hugetlb/cgroup: add HugeTLB controller documentation
[linux-2.6-block.git] / mm / hugetlb.c
CommitLineData
1da177e4
LT
1/*
2 * Generic hugetlb support.
3 * (C) William Irwin, April 2004
4 */
1da177e4
LT
5#include <linux/list.h>
6#include <linux/init.h>
7#include <linux/module.h>
8#include <linux/mm.h>
e1759c21 9#include <linux/seq_file.h>
1da177e4
LT
10#include <linux/sysctl.h>
11#include <linux/highmem.h>
cddb8a5c 12#include <linux/mmu_notifier.h>
1da177e4 13#include <linux/nodemask.h>
63551ae0 14#include <linux/pagemap.h>
5da7ca86 15#include <linux/mempolicy.h>
aea47ff3 16#include <linux/cpuset.h>
3935baa9 17#include <linux/mutex.h>
aa888a74 18#include <linux/bootmem.h>
a3437870 19#include <linux/sysfs.h>
5a0e3ad6 20#include <linux/slab.h>
0fe6e20b 21#include <linux/rmap.h>
fd6a03ed
NH
22#include <linux/swap.h>
23#include <linux/swapops.h>
d6606683 24
63551ae0
DG
25#include <asm/page.h>
26#include <asm/pgtable.h>
24669e58 27#include <asm/tlb.h>
63551ae0 28
24669e58 29#include <linux/io.h>
63551ae0 30#include <linux/hugetlb.h>
9dd540e2 31#include <linux/hugetlb_cgroup.h>
9a305230 32#include <linux/node.h>
abb8206c 33#include <linux/hugetlb_cgroup.h>
7835e98b 34#include "internal.h"
1da177e4
LT
35
36const unsigned long hugetlb_zero = 0, hugetlb_infinity = ~0UL;
396faf03
MG
37static gfp_t htlb_alloc_mask = GFP_HIGHUSER;
38unsigned long hugepages_treat_as_movable;
a5516438 39
c3f38a38 40int hugetlb_max_hstate __read_mostly;
e5ff2159
AK
41unsigned int default_hstate_idx;
42struct hstate hstates[HUGE_MAX_HSTATE];
43
53ba51d2
JT
44__initdata LIST_HEAD(huge_boot_pages);
45
e5ff2159
AK
46/* for command line parsing */
47static struct hstate * __initdata parsed_hstate;
48static unsigned long __initdata default_hstate_max_huge_pages;
e11bfbfc 49static unsigned long __initdata default_hstate_size;
e5ff2159 50
3935baa9
DG
51/*
52 * Protects updates to hugepage_freelists, nr_huge_pages, and free_huge_pages
53 */
c3f38a38 54DEFINE_SPINLOCK(hugetlb_lock);
0bd0f9fb 55
90481622
DG
56static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
57{
58 bool free = (spool->count == 0) && (spool->used_hpages == 0);
59
60 spin_unlock(&spool->lock);
61
62 /* If no pages are used, and no other handles to the subpool
63 * remain, free the subpool the subpool remain */
64 if (free)
65 kfree(spool);
66}
67
68struct hugepage_subpool *hugepage_new_subpool(long nr_blocks)
69{
70 struct hugepage_subpool *spool;
71
72 spool = kmalloc(sizeof(*spool), GFP_KERNEL);
73 if (!spool)
74 return NULL;
75
76 spin_lock_init(&spool->lock);
77 spool->count = 1;
78 spool->max_hpages = nr_blocks;
79 spool->used_hpages = 0;
80
81 return spool;
82}
83
84void hugepage_put_subpool(struct hugepage_subpool *spool)
85{
86 spin_lock(&spool->lock);
87 BUG_ON(!spool->count);
88 spool->count--;
89 unlock_or_release_subpool(spool);
90}
91
92static int hugepage_subpool_get_pages(struct hugepage_subpool *spool,
93 long delta)
94{
95 int ret = 0;
96
97 if (!spool)
98 return 0;
99
100 spin_lock(&spool->lock);
101 if ((spool->used_hpages + delta) <= spool->max_hpages) {
102 spool->used_hpages += delta;
103 } else {
104 ret = -ENOMEM;
105 }
106 spin_unlock(&spool->lock);
107
108 return ret;
109}
110
111static void hugepage_subpool_put_pages(struct hugepage_subpool *spool,
112 long delta)
113{
114 if (!spool)
115 return;
116
117 spin_lock(&spool->lock);
118 spool->used_hpages -= delta;
119 /* If hugetlbfs_put_super couldn't free spool due to
120 * an outstanding quota reference, free it now. */
121 unlock_or_release_subpool(spool);
122}
123
124static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
125{
126 return HUGETLBFS_SB(inode->i_sb)->spool;
127}
128
129static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
130{
131 return subpool_inode(vma->vm_file->f_dentry->d_inode);
132}
133
96822904
AW
134/*
135 * Region tracking -- allows tracking of reservations and instantiated pages
136 * across the pages in a mapping.
84afd99b
AW
137 *
138 * The region data structures are protected by a combination of the mmap_sem
139 * and the hugetlb_instantion_mutex. To access or modify a region the caller
140 * must either hold the mmap_sem for write, or the mmap_sem for read and
141 * the hugetlb_instantiation mutex:
142 *
32f84528 143 * down_write(&mm->mmap_sem);
84afd99b 144 * or
32f84528
CF
145 * down_read(&mm->mmap_sem);
146 * mutex_lock(&hugetlb_instantiation_mutex);
96822904
AW
147 */
148struct file_region {
149 struct list_head link;
150 long from;
151 long to;
152};
153
154static long region_add(struct list_head *head, long f, long t)
155{
156 struct file_region *rg, *nrg, *trg;
157
158 /* Locate the region we are either in or before. */
159 list_for_each_entry(rg, head, link)
160 if (f <= rg->to)
161 break;
162
163 /* Round our left edge to the current segment if it encloses us. */
164 if (f > rg->from)
165 f = rg->from;
166
167 /* Check for and consume any regions we now overlap with. */
168 nrg = rg;
169 list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
170 if (&rg->link == head)
171 break;
172 if (rg->from > t)
173 break;
174
175 /* If this area reaches higher then extend our area to
176 * include it completely. If this is not the first area
177 * which we intend to reuse, free it. */
178 if (rg->to > t)
179 t = rg->to;
180 if (rg != nrg) {
181 list_del(&rg->link);
182 kfree(rg);
183 }
184 }
185 nrg->from = f;
186 nrg->to = t;
187 return 0;
188}
189
190static long region_chg(struct list_head *head, long f, long t)
191{
192 struct file_region *rg, *nrg;
193 long chg = 0;
194
195 /* Locate the region we are before or in. */
196 list_for_each_entry(rg, head, link)
197 if (f <= rg->to)
198 break;
199
200 /* If we are below the current region then a new region is required.
201 * Subtle, allocate a new region at the position but make it zero
202 * size such that we can guarantee to record the reservation. */
203 if (&rg->link == head || t < rg->from) {
204 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
205 if (!nrg)
206 return -ENOMEM;
207 nrg->from = f;
208 nrg->to = f;
209 INIT_LIST_HEAD(&nrg->link);
210 list_add(&nrg->link, rg->link.prev);
211
212 return t - f;
213 }
214
215 /* Round our left edge to the current segment if it encloses us. */
216 if (f > rg->from)
217 f = rg->from;
218 chg = t - f;
219
220 /* Check for and consume any regions we now overlap with. */
221 list_for_each_entry(rg, rg->link.prev, link) {
222 if (&rg->link == head)
223 break;
224 if (rg->from > t)
225 return chg;
226
25985edc 227 /* We overlap with this area, if it extends further than
96822904
AW
228 * us then we must extend ourselves. Account for its
229 * existing reservation. */
230 if (rg->to > t) {
231 chg += rg->to - t;
232 t = rg->to;
233 }
234 chg -= rg->to - rg->from;
235 }
236 return chg;
237}
238
239static long region_truncate(struct list_head *head, long end)
240{
241 struct file_region *rg, *trg;
242 long chg = 0;
243
244 /* Locate the region we are either in or before. */
245 list_for_each_entry(rg, head, link)
246 if (end <= rg->to)
247 break;
248 if (&rg->link == head)
249 return 0;
250
251 /* If we are in the middle of a region then adjust it. */
252 if (end > rg->from) {
253 chg = rg->to - end;
254 rg->to = end;
255 rg = list_entry(rg->link.next, typeof(*rg), link);
256 }
257
258 /* Drop any remaining regions. */
259 list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
260 if (&rg->link == head)
261 break;
262 chg += rg->to - rg->from;
263 list_del(&rg->link);
264 kfree(rg);
265 }
266 return chg;
267}
268
84afd99b
AW
269static long region_count(struct list_head *head, long f, long t)
270{
271 struct file_region *rg;
272 long chg = 0;
273
274 /* Locate each segment we overlap with, and count that overlap. */
275 list_for_each_entry(rg, head, link) {
f2135a4a
WSH
276 long seg_from;
277 long seg_to;
84afd99b
AW
278
279 if (rg->to <= f)
280 continue;
281 if (rg->from >= t)
282 break;
283
284 seg_from = max(rg->from, f);
285 seg_to = min(rg->to, t);
286
287 chg += seg_to - seg_from;
288 }
289
290 return chg;
291}
292
e7c4b0bf
AW
293/*
294 * Convert the address within this vma to the page offset within
295 * the mapping, in pagecache page units; huge pages here.
296 */
a5516438
AK
297static pgoff_t vma_hugecache_offset(struct hstate *h,
298 struct vm_area_struct *vma, unsigned long address)
e7c4b0bf 299{
a5516438
AK
300 return ((address - vma->vm_start) >> huge_page_shift(h)) +
301 (vma->vm_pgoff >> huge_page_order(h));
e7c4b0bf
AW
302}
303
0fe6e20b
NH
304pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
305 unsigned long address)
306{
307 return vma_hugecache_offset(hstate_vma(vma), vma, address);
308}
309
08fba699
MG
310/*
311 * Return the size of the pages allocated when backing a VMA. In the majority
312 * cases this will be same size as used by the page table entries.
313 */
314unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
315{
316 struct hstate *hstate;
317
318 if (!is_vm_hugetlb_page(vma))
319 return PAGE_SIZE;
320
321 hstate = hstate_vma(vma);
322
323 return 1UL << (hstate->order + PAGE_SHIFT);
324}
f340ca0f 325EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
08fba699 326
3340289d
MG
327/*
328 * Return the page size being used by the MMU to back a VMA. In the majority
329 * of cases, the page size used by the kernel matches the MMU size. On
330 * architectures where it differs, an architecture-specific version of this
331 * function is required.
332 */
333#ifndef vma_mmu_pagesize
334unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
335{
336 return vma_kernel_pagesize(vma);
337}
338#endif
339
84afd99b
AW
340/*
341 * Flags for MAP_PRIVATE reservations. These are stored in the bottom
342 * bits of the reservation map pointer, which are always clear due to
343 * alignment.
344 */
345#define HPAGE_RESV_OWNER (1UL << 0)
346#define HPAGE_RESV_UNMAPPED (1UL << 1)
04f2cbe3 347#define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
84afd99b 348
a1e78772
MG
349/*
350 * These helpers are used to track how many pages are reserved for
351 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
352 * is guaranteed to have their future faults succeed.
353 *
354 * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
355 * the reserve counters are updated with the hugetlb_lock held. It is safe
356 * to reset the VMA at fork() time as it is not in use yet and there is no
357 * chance of the global counters getting corrupted as a result of the values.
84afd99b
AW
358 *
359 * The private mapping reservation is represented in a subtly different
360 * manner to a shared mapping. A shared mapping has a region map associated
361 * with the underlying file, this region map represents the backing file
362 * pages which have ever had a reservation assigned which this persists even
363 * after the page is instantiated. A private mapping has a region map
364 * associated with the original mmap which is attached to all VMAs which
365 * reference it, this region map represents those offsets which have consumed
366 * reservation ie. where pages have been instantiated.
a1e78772 367 */
e7c4b0bf
AW
368static unsigned long get_vma_private_data(struct vm_area_struct *vma)
369{
370 return (unsigned long)vma->vm_private_data;
371}
372
373static void set_vma_private_data(struct vm_area_struct *vma,
374 unsigned long value)
375{
376 vma->vm_private_data = (void *)value;
377}
378
84afd99b
AW
379struct resv_map {
380 struct kref refs;
381 struct list_head regions;
382};
383
2a4b3ded 384static struct resv_map *resv_map_alloc(void)
84afd99b
AW
385{
386 struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
387 if (!resv_map)
388 return NULL;
389
390 kref_init(&resv_map->refs);
391 INIT_LIST_HEAD(&resv_map->regions);
392
393 return resv_map;
394}
395
2a4b3ded 396static void resv_map_release(struct kref *ref)
84afd99b
AW
397{
398 struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
399
400 /* Clear out any active regions before we release the map. */
401 region_truncate(&resv_map->regions, 0);
402 kfree(resv_map);
403}
404
405static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
a1e78772
MG
406{
407 VM_BUG_ON(!is_vm_hugetlb_page(vma));
f83a275d 408 if (!(vma->vm_flags & VM_MAYSHARE))
84afd99b
AW
409 return (struct resv_map *)(get_vma_private_data(vma) &
410 ~HPAGE_RESV_MASK);
2a4b3ded 411 return NULL;
a1e78772
MG
412}
413
84afd99b 414static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
a1e78772
MG
415{
416 VM_BUG_ON(!is_vm_hugetlb_page(vma));
f83a275d 417 VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
a1e78772 418
84afd99b
AW
419 set_vma_private_data(vma, (get_vma_private_data(vma) &
420 HPAGE_RESV_MASK) | (unsigned long)map);
04f2cbe3
MG
421}
422
423static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
424{
04f2cbe3 425 VM_BUG_ON(!is_vm_hugetlb_page(vma));
f83a275d 426 VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
e7c4b0bf
AW
427
428 set_vma_private_data(vma, get_vma_private_data(vma) | flags);
04f2cbe3
MG
429}
430
431static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
432{
433 VM_BUG_ON(!is_vm_hugetlb_page(vma));
e7c4b0bf
AW
434
435 return (get_vma_private_data(vma) & flag) != 0;
a1e78772
MG
436}
437
438/* Decrement the reserved pages in the hugepage pool by one */
a5516438
AK
439static void decrement_hugepage_resv_vma(struct hstate *h,
440 struct vm_area_struct *vma)
a1e78772 441{
c37f9fb1
AW
442 if (vma->vm_flags & VM_NORESERVE)
443 return;
444
f83a275d 445 if (vma->vm_flags & VM_MAYSHARE) {
a1e78772 446 /* Shared mappings always use reserves */
a5516438 447 h->resv_huge_pages--;
84afd99b 448 } else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
a1e78772
MG
449 /*
450 * Only the process that called mmap() has reserves for
451 * private mappings.
452 */
a5516438 453 h->resv_huge_pages--;
a1e78772
MG
454 }
455}
456
04f2cbe3 457/* Reset counters to 0 and clear all HPAGE_RESV_* flags */
a1e78772
MG
458void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
459{
460 VM_BUG_ON(!is_vm_hugetlb_page(vma));
f83a275d 461 if (!(vma->vm_flags & VM_MAYSHARE))
a1e78772
MG
462 vma->vm_private_data = (void *)0;
463}
464
465/* Returns true if the VMA has associated reserve pages */
7f09ca51 466static int vma_has_reserves(struct vm_area_struct *vma)
a1e78772 467{
f83a275d 468 if (vma->vm_flags & VM_MAYSHARE)
7f09ca51
MG
469 return 1;
470 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER))
471 return 1;
472 return 0;
a1e78772
MG
473}
474
0ebabb41
NH
475static void copy_gigantic_page(struct page *dst, struct page *src)
476{
477 int i;
478 struct hstate *h = page_hstate(src);
479 struct page *dst_base = dst;
480 struct page *src_base = src;
481
482 for (i = 0; i < pages_per_huge_page(h); ) {
483 cond_resched();
484 copy_highpage(dst, src);
485
486 i++;
487 dst = mem_map_next(dst, dst_base, i);
488 src = mem_map_next(src, src_base, i);
489 }
490}
491
492void copy_huge_page(struct page *dst, struct page *src)
493{
494 int i;
495 struct hstate *h = page_hstate(src);
496
497 if (unlikely(pages_per_huge_page(h) > MAX_ORDER_NR_PAGES)) {
498 copy_gigantic_page(dst, src);
499 return;
500 }
501
502 might_sleep();
503 for (i = 0; i < pages_per_huge_page(h); i++) {
504 cond_resched();
505 copy_highpage(dst + i, src + i);
506 }
507}
508
a5516438 509static void enqueue_huge_page(struct hstate *h, struct page *page)
1da177e4
LT
510{
511 int nid = page_to_nid(page);
0edaecfa 512 list_move(&page->lru, &h->hugepage_freelists[nid]);
a5516438
AK
513 h->free_huge_pages++;
514 h->free_huge_pages_node[nid]++;
1da177e4
LT
515}
516
bf50bab2
NH
517static struct page *dequeue_huge_page_node(struct hstate *h, int nid)
518{
519 struct page *page;
520
521 if (list_empty(&h->hugepage_freelists[nid]))
522 return NULL;
523 page = list_entry(h->hugepage_freelists[nid].next, struct page, lru);
0edaecfa 524 list_move(&page->lru, &h->hugepage_activelist);
a9869b83 525 set_page_refcounted(page);
bf50bab2
NH
526 h->free_huge_pages--;
527 h->free_huge_pages_node[nid]--;
528 return page;
529}
530
a5516438
AK
531static struct page *dequeue_huge_page_vma(struct hstate *h,
532 struct vm_area_struct *vma,
04f2cbe3 533 unsigned long address, int avoid_reserve)
1da177e4 534{
b1c12cbc 535 struct page *page = NULL;
480eccf9 536 struct mempolicy *mpol;
19770b32 537 nodemask_t *nodemask;
c0ff7453 538 struct zonelist *zonelist;
dd1a239f
MG
539 struct zone *zone;
540 struct zoneref *z;
cc9a6c87 541 unsigned int cpuset_mems_cookie;
1da177e4 542
cc9a6c87
MG
543retry_cpuset:
544 cpuset_mems_cookie = get_mems_allowed();
c0ff7453
MX
545 zonelist = huge_zonelist(vma, address,
546 htlb_alloc_mask, &mpol, &nodemask);
a1e78772
MG
547 /*
548 * A child process with MAP_PRIVATE mappings created by their parent
549 * have no page reserves. This check ensures that reservations are
550 * not "stolen". The child may still get SIGKILLed
551 */
7f09ca51 552 if (!vma_has_reserves(vma) &&
a5516438 553 h->free_huge_pages - h->resv_huge_pages == 0)
c0ff7453 554 goto err;
a1e78772 555
04f2cbe3 556 /* If reserves cannot be used, ensure enough pages are in the pool */
a5516438 557 if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
6eab04a8 558 goto err;
04f2cbe3 559
19770b32
MG
560 for_each_zone_zonelist_nodemask(zone, z, zonelist,
561 MAX_NR_ZONES - 1, nodemask) {
bf50bab2
NH
562 if (cpuset_zone_allowed_softwall(zone, htlb_alloc_mask)) {
563 page = dequeue_huge_page_node(h, zone_to_nid(zone));
564 if (page) {
565 if (!avoid_reserve)
566 decrement_hugepage_resv_vma(h, vma);
567 break;
568 }
3abf7afd 569 }
1da177e4 570 }
cc9a6c87 571
52cd3b07 572 mpol_cond_put(mpol);
cc9a6c87
MG
573 if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !page))
574 goto retry_cpuset;
1da177e4 575 return page;
cc9a6c87
MG
576
577err:
578 mpol_cond_put(mpol);
579 return NULL;
1da177e4
LT
580}
581
a5516438 582static void update_and_free_page(struct hstate *h, struct page *page)
6af2acb6
AL
583{
584 int i;
a5516438 585
18229df5
AW
586 VM_BUG_ON(h->order >= MAX_ORDER);
587
a5516438
AK
588 h->nr_huge_pages--;
589 h->nr_huge_pages_node[page_to_nid(page)]--;
590 for (i = 0; i < pages_per_huge_page(h); i++) {
32f84528
CF
591 page[i].flags &= ~(1 << PG_locked | 1 << PG_error |
592 1 << PG_referenced | 1 << PG_dirty |
593 1 << PG_active | 1 << PG_reserved |
594 1 << PG_private | 1 << PG_writeback);
6af2acb6 595 }
9dd540e2 596 VM_BUG_ON(hugetlb_cgroup_from_page(page));
6af2acb6
AL
597 set_compound_page_dtor(page, NULL);
598 set_page_refcounted(page);
7f2e9525 599 arch_release_hugepage(page);
a5516438 600 __free_pages(page, huge_page_order(h));
6af2acb6
AL
601}
602
e5ff2159
AK
603struct hstate *size_to_hstate(unsigned long size)
604{
605 struct hstate *h;
606
607 for_each_hstate(h) {
608 if (huge_page_size(h) == size)
609 return h;
610 }
611 return NULL;
612}
613
27a85ef1
DG
614static void free_huge_page(struct page *page)
615{
a5516438
AK
616 /*
617 * Can't pass hstate in here because it is called from the
618 * compound page destructor.
619 */
e5ff2159 620 struct hstate *h = page_hstate(page);
7893d1d5 621 int nid = page_to_nid(page);
90481622
DG
622 struct hugepage_subpool *spool =
623 (struct hugepage_subpool *)page_private(page);
27a85ef1 624
e5df70ab 625 set_page_private(page, 0);
23be7468 626 page->mapping = NULL;
7893d1d5 627 BUG_ON(page_count(page));
0fe6e20b 628 BUG_ON(page_mapcount(page));
27a85ef1
DG
629
630 spin_lock(&hugetlb_lock);
6d76dcf4
AK
631 hugetlb_cgroup_uncharge_page(hstate_index(h),
632 pages_per_huge_page(h), page);
aa888a74 633 if (h->surplus_huge_pages_node[nid] && huge_page_order(h) < MAX_ORDER) {
0edaecfa
AK
634 /* remove the page from active list */
635 list_del(&page->lru);
a5516438
AK
636 update_and_free_page(h, page);
637 h->surplus_huge_pages--;
638 h->surplus_huge_pages_node[nid]--;
7893d1d5 639 } else {
a5516438 640 enqueue_huge_page(h, page);
7893d1d5 641 }
27a85ef1 642 spin_unlock(&hugetlb_lock);
90481622 643 hugepage_subpool_put_pages(spool, 1);
27a85ef1
DG
644}
645
a5516438 646static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
b7ba30c6 647{
0edaecfa 648 INIT_LIST_HEAD(&page->lru);
b7ba30c6
AK
649 set_compound_page_dtor(page, free_huge_page);
650 spin_lock(&hugetlb_lock);
9dd540e2 651 set_hugetlb_cgroup(page, NULL);
a5516438
AK
652 h->nr_huge_pages++;
653 h->nr_huge_pages_node[nid]++;
b7ba30c6
AK
654 spin_unlock(&hugetlb_lock);
655 put_page(page); /* free it into the hugepage allocator */
656}
657
20a0307c
WF
658static void prep_compound_gigantic_page(struct page *page, unsigned long order)
659{
660 int i;
661 int nr_pages = 1 << order;
662 struct page *p = page + 1;
663
664 /* we rely on prep_new_huge_page to set the destructor */
665 set_compound_order(page, order);
666 __SetPageHead(page);
667 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
668 __SetPageTail(p);
58a84aa9 669 set_page_count(p, 0);
20a0307c
WF
670 p->first_page = page;
671 }
672}
673
674int PageHuge(struct page *page)
675{
676 compound_page_dtor *dtor;
677
678 if (!PageCompound(page))
679 return 0;
680
681 page = compound_head(page);
682 dtor = get_compound_page_dtor(page);
683
684 return dtor == free_huge_page;
685}
43131e14
NH
686EXPORT_SYMBOL_GPL(PageHuge);
687
a5516438 688static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid)
1da177e4 689{
1da177e4 690 struct page *page;
f96efd58 691
aa888a74
AK
692 if (h->order >= MAX_ORDER)
693 return NULL;
694
6484eb3e 695 page = alloc_pages_exact_node(nid,
551883ae
NA
696 htlb_alloc_mask|__GFP_COMP|__GFP_THISNODE|
697 __GFP_REPEAT|__GFP_NOWARN,
a5516438 698 huge_page_order(h));
1da177e4 699 if (page) {
7f2e9525 700 if (arch_prepare_hugepage(page)) {
caff3a2c 701 __free_pages(page, huge_page_order(h));
7b8ee84d 702 return NULL;
7f2e9525 703 }
a5516438 704 prep_new_huge_page(h, page, nid);
1da177e4 705 }
63b4613c
NA
706
707 return page;
708}
709
9a76db09 710/*
6ae11b27
LS
711 * common helper functions for hstate_next_node_to_{alloc|free}.
712 * We may have allocated or freed a huge page based on a different
713 * nodes_allowed previously, so h->next_node_to_{alloc|free} might
714 * be outside of *nodes_allowed. Ensure that we use an allowed
715 * node for alloc or free.
9a76db09 716 */
6ae11b27 717static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
9a76db09 718{
6ae11b27 719 nid = next_node(nid, *nodes_allowed);
9a76db09 720 if (nid == MAX_NUMNODES)
6ae11b27 721 nid = first_node(*nodes_allowed);
9a76db09
LS
722 VM_BUG_ON(nid >= MAX_NUMNODES);
723
724 return nid;
725}
726
6ae11b27
LS
727static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
728{
729 if (!node_isset(nid, *nodes_allowed))
730 nid = next_node_allowed(nid, nodes_allowed);
731 return nid;
732}
733
5ced66c9 734/*
6ae11b27
LS
735 * returns the previously saved node ["this node"] from which to
736 * allocate a persistent huge page for the pool and advance the
737 * next node from which to allocate, handling wrap at end of node
738 * mask.
5ced66c9 739 */
6ae11b27
LS
740static int hstate_next_node_to_alloc(struct hstate *h,
741 nodemask_t *nodes_allowed)
5ced66c9 742{
6ae11b27
LS
743 int nid;
744
745 VM_BUG_ON(!nodes_allowed);
746
747 nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
748 h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
9a76db09 749
9a76db09 750 return nid;
5ced66c9
AK
751}
752
6ae11b27 753static int alloc_fresh_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
63b4613c
NA
754{
755 struct page *page;
756 int start_nid;
757 int next_nid;
758 int ret = 0;
759
6ae11b27 760 start_nid = hstate_next_node_to_alloc(h, nodes_allowed);
e8c5c824 761 next_nid = start_nid;
63b4613c
NA
762
763 do {
e8c5c824 764 page = alloc_fresh_huge_page_node(h, next_nid);
9a76db09 765 if (page) {
63b4613c 766 ret = 1;
9a76db09
LS
767 break;
768 }
6ae11b27 769 next_nid = hstate_next_node_to_alloc(h, nodes_allowed);
9a76db09 770 } while (next_nid != start_nid);
63b4613c 771
3b116300
AL
772 if (ret)
773 count_vm_event(HTLB_BUDDY_PGALLOC);
774 else
775 count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
776
63b4613c 777 return ret;
1da177e4
LT
778}
779
e8c5c824 780/*
6ae11b27
LS
781 * helper for free_pool_huge_page() - return the previously saved
782 * node ["this node"] from which to free a huge page. Advance the
783 * next node id whether or not we find a free huge page to free so
784 * that the next attempt to free addresses the next node.
e8c5c824 785 */
6ae11b27 786static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
e8c5c824 787{
6ae11b27
LS
788 int nid;
789
790 VM_BUG_ON(!nodes_allowed);
791
792 nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
793 h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
9a76db09 794
9a76db09 795 return nid;
e8c5c824
LS
796}
797
798/*
799 * Free huge page from pool from next node to free.
800 * Attempt to keep persistent huge pages more or less
801 * balanced over allowed nodes.
802 * Called with hugetlb_lock locked.
803 */
6ae11b27
LS
804static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
805 bool acct_surplus)
e8c5c824
LS
806{
807 int start_nid;
808 int next_nid;
809 int ret = 0;
810
6ae11b27 811 start_nid = hstate_next_node_to_free(h, nodes_allowed);
e8c5c824
LS
812 next_nid = start_nid;
813
814 do {
685f3457
LS
815 /*
816 * If we're returning unused surplus pages, only examine
817 * nodes with surplus pages.
818 */
819 if ((!acct_surplus || h->surplus_huge_pages_node[next_nid]) &&
820 !list_empty(&h->hugepage_freelists[next_nid])) {
e8c5c824
LS
821 struct page *page =
822 list_entry(h->hugepage_freelists[next_nid].next,
823 struct page, lru);
824 list_del(&page->lru);
825 h->free_huge_pages--;
826 h->free_huge_pages_node[next_nid]--;
685f3457
LS
827 if (acct_surplus) {
828 h->surplus_huge_pages--;
829 h->surplus_huge_pages_node[next_nid]--;
830 }
e8c5c824
LS
831 update_and_free_page(h, page);
832 ret = 1;
9a76db09 833 break;
e8c5c824 834 }
6ae11b27 835 next_nid = hstate_next_node_to_free(h, nodes_allowed);
9a76db09 836 } while (next_nid != start_nid);
e8c5c824
LS
837
838 return ret;
839}
840
bf50bab2 841static struct page *alloc_buddy_huge_page(struct hstate *h, int nid)
7893d1d5
AL
842{
843 struct page *page;
bf50bab2 844 unsigned int r_nid;
7893d1d5 845
aa888a74
AK
846 if (h->order >= MAX_ORDER)
847 return NULL;
848
d1c3fb1f
NA
849 /*
850 * Assume we will successfully allocate the surplus page to
851 * prevent racing processes from causing the surplus to exceed
852 * overcommit
853 *
854 * This however introduces a different race, where a process B
855 * tries to grow the static hugepage pool while alloc_pages() is
856 * called by process A. B will only examine the per-node
857 * counters in determining if surplus huge pages can be
858 * converted to normal huge pages in adjust_pool_surplus(). A
859 * won't be able to increment the per-node counter, until the
860 * lock is dropped by B, but B doesn't drop hugetlb_lock until
861 * no more huge pages can be converted from surplus to normal
862 * state (and doesn't try to convert again). Thus, we have a
863 * case where a surplus huge page exists, the pool is grown, and
864 * the surplus huge page still exists after, even though it
865 * should just have been converted to a normal huge page. This
866 * does not leak memory, though, as the hugepage will be freed
867 * once it is out of use. It also does not allow the counters to
868 * go out of whack in adjust_pool_surplus() as we don't modify
869 * the node values until we've gotten the hugepage and only the
870 * per-node value is checked there.
871 */
872 spin_lock(&hugetlb_lock);
a5516438 873 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
d1c3fb1f
NA
874 spin_unlock(&hugetlb_lock);
875 return NULL;
876 } else {
a5516438
AK
877 h->nr_huge_pages++;
878 h->surplus_huge_pages++;
d1c3fb1f
NA
879 }
880 spin_unlock(&hugetlb_lock);
881
bf50bab2
NH
882 if (nid == NUMA_NO_NODE)
883 page = alloc_pages(htlb_alloc_mask|__GFP_COMP|
884 __GFP_REPEAT|__GFP_NOWARN,
885 huge_page_order(h));
886 else
887 page = alloc_pages_exact_node(nid,
888 htlb_alloc_mask|__GFP_COMP|__GFP_THISNODE|
889 __GFP_REPEAT|__GFP_NOWARN, huge_page_order(h));
d1c3fb1f 890
caff3a2c
GS
891 if (page && arch_prepare_hugepage(page)) {
892 __free_pages(page, huge_page_order(h));
ea5768c7 893 page = NULL;
caff3a2c
GS
894 }
895
d1c3fb1f 896 spin_lock(&hugetlb_lock);
7893d1d5 897 if (page) {
0edaecfa 898 INIT_LIST_HEAD(&page->lru);
bf50bab2 899 r_nid = page_to_nid(page);
7893d1d5 900 set_compound_page_dtor(page, free_huge_page);
9dd540e2 901 set_hugetlb_cgroup(page, NULL);
d1c3fb1f
NA
902 /*
903 * We incremented the global counters already
904 */
bf50bab2
NH
905 h->nr_huge_pages_node[r_nid]++;
906 h->surplus_huge_pages_node[r_nid]++;
3b116300 907 __count_vm_event(HTLB_BUDDY_PGALLOC);
d1c3fb1f 908 } else {
a5516438
AK
909 h->nr_huge_pages--;
910 h->surplus_huge_pages--;
3b116300 911 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
7893d1d5 912 }
d1c3fb1f 913 spin_unlock(&hugetlb_lock);
7893d1d5
AL
914
915 return page;
916}
917
bf50bab2
NH
918/*
919 * This allocation function is useful in the context where vma is irrelevant.
920 * E.g. soft-offlining uses this function because it only cares physical
921 * address of error page.
922 */
923struct page *alloc_huge_page_node(struct hstate *h, int nid)
924{
925 struct page *page;
926
927 spin_lock(&hugetlb_lock);
928 page = dequeue_huge_page_node(h, nid);
929 spin_unlock(&hugetlb_lock);
930
931 if (!page)
932 page = alloc_buddy_huge_page(h, nid);
933
934 return page;
935}
936
e4e574b7 937/*
25985edc 938 * Increase the hugetlb pool such that it can accommodate a reservation
e4e574b7
AL
939 * of size 'delta'.
940 */
a5516438 941static int gather_surplus_pages(struct hstate *h, int delta)
e4e574b7
AL
942{
943 struct list_head surplus_list;
944 struct page *page, *tmp;
945 int ret, i;
946 int needed, allocated;
28073b02 947 bool alloc_ok = true;
e4e574b7 948
a5516438 949 needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
ac09b3a1 950 if (needed <= 0) {
a5516438 951 h->resv_huge_pages += delta;
e4e574b7 952 return 0;
ac09b3a1 953 }
e4e574b7
AL
954
955 allocated = 0;
956 INIT_LIST_HEAD(&surplus_list);
957
958 ret = -ENOMEM;
959retry:
960 spin_unlock(&hugetlb_lock);
961 for (i = 0; i < needed; i++) {
bf50bab2 962 page = alloc_buddy_huge_page(h, NUMA_NO_NODE);
28073b02
HD
963 if (!page) {
964 alloc_ok = false;
965 break;
966 }
e4e574b7
AL
967 list_add(&page->lru, &surplus_list);
968 }
28073b02 969 allocated += i;
e4e574b7
AL
970
971 /*
972 * After retaking hugetlb_lock, we need to recalculate 'needed'
973 * because either resv_huge_pages or free_huge_pages may have changed.
974 */
975 spin_lock(&hugetlb_lock);
a5516438
AK
976 needed = (h->resv_huge_pages + delta) -
977 (h->free_huge_pages + allocated);
28073b02
HD
978 if (needed > 0) {
979 if (alloc_ok)
980 goto retry;
981 /*
982 * We were not able to allocate enough pages to
983 * satisfy the entire reservation so we free what
984 * we've allocated so far.
985 */
986 goto free;
987 }
e4e574b7
AL
988 /*
989 * The surplus_list now contains _at_least_ the number of extra pages
25985edc 990 * needed to accommodate the reservation. Add the appropriate number
e4e574b7 991 * of pages to the hugetlb pool and free the extras back to the buddy
ac09b3a1
AL
992 * allocator. Commit the entire reservation here to prevent another
993 * process from stealing the pages as they are added to the pool but
994 * before they are reserved.
e4e574b7
AL
995 */
996 needed += allocated;
a5516438 997 h->resv_huge_pages += delta;
e4e574b7 998 ret = 0;
a9869b83 999
19fc3f0a 1000 /* Free the needed pages to the hugetlb pool */
e4e574b7 1001 list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
19fc3f0a
AL
1002 if ((--needed) < 0)
1003 break;
a9869b83
NH
1004 /*
1005 * This page is now managed by the hugetlb allocator and has
1006 * no users -- drop the buddy allocator's reference.
1007 */
1008 put_page_testzero(page);
1009 VM_BUG_ON(page_count(page));
a5516438 1010 enqueue_huge_page(h, page);
19fc3f0a 1011 }
28073b02 1012free:
b0365c8d 1013 spin_unlock(&hugetlb_lock);
19fc3f0a
AL
1014
1015 /* Free unnecessary surplus pages to the buddy allocator */
1016 if (!list_empty(&surplus_list)) {
19fc3f0a 1017 list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
a9869b83 1018 put_page(page);
af767cbd 1019 }
e4e574b7 1020 }
a9869b83 1021 spin_lock(&hugetlb_lock);
e4e574b7
AL
1022
1023 return ret;
1024}
1025
1026/*
1027 * When releasing a hugetlb pool reservation, any surplus pages that were
1028 * allocated to satisfy the reservation must be explicitly freed if they were
1029 * never used.
685f3457 1030 * Called with hugetlb_lock held.
e4e574b7 1031 */
a5516438
AK
1032static void return_unused_surplus_pages(struct hstate *h,
1033 unsigned long unused_resv_pages)
e4e574b7 1034{
e4e574b7
AL
1035 unsigned long nr_pages;
1036
ac09b3a1 1037 /* Uncommit the reservation */
a5516438 1038 h->resv_huge_pages -= unused_resv_pages;
ac09b3a1 1039
aa888a74
AK
1040 /* Cannot return gigantic pages currently */
1041 if (h->order >= MAX_ORDER)
1042 return;
1043
a5516438 1044 nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
e4e574b7 1045
685f3457
LS
1046 /*
1047 * We want to release as many surplus pages as possible, spread
9b5e5d0f
LS
1048 * evenly across all nodes with memory. Iterate across these nodes
1049 * until we can no longer free unreserved surplus pages. This occurs
1050 * when the nodes with surplus pages have no free pages.
1051 * free_pool_huge_page() will balance the the freed pages across the
1052 * on-line nodes with memory and will handle the hstate accounting.
685f3457
LS
1053 */
1054 while (nr_pages--) {
9b5e5d0f 1055 if (!free_pool_huge_page(h, &node_states[N_HIGH_MEMORY], 1))
685f3457 1056 break;
e4e574b7
AL
1057 }
1058}
1059
c37f9fb1
AW
1060/*
1061 * Determine if the huge page at addr within the vma has an associated
1062 * reservation. Where it does not we will need to logically increase
90481622
DG
1063 * reservation and actually increase subpool usage before an allocation
1064 * can occur. Where any new reservation would be required the
1065 * reservation change is prepared, but not committed. Once the page
1066 * has been allocated from the subpool and instantiated the change should
1067 * be committed via vma_commit_reservation. No action is required on
1068 * failure.
c37f9fb1 1069 */
e2f17d94 1070static long vma_needs_reservation(struct hstate *h,
a5516438 1071 struct vm_area_struct *vma, unsigned long addr)
c37f9fb1
AW
1072{
1073 struct address_space *mapping = vma->vm_file->f_mapping;
1074 struct inode *inode = mapping->host;
1075
f83a275d 1076 if (vma->vm_flags & VM_MAYSHARE) {
a5516438 1077 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
c37f9fb1
AW
1078 return region_chg(&inode->i_mapping->private_list,
1079 idx, idx + 1);
1080
84afd99b
AW
1081 } else if (!is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1082 return 1;
c37f9fb1 1083
84afd99b 1084 } else {
e2f17d94 1085 long err;
a5516438 1086 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
84afd99b
AW
1087 struct resv_map *reservations = vma_resv_map(vma);
1088
1089 err = region_chg(&reservations->regions, idx, idx + 1);
1090 if (err < 0)
1091 return err;
1092 return 0;
1093 }
c37f9fb1 1094}
a5516438
AK
1095static void vma_commit_reservation(struct hstate *h,
1096 struct vm_area_struct *vma, unsigned long addr)
c37f9fb1
AW
1097{
1098 struct address_space *mapping = vma->vm_file->f_mapping;
1099 struct inode *inode = mapping->host;
1100
f83a275d 1101 if (vma->vm_flags & VM_MAYSHARE) {
a5516438 1102 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
c37f9fb1 1103 region_add(&inode->i_mapping->private_list, idx, idx + 1);
84afd99b
AW
1104
1105 } else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
a5516438 1106 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
84afd99b
AW
1107 struct resv_map *reservations = vma_resv_map(vma);
1108
1109 /* Mark this page used in the map. */
1110 region_add(&reservations->regions, idx, idx + 1);
c37f9fb1
AW
1111 }
1112}
1113
a1e78772 1114static struct page *alloc_huge_page(struct vm_area_struct *vma,
04f2cbe3 1115 unsigned long addr, int avoid_reserve)
1da177e4 1116{
90481622 1117 struct hugepage_subpool *spool = subpool_vma(vma);
a5516438 1118 struct hstate *h = hstate_vma(vma);
348ea204 1119 struct page *page;
e2f17d94 1120 long chg;
6d76dcf4
AK
1121 int ret, idx;
1122 struct hugetlb_cgroup *h_cg;
a1e78772 1123
6d76dcf4 1124 idx = hstate_index(h);
a1e78772 1125 /*
90481622
DG
1126 * Processes that did not create the mapping will have no
1127 * reserves and will not have accounted against subpool
1128 * limit. Check that the subpool limit can be made before
1129 * satisfying the allocation MAP_NORESERVE mappings may also
1130 * need pages and subpool limit allocated allocated if no reserve
1131 * mapping overlaps.
a1e78772 1132 */
a5516438 1133 chg = vma_needs_reservation(h, vma, addr);
c37f9fb1 1134 if (chg < 0)
76dcee75 1135 return ERR_PTR(-ENOMEM);
c37f9fb1 1136 if (chg)
90481622 1137 if (hugepage_subpool_get_pages(spool, chg))
76dcee75 1138 return ERR_PTR(-ENOSPC);
1da177e4 1139
6d76dcf4
AK
1140 ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
1141 if (ret) {
1142 hugepage_subpool_put_pages(spool, chg);
1143 return ERR_PTR(-ENOSPC);
1144 }
1da177e4 1145 spin_lock(&hugetlb_lock);
a5516438 1146 page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve);
1da177e4 1147 spin_unlock(&hugetlb_lock);
b45b5bd6 1148
68842c9b 1149 if (!page) {
bf50bab2 1150 page = alloc_buddy_huge_page(h, NUMA_NO_NODE);
68842c9b 1151 if (!page) {
6d76dcf4
AK
1152 hugetlb_cgroup_uncharge_cgroup(idx,
1153 pages_per_huge_page(h),
1154 h_cg);
90481622 1155 hugepage_subpool_put_pages(spool, chg);
76dcee75 1156 return ERR_PTR(-ENOSPC);
68842c9b
KC
1157 }
1158 }
348ea204 1159
90481622 1160 set_page_private(page, (unsigned long)spool);
90d8b7e6 1161
a5516438 1162 vma_commit_reservation(h, vma, addr);
6d76dcf4
AK
1163 /* update page cgroup details */
1164 hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
90d8b7e6 1165 return page;
b45b5bd6
DG
1166}
1167
91f47662 1168int __weak alloc_bootmem_huge_page(struct hstate *h)
aa888a74
AK
1169{
1170 struct huge_bootmem_page *m;
9b5e5d0f 1171 int nr_nodes = nodes_weight(node_states[N_HIGH_MEMORY]);
aa888a74
AK
1172
1173 while (nr_nodes) {
1174 void *addr;
1175
1176 addr = __alloc_bootmem_node_nopanic(
6ae11b27 1177 NODE_DATA(hstate_next_node_to_alloc(h,
9b5e5d0f 1178 &node_states[N_HIGH_MEMORY])),
aa888a74
AK
1179 huge_page_size(h), huge_page_size(h), 0);
1180
1181 if (addr) {
1182 /*
1183 * Use the beginning of the huge page to store the
1184 * huge_bootmem_page struct (until gather_bootmem
1185 * puts them into the mem_map).
1186 */
1187 m = addr;
91f47662 1188 goto found;
aa888a74 1189 }
aa888a74
AK
1190 nr_nodes--;
1191 }
1192 return 0;
1193
1194found:
1195 BUG_ON((unsigned long)virt_to_phys(m) & (huge_page_size(h) - 1));
1196 /* Put them into a private list first because mem_map is not up yet */
1197 list_add(&m->list, &huge_boot_pages);
1198 m->hstate = h;
1199 return 1;
1200}
1201
18229df5
AW
1202static void prep_compound_huge_page(struct page *page, int order)
1203{
1204 if (unlikely(order > (MAX_ORDER - 1)))
1205 prep_compound_gigantic_page(page, order);
1206 else
1207 prep_compound_page(page, order);
1208}
1209
aa888a74
AK
1210/* Put bootmem huge pages into the standard lists after mem_map is up */
1211static void __init gather_bootmem_prealloc(void)
1212{
1213 struct huge_bootmem_page *m;
1214
1215 list_for_each_entry(m, &huge_boot_pages, list) {
aa888a74 1216 struct hstate *h = m->hstate;
ee8f248d
BB
1217 struct page *page;
1218
1219#ifdef CONFIG_HIGHMEM
1220 page = pfn_to_page(m->phys >> PAGE_SHIFT);
1221 free_bootmem_late((unsigned long)m,
1222 sizeof(struct huge_bootmem_page));
1223#else
1224 page = virt_to_page(m);
1225#endif
aa888a74
AK
1226 __ClearPageReserved(page);
1227 WARN_ON(page_count(page) != 1);
18229df5 1228 prep_compound_huge_page(page, h->order);
aa888a74 1229 prep_new_huge_page(h, page, page_to_nid(page));
b0320c7b
RA
1230 /*
1231 * If we had gigantic hugepages allocated at boot time, we need
1232 * to restore the 'stolen' pages to totalram_pages in order to
1233 * fix confusing memory reports from free(1) and another
1234 * side-effects, like CommitLimit going negative.
1235 */
1236 if (h->order > (MAX_ORDER - 1))
1237 totalram_pages += 1 << h->order;
aa888a74
AK
1238 }
1239}
1240
8faa8b07 1241static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
1da177e4
LT
1242{
1243 unsigned long i;
a5516438 1244
e5ff2159 1245 for (i = 0; i < h->max_huge_pages; ++i) {
aa888a74
AK
1246 if (h->order >= MAX_ORDER) {
1247 if (!alloc_bootmem_huge_page(h))
1248 break;
9b5e5d0f
LS
1249 } else if (!alloc_fresh_huge_page(h,
1250 &node_states[N_HIGH_MEMORY]))
1da177e4 1251 break;
1da177e4 1252 }
8faa8b07 1253 h->max_huge_pages = i;
e5ff2159
AK
1254}
1255
1256static void __init hugetlb_init_hstates(void)
1257{
1258 struct hstate *h;
1259
1260 for_each_hstate(h) {
8faa8b07
AK
1261 /* oversize hugepages were init'ed in early boot */
1262 if (h->order < MAX_ORDER)
1263 hugetlb_hstate_alloc_pages(h);
e5ff2159
AK
1264 }
1265}
1266
4abd32db
AK
1267static char * __init memfmt(char *buf, unsigned long n)
1268{
1269 if (n >= (1UL << 30))
1270 sprintf(buf, "%lu GB", n >> 30);
1271 else if (n >= (1UL << 20))
1272 sprintf(buf, "%lu MB", n >> 20);
1273 else
1274 sprintf(buf, "%lu KB", n >> 10);
1275 return buf;
1276}
1277
e5ff2159
AK
1278static void __init report_hugepages(void)
1279{
1280 struct hstate *h;
1281
1282 for_each_hstate(h) {
4abd32db
AK
1283 char buf[32];
1284 printk(KERN_INFO "HugeTLB registered %s page size, "
1285 "pre-allocated %ld pages\n",
1286 memfmt(buf, huge_page_size(h)),
1287 h->free_huge_pages);
e5ff2159
AK
1288 }
1289}
1290
1da177e4 1291#ifdef CONFIG_HIGHMEM
6ae11b27
LS
1292static void try_to_free_low(struct hstate *h, unsigned long count,
1293 nodemask_t *nodes_allowed)
1da177e4 1294{
4415cc8d
CL
1295 int i;
1296
aa888a74
AK
1297 if (h->order >= MAX_ORDER)
1298 return;
1299
6ae11b27 1300 for_each_node_mask(i, *nodes_allowed) {
1da177e4 1301 struct page *page, *next;
a5516438
AK
1302 struct list_head *freel = &h->hugepage_freelists[i];
1303 list_for_each_entry_safe(page, next, freel, lru) {
1304 if (count >= h->nr_huge_pages)
6b0c880d 1305 return;
1da177e4
LT
1306 if (PageHighMem(page))
1307 continue;
1308 list_del(&page->lru);
e5ff2159 1309 update_and_free_page(h, page);
a5516438
AK
1310 h->free_huge_pages--;
1311 h->free_huge_pages_node[page_to_nid(page)]--;
1da177e4
LT
1312 }
1313 }
1314}
1315#else
6ae11b27
LS
1316static inline void try_to_free_low(struct hstate *h, unsigned long count,
1317 nodemask_t *nodes_allowed)
1da177e4
LT
1318{
1319}
1320#endif
1321
20a0307c
WF
1322/*
1323 * Increment or decrement surplus_huge_pages. Keep node-specific counters
1324 * balanced by operating on them in a round-robin fashion.
1325 * Returns 1 if an adjustment was made.
1326 */
6ae11b27
LS
1327static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
1328 int delta)
20a0307c 1329{
e8c5c824 1330 int start_nid, next_nid;
20a0307c
WF
1331 int ret = 0;
1332
1333 VM_BUG_ON(delta != -1 && delta != 1);
20a0307c 1334
e8c5c824 1335 if (delta < 0)
6ae11b27 1336 start_nid = hstate_next_node_to_alloc(h, nodes_allowed);
e8c5c824 1337 else
6ae11b27 1338 start_nid = hstate_next_node_to_free(h, nodes_allowed);
e8c5c824
LS
1339 next_nid = start_nid;
1340
1341 do {
1342 int nid = next_nid;
1343 if (delta < 0) {
e8c5c824
LS
1344 /*
1345 * To shrink on this node, there must be a surplus page
1346 */
9a76db09 1347 if (!h->surplus_huge_pages_node[nid]) {
6ae11b27
LS
1348 next_nid = hstate_next_node_to_alloc(h,
1349 nodes_allowed);
e8c5c824 1350 continue;
9a76db09 1351 }
e8c5c824
LS
1352 }
1353 if (delta > 0) {
e8c5c824
LS
1354 /*
1355 * Surplus cannot exceed the total number of pages
1356 */
1357 if (h->surplus_huge_pages_node[nid] >=
9a76db09 1358 h->nr_huge_pages_node[nid]) {
6ae11b27
LS
1359 next_nid = hstate_next_node_to_free(h,
1360 nodes_allowed);
e8c5c824 1361 continue;
9a76db09 1362 }
e8c5c824 1363 }
20a0307c
WF
1364
1365 h->surplus_huge_pages += delta;
1366 h->surplus_huge_pages_node[nid] += delta;
1367 ret = 1;
1368 break;
e8c5c824 1369 } while (next_nid != start_nid);
20a0307c 1370
20a0307c
WF
1371 return ret;
1372}
1373
a5516438 1374#define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
6ae11b27
LS
1375static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count,
1376 nodemask_t *nodes_allowed)
1da177e4 1377{
7893d1d5 1378 unsigned long min_count, ret;
1da177e4 1379
aa888a74
AK
1380 if (h->order >= MAX_ORDER)
1381 return h->max_huge_pages;
1382
7893d1d5
AL
1383 /*
1384 * Increase the pool size
1385 * First take pages out of surplus state. Then make up the
1386 * remaining difference by allocating fresh huge pages.
d1c3fb1f
NA
1387 *
1388 * We might race with alloc_buddy_huge_page() here and be unable
1389 * to convert a surplus huge page to a normal huge page. That is
1390 * not critical, though, it just means the overall size of the
1391 * pool might be one hugepage larger than it needs to be, but
1392 * within all the constraints specified by the sysctls.
7893d1d5 1393 */
1da177e4 1394 spin_lock(&hugetlb_lock);
a5516438 1395 while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
6ae11b27 1396 if (!adjust_pool_surplus(h, nodes_allowed, -1))
7893d1d5
AL
1397 break;
1398 }
1399
a5516438 1400 while (count > persistent_huge_pages(h)) {
7893d1d5
AL
1401 /*
1402 * If this allocation races such that we no longer need the
1403 * page, free_huge_page will handle it by freeing the page
1404 * and reducing the surplus.
1405 */
1406 spin_unlock(&hugetlb_lock);
6ae11b27 1407 ret = alloc_fresh_huge_page(h, nodes_allowed);
7893d1d5
AL
1408 spin_lock(&hugetlb_lock);
1409 if (!ret)
1410 goto out;
1411
536240f2
MG
1412 /* Bail for signals. Probably ctrl-c from user */
1413 if (signal_pending(current))
1414 goto out;
7893d1d5 1415 }
7893d1d5
AL
1416
1417 /*
1418 * Decrease the pool size
1419 * First return free pages to the buddy allocator (being careful
1420 * to keep enough around to satisfy reservations). Then place
1421 * pages into surplus state as needed so the pool will shrink
1422 * to the desired size as pages become free.
d1c3fb1f
NA
1423 *
1424 * By placing pages into the surplus state independent of the
1425 * overcommit value, we are allowing the surplus pool size to
1426 * exceed overcommit. There are few sane options here. Since
1427 * alloc_buddy_huge_page() is checking the global counter,
1428 * though, we'll note that we're not allowed to exceed surplus
1429 * and won't grow the pool anywhere else. Not until one of the
1430 * sysctls are changed, or the surplus pages go out of use.
7893d1d5 1431 */
a5516438 1432 min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
6b0c880d 1433 min_count = max(count, min_count);
6ae11b27 1434 try_to_free_low(h, min_count, nodes_allowed);
a5516438 1435 while (min_count < persistent_huge_pages(h)) {
6ae11b27 1436 if (!free_pool_huge_page(h, nodes_allowed, 0))
1da177e4 1437 break;
1da177e4 1438 }
a5516438 1439 while (count < persistent_huge_pages(h)) {
6ae11b27 1440 if (!adjust_pool_surplus(h, nodes_allowed, 1))
7893d1d5
AL
1441 break;
1442 }
1443out:
a5516438 1444 ret = persistent_huge_pages(h);
1da177e4 1445 spin_unlock(&hugetlb_lock);
7893d1d5 1446 return ret;
1da177e4
LT
1447}
1448
a3437870
NA
1449#define HSTATE_ATTR_RO(_name) \
1450 static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
1451
1452#define HSTATE_ATTR(_name) \
1453 static struct kobj_attribute _name##_attr = \
1454 __ATTR(_name, 0644, _name##_show, _name##_store)
1455
1456static struct kobject *hugepages_kobj;
1457static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
1458
9a305230
LS
1459static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
1460
1461static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
a3437870
NA
1462{
1463 int i;
9a305230 1464
a3437870 1465 for (i = 0; i < HUGE_MAX_HSTATE; i++)
9a305230
LS
1466 if (hstate_kobjs[i] == kobj) {
1467 if (nidp)
1468 *nidp = NUMA_NO_NODE;
a3437870 1469 return &hstates[i];
9a305230
LS
1470 }
1471
1472 return kobj_to_node_hstate(kobj, nidp);
a3437870
NA
1473}
1474
06808b08 1475static ssize_t nr_hugepages_show_common(struct kobject *kobj,
a3437870
NA
1476 struct kobj_attribute *attr, char *buf)
1477{
9a305230
LS
1478 struct hstate *h;
1479 unsigned long nr_huge_pages;
1480 int nid;
1481
1482 h = kobj_to_hstate(kobj, &nid);
1483 if (nid == NUMA_NO_NODE)
1484 nr_huge_pages = h->nr_huge_pages;
1485 else
1486 nr_huge_pages = h->nr_huge_pages_node[nid];
1487
1488 return sprintf(buf, "%lu\n", nr_huge_pages);
a3437870 1489}
adbe8726 1490
06808b08
LS
1491static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
1492 struct kobject *kobj, struct kobj_attribute *attr,
1493 const char *buf, size_t len)
a3437870
NA
1494{
1495 int err;
9a305230 1496 int nid;
06808b08 1497 unsigned long count;
9a305230 1498 struct hstate *h;
bad44b5b 1499 NODEMASK_ALLOC(nodemask_t, nodes_allowed, GFP_KERNEL | __GFP_NORETRY);
a3437870 1500
06808b08 1501 err = strict_strtoul(buf, 10, &count);
73ae31e5 1502 if (err)
adbe8726 1503 goto out;
a3437870 1504
9a305230 1505 h = kobj_to_hstate(kobj, &nid);
adbe8726
EM
1506 if (h->order >= MAX_ORDER) {
1507 err = -EINVAL;
1508 goto out;
1509 }
1510
9a305230
LS
1511 if (nid == NUMA_NO_NODE) {
1512 /*
1513 * global hstate attribute
1514 */
1515 if (!(obey_mempolicy &&
1516 init_nodemask_of_mempolicy(nodes_allowed))) {
1517 NODEMASK_FREE(nodes_allowed);
1518 nodes_allowed = &node_states[N_HIGH_MEMORY];
1519 }
1520 } else if (nodes_allowed) {
1521 /*
1522 * per node hstate attribute: adjust count to global,
1523 * but restrict alloc/free to the specified node.
1524 */
1525 count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
1526 init_nodemask_of_node(nodes_allowed, nid);
1527 } else
1528 nodes_allowed = &node_states[N_HIGH_MEMORY];
1529
06808b08 1530 h->max_huge_pages = set_max_huge_pages(h, count, nodes_allowed);
a3437870 1531
9b5e5d0f 1532 if (nodes_allowed != &node_states[N_HIGH_MEMORY])
06808b08
LS
1533 NODEMASK_FREE(nodes_allowed);
1534
1535 return len;
adbe8726
EM
1536out:
1537 NODEMASK_FREE(nodes_allowed);
1538 return err;
06808b08
LS
1539}
1540
1541static ssize_t nr_hugepages_show(struct kobject *kobj,
1542 struct kobj_attribute *attr, char *buf)
1543{
1544 return nr_hugepages_show_common(kobj, attr, buf);
1545}
1546
1547static ssize_t nr_hugepages_store(struct kobject *kobj,
1548 struct kobj_attribute *attr, const char *buf, size_t len)
1549{
1550 return nr_hugepages_store_common(false, kobj, attr, buf, len);
a3437870
NA
1551}
1552HSTATE_ATTR(nr_hugepages);
1553
06808b08
LS
1554#ifdef CONFIG_NUMA
1555
1556/*
1557 * hstate attribute for optionally mempolicy-based constraint on persistent
1558 * huge page alloc/free.
1559 */
1560static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
1561 struct kobj_attribute *attr, char *buf)
1562{
1563 return nr_hugepages_show_common(kobj, attr, buf);
1564}
1565
1566static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
1567 struct kobj_attribute *attr, const char *buf, size_t len)
1568{
1569 return nr_hugepages_store_common(true, kobj, attr, buf, len);
1570}
1571HSTATE_ATTR(nr_hugepages_mempolicy);
1572#endif
1573
1574
a3437870
NA
1575static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
1576 struct kobj_attribute *attr, char *buf)
1577{
9a305230 1578 struct hstate *h = kobj_to_hstate(kobj, NULL);
a3437870
NA
1579 return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
1580}
adbe8726 1581
a3437870
NA
1582static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
1583 struct kobj_attribute *attr, const char *buf, size_t count)
1584{
1585 int err;
1586 unsigned long input;
9a305230 1587 struct hstate *h = kobj_to_hstate(kobj, NULL);
a3437870 1588
adbe8726
EM
1589 if (h->order >= MAX_ORDER)
1590 return -EINVAL;
1591
a3437870
NA
1592 err = strict_strtoul(buf, 10, &input);
1593 if (err)
73ae31e5 1594 return err;
a3437870
NA
1595
1596 spin_lock(&hugetlb_lock);
1597 h->nr_overcommit_huge_pages = input;
1598 spin_unlock(&hugetlb_lock);
1599
1600 return count;
1601}
1602HSTATE_ATTR(nr_overcommit_hugepages);
1603
1604static ssize_t free_hugepages_show(struct kobject *kobj,
1605 struct kobj_attribute *attr, char *buf)
1606{
9a305230
LS
1607 struct hstate *h;
1608 unsigned long free_huge_pages;
1609 int nid;
1610
1611 h = kobj_to_hstate(kobj, &nid);
1612 if (nid == NUMA_NO_NODE)
1613 free_huge_pages = h->free_huge_pages;
1614 else
1615 free_huge_pages = h->free_huge_pages_node[nid];
1616
1617 return sprintf(buf, "%lu\n", free_huge_pages);
a3437870
NA
1618}
1619HSTATE_ATTR_RO(free_hugepages);
1620
1621static ssize_t resv_hugepages_show(struct kobject *kobj,
1622 struct kobj_attribute *attr, char *buf)
1623{
9a305230 1624 struct hstate *h = kobj_to_hstate(kobj, NULL);
a3437870
NA
1625 return sprintf(buf, "%lu\n", h->resv_huge_pages);
1626}
1627HSTATE_ATTR_RO(resv_hugepages);
1628
1629static ssize_t surplus_hugepages_show(struct kobject *kobj,
1630 struct kobj_attribute *attr, char *buf)
1631{
9a305230
LS
1632 struct hstate *h;
1633 unsigned long surplus_huge_pages;
1634 int nid;
1635
1636 h = kobj_to_hstate(kobj, &nid);
1637 if (nid == NUMA_NO_NODE)
1638 surplus_huge_pages = h->surplus_huge_pages;
1639 else
1640 surplus_huge_pages = h->surplus_huge_pages_node[nid];
1641
1642 return sprintf(buf, "%lu\n", surplus_huge_pages);
a3437870
NA
1643}
1644HSTATE_ATTR_RO(surplus_hugepages);
1645
1646static struct attribute *hstate_attrs[] = {
1647 &nr_hugepages_attr.attr,
1648 &nr_overcommit_hugepages_attr.attr,
1649 &free_hugepages_attr.attr,
1650 &resv_hugepages_attr.attr,
1651 &surplus_hugepages_attr.attr,
06808b08
LS
1652#ifdef CONFIG_NUMA
1653 &nr_hugepages_mempolicy_attr.attr,
1654#endif
a3437870
NA
1655 NULL,
1656};
1657
1658static struct attribute_group hstate_attr_group = {
1659 .attrs = hstate_attrs,
1660};
1661
094e9539
JM
1662static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
1663 struct kobject **hstate_kobjs,
1664 struct attribute_group *hstate_attr_group)
a3437870
NA
1665{
1666 int retval;
972dc4de 1667 int hi = hstate_index(h);
a3437870 1668
9a305230
LS
1669 hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
1670 if (!hstate_kobjs[hi])
a3437870
NA
1671 return -ENOMEM;
1672
9a305230 1673 retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
a3437870 1674 if (retval)
9a305230 1675 kobject_put(hstate_kobjs[hi]);
a3437870
NA
1676
1677 return retval;
1678}
1679
1680static void __init hugetlb_sysfs_init(void)
1681{
1682 struct hstate *h;
1683 int err;
1684
1685 hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
1686 if (!hugepages_kobj)
1687 return;
1688
1689 for_each_hstate(h) {
9a305230
LS
1690 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
1691 hstate_kobjs, &hstate_attr_group);
a3437870
NA
1692 if (err)
1693 printk(KERN_ERR "Hugetlb: Unable to add hstate %s",
1694 h->name);
1695 }
1696}
1697
9a305230
LS
1698#ifdef CONFIG_NUMA
1699
1700/*
1701 * node_hstate/s - associate per node hstate attributes, via their kobjects,
10fbcf4c
KS
1702 * with node devices in node_devices[] using a parallel array. The array
1703 * index of a node device or _hstate == node id.
1704 * This is here to avoid any static dependency of the node device driver, in
9a305230
LS
1705 * the base kernel, on the hugetlb module.
1706 */
1707struct node_hstate {
1708 struct kobject *hugepages_kobj;
1709 struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
1710};
1711struct node_hstate node_hstates[MAX_NUMNODES];
1712
1713/*
10fbcf4c 1714 * A subset of global hstate attributes for node devices
9a305230
LS
1715 */
1716static struct attribute *per_node_hstate_attrs[] = {
1717 &nr_hugepages_attr.attr,
1718 &free_hugepages_attr.attr,
1719 &surplus_hugepages_attr.attr,
1720 NULL,
1721};
1722
1723static struct attribute_group per_node_hstate_attr_group = {
1724 .attrs = per_node_hstate_attrs,
1725};
1726
1727/*
10fbcf4c 1728 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
9a305230
LS
1729 * Returns node id via non-NULL nidp.
1730 */
1731static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
1732{
1733 int nid;
1734
1735 for (nid = 0; nid < nr_node_ids; nid++) {
1736 struct node_hstate *nhs = &node_hstates[nid];
1737 int i;
1738 for (i = 0; i < HUGE_MAX_HSTATE; i++)
1739 if (nhs->hstate_kobjs[i] == kobj) {
1740 if (nidp)
1741 *nidp = nid;
1742 return &hstates[i];
1743 }
1744 }
1745
1746 BUG();
1747 return NULL;
1748}
1749
1750/*
10fbcf4c 1751 * Unregister hstate attributes from a single node device.
9a305230
LS
1752 * No-op if no hstate attributes attached.
1753 */
1754void hugetlb_unregister_node(struct node *node)
1755{
1756 struct hstate *h;
10fbcf4c 1757 struct node_hstate *nhs = &node_hstates[node->dev.id];
9a305230
LS
1758
1759 if (!nhs->hugepages_kobj)
9b5e5d0f 1760 return; /* no hstate attributes */
9a305230 1761
972dc4de
AK
1762 for_each_hstate(h) {
1763 int idx = hstate_index(h);
1764 if (nhs->hstate_kobjs[idx]) {
1765 kobject_put(nhs->hstate_kobjs[idx]);
1766 nhs->hstate_kobjs[idx] = NULL;
9a305230 1767 }
972dc4de 1768 }
9a305230
LS
1769
1770 kobject_put(nhs->hugepages_kobj);
1771 nhs->hugepages_kobj = NULL;
1772}
1773
1774/*
10fbcf4c 1775 * hugetlb module exit: unregister hstate attributes from node devices
9a305230
LS
1776 * that have them.
1777 */
1778static void hugetlb_unregister_all_nodes(void)
1779{
1780 int nid;
1781
1782 /*
10fbcf4c 1783 * disable node device registrations.
9a305230
LS
1784 */
1785 register_hugetlbfs_with_node(NULL, NULL);
1786
1787 /*
1788 * remove hstate attributes from any nodes that have them.
1789 */
1790 for (nid = 0; nid < nr_node_ids; nid++)
1791 hugetlb_unregister_node(&node_devices[nid]);
1792}
1793
1794/*
10fbcf4c 1795 * Register hstate attributes for a single node device.
9a305230
LS
1796 * No-op if attributes already registered.
1797 */
1798void hugetlb_register_node(struct node *node)
1799{
1800 struct hstate *h;
10fbcf4c 1801 struct node_hstate *nhs = &node_hstates[node->dev.id];
9a305230
LS
1802 int err;
1803
1804 if (nhs->hugepages_kobj)
1805 return; /* already allocated */
1806
1807 nhs->hugepages_kobj = kobject_create_and_add("hugepages",
10fbcf4c 1808 &node->dev.kobj);
9a305230
LS
1809 if (!nhs->hugepages_kobj)
1810 return;
1811
1812 for_each_hstate(h) {
1813 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
1814 nhs->hstate_kobjs,
1815 &per_node_hstate_attr_group);
1816 if (err) {
1817 printk(KERN_ERR "Hugetlb: Unable to add hstate %s"
1818 " for node %d\n",
10fbcf4c 1819 h->name, node->dev.id);
9a305230
LS
1820 hugetlb_unregister_node(node);
1821 break;
1822 }
1823 }
1824}
1825
1826/*
9b5e5d0f 1827 * hugetlb init time: register hstate attributes for all registered node
10fbcf4c
KS
1828 * devices of nodes that have memory. All on-line nodes should have
1829 * registered their associated device by this time.
9a305230
LS
1830 */
1831static void hugetlb_register_all_nodes(void)
1832{
1833 int nid;
1834
9b5e5d0f 1835 for_each_node_state(nid, N_HIGH_MEMORY) {
9a305230 1836 struct node *node = &node_devices[nid];
10fbcf4c 1837 if (node->dev.id == nid)
9a305230
LS
1838 hugetlb_register_node(node);
1839 }
1840
1841 /*
10fbcf4c 1842 * Let the node device driver know we're here so it can
9a305230
LS
1843 * [un]register hstate attributes on node hotplug.
1844 */
1845 register_hugetlbfs_with_node(hugetlb_register_node,
1846 hugetlb_unregister_node);
1847}
1848#else /* !CONFIG_NUMA */
1849
1850static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
1851{
1852 BUG();
1853 if (nidp)
1854 *nidp = -1;
1855 return NULL;
1856}
1857
1858static void hugetlb_unregister_all_nodes(void) { }
1859
1860static void hugetlb_register_all_nodes(void) { }
1861
1862#endif
1863
a3437870
NA
1864static void __exit hugetlb_exit(void)
1865{
1866 struct hstate *h;
1867
9a305230
LS
1868 hugetlb_unregister_all_nodes();
1869
a3437870 1870 for_each_hstate(h) {
972dc4de 1871 kobject_put(hstate_kobjs[hstate_index(h)]);
a3437870
NA
1872 }
1873
1874 kobject_put(hugepages_kobj);
1875}
1876module_exit(hugetlb_exit);
1877
1878static int __init hugetlb_init(void)
1879{
0ef89d25
BH
1880 /* Some platform decide whether they support huge pages at boot
1881 * time. On these, such as powerpc, HPAGE_SHIFT is set to 0 when
1882 * there is no such support
1883 */
1884 if (HPAGE_SHIFT == 0)
1885 return 0;
a3437870 1886
e11bfbfc
NP
1887 if (!size_to_hstate(default_hstate_size)) {
1888 default_hstate_size = HPAGE_SIZE;
1889 if (!size_to_hstate(default_hstate_size))
1890 hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
a3437870 1891 }
972dc4de 1892 default_hstate_idx = hstate_index(size_to_hstate(default_hstate_size));
e11bfbfc
NP
1893 if (default_hstate_max_huge_pages)
1894 default_hstate.max_huge_pages = default_hstate_max_huge_pages;
a3437870
NA
1895
1896 hugetlb_init_hstates();
1897
aa888a74
AK
1898 gather_bootmem_prealloc();
1899
a3437870
NA
1900 report_hugepages();
1901
1902 hugetlb_sysfs_init();
1903
9a305230
LS
1904 hugetlb_register_all_nodes();
1905
a3437870
NA
1906 return 0;
1907}
1908module_init(hugetlb_init);
1909
1910/* Should be called on processing a hugepagesz=... option */
1911void __init hugetlb_add_hstate(unsigned order)
1912{
1913 struct hstate *h;
8faa8b07
AK
1914 unsigned long i;
1915
a3437870
NA
1916 if (size_to_hstate(PAGE_SIZE << order)) {
1917 printk(KERN_WARNING "hugepagesz= specified twice, ignoring\n");
1918 return;
1919 }
47d38344 1920 BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
a3437870 1921 BUG_ON(order == 0);
47d38344 1922 h = &hstates[hugetlb_max_hstate++];
a3437870
NA
1923 h->order = order;
1924 h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
8faa8b07
AK
1925 h->nr_huge_pages = 0;
1926 h->free_huge_pages = 0;
1927 for (i = 0; i < MAX_NUMNODES; ++i)
1928 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
0edaecfa 1929 INIT_LIST_HEAD(&h->hugepage_activelist);
9b5e5d0f
LS
1930 h->next_nid_to_alloc = first_node(node_states[N_HIGH_MEMORY]);
1931 h->next_nid_to_free = first_node(node_states[N_HIGH_MEMORY]);
a3437870
NA
1932 snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
1933 huge_page_size(h)/1024);
abb8206c
AK
1934 /*
1935 * Add cgroup control files only if the huge page consists
1936 * of more than two normal pages. This is because we use
1937 * page[2].lru.next for storing cgoup details.
1938 */
1939 if (order >= HUGETLB_CGROUP_MIN_ORDER)
1940 hugetlb_cgroup_file_init(hugetlb_max_hstate - 1);
8faa8b07 1941
a3437870
NA
1942 parsed_hstate = h;
1943}
1944
e11bfbfc 1945static int __init hugetlb_nrpages_setup(char *s)
a3437870
NA
1946{
1947 unsigned long *mhp;
8faa8b07 1948 static unsigned long *last_mhp;
a3437870
NA
1949
1950 /*
47d38344 1951 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter yet,
a3437870
NA
1952 * so this hugepages= parameter goes to the "default hstate".
1953 */
47d38344 1954 if (!hugetlb_max_hstate)
a3437870
NA
1955 mhp = &default_hstate_max_huge_pages;
1956 else
1957 mhp = &parsed_hstate->max_huge_pages;
1958
8faa8b07
AK
1959 if (mhp == last_mhp) {
1960 printk(KERN_WARNING "hugepages= specified twice without "
1961 "interleaving hugepagesz=, ignoring\n");
1962 return 1;
1963 }
1964
a3437870
NA
1965 if (sscanf(s, "%lu", mhp) <= 0)
1966 *mhp = 0;
1967
8faa8b07
AK
1968 /*
1969 * Global state is always initialized later in hugetlb_init.
1970 * But we need to allocate >= MAX_ORDER hstates here early to still
1971 * use the bootmem allocator.
1972 */
47d38344 1973 if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER)
8faa8b07
AK
1974 hugetlb_hstate_alloc_pages(parsed_hstate);
1975
1976 last_mhp = mhp;
1977
a3437870
NA
1978 return 1;
1979}
e11bfbfc
NP
1980__setup("hugepages=", hugetlb_nrpages_setup);
1981
1982static int __init hugetlb_default_setup(char *s)
1983{
1984 default_hstate_size = memparse(s, &s);
1985 return 1;
1986}
1987__setup("default_hugepagesz=", hugetlb_default_setup);
a3437870 1988
8a213460
NA
1989static unsigned int cpuset_mems_nr(unsigned int *array)
1990{
1991 int node;
1992 unsigned int nr = 0;
1993
1994 for_each_node_mask(node, cpuset_current_mems_allowed)
1995 nr += array[node];
1996
1997 return nr;
1998}
1999
2000#ifdef CONFIG_SYSCTL
06808b08
LS
2001static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
2002 struct ctl_table *table, int write,
2003 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 2004{
e5ff2159
AK
2005 struct hstate *h = &default_hstate;
2006 unsigned long tmp;
08d4a246 2007 int ret;
e5ff2159 2008
c033a93c 2009 tmp = h->max_huge_pages;
e5ff2159 2010
adbe8726
EM
2011 if (write && h->order >= MAX_ORDER)
2012 return -EINVAL;
2013
e5ff2159
AK
2014 table->data = &tmp;
2015 table->maxlen = sizeof(unsigned long);
08d4a246
MH
2016 ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2017 if (ret)
2018 goto out;
e5ff2159 2019
06808b08 2020 if (write) {
bad44b5b
DR
2021 NODEMASK_ALLOC(nodemask_t, nodes_allowed,
2022 GFP_KERNEL | __GFP_NORETRY);
06808b08
LS
2023 if (!(obey_mempolicy &&
2024 init_nodemask_of_mempolicy(nodes_allowed))) {
2025 NODEMASK_FREE(nodes_allowed);
2026 nodes_allowed = &node_states[N_HIGH_MEMORY];
2027 }
2028 h->max_huge_pages = set_max_huge_pages(h, tmp, nodes_allowed);
2029
2030 if (nodes_allowed != &node_states[N_HIGH_MEMORY])
2031 NODEMASK_FREE(nodes_allowed);
2032 }
08d4a246
MH
2033out:
2034 return ret;
1da177e4 2035}
396faf03 2036
06808b08
LS
2037int hugetlb_sysctl_handler(struct ctl_table *table, int write,
2038 void __user *buffer, size_t *length, loff_t *ppos)
2039{
2040
2041 return hugetlb_sysctl_handler_common(false, table, write,
2042 buffer, length, ppos);
2043}
2044
2045#ifdef CONFIG_NUMA
2046int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
2047 void __user *buffer, size_t *length, loff_t *ppos)
2048{
2049 return hugetlb_sysctl_handler_common(true, table, write,
2050 buffer, length, ppos);
2051}
2052#endif /* CONFIG_NUMA */
2053
396faf03 2054int hugetlb_treat_movable_handler(struct ctl_table *table, int write,
8d65af78 2055 void __user *buffer,
396faf03
MG
2056 size_t *length, loff_t *ppos)
2057{
8d65af78 2058 proc_dointvec(table, write, buffer, length, ppos);
396faf03
MG
2059 if (hugepages_treat_as_movable)
2060 htlb_alloc_mask = GFP_HIGHUSER_MOVABLE;
2061 else
2062 htlb_alloc_mask = GFP_HIGHUSER;
2063 return 0;
2064}
2065
a3d0c6aa 2066int hugetlb_overcommit_handler(struct ctl_table *table, int write,
8d65af78 2067 void __user *buffer,
a3d0c6aa
NA
2068 size_t *length, loff_t *ppos)
2069{
a5516438 2070 struct hstate *h = &default_hstate;
e5ff2159 2071 unsigned long tmp;
08d4a246 2072 int ret;
e5ff2159 2073
c033a93c 2074 tmp = h->nr_overcommit_huge_pages;
e5ff2159 2075
adbe8726
EM
2076 if (write && h->order >= MAX_ORDER)
2077 return -EINVAL;
2078
e5ff2159
AK
2079 table->data = &tmp;
2080 table->maxlen = sizeof(unsigned long);
08d4a246
MH
2081 ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2082 if (ret)
2083 goto out;
e5ff2159
AK
2084
2085 if (write) {
2086 spin_lock(&hugetlb_lock);
2087 h->nr_overcommit_huge_pages = tmp;
2088 spin_unlock(&hugetlb_lock);
2089 }
08d4a246
MH
2090out:
2091 return ret;
a3d0c6aa
NA
2092}
2093
1da177e4
LT
2094#endif /* CONFIG_SYSCTL */
2095
e1759c21 2096void hugetlb_report_meminfo(struct seq_file *m)
1da177e4 2097{
a5516438 2098 struct hstate *h = &default_hstate;
e1759c21 2099 seq_printf(m,
4f98a2fe
RR
2100 "HugePages_Total: %5lu\n"
2101 "HugePages_Free: %5lu\n"
2102 "HugePages_Rsvd: %5lu\n"
2103 "HugePages_Surp: %5lu\n"
2104 "Hugepagesize: %8lu kB\n",
a5516438
AK
2105 h->nr_huge_pages,
2106 h->free_huge_pages,
2107 h->resv_huge_pages,
2108 h->surplus_huge_pages,
2109 1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
1da177e4
LT
2110}
2111
2112int hugetlb_report_node_meminfo(int nid, char *buf)
2113{
a5516438 2114 struct hstate *h = &default_hstate;
1da177e4
LT
2115 return sprintf(buf,
2116 "Node %d HugePages_Total: %5u\n"
a1de0919
NA
2117 "Node %d HugePages_Free: %5u\n"
2118 "Node %d HugePages_Surp: %5u\n",
a5516438
AK
2119 nid, h->nr_huge_pages_node[nid],
2120 nid, h->free_huge_pages_node[nid],
2121 nid, h->surplus_huge_pages_node[nid]);
1da177e4
LT
2122}
2123
1da177e4
LT
2124/* Return the number pages of memory we physically have, in PAGE_SIZE units. */
2125unsigned long hugetlb_total_pages(void)
2126{
a5516438
AK
2127 struct hstate *h = &default_hstate;
2128 return h->nr_huge_pages * pages_per_huge_page(h);
1da177e4 2129}
1da177e4 2130
a5516438 2131static int hugetlb_acct_memory(struct hstate *h, long delta)
fc1b8a73
MG
2132{
2133 int ret = -ENOMEM;
2134
2135 spin_lock(&hugetlb_lock);
2136 /*
2137 * When cpuset is configured, it breaks the strict hugetlb page
2138 * reservation as the accounting is done on a global variable. Such
2139 * reservation is completely rubbish in the presence of cpuset because
2140 * the reservation is not checked against page availability for the
2141 * current cpuset. Application can still potentially OOM'ed by kernel
2142 * with lack of free htlb page in cpuset that the task is in.
2143 * Attempt to enforce strict accounting with cpuset is almost
2144 * impossible (or too ugly) because cpuset is too fluid that
2145 * task or memory node can be dynamically moved between cpusets.
2146 *
2147 * The change of semantics for shared hugetlb mapping with cpuset is
2148 * undesirable. However, in order to preserve some of the semantics,
2149 * we fall back to check against current free page availability as
2150 * a best attempt and hopefully to minimize the impact of changing
2151 * semantics that cpuset has.
2152 */
2153 if (delta > 0) {
a5516438 2154 if (gather_surplus_pages(h, delta) < 0)
fc1b8a73
MG
2155 goto out;
2156
a5516438
AK
2157 if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
2158 return_unused_surplus_pages(h, delta);
fc1b8a73
MG
2159 goto out;
2160 }
2161 }
2162
2163 ret = 0;
2164 if (delta < 0)
a5516438 2165 return_unused_surplus_pages(h, (unsigned long) -delta);
fc1b8a73
MG
2166
2167out:
2168 spin_unlock(&hugetlb_lock);
2169 return ret;
2170}
2171
84afd99b
AW
2172static void hugetlb_vm_op_open(struct vm_area_struct *vma)
2173{
2174 struct resv_map *reservations = vma_resv_map(vma);
2175
2176 /*
2177 * This new VMA should share its siblings reservation map if present.
2178 * The VMA will only ever have a valid reservation map pointer where
2179 * it is being copied for another still existing VMA. As that VMA
25985edc 2180 * has a reference to the reservation map it cannot disappear until
84afd99b
AW
2181 * after this open call completes. It is therefore safe to take a
2182 * new reference here without additional locking.
2183 */
2184 if (reservations)
2185 kref_get(&reservations->refs);
2186}
2187
c50ac050
DH
2188static void resv_map_put(struct vm_area_struct *vma)
2189{
2190 struct resv_map *reservations = vma_resv_map(vma);
2191
2192 if (!reservations)
2193 return;
2194 kref_put(&reservations->refs, resv_map_release);
2195}
2196
a1e78772
MG
2197static void hugetlb_vm_op_close(struct vm_area_struct *vma)
2198{
a5516438 2199 struct hstate *h = hstate_vma(vma);
84afd99b 2200 struct resv_map *reservations = vma_resv_map(vma);
90481622 2201 struct hugepage_subpool *spool = subpool_vma(vma);
84afd99b
AW
2202 unsigned long reserve;
2203 unsigned long start;
2204 unsigned long end;
2205
2206 if (reservations) {
a5516438
AK
2207 start = vma_hugecache_offset(h, vma, vma->vm_start);
2208 end = vma_hugecache_offset(h, vma, vma->vm_end);
84afd99b
AW
2209
2210 reserve = (end - start) -
2211 region_count(&reservations->regions, start, end);
2212
c50ac050 2213 resv_map_put(vma);
84afd99b 2214
7251ff78 2215 if (reserve) {
a5516438 2216 hugetlb_acct_memory(h, -reserve);
90481622 2217 hugepage_subpool_put_pages(spool, reserve);
7251ff78 2218 }
84afd99b 2219 }
a1e78772
MG
2220}
2221
1da177e4
LT
2222/*
2223 * We cannot handle pagefaults against hugetlb pages at all. They cause
2224 * handle_mm_fault() to try to instantiate regular-sized pages in the
2225 * hugegpage VMA. do_page_fault() is supposed to trap this, so BUG is we get
2226 * this far.
2227 */
d0217ac0 2228static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1da177e4
LT
2229{
2230 BUG();
d0217ac0 2231 return 0;
1da177e4
LT
2232}
2233
f0f37e2f 2234const struct vm_operations_struct hugetlb_vm_ops = {
d0217ac0 2235 .fault = hugetlb_vm_op_fault,
84afd99b 2236 .open = hugetlb_vm_op_open,
a1e78772 2237 .close = hugetlb_vm_op_close,
1da177e4
LT
2238};
2239
1e8f889b
DG
2240static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
2241 int writable)
63551ae0
DG
2242{
2243 pte_t entry;
2244
1e8f889b 2245 if (writable) {
63551ae0
DG
2246 entry =
2247 pte_mkwrite(pte_mkdirty(mk_pte(page, vma->vm_page_prot)));
2248 } else {
7f2e9525 2249 entry = huge_pte_wrprotect(mk_pte(page, vma->vm_page_prot));
63551ae0
DG
2250 }
2251 entry = pte_mkyoung(entry);
2252 entry = pte_mkhuge(entry);
d9ed9faa 2253 entry = arch_make_huge_pte(entry, vma, page, writable);
63551ae0
DG
2254
2255 return entry;
2256}
2257
1e8f889b
DG
2258static void set_huge_ptep_writable(struct vm_area_struct *vma,
2259 unsigned long address, pte_t *ptep)
2260{
2261 pte_t entry;
2262
7f2e9525 2263 entry = pte_mkwrite(pte_mkdirty(huge_ptep_get(ptep)));
32f84528 2264 if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
4b3073e1 2265 update_mmu_cache(vma, address, ptep);
1e8f889b
DG
2266}
2267
2268
63551ae0
DG
2269int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
2270 struct vm_area_struct *vma)
2271{
2272 pte_t *src_pte, *dst_pte, entry;
2273 struct page *ptepage;
1c59827d 2274 unsigned long addr;
1e8f889b 2275 int cow;
a5516438
AK
2276 struct hstate *h = hstate_vma(vma);
2277 unsigned long sz = huge_page_size(h);
1e8f889b
DG
2278
2279 cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
63551ae0 2280
a5516438 2281 for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
c74df32c
HD
2282 src_pte = huge_pte_offset(src, addr);
2283 if (!src_pte)
2284 continue;
a5516438 2285 dst_pte = huge_pte_alloc(dst, addr, sz);
63551ae0
DG
2286 if (!dst_pte)
2287 goto nomem;
c5c99429
LW
2288
2289 /* If the pagetables are shared don't copy or take references */
2290 if (dst_pte == src_pte)
2291 continue;
2292
c74df32c 2293 spin_lock(&dst->page_table_lock);
46478758 2294 spin_lock_nested(&src->page_table_lock, SINGLE_DEPTH_NESTING);
7f2e9525 2295 if (!huge_pte_none(huge_ptep_get(src_pte))) {
1e8f889b 2296 if (cow)
7f2e9525
GS
2297 huge_ptep_set_wrprotect(src, addr, src_pte);
2298 entry = huge_ptep_get(src_pte);
1c59827d
HD
2299 ptepage = pte_page(entry);
2300 get_page(ptepage);
0fe6e20b 2301 page_dup_rmap(ptepage);
1c59827d
HD
2302 set_huge_pte_at(dst, addr, dst_pte, entry);
2303 }
2304 spin_unlock(&src->page_table_lock);
c74df32c 2305 spin_unlock(&dst->page_table_lock);
63551ae0
DG
2306 }
2307 return 0;
2308
2309nomem:
2310 return -ENOMEM;
2311}
2312
290408d4
NH
2313static int is_hugetlb_entry_migration(pte_t pte)
2314{
2315 swp_entry_t swp;
2316
2317 if (huge_pte_none(pte) || pte_present(pte))
2318 return 0;
2319 swp = pte_to_swp_entry(pte);
32f84528 2320 if (non_swap_entry(swp) && is_migration_entry(swp))
290408d4 2321 return 1;
32f84528 2322 else
290408d4
NH
2323 return 0;
2324}
2325
fd6a03ed
NH
2326static int is_hugetlb_entry_hwpoisoned(pte_t pte)
2327{
2328 swp_entry_t swp;
2329
2330 if (huge_pte_none(pte) || pte_present(pte))
2331 return 0;
2332 swp = pte_to_swp_entry(pte);
32f84528 2333 if (non_swap_entry(swp) && is_hwpoison_entry(swp))
fd6a03ed 2334 return 1;
32f84528 2335 else
fd6a03ed
NH
2336 return 0;
2337}
2338
24669e58
AK
2339void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
2340 unsigned long start, unsigned long end,
2341 struct page *ref_page)
63551ae0 2342{
24669e58 2343 int force_flush = 0;
63551ae0
DG
2344 struct mm_struct *mm = vma->vm_mm;
2345 unsigned long address;
c7546f8f 2346 pte_t *ptep;
63551ae0
DG
2347 pte_t pte;
2348 struct page *page;
a5516438
AK
2349 struct hstate *h = hstate_vma(vma);
2350 unsigned long sz = huge_page_size(h);
2351
63551ae0 2352 WARN_ON(!is_vm_hugetlb_page(vma));
a5516438
AK
2353 BUG_ON(start & ~huge_page_mask(h));
2354 BUG_ON(end & ~huge_page_mask(h));
63551ae0 2355
24669e58 2356 tlb_start_vma(tlb, vma);
cddb8a5c 2357 mmu_notifier_invalidate_range_start(mm, start, end);
24669e58 2358again:
508034a3 2359 spin_lock(&mm->page_table_lock);
a5516438 2360 for (address = start; address < end; address += sz) {
c7546f8f 2361 ptep = huge_pte_offset(mm, address);
4c887265 2362 if (!ptep)
c7546f8f
DG
2363 continue;
2364
39dde65c
CK
2365 if (huge_pmd_unshare(mm, &address, ptep))
2366 continue;
2367
6629326b
HD
2368 pte = huge_ptep_get(ptep);
2369 if (huge_pte_none(pte))
2370 continue;
2371
2372 /*
2373 * HWPoisoned hugepage is already unmapped and dropped reference
2374 */
2375 if (unlikely(is_hugetlb_entry_hwpoisoned(pte)))
2376 continue;
2377
2378 page = pte_page(pte);
04f2cbe3
MG
2379 /*
2380 * If a reference page is supplied, it is because a specific
2381 * page is being unmapped, not a range. Ensure the page we
2382 * are about to unmap is the actual page of interest.
2383 */
2384 if (ref_page) {
04f2cbe3
MG
2385 if (page != ref_page)
2386 continue;
2387
2388 /*
2389 * Mark the VMA as having unmapped its page so that
2390 * future faults in this VMA will fail rather than
2391 * looking like data was lost
2392 */
2393 set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
2394 }
2395
c7546f8f 2396 pte = huge_ptep_get_and_clear(mm, address, ptep);
24669e58 2397 tlb_remove_tlb_entry(tlb, ptep, address);
6649a386
KC
2398 if (pte_dirty(pte))
2399 set_page_dirty(page);
9e81130b 2400
24669e58
AK
2401 page_remove_rmap(page);
2402 force_flush = !__tlb_remove_page(tlb, page);
2403 if (force_flush)
2404 break;
9e81130b
HD
2405 /* Bail out after unmapping reference page if supplied */
2406 if (ref_page)
2407 break;
63551ae0 2408 }
cd2934a3 2409 spin_unlock(&mm->page_table_lock);
24669e58
AK
2410 /*
2411 * mmu_gather ran out of room to batch pages, we break out of
2412 * the PTE lock to avoid doing the potential expensive TLB invalidate
2413 * and page-free while holding it.
2414 */
2415 if (force_flush) {
2416 force_flush = 0;
2417 tlb_flush_mmu(tlb);
2418 if (address < end && !ref_page)
2419 goto again;
fe1668ae 2420 }
24669e58
AK
2421 mmu_notifier_invalidate_range_end(mm, start, end);
2422 tlb_end_vma(tlb, vma);
1da177e4 2423}
63551ae0 2424
502717f4 2425void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
04f2cbe3 2426 unsigned long end, struct page *ref_page)
502717f4 2427{
24669e58
AK
2428 struct mm_struct *mm;
2429 struct mmu_gather tlb;
2430
2431 mm = vma->vm_mm;
2432
2433 tlb_gather_mmu(&tlb, mm, 0);
2434 __unmap_hugepage_range(&tlb, vma, start, end, ref_page);
2435 tlb_finish_mmu(&tlb, start, end);
502717f4
CK
2436}
2437
04f2cbe3
MG
2438/*
2439 * This is called when the original mapper is failing to COW a MAP_PRIVATE
2440 * mappping it owns the reserve page for. The intention is to unmap the page
2441 * from other VMAs and let the children be SIGKILLed if they are faulting the
2442 * same region.
2443 */
2a4b3ded
HH
2444static int unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
2445 struct page *page, unsigned long address)
04f2cbe3 2446{
7526674d 2447 struct hstate *h = hstate_vma(vma);
04f2cbe3
MG
2448 struct vm_area_struct *iter_vma;
2449 struct address_space *mapping;
2450 struct prio_tree_iter iter;
2451 pgoff_t pgoff;
2452
2453 /*
2454 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
2455 * from page cache lookup which is in HPAGE_SIZE units.
2456 */
7526674d 2457 address = address & huge_page_mask(h);
0c176d52 2458 pgoff = vma_hugecache_offset(h, vma, address);
90481622 2459 mapping = vma->vm_file->f_dentry->d_inode->i_mapping;
04f2cbe3 2460
4eb2b1dc
MG
2461 /*
2462 * Take the mapping lock for the duration of the table walk. As
2463 * this mapping should be shared between all the VMAs,
2464 * __unmap_hugepage_range() is called as the lock is already held
2465 */
3d48ae45 2466 mutex_lock(&mapping->i_mmap_mutex);
04f2cbe3
MG
2467 vma_prio_tree_foreach(iter_vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
2468 /* Do not unmap the current VMA */
2469 if (iter_vma == vma)
2470 continue;
2471
2472 /*
2473 * Unmap the page from other VMAs without their own reserves.
2474 * They get marked to be SIGKILLed if they fault in these
2475 * areas. This is because a future no-page fault on this VMA
2476 * could insert a zeroed page instead of the data existing
2477 * from the time of fork. This would look like data corruption
2478 */
2479 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
24669e58
AK
2480 unmap_hugepage_range(iter_vma, address,
2481 address + huge_page_size(h), page);
04f2cbe3 2482 }
3d48ae45 2483 mutex_unlock(&mapping->i_mmap_mutex);
04f2cbe3
MG
2484
2485 return 1;
2486}
2487
0fe6e20b
NH
2488/*
2489 * Hugetlb_cow() should be called with page lock of the original hugepage held.
ef009b25
MH
2490 * Called with hugetlb_instantiation_mutex held and pte_page locked so we
2491 * cannot race with other handlers or page migration.
2492 * Keep the pte_same checks anyway to make transition from the mutex easier.
0fe6e20b 2493 */
1e8f889b 2494static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
04f2cbe3
MG
2495 unsigned long address, pte_t *ptep, pte_t pte,
2496 struct page *pagecache_page)
1e8f889b 2497{
a5516438 2498 struct hstate *h = hstate_vma(vma);
1e8f889b 2499 struct page *old_page, *new_page;
79ac6ba4 2500 int avoidcopy;
04f2cbe3 2501 int outside_reserve = 0;
1e8f889b
DG
2502
2503 old_page = pte_page(pte);
2504
04f2cbe3 2505retry_avoidcopy:
1e8f889b
DG
2506 /* If no-one else is actually using this page, avoid the copy
2507 * and just make the page writable */
0fe6e20b 2508 avoidcopy = (page_mapcount(old_page) == 1);
1e8f889b 2509 if (avoidcopy) {
56c9cfb1
NH
2510 if (PageAnon(old_page))
2511 page_move_anon_rmap(old_page, vma, address);
1e8f889b 2512 set_huge_ptep_writable(vma, address, ptep);
83c54070 2513 return 0;
1e8f889b
DG
2514 }
2515
04f2cbe3
MG
2516 /*
2517 * If the process that created a MAP_PRIVATE mapping is about to
2518 * perform a COW due to a shared page count, attempt to satisfy
2519 * the allocation without using the existing reserves. The pagecache
2520 * page is used to determine if the reserve at this address was
2521 * consumed or not. If reserves were used, a partial faulted mapping
2522 * at the time of fork() could consume its reserves on COW instead
2523 * of the full address range.
2524 */
f83a275d 2525 if (!(vma->vm_flags & VM_MAYSHARE) &&
04f2cbe3
MG
2526 is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
2527 old_page != pagecache_page)
2528 outside_reserve = 1;
2529
1e8f889b 2530 page_cache_get(old_page);
b76c8cfb
LW
2531
2532 /* Drop page_table_lock as buddy allocator may be called */
2533 spin_unlock(&mm->page_table_lock);
04f2cbe3 2534 new_page = alloc_huge_page(vma, address, outside_reserve);
1e8f889b 2535
2fc39cec 2536 if (IS_ERR(new_page)) {
76dcee75 2537 long err = PTR_ERR(new_page);
1e8f889b 2538 page_cache_release(old_page);
04f2cbe3
MG
2539
2540 /*
2541 * If a process owning a MAP_PRIVATE mapping fails to COW,
2542 * it is due to references held by a child and an insufficient
2543 * huge page pool. To guarantee the original mappers
2544 * reliability, unmap the page from child processes. The child
2545 * may get SIGKILLed if it later faults.
2546 */
2547 if (outside_reserve) {
2548 BUG_ON(huge_pte_none(pte));
2549 if (unmap_ref_private(mm, vma, old_page, address)) {
04f2cbe3 2550 BUG_ON(huge_pte_none(pte));
b76c8cfb 2551 spin_lock(&mm->page_table_lock);
a734bcc8
HD
2552 ptep = huge_pte_offset(mm, address & huge_page_mask(h));
2553 if (likely(pte_same(huge_ptep_get(ptep), pte)))
2554 goto retry_avoidcopy;
2555 /*
2556 * race occurs while re-acquiring page_table_lock, and
2557 * our job is done.
2558 */
2559 return 0;
04f2cbe3
MG
2560 }
2561 WARN_ON_ONCE(1);
2562 }
2563
b76c8cfb
LW
2564 /* Caller expects lock to be held */
2565 spin_lock(&mm->page_table_lock);
76dcee75
AK
2566 if (err == -ENOMEM)
2567 return VM_FAULT_OOM;
2568 else
2569 return VM_FAULT_SIGBUS;
1e8f889b
DG
2570 }
2571
0fe6e20b
NH
2572 /*
2573 * When the original hugepage is shared one, it does not have
2574 * anon_vma prepared.
2575 */
44e2aa93 2576 if (unlikely(anon_vma_prepare(vma))) {
ea4039a3
HD
2577 page_cache_release(new_page);
2578 page_cache_release(old_page);
44e2aa93
DN
2579 /* Caller expects lock to be held */
2580 spin_lock(&mm->page_table_lock);
0fe6e20b 2581 return VM_FAULT_OOM;
44e2aa93 2582 }
0fe6e20b 2583
47ad8475
AA
2584 copy_user_huge_page(new_page, old_page, address, vma,
2585 pages_per_huge_page(h));
0ed361de 2586 __SetPageUptodate(new_page);
1e8f889b 2587
b76c8cfb
LW
2588 /*
2589 * Retake the page_table_lock to check for racing updates
2590 * before the page tables are altered
2591 */
2592 spin_lock(&mm->page_table_lock);
a5516438 2593 ptep = huge_pte_offset(mm, address & huge_page_mask(h));
7f2e9525 2594 if (likely(pte_same(huge_ptep_get(ptep), pte))) {
1e8f889b 2595 /* Break COW */
3edd4fc9
DD
2596 mmu_notifier_invalidate_range_start(mm,
2597 address & huge_page_mask(h),
2598 (address & huge_page_mask(h)) + huge_page_size(h));
8fe627ec 2599 huge_ptep_clear_flush(vma, address, ptep);
1e8f889b
DG
2600 set_huge_pte_at(mm, address, ptep,
2601 make_huge_pte(vma, new_page, 1));
0fe6e20b 2602 page_remove_rmap(old_page);
cd67f0d2 2603 hugepage_add_new_anon_rmap(new_page, vma, address);
1e8f889b
DG
2604 /* Make the old page be freed below */
2605 new_page = old_page;
3edd4fc9
DD
2606 mmu_notifier_invalidate_range_end(mm,
2607 address & huge_page_mask(h),
2608 (address & huge_page_mask(h)) + huge_page_size(h));
1e8f889b
DG
2609 }
2610 page_cache_release(new_page);
2611 page_cache_release(old_page);
83c54070 2612 return 0;
1e8f889b
DG
2613}
2614
04f2cbe3 2615/* Return the pagecache page at a given address within a VMA */
a5516438
AK
2616static struct page *hugetlbfs_pagecache_page(struct hstate *h,
2617 struct vm_area_struct *vma, unsigned long address)
04f2cbe3
MG
2618{
2619 struct address_space *mapping;
e7c4b0bf 2620 pgoff_t idx;
04f2cbe3
MG
2621
2622 mapping = vma->vm_file->f_mapping;
a5516438 2623 idx = vma_hugecache_offset(h, vma, address);
04f2cbe3
MG
2624
2625 return find_lock_page(mapping, idx);
2626}
2627
3ae77f43
HD
2628/*
2629 * Return whether there is a pagecache page to back given address within VMA.
2630 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
2631 */
2632static bool hugetlbfs_pagecache_present(struct hstate *h,
2a15efc9
HD
2633 struct vm_area_struct *vma, unsigned long address)
2634{
2635 struct address_space *mapping;
2636 pgoff_t idx;
2637 struct page *page;
2638
2639 mapping = vma->vm_file->f_mapping;
2640 idx = vma_hugecache_offset(h, vma, address);
2641
2642 page = find_get_page(mapping, idx);
2643 if (page)
2644 put_page(page);
2645 return page != NULL;
2646}
2647
a1ed3dda 2648static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
788c7df4 2649 unsigned long address, pte_t *ptep, unsigned int flags)
ac9b9c66 2650{
a5516438 2651 struct hstate *h = hstate_vma(vma);
ac9b9c66 2652 int ret = VM_FAULT_SIGBUS;
409eb8c2 2653 int anon_rmap = 0;
e7c4b0bf 2654 pgoff_t idx;
4c887265 2655 unsigned long size;
4c887265
AL
2656 struct page *page;
2657 struct address_space *mapping;
1e8f889b 2658 pte_t new_pte;
4c887265 2659
04f2cbe3
MG
2660 /*
2661 * Currently, we are forced to kill the process in the event the
2662 * original mapper has unmapped pages from the child due to a failed
25985edc 2663 * COW. Warn that such a situation has occurred as it may not be obvious
04f2cbe3
MG
2664 */
2665 if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
2666 printk(KERN_WARNING
2667 "PID %d killed due to inadequate hugepage pool\n",
2668 current->pid);
2669 return ret;
2670 }
2671
4c887265 2672 mapping = vma->vm_file->f_mapping;
a5516438 2673 idx = vma_hugecache_offset(h, vma, address);
4c887265
AL
2674
2675 /*
2676 * Use page lock to guard against racing truncation
2677 * before we get page_table_lock.
2678 */
6bda666a
CL
2679retry:
2680 page = find_lock_page(mapping, idx);
2681 if (!page) {
a5516438 2682 size = i_size_read(mapping->host) >> huge_page_shift(h);
ebed4bfc
HD
2683 if (idx >= size)
2684 goto out;
04f2cbe3 2685 page = alloc_huge_page(vma, address, 0);
2fc39cec 2686 if (IS_ERR(page)) {
76dcee75
AK
2687 ret = PTR_ERR(page);
2688 if (ret == -ENOMEM)
2689 ret = VM_FAULT_OOM;
2690 else
2691 ret = VM_FAULT_SIGBUS;
6bda666a
CL
2692 goto out;
2693 }
47ad8475 2694 clear_huge_page(page, address, pages_per_huge_page(h));
0ed361de 2695 __SetPageUptodate(page);
ac9b9c66 2696
f83a275d 2697 if (vma->vm_flags & VM_MAYSHARE) {
6bda666a 2698 int err;
45c682a6 2699 struct inode *inode = mapping->host;
6bda666a
CL
2700
2701 err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
2702 if (err) {
2703 put_page(page);
6bda666a
CL
2704 if (err == -EEXIST)
2705 goto retry;
2706 goto out;
2707 }
45c682a6
KC
2708
2709 spin_lock(&inode->i_lock);
a5516438 2710 inode->i_blocks += blocks_per_huge_page(h);
45c682a6 2711 spin_unlock(&inode->i_lock);
23be7468 2712 } else {
6bda666a 2713 lock_page(page);
0fe6e20b
NH
2714 if (unlikely(anon_vma_prepare(vma))) {
2715 ret = VM_FAULT_OOM;
2716 goto backout_unlocked;
2717 }
409eb8c2 2718 anon_rmap = 1;
23be7468 2719 }
0fe6e20b 2720 } else {
998b4382
NH
2721 /*
2722 * If memory error occurs between mmap() and fault, some process
2723 * don't have hwpoisoned swap entry for errored virtual address.
2724 * So we need to block hugepage fault by PG_hwpoison bit check.
2725 */
2726 if (unlikely(PageHWPoison(page))) {
32f84528 2727 ret = VM_FAULT_HWPOISON |
972dc4de 2728 VM_FAULT_SET_HINDEX(hstate_index(h));
998b4382
NH
2729 goto backout_unlocked;
2730 }
6bda666a 2731 }
1e8f889b 2732
57303d80
AW
2733 /*
2734 * If we are going to COW a private mapping later, we examine the
2735 * pending reservations for this page now. This will ensure that
2736 * any allocations necessary to record that reservation occur outside
2737 * the spinlock.
2738 */
788c7df4 2739 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED))
2b26736c
AW
2740 if (vma_needs_reservation(h, vma, address) < 0) {
2741 ret = VM_FAULT_OOM;
2742 goto backout_unlocked;
2743 }
57303d80 2744
ac9b9c66 2745 spin_lock(&mm->page_table_lock);
a5516438 2746 size = i_size_read(mapping->host) >> huge_page_shift(h);
4c887265
AL
2747 if (idx >= size)
2748 goto backout;
2749
83c54070 2750 ret = 0;
7f2e9525 2751 if (!huge_pte_none(huge_ptep_get(ptep)))
4c887265
AL
2752 goto backout;
2753
409eb8c2
HD
2754 if (anon_rmap)
2755 hugepage_add_new_anon_rmap(page, vma, address);
2756 else
2757 page_dup_rmap(page);
1e8f889b
DG
2758 new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
2759 && (vma->vm_flags & VM_SHARED)));
2760 set_huge_pte_at(mm, address, ptep, new_pte);
2761
788c7df4 2762 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
1e8f889b 2763 /* Optimization, do the COW without a second fault */
04f2cbe3 2764 ret = hugetlb_cow(mm, vma, address, ptep, new_pte, page);
1e8f889b
DG
2765 }
2766
ac9b9c66 2767 spin_unlock(&mm->page_table_lock);
4c887265
AL
2768 unlock_page(page);
2769out:
ac9b9c66 2770 return ret;
4c887265
AL
2771
2772backout:
2773 spin_unlock(&mm->page_table_lock);
2b26736c 2774backout_unlocked:
4c887265
AL
2775 unlock_page(page);
2776 put_page(page);
2777 goto out;
ac9b9c66
HD
2778}
2779
86e5216f 2780int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
788c7df4 2781 unsigned long address, unsigned int flags)
86e5216f
AL
2782{
2783 pte_t *ptep;
2784 pte_t entry;
1e8f889b 2785 int ret;
0fe6e20b 2786 struct page *page = NULL;
57303d80 2787 struct page *pagecache_page = NULL;
3935baa9 2788 static DEFINE_MUTEX(hugetlb_instantiation_mutex);
a5516438 2789 struct hstate *h = hstate_vma(vma);
86e5216f 2790
1e16a539
KH
2791 address &= huge_page_mask(h);
2792
fd6a03ed
NH
2793 ptep = huge_pte_offset(mm, address);
2794 if (ptep) {
2795 entry = huge_ptep_get(ptep);
290408d4
NH
2796 if (unlikely(is_hugetlb_entry_migration(entry))) {
2797 migration_entry_wait(mm, (pmd_t *)ptep, address);
2798 return 0;
2799 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
32f84528 2800 return VM_FAULT_HWPOISON_LARGE |
972dc4de 2801 VM_FAULT_SET_HINDEX(hstate_index(h));
fd6a03ed
NH
2802 }
2803
a5516438 2804 ptep = huge_pte_alloc(mm, address, huge_page_size(h));
86e5216f
AL
2805 if (!ptep)
2806 return VM_FAULT_OOM;
2807
3935baa9
DG
2808 /*
2809 * Serialize hugepage allocation and instantiation, so that we don't
2810 * get spurious allocation failures if two CPUs race to instantiate
2811 * the same page in the page cache.
2812 */
2813 mutex_lock(&hugetlb_instantiation_mutex);
7f2e9525
GS
2814 entry = huge_ptep_get(ptep);
2815 if (huge_pte_none(entry)) {
788c7df4 2816 ret = hugetlb_no_page(mm, vma, address, ptep, flags);
b4d1d99f 2817 goto out_mutex;
3935baa9 2818 }
86e5216f 2819
83c54070 2820 ret = 0;
1e8f889b 2821
57303d80
AW
2822 /*
2823 * If we are going to COW the mapping later, we examine the pending
2824 * reservations for this page now. This will ensure that any
2825 * allocations necessary to record that reservation occur outside the
2826 * spinlock. For private mappings, we also lookup the pagecache
2827 * page now as it is used to determine if a reservation has been
2828 * consumed.
2829 */
788c7df4 2830 if ((flags & FAULT_FLAG_WRITE) && !pte_write(entry)) {
2b26736c
AW
2831 if (vma_needs_reservation(h, vma, address) < 0) {
2832 ret = VM_FAULT_OOM;
b4d1d99f 2833 goto out_mutex;
2b26736c 2834 }
57303d80 2835
f83a275d 2836 if (!(vma->vm_flags & VM_MAYSHARE))
57303d80
AW
2837 pagecache_page = hugetlbfs_pagecache_page(h,
2838 vma, address);
2839 }
2840
56c9cfb1
NH
2841 /*
2842 * hugetlb_cow() requires page locks of pte_page(entry) and
2843 * pagecache_page, so here we need take the former one
2844 * when page != pagecache_page or !pagecache_page.
2845 * Note that locking order is always pagecache_page -> page,
2846 * so no worry about deadlock.
2847 */
2848 page = pte_page(entry);
66aebce7 2849 get_page(page);
56c9cfb1 2850 if (page != pagecache_page)
0fe6e20b 2851 lock_page(page);
0fe6e20b 2852
1e8f889b
DG
2853 spin_lock(&mm->page_table_lock);
2854 /* Check for a racing update before calling hugetlb_cow */
b4d1d99f
DG
2855 if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
2856 goto out_page_table_lock;
2857
2858
788c7df4 2859 if (flags & FAULT_FLAG_WRITE) {
b4d1d99f 2860 if (!pte_write(entry)) {
57303d80
AW
2861 ret = hugetlb_cow(mm, vma, address, ptep, entry,
2862 pagecache_page);
b4d1d99f
DG
2863 goto out_page_table_lock;
2864 }
2865 entry = pte_mkdirty(entry);
2866 }
2867 entry = pte_mkyoung(entry);
788c7df4
HD
2868 if (huge_ptep_set_access_flags(vma, address, ptep, entry,
2869 flags & FAULT_FLAG_WRITE))
4b3073e1 2870 update_mmu_cache(vma, address, ptep);
b4d1d99f
DG
2871
2872out_page_table_lock:
1e8f889b 2873 spin_unlock(&mm->page_table_lock);
57303d80
AW
2874
2875 if (pagecache_page) {
2876 unlock_page(pagecache_page);
2877 put_page(pagecache_page);
2878 }
1f64d69c
DN
2879 if (page != pagecache_page)
2880 unlock_page(page);
66aebce7 2881 put_page(page);
57303d80 2882
b4d1d99f 2883out_mutex:
3935baa9 2884 mutex_unlock(&hugetlb_instantiation_mutex);
1e8f889b
DG
2885
2886 return ret;
86e5216f
AL
2887}
2888
ceb86879
AK
2889/* Can be overriden by architectures */
2890__attribute__((weak)) struct page *
2891follow_huge_pud(struct mm_struct *mm, unsigned long address,
2892 pud_t *pud, int write)
2893{
2894 BUG();
2895 return NULL;
2896}
2897
63551ae0
DG
2898int follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
2899 struct page **pages, struct vm_area_struct **vmas,
5b23dbe8 2900 unsigned long *position, int *length, int i,
2a15efc9 2901 unsigned int flags)
63551ae0 2902{
d5d4b0aa
CK
2903 unsigned long pfn_offset;
2904 unsigned long vaddr = *position;
63551ae0 2905 int remainder = *length;
a5516438 2906 struct hstate *h = hstate_vma(vma);
63551ae0 2907
1c59827d 2908 spin_lock(&mm->page_table_lock);
63551ae0 2909 while (vaddr < vma->vm_end && remainder) {
4c887265 2910 pte_t *pte;
2a15efc9 2911 int absent;
4c887265 2912 struct page *page;
63551ae0 2913
4c887265
AL
2914 /*
2915 * Some archs (sparc64, sh*) have multiple pte_ts to
2a15efc9 2916 * each hugepage. We have to make sure we get the
4c887265
AL
2917 * first, for the page indexing below to work.
2918 */
a5516438 2919 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h));
2a15efc9
HD
2920 absent = !pte || huge_pte_none(huge_ptep_get(pte));
2921
2922 /*
2923 * When coredumping, it suits get_dump_page if we just return
3ae77f43
HD
2924 * an error where there's an empty slot with no huge pagecache
2925 * to back it. This way, we avoid allocating a hugepage, and
2926 * the sparse dumpfile avoids allocating disk blocks, but its
2927 * huge holes still show up with zeroes where they need to be.
2a15efc9 2928 */
3ae77f43
HD
2929 if (absent && (flags & FOLL_DUMP) &&
2930 !hugetlbfs_pagecache_present(h, vma, vaddr)) {
2a15efc9
HD
2931 remainder = 0;
2932 break;
2933 }
63551ae0 2934
2a15efc9
HD
2935 if (absent ||
2936 ((flags & FOLL_WRITE) && !pte_write(huge_ptep_get(pte)))) {
4c887265 2937 int ret;
63551ae0 2938
4c887265 2939 spin_unlock(&mm->page_table_lock);
2a15efc9
HD
2940 ret = hugetlb_fault(mm, vma, vaddr,
2941 (flags & FOLL_WRITE) ? FAULT_FLAG_WRITE : 0);
4c887265 2942 spin_lock(&mm->page_table_lock);
a89182c7 2943 if (!(ret & VM_FAULT_ERROR))
4c887265 2944 continue;
63551ae0 2945
4c887265 2946 remainder = 0;
4c887265
AL
2947 break;
2948 }
2949
a5516438 2950 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
7f2e9525 2951 page = pte_page(huge_ptep_get(pte));
d5d4b0aa 2952same_page:
d6692183 2953 if (pages) {
2a15efc9 2954 pages[i] = mem_map_offset(page, pfn_offset);
4b2e38ad 2955 get_page(pages[i]);
d6692183 2956 }
63551ae0
DG
2957
2958 if (vmas)
2959 vmas[i] = vma;
2960
2961 vaddr += PAGE_SIZE;
d5d4b0aa 2962 ++pfn_offset;
63551ae0
DG
2963 --remainder;
2964 ++i;
d5d4b0aa 2965 if (vaddr < vma->vm_end && remainder &&
a5516438 2966 pfn_offset < pages_per_huge_page(h)) {
d5d4b0aa
CK
2967 /*
2968 * We use pfn_offset to avoid touching the pageframes
2969 * of this compound page.
2970 */
2971 goto same_page;
2972 }
63551ae0 2973 }
1c59827d 2974 spin_unlock(&mm->page_table_lock);
63551ae0
DG
2975 *length = remainder;
2976 *position = vaddr;
2977
2a15efc9 2978 return i ? i : -EFAULT;
63551ae0 2979}
8f860591
ZY
2980
2981void hugetlb_change_protection(struct vm_area_struct *vma,
2982 unsigned long address, unsigned long end, pgprot_t newprot)
2983{
2984 struct mm_struct *mm = vma->vm_mm;
2985 unsigned long start = address;
2986 pte_t *ptep;
2987 pte_t pte;
a5516438 2988 struct hstate *h = hstate_vma(vma);
8f860591
ZY
2989
2990 BUG_ON(address >= end);
2991 flush_cache_range(vma, address, end);
2992
3d48ae45 2993 mutex_lock(&vma->vm_file->f_mapping->i_mmap_mutex);
8f860591 2994 spin_lock(&mm->page_table_lock);
a5516438 2995 for (; address < end; address += huge_page_size(h)) {
8f860591
ZY
2996 ptep = huge_pte_offset(mm, address);
2997 if (!ptep)
2998 continue;
39dde65c
CK
2999 if (huge_pmd_unshare(mm, &address, ptep))
3000 continue;
7f2e9525 3001 if (!huge_pte_none(huge_ptep_get(ptep))) {
8f860591
ZY
3002 pte = huge_ptep_get_and_clear(mm, address, ptep);
3003 pte = pte_mkhuge(pte_modify(pte, newprot));
3004 set_huge_pte_at(mm, address, ptep, pte);
8f860591
ZY
3005 }
3006 }
3007 spin_unlock(&mm->page_table_lock);
3d48ae45 3008 mutex_unlock(&vma->vm_file->f_mapping->i_mmap_mutex);
8f860591
ZY
3009
3010 flush_tlb_range(vma, start, end);
3011}
3012
a1e78772
MG
3013int hugetlb_reserve_pages(struct inode *inode,
3014 long from, long to,
5a6fe125 3015 struct vm_area_struct *vma,
ca16d140 3016 vm_flags_t vm_flags)
e4e574b7 3017{
17c9d12e 3018 long ret, chg;
a5516438 3019 struct hstate *h = hstate_inode(inode);
90481622 3020 struct hugepage_subpool *spool = subpool_inode(inode);
e4e574b7 3021
17c9d12e
MG
3022 /*
3023 * Only apply hugepage reservation if asked. At fault time, an
3024 * attempt will be made for VM_NORESERVE to allocate a page
90481622 3025 * without using reserves
17c9d12e 3026 */
ca16d140 3027 if (vm_flags & VM_NORESERVE)
17c9d12e
MG
3028 return 0;
3029
a1e78772
MG
3030 /*
3031 * Shared mappings base their reservation on the number of pages that
3032 * are already allocated on behalf of the file. Private mappings need
3033 * to reserve the full area even if read-only as mprotect() may be
3034 * called to make the mapping read-write. Assume !vma is a shm mapping
3035 */
f83a275d 3036 if (!vma || vma->vm_flags & VM_MAYSHARE)
a1e78772 3037 chg = region_chg(&inode->i_mapping->private_list, from, to);
17c9d12e
MG
3038 else {
3039 struct resv_map *resv_map = resv_map_alloc();
3040 if (!resv_map)
3041 return -ENOMEM;
3042
a1e78772 3043 chg = to - from;
84afd99b 3044
17c9d12e
MG
3045 set_vma_resv_map(vma, resv_map);
3046 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
3047 }
3048
c50ac050
DH
3049 if (chg < 0) {
3050 ret = chg;
3051 goto out_err;
3052 }
8a630112 3053
90481622 3054 /* There must be enough pages in the subpool for the mapping */
c50ac050
DH
3055 if (hugepage_subpool_get_pages(spool, chg)) {
3056 ret = -ENOSPC;
3057 goto out_err;
3058 }
5a6fe125
MG
3059
3060 /*
17c9d12e 3061 * Check enough hugepages are available for the reservation.
90481622 3062 * Hand the pages back to the subpool if there are not
5a6fe125 3063 */
a5516438 3064 ret = hugetlb_acct_memory(h, chg);
68842c9b 3065 if (ret < 0) {
90481622 3066 hugepage_subpool_put_pages(spool, chg);
c50ac050 3067 goto out_err;
68842c9b 3068 }
17c9d12e
MG
3069
3070 /*
3071 * Account for the reservations made. Shared mappings record regions
3072 * that have reservations as they are shared by multiple VMAs.
3073 * When the last VMA disappears, the region map says how much
3074 * the reservation was and the page cache tells how much of
3075 * the reservation was consumed. Private mappings are per-VMA and
3076 * only the consumed reservations are tracked. When the VMA
3077 * disappears, the original reservation is the VMA size and the
3078 * consumed reservations are stored in the map. Hence, nothing
3079 * else has to be done for private mappings here
3080 */
f83a275d 3081 if (!vma || vma->vm_flags & VM_MAYSHARE)
a1e78772 3082 region_add(&inode->i_mapping->private_list, from, to);
a43a8c39 3083 return 0;
c50ac050 3084out_err:
4523e145
DH
3085 if (vma)
3086 resv_map_put(vma);
c50ac050 3087 return ret;
a43a8c39
CK
3088}
3089
3090void hugetlb_unreserve_pages(struct inode *inode, long offset, long freed)
3091{
a5516438 3092 struct hstate *h = hstate_inode(inode);
a43a8c39 3093 long chg = region_truncate(&inode->i_mapping->private_list, offset);
90481622 3094 struct hugepage_subpool *spool = subpool_inode(inode);
45c682a6
KC
3095
3096 spin_lock(&inode->i_lock);
e4c6f8be 3097 inode->i_blocks -= (blocks_per_huge_page(h) * freed);
45c682a6
KC
3098 spin_unlock(&inode->i_lock);
3099
90481622 3100 hugepage_subpool_put_pages(spool, (chg - freed));
a5516438 3101 hugetlb_acct_memory(h, -(chg - freed));
a43a8c39 3102}
93f70f90 3103
d5bd9106
AK
3104#ifdef CONFIG_MEMORY_FAILURE
3105
6de2b1aa
NH
3106/* Should be called in hugetlb_lock */
3107static int is_hugepage_on_freelist(struct page *hpage)
3108{
3109 struct page *page;
3110 struct page *tmp;
3111 struct hstate *h = page_hstate(hpage);
3112 int nid = page_to_nid(hpage);
3113
3114 list_for_each_entry_safe(page, tmp, &h->hugepage_freelists[nid], lru)
3115 if (page == hpage)
3116 return 1;
3117 return 0;
3118}
3119
93f70f90
NH
3120/*
3121 * This function is called from memory failure code.
3122 * Assume the caller holds page lock of the head page.
3123 */
6de2b1aa 3124int dequeue_hwpoisoned_huge_page(struct page *hpage)
93f70f90
NH
3125{
3126 struct hstate *h = page_hstate(hpage);
3127 int nid = page_to_nid(hpage);
6de2b1aa 3128 int ret = -EBUSY;
93f70f90
NH
3129
3130 spin_lock(&hugetlb_lock);
6de2b1aa
NH
3131 if (is_hugepage_on_freelist(hpage)) {
3132 list_del(&hpage->lru);
8c6c2ecb 3133 set_page_refcounted(hpage);
6de2b1aa
NH
3134 h->free_huge_pages--;
3135 h->free_huge_pages_node[nid]--;
3136 ret = 0;
3137 }
93f70f90 3138 spin_unlock(&hugetlb_lock);
6de2b1aa 3139 return ret;
93f70f90 3140}
6de2b1aa 3141#endif