetlb_exit(void)
2427{
2428 struct hstate *h;
2429
9a305230
LS
2430 hugetlb_unregister_all_nodes();
2431
a3437870 2432 for_each_hstate(h) {
972dc4de 2433 kobject_put(hstate_kobjs[hstate_index(h)]);
a3437870
NA
2434 }
2435
2436 kobject_put(hugepages_kobj);
8382d914 2437 kfree(htlb_fault_mutex_table);
a3437870
NA
2438}
2439module_exit(hugetlb_exit);
2440
2441static int __init hugetlb_init(void)
2442{
8382d914
DB
2443 int i;
2444
457c1b27 2445 if (!hugepages_supported())
0ef89d25 2446 return 0;
a3437870 2447
e11bfbfc
NP
2448 if (!size_to_hstate(default_hstate_size)) {
2449 default_hstate_size = HPAGE_SIZE;
2450 if (!size_to_hstate(default_hstate_size))
2451 hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
a3437870 2452 }
972dc4de 2453 default_hstate_idx = hstate_index(size_to_hstate(default_hstate_size));
e11bfbfc
NP
2454 if (default_hstate_max_huge_pages)
2455 default_hstate.max_huge_pages = default_hstate_max_huge_pages;
a3437870
NA
2456
2457 hugetlb_init_hstates();
aa888a74 2458 gather_bootmem_prealloc();
a3437870
NA
2459 report_hugepages();
2460
2461 hugetlb_sysfs_init();
9a305230 2462 hugetlb_register_all_nodes();
7179e7bf 2463 hugetlb_cgroup_file_init();
9a305230 2464
8382d914
DB
2465#ifdef CONFIG_SMP
2466 num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
2467#else
2468 num_fault_mutexes = 1;
2469#endif
2470 htlb_fault_mutex_table =
2471 kmalloc(sizeof(struct mutex) * num_fault_mutexes, GFP_KERNEL);
2472 BUG_ON(!htlb_fault_mutex_table);
2473
2474 for (i = 0; i < num_fault_mutexes; i++)
2475 mutex_init(&htlb_fault_mutex_table[i]);
a3437870
NA
2476 return 0;
2477}
2478module_init(hugetlb_init);
2479
2480/* Should be called on processing a hugepagesz=... option */
2481void __init hugetlb_add_hstate(unsigned order)
2482{
2483 struct hstate *h;
8faa8b07
AK
2484 unsigned long i;
2485
a3437870 2486 if (size_to_hstate(PAGE_SIZE << order)) {
ffb22af5 2487 pr_warning("hugepagesz= specified twice, ignoring\n");
a3437870
NA
2488 return;
2489 }
47d38344 2490 BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
a3437870 2491 BUG_ON(order == 0);
47d38344 2492 h = &hstates[hugetlb_max_hstate++];
a3437870
NA
2493 h->order = order;
2494 h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
8faa8b07
AK
2495 h->nr_huge_pages = 0;
2496 h->free_huge_pages = 0;
2497 for (i = 0; i < MAX_NUMNODES; ++i)
2498 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
0edaecfa 2499 INIT_LIST_HEAD(&h->hugepage_activelist);
8cebfcd0
LJ
2500 h->next_nid_to_alloc = first_node(node_states[N_MEMORY]);
2501 h->next_nid_to_free = first_node(node_states[N_MEMORY]);
a3437870
NA
2502 snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
2503 huge_page_size(h)/1024);
8faa8b07 2504
a3437870
NA
2505 parsed_hstate = h;
2506}
2507
e11bfbfc 2508static int __init hugetlb_nrpages_setup(char *s)
a3437870
NA
2509{
2510 unsigned long *mhp;
8faa8b07 2511 static unsigned long *last_mhp;
a3437870
NA
2512
2513 /*
47d38344 2514 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter yet,
a3437870
NA
2515 * so this hugepages= parameter goes to the "default hstate".
2516 */
47d38344 2517 if (!hugetlb_max_hstate)
a3437870
NA
2518 mhp = &default_hstate_max_huge_pages;
2519 else
2520 mhp = &parsed_hstate->max_huge_pages;
2521
8faa8b07 2522 if (mhp == last_mhp) {
ffb22af5
AM
2523 pr_warning("hugepages= specified twice without "
2524 "interleaving hugepagesz=, ignoring\n");
8faa8b07
AK
2525 return 1;
2526 }
2527
a3437870
NA
2528 if (sscanf(s, "%lu", mhp) <= 0)
2529 *mhp = 0;
2530
8faa8b07
AK
2531 /*
2532 * Global state is always initialized later in hugetlb_init.
2533 * But we need to allocate >= MAX_ORDER hstates here early to still
2534 * use the bootmem allocator.
2535 */
47d38344 2536 if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER)
8faa8b07
AK
2537 hugetlb_hstate_alloc_pages(parsed_hstate);
2538
2539 last_mhp = mhp;
2540
a3437870
NA
2541 return 1;
2542}
e11bfbfc
NP
2543__setup("hugepages=", hugetlb_nrpages_setup);
2544
2545static int __init hugetlb_default_setup(char *s)
2546{
2547 default_hstate_size = memparse(s, &s);
2548 return 1;
2549}
2550__setup("default_hugepagesz=", hugetlb_default_setup);
a3437870 2551
8a213460
NA
2552static unsigned int cpuset_mems_nr(unsigned int *array)
2553{
2554 int node;
2555 unsigned int nr = 0;
2556
2557 for_each_node_mask(node, cpuset_current_mems_allowed)
2558 nr += array[node];
2559
2560 return nr;
2561}
2562
2563#ifdef CONFIG_SYSCTL
06808b08
LS
2564static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
2565 struct ctl_table *table, int write,
2566 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 2567{
e5ff2159 2568 struct hstate *h = &default_hstate;
238d3c13 2569 unsigned long tmp = h->max_huge_pages;
08d4a246 2570 int ret;
e5ff2159 2571
457c1b27
NA
2572 if (!hugepages_supported())
2573 return -ENOTSUPP;
2574
e5ff2159
AK
2575 table->data = &tmp;
2576 table->maxlen = sizeof(unsigned long);
08d4a246
MH
2577 ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2578 if (ret)
2579 goto out;
e5ff2159 2580
238d3c13
DR
2581 if (write)
2582 ret = __nr_hugepages_store_common(obey_mempolicy, h,
2583 NUMA_NO_NODE, tmp, *length);
08d4a246
MH
2584out:
2585 return ret;
1da177e4 2586}
396faf03 2587
06808b08
LS
2588int hugetlb_sysctl_handler(struct ctl_table *table, int write,
2589 void __user *buffer, size_t *length, loff_t *ppos)
2590{
2591
2592 return hugetlb_sysctl_handler_common(false, table, write,
2593 buffer, length, ppos);
2594}
2595
2596#ifdef CONFIG_NUMA
2597int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
2598 void __user *buffer, size_t *length, loff_t *ppos)
2599{
2600 return hugetlb_sysctl_handler_common(true, table, write,
2601 buffer, length, ppos);
2602}
2603#endif /* CONFIG_NUMA */
2604
a3d0c6aa 2605int hugetlb_overcommit_handler(struct ctl_table *table, int write,
8d65af78 2606 void __user *buffer,
a3d0c6aa
NA
2607 size_t *length, loff_t *ppos)
2608{
a5516438 2609 struct hstate *h = &default_hstate;
e5ff2159 2610 unsigned long tmp;
08d4a246 2611 int ret;
e5ff2159 2612
457c1b27
NA
2613 if (!hugepages_supported())
2614 return -ENOTSUPP;
2615
c033a93c 2616 tmp = h->nr_overcommit_huge_pages;
e5ff2159 2617
bae7f4ae 2618 if (write && hstate_is_gigantic(h))
adbe8726
EM
2619 return -EINVAL;
2620
e5ff2159
AK
2621 table->data = &tmp;
2622 table->maxlen = sizeof(unsigned long);
08d4a246
MH
2623 ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2624 if (ret)
2625 goto out;
e5ff2159
AK
2626
2627 if (write) {
2628 spin_lock(&hugetlb_lock);
2629 h->nr_overcommit_huge_pages = tmp;
2630 spin_unlock(&hugetlb_lock);
2631 }
08d4a246
MH
2632out:
2633 return ret;
a3d0c6aa
NA
2634}
2635
1da177e4
LT
2636#endif /* CONFIG_SYSCTL */
2637
e1759c21 2638void hugetlb_report_meminfo(struct seq_file *m)
1da177e4 2639{
a5516438 2640 struct hstate *h = &default_hstate;
457c1b27
NA
2641 if (!hugepages_supported())
2642 return;
e1759c21 2643 seq_printf(m,
4f98a2fe
RR
2644 "HugePages_Total: %5lu\n"
2645 "HugePages_Free: %5lu\n"
2646 "HugePages_Rsvd: %5lu\n"
2647 "HugePages_Surp: %5lu\n"
2648 "Hugepagesize: %8lu kB\n",
a5516438
AK
2649 h->nr_huge_pages,
2650 h->free_huge_pages,
2651 h->resv_huge_pages,
2652 h->surplus_huge_pages,
2653 1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
1da177e4
LT
2654}
2655
2656int hugetlb_report_node_meminfo(int nid, char *buf)
2657{
a5516438 2658 struct hstate *h = &default_hstate;
457c1b27
NA
2659 if (!hugepages_supported())
2660 return 0;
1da177e4
LT
2661 return sprintf(buf,
2662 "Node %d HugePages_Total: %5u\n"
a1de0919
NA
2663 "Node %d HugePages_Free: %5u\n"
2664 "Node %d HugePages_Surp: %5u\n",
a5516438
AK
2665 nid, h->nr_huge_pages_node[nid],
2666 nid, h->free_huge_pages_node[nid],
2667 nid, h->surplus_huge_pages_node[nid]);
1da177e4
LT
2668}
2669
949f7ec5
DR
2670void hugetlb_show_meminfo(void)
2671{
2672 struct hstate *h;
2673 int nid;
2674
457c1b27
NA
2675 if (!hugepages_supported())
2676 return;
2677
949f7ec5
DR
2678 for_each_node_state(nid, N_MEMORY)
2679 for_each_hstate(h)
2680 pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
2681 nid,
2682 h->nr_huge_pages_node[nid],
2683 h->free_huge_pages_node[nid],
2684 h->surplus_huge_pages_node[nid],
2685 1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
2686}
2687
1da177e4
LT
2688/* Return the number pages of memory we physically have, in PAGE_SIZE units. */
2689unsigned long hugetlb_total_pages(void)
2690{
d0028588
WL
2691 struct hstate *h;
2692 unsigned long nr_total_pages = 0;
2693
2694 for_each_hstate(h)
2695 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
2696 return nr_total_pages;
1da177e4 2697}
1da177e4 2698
a5516438 2699static int hugetlb_acct_memory(struct hstate *h, long delta)
fc1b8a73
MG
2700{
2701 int ret = -ENOMEM;
2702
2703 spin_lock(&hugetlb_lock);
2704 /*
2705 * When cpuset is configured, it breaks the strict hugetlb page
2706 * reservation as the accounting is done on a global variable. Such
2707 * reservation is completely rubbish in the presence of cpuset because
2708 * the reservation is not checked against page availability for the
2709 * current cpuset. Application can still potentially OOM'ed by kernel
2710 * with lack of free htlb page in cpuset that the task is in.
2711 * Attempt to enforce strict accounting with cpuset is almost
2712 * impossible (or too ugly) because cpuset is too fluid that
2713 * task or memory node can be dynamically moved between cpusets.
2714 *
2715 * The change of semantics for shared hugetlb mapping with cpuset is
2716 * undesirable. However, in order to preserve some of the semantics,
2717 * we fall back to check against current free page availability as
2718 * a best attempt and hopefully to minimize the impact of changing
2719 * semantics that cpuset has.
2720 */
2721 if (delta > 0) {
a5516438 2722 if (gather_surplus_pages(h, delta) < 0)
fc1b8a73
MG
2723 goto out;
2724
a5516438
AK
2725 if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
2726 return_unused_surplus_pages(h, delta);
fc1b8a73
MG
2727 goto out;
2728 }
2729 }
2730
2731 ret = 0;
2732 if (delta < 0)
a5516438 2733 return_unused_surplus_pages(h, (unsigned long) -delta);
fc1b8a73
MG
2734
2735out:
2736 spin_unlock(&hugetlb_lock);
2737 return ret;
2738}
2739
84afd99b
AW
2740static void hugetlb_vm_op_open(struct vm_area_struct *vma)
2741{
f522c3ac 2742 struct resv_map *resv = vma_resv_map(vma);
84afd99b
AW
2743
2744 /*
2745 * This new VMA should share its siblings reservation map if present.
2746 * The VMA will only ever have a valid reservation map pointer where
2747 * it is being copied for another still existing VMA. As that VMA
25985edc 2748 * has a reference to the reservation map it cannot disappear until
84afd99b
AW
2749 * after this open call completes. It is therefore safe to take a
2750 * new reference here without additional locking.
2751 */
4e35f483 2752 if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
f522c3ac 2753 kref_get(&resv->refs);
84afd99b
AW
2754}
2755
a1e78772
MG
2756static void hugetlb_vm_op_close(struct vm_area_struct *vma)
2757{
a5516438 2758 struct hstate *h = hstate_vma(vma);
f522c3ac 2759 struct resv_map *resv = vma_resv_map(vma);
90481622 2760 struct hugepage_subpool *spool = subpool_vma(vma);
4e35f483 2761 unsigned long reserve, start, end;
1c5ecae3 2762 long gbl_reserve;
84afd99b 2763
4e35f483
JK
2764 if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
2765 return;
84afd99b 2766
4e35f483
JK
2767 start = vma_hugecache_offset(h, vma, vma->vm_start);
2768 end = vma_hugecache_offset(h, vma, vma->vm_end);
84afd99b 2769
4e35f483 2770 reserve = (end - start) - region_count(resv, start, end);
84afd99b 2771
4e35f483
JK
2772 kref_put(&resv->refs, resv_map_release);
2773
2774 if (reserve) {
1c5ecae3
MK
2775 /*
2776 * Decrement reserve counts. The global reserve count may be
2777 * adjusted if the subpool has a minimum size.
2778 */
2779 gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
2780 hugetlb_acct_memory(h, -gbl_reserve);
84afd99b 2781 }
a1e78772
MG
2782}
2783
1da177e4
LT
2784/*
2785 * We cannot handle pagefaults against hugetlb pages at all. They cause
2786 * handle_mm_fault() to try to instantiate regular-sized pages in the
2787 * hugegpage VMA. do_page_fault() is supposed to trap this, so BUG is we get
2788 * this far.
2789 */
d0217ac0 2790static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1da177e4
LT
2791{
2792 BUG();
d0217ac0 2793 return 0;
1da177e4
LT
2794}
2795
f0f37e2f 2796const struct vm_operations_struct hugetlb_vm_ops = {
d0217ac0 2797 .fault = hugetlb_vm_op_fault,
84afd99b 2798 .open = hugetlb_vm_op_open,
a1e78772 2799 .close = hugetlb_vm_op_close,
1da177e4
LT
2800};
2801
1e8f889b
DG
2802static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
2803 int writable)
63551ae0
DG
2804{
2805 pte_t entry;
2806
1e8f889b 2807 if (writable) {
106c992a
GS
2808 entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
2809 vma->vm_page_prot)));
63551ae0 2810 } else {
106c992a
GS
2811 entry = huge_pte_wrprotect(mk_huge_pte(page,
2812 vma->vm_page_prot));
63551ae0
DG
2813 }
2814 entry = pte_mkyoung(entry);
2815 entry = pte_mkhuge(entry);
d9ed9faa 2816 entry = arch_make_huge_pte(entry, vma, page, writable);
63551ae0
DG
2817
2818 return entry;
2819}
2820
1e8f889b
DG
2821static void set_huge_ptep_writable(struct vm_area_struct *vma,
2822 unsigned long address, pte_t *ptep)
2823{
2824 pte_t entry;
2825
106c992a 2826 entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
32f84528 2827 if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
4b3073e1 2828 update_mmu_cache(vma, address, ptep);
1e8f889b
DG
2829}
2830
4a705fef
NH
2831static int is_hugetlb_entry_migration(pte_t pte)
2832{
2833 swp_entry_t swp;
2834
2835 if (huge_pte_none(pte) || pte_present(pte))
2836 return 0;
2837 swp = pte_to_swp_entry(pte);
2838 if (non_swap_entry(swp) && is_migration_entry(swp))
2839 return 1;
2840 else
2841 return 0;
2842}
2843
2844static int is_hugetlb_entry_hwpoisoned(pte_t pte)
2845{
2846 swp_entry_t swp;
2847
2848 if (huge_pte_none(pte) || pte_present(pte))
2849 return 0;
2850 swp = pte_to_swp_entry(pte);
2851 if (non_swap_entry(swp) && is_hwpoison_entry(swp))
2852 return 1;
2853 else
2854 return 0;
2855}
1e8f889b 2856
63551ae0
DG
2857int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
2858 struct vm_area_struct *vma)
2859{
2860 pte_t *src_pte, *dst_pte, entry;
2861 struct page *ptepage;
1c59827d 2862 unsigned long addr;
1e8f889b 2863 int cow;
a5516438
AK
2864 struct hstate *h = hstate_vma(vma);
2865 unsigned long sz = huge_page_size(h);
e8569dd2
AS
2866 unsigned long mmun_start; /* For mmu_notifiers */
2867 unsigned long mmun_end; /* For mmu_notifiers */
2868 int ret = 0;
1e8f889b
DG
2869
2870 cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
63551ae0 2871
e8569dd2
AS
2872 mmun_start = vma->vm_start;
2873 mmun_end = vma->vm_end;
2874 if (cow)
2875 mmu_notifier_invalidate_range_start(src, mmun_start, mmun_end);
2876
a5516438 2877 for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
cb900f41 2878 spinlock_t *src_ptl, *dst_ptl;
c74df32c
HD
2879 src_pte = huge_pte_offset(src, addr);
2880 if (!src_pte)
2881 continue;
a5516438 2882 dst_pte = huge_pte_alloc(dst, addr, sz);
e8569dd2
AS
2883 if (!dst_pte) {
2884 ret = -ENOMEM;
2885 break;
2886 }
c5c99429
LW
2887
2888 /* If the pagetables are shared don't copy or take references */
2889 if (dst_pte == src_pte)
2890 continue;
2891
cb900f41
KS
2892 dst_ptl = huge_pte_lock(h, dst, dst_pte);
2893 src_ptl = huge_pte_lockptr(h, src, src_pte);
2894 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
4a705fef
NH
2895 entry = huge_ptep_get(src_pte);
2896 if (huge_pte_none(entry)) { /* skip none entry */
2897 ;
2898 } else if (unlikely(is_hugetlb_entry_migration(entry) ||
2899 is_hugetlb_entry_hwpoisoned(entry))) {
2900 swp_entry_t swp_entry = pte_to_swp_entry(entry);
2901
2902 if (is_write_migration_entry(swp_entry) && cow) {
2903 /*
2904 * COW mappings require pages in both
2905 * parent and child to be set to read.
2906 */
2907 make_migration_entry_read(&swp_entry);
2908 entry = swp_entry_to_pte(swp_entry);
2909 set_huge_pte_at(src, addr, src_pte, entry);
2910 }
2911 set_huge_pte_at(dst, addr, dst_pte, entry);
2912 } else {
34ee645e 2913 if (cow) {
7f2e9525 2914 huge_ptep_set_wrprotect(src, addr, src_pte);
34ee645e
JR
2915 mmu_notifier_invalidate_range(src, mmun_start,
2916 mmun_end);
2917 }
0253d634 2918 entry = huge_ptep_get(src_pte);
1c59827d
HD
2919 ptepage = pte_page(entry);
2920 get_page(ptepage);
0fe6e20b 2921 page_dup_rmap(ptepage);
1c59827d
HD
2922 set_huge_pte_at(dst, addr, dst_pte, entry);
2923 }
cb900f41
KS
2924 spin_unlock(src_ptl);
2925 spin_unlock(dst_ptl);
63551ae0 2926 }
63551ae0 2927
e8569dd2
AS
2928 if (cow)
2929 mmu_notifier_invalidate_range_end(src, mmun_start, mmun_end);
2930
2931 return ret;
63551ae0
DG
2932}
2933
24669e58
AK
2934void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
2935 unsigned long start, unsigned long end,
2936 struct page *ref_page)
63551ae0 2937{
24669e58 2938 int force_flush = 0;
63551ae0
DG
2939 struct mm_struct *mm = vma->vm_mm;
2940 unsigned long address;
c7546f8f 2941 pte_t *ptep;
63551ae0 2942 pte_t pte;
cb900f41 2943 spinlock_t *ptl;
63551ae0 2944 struct page *page;
a5516438
AK
2945 struct hstate *h = hstate_vma(vma);
2946 unsigned long sz = huge_page_size(h);
2ec74c3e
SG
2947 const unsigned long mmun_start = start; /* For mmu_notifiers */
2948 const unsigned long mmun_end = end; /* For mmu_notifiers */
a5516438 2949
63551ae0 2950 WARN_ON(!is_vm_hugetlb_page(vma));
a5516438
AK
2951 BUG_ON(start & ~huge_page_mask(h));
2952 BUG_ON(end & ~huge_page_mask(h));
63551ae0 2953
24669e58 2954 tlb_start_vma(tlb, vma);
2ec74c3e 2955 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
569f48b8 2956 address = start;
24669e58 2957again:
569f48b8 2958 for (; address < end; address += sz) {
c7546f8f 2959 ptep = huge_pte_offset(mm, address);
4c887265 2960 if (!ptep)
c7546f8f
DG
2961 continue;
2962
cb900f41 2963 ptl = huge_pte_lock(h, mm, ptep);
39dde65c 2964 if (huge_pmd_unshare(mm, &address, ptep))
cb900f41 2965 goto unlock;
39dde65c 2966
6629326b
HD
2967 pte = huge_ptep_get(ptep);
2968 if (huge_pte_none(pte))
cb900f41 2969 goto unlock;
6629326b
HD
2970
2971 /*
9fbc1f63
NH
2972 * Migrating hugepage or HWPoisoned hugepage is already
2973 * unmapped and its refcount is dropped, so just clear pte here.
6629326b 2974 */
9fbc1f63 2975 if (unlikely(!pte_present(pte))) {
106c992a 2976 huge_pte_clear(mm, address, ptep);
cb900f41 2977 goto unlock;
8c4894c6 2978 }
6629326b
HD
2979
2980 page = pte_page(pte);
04f2cbe3
MG
2981 /*
2982 * If a reference page is supplied, it is because a specific
2983 * page is being unmapped, not a range. Ensure the page we
2984 * are about to unmap is the actual page of interest.
2985 */
2986 if (ref_page) {
04f2cbe3 2987 if (page != ref_page)
cb900f41 2988 goto unlock;
04f2cbe3
MG
2989
2990 /*
2991 * Mark the VMA as having unmapped its page so that
2992 * future faults in this VMA will fail rather than
2993 * looking like data was lost
2994 */
2995 set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
2996 }
2997
c7546f8f 2998 pte = huge_ptep_get_and_clear(mm, address, ptep);
24669e58 2999 tlb_remove_tlb_entry(tlb, ptep, address);
106c992a 3000 if (huge_pte_dirty(pte))
6649a386 3001 set_page_dirty(page);
9e81130b 3002
24669e58
AK
3003 page_remove_rmap(page);
3004 force_flush = !__tlb_remove_page(tlb, page);
cb900f41 3005 if (force_flush) {
569f48b8 3006 address += sz;
cb900f41 3007 spin_unlock(ptl);
24669e58 3008 break;
cb900f41 3009 }
9e81130b 3010 /* Bail out after unmapping reference page if supplied */
cb900f41
KS
3011 if (ref_page) {
3012 spin_unlock(ptl);
9e81130b 3013 break;
cb900f41
KS
3014 }
3015unlock:
3016 spin_unlock(ptl);
63551ae0 3017 }
24669e58
AK
3018 /*
3019 * mmu_gather ran out of room to batch pages, we break out of
3020 * the PTE lock to avoid doing the potential expensive TLB invalidate
3021 * and page-free while holding it.
3022 */
3023 if (force_flush) {
3024 force_flush = 0;
3025 tlb_flush_mmu(tlb);
3026 if (address < end && !ref_page)
3027 goto again;
fe1668ae 3028 }
2ec74c3e 3029 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
24669e58 3030 tlb_end_vma(tlb, vma);
1da177e4 3031}
63551ae0 3032
d833352a
MG
3033void __unmap_hugepage_range_final(struct mmu_gather *tlb,
3034 struct vm_area_struct *vma, unsigned long start,
3035 unsigned long end, struct page *ref_page)
3036{
3037 __unmap_hugepage_range(tlb, vma, start, end, ref_page);
3038
3039 /*
3040 * Clear this flag so that x86's huge_pmd_share page_table_shareable
3041 * test will fail on a vma being torn down, and not grab a page table
3042 * on its way out. We're lucky that the flag has such an appropriate
3043 * name, and can in fact be safely cleared here. We could clear it
3044 * before the __unmap_hugepage_range above, but all that's necessary
c8c06efa 3045 * is to clear it before releasing the i_mmap_rwsem. This works
d833352a 3046 * because in the context this is called, the VMA is about to be
c8c06efa 3047 * destroyed and the i_mmap_rwsem is held.
d833352a
MG
3048 */
3049 vma->vm_flags &= ~VM_MAYSHARE;
3050}
3051
502717f4 3052void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
04f2cbe3 3053 unsigned long end, struct page *ref_page)
502717f4 3054{
24669e58
AK
3055 struct mm_struct *mm;
3056 struct mmu_gather tlb;
3057
3058 mm = vma->vm_mm;
3059
2b047252 3060 tlb_gather_mmu(&tlb, mm, start, end);
24669e58
AK
3061 __unmap_hugepage_range(&tlb, vma, start, end, ref_page);
3062 tlb_finish_mmu(&tlb, start, end);
502717f4
CK
3063}
3064
04f2cbe3
MG
3065/*
3066 * This is called when the original mapper is failing to COW a MAP_PRIVATE
3067 * mappping it owns the reserve page for. The intention is to unmap the page
3068 * from other VMAs and let the children be SIGKILLed if they are faulting the
3069 * same region.
3070 */
2f4612af
DB
3071static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
3072 struct page *page, unsigned long address)
04f2cbe3 3073{
7526674d 3074 struct hstate *h = hstate_vma(vma);
04f2cbe3
MG
3075 struct vm_area_struct *iter_vma;
3076 struct address_space *mapping;
04f2cbe3
MG
3077 pgoff_t pgoff;
3078
3079 /*
3080 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
3081 * from page cache lookup which is in HPAGE_SIZE units.
3082 */
7526674d 3083 address = address & huge_page_mask(h);
36e4f20a
MH
3084 pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
3085 vma->vm_pgoff;
496ad9aa 3086 mapping = file_inode(vma->vm_file)->i_mapping;
04f2cbe3 3087
4eb2b1dc
MG
3088 /*
3089 * Take the mapping lock for the duration of the table walk. As
3090 * this mapping should be shared between all the VMAs,
3091 * __unmap_hugepage_range() is called as the lock is already held
3092 */
83cde9e8 3093 i_mmap_lock_write(mapping);
6b2dbba8 3094 vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
04f2cbe3
MG
3095 /* Do not unmap the current VMA */
3096 if (iter_vma == vma)
3097 continue;
3098
3099 /*
3100 * Unmap the page from other VMAs without their own reserves.
3101 * They get marked to be SIGKILLed if they fault in these
3102 * areas. This is because a future no-page fault on this VMA
3103 * could insert a zeroed page instead of the data existing
3104 * from the time of fork. This would look like data corruption
3105 */
3106 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
24669e58
AK
3107 unmap_hugepage_range(iter_vma, address,
3108 address + huge_page_size(h), page);
04f2cbe3 3109 }
83cde9e8 3110 i_mmap_unlock_write(mapping);
04f2cbe3
MG
3111}
3112
0fe6e20b
NH
3113/*
3114 * Hugetlb_cow() should be called with page lock of the original hugepage held.
ef009b25
MH
3115 * Called with hugetlb_instantiation_mutex held and pte_page locked so we
3116 * cannot race with other handlers or page migration.
3117 * Keep the pte_same checks anyway to make transition from the mutex easier.
0fe6e20b 3118 */
1e8f889b 3119static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
04f2cbe3 3120 unsigned long address, pte_t *ptep, pte_t pte,
cb900f41 3121 struct page *pagecache_page, spinlock_t *ptl)
1e8f889b 3122{
a5516438 3123 struct hstate *h = hstate_vma(vma);
1e8f889b 3124 struct page *old_page, *new_page;
ad4404a2 3125 int ret = 0, outside_reserve = 0;
2ec74c3e
SG
3126 unsigned long mmun_start; /* For mmu_notifiers */
3127 unsigned long mmun_end; /* For mmu_notifiers */
1e8f889b
DG
3128
3129 old_page = pte_page(pte);
3130
04f2cbe3 3131retry_avoidcopy:
1e8f889b
DG
3132 /* If no-one else is actually using this page, avoid the copy
3133 * and just make the page writable */
37a2140d
JK
3134 if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
3135 page_move_anon_rmap(old_page, vma, address);
1e8f889b 3136 set_huge_ptep_writable(vma, address, ptep);
83c54070 3137 return 0;
1e8f889b
DG
3138 }
3139
04f2cbe3
MG
3140 /*
3141 * If the process that created a MAP_PRIVATE mapping is about to
3142 * perform a COW due to a shared page count, attempt to satisfy
3143 * the allocation without using the existing reserves. The pagecache
3144 * page is used to determine if the reserve at this address was
3145 * consumed or not. If reserves were used, a partial faulted mapping
3146 * at the time of fork() could consume its reserves on COW instead
3147 * of the full address range.
3148 */
5944d011 3149 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
04f2cbe3
MG
3150 old_page != pagecache_page)
3151 outside_reserve = 1;
3152
1e8f889b 3153 page_cache_get(old_page);
b76c8cfb 3154
ad4404a2
DB
3155 /*
3156 * Drop page table lock as buddy allocator may be called. It will
3157 * be acquired again before returning to the caller, as expected.
3158 */
cb900f41 3159 spin_unlock(ptl);
04f2cbe3 3160 new_page = alloc_huge_page(vma, address, outside_reserve);
1e8f889b 3161
2fc39cec 3162 if (IS_ERR(new_page)) {
04f2cbe3
MG
3163 /*
3164 * If a process owning a MAP_PRIVATE mapping fails to COW,
3165 * it is due to references held by a child and an insufficient
3166 * huge page pool. To guarantee the original mappers
3167 * reliability, unmap the page from child processes. The child
3168 * may get SIGKILLed if it later faults.
3169 */
3170 if (outside_reserve) {
ad4404a2 3171 page_cache_release(old_page);
04f2cbe3 3172 BUG_ON(huge_pte_none(pte));
2f4612af
DB
3173 unmap_ref_private(mm, vma, old_page, address);
3174 BUG_ON(huge_pte_none(pte));
3175 spin_lock(ptl);
3176 ptep = huge_pte_offset(mm, address & huge_page_mask(h));
3177 if (likely(ptep &&
3178 pte_same(huge_ptep_get(ptep), pte)))
3179 goto retry_avoidcopy;
3180 /*
3181 * race occurs while re-acquiring page table
3182 * lock, and our job is done.
3183 */
3184 return 0;
04f2cbe3
MG
3185 }
3186
ad4404a2
DB
3187 ret = (PTR_ERR(new_page) == -ENOMEM) ?
3188 VM_FAULT_OOM : VM_FAULT_SIGBUS;
3189 goto out_release_old;
1e8f889b
DG
3190 }
3191
0fe6e20b
NH
3192 /*
3193 * When the original hugepage is shared one, it does not have
3194 * anon_vma prepared.
3195 */
44e2aa93 3196 if (unlikely(anon_vma_prepare(vma))) {
ad4404a2
DB
3197 ret = VM_FAULT_OOM;
3198 goto out_release_all;
44e2aa93 3199 }
0fe6e20b 3200
47ad8475
AA
3201 copy_user_huge_page(new_page, old_page, address, vma,
3202 pages_per_huge_page(h));
0ed361de 3203 __SetPageUptodate(new_page);
bcc54222 3204 set_page_huge_active(new_page);
1e8f889b 3205
2ec74c3e
SG
3206 mmun_start = address & huge_page_mask(h);
3207 mmun_end = mmun_start + huge_page_size(h);
3208 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
ad4404a2 3209
b76c8cfb 3210 /*
cb900f41 3211 * Retake the page table lock to check for racing updates
b76c8cfb
LW
3212 * before the page tables are altered
3213 */
cb900f41 3214 spin_lock(ptl);
a5516438 3215 ptep = huge_pte_offset(mm, address & huge_page_mask(h));
a9af0c5d 3216 if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
07443a85
JK
3217 ClearPagePrivate(new_page);
3218
1e8f889b 3219 /* Break COW */
8fe627ec 3220 huge_ptep_clear_flush(vma, address, ptep);
34ee645e 3221 mmu_notifier_invalidate_range(mm, mmun_start, mmun_end);
1e8f889b
DG
3222 set_huge_pte_at(mm, address, ptep,
3223 make_huge_pte(vma, new_page, 1));
0fe6e20b 3224 page_remove_rmap(old_page);
cd67f0d2 3225 hugepage_add_new_anon_rmap(new_page, vma, address);
1e8f889b
DG
3226 /* Make the old page be freed below */
3227 new_page = old_page;
3228 }
cb900f41 3229 spin_unlock(ptl);
2ec74c3e 3230 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
ad4404a2 3231out_release_all:
1e8f889b 3232 page_cache_release(new_page);
ad4404a2 3233out_release_old:
1e8f889b 3234 page_cache_release(old_page);
8312034f 3235
ad4404a2
DB
3236 spin_lock(ptl); /* Caller expects lock to be held */
3237 return ret;
1e8f889b
DG
3238}
3239
04f2cbe3 3240/* Return the pagecache page at a given address within a VMA */
a5516438
AK
3241static struct page *hugetlbfs_pagecache_page(struct hstate *h,
3242 struct vm_area_struct *vma, unsigned long address)
04f2cbe3
MG
3243{
3244 struct address_space *mapping;
e7c4b0bf 3245 pgoff_t idx;
04f2cbe3
MG
3246
3247 mapping = vma->vm_file->f_mapping;
a5516438 3248 idx = vma_hugecache_offset(h, vma, address);
04f2cbe3
MG
3249
3250 return find_lock_page(mapping, idx);
3251}
3252
3ae77f43
HD
3253/*
3254 * Return whether there is a pagecache page to back given address within VMA.
3255 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
3256 */
3257static bool hugetlbfs_pagecache_present(struct hstate *h,
2a15efc9
HD
3258 struct vm_area_struct *vma, unsigned long address)
3259{
3260 struct address_space *mapping;
3261 pgoff_t idx;
3262 struct page *page;
3263
3264 mapping = vma->vm_file->f_mapping;
3265 idx = vma_hugecache_offset(h, vma, address);
3266
3267 page = find_get_page(mapping, idx);
3268 if (page)
3269 put_page(page);
3270 return page != NULL;
3271}
3272
a1ed3dda 3273static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
8382d914
DB
3274 struct address_space *mapping, pgoff_t idx,
3275 unsigned long address, pte_t *ptep, unsigned int flags)
ac9b9c66 3276{
a5516438 3277 struct hstate *h = hstate_vma(vma);
ac9b9c66 3278 int ret = VM_FAULT_SIGBUS;
409eb8c2 3279 int anon_rmap = 0;
4c887265 3280 unsigned long size;
4c887265 3281 struct page *page;
1e8f889b 3282 pte_t new_pte;
cb900f41 3283 spinlock_t *ptl;
4c887265 3284
04f2cbe3
MG
3285 /*
3286 * Currently, we are forced to kill the process in the event the
3287 * original mapper has unmapped pages from the child due to a failed
25985edc 3288 * COW. Warn that such a situation has occurred as it may not be obvious
04f2cbe3
MG
3289 */
3290 if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
ffb22af5
AM
3291 pr_warning("PID %d killed due to inadequate hugepage pool\n",
3292 current->pid);
04f2cbe3
MG
3293 return ret;
3294 }
3295
4c887265
AL
3296 /*
3297 * Use page lock to guard against racing truncation
3298 * before we get page_table_lock.
3299 */
6bda666a
CL
3300retry:
3301 page = find_lock_page(mapping, idx);
3302 if (!page) {
a5516438 3303 size = i_size_read(mapping->host) >> huge_page_shift(h);
ebed4bfc
HD
3304 if (idx >= size)
3305 goto out;
04f2cbe3 3306 page = alloc_huge_page(vma, address, 0);
2fc39cec 3307 if (IS_ERR(page)) {
76dcee75
AK
3308 ret = PTR_ERR(page);
3309 if (ret == -ENOMEM)
3310 ret = VM_FAULT_OOM;
3311 else
3312 ret = VM_FAULT_SIGBUS;
6bda666a
CL
3313 goto out;
3314 }
47ad8475 3315 clear_huge_page(page, address, pages_per_huge_page(h));
0ed361de 3316 __SetPageUptodate(page);
bcc54222 3317 set_page_huge_active(page);
ac9b9c66 3318
f83a275d 3319 if (vma->vm_flags & VM_MAYSHARE) {
6bda666a 3320 int err;
45c682a6 3321 struct inode *inode = mapping->host;
6bda666a
CL
3322
3323 err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
3324 if (err) {
3325 put_page(page);
6bda666a
CL
3326 if (err == -EEXIST)
3327 goto retry;
3328 goto out;
3329 }
07443a85 3330 ClearPagePrivate(page);
45c682a6
KC
3331
3332 spin_lock(&inode->i_lock);
a5516438 3333 inode->i_blocks += blocks_per_huge_page(h);
45c682a6 3334 spin_unlock(&inode->i_lock);
23be7468 3335 } else {
6bda666a 3336 lock_page(page);
0fe6e20b
NH
3337 if (unlikely(anon_vma_prepare(vma))) {
3338 ret = VM_FAULT_OOM;
3339 goto backout_unlocked;
3340 }
409eb8c2 3341 anon_rmap = 1;
23be7468 3342 }
0fe6e20b 3343 } else {
998b4382
NH
3344 /*
3345 * If memory error occurs between mmap() and fault, some process
3346 * don't have hwpoisoned swap entry for errored virtual address.
3347 * So we need to block hugepage fault by PG_hwpoison bit check.
3348 */
3349 if (unlikely(PageHWPoison(page))) {
32f84528 3350 ret = VM_FAULT_HWPOISON |
972dc4de 3351 VM_FAULT_SET_HINDEX(hstate_index(h));
998b4382
NH
3352 goto backout_unlocked;
3353 }
6bda666a 3354 }
1e8f889b 3355
57303d80
AW
3356 /*
3357 * If we are going to COW a private mapping later, we examine the
3358 * pending reservations for this page now. This will ensure that
3359 * any allocations necessary to record that reservation occur outside
3360 * the spinlock.
3361 */
5e911373 3362 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
2b26736c
AW
3363 if (vma_needs_reservation(h, vma, address) < 0) {
3364 ret = VM_FAULT_OOM;
3365 goto backout_unlocked;
3366 }
5e911373
MK
3367 /* Just decrements count, does not deallocate */
3368 vma_abort_reservation(h, vma, address);
3369 }
57303d80 3370
cb900f41
KS
3371 ptl = huge_pte_lockptr(h, mm, ptep);
3372 spin_lock(ptl);
a5516438 3373 size = i_size_read(mapping->host) >> huge_page_shift(h);
4c887265
AL
3374 if (idx >= size)
3375 goto backout;
3376
83c54070 3377 ret = 0;
7f2e9525 3378 if (!huge_pte_none(huge_ptep_get(ptep)))
4c887265
AL
3379 goto backout;
3380
07443a85
JK
3381 if (anon_rmap) {
3382 ClearPagePrivate(page);
409eb8c2 3383 hugepage_add_new_anon_rmap(page, vma, address);
ac714904 3384 } else
409eb8c2 3385 page_dup_rmap(page);
1e8f889b
DG
3386 new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
3387 && (vma->vm_flags & VM_SHARED)));
3388 set_huge_pte_at(mm, address, ptep, new_pte);
3389
788c7df4 3390 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
1e8f889b 3391 /* Optimization, do the COW without a second fault */
cb900f41 3392 ret = hugetlb_cow(mm, vma, address, ptep, new_pte, page, ptl);
1e8f889b
DG
3393 }
3394
cb900f41 3395 spin_unlock(ptl);
4c887265
AL
3396 unlock_page(page);
3397out:
ac9b9c66 3398 return ret;
4c887265
AL
3399
3400backout:
cb900f41 3401 spin_unlock(ptl);
2b26736c 3402backout_unlocked:
4c887265
AL
3403 unlock_page(page);
3404 put_page(page);
3405 goto out;
ac9b9c66
HD
3406}
3407
8382d914
DB
3408#ifdef CONFIG_SMP
3409static u32 fault_mutex_hash(struct hstate *h, struct mm_struct *mm,
3410 struct vm_area_struct *vma,
3411 struct address_space *mapping,
3412 pgoff_t idx, unsigned long address)
3413{
3414 unsigned long key[2];
3415 u32 hash;
3416
3417 if (vma->vm_flags & VM_SHARED) {
3418 key[0] = (unsigned long) mapping;
3419 key[1] = idx;
3420 } else {
3421 key[0] = (unsigned long) mm;
3422 key[1] = address >> huge_page_shift(h);
3423 }
3424
3425 hash = jhash2((u32 *)&key, sizeof(key)/sizeof(u32), 0);
3426
3427 return hash & (num_fault_mutexes - 1);
3428}
3429#else
3430/*
3431 * For uniprocesor systems we always use a single mutex, so just
3432 * return 0 and avoid the hashing overhead.
3433 */
3434static u32 fault_mutex_hash(struct hstate *h, struct mm_struct *mm,
3435 struct vm_area_struct *vma,
3436 struct address_space *mapping,
3437 pgoff_t idx, unsigned long address)
3438{
3439 return 0;
3440}
3441#endif
3442
86e5216f 3443int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
788c7df4 3444 unsigned long address, unsigned int flags)
86e5216f 3445{
8382d914 3446 pte_t *ptep, entry;
cb900f41 3447 spinlock_t *ptl;
1e8f889b 3448 int ret;
8382d914
DB
3449 u32 hash;
3450 pgoff_t idx;
0fe6e20b 3451 struct page *page = NULL;
57303d80 3452 struct page *pagecache_page = NULL;
a5516438 3453 struct hstate *h = hstate_vma(vma);
8382d914 3454 struct address_space *mapping;
0f792cf9 3455 int need_wait_lock = 0;
86e5216f 3456
1e16a539
KH
3457 address &= huge_page_mask(h);
3458
fd6a03ed
NH
3459 ptep = huge_pte_offset(mm, address);
3460 if (ptep) {
3461 entry = huge_ptep_get(ptep);
290408d4 3462 if (unlikely(is_hugetlb_entry_migration(entry))) {
cb900f41 3463 migration_entry_wait_huge(vma, mm, ptep);
290408d4
NH
3464 return 0;
3465 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
32f84528 3466 return VM_FAULT_HWPOISON_LARGE |
972dc4de 3467 VM_FAULT_SET_HINDEX(hstate_index(h));
fd6a03ed
NH
3468 }
3469
a5516438 3470 ptep = huge_pte_alloc(mm, address, huge_page_size(h));
86e5216f
AL
3471 if (!ptep)
3472 return VM_FAULT_OOM;
3473
8382d914
DB
3474 mapping = vma->vm_file->f_mapping;
3475 idx = vma_hugecache_offset(h, vma, address);
3476
3935baa9
DG
3477 /*
3478 * Serialize hugepage allocation and instantiation, so that we don't
3479 * get spurious allocation failures if two CPUs race to instantiate
3480 * the same page in the page cache.
3481 */
8382d914
DB
3482 hash = fault_mutex_hash(h, mm, vma, mapping, idx, address);
3483 mutex_lock(&htlb_fault_mutex_table[hash]);
3484
7f2e9525
GS
3485 entry = huge_ptep_get(ptep);
3486 if (huge_pte_none(entry)) {
8382d914 3487 ret = hugetlb_no_page(mm, vma, mapping, idx, address, ptep, flags);
b4d1d99f 3488 goto out_mutex;
3935baa9 3489 }
86e5216f 3490
83c54070 3491 ret = 0;
1e8f889b 3492
0f792cf9
NH
3493 /*
3494 * entry could be a migration/hwpoison entry at this point, so this
3495 * check prevents the kernel from going below assuming that we have
3496 * a active hugepage in pagecache. This goto expects the 2nd page fault,
3497 * and is_hugetlb_entry_(migration|hwpoisoned) check will properly
3498 * handle it.
3499 */
3500 if (!pte_present(entry))
3501 goto out_mutex;
3502
57303d80
AW
3503 /*
3504 * If we are going to COW the mapping later, we examine the pending
3505 * reservations for this page now. This will ensure that any
3506 * allocations necessary to record that reservation occur outside the
3507 * spinlock. For private mappings, we also lookup the pagecache
3508 * page now as it is used to determine if a reservation has been
3509 * consumed.
3510 */
106c992a 3511 if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
2b26736c
AW
3512 if (vma_needs_reservation(h, vma, address) < 0) {
3513 ret = VM_FAULT_OOM;
b4d1d99f 3514 goto out_mutex;
2b26736c 3515 }
5e911373
MK
3516 /* Just decrements count, does not deallocate */
3517 vma_abort_reservation(h, vma, address);
57303d80 3518
f83a275d 3519 if (!(vma->vm_flags & VM_MAYSHARE))
57303d80
AW
3520 pagecache_page = hugetlbfs_pagecache_page(h,
3521 vma, address);
3522 }
3523
0f792cf9
NH
3524 ptl = huge_pte_lock(h, mm, ptep);
3525
3526 /* Check for a racing update before calling hugetlb_cow */
3527 if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
3528 goto out_ptl;
3529
56c9cfb1
NH
3530 /*
3531 * hugetlb_cow() requires page locks of pte_page(entry) and
3532 * pagecache_page, so here we need take the former one
3533 * when page != pagecache_page or !pagecache_page.
56c9cfb1
NH
3534 */
3535 page = pte_page(entry);
3536 if (page != pagecache_page)
0f792cf9
NH
3537 if (!trylock_page(page)) {
3538 need_wait_lock = 1;
3539 goto out_ptl;
3540 }
b4d1d99f 3541
0f792cf9 3542 get_page(page);
b4d1d99f 3543
788c7df4 3544 if (flags & FAULT_FLAG_WRITE) {
106c992a 3545 if (!huge_pte_write(entry)) {
57303d80 3546 ret = hugetlb_cow(mm, vma, address, ptep, entry,
cb900f41 3547 pagecache_page, ptl);
0f792cf9 3548 goto out_put_page;
b4d1d99f 3549 }
106c992a 3550 entry = huge_pte_mkdirty(entry);
b4d1d99f
DG
3551 }
3552 entry = pte_mkyoung(entry);
788c7df4
HD
3553 if (huge_ptep_set_access_flags(vma, address, ptep, entry,
3554 flags & FAULT_FLAG_WRITE))
4b3073e1 3555 update_mmu_cache(vma, address, ptep);
0f792cf9
NH
3556out_put_page:
3557 if (page != pagecache_page)
3558 unlock_page(page);
3559 put_page(page);
cb900f41
KS
3560out_ptl:
3561 spin_unlock(ptl);
57303d80
AW
3562
3563 if (pagecache_page) {
3564 unlock_page(pagecache_page);
3565 put_page(pagecache_page);
3566 }
b4d1d99f 3567out_mutex:
8382d914 3568 mutex_unlock(&htlb_fault_mutex_table[hash]);
0f792cf9
NH
3569 /*
3570 * Generally it's safe to hold refcount during waiting page lock. But
3571 * here we just wait to defer the next page fault to avoid busy loop and
3572 * the page is not used after unlocked before returning from the current
3573 * page fault. So we are safe from accessing freed page, even if we wait
3574 * here without taking refcount.
3575 */
3576 if (need_wait_lock)
3577 wait_on_page_locked(page);
1e8f889b 3578 return ret;
86e5216f
AL
3579}
3580
28a35716
ML
3581long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
3582 struct page **pages, struct vm_area_struct **vmas,
3583 unsigned long *position, unsigned long *nr_pages,
3584 long i, unsigned int flags)
63551ae0 3585{
d5d4b0aa
CK
3586 unsigned long pfn_offset;
3587 unsigned long vaddr = *position;
28a35716 3588 unsigned long remainder = *nr_pages;
a5516438 3589 struct hstate *h = hstate_vma(vma);
63551ae0 3590
63551ae0 3591 while (vaddr < vma->vm_end && remainder) {
4c887265 3592 pte_t *pte;
cb900f41 3593 spinlock_t *ptl = NULL;
2a15efc9 3594 int absent;
4c887265 3595 struct page *page;
63551ae0 3596
02057967
DR
3597 /*
3598 * If we have a pending SIGKILL, don't keep faulting pages and
3599 * potentially allocating memory.
3600 */
3601 if (unlikely(fatal_signal_pending(current))) {
3602 remainder = 0;
3603 break;
3604 }
3605
4c887265
AL
3606 /*
3607 * Some archs (sparc64, sh*) have multiple pte_ts to
2a15efc9 3608 * each hugepage. We have to make sure we get the
4c887265 3609 * first, for the page indexing below to work.
cb900f41
KS
3610 *
3611 * Note that page table lock is not held when pte is null.
4c887265 3612 */
a5516438 3613 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h));
cb900f41
KS
3614 if (pte)
3615 ptl = huge_pte_lock(h, mm, pte);
2a15efc9
HD
3616 absent = !pte || huge_pte_none(huge_ptep_get(pte));
3617
3618 /*
3619 * When coredumping, it suits get_dump_page if we just return
3ae77f43
HD
3620 * an error where there's an empty slot with no huge pagecache
3621 * to back it. This way, we avoid allocating a hugepage, and
3622 * the sparse dumpfile avoids allocating disk blocks, but its
3623 * huge holes still show up with zeroes where they need to be.
2a15efc9 3624 */
3ae77f43
HD
3625 if (absent && (flags & FOLL_DUMP) &&
3626 !hugetlbfs_pagecache_present(h, vma, vaddr)) {
cb900f41
KS
3627 if (pte)
3628 spin_unlock(ptl);
2a15efc9
HD
3629 remainder = 0;
3630 break;
3631 }
63551ae0 3632
9cc3a5bd
NH
3633 /*
3634 * We need call hugetlb_fault for both hugepages under migration
3635 * (in which case hugetlb_fault waits for the migration,) and
3636 * hwpoisoned hugepages (in which case we need to prevent the
3637 * caller from accessing to them.) In order to do this, we use
3638 * here is_swap_pte instead of is_hugetlb_entry_migration and
3639 * is_hugetlb_entry_hwpoisoned. This is because it simply covers
3640 * both cases, and because we can't follow correct pages
3641 * directly from any kind of swap entries.
3642 */
3643 if (absent || is_swap_pte(huge_ptep_get(pte)) ||
106c992a
GS
3644 ((flags & FOLL_WRITE) &&
3645 !huge_pte_write(huge_ptep_get(pte)))) {
4c887265 3646 int ret;
63551ae0 3647
cb900f41
KS
3648 if (pte)
3649 spin_unlock(ptl);
2a15efc9
HD
3650 ret = hugetlb_fault(mm, vma, vaddr,
3651 (flags & FOLL_WRITE) ? FAULT_FLAG_WRITE : 0);
a89182c7 3652 if (!(ret & VM_FAULT_ERROR))
4c887265 3653 continue;
63551ae0 3654
4c887265 3655 remainder = 0;
4c887265
AL
3656 break;
3657 }
3658
a5516438 3659 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
7f2e9525 3660 page = pte_page(huge_ptep_get(pte));
d5d4b0aa 3661same_page:
d6692183 3662 if (pages) {
2a15efc9 3663 pages[i] = mem_map_offset(page, pfn_offset);
a0368d4e 3664 get_page_foll(pages[i]);
d6692183 3665 }
63551ae0
DG
3666
3667 if (vmas)
3668 vmas[i] = vma;
3669
3670 vaddr += PAGE_SIZE;
d5d4b0aa 3671 ++pfn_offset;
63551ae0
DG
3672 --remainder;
3673 ++i;
d5d4b0aa 3674 if (vaddr < vma->vm_end && remainder &&
a5516438 3675 pfn_offset < pages_per_huge_page(h)) {
d5d4b0aa
CK
3676 /*
3677 * We use pfn_offset to avoid touching the pageframes
3678 * of this compound page.
3679 */
3680 goto same_page;
3681 }
cb900f41 3682 spin_unlock(ptl);
63551ae0 3683 }
28a35716 3684 *nr_pages = remainder;
63551ae0
DG
3685 *position = vaddr;
3686
2a15efc9 3687 return i ? i : -EFAULT;
63551ae0 3688}
8f860591 3689
7da4d641 3690unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
8f860591
ZY
3691 unsigned long address, unsigned long end, pgprot_t newprot)
3692{
3693 struct mm_struct *mm = vma->vm_mm;
3694 unsigned long start = address;
3695 pte_t *ptep;
3696 pte_t pte;
a5516438 3697 struct hstate *h = hstate_vma(vma);
7da4d641 3698 unsigned long pages = 0;
8f860591
ZY
3699
3700 BUG_ON(address >= end);
3701 flush_cache_range(vma, address, end);
3702
a5338093 3703 mmu_notifier_invalidate_range_start(mm, start, end);
83cde9e8 3704 i_mmap_lock_write(vma->vm_file->f_mapping);
a5516438 3705 for (; address < end; address += huge_page_size(h)) {
cb900f41 3706 spinlock_t *ptl;
8f860591
ZY
3707 ptep = huge_pte_offset(mm, address);
3708 if (!ptep)
3709 continue;
cb900f41 3710 ptl = huge_pte_lock(h, mm, ptep);
7da4d641
PZ
3711 if (huge_pmd_unshare(mm, &address, ptep)) {
3712 pages++;
cb900f41 3713 spin_unlock(ptl);
39dde65c 3714 continue;
7da4d641 3715 }
a8bda28d
NH
3716 pte = huge_ptep_get(ptep);
3717 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
3718 spin_unlock(ptl);
3719 continue;
3720 }
3721 if (unlikely(is_hugetlb_entry_migration(pte))) {
3722 swp_entry_t entry = pte_to_swp_entry(pte);
3723
3724 if (is_write_migration_entry(entry)) {
3725 pte_t newpte;
3726
3727 make_migration_entry_read(&entry);
3728 newpte = swp_entry_to_pte(entry);
3729 set_huge_pte_at(mm, address, ptep, newpte);
3730 pages++;
3731 }
3732 spin_unlock(ptl);
3733 continue;
3734 }
3735 if (!huge_pte_none(pte)) {
8f860591 3736 pte = huge_ptep_get_and_clear(mm, address, ptep);
106c992a 3737 pte = pte_mkhuge(huge_pte_modify(pte, newprot));
be7517d6 3738 pte = arch_make_huge_pte(pte, vma, NULL, 0);
8f860591 3739 set_huge_pte_at(mm, address, ptep, pte);
7da4d641 3740 pages++;
8f860591 3741 }
cb900f41 3742 spin_unlock(ptl);
8f860591 3743 }
d833352a 3744 /*
c8c06efa 3745 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
d833352a 3746 * may have cleared our pud entry and done put_page on the page table:
c8c06efa 3747 * once we release i_mmap_rwsem, another task can do the final put_page
d833352a
MG
3748 * and that page table be reused and filled with junk.
3749 */
8f860591 3750 flush_tlb_range(vma, start, end);
34ee645e 3751 mmu_notifier_invalidate_range(mm, start, end);
83cde9e8 3752 i_mmap_unlock_write(vma->vm_file->f_mapping);
a5338093 3753 mmu_notifier_invalidate_range_end(mm, start, end);
7da4d641
PZ
3754
3755 return pages << h->order;
8f860591
ZY
3756}
3757
a1e78772
MG
3758int hugetlb_reserve_pages(struct inode *inode,
3759 long from, long to,
5a6fe125 3760 struct vm_area_struct *vma,
ca16d140 3761 vm_flags_t vm_flags)
e4e574b7 3762{
17c9d12e 3763 long ret, chg;
a5516438 3764 struct hstate *h = hstate_inode(inode);
90481622 3765 struct hugepage_subpool *spool = subpool_inode(inode);
9119a41e 3766 struct resv_map *resv_map;
1c5ecae3 3767 long gbl_reserve;
e4e574b7 3768
17c9d12e
MG
3769 /*
3770 * Only apply hugepage reservation if asked. At fault time, an
3771 * attempt will be made for VM_NORESERVE to allocate a page
90481622 3772 * without using reserves
17c9d12e 3773 */
ca16d140 3774 if (vm_flags & VM_NORESERVE)
17c9d12e
MG
3775 return 0;
3776
a1e78772
MG
3777 /*
3778 * Shared mappings base their reservation on the number of pages that
3779 * are already allocated on behalf of the file. Private mappings need
3780 * to reserve the full area even if read-only as mprotect() may be
3781 * called to make the mapping read-write. Assume !vma is a shm mapping
3782 */
9119a41e 3783 if (!vma || vma->vm_flags & VM_MAYSHARE) {
4e35f483 3784 resv_map = inode_resv_map(inode);
9119a41e 3785
1406ec9b 3786 chg = region_chg(resv_map, from, to);
9119a41e
JK
3787
3788 } else {
3789 resv_map = resv_map_alloc();
17c9d12e
MG
3790 if (!resv_map)
3791 return -ENOMEM;
3792
a1e78772 3793 chg = to - from;
84afd99b 3794
17c9d12e
MG
3795 set_vma_resv_map(vma, resv_map);
3796 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
3797 }
3798
c50ac050
DH
3799 if (chg < 0) {
3800 ret = chg;
3801 goto out_err;
3802 }
8a630112 3803
1c5ecae3
MK
3804 /*
3805 * There must be enough pages in the subpool for the mapping. If
3806 * the subpool has a minimum size, there may be some global
3807 * reservations already in place (gbl_reserve).
3808 */
3809 gbl_reserve = hugepage_subpool_get_pages(spool, chg);
3810 if (gbl_reserve < 0) {
c50ac050
DH
3811 ret = -ENOSPC;
3812 goto out_err;
3813 }
5a6fe125
MG
3814
3815 /*
17c9d12e 3816 * Check enough hugepages are available for the reservation.
90481622 3817 * Hand the pages back to the subpool if there are not
5a6fe125 3818 */
1c5ecae3 3819 ret = hugetlb_acct_memory(h, gbl_reserve);
68842c9b 3820 if (ret < 0) {
1c5ecae3
MK
3821 /* put back original number of pages, chg */
3822 (void)hugepage_subpool_put_pages(spool, chg);
c50ac050 3823 goto out_err;
68842c9b 3824 }
17c9d12e
MG
3825
3826 /*
3827 * Account for the reservations made. Shared mappings record regions
3828 * that have reservations as they are shared by multiple VMAs.
3829 * When the last VMA disappears, the region map says how much
3830 * the reservation was and the page cache tells how much of
3831 * the reservation was consumed. Private mappings are per-VMA and
3832 * only the consumed reservations are tracked. When the VMA
3833 * disappears, the original reservation is the VMA size and the
3834 * consumed reservations are stored in the map. Hence, nothing
3835 * else has to be done for private mappings here
3836 */
33039678
MK
3837 if (!vma || vma->vm_flags & VM_MAYSHARE) {
3838 long add = region_add(resv_map, from, to);
3839
3840 if (unlikely(chg > add)) {
3841 /*
3842 * pages in this range were added to the reserve
3843 * map between region_chg and region_add. This
3844 * indicates a race with alloc_huge_page. Adjust
3845 * the subpool and reserve counts modified above
3846 * based on the difference.
3847 */
3848 long rsv_adjust;
3849
3850 rsv_adjust = hugepage_subpool_put_pages(spool,
3851 chg - add);
3852 hugetlb_acct_memory(h, -rsv_adjust);
3853 }
3854 }
a43a8c39 3855 return 0;
c50ac050 3856out_err:
5e911373
MK
3857 if (!vma || vma->vm_flags & VM_MAYSHARE)
3858 region_abort(resv_map, from, to);
f031dd27
JK
3859 if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
3860 kref_put(&resv_map->refs, resv_map_release);
c50ac050 3861 return ret;
a43a8c39
CK
3862}
3863
3864void hugetlb_unreserve_pages(struct inode *inode, long offset, long freed)
3865{
a5516438 3866 struct hstate *h = hstate_inode(inode);
4e35f483 3867 struct resv_map *resv_map = inode_resv_map(inode);
9119a41e 3868 long chg = 0;
90481622 3869 struct hugepage_subpool *spool = subpool_inode(inode);
1c5ecae3 3870 long gbl_reserve;
45c682a6 3871
9119a41e 3872 if (resv_map)
1406ec9b 3873 chg = region_truncate(resv_map, offset);
45c682a6 3874 spin_lock(&inode->i_lock);
e4c6f8be 3875 inode->i_blocks -= (blocks_per_huge_page(h) * freed);
45c682a6
KC
3876 spin_unlock(&inode->i_lock);
3877
1c5ecae3
MK
3878 /*
3879 * If the subpool has a minimum size, the number of global
3880 * reservations to be released may be adjusted.
3881 */
3882 gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
3883 hugetlb_acct_memory(h, -gbl_reserve);
a43a8c39 3884}
93f70f90 3885
3212b535
SC
3886#ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
3887static unsigned long page_table_shareable(struct vm_area_struct *svma,
3888 struct vm_area_struct *vma,
3889 unsigned long addr, pgoff_t idx)
3890{
3891 unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
3892 svma->vm_start;
3893 unsigned long sbase = saddr & PUD_MASK;
3894 unsigned long s_end = sbase + PUD_SIZE;
3895
3896 /* Allow segments to share if only one is marked locked */
3897 unsigned long vm_flags = vma->vm_flags & ~VM_LOCKED;
3898 unsigned long svm_flags = svma->vm_flags & ~VM_LOCKED;
3899
3900 /*
3901 * match the virtual addresses, permission and the alignment of the
3902 * page table page.
3903 */
3904 if (pmd_index(addr) != pmd_index(saddr) ||
3905 vm_flags != svm_flags ||
3906 sbase < svma->vm_start || svma->vm_end < s_end)
3907 return 0;
3908
3909 return saddr;
3910}
3911
31aafb45 3912static bool vma_shareable(struct vm_area_struct *vma, unsigned long addr)
3212b535
SC
3913{
3914 unsigned long base = addr & PUD_MASK;
3915 unsigned long end = base + PUD_SIZE;
3916
3917 /*
3918 * check on proper vm_flags and page table alignment
3919 */
3920 if (vma->vm_flags & VM_MAYSHARE &&
3921 vma->vm_start <= base && end <= vma->vm_end)
31aafb45
NK
3922 return true;
3923 return false;
3212b535
SC
3924}
3925
3926/*
3927 * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
3928 * and returns the corresponding pte. While this is not necessary for the
3929 * !shared pmd case because we can allocate the pmd later as well, it makes the
3930 * code much cleaner. pmd allocation is essential for the shared case because
c8c06efa 3931 * pud has to be populated inside the same i_mmap_rwsem section - otherwise
3212b535
SC
3932 * racing tasks could either miss the sharing (see huge_pte_offset) or select a
3933 * bad pmd for sharing.
3934 */
3935pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
3936{
3937 struct vm_area_struct *vma = find_vma(mm, addr);
3938 struct address_space *mapping = vma->vm_file->f_mapping;
3939 pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
3940 vma->vm_pgoff;
3941 struct vm_area_struct *svma;
3942 unsigned long saddr;
3943 pte_t *spte = NULL;
3944 pte_t *pte;
cb900f41 3945 spinlock_t *ptl;
3212b535
SC
3946
3947 if (!vma_shareable(vma, addr))
3948 return (pte_t *)pmd_alloc(mm, pud, addr);
3949
83cde9e8 3950 i_mmap_lock_write(mapping);
3212b535
SC
3951 vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
3952 if (svma == vma)
3953 continue;
3954
3955 saddr = page_table_shareable(svma, vma, addr, idx);
3956 if (saddr) {
3957 spte = huge_pte_offset(svma->vm_mm, saddr);
3958 if (spte) {
dc6c9a35 3959 mm_inc_nr_pmds(mm);
3212b535
SC
3960 get_page(virt_to_page(spte));
3961 break;
3962 }
3963 }
3964 }
3965
3966 if (!spte)
3967 goto out;
3968
cb900f41
KS
3969 ptl = huge_pte_lockptr(hstate_vma(vma), mm, spte);
3970 spin_lock(ptl);
dc6c9a35 3971 if (pud_none(*pud)) {
3212b535
SC
3972 pud_populate(mm, pud,
3973 (pmd_t *)((unsigned long)spte & PAGE_MASK));
dc6c9a35 3974 } else {
3212b535 3975 put_page(virt_to_page(spte));
dc6c9a35
KS
3976 mm_inc_nr_pmds(mm);
3977 }
cb900f41 3978 spin_unlock(ptl);
3212b535
SC
3979out:
3980 pte = (pte_t *)pmd_alloc(mm, pud, addr);
83cde9e8 3981 i_mmap_unlock_write(mapping);
3212b535
SC
3982 return pte;
3983}
3984
3985/*
3986 * unmap huge page backed by shared pte.
3987 *
3988 * Hugetlb pte page is ref counted at the time of mapping. If pte is shared
3989 * indicated by page_count > 1, unmap is achieved by clearing pud and
3990 * decrementing the ref count. If count == 1, the pte page is not shared.
3991 *
cb900f41 3992 * called with page table lock held.
3212b535
SC
3993 *
3994 * returns: 1 successfully unmapped a shared pte page
3995 * 0 the underlying pte page is not shared, or it is the last user
3996 */
3997int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
3998{
3999 pgd_t *pgd = pgd_offset(mm, *addr);
4000 pud_t *pud = pud_offset(pgd, *addr);
4001
4002 BUG_ON(page_count(virt_to_page(ptep)) == 0);
4003 if (page_count(virt_to_page(ptep)) == 1)
4004 return 0;
4005
4006 pud_clear(pud);
4007 put_page(virt_to_page(ptep));
dc6c9a35 4008 mm_dec_nr_pmds(mm);
3212b535
SC
4009 *addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE;
4010 return 1;
4011}
9e5fc74c
SC
4012#define want_pmd_share() (1)
4013#else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
4014pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
4015{
4016 return NULL;
4017}
e81f2d22
ZZ
4018
4019int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
4020{
4021 return 0;
4022}
9e5fc74c 4023#define want_pmd_share() (0)
3212b535
SC
4024#endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
4025
9e5fc74c
SC
4026#ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
4027pte_t *huge_pte_alloc(struct mm_struct *mm,
4028 unsigned long addr, unsigned long sz)
4029{
4030 pgd_t *pgd;
4031 pud_t *pud;
4032 pte_t *pte = NULL;
4033
4034 pgd = pgd_offset(mm, addr);
4035 pud = pud_alloc(mm, pgd, addr);
4036 if (pud) {
4037 if (sz == PUD_SIZE) {
4038 pte = (pte_t *)pud;
4039 } else {
4040 BUG_ON(sz != PMD_SIZE);
4041 if (want_pmd_share() && pud_none(*pud))
4042 pte = huge_pmd_share(mm, addr, pud);
4043 else
4044 pte = (pte_t *)pmd_alloc(mm, pud, addr);
4045 }
4046 }
4047 BUG_ON(pte && !pte_none(*pte) && !pte_huge(*pte));
4048
4049 return pte;
4050}
4051
4052pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr)
4053{
4054 pgd_t *pgd;
4055 pud_t *pud;
4056 pmd_t *pmd = NULL;
4057
4058 pgd = pgd_offset(mm, addr);
4059 if (pgd_present(*pgd)) {
4060 pud = pud_offset(pgd, addr);
4061 if (pud_present(*pud)) {
4062 if (pud_huge(*pud))
4063 return (pte_t *)pud;
4064 pmd = pmd_offset(pud, addr);
4065 }
4066 }
4067 return (pte_t *) pmd;
4068}
4069
61f77eda
NH
4070#endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
4071
4072/*
4073 * These functions are overwritable if your architecture needs its own
4074 * behavior.
4075 */
4076struct page * __weak
4077follow_huge_addr(struct mm_struct *mm, unsigned long address,
4078 int write)
4079{
4080 return ERR_PTR(-EINVAL);
4081}
4082
4083struct page * __weak
9e5fc74c 4084follow_huge_pmd(struct mm_struct *mm, unsigned long address,
e66f17ff 4085 pmd_t *pmd, int flags)
9e5fc74c 4086{
e66f17ff
NH
4087 struct page *page = NULL;
4088 spinlock_t *ptl;
4089retry:
4090 ptl = pmd_lockptr(mm, pmd);
4091 spin_lock(ptl);
4092 /*
4093 * make sure that the address range covered by this pmd is not
4094 * unmapped from other threads.
4095 */
4096 if (!pmd_huge(*pmd))
4097 goto out;
4098 if (pmd_present(*pmd)) {
97534127 4099 page = pmd_page(*pmd) + ((address & ~PMD_MASK) >> PAGE_SHIFT);
e66f17ff
NH
4100 if (flags & FOLL_GET)
4101 get_page(page);
4102 } else {
4103 if (is_hugetlb_entry_migration(huge_ptep_get((pte_t *)pmd))) {
4104 spin_unlock(ptl);
4105 __migration_entry_wait(mm, (pte_t *)pmd, ptl);
4106 goto retry;
4107 }
4108 /*
4109 * hwpoisoned entry is treated as no_page_table in
4110 * follow_page_mask().
4111 */
4112 }
4113out:
4114 spin_unlock(ptl);
9e5fc74c
SC
4115 return page;
4116}
4117
61f77eda 4118struct page * __weak
9e5fc74c 4119follow_huge_pud(struct mm_struct *mm, unsigned long address,
e66f17ff 4120 pud_t *pud, int flags)
9e5fc74c 4121{
e66f17ff
NH
4122 if (flags & FOLL_GET)
4123 return NULL;
9e5fc74c 4124
e66f17ff 4125 return pte_page(*(pte_t *)pud) + ((address & ~PUD_MASK) >> PAGE_SHIFT);
9e5fc74c
SC
4126}
4127
d5bd9106
AK
4128#ifdef CONFIG_MEMORY_FAILURE
4129
93f70f90
NH
4130/*
4131 * This function is called from memory failure code.
4132 * Assume the caller holds page lock of the head page.
4133 */
6de2b1aa 4134int dequeue_hwpoisoned_huge_page(struct page *hpage)
93f70f90
NH
4135{
4136 struct hstate *h = page_hstate(hpage);
4137 int nid = page_to_nid(hpage);
6de2b1aa 4138 int ret = -EBUSY;
93f70f90
NH
4139
4140 spin_lock(&hugetlb_lock);
7e1f049e
NH
4141 /*
4142 * Just checking !page_huge_active is not enough, because that could be
4143 * an isolated/hwpoisoned hugepage (which have >0 refcount).
4144 */
4145 if (!page_huge_active(hpage) && !page_count(hpage)) {
56f2fb14
NH
4146 /*
4147 * Hwpoisoned hugepage isn't linked to activelist or freelist,
4148 * but dangling hpage->lru can trigger list-debug warnings
4149 * (this happens when we call unpoison_memory() on it),
4150 * so let it point to itself with list_del_init().
4151 */
4152 list_del_init(&hpage->lru);
8c6c2ecb 4153 set_page_refcounted(hpage);
6de2b1aa
NH
4154 h->free_huge_pages--;
4155 h->free_huge_pages_node[nid]--;
4156 ret = 0;
4157 }
93f70f90 4158 spin_unlock(&hugetlb_lock);
6de2b1aa 4159 return ret;
93f70f90 4160}
6de2b1aa 4161#endif
31caf665
NH
4162
4163bool isolate_huge_page(struct page *page, struct list_head *list)
4164{
bcc54222
NH
4165 bool ret = true;
4166
309381fe 4167 VM_BUG_ON_PAGE(!PageHead(page), page);
31caf665 4168 spin_lock(&hugetlb_lock);
bcc54222
NH
4169 if (!page_huge_active(page) || !get_page_unless_zero(page)) {
4170 ret = false;
4171 goto unlock;
4172 }
4173 clear_page_huge_active(page);
31caf665 4174 list_move_tail(&page->lru, list);
bcc54222 4175unlock:
31caf665 4176 spin_unlock(&hugetlb_lock);
bcc54222 4177 return ret;
31caf665
NH
4178}
4179
4180void putback_active_hugepage(struct page *page)
4181{
309381fe 4182 VM_BUG_ON_PAGE(!PageHead(page), page);
31caf665 4183 spin_lock(&hugetlb_lock);
bcc54222 4184 set_page_huge_active(page);
31caf665
NH
4185 list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
4186 spin_unlock(&hugetlb_lock);
4187 put_page(page);
4188}