mm, hugetlb: use vma_resv_map() map types
[linux-2.6-block.git] / mm / hugetlb.c
CommitLineData
1da177e4
LT
1/*
2 * Generic hugetlb support.
6d49e352 3 * (C) Nadia Yvette Chambers, April 2004
1da177e4 4 */
1da177e4
LT
5#include <linux/list.h>
6#include <linux/init.h>
7#include <linux/module.h>
8#include <linux/mm.h>
e1759c21 9#include <linux/seq_file.h>
1da177e4
LT
10#include <linux/sysctl.h>
11#include <linux/highmem.h>
cddb8a5c 12#include <linux/mmu_notifier.h>
1da177e4 13#include <linux/nodemask.h>
63551ae0 14#include <linux/pagemap.h>
5da7ca86 15#include <linux/mempolicy.h>
aea47ff3 16#include <linux/cpuset.h>
3935baa9 17#include <linux/mutex.h>
aa888a74 18#include <linux/bootmem.h>
a3437870 19#include <linux/sysfs.h>
5a0e3ad6 20#include <linux/slab.h>
0fe6e20b 21#include <linux/rmap.h>
fd6a03ed
NH
22#include <linux/swap.h>
23#include <linux/swapops.h>
c8721bbb 24#include <linux/page-isolation.h>
d6606683 25
63551ae0
DG
26#include <asm/page.h>
27#include <asm/pgtable.h>
24669e58 28#include <asm/tlb.h>
63551ae0 29
24669e58 30#include <linux/io.h>
63551ae0 31#include <linux/hugetlb.h>
9dd540e2 32#include <linux/hugetlb_cgroup.h>
9a305230 33#include <linux/node.h>
7835e98b 34#include "internal.h"
1da177e4
LT
35
36const unsigned long hugetlb_zero = 0, hugetlb_infinity = ~0UL;
396faf03 37unsigned long hugepages_treat_as_movable;
a5516438 38
c3f38a38 39int hugetlb_max_hstate __read_mostly;
e5ff2159
AK
40unsigned int default_hstate_idx;
41struct hstate hstates[HUGE_MAX_HSTATE];
42
53ba51d2
JT
43__initdata LIST_HEAD(huge_boot_pages);
44
e5ff2159
AK
45/* for command line parsing */
46static struct hstate * __initdata parsed_hstate;
47static unsigned long __initdata default_hstate_max_huge_pages;
e11bfbfc 48static unsigned long __initdata default_hstate_size;
e5ff2159 49
3935baa9 50/*
31caf665
NH
51 * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
52 * free_huge_pages, and surplus_huge_pages.
3935baa9 53 */
c3f38a38 54DEFINE_SPINLOCK(hugetlb_lock);
0bd0f9fb 55
90481622
DG
56static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
57{
58 bool free = (spool->count == 0) && (spool->used_hpages == 0);
59
60 spin_unlock(&spool->lock);
61
62 /* If no pages are used, and no other handles to the subpool
63 * remain, free the subpool the subpool remain */
64 if (free)
65 kfree(spool);
66}
67
68struct hugepage_subpool *hugepage_new_subpool(long nr_blocks)
69{
70 struct hugepage_subpool *spool;
71
72 spool = kmalloc(sizeof(*spool), GFP_KERNEL);
73 if (!spool)
74 return NULL;
75
76 spin_lock_init(&spool->lock);
77 spool->count = 1;
78 spool->max_hpages = nr_blocks;
79 spool->used_hpages = 0;
80
81 return spool;
82}
83
84void hugepage_put_subpool(struct hugepage_subpool *spool)
85{
86 spin_lock(&spool->lock);
87 BUG_ON(!spool->count);
88 spool->count--;
89 unlock_or_release_subpool(spool);
90}
91
92static int hugepage_subpool_get_pages(struct hugepage_subpool *spool,
93 long delta)
94{
95 int ret = 0;
96
97 if (!spool)
98 return 0;
99
100 spin_lock(&spool->lock);
101 if ((spool->used_hpages + delta) <= spool->max_hpages) {
102 spool->used_hpages += delta;
103 } else {
104 ret = -ENOMEM;
105 }
106 spin_unlock(&spool->lock);
107
108 return ret;
109}
110
111static void hugepage_subpool_put_pages(struct hugepage_subpool *spool,
112 long delta)
113{
114 if (!spool)
115 return;
116
117 spin_lock(&spool->lock);
118 spool->used_hpages -= delta;
119 /* If hugetlbfs_put_super couldn't free spool due to
120 * an outstanding quota reference, free it now. */
121 unlock_or_release_subpool(spool);
122}
123
124static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
125{
126 return HUGETLBFS_SB(inode->i_sb)->spool;
127}
128
129static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
130{
496ad9aa 131 return subpool_inode(file_inode(vma->vm_file));
90481622
DG
132}
133
96822904
AW
134/*
135 * Region tracking -- allows tracking of reservations and instantiated pages
136 * across the pages in a mapping.
84afd99b 137 *
7b24d861
DB
138 * The region data structures are embedded into a resv_map and
139 * protected by a resv_map's lock
96822904
AW
140 */
141struct file_region {
142 struct list_head link;
143 long from;
144 long to;
145};
146
1406ec9b 147static long region_add(struct resv_map *resv, long f, long t)
96822904 148{
1406ec9b 149 struct list_head *head = &resv->regions;
96822904
AW
150 struct file_region *rg, *nrg, *trg;
151
7b24d861 152 spin_lock(&resv->lock);
96822904
AW
153 /* Locate the region we are either in or before. */
154 list_for_each_entry(rg, head, link)
155 if (f <= rg->to)
156 break;
157
158 /* Round our left edge to the current segment if it encloses us. */
159 if (f > rg->from)
160 f = rg->from;
161
162 /* Check for and consume any regions we now overlap with. */
163 nrg = rg;
164 list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
165 if (&rg->link == head)
166 break;
167 if (rg->from > t)
168 break;
169
170 /* If this area reaches higher then extend our area to
171 * include it completely. If this is not the first area
172 * which we intend to reuse, free it. */
173 if (rg->to > t)
174 t = rg->to;
175 if (rg != nrg) {
176 list_del(&rg->link);
177 kfree(rg);
178 }
179 }
180 nrg->from = f;
181 nrg->to = t;
7b24d861 182 spin_unlock(&resv->lock);
96822904
AW
183 return 0;
184}
185
1406ec9b 186static long region_chg(struct resv_map *resv, long f, long t)
96822904 187{
1406ec9b 188 struct list_head *head = &resv->regions;
7b24d861 189 struct file_region *rg, *nrg = NULL;
96822904
AW
190 long chg = 0;
191
7b24d861
DB
192retry:
193 spin_lock(&resv->lock);
96822904
AW
194 /* Locate the region we are before or in. */
195 list_for_each_entry(rg, head, link)
196 if (f <= rg->to)
197 break;
198
199 /* If we are below the current region then a new region is required.
200 * Subtle, allocate a new region at the position but make it zero
201 * size such that we can guarantee to record the reservation. */
202 if (&rg->link == head || t < rg->from) {
7b24d861
DB
203 if (!nrg) {
204 spin_unlock(&resv->lock);
205 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
206 if (!nrg)
207 return -ENOMEM;
208
209 nrg->from = f;
210 nrg->to = f;
211 INIT_LIST_HEAD(&nrg->link);
212 goto retry;
213 }
96822904 214
7b24d861
DB
215 list_add(&nrg->link, rg->link.prev);
216 chg = t - f;
217 goto out_nrg;
96822904
AW
218 }
219
220 /* Round our left edge to the current segment if it encloses us. */
221 if (f > rg->from)
222 f = rg->from;
223 chg = t - f;
224
225 /* Check for and consume any regions we now overlap with. */
226 list_for_each_entry(rg, rg->link.prev, link) {
227 if (&rg->link == head)
228 break;
229 if (rg->from > t)
7b24d861 230 goto out;
96822904 231
25985edc 232 /* We overlap with this area, if it extends further than
96822904
AW
233 * us then we must extend ourselves. Account for its
234 * existing reservation. */
235 if (rg->to > t) {
236 chg += rg->to - t;
237 t = rg->to;
238 }
239 chg -= rg->to - rg->from;
240 }
7b24d861
DB
241
242out:
243 spin_unlock(&resv->lock);
244 /* We already know we raced and no longer need the new region */
245 kfree(nrg);
246 return chg;
247out_nrg:
248 spin_unlock(&resv->lock);
96822904
AW
249 return chg;
250}
251
1406ec9b 252static long region_truncate(struct resv_map *resv, long end)
96822904 253{
1406ec9b 254 struct list_head *head = &resv->regions;
96822904
AW
255 struct file_region *rg, *trg;
256 long chg = 0;
257
7b24d861 258 spin_lock(&resv->lock);
96822904
AW
259 /* Locate the region we are either in or before. */
260 list_for_each_entry(rg, head, link)
261 if (end <= rg->to)
262 break;
263 if (&rg->link == head)
7b24d861 264 goto out;
96822904
AW
265
266 /* If we are in the middle of a region then adjust it. */
267 if (end > rg->from) {
268 chg = rg->to - end;
269 rg->to = end;
270 rg = list_entry(rg->link.next, typeof(*rg), link);
271 }
272
273 /* Drop any remaining regions. */
274 list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
275 if (&rg->link == head)
276 break;
277 chg += rg->to - rg->from;
278 list_del(&rg->link);
279 kfree(rg);
280 }
7b24d861
DB
281
282out:
283 spin_unlock(&resv->lock);
96822904
AW
284 return chg;
285}
286
1406ec9b 287static long region_count(struct resv_map *resv, long f, long t)
84afd99b 288{
1406ec9b 289 struct list_head *head = &resv->regions;
84afd99b
AW
290 struct file_region *rg;
291 long chg = 0;
292
7b24d861 293 spin_lock(&resv->lock);
84afd99b
AW
294 /* Locate each segment we overlap with, and count that overlap. */
295 list_for_each_entry(rg, head, link) {
f2135a4a
WSH
296 long seg_from;
297 long seg_to;
84afd99b
AW
298
299 if (rg->to <= f)
300 continue;
301 if (rg->from >= t)
302 break;
303
304 seg_from = max(rg->from, f);
305 seg_to = min(rg->to, t);
306
307 chg += seg_to - seg_from;
308 }
7b24d861 309 spin_unlock(&resv->lock);
84afd99b
AW
310
311 return chg;
312}
313
e7c4b0bf
AW
314/*
315 * Convert the address within this vma to the page offset within
316 * the mapping, in pagecache page units; huge pages here.
317 */
a5516438
AK
318static pgoff_t vma_hugecache_offset(struct hstate *h,
319 struct vm_area_struct *vma, unsigned long address)
e7c4b0bf 320{
a5516438
AK
321 return ((address - vma->vm_start) >> huge_page_shift(h)) +
322 (vma->vm_pgoff >> huge_page_order(h));
e7c4b0bf
AW
323}
324
0fe6e20b
NH
325pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
326 unsigned long address)
327{
328 return vma_hugecache_offset(hstate_vma(vma), vma, address);
329}
330
08fba699
MG
331/*
332 * Return the size of the pages allocated when backing a VMA. In the majority
333 * cases this will be same size as used by the page table entries.
334 */
335unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
336{
337 struct hstate *hstate;
338
339 if (!is_vm_hugetlb_page(vma))
340 return PAGE_SIZE;
341
342 hstate = hstate_vma(vma);
343
2415cf12 344 return 1UL << huge_page_shift(hstate);
08fba699 345}
f340ca0f 346EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
08fba699 347
3340289d
MG
348/*
349 * Return the page size being used by the MMU to back a VMA. In the majority
350 * of cases, the page size used by the kernel matches the MMU size. On
351 * architectures where it differs, an architecture-specific version of this
352 * function is required.
353 */
354#ifndef vma_mmu_pagesize
355unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
356{
357 return vma_kernel_pagesize(vma);
358}
359#endif
360
84afd99b
AW
361/*
362 * Flags for MAP_PRIVATE reservations. These are stored in the bottom
363 * bits of the reservation map pointer, which are always clear due to
364 * alignment.
365 */
366#define HPAGE_RESV_OWNER (1UL << 0)
367#define HPAGE_RESV_UNMAPPED (1UL << 1)
04f2cbe3 368#define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
84afd99b 369
a1e78772
MG
370/*
371 * These helpers are used to track how many pages are reserved for
372 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
373 * is guaranteed to have their future faults succeed.
374 *
375 * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
376 * the reserve counters are updated with the hugetlb_lock held. It is safe
377 * to reset the VMA at fork() time as it is not in use yet and there is no
378 * chance of the global counters getting corrupted as a result of the values.
84afd99b
AW
379 *
380 * The private mapping reservation is represented in a subtly different
381 * manner to a shared mapping. A shared mapping has a region map associated
382 * with the underlying file, this region map represents the backing file
383 * pages which have ever had a reservation assigned which this persists even
384 * after the page is instantiated. A private mapping has a region map
385 * associated with the original mmap which is attached to all VMAs which
386 * reference it, this region map represents those offsets which have consumed
387 * reservation ie. where pages have been instantiated.
a1e78772 388 */
e7c4b0bf
AW
389static unsigned long get_vma_private_data(struct vm_area_struct *vma)
390{
391 return (unsigned long)vma->vm_private_data;
392}
393
394static void set_vma_private_data(struct vm_area_struct *vma,
395 unsigned long value)
396{
397 vma->vm_private_data = (void *)value;
398}
399
9119a41e 400struct resv_map *resv_map_alloc(void)
84afd99b
AW
401{
402 struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
403 if (!resv_map)
404 return NULL;
405
406 kref_init(&resv_map->refs);
7b24d861 407 spin_lock_init(&resv_map->lock);
84afd99b
AW
408 INIT_LIST_HEAD(&resv_map->regions);
409
410 return resv_map;
411}
412
9119a41e 413void resv_map_release(struct kref *ref)
84afd99b
AW
414{
415 struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
416
417 /* Clear out any active regions before we release the map. */
1406ec9b 418 region_truncate(resv_map, 0);
84afd99b
AW
419 kfree(resv_map);
420}
421
4e35f483
JK
422static inline struct resv_map *inode_resv_map(struct inode *inode)
423{
424 return inode->i_mapping->private_data;
425}
426
84afd99b 427static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
a1e78772
MG
428{
429 VM_BUG_ON(!is_vm_hugetlb_page(vma));
4e35f483
JK
430 if (vma->vm_flags & VM_MAYSHARE) {
431 struct address_space *mapping = vma->vm_file->f_mapping;
432 struct inode *inode = mapping->host;
433
434 return inode_resv_map(inode);
435
436 } else {
84afd99b
AW
437 return (struct resv_map *)(get_vma_private_data(vma) &
438 ~HPAGE_RESV_MASK);
4e35f483 439 }
a1e78772
MG
440}
441
84afd99b 442static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
a1e78772
MG
443{
444 VM_BUG_ON(!is_vm_hugetlb_page(vma));
f83a275d 445 VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
a1e78772 446
84afd99b
AW
447 set_vma_private_data(vma, (get_vma_private_data(vma) &
448 HPAGE_RESV_MASK) | (unsigned long)map);
04f2cbe3
MG
449}
450
451static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
452{
04f2cbe3 453 VM_BUG_ON(!is_vm_hugetlb_page(vma));
f83a275d 454 VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
e7c4b0bf
AW
455
456 set_vma_private_data(vma, get_vma_private_data(vma) | flags);
04f2cbe3
MG
457}
458
459static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
460{
461 VM_BUG_ON(!is_vm_hugetlb_page(vma));
e7c4b0bf
AW
462
463 return (get_vma_private_data(vma) & flag) != 0;
a1e78772
MG
464}
465
04f2cbe3 466/* Reset counters to 0 and clear all HPAGE_RESV_* flags */
a1e78772
MG
467void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
468{
469 VM_BUG_ON(!is_vm_hugetlb_page(vma));
f83a275d 470 if (!(vma->vm_flags & VM_MAYSHARE))
a1e78772
MG
471 vma->vm_private_data = (void *)0;
472}
473
474/* Returns true if the VMA has associated reserve pages */
af0ed73e 475static int vma_has_reserves(struct vm_area_struct *vma, long chg)
a1e78772 476{
af0ed73e
JK
477 if (vma->vm_flags & VM_NORESERVE) {
478 /*
479 * This address is already reserved by other process(chg == 0),
480 * so, we should decrement reserved count. Without decrementing,
481 * reserve count remains after releasing inode, because this
482 * allocated page will go into page cache and is regarded as
483 * coming from reserved pool in releasing step. Currently, we
484 * don't have any other solution to deal with this situation
485 * properly, so add work-around here.
486 */
487 if (vma->vm_flags & VM_MAYSHARE && chg == 0)
488 return 1;
489 else
490 return 0;
491 }
a63884e9
JK
492
493 /* Shared mappings always use reserves */
f83a275d 494 if (vma->vm_flags & VM_MAYSHARE)
7f09ca51 495 return 1;
a63884e9
JK
496
497 /*
498 * Only the process that called mmap() has reserves for
499 * private mappings.
500 */
7f09ca51
MG
501 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER))
502 return 1;
a63884e9 503
7f09ca51 504 return 0;
a1e78772
MG
505}
506
a5516438 507static void enqueue_huge_page(struct hstate *h, struct page *page)
1da177e4
LT
508{
509 int nid = page_to_nid(page);
0edaecfa 510 list_move(&page->lru, &h->hugepage_freelists[nid]);
a5516438
AK
511 h->free_huge_pages++;
512 h->free_huge_pages_node[nid]++;
1da177e4
LT
513}
514
bf50bab2
NH
515static struct page *dequeue_huge_page_node(struct hstate *h, int nid)
516{
517 struct page *page;
518
c8721bbb
NH
519 list_for_each_entry(page, &h->hugepage_freelists[nid], lru)
520 if (!is_migrate_isolate_page(page))
521 break;
522 /*
523 * if 'non-isolated free hugepage' not found on the list,
524 * the allocation fails.
525 */
526 if (&h->hugepage_freelists[nid] == &page->lru)
bf50bab2 527 return NULL;
0edaecfa 528 list_move(&page->lru, &h->hugepage_activelist);
a9869b83 529 set_page_refcounted(page);
bf50bab2
NH
530 h->free_huge_pages--;
531 h->free_huge_pages_node[nid]--;
532 return page;
533}
534
86cdb465
NH
535/* Movability of hugepages depends on migration support. */
536static inline gfp_t htlb_alloc_mask(struct hstate *h)
537{
538 if (hugepages_treat_as_movable || hugepage_migration_support(h))
539 return GFP_HIGHUSER_MOVABLE;
540 else
541 return GFP_HIGHUSER;
542}
543
a5516438
AK
544static struct page *dequeue_huge_page_vma(struct hstate *h,
545 struct vm_area_struct *vma,
af0ed73e
JK
546 unsigned long address, int avoid_reserve,
547 long chg)
1da177e4 548{
b1c12cbc 549 struct page *page = NULL;
480eccf9 550 struct mempolicy *mpol;
19770b32 551 nodemask_t *nodemask;
c0ff7453 552 struct zonelist *zonelist;
dd1a239f
MG
553 struct zone *zone;
554 struct zoneref *z;
cc9a6c87 555 unsigned int cpuset_mems_cookie;
1da177e4 556
a1e78772
MG
557 /*
558 * A child process with MAP_PRIVATE mappings created by their parent
559 * have no page reserves. This check ensures that reservations are
560 * not "stolen". The child may still get SIGKILLed
561 */
af0ed73e 562 if (!vma_has_reserves(vma, chg) &&
a5516438 563 h->free_huge_pages - h->resv_huge_pages == 0)
c0ff7453 564 goto err;
a1e78772 565
04f2cbe3 566 /* If reserves cannot be used, ensure enough pages are in the pool */
a5516438 567 if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
6eab04a8 568 goto err;
04f2cbe3 569
9966c4bb 570retry_cpuset:
d26914d1 571 cpuset_mems_cookie = read_mems_allowed_begin();
9966c4bb 572 zonelist = huge_zonelist(vma, address,
86cdb465 573 htlb_alloc_mask(h), &mpol, &nodemask);
9966c4bb 574
19770b32
MG
575 for_each_zone_zonelist_nodemask(zone, z, zonelist,
576 MAX_NR_ZONES - 1, nodemask) {
86cdb465 577 if (cpuset_zone_allowed_softwall(zone, htlb_alloc_mask(h))) {
bf50bab2
NH
578 page = dequeue_huge_page_node(h, zone_to_nid(zone));
579 if (page) {
af0ed73e
JK
580 if (avoid_reserve)
581 break;
582 if (!vma_has_reserves(vma, chg))
583 break;
584
07443a85 585 SetPagePrivate(page);
af0ed73e 586 h->resv_huge_pages--;
bf50bab2
NH
587 break;
588 }
3abf7afd 589 }
1da177e4 590 }
cc9a6c87 591
52cd3b07 592 mpol_cond_put(mpol);
d26914d1 593 if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie)))
cc9a6c87 594 goto retry_cpuset;
1da177e4 595 return page;
cc9a6c87
MG
596
597err:
cc9a6c87 598 return NULL;
1da177e4
LT
599}
600
a5516438 601static void update_and_free_page(struct hstate *h, struct page *page)
6af2acb6
AL
602{
603 int i;
a5516438 604
18229df5
AW
605 VM_BUG_ON(h->order >= MAX_ORDER);
606
a5516438
AK
607 h->nr_huge_pages--;
608 h->nr_huge_pages_node[page_to_nid(page)]--;
609 for (i = 0; i < pages_per_huge_page(h); i++) {
32f84528
CF
610 page[i].flags &= ~(1 << PG_locked | 1 << PG_error |
611 1 << PG_referenced | 1 << PG_dirty |
612 1 << PG_active | 1 << PG_reserved |
613 1 << PG_private | 1 << PG_writeback);
6af2acb6 614 }
309381fe 615 VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page);
6af2acb6
AL
616 set_compound_page_dtor(page, NULL);
617 set_page_refcounted(page);
7f2e9525 618 arch_release_hugepage(page);
a5516438 619 __free_pages(page, huge_page_order(h));
6af2acb6
AL
620}
621
e5ff2159
AK
622struct hstate *size_to_hstate(unsigned long size)
623{
624 struct hstate *h;
625
626 for_each_hstate(h) {
627 if (huge_page_size(h) == size)
628 return h;
629 }
630 return NULL;
631}
632
27a85ef1
DG
633static void free_huge_page(struct page *page)
634{
a5516438
AK
635 /*
636 * Can't pass hstate in here because it is called from the
637 * compound page destructor.
638 */
e5ff2159 639 struct hstate *h = page_hstate(page);
7893d1d5 640 int nid = page_to_nid(page);
90481622
DG
641 struct hugepage_subpool *spool =
642 (struct hugepage_subpool *)page_private(page);
07443a85 643 bool restore_reserve;
27a85ef1 644
e5df70ab 645 set_page_private(page, 0);
23be7468 646 page->mapping = NULL;
7893d1d5 647 BUG_ON(page_count(page));
0fe6e20b 648 BUG_ON(page_mapcount(page));
07443a85 649 restore_reserve = PagePrivate(page);
16c794b4 650 ClearPagePrivate(page);
27a85ef1
DG
651
652 spin_lock(&hugetlb_lock);
6d76dcf4
AK
653 hugetlb_cgroup_uncharge_page(hstate_index(h),
654 pages_per_huge_page(h), page);
07443a85
JK
655 if (restore_reserve)
656 h->resv_huge_pages++;
657
aa888a74 658 if (h->surplus_huge_pages_node[nid] && huge_page_order(h) < MAX_ORDER) {
0edaecfa
AK
659 /* remove the page from active list */
660 list_del(&page->lru);
a5516438
AK
661 update_and_free_page(h, page);
662 h->surplus_huge_pages--;
663 h->surplus_huge_pages_node[nid]--;
7893d1d5 664 } else {
5d3a551c 665 arch_clear_hugepage_flags(page);
a5516438 666 enqueue_huge_page(h, page);
7893d1d5 667 }
27a85ef1 668 spin_unlock(&hugetlb_lock);
90481622 669 hugepage_subpool_put_pages(spool, 1);
27a85ef1
DG
670}
671
a5516438 672static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
b7ba30c6 673{
0edaecfa 674 INIT_LIST_HEAD(&page->lru);
b7ba30c6
AK
675 set_compound_page_dtor(page, free_huge_page);
676 spin_lock(&hugetlb_lock);
9dd540e2 677 set_hugetlb_cgroup(page, NULL);
a5516438
AK
678 h->nr_huge_pages++;
679 h->nr_huge_pages_node[nid]++;
b7ba30c6
AK
680 spin_unlock(&hugetlb_lock);
681 put_page(page); /* free it into the hugepage allocator */
682}
683
20a0307c
WF
684static void prep_compound_gigantic_page(struct page *page, unsigned long order)
685{
686 int i;
687 int nr_pages = 1 << order;
688 struct page *p = page + 1;
689
690 /* we rely on prep_new_huge_page to set the destructor */
691 set_compound_order(page, order);
692 __SetPageHead(page);
ef5a22be 693 __ClearPageReserved(page);
20a0307c
WF
694 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
695 __SetPageTail(p);
ef5a22be
AA
696 /*
697 * For gigantic hugepages allocated through bootmem at
698 * boot, it's safer to be consistent with the not-gigantic
699 * hugepages and clear the PG_reserved bit from all tail pages
700 * too. Otherwse drivers using get_user_pages() to access tail
701 * pages may get the reference counting wrong if they see
702 * PG_reserved set on a tail page (despite the head page not
703 * having PG_reserved set). Enforcing this consistency between
704 * head and tail pages allows drivers to optimize away a check
705 * on the head page when they need know if put_page() is needed
706 * after get_user_pages().
707 */
708 __ClearPageReserved(p);
58a84aa9 709 set_page_count(p, 0);
20a0307c
WF
710 p->first_page = page;
711 }
712}
713
7795912c
AM
714/*
715 * PageHuge() only returns true for hugetlbfs pages, but not for normal or
716 * transparent huge pages. See the PageTransHuge() documentation for more
717 * details.
718 */
20a0307c
WF
719int PageHuge(struct page *page)
720{
20a0307c
WF
721 if (!PageCompound(page))
722 return 0;
723
724 page = compound_head(page);
758f66a2 725 return get_compound_page_dtor(page) == free_huge_page;
20a0307c 726}
43131e14
NH
727EXPORT_SYMBOL_GPL(PageHuge);
728
27c73ae7
AA
729/*
730 * PageHeadHuge() only returns true for hugetlbfs head page, but not for
731 * normal or transparent huge pages.
732 */
733int PageHeadHuge(struct page *page_head)
734{
27c73ae7
AA
735 if (!PageHead(page_head))
736 return 0;
737
758f66a2 738 return get_compound_page_dtor(page_head) == free_huge_page;
27c73ae7 739}
27c73ae7 740
13d60f4b
ZY
741pgoff_t __basepage_index(struct page *page)
742{
743 struct page *page_head = compound_head(page);
744 pgoff_t index = page_index(page_head);
745 unsigned long compound_idx;
746
747 if (!PageHuge(page_head))
748 return page_index(page);
749
750 if (compound_order(page_head) >= MAX_ORDER)
751 compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
752 else
753 compound_idx = page - page_head;
754
755 return (index << compound_order(page_head)) + compound_idx;
756}
757
a5516438 758static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid)
1da177e4 759{
1da177e4 760 struct page *page;
f96efd58 761
aa888a74
AK
762 if (h->order >= MAX_ORDER)
763 return NULL;
764
6484eb3e 765 page = alloc_pages_exact_node(nid,
86cdb465 766 htlb_alloc_mask(h)|__GFP_COMP|__GFP_THISNODE|
551883ae 767 __GFP_REPEAT|__GFP_NOWARN,
a5516438 768 huge_page_order(h));
1da177e4 769 if (page) {
7f2e9525 770 if (arch_prepare_hugepage(page)) {
caff3a2c 771 __free_pages(page, huge_page_order(h));
7b8ee84d 772 return NULL;
7f2e9525 773 }
a5516438 774 prep_new_huge_page(h, page, nid);
1da177e4 775 }
63b4613c
NA
776
777 return page;
778}
779
9a76db09 780/*
6ae11b27
LS
781 * common helper functions for hstate_next_node_to_{alloc|free}.
782 * We may have allocated or freed a huge page based on a different
783 * nodes_allowed previously, so h->next_node_to_{alloc|free} might
784 * be outside of *nodes_allowed. Ensure that we use an allowed
785 * node for alloc or free.
9a76db09 786 */
6ae11b27 787static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
9a76db09 788{
6ae11b27 789 nid = next_node(nid, *nodes_allowed);
9a76db09 790 if (nid == MAX_NUMNODES)
6ae11b27 791 nid = first_node(*nodes_allowed);
9a76db09
LS
792 VM_BUG_ON(nid >= MAX_NUMNODES);
793
794 return nid;
795}
796
6ae11b27
LS
797static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
798{
799 if (!node_isset(nid, *nodes_allowed))
800 nid = next_node_allowed(nid, nodes_allowed);
801 return nid;
802}
803
5ced66c9 804/*
6ae11b27
LS
805 * returns the previously saved node ["this node"] from which to
806 * allocate a persistent huge page for the pool and advance the
807 * next node from which to allocate, handling wrap at end of node
808 * mask.
5ced66c9 809 */
6ae11b27
LS
810static int hstate_next_node_to_alloc(struct hstate *h,
811 nodemask_t *nodes_allowed)
5ced66c9 812{
6ae11b27
LS
813 int nid;
814
815 VM_BUG_ON(!nodes_allowed);
816
817 nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
818 h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
9a76db09 819
9a76db09 820 return nid;
5ced66c9
AK
821}
822
e8c5c824 823/*
6ae11b27
LS
824 * helper for free_pool_huge_page() - return the previously saved
825 * node ["this node"] from which to free a huge page. Advance the
826 * next node id whether or not we find a free huge page to free so
827 * that the next attempt to free addresses the next node.
e8c5c824 828 */
6ae11b27 829static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
e8c5c824 830{
6ae11b27
LS
831 int nid;
832
833 VM_BUG_ON(!nodes_allowed);
834
835 nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
836 h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
9a76db09 837
9a76db09 838 return nid;
e8c5c824
LS
839}
840
b2261026
JK
841#define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask) \
842 for (nr_nodes = nodes_weight(*mask); \
843 nr_nodes > 0 && \
844 ((node = hstate_next_node_to_alloc(hs, mask)) || 1); \
845 nr_nodes--)
846
847#define for_each_node_mask_to_free(hs, nr_nodes, node, mask) \
848 for (nr_nodes = nodes_weight(*mask); \
849 nr_nodes > 0 && \
850 ((node = hstate_next_node_to_free(hs, mask)) || 1); \
851 nr_nodes--)
852
853static int alloc_fresh_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
854{
855 struct page *page;
856 int nr_nodes, node;
857 int ret = 0;
858
859 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
860 page = alloc_fresh_huge_page_node(h, node);
861 if (page) {
862 ret = 1;
863 break;
864 }
865 }
866
867 if (ret)
868 count_vm_event(HTLB_BUDDY_PGALLOC);
869 else
870 count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
871
872 return ret;
873}
874
e8c5c824
LS
875/*
876 * Free huge page from pool from next node to free.
877 * Attempt to keep persistent huge pages more or less
878 * balanced over allowed nodes.
879 * Called with hugetlb_lock locked.
880 */
6ae11b27
LS
881static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
882 bool acct_surplus)
e8c5c824 883{
b2261026 884 int nr_nodes, node;
e8c5c824
LS
885 int ret = 0;
886
b2261026 887 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
685f3457
LS
888 /*
889 * If we're returning unused surplus pages, only examine
890 * nodes with surplus pages.
891 */
b2261026
JK
892 if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
893 !list_empty(&h->hugepage_freelists[node])) {
e8c5c824 894 struct page *page =
b2261026 895 list_entry(h->hugepage_freelists[node].next,
e8c5c824
LS
896 struct page, lru);
897 list_del(&page->lru);
898 h->free_huge_pages--;
b2261026 899 h->free_huge_pages_node[node]--;
685f3457
LS
900 if (acct_surplus) {
901 h->surplus_huge_pages--;
b2261026 902 h->surplus_huge_pages_node[node]--;
685f3457 903 }
e8c5c824
LS
904 update_and_free_page(h, page);
905 ret = 1;
9a76db09 906 break;
e8c5c824 907 }
b2261026 908 }
e8c5c824
LS
909
910 return ret;
911}
912
c8721bbb
NH
913/*
914 * Dissolve a given free hugepage into free buddy pages. This function does
915 * nothing for in-use (including surplus) hugepages.
916 */
917static void dissolve_free_huge_page(struct page *page)
918{
919 spin_lock(&hugetlb_lock);
920 if (PageHuge(page) && !page_count(page)) {
921 struct hstate *h = page_hstate(page);
922 int nid = page_to_nid(page);
923 list_del(&page->lru);
924 h->free_huge_pages--;
925 h->free_huge_pages_node[nid]--;
926 update_and_free_page(h, page);
927 }
928 spin_unlock(&hugetlb_lock);
929}
930
931/*
932 * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
933 * make specified memory blocks removable from the system.
934 * Note that start_pfn should aligned with (minimum) hugepage size.
935 */
936void dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
937{
938 unsigned int order = 8 * sizeof(void *);
939 unsigned long pfn;
940 struct hstate *h;
941
942 /* Set scan step to minimum hugepage size */
943 for_each_hstate(h)
944 if (order > huge_page_order(h))
945 order = huge_page_order(h);
946 VM_BUG_ON(!IS_ALIGNED(start_pfn, 1 << order));
947 for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << order)
948 dissolve_free_huge_page(pfn_to_page(pfn));
949}
950
bf50bab2 951static struct page *alloc_buddy_huge_page(struct hstate *h, int nid)
7893d1d5
AL
952{
953 struct page *page;
bf50bab2 954 unsigned int r_nid;
7893d1d5 955
aa888a74
AK
956 if (h->order >= MAX_ORDER)
957 return NULL;
958
d1c3fb1f
NA
959 /*
960 * Assume we will successfully allocate the surplus page to
961 * prevent racing processes from causing the surplus to exceed
962 * overcommit
963 *
964 * This however introduces a different race, where a process B
965 * tries to grow the static hugepage pool while alloc_pages() is
966 * called by process A. B will only examine the per-node
967 * counters in determining if surplus huge pages can be
968 * converted to normal huge pages in adjust_pool_surplus(). A
969 * won't be able to increment the per-node counter, until the
970 * lock is dropped by B, but B doesn't drop hugetlb_lock until
971 * no more huge pages can be converted from surplus to normal
972 * state (and doesn't try to convert again). Thus, we have a
973 * case where a surplus huge page exists, the pool is grown, and
974 * the surplus huge page still exists after, even though it
975 * should just have been converted to a normal huge page. This
976 * does not leak memory, though, as the hugepage will be freed
977 * once it is out of use. It also does not allow the counters to
978 * go out of whack in adjust_pool_surplus() as we don't modify
979 * the node values until we've gotten the hugepage and only the
980 * per-node value is checked there.
981 */
982 spin_lock(&hugetlb_lock);
a5516438 983 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
d1c3fb1f
NA
984 spin_unlock(&hugetlb_lock);
985 return NULL;
986 } else {
a5516438
AK
987 h->nr_huge_pages++;
988 h->surplus_huge_pages++;
d1c3fb1f
NA
989 }
990 spin_unlock(&hugetlb_lock);
991
bf50bab2 992 if (nid == NUMA_NO_NODE)
86cdb465 993 page = alloc_pages(htlb_alloc_mask(h)|__GFP_COMP|
bf50bab2
NH
994 __GFP_REPEAT|__GFP_NOWARN,
995 huge_page_order(h));
996 else
997 page = alloc_pages_exact_node(nid,
86cdb465 998 htlb_alloc_mask(h)|__GFP_COMP|__GFP_THISNODE|
bf50bab2 999 __GFP_REPEAT|__GFP_NOWARN, huge_page_order(h));
d1c3fb1f 1000
caff3a2c
GS
1001 if (page && arch_prepare_hugepage(page)) {
1002 __free_pages(page, huge_page_order(h));
ea5768c7 1003 page = NULL;
caff3a2c
GS
1004 }
1005
d1c3fb1f 1006 spin_lock(&hugetlb_lock);
7893d1d5 1007 if (page) {
0edaecfa 1008 INIT_LIST_HEAD(&page->lru);
bf50bab2 1009 r_nid = page_to_nid(page);
7893d1d5 1010 set_compound_page_dtor(page, free_huge_page);
9dd540e2 1011 set_hugetlb_cgroup(page, NULL);
d1c3fb1f
NA
1012 /*
1013 * We incremented the global counters already
1014 */
bf50bab2
NH
1015 h->nr_huge_pages_node[r_nid]++;
1016 h->surplus_huge_pages_node[r_nid]++;
3b116300 1017 __count_vm_event(HTLB_BUDDY_PGALLOC);
d1c3fb1f 1018 } else {
a5516438
AK
1019 h->nr_huge_pages--;
1020 h->surplus_huge_pages--;
3b116300 1021 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
7893d1d5 1022 }
d1c3fb1f 1023 spin_unlock(&hugetlb_lock);
7893d1d5
AL
1024
1025 return page;
1026}
1027
bf50bab2
NH
1028/*
1029 * This allocation function is useful in the context where vma is irrelevant.
1030 * E.g. soft-offlining uses this function because it only cares physical
1031 * address of error page.
1032 */
1033struct page *alloc_huge_page_node(struct hstate *h, int nid)
1034{
4ef91848 1035 struct page *page = NULL;
bf50bab2
NH
1036
1037 spin_lock(&hugetlb_lock);
4ef91848
JK
1038 if (h->free_huge_pages - h->resv_huge_pages > 0)
1039 page = dequeue_huge_page_node(h, nid);
bf50bab2
NH
1040 spin_unlock(&hugetlb_lock);
1041
94ae8ba7 1042 if (!page)
bf50bab2
NH
1043 page = alloc_buddy_huge_page(h, nid);
1044
1045 return page;
1046}
1047
e4e574b7 1048/*
25985edc 1049 * Increase the hugetlb pool such that it can accommodate a reservation
e4e574b7
AL
1050 * of size 'delta'.
1051 */
a5516438 1052static int gather_surplus_pages(struct hstate *h, int delta)
e4e574b7
AL
1053{
1054 struct list_head surplus_list;
1055 struct page *page, *tmp;
1056 int ret, i;
1057 int needed, allocated;
28073b02 1058 bool alloc_ok = true;
e4e574b7 1059
a5516438 1060 needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
ac09b3a1 1061 if (needed <= 0) {
a5516438 1062 h->resv_huge_pages += delta;
e4e574b7 1063 return 0;
ac09b3a1 1064 }
e4e574b7
AL
1065
1066 allocated = 0;
1067 INIT_LIST_HEAD(&surplus_list);
1068
1069 ret = -ENOMEM;
1070retry:
1071 spin_unlock(&hugetlb_lock);
1072 for (i = 0; i < needed; i++) {
bf50bab2 1073 page = alloc_buddy_huge_page(h, NUMA_NO_NODE);
28073b02
HD
1074 if (!page) {
1075 alloc_ok = false;
1076 break;
1077 }
e4e574b7
AL
1078 list_add(&page->lru, &surplus_list);
1079 }
28073b02 1080 allocated += i;
e4e574b7
AL
1081
1082 /*
1083 * After retaking hugetlb_lock, we need to recalculate 'needed'
1084 * because either resv_huge_pages or free_huge_pages may have changed.
1085 */
1086 spin_lock(&hugetlb_lock);
a5516438
AK
1087 needed = (h->resv_huge_pages + delta) -
1088 (h->free_huge_pages + allocated);
28073b02
HD
1089 if (needed > 0) {
1090 if (alloc_ok)
1091 goto retry;
1092 /*
1093 * We were not able to allocate enough pages to
1094 * satisfy the entire reservation so we free what
1095 * we've allocated so far.
1096 */
1097 goto free;
1098 }
e4e574b7
AL
1099 /*
1100 * The surplus_list now contains _at_least_ the number of extra pages
25985edc 1101 * needed to accommodate the reservation. Add the appropriate number
e4e574b7 1102 * of pages to the hugetlb pool and free the extras back to the buddy
ac09b3a1
AL
1103 * allocator. Commit the entire reservation here to prevent another
1104 * process from stealing the pages as they are added to the pool but
1105 * before they are reserved.
e4e574b7
AL
1106 */
1107 needed += allocated;
a5516438 1108 h->resv_huge_pages += delta;
e4e574b7 1109 ret = 0;
a9869b83 1110
19fc3f0a 1111 /* Free the needed pages to the hugetlb pool */
e4e574b7 1112 list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
19fc3f0a
AL
1113 if ((--needed) < 0)
1114 break;
a9869b83
NH
1115 /*
1116 * This page is now managed by the hugetlb allocator and has
1117 * no users -- drop the buddy allocator's reference.
1118 */
1119 put_page_testzero(page);
309381fe 1120 VM_BUG_ON_PAGE(page_count(page), page);
a5516438 1121 enqueue_huge_page(h, page);
19fc3f0a 1122 }
28073b02 1123free:
b0365c8d 1124 spin_unlock(&hugetlb_lock);
19fc3f0a
AL
1125
1126 /* Free unnecessary surplus pages to the buddy allocator */
c0d934ba
JK
1127 list_for_each_entry_safe(page, tmp, &surplus_list, lru)
1128 put_page(page);
a9869b83 1129 spin_lock(&hugetlb_lock);
e4e574b7
AL
1130
1131 return ret;
1132}
1133
1134/*
1135 * When releasing a hugetlb pool reservation, any surplus pages that were
1136 * allocated to satisfy the reservation must be explicitly freed if they were
1137 * never used.
685f3457 1138 * Called with hugetlb_lock held.
e4e574b7 1139 */
a5516438
AK
1140static void return_unused_surplus_pages(struct hstate *h,
1141 unsigned long unused_resv_pages)
e4e574b7 1142{
e4e574b7
AL
1143 unsigned long nr_pages;
1144
ac09b3a1 1145 /* Uncommit the reservation */
a5516438 1146 h->resv_huge_pages -= unused_resv_pages;
ac09b3a1 1147
aa888a74
AK
1148 /* Cannot return gigantic pages currently */
1149 if (h->order >= MAX_ORDER)
1150 return;
1151
a5516438 1152 nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
e4e574b7 1153
685f3457
LS
1154 /*
1155 * We want to release as many surplus pages as possible, spread
9b5e5d0f
LS
1156 * evenly across all nodes with memory. Iterate across these nodes
1157 * until we can no longer free unreserved surplus pages. This occurs
1158 * when the nodes with surplus pages have no free pages.
1159 * free_pool_huge_page() will balance the the freed pages across the
1160 * on-line nodes with memory and will handle the hstate accounting.
685f3457
LS
1161 */
1162 while (nr_pages--) {
8cebfcd0 1163 if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1))
685f3457 1164 break;
e4e574b7
AL
1165 }
1166}
1167
c37f9fb1
AW
1168/*
1169 * Determine if the huge page at addr within the vma has an associated
1170 * reservation. Where it does not we will need to logically increase
90481622
DG
1171 * reservation and actually increase subpool usage before an allocation
1172 * can occur. Where any new reservation would be required the
1173 * reservation change is prepared, but not committed. Once the page
1174 * has been allocated from the subpool and instantiated the change should
1175 * be committed via vma_commit_reservation. No action is required on
1176 * failure.
c37f9fb1 1177 */
e2f17d94 1178static long vma_needs_reservation(struct hstate *h,
a5516438 1179 struct vm_area_struct *vma, unsigned long addr)
c37f9fb1 1180{
4e35f483
JK
1181 struct resv_map *resv;
1182 pgoff_t idx;
1183 long chg;
c37f9fb1 1184
4e35f483
JK
1185 resv = vma_resv_map(vma);
1186 if (!resv)
84afd99b 1187 return 1;
c37f9fb1 1188
4e35f483
JK
1189 idx = vma_hugecache_offset(h, vma, addr);
1190 chg = region_chg(resv, idx, idx + 1);
84afd99b 1191
4e35f483
JK
1192 if (vma->vm_flags & VM_MAYSHARE)
1193 return chg;
1194 else
1195 return chg < 0 ? chg : 0;
c37f9fb1 1196}
a5516438
AK
1197static void vma_commit_reservation(struct hstate *h,
1198 struct vm_area_struct *vma, unsigned long addr)
c37f9fb1 1199{
4e35f483
JK
1200 struct resv_map *resv;
1201 pgoff_t idx;
84afd99b 1202
4e35f483
JK
1203 resv = vma_resv_map(vma);
1204 if (!resv)
1205 return;
84afd99b 1206
4e35f483
JK
1207 idx = vma_hugecache_offset(h, vma, addr);
1208 region_add(resv, idx, idx + 1);
c37f9fb1
AW
1209}
1210
a1e78772 1211static struct page *alloc_huge_page(struct vm_area_struct *vma,
04f2cbe3 1212 unsigned long addr, int avoid_reserve)
1da177e4 1213{
90481622 1214 struct hugepage_subpool *spool = subpool_vma(vma);
a5516438 1215 struct hstate *h = hstate_vma(vma);
348ea204 1216 struct page *page;
e2f17d94 1217 long chg;
6d76dcf4
AK
1218 int ret, idx;
1219 struct hugetlb_cgroup *h_cg;
a1e78772 1220
6d76dcf4 1221 idx = hstate_index(h);
a1e78772 1222 /*
90481622
DG
1223 * Processes that did not create the mapping will have no
1224 * reserves and will not have accounted against subpool
1225 * limit. Check that the subpool limit can be made before
1226 * satisfying the allocation MAP_NORESERVE mappings may also
1227 * need pages and subpool limit allocated allocated if no reserve
1228 * mapping overlaps.
a1e78772 1229 */
a5516438 1230 chg = vma_needs_reservation(h, vma, addr);
c37f9fb1 1231 if (chg < 0)
76dcee75 1232 return ERR_PTR(-ENOMEM);
8bb3f12e
JK
1233 if (chg || avoid_reserve)
1234 if (hugepage_subpool_get_pages(spool, 1))
76dcee75 1235 return ERR_PTR(-ENOSPC);
1da177e4 1236
6d76dcf4
AK
1237 ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
1238 if (ret) {
8bb3f12e
JK
1239 if (chg || avoid_reserve)
1240 hugepage_subpool_put_pages(spool, 1);
6d76dcf4
AK
1241 return ERR_PTR(-ENOSPC);
1242 }
1da177e4 1243 spin_lock(&hugetlb_lock);
af0ed73e 1244 page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, chg);
81a6fcae 1245 if (!page) {
94ae8ba7 1246 spin_unlock(&hugetlb_lock);
bf50bab2 1247 page = alloc_buddy_huge_page(h, NUMA_NO_NODE);
68842c9b 1248 if (!page) {
6d76dcf4
AK
1249 hugetlb_cgroup_uncharge_cgroup(idx,
1250 pages_per_huge_page(h),
1251 h_cg);
8bb3f12e
JK
1252 if (chg || avoid_reserve)
1253 hugepage_subpool_put_pages(spool, 1);
76dcee75 1254 return ERR_PTR(-ENOSPC);
68842c9b 1255 }
79dbb236
AK
1256 spin_lock(&hugetlb_lock);
1257 list_move(&page->lru, &h->hugepage_activelist);
81a6fcae 1258 /* Fall through */
68842c9b 1259 }
81a6fcae
JK
1260 hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
1261 spin_unlock(&hugetlb_lock);
348ea204 1262
90481622 1263 set_page_private(page, (unsigned long)spool);
90d8b7e6 1264
a5516438 1265 vma_commit_reservation(h, vma, addr);
90d8b7e6 1266 return page;
b45b5bd6
DG
1267}
1268
74060e4d
NH
1269/*
1270 * alloc_huge_page()'s wrapper which simply returns the page if allocation
1271 * succeeds, otherwise NULL. This function is called from new_vma_page(),
1272 * where no ERR_VALUE is expected to be returned.
1273 */
1274struct page *alloc_huge_page_noerr(struct vm_area_struct *vma,
1275 unsigned long addr, int avoid_reserve)
1276{
1277 struct page *page = alloc_huge_page(vma, addr, avoid_reserve);
1278 if (IS_ERR(page))
1279 page = NULL;
1280 return page;
1281}
1282
91f47662 1283int __weak alloc_bootmem_huge_page(struct hstate *h)
aa888a74
AK
1284{
1285 struct huge_bootmem_page *m;
b2261026 1286 int nr_nodes, node;
aa888a74 1287
b2261026 1288 for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
aa888a74
AK
1289 void *addr;
1290
8b89a116
GS
1291 addr = memblock_virt_alloc_try_nid_nopanic(
1292 huge_page_size(h), huge_page_size(h),
1293 0, BOOTMEM_ALLOC_ACCESSIBLE, node);
aa888a74
AK
1294 if (addr) {
1295 /*
1296 * Use the beginning of the huge page to store the
1297 * huge_bootmem_page struct (until gather_bootmem
1298 * puts them into the mem_map).
1299 */
1300 m = addr;
91f47662 1301 goto found;
aa888a74 1302 }
aa888a74
AK
1303 }
1304 return 0;
1305
1306found:
1307 BUG_ON((unsigned long)virt_to_phys(m) & (huge_page_size(h) - 1));
1308 /* Put them into a private list first because mem_map is not up yet */
1309 list_add(&m->list, &huge_boot_pages);
1310 m->hstate = h;
1311 return 1;
1312}
1313
18229df5
AW
1314static void prep_compound_huge_page(struct page *page, int order)
1315{
1316 if (unlikely(order > (MAX_ORDER - 1)))
1317 prep_compound_gigantic_page(page, order);
1318 else
1319 prep_compound_page(page, order);
1320}
1321
aa888a74
AK
1322/* Put bootmem huge pages into the standard lists after mem_map is up */
1323static void __init gather_bootmem_prealloc(void)
1324{
1325 struct huge_bootmem_page *m;
1326
1327 list_for_each_entry(m, &huge_boot_pages, list) {
aa888a74 1328 struct hstate *h = m->hstate;
ee8f248d
BB
1329 struct page *page;
1330
1331#ifdef CONFIG_HIGHMEM
1332 page = pfn_to_page(m->phys >> PAGE_SHIFT);
8b89a116
GS
1333 memblock_free_late(__pa(m),
1334 sizeof(struct huge_bootmem_page));
ee8f248d
BB
1335#else
1336 page = virt_to_page(m);
1337#endif
aa888a74 1338 WARN_ON(page_count(page) != 1);
18229df5 1339 prep_compound_huge_page(page, h->order);
ef5a22be 1340 WARN_ON(PageReserved(page));
aa888a74 1341 prep_new_huge_page(h, page, page_to_nid(page));
b0320c7b
RA
1342 /*
1343 * If we had gigantic hugepages allocated at boot time, we need
1344 * to restore the 'stolen' pages to totalram_pages in order to
1345 * fix confusing memory reports from free(1) and another
1346 * side-effects, like CommitLimit going negative.
1347 */
1348 if (h->order > (MAX_ORDER - 1))
3dcc0571 1349 adjust_managed_page_count(page, 1 << h->order);
aa888a74
AK
1350 }
1351}
1352
8faa8b07 1353static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
1da177e4
LT
1354{
1355 unsigned long i;
a5516438 1356
e5ff2159 1357 for (i = 0; i < h->max_huge_pages; ++i) {
aa888a74
AK
1358 if (h->order >= MAX_ORDER) {
1359 if (!alloc_bootmem_huge_page(h))
1360 break;
9b5e5d0f 1361 } else if (!alloc_fresh_huge_page(h,
8cebfcd0 1362 &node_states[N_MEMORY]))
1da177e4 1363 break;
1da177e4 1364 }
8faa8b07 1365 h->max_huge_pages = i;
e5ff2159
AK
1366}
1367
1368static void __init hugetlb_init_hstates(void)
1369{
1370 struct hstate *h;
1371
1372 for_each_hstate(h) {
8faa8b07
AK
1373 /* oversize hugepages were init'ed in early boot */
1374 if (h->order < MAX_ORDER)
1375 hugetlb_hstate_alloc_pages(h);
e5ff2159
AK
1376 }
1377}
1378
4abd32db
AK
1379static char * __init memfmt(char *buf, unsigned long n)
1380{
1381 if (n >= (1UL << 30))
1382 sprintf(buf, "%lu GB", n >> 30);
1383 else if (n >= (1UL << 20))
1384 sprintf(buf, "%lu MB", n >> 20);
1385 else
1386 sprintf(buf, "%lu KB", n >> 10);
1387 return buf;
1388}
1389
e5ff2159
AK
1390static void __init report_hugepages(void)
1391{
1392 struct hstate *h;
1393
1394 for_each_hstate(h) {
4abd32db 1395 char buf[32];
ffb22af5 1396 pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
4abd32db
AK
1397 memfmt(buf, huge_page_size(h)),
1398 h->free_huge_pages);
e5ff2159
AK
1399 }
1400}
1401
1da177e4 1402#ifdef CONFIG_HIGHMEM
6ae11b27
LS
1403static void try_to_free_low(struct hstate *h, unsigned long count,
1404 nodemask_t *nodes_allowed)
1da177e4 1405{
4415cc8d
CL
1406 int i;
1407
aa888a74
AK
1408 if (h->order >= MAX_ORDER)
1409 return;
1410
6ae11b27 1411 for_each_node_mask(i, *nodes_allowed) {
1da177e4 1412 struct page *page, *next;
a5516438
AK
1413 struct list_head *freel = &h->hugepage_freelists[i];
1414 list_for_each_entry_safe(page, next, freel, lru) {
1415 if (count >= h->nr_huge_pages)
6b0c880d 1416 return;
1da177e4
LT
1417 if (PageHighMem(page))
1418 continue;
1419 list_del(&page->lru);
e5ff2159 1420 update_and_free_page(h, page);
a5516438
AK
1421 h->free_huge_pages--;
1422 h->free_huge_pages_node[page_to_nid(page)]--;
1da177e4
LT
1423 }
1424 }
1425}
1426#else
6ae11b27
LS
1427static inline void try_to_free_low(struct hstate *h, unsigned long count,
1428 nodemask_t *nodes_allowed)
1da177e4
LT
1429{
1430}
1431#endif
1432
20a0307c
WF
1433/*
1434 * Increment or decrement surplus_huge_pages. Keep node-specific counters
1435 * balanced by operating on them in a round-robin fashion.
1436 * Returns 1 if an adjustment was made.
1437 */
6ae11b27
LS
1438static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
1439 int delta)
20a0307c 1440{
b2261026 1441 int nr_nodes, node;
20a0307c
WF
1442
1443 VM_BUG_ON(delta != -1 && delta != 1);
20a0307c 1444
b2261026
JK
1445 if (delta < 0) {
1446 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1447 if (h->surplus_huge_pages_node[node])
1448 goto found;
e8c5c824 1449 }
b2261026
JK
1450 } else {
1451 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
1452 if (h->surplus_huge_pages_node[node] <
1453 h->nr_huge_pages_node[node])
1454 goto found;
e8c5c824 1455 }
b2261026
JK
1456 }
1457 return 0;
20a0307c 1458
b2261026
JK
1459found:
1460 h->surplus_huge_pages += delta;
1461 h->surplus_huge_pages_node[node] += delta;
1462 return 1;
20a0307c
WF
1463}
1464
a5516438 1465#define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
6ae11b27
LS
1466static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count,
1467 nodemask_t *nodes_allowed)
1da177e4 1468{
7893d1d5 1469 unsigned long min_count, ret;
1da177e4 1470
aa888a74
AK
1471 if (h->order >= MAX_ORDER)
1472 return h->max_huge_pages;
1473
7893d1d5
AL
1474 /*
1475 * Increase the pool size
1476 * First take pages out of surplus state. Then make up the
1477 * remaining difference by allocating fresh huge pages.
d1c3fb1f
NA
1478 *
1479 * We might race with alloc_buddy_huge_page() here and be unable
1480 * to convert a surplus huge page to a normal huge page. That is
1481 * not critical, though, it just means the overall size of the
1482 * pool might be one hugepage larger than it needs to be, but
1483 * within all the constraints specified by the sysctls.
7893d1d5 1484 */
1da177e4 1485 spin_lock(&hugetlb_lock);
a5516438 1486 while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
6ae11b27 1487 if (!adjust_pool_surplus(h, nodes_allowed, -1))
7893d1d5
AL
1488 break;
1489 }
1490
a5516438 1491 while (count > persistent_huge_pages(h)) {
7893d1d5
AL
1492 /*
1493 * If this allocation races such that we no longer need the
1494 * page, free_huge_page will handle it by freeing the page
1495 * and reducing the surplus.
1496 */
1497 spin_unlock(&hugetlb_lock);
6ae11b27 1498 ret = alloc_fresh_huge_page(h, nodes_allowed);
7893d1d5
AL
1499 spin_lock(&hugetlb_lock);
1500 if (!ret)
1501 goto out;
1502
536240f2
MG
1503 /* Bail for signals. Probably ctrl-c from user */
1504 if (signal_pending(current))
1505 goto out;
7893d1d5 1506 }
7893d1d5
AL
1507
1508 /*
1509 * Decrease the pool size
1510 * First return free pages to the buddy allocator (being careful
1511 * to keep enough around to satisfy reservations). Then place
1512 * pages into surplus state as needed so the pool will shrink
1513 * to the desired size as pages become free.
d1c3fb1f
NA
1514 *
1515 * By placing pages into the surplus state independent of the
1516 * overcommit value, we are allowing the surplus pool size to
1517 * exceed overcommit. There are few sane options here. Since
1518 * alloc_buddy_huge_page() is checking the global counter,
1519 * though, we'll note that we're not allowed to exceed surplus
1520 * and won't grow the pool anywhere else. Not until one of the
1521 * sysctls are changed, or the surplus pages go out of use.
7893d1d5 1522 */
a5516438 1523 min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
6b0c880d 1524 min_count = max(count, min_count);
6ae11b27 1525 try_to_free_low(h, min_count, nodes_allowed);
a5516438 1526 while (min_count < persistent_huge_pages(h)) {
6ae11b27 1527 if (!free_pool_huge_page(h, nodes_allowed, 0))
1da177e4 1528 break;
1da177e4 1529 }
a5516438 1530 while (count < persistent_huge_pages(h)) {
6ae11b27 1531 if (!adjust_pool_surplus(h, nodes_allowed, 1))
7893d1d5
AL
1532 break;
1533 }
1534out:
a5516438 1535 ret = persistent_huge_pages(h);
1da177e4 1536 spin_unlock(&hugetlb_lock);
7893d1d5 1537 return ret;
1da177e4
LT
1538}
1539
a3437870
NA
1540#define HSTATE_ATTR_RO(_name) \
1541 static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
1542
1543#define HSTATE_ATTR(_name) \
1544 static struct kobj_attribute _name##_attr = \
1545 __ATTR(_name, 0644, _name##_show, _name##_store)
1546
1547static struct kobject *hugepages_kobj;
1548static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
1549
9a305230
LS
1550static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
1551
1552static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
a3437870
NA
1553{
1554 int i;
9a305230 1555
a3437870 1556 for (i = 0; i < HUGE_MAX_HSTATE; i++)
9a305230
LS
1557 if (hstate_kobjs[i] == kobj) {
1558 if (nidp)
1559 *nidp = NUMA_NO_NODE;
a3437870 1560 return &hstates[i];
9a305230
LS
1561 }
1562
1563 return kobj_to_node_hstate(kobj, nidp);
a3437870
NA
1564}
1565
06808b08 1566static ssize_t nr_hugepages_show_common(struct kobject *kobj,
a3437870
NA
1567 struct kobj_attribute *attr, char *buf)
1568{
9a305230
LS
1569 struct hstate *h;
1570 unsigned long nr_huge_pages;
1571 int nid;
1572
1573 h = kobj_to_hstate(kobj, &nid);
1574 if (nid == NUMA_NO_NODE)
1575 nr_huge_pages = h->nr_huge_pages;
1576 else
1577 nr_huge_pages = h->nr_huge_pages_node[nid];
1578
1579 return sprintf(buf, "%lu\n", nr_huge_pages);
a3437870 1580}
adbe8726 1581
06808b08
LS
1582static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
1583 struct kobject *kobj, struct kobj_attribute *attr,
1584 const char *buf, size_t len)
a3437870
NA
1585{
1586 int err;
9a305230 1587 int nid;
06808b08 1588 unsigned long count;
9a305230 1589 struct hstate *h;
bad44b5b 1590 NODEMASK_ALLOC(nodemask_t, nodes_allowed, GFP_KERNEL | __GFP_NORETRY);
a3437870 1591
3dbb95f7 1592 err = kstrtoul(buf, 10, &count);
73ae31e5 1593 if (err)
adbe8726 1594 goto out;
a3437870 1595
9a305230 1596 h = kobj_to_hstate(kobj, &nid);
adbe8726
EM
1597 if (h->order >= MAX_ORDER) {
1598 err = -EINVAL;
1599 goto out;
1600 }
1601
9a305230
LS
1602 if (nid == NUMA_NO_NODE) {
1603 /*
1604 * global hstate attribute
1605 */
1606 if (!(obey_mempolicy &&
1607 init_nodemask_of_mempolicy(nodes_allowed))) {
1608 NODEMASK_FREE(nodes_allowed);
8cebfcd0 1609 nodes_allowed = &node_states[N_MEMORY];
9a305230
LS
1610 }
1611 } else if (nodes_allowed) {
1612 /*
1613 * per node hstate attribute: adjust count to global,
1614 * but restrict alloc/free to the specified node.
1615 */
1616 count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
1617 init_nodemask_of_node(nodes_allowed, nid);
1618 } else
8cebfcd0 1619 nodes_allowed = &node_states[N_MEMORY];
9a305230 1620
06808b08 1621 h->max_huge_pages = set_max_huge_pages(h, count, nodes_allowed);
a3437870 1622
8cebfcd0 1623 if (nodes_allowed != &node_states[N_MEMORY])
06808b08
LS
1624 NODEMASK_FREE(nodes_allowed);
1625
1626 return len;
adbe8726
EM
1627out:
1628 NODEMASK_FREE(nodes_allowed);
1629 return err;
06808b08
LS
1630}
1631
1632static ssize_t nr_hugepages_show(struct kobject *kobj,
1633 struct kobj_attribute *attr, char *buf)
1634{
1635 return nr_hugepages_show_common(kobj, attr, buf);
1636}
1637
1638static ssize_t nr_hugepages_store(struct kobject *kobj,
1639 struct kobj_attribute *attr, const char *buf, size_t len)
1640{
1641 return nr_hugepages_store_common(false, kobj, attr, buf, len);
a3437870
NA
1642}
1643HSTATE_ATTR(nr_hugepages);
1644
06808b08
LS
1645#ifdef CONFIG_NUMA
1646
1647/*
1648 * hstate attribute for optionally mempolicy-based constraint on persistent
1649 * huge page alloc/free.
1650 */
1651static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
1652 struct kobj_attribute *attr, char *buf)
1653{
1654 return nr_hugepages_show_common(kobj, attr, buf);
1655}
1656
1657static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
1658 struct kobj_attribute *attr, const char *buf, size_t len)
1659{
1660 return nr_hugepages_store_common(true, kobj, attr, buf, len);
1661}
1662HSTATE_ATTR(nr_hugepages_mempolicy);
1663#endif
1664
1665
a3437870
NA
1666static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
1667 struct kobj_attribute *attr, char *buf)
1668{
9a305230 1669 struct hstate *h = kobj_to_hstate(kobj, NULL);
a3437870
NA
1670 return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
1671}
adbe8726 1672
a3437870
NA
1673static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
1674 struct kobj_attribute *attr, const char *buf, size_t count)
1675{
1676 int err;
1677 unsigned long input;
9a305230 1678 struct hstate *h = kobj_to_hstate(kobj, NULL);
a3437870 1679
adbe8726
EM
1680 if (h->order >= MAX_ORDER)
1681 return -EINVAL;
1682
3dbb95f7 1683 err = kstrtoul(buf, 10, &input);
a3437870 1684 if (err)
73ae31e5 1685 return err;
a3437870
NA
1686
1687 spin_lock(&hugetlb_lock);
1688 h->nr_overcommit_huge_pages = input;
1689 spin_unlock(&hugetlb_lock);
1690
1691 return count;
1692}
1693HSTATE_ATTR(nr_overcommit_hugepages);
1694
1695static ssize_t free_hugepages_show(struct kobject *kobj,
1696 struct kobj_attribute *attr, char *buf)
1697{
9a305230
LS
1698 struct hstate *h;
1699 unsigned long free_huge_pages;
1700 int nid;
1701
1702 h = kobj_to_hstate(kobj, &nid);
1703 if (nid == NUMA_NO_NODE)
1704 free_huge_pages = h->free_huge_pages;
1705 else
1706 free_huge_pages = h->free_huge_pages_node[nid];
1707
1708 return sprintf(buf, "%lu\n", free_huge_pages);
a3437870
NA
1709}
1710HSTATE_ATTR_RO(free_hugepages);
1711
1712static ssize_t resv_hugepages_show(struct kobject *kobj,
1713 struct kobj_attribute *attr, char *buf)
1714{
9a305230 1715 struct hstate *h = kobj_to_hstate(kobj, NULL);
a3437870
NA
1716 return sprintf(buf, "%lu\n", h->resv_huge_pages);
1717}
1718HSTATE_ATTR_RO(resv_hugepages);
1719
1720static ssize_t surplus_hugepages_show(struct kobject *kobj,
1721 struct kobj_attribute *attr, char *buf)
1722{
9a305230
LS
1723 struct hstate *h;
1724 unsigned long surplus_huge_pages;
1725 int nid;
1726
1727 h = kobj_to_hstate(kobj, &nid);
1728 if (nid == NUMA_NO_NODE)
1729 surplus_huge_pages = h->surplus_huge_pages;
1730 else
1731 surplus_huge_pages = h->surplus_huge_pages_node[nid];
1732
1733 return sprintf(buf, "%lu\n", surplus_huge_pages);
a3437870
NA
1734}
1735HSTATE_ATTR_RO(surplus_hugepages);
1736
1737static struct attribute *hstate_attrs[] = {
1738 &nr_hugepages_attr.attr,
1739 &nr_overcommit_hugepages_attr.attr,
1740 &free_hugepages_attr.attr,
1741 &resv_hugepages_attr.attr,
1742 &surplus_hugepages_attr.attr,
06808b08
LS
1743#ifdef CONFIG_NUMA
1744 &nr_hugepages_mempolicy_attr.attr,
1745#endif
a3437870
NA
1746 NULL,
1747};
1748
1749static struct attribute_group hstate_attr_group = {
1750 .attrs = hstate_attrs,
1751};
1752
094e9539
JM
1753static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
1754 struct kobject **hstate_kobjs,
1755 struct attribute_group *hstate_attr_group)
a3437870
NA
1756{
1757 int retval;
972dc4de 1758 int hi = hstate_index(h);
a3437870 1759
9a305230
LS
1760 hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
1761 if (!hstate_kobjs[hi])
a3437870
NA
1762 return -ENOMEM;
1763
9a305230 1764 retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
a3437870 1765 if (retval)
9a305230 1766 kobject_put(hstate_kobjs[hi]);
a3437870
NA
1767
1768 return retval;
1769}
1770
1771static void __init hugetlb_sysfs_init(void)
1772{
1773 struct hstate *h;
1774 int err;
1775
1776 hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
1777 if (!hugepages_kobj)
1778 return;
1779
1780 for_each_hstate(h) {
9a305230
LS
1781 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
1782 hstate_kobjs, &hstate_attr_group);
a3437870 1783 if (err)
ffb22af5 1784 pr_err("Hugetlb: Unable to add hstate %s", h->name);
a3437870
NA
1785 }
1786}
1787
9a305230
LS
1788#ifdef CONFIG_NUMA
1789
1790/*
1791 * node_hstate/s - associate per node hstate attributes, via their kobjects,
10fbcf4c
KS
1792 * with node devices in node_devices[] using a parallel array. The array
1793 * index of a node device or _hstate == node id.
1794 * This is here to avoid any static dependency of the node device driver, in
9a305230
LS
1795 * the base kernel, on the hugetlb module.
1796 */
1797struct node_hstate {
1798 struct kobject *hugepages_kobj;
1799 struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
1800};
1801struct node_hstate node_hstates[MAX_NUMNODES];
1802
1803/*
10fbcf4c 1804 * A subset of global hstate attributes for node devices
9a305230
LS
1805 */
1806static struct attribute *per_node_hstate_attrs[] = {
1807 &nr_hugepages_attr.attr,
1808 &free_hugepages_attr.attr,
1809 &surplus_hugepages_attr.attr,
1810 NULL,
1811};
1812
1813static struct attribute_group per_node_hstate_attr_group = {
1814 .attrs = per_node_hstate_attrs,
1815};
1816
1817/*
10fbcf4c 1818 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
9a305230
LS
1819 * Returns node id via non-NULL nidp.
1820 */
1821static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
1822{
1823 int nid;
1824
1825 for (nid = 0; nid < nr_node_ids; nid++) {
1826 struct node_hstate *nhs = &node_hstates[nid];
1827 int i;
1828 for (i = 0; i < HUGE_MAX_HSTATE; i++)
1829 if (nhs->hstate_kobjs[i] == kobj) {
1830 if (nidp)
1831 *nidp = nid;
1832 return &hstates[i];
1833 }
1834 }
1835
1836 BUG();
1837 return NULL;
1838}
1839
1840/*
10fbcf4c 1841 * Unregister hstate attributes from a single node device.
9a305230
LS
1842 * No-op if no hstate attributes attached.
1843 */
3cd8b44f 1844static void hugetlb_unregister_node(struct node *node)
9a305230
LS
1845{
1846 struct hstate *h;
10fbcf4c 1847 struct node_hstate *nhs = &node_hstates[node->dev.id];
9a305230
LS
1848
1849 if (!nhs->hugepages_kobj)
9b5e5d0f 1850 return; /* no hstate attributes */
9a305230 1851
972dc4de
AK
1852 for_each_hstate(h) {
1853 int idx = hstate_index(h);
1854 if (nhs->hstate_kobjs[idx]) {
1855 kobject_put(nhs->hstate_kobjs[idx]);
1856 nhs->hstate_kobjs[idx] = NULL;
9a305230 1857 }
972dc4de 1858 }
9a305230
LS
1859
1860 kobject_put(nhs->hugepages_kobj);
1861 nhs->hugepages_kobj = NULL;
1862}
1863
1864/*
10fbcf4c 1865 * hugetlb module exit: unregister hstate attributes from node devices
9a305230
LS
1866 * that have them.
1867 */
1868static void hugetlb_unregister_all_nodes(void)
1869{
1870 int nid;
1871
1872 /*
10fbcf4c 1873 * disable node device registrations.
9a305230
LS
1874 */
1875 register_hugetlbfs_with_node(NULL, NULL);
1876
1877 /*
1878 * remove hstate attributes from any nodes that have them.
1879 */
1880 for (nid = 0; nid < nr_node_ids; nid++)
8732794b 1881 hugetlb_unregister_node(node_devices[nid]);
9a305230
LS
1882}
1883
1884/*
10fbcf4c 1885 * Register hstate attributes for a single node device.
9a305230
LS
1886 * No-op if attributes already registered.
1887 */
3cd8b44f 1888static void hugetlb_register_node(struct node *node)
9a305230
LS
1889{
1890 struct hstate *h;
10fbcf4c 1891 struct node_hstate *nhs = &node_hstates[node->dev.id];
9a305230
LS
1892 int err;
1893
1894 if (nhs->hugepages_kobj)
1895 return; /* already allocated */
1896
1897 nhs->hugepages_kobj = kobject_create_and_add("hugepages",
10fbcf4c 1898 &node->dev.kobj);
9a305230
LS
1899 if (!nhs->hugepages_kobj)
1900 return;
1901
1902 for_each_hstate(h) {
1903 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
1904 nhs->hstate_kobjs,
1905 &per_node_hstate_attr_group);
1906 if (err) {
ffb22af5
AM
1907 pr_err("Hugetlb: Unable to add hstate %s for node %d\n",
1908 h->name, node->dev.id);
9a305230
LS
1909 hugetlb_unregister_node(node);
1910 break;
1911 }
1912 }
1913}
1914
1915/*
9b5e5d0f 1916 * hugetlb init time: register hstate attributes for all registered node
10fbcf4c
KS
1917 * devices of nodes that have memory. All on-line nodes should have
1918 * registered their associated device by this time.
9a305230
LS
1919 */
1920static void hugetlb_register_all_nodes(void)
1921{
1922 int nid;
1923
8cebfcd0 1924 for_each_node_state(nid, N_MEMORY) {
8732794b 1925 struct node *node = node_devices[nid];
10fbcf4c 1926 if (node->dev.id == nid)
9a305230
LS
1927 hugetlb_register_node(node);
1928 }
1929
1930 /*
10fbcf4c 1931 * Let the node device driver know we're here so it can
9a305230
LS
1932 * [un]register hstate attributes on node hotplug.
1933 */
1934 register_hugetlbfs_with_node(hugetlb_register_node,
1935 hugetlb_unregister_node);
1936}
1937#else /* !CONFIG_NUMA */
1938
1939static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
1940{
1941 BUG();
1942 if (nidp)
1943 *nidp = -1;
1944 return NULL;
1945}
1946
1947static void hugetlb_unregister_all_nodes(void) { }
1948
1949static void hugetlb_register_all_nodes(void) { }
1950
1951#endif
1952
a3437870
NA
1953static void __exit hugetlb_exit(void)
1954{
1955 struct hstate *h;
1956
9a305230
LS
1957 hugetlb_unregister_all_nodes();
1958
a3437870 1959 for_each_hstate(h) {
972dc4de 1960 kobject_put(hstate_kobjs[hstate_index(h)]);
a3437870
NA
1961 }
1962
1963 kobject_put(hugepages_kobj);
1964}
1965module_exit(hugetlb_exit);
1966
1967static int __init hugetlb_init(void)
1968{
0ef89d25
BH
1969 /* Some platform decide whether they support huge pages at boot
1970 * time. On these, such as powerpc, HPAGE_SHIFT is set to 0 when
1971 * there is no such support
1972 */
1973 if (HPAGE_SHIFT == 0)
1974 return 0;
a3437870 1975
e11bfbfc
NP
1976 if (!size_to_hstate(default_hstate_size)) {
1977 default_hstate_size = HPAGE_SIZE;
1978 if (!size_to_hstate(default_hstate_size))
1979 hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
a3437870 1980 }
972dc4de 1981 default_hstate_idx = hstate_index(size_to_hstate(default_hstate_size));
e11bfbfc
NP
1982 if (default_hstate_max_huge_pages)
1983 default_hstate.max_huge_pages = default_hstate_max_huge_pages;
a3437870
NA
1984
1985 hugetlb_init_hstates();
aa888a74 1986 gather_bootmem_prealloc();
a3437870
NA
1987 report_hugepages();
1988
1989 hugetlb_sysfs_init();
9a305230 1990 hugetlb_register_all_nodes();
7179e7bf 1991 hugetlb_cgroup_file_init();
9a305230 1992
a3437870
NA
1993 return 0;
1994}
1995module_init(hugetlb_init);
1996
1997/* Should be called on processing a hugepagesz=... option */
1998void __init hugetlb_add_hstate(unsigned order)
1999{
2000 struct hstate *h;
8faa8b07
AK
2001 unsigned long i;
2002
a3437870 2003 if (size_to_hstate(PAGE_SIZE << order)) {
ffb22af5 2004 pr_warning("hugepagesz= specified twice, ignoring\n");
a3437870
NA
2005 return;
2006 }
47d38344 2007 BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
a3437870 2008 BUG_ON(order == 0);
47d38344 2009 h = &hstates[hugetlb_max_hstate++];
a3437870
NA
2010 h->order = order;
2011 h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
8faa8b07
AK
2012 h->nr_huge_pages = 0;
2013 h->free_huge_pages = 0;
2014 for (i = 0; i < MAX_NUMNODES; ++i)
2015 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
0edaecfa 2016 INIT_LIST_HEAD(&h->hugepage_activelist);
8cebfcd0
LJ
2017 h->next_nid_to_alloc = first_node(node_states[N_MEMORY]);
2018 h->next_nid_to_free = first_node(node_states[N_MEMORY]);
a3437870
NA
2019 snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
2020 huge_page_size(h)/1024);
8faa8b07 2021
a3437870
NA
2022 parsed_hstate = h;
2023}
2024
e11bfbfc 2025static int __init hugetlb_nrpages_setup(char *s)
a3437870
NA
2026{
2027 unsigned long *mhp;
8faa8b07 2028 static unsigned long *last_mhp;
a3437870
NA
2029
2030 /*
47d38344 2031 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter yet,
a3437870
NA
2032 * so this hugepages= parameter goes to the "default hstate".
2033 */
47d38344 2034 if (!hugetlb_max_hstate)
a3437870
NA
2035 mhp = &default_hstate_max_huge_pages;
2036 else
2037 mhp = &parsed_hstate->max_huge_pages;
2038
8faa8b07 2039 if (mhp == last_mhp) {
ffb22af5
AM
2040 pr_warning("hugepages= specified twice without "
2041 "interleaving hugepagesz=, ignoring\n");
8faa8b07
AK
2042 return 1;
2043 }
2044
a3437870
NA
2045 if (sscanf(s, "%lu", mhp) <= 0)
2046 *mhp = 0;
2047
8faa8b07
AK
2048 /*
2049 * Global state is always initialized later in hugetlb_init.
2050 * But we need to allocate >= MAX_ORDER hstates here early to still
2051 * use the bootmem allocator.
2052 */
47d38344 2053 if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER)
8faa8b07
AK
2054 hugetlb_hstate_alloc_pages(parsed_hstate);
2055
2056 last_mhp = mhp;
2057
a3437870
NA
2058 return 1;
2059}
e11bfbfc
NP
2060__setup("hugepages=", hugetlb_nrpages_setup);
2061
2062static int __init hugetlb_default_setup(char *s)
2063{
2064 default_hstate_size = memparse(s, &s);
2065 return 1;
2066}
2067__setup("default_hugepagesz=", hugetlb_default_setup);
a3437870 2068
8a213460
NA
2069static unsigned int cpuset_mems_nr(unsigned int *array)
2070{
2071 int node;
2072 unsigned int nr = 0;
2073
2074 for_each_node_mask(node, cpuset_current_mems_allowed)
2075 nr += array[node];
2076
2077 return nr;
2078}
2079
2080#ifdef CONFIG_SYSCTL
06808b08
LS
2081static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
2082 struct ctl_table *table, int write,
2083 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 2084{
e5ff2159
AK
2085 struct hstate *h = &default_hstate;
2086 unsigned long tmp;
08d4a246 2087 int ret;
e5ff2159 2088
c033a93c 2089 tmp = h->max_huge_pages;
e5ff2159 2090
adbe8726
EM
2091 if (write && h->order >= MAX_ORDER)
2092 return -EINVAL;
2093
e5ff2159
AK
2094 table->data = &tmp;
2095 table->maxlen = sizeof(unsigned long);
08d4a246
MH
2096 ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2097 if (ret)
2098 goto out;
e5ff2159 2099
06808b08 2100 if (write) {
bad44b5b
DR
2101 NODEMASK_ALLOC(nodemask_t, nodes_allowed,
2102 GFP_KERNEL | __GFP_NORETRY);
06808b08
LS
2103 if (!(obey_mempolicy &&
2104 init_nodemask_of_mempolicy(nodes_allowed))) {
2105 NODEMASK_FREE(nodes_allowed);
8cebfcd0 2106 nodes_allowed = &node_states[N_MEMORY];
06808b08
LS
2107 }
2108 h->max_huge_pages = set_max_huge_pages(h, tmp, nodes_allowed);
2109
8cebfcd0 2110 if (nodes_allowed != &node_states[N_MEMORY])
06808b08
LS
2111 NODEMASK_FREE(nodes_allowed);
2112 }
08d4a246
MH
2113out:
2114 return ret;
1da177e4 2115}
396faf03 2116
06808b08
LS
2117int hugetlb_sysctl_handler(struct ctl_table *table, int write,
2118 void __user *buffer, size_t *length, loff_t *ppos)
2119{
2120
2121 return hugetlb_sysctl_handler_common(false, table, write,
2122 buffer, length, ppos);
2123}
2124
2125#ifdef CONFIG_NUMA
2126int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
2127 void __user *buffer, size_t *length, loff_t *ppos)
2128{
2129 return hugetlb_sysctl_handler_common(true, table, write,
2130 buffer, length, ppos);
2131}
2132#endif /* CONFIG_NUMA */
2133
a3d0c6aa 2134int hugetlb_overcommit_handler(struct ctl_table *table, int write,
8d65af78 2135 void __user *buffer,
a3d0c6aa
NA
2136 size_t *length, loff_t *ppos)
2137{
a5516438 2138 struct hstate *h = &default_hstate;
e5ff2159 2139 unsigned long tmp;
08d4a246 2140 int ret;
e5ff2159 2141
c033a93c 2142 tmp = h->nr_overcommit_huge_pages;
e5ff2159 2143
adbe8726
EM
2144 if (write && h->order >= MAX_ORDER)
2145 return -EINVAL;
2146
e5ff2159
AK
2147 table->data = &tmp;
2148 table->maxlen = sizeof(unsigned long);
08d4a246
MH
2149 ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2150 if (ret)
2151 goto out;
e5ff2159
AK
2152
2153 if (write) {
2154 spin_lock(&hugetlb_lock);
2155 h->nr_overcommit_huge_pages = tmp;
2156 spin_unlock(&hugetlb_lock);
2157 }
08d4a246
MH
2158out:
2159 return ret;
a3d0c6aa
NA
2160}
2161
1da177e4
LT
2162#endif /* CONFIG_SYSCTL */
2163
e1759c21 2164void hugetlb_report_meminfo(struct seq_file *m)
1da177e4 2165{
a5516438 2166 struct hstate *h = &default_hstate;
e1759c21 2167 seq_printf(m,
4f98a2fe
RR
2168 "HugePages_Total: %5lu\n"
2169 "HugePages_Free: %5lu\n"
2170 "HugePages_Rsvd: %5lu\n"
2171 "HugePages_Surp: %5lu\n"
2172 "Hugepagesize: %8lu kB\n",
a5516438
AK
2173 h->nr_huge_pages,
2174 h->free_huge_pages,
2175 h->resv_huge_pages,
2176 h->surplus_huge_pages,
2177 1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
1da177e4
LT
2178}
2179
2180int hugetlb_report_node_meminfo(int nid, char *buf)
2181{
a5516438 2182 struct hstate *h = &default_hstate;
1da177e4
LT
2183 return sprintf(buf,
2184 "Node %d HugePages_Total: %5u\n"
a1de0919
NA
2185 "Node %d HugePages_Free: %5u\n"
2186 "Node %d HugePages_Surp: %5u\n",
a5516438
AK
2187 nid, h->nr_huge_pages_node[nid],
2188 nid, h->free_huge_pages_node[nid],
2189 nid, h->surplus_huge_pages_node[nid]);
1da177e4
LT
2190}
2191
949f7ec5
DR
2192void hugetlb_show_meminfo(void)
2193{
2194 struct hstate *h;
2195 int nid;
2196
2197 for_each_node_state(nid, N_MEMORY)
2198 for_each_hstate(h)
2199 pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
2200 nid,
2201 h->nr_huge_pages_node[nid],
2202 h->free_huge_pages_node[nid],
2203 h->surplus_huge_pages_node[nid],
2204 1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
2205}
2206
1da177e4
LT
2207/* Return the number pages of memory we physically have, in PAGE_SIZE units. */
2208unsigned long hugetlb_total_pages(void)
2209{
d0028588
WL
2210 struct hstate *h;
2211 unsigned long nr_total_pages = 0;
2212
2213 for_each_hstate(h)
2214 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
2215 return nr_total_pages;
1da177e4 2216}
1da177e4 2217
a5516438 2218static int hugetlb_acct_memory(struct hstate *h, long delta)
fc1b8a73
MG
2219{
2220 int ret = -ENOMEM;
2221
2222 spin_lock(&hugetlb_lock);
2223 /*
2224 * When cpuset is configured, it breaks the strict hugetlb page
2225 * reservation as the accounting is done on a global variable. Such
2226 * reservation is completely rubbish in the presence of cpuset because
2227 * the reservation is not checked against page availability for the
2228 * current cpuset. Application can still potentially OOM'ed by kernel
2229 * with lack of free htlb page in cpuset that the task is in.
2230 * Attempt to enforce strict accounting with cpuset is almost
2231 * impossible (or too ugly) because cpuset is too fluid that
2232 * task or memory node can be dynamically moved between cpusets.
2233 *
2234 * The change of semantics for shared hugetlb mapping with cpuset is
2235 * undesirable. However, in order to preserve some of the semantics,
2236 * we fall back to check against current free page availability as
2237 * a best attempt and hopefully to minimize the impact of changing
2238 * semantics that cpuset has.
2239 */
2240 if (delta > 0) {
a5516438 2241 if (gather_surplus_pages(h, delta) < 0)
fc1b8a73
MG
2242 goto out;
2243
a5516438
AK
2244 if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
2245 return_unused_surplus_pages(h, delta);
fc1b8a73
MG
2246 goto out;
2247 }
2248 }
2249
2250 ret = 0;
2251 if (delta < 0)
a5516438 2252 return_unused_surplus_pages(h, (unsigned long) -delta);
fc1b8a73
MG
2253
2254out:
2255 spin_unlock(&hugetlb_lock);
2256 return ret;
2257}
2258
84afd99b
AW
2259static void hugetlb_vm_op_open(struct vm_area_struct *vma)
2260{
f522c3ac 2261 struct resv_map *resv = vma_resv_map(vma);
84afd99b
AW
2262
2263 /*
2264 * This new VMA should share its siblings reservation map if present.
2265 * The VMA will only ever have a valid reservation map pointer where
2266 * it is being copied for another still existing VMA. As that VMA
25985edc 2267 * has a reference to the reservation map it cannot disappear until
84afd99b
AW
2268 * after this open call completes. It is therefore safe to take a
2269 * new reference here without additional locking.
2270 */
4e35f483 2271 if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
f522c3ac 2272 kref_get(&resv->refs);
84afd99b
AW
2273}
2274
a1e78772
MG
2275static void hugetlb_vm_op_close(struct vm_area_struct *vma)
2276{
a5516438 2277 struct hstate *h = hstate_vma(vma);
f522c3ac 2278 struct resv_map *resv = vma_resv_map(vma);
90481622 2279 struct hugepage_subpool *spool = subpool_vma(vma);
4e35f483 2280 unsigned long reserve, start, end;
84afd99b 2281
4e35f483
JK
2282 if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
2283 return;
84afd99b 2284
4e35f483
JK
2285 start = vma_hugecache_offset(h, vma, vma->vm_start);
2286 end = vma_hugecache_offset(h, vma, vma->vm_end);
84afd99b 2287
4e35f483 2288 reserve = (end - start) - region_count(resv, start, end);
84afd99b 2289
4e35f483
JK
2290 kref_put(&resv->refs, resv_map_release);
2291
2292 if (reserve) {
2293 hugetlb_acct_memory(h, -reserve);
2294 hugepage_subpool_put_pages(spool, reserve);
84afd99b 2295 }
a1e78772
MG
2296}
2297
1da177e4
LT
2298/*
2299 * We cannot handle pagefaults against hugetlb pages at all. They cause
2300 * handle_mm_fault() to try to instantiate regular-sized pages in the
2301 * hugegpage VMA. do_page_fault() is supposed to trap this, so BUG is we get
2302 * this far.
2303 */
d0217ac0 2304static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1da177e4
LT
2305{
2306 BUG();
d0217ac0 2307 return 0;
1da177e4
LT
2308}
2309
f0f37e2f 2310const struct vm_operations_struct hugetlb_vm_ops = {
d0217ac0 2311 .fault = hugetlb_vm_op_fault,
84afd99b 2312 .open = hugetlb_vm_op_open,
a1e78772 2313 .close = hugetlb_vm_op_close,
1da177e4
LT
2314};
2315
1e8f889b
DG
2316static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
2317 int writable)
63551ae0
DG
2318{
2319 pte_t entry;
2320
1e8f889b 2321 if (writable) {
106c992a
GS
2322 entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
2323 vma->vm_page_prot)));
63551ae0 2324 } else {
106c992a
GS
2325 entry = huge_pte_wrprotect(mk_huge_pte(page,
2326 vma->vm_page_prot));
63551ae0
DG
2327 }
2328 entry = pte_mkyoung(entry);
2329 entry = pte_mkhuge(entry);
d9ed9faa 2330 entry = arch_make_huge_pte(entry, vma, page, writable);
63551ae0
DG
2331
2332 return entry;
2333}
2334
1e8f889b
DG
2335static void set_huge_ptep_writable(struct vm_area_struct *vma,
2336 unsigned long address, pte_t *ptep)
2337{
2338 pte_t entry;
2339
106c992a 2340 entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
32f84528 2341 if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
4b3073e1 2342 update_mmu_cache(vma, address, ptep);
1e8f889b
DG
2343}
2344
2345
63551ae0
DG
2346int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
2347 struct vm_area_struct *vma)
2348{
2349 pte_t *src_pte, *dst_pte, entry;
2350 struct page *ptepage;
1c59827d 2351 unsigned long addr;
1e8f889b 2352 int cow;
a5516438
AK
2353 struct hstate *h = hstate_vma(vma);
2354 unsigned long sz = huge_page_size(h);
e8569dd2
AS
2355 unsigned long mmun_start; /* For mmu_notifiers */
2356 unsigned long mmun_end; /* For mmu_notifiers */
2357 int ret = 0;
1e8f889b
DG
2358
2359 cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
63551ae0 2360
e8569dd2
AS
2361 mmun_start = vma->vm_start;
2362 mmun_end = vma->vm_end;
2363 if (cow)
2364 mmu_notifier_invalidate_range_start(src, mmun_start, mmun_end);
2365
a5516438 2366 for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
cb900f41 2367 spinlock_t *src_ptl, *dst_ptl;
c74df32c
HD
2368 src_pte = huge_pte_offset(src, addr);
2369 if (!src_pte)
2370 continue;
a5516438 2371 dst_pte = huge_pte_alloc(dst, addr, sz);
e8569dd2
AS
2372 if (!dst_pte) {
2373 ret = -ENOMEM;
2374 break;
2375 }
c5c99429
LW
2376
2377 /* If the pagetables are shared don't copy or take references */
2378 if (dst_pte == src_pte)
2379 continue;
2380
cb900f41
KS
2381 dst_ptl = huge_pte_lock(h, dst, dst_pte);
2382 src_ptl = huge_pte_lockptr(h, src, src_pte);
2383 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
7f2e9525 2384 if (!huge_pte_none(huge_ptep_get(src_pte))) {
1e8f889b 2385 if (cow)
7f2e9525
GS
2386 huge_ptep_set_wrprotect(src, addr, src_pte);
2387 entry = huge_ptep_get(src_pte);
1c59827d
HD
2388 ptepage = pte_page(entry);
2389 get_page(ptepage);
0fe6e20b 2390 page_dup_rmap(ptepage);
1c59827d
HD
2391 set_huge_pte_at(dst, addr, dst_pte, entry);
2392 }
cb900f41
KS
2393 spin_unlock(src_ptl);
2394 spin_unlock(dst_ptl);
63551ae0 2395 }
63551ae0 2396
e8569dd2
AS
2397 if (cow)
2398 mmu_notifier_invalidate_range_end(src, mmun_start, mmun_end);
2399
2400 return ret;
63551ae0
DG
2401}
2402
290408d4
NH
2403static int is_hugetlb_entry_migration(pte_t pte)
2404{
2405 swp_entry_t swp;
2406
2407 if (huge_pte_none(pte) || pte_present(pte))
2408 return 0;
2409 swp = pte_to_swp_entry(pte);
32f84528 2410 if (non_swap_entry(swp) && is_migration_entry(swp))
290408d4 2411 return 1;
32f84528 2412 else
290408d4
NH
2413 return 0;
2414}
2415
fd6a03ed
NH
2416static int is_hugetlb_entry_hwpoisoned(pte_t pte)
2417{
2418 swp_entry_t swp;
2419
2420 if (huge_pte_none(pte) || pte_present(pte))
2421 return 0;
2422 swp = pte_to_swp_entry(pte);
32f84528 2423 if (non_swap_entry(swp) && is_hwpoison_entry(swp))
fd6a03ed 2424 return 1;
32f84528 2425 else
fd6a03ed
NH
2426 return 0;
2427}
2428
24669e58
AK
2429void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
2430 unsigned long start, unsigned long end,
2431 struct page *ref_page)
63551ae0 2432{
24669e58 2433 int force_flush = 0;
63551ae0
DG
2434 struct mm_struct *mm = vma->vm_mm;
2435 unsigned long address;
c7546f8f 2436 pte_t *ptep;
63551ae0 2437 pte_t pte;
cb900f41 2438 spinlock_t *ptl;
63551ae0 2439 struct page *page;
a5516438
AK
2440 struct hstate *h = hstate_vma(vma);
2441 unsigned long sz = huge_page_size(h);
2ec74c3e
SG
2442 const unsigned long mmun_start = start; /* For mmu_notifiers */
2443 const unsigned long mmun_end = end; /* For mmu_notifiers */
a5516438 2444
63551ae0 2445 WARN_ON(!is_vm_hugetlb_page(vma));
a5516438
AK
2446 BUG_ON(start & ~huge_page_mask(h));
2447 BUG_ON(end & ~huge_page_mask(h));
63551ae0 2448
24669e58 2449 tlb_start_vma(tlb, vma);
2ec74c3e 2450 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
24669e58 2451again:
a5516438 2452 for (address = start; address < end; address += sz) {
c7546f8f 2453 ptep = huge_pte_offset(mm, address);
4c887265 2454 if (!ptep)
c7546f8f
DG
2455 continue;
2456
cb900f41 2457 ptl = huge_pte_lock(h, mm, ptep);
39dde65c 2458 if (huge_pmd_unshare(mm, &address, ptep))
cb900f41 2459 goto unlock;
39dde65c 2460
6629326b
HD
2461 pte = huge_ptep_get(ptep);
2462 if (huge_pte_none(pte))
cb900f41 2463 goto unlock;
6629326b
HD
2464
2465 /*
2466 * HWPoisoned hugepage is already unmapped and dropped reference
2467 */
8c4894c6 2468 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
106c992a 2469 huge_pte_clear(mm, address, ptep);
cb900f41 2470 goto unlock;
8c4894c6 2471 }
6629326b
HD
2472
2473 page = pte_page(pte);
04f2cbe3
MG
2474 /*
2475 * If a reference page is supplied, it is because a specific
2476 * page is being unmapped, not a range. Ensure the page we
2477 * are about to unmap is the actual page of interest.
2478 */
2479 if (ref_page) {
04f2cbe3 2480 if (page != ref_page)
cb900f41 2481 goto unlock;
04f2cbe3
MG
2482
2483 /*
2484 * Mark the VMA as having unmapped its page so that
2485 * future faults in this VMA will fail rather than
2486 * looking like data was lost
2487 */
2488 set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
2489 }
2490
c7546f8f 2491 pte = huge_ptep_get_and_clear(mm, address, ptep);
24669e58 2492 tlb_remove_tlb_entry(tlb, ptep, address);
106c992a 2493 if (huge_pte_dirty(pte))
6649a386 2494 set_page_dirty(page);
9e81130b 2495
24669e58
AK
2496 page_remove_rmap(page);
2497 force_flush = !__tlb_remove_page(tlb, page);
cb900f41
KS
2498 if (force_flush) {
2499 spin_unlock(ptl);
24669e58 2500 break;
cb900f41 2501 }
9e81130b 2502 /* Bail out after unmapping reference page if supplied */
cb900f41
KS
2503 if (ref_page) {
2504 spin_unlock(ptl);
9e81130b 2505 break;
cb900f41
KS
2506 }
2507unlock:
2508 spin_unlock(ptl);
63551ae0 2509 }
24669e58
AK
2510 /*
2511 * mmu_gather ran out of room to batch pages, we break out of
2512 * the PTE lock to avoid doing the potential expensive TLB invalidate
2513 * and page-free while holding it.
2514 */
2515 if (force_flush) {
2516 force_flush = 0;
2517 tlb_flush_mmu(tlb);
2518 if (address < end && !ref_page)
2519 goto again;
fe1668ae 2520 }
2ec74c3e 2521 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
24669e58 2522 tlb_end_vma(tlb, vma);
1da177e4 2523}
63551ae0 2524
d833352a
MG
2525void __unmap_hugepage_range_final(struct mmu_gather *tlb,
2526 struct vm_area_struct *vma, unsigned long start,
2527 unsigned long end, struct page *ref_page)
2528{
2529 __unmap_hugepage_range(tlb, vma, start, end, ref_page);
2530
2531 /*
2532 * Clear this flag so that x86's huge_pmd_share page_table_shareable
2533 * test will fail on a vma being torn down, and not grab a page table
2534 * on its way out. We're lucky that the flag has such an appropriate
2535 * name, and can in fact be safely cleared here. We could clear it
2536 * before the __unmap_hugepage_range above, but all that's necessary
2537 * is to clear it before releasing the i_mmap_mutex. This works
2538 * because in the context this is called, the VMA is about to be
2539 * destroyed and the i_mmap_mutex is held.
2540 */
2541 vma->vm_flags &= ~VM_MAYSHARE;
2542}
2543
502717f4 2544void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
04f2cbe3 2545 unsigned long end, struct page *ref_page)
502717f4 2546{
24669e58
AK
2547 struct mm_struct *mm;
2548 struct mmu_gather tlb;
2549
2550 mm = vma->vm_mm;
2551
2b047252 2552 tlb_gather_mmu(&tlb, mm, start, end);
24669e58
AK
2553 __unmap_hugepage_range(&tlb, vma, start, end, ref_page);
2554 tlb_finish_mmu(&tlb, start, end);
502717f4
CK
2555}
2556
04f2cbe3
MG
2557/*
2558 * This is called when the original mapper is failing to COW a MAP_PRIVATE
2559 * mappping it owns the reserve page for. The intention is to unmap the page
2560 * from other VMAs and let the children be SIGKILLed if they are faulting the
2561 * same region.
2562 */
2a4b3ded
HH
2563static int unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
2564 struct page *page, unsigned long address)
04f2cbe3 2565{
7526674d 2566 struct hstate *h = hstate_vma(vma);
04f2cbe3
MG
2567 struct vm_area_struct *iter_vma;
2568 struct address_space *mapping;
04f2cbe3
MG
2569 pgoff_t pgoff;
2570
2571 /*
2572 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
2573 * from page cache lookup which is in HPAGE_SIZE units.
2574 */
7526674d 2575 address = address & huge_page_mask(h);
36e4f20a
MH
2576 pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
2577 vma->vm_pgoff;
496ad9aa 2578 mapping = file_inode(vma->vm_file)->i_mapping;
04f2cbe3 2579
4eb2b1dc
MG
2580 /*
2581 * Take the mapping lock for the duration of the table walk. As
2582 * this mapping should be shared between all the VMAs,
2583 * __unmap_hugepage_range() is called as the lock is already held
2584 */
3d48ae45 2585 mutex_lock(&mapping->i_mmap_mutex);
6b2dbba8 2586 vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
04f2cbe3
MG
2587 /* Do not unmap the current VMA */
2588 if (iter_vma == vma)
2589 continue;
2590
2591 /*
2592 * Unmap the page from other VMAs without their own reserves.
2593 * They get marked to be SIGKILLed if they fault in these
2594 * areas. This is because a future no-page fault on this VMA
2595 * could insert a zeroed page instead of the data existing
2596 * from the time of fork. This would look like data corruption
2597 */
2598 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
24669e58
AK
2599 unmap_hugepage_range(iter_vma, address,
2600 address + huge_page_size(h), page);
04f2cbe3 2601 }
3d48ae45 2602 mutex_unlock(&mapping->i_mmap_mutex);
04f2cbe3
MG
2603
2604 return 1;
2605}
2606
0fe6e20b
NH
2607/*
2608 * Hugetlb_cow() should be called with page lock of the original hugepage held.
ef009b25
MH
2609 * Called with hugetlb_instantiation_mutex held and pte_page locked so we
2610 * cannot race with other handlers or page migration.
2611 * Keep the pte_same checks anyway to make transition from the mutex easier.
0fe6e20b 2612 */
1e8f889b 2613static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
04f2cbe3 2614 unsigned long address, pte_t *ptep, pte_t pte,
cb900f41 2615 struct page *pagecache_page, spinlock_t *ptl)
1e8f889b 2616{
a5516438 2617 struct hstate *h = hstate_vma(vma);
1e8f889b 2618 struct page *old_page, *new_page;
04f2cbe3 2619 int outside_reserve = 0;
2ec74c3e
SG
2620 unsigned long mmun_start; /* For mmu_notifiers */
2621 unsigned long mmun_end; /* For mmu_notifiers */
1e8f889b
DG
2622
2623 old_page = pte_page(pte);
2624
04f2cbe3 2625retry_avoidcopy:
1e8f889b
DG
2626 /* If no-one else is actually using this page, avoid the copy
2627 * and just make the page writable */
37a2140d
JK
2628 if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
2629 page_move_anon_rmap(old_page, vma, address);
1e8f889b 2630 set_huge_ptep_writable(vma, address, ptep);
83c54070 2631 return 0;
1e8f889b
DG
2632 }
2633
04f2cbe3
MG
2634 /*
2635 * If the process that created a MAP_PRIVATE mapping is about to
2636 * perform a COW due to a shared page count, attempt to satisfy
2637 * the allocation without using the existing reserves. The pagecache
2638 * page is used to determine if the reserve at this address was
2639 * consumed or not. If reserves were used, a partial faulted mapping
2640 * at the time of fork() could consume its reserves on COW instead
2641 * of the full address range.
2642 */
5944d011 2643 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
04f2cbe3
MG
2644 old_page != pagecache_page)
2645 outside_reserve = 1;
2646
1e8f889b 2647 page_cache_get(old_page);
b76c8cfb 2648
cb900f41
KS
2649 /* Drop page table lock as buddy allocator may be called */
2650 spin_unlock(ptl);
04f2cbe3 2651 new_page = alloc_huge_page(vma, address, outside_reserve);
1e8f889b 2652
2fc39cec 2653 if (IS_ERR(new_page)) {
76dcee75 2654 long err = PTR_ERR(new_page);
1e8f889b 2655 page_cache_release(old_page);
04f2cbe3
MG
2656
2657 /*
2658 * If a process owning a MAP_PRIVATE mapping fails to COW,
2659 * it is due to references held by a child and an insufficient
2660 * huge page pool. To guarantee the original mappers
2661 * reliability, unmap the page from child processes. The child
2662 * may get SIGKILLed if it later faults.
2663 */
2664 if (outside_reserve) {
2665 BUG_ON(huge_pte_none(pte));
2666 if (unmap_ref_private(mm, vma, old_page, address)) {
04f2cbe3 2667 BUG_ON(huge_pte_none(pte));
cb900f41 2668 spin_lock(ptl);
a734bcc8
HD
2669 ptep = huge_pte_offset(mm, address & huge_page_mask(h));
2670 if (likely(pte_same(huge_ptep_get(ptep), pte)))
2671 goto retry_avoidcopy;
2672 /*
cb900f41
KS
2673 * race occurs while re-acquiring page table
2674 * lock, and our job is done.
a734bcc8
HD
2675 */
2676 return 0;
04f2cbe3
MG
2677 }
2678 WARN_ON_ONCE(1);
2679 }
2680
b76c8cfb 2681 /* Caller expects lock to be held */
cb900f41 2682 spin_lock(ptl);
76dcee75
AK
2683 if (err == -ENOMEM)
2684 return VM_FAULT_OOM;
2685 else
2686 return VM_FAULT_SIGBUS;
1e8f889b
DG
2687 }
2688
0fe6e20b
NH
2689 /*
2690 * When the original hugepage is shared one, it does not have
2691 * anon_vma prepared.
2692 */
44e2aa93 2693 if (unlikely(anon_vma_prepare(vma))) {
ea4039a3
HD
2694 page_cache_release(new_page);
2695 page_cache_release(old_page);
44e2aa93 2696 /* Caller expects lock to be held */
cb900f41 2697 spin_lock(ptl);
0fe6e20b 2698 return VM_FAULT_OOM;
44e2aa93 2699 }
0fe6e20b 2700
47ad8475
AA
2701 copy_user_huge_page(new_page, old_page, address, vma,
2702 pages_per_huge_page(h));
0ed361de 2703 __SetPageUptodate(new_page);
1e8f889b 2704
2ec74c3e
SG
2705 mmun_start = address & huge_page_mask(h);
2706 mmun_end = mmun_start + huge_page_size(h);
2707 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
b76c8cfb 2708 /*
cb900f41 2709 * Retake the page table lock to check for racing updates
b76c8cfb
LW
2710 * before the page tables are altered
2711 */
cb900f41 2712 spin_lock(ptl);
a5516438 2713 ptep = huge_pte_offset(mm, address & huge_page_mask(h));
7f2e9525 2714 if (likely(pte_same(huge_ptep_get(ptep), pte))) {
07443a85
JK
2715 ClearPagePrivate(new_page);
2716
1e8f889b 2717 /* Break COW */
8fe627ec 2718 huge_ptep_clear_flush(vma, address, ptep);
1e8f889b
DG
2719 set_huge_pte_at(mm, address, ptep,
2720 make_huge_pte(vma, new_page, 1));
0fe6e20b 2721 page_remove_rmap(old_page);
cd67f0d2 2722 hugepage_add_new_anon_rmap(new_page, vma, address);
1e8f889b
DG
2723 /* Make the old page be freed below */
2724 new_page = old_page;
2725 }
cb900f41 2726 spin_unlock(ptl);
2ec74c3e 2727 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1e8f889b
DG
2728 page_cache_release(new_page);
2729 page_cache_release(old_page);
8312034f
JK
2730
2731 /* Caller expects lock to be held */
cb900f41 2732 spin_lock(ptl);
83c54070 2733 return 0;
1e8f889b
DG
2734}
2735
04f2cbe3 2736/* Return the pagecache page at a given address within a VMA */
a5516438
AK
2737static struct page *hugetlbfs_pagecache_page(struct hstate *h,
2738 struct vm_area_struct *vma, unsigned long address)
04f2cbe3
MG
2739{
2740 struct address_space *mapping;
e7c4b0bf 2741 pgoff_t idx;
04f2cbe3
MG
2742
2743 mapping = vma->vm_file->f_mapping;
a5516438 2744 idx = vma_hugecache_offset(h, vma, address);
04f2cbe3
MG
2745
2746 return find_lock_page(mapping, idx);
2747}
2748
3ae77f43
HD
2749/*
2750 * Return whether there is a pagecache page to back given address within VMA.
2751 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
2752 */
2753static bool hugetlbfs_pagecache_present(struct hstate *h,
2a15efc9
HD
2754 struct vm_area_struct *vma, unsigned long address)
2755{
2756 struct address_space *mapping;
2757 pgoff_t idx;
2758 struct page *page;
2759
2760 mapping = vma->vm_file->f_mapping;
2761 idx = vma_hugecache_offset(h, vma, address);
2762
2763 page = find_get_page(mapping, idx);
2764 if (page)
2765 put_page(page);
2766 return page != NULL;
2767}
2768
a1ed3dda 2769static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
788c7df4 2770 unsigned long address, pte_t *ptep, unsigned int flags)
ac9b9c66 2771{
a5516438 2772 struct hstate *h = hstate_vma(vma);
ac9b9c66 2773 int ret = VM_FAULT_SIGBUS;
409eb8c2 2774 int anon_rmap = 0;
e7c4b0bf 2775 pgoff_t idx;
4c887265 2776 unsigned long size;
4c887265
AL
2777 struct page *page;
2778 struct address_space *mapping;
1e8f889b 2779 pte_t new_pte;
cb900f41 2780 spinlock_t *ptl;
4c887265 2781
04f2cbe3
MG
2782 /*
2783 * Currently, we are forced to kill the process in the event the
2784 * original mapper has unmapped pages from the child due to a failed
25985edc 2785 * COW. Warn that such a situation has occurred as it may not be obvious
04f2cbe3
MG
2786 */
2787 if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
ffb22af5
AM
2788 pr_warning("PID %d killed due to inadequate hugepage pool\n",
2789 current->pid);
04f2cbe3
MG
2790 return ret;
2791 }
2792
4c887265 2793 mapping = vma->vm_file->f_mapping;
a5516438 2794 idx = vma_hugecache_offset(h, vma, address);
4c887265
AL
2795
2796 /*
2797 * Use page lock to guard against racing truncation
2798 * before we get page_table_lock.
2799 */
6bda666a
CL
2800retry:
2801 page = find_lock_page(mapping, idx);
2802 if (!page) {
a5516438 2803 size = i_size_read(mapping->host) >> huge_page_shift(h);
ebed4bfc
HD
2804 if (idx >= size)
2805 goto out;
04f2cbe3 2806 page = alloc_huge_page(vma, address, 0);
2fc39cec 2807 if (IS_ERR(page)) {
76dcee75
AK
2808 ret = PTR_ERR(page);
2809 if (ret == -ENOMEM)
2810 ret = VM_FAULT_OOM;
2811 else
2812 ret = VM_FAULT_SIGBUS;
6bda666a
CL
2813 goto out;
2814 }
47ad8475 2815 clear_huge_page(page, address, pages_per_huge_page(h));
0ed361de 2816 __SetPageUptodate(page);
ac9b9c66 2817
f83a275d 2818 if (vma->vm_flags & VM_MAYSHARE) {
6bda666a 2819 int err;
45c682a6 2820 struct inode *inode = mapping->host;
6bda666a
CL
2821
2822 err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
2823 if (err) {
2824 put_page(page);
6bda666a
CL
2825 if (err == -EEXIST)
2826 goto retry;
2827 goto out;
2828 }
07443a85 2829 ClearPagePrivate(page);
45c682a6
KC
2830
2831 spin_lock(&inode->i_lock);
a5516438 2832 inode->i_blocks += blocks_per_huge_page(h);
45c682a6 2833 spin_unlock(&inode->i_lock);
23be7468 2834 } else {
6bda666a 2835 lock_page(page);
0fe6e20b
NH
2836 if (unlikely(anon_vma_prepare(vma))) {
2837 ret = VM_FAULT_OOM;
2838 goto backout_unlocked;
2839 }
409eb8c2 2840 anon_rmap = 1;
23be7468 2841 }
0fe6e20b 2842 } else {
998b4382
NH
2843 /*
2844 * If memory error occurs between mmap() and fault, some process
2845 * don't have hwpoisoned swap entry for errored virtual address.
2846 * So we need to block hugepage fault by PG_hwpoison bit check.
2847 */
2848 if (unlikely(PageHWPoison(page))) {
32f84528 2849 ret = VM_FAULT_HWPOISON |
972dc4de 2850 VM_FAULT_SET_HINDEX(hstate_index(h));
998b4382
NH
2851 goto backout_unlocked;
2852 }
6bda666a 2853 }
1e8f889b 2854
57303d80
AW
2855 /*
2856 * If we are going to COW a private mapping later, we examine the
2857 * pending reservations for this page now. This will ensure that
2858 * any allocations necessary to record that reservation occur outside
2859 * the spinlock.
2860 */
788c7df4 2861 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED))
2b26736c
AW
2862 if (vma_needs_reservation(h, vma, address) < 0) {
2863 ret = VM_FAULT_OOM;
2864 goto backout_unlocked;
2865 }
57303d80 2866
cb900f41
KS
2867 ptl = huge_pte_lockptr(h, mm, ptep);
2868 spin_lock(ptl);
a5516438 2869 size = i_size_read(mapping->host) >> huge_page_shift(h);
4c887265
AL
2870 if (idx >= size)
2871 goto backout;
2872
83c54070 2873 ret = 0;
7f2e9525 2874 if (!huge_pte_none(huge_ptep_get(ptep)))
4c887265
AL
2875 goto backout;
2876
07443a85
JK
2877 if (anon_rmap) {
2878 ClearPagePrivate(page);
409eb8c2 2879 hugepage_add_new_anon_rmap(page, vma, address);
07443a85 2880 }
409eb8c2
HD
2881 else
2882 page_dup_rmap(page);
1e8f889b
DG
2883 new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
2884 && (vma->vm_flags & VM_SHARED)));
2885 set_huge_pte_at(mm, address, ptep, new_pte);
2886
788c7df4 2887 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
1e8f889b 2888 /* Optimization, do the COW without a second fault */
cb900f41 2889 ret = hugetlb_cow(mm, vma, address, ptep, new_pte, page, ptl);
1e8f889b
DG
2890 }
2891
cb900f41 2892 spin_unlock(ptl);
4c887265
AL
2893 unlock_page(page);
2894out:
ac9b9c66 2895 return ret;
4c887265
AL
2896
2897backout:
cb900f41 2898 spin_unlock(ptl);
2b26736c 2899backout_unlocked:
4c887265
AL
2900 unlock_page(page);
2901 put_page(page);
2902 goto out;
ac9b9c66
HD
2903}
2904
86e5216f 2905int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
788c7df4 2906 unsigned long address, unsigned int flags)
86e5216f
AL
2907{
2908 pte_t *ptep;
2909 pte_t entry;
cb900f41 2910 spinlock_t *ptl;
1e8f889b 2911 int ret;
0fe6e20b 2912 struct page *page = NULL;
57303d80 2913 struct page *pagecache_page = NULL;
3935baa9 2914 static DEFINE_MUTEX(hugetlb_instantiation_mutex);
a5516438 2915 struct hstate *h = hstate_vma(vma);
86e5216f 2916
1e16a539
KH
2917 address &= huge_page_mask(h);
2918
fd6a03ed
NH
2919 ptep = huge_pte_offset(mm, address);
2920 if (ptep) {
2921 entry = huge_ptep_get(ptep);
290408d4 2922 if (unlikely(is_hugetlb_entry_migration(entry))) {
cb900f41 2923 migration_entry_wait_huge(vma, mm, ptep);
290408d4
NH
2924 return 0;
2925 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
32f84528 2926 return VM_FAULT_HWPOISON_LARGE |
972dc4de 2927 VM_FAULT_SET_HINDEX(hstate_index(h));
fd6a03ed
NH
2928 }
2929
a5516438 2930 ptep = huge_pte_alloc(mm, address, huge_page_size(h));
86e5216f
AL
2931 if (!ptep)
2932 return VM_FAULT_OOM;
2933
3935baa9
DG
2934 /*
2935 * Serialize hugepage allocation and instantiation, so that we don't
2936 * get spurious allocation failures if two CPUs race to instantiate
2937 * the same page in the page cache.
2938 */
2939 mutex_lock(&hugetlb_instantiation_mutex);
7f2e9525
GS
2940 entry = huge_ptep_get(ptep);
2941 if (huge_pte_none(entry)) {
788c7df4 2942 ret = hugetlb_no_page(mm, vma, address, ptep, flags);
b4d1d99f 2943 goto out_mutex;
3935baa9 2944 }
86e5216f 2945
83c54070 2946 ret = 0;
1e8f889b 2947
57303d80
AW
2948 /*
2949 * If we are going to COW the mapping later, we examine the pending
2950 * reservations for this page now. This will ensure that any
2951 * allocations necessary to record that reservation occur outside the
2952 * spinlock. For private mappings, we also lookup the pagecache
2953 * page now as it is used to determine if a reservation has been
2954 * consumed.
2955 */
106c992a 2956 if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
2b26736c
AW
2957 if (vma_needs_reservation(h, vma, address) < 0) {
2958 ret = VM_FAULT_OOM;
b4d1d99f 2959 goto out_mutex;
2b26736c 2960 }
57303d80 2961
f83a275d 2962 if (!(vma->vm_flags & VM_MAYSHARE))
57303d80
AW
2963 pagecache_page = hugetlbfs_pagecache_page(h,
2964 vma, address);
2965 }
2966
56c9cfb1
NH
2967 /*
2968 * hugetlb_cow() requires page locks of pte_page(entry) and
2969 * pagecache_page, so here we need take the former one
2970 * when page != pagecache_page or !pagecache_page.
2971 * Note that locking order is always pagecache_page -> page,
2972 * so no worry about deadlock.
2973 */
2974 page = pte_page(entry);
66aebce7 2975 get_page(page);
56c9cfb1 2976 if (page != pagecache_page)
0fe6e20b 2977 lock_page(page);
0fe6e20b 2978
cb900f41
KS
2979 ptl = huge_pte_lockptr(h, mm, ptep);
2980 spin_lock(ptl);
1e8f889b 2981 /* Check for a racing update before calling hugetlb_cow */
b4d1d99f 2982 if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
cb900f41 2983 goto out_ptl;
b4d1d99f
DG
2984
2985
788c7df4 2986 if (flags & FAULT_FLAG_WRITE) {
106c992a 2987 if (!huge_pte_write(entry)) {
57303d80 2988 ret = hugetlb_cow(mm, vma, address, ptep, entry,
cb900f41
KS
2989 pagecache_page, ptl);
2990 goto out_ptl;
b4d1d99f 2991 }
106c992a 2992 entry = huge_pte_mkdirty(entry);
b4d1d99f
DG
2993 }
2994 entry = pte_mkyoung(entry);
788c7df4
HD
2995 if (huge_ptep_set_access_flags(vma, address, ptep, entry,
2996 flags & FAULT_FLAG_WRITE))
4b3073e1 2997 update_mmu_cache(vma, address, ptep);
b4d1d99f 2998
cb900f41
KS
2999out_ptl:
3000 spin_unlock(ptl);
57303d80
AW
3001
3002 if (pagecache_page) {
3003 unlock_page(pagecache_page);
3004 put_page(pagecache_page);
3005 }
1f64d69c
DN
3006 if (page != pagecache_page)
3007 unlock_page(page);
66aebce7 3008 put_page(page);
57303d80 3009
b4d1d99f 3010out_mutex:
3935baa9 3011 mutex_unlock(&hugetlb_instantiation_mutex);
1e8f889b
DG
3012
3013 return ret;
86e5216f
AL
3014}
3015
28a35716
ML
3016long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
3017 struct page **pages, struct vm_area_struct **vmas,
3018 unsigned long *position, unsigned long *nr_pages,
3019 long i, unsigned int flags)
63551ae0 3020{
d5d4b0aa
CK
3021 unsigned long pfn_offset;
3022 unsigned long vaddr = *position;
28a35716 3023 unsigned long remainder = *nr_pages;
a5516438 3024 struct hstate *h = hstate_vma(vma);
63551ae0 3025
63551ae0 3026 while (vaddr < vma->vm_end && remainder) {
4c887265 3027 pte_t *pte;
cb900f41 3028 spinlock_t *ptl = NULL;
2a15efc9 3029 int absent;
4c887265 3030 struct page *page;
63551ae0 3031
4c887265
AL
3032 /*
3033 * Some archs (sparc64, sh*) have multiple pte_ts to
2a15efc9 3034 * each hugepage. We have to make sure we get the
4c887265 3035 * first, for the page indexing below to work.
cb900f41
KS
3036 *
3037 * Note that page table lock is not held when pte is null.
4c887265 3038 */
a5516438 3039 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h));
cb900f41
KS
3040 if (pte)
3041 ptl = huge_pte_lock(h, mm, pte);
2a15efc9
HD
3042 absent = !pte || huge_pte_none(huge_ptep_get(pte));
3043
3044 /*
3045 * When coredumping, it suits get_dump_page if we just return
3ae77f43
HD
3046 * an error where there's an empty slot with no huge pagecache
3047 * to back it. This way, we avoid allocating a hugepage, and
3048 * the sparse dumpfile avoids allocating disk blocks, but its
3049 * huge holes still show up with zeroes where they need to be.
2a15efc9 3050 */
3ae77f43
HD
3051 if (absent && (flags & FOLL_DUMP) &&
3052 !hugetlbfs_pagecache_present(h, vma, vaddr)) {
cb900f41
KS
3053 if (pte)
3054 spin_unlock(ptl);
2a15efc9
HD
3055 remainder = 0;
3056 break;
3057 }
63551ae0 3058
9cc3a5bd
NH
3059 /*
3060 * We need call hugetlb_fault for both hugepages under migration
3061 * (in which case hugetlb_fault waits for the migration,) and
3062 * hwpoisoned hugepages (in which case we need to prevent the
3063 * caller from accessing to them.) In order to do this, we use
3064 * here is_swap_pte instead of is_hugetlb_entry_migration and
3065 * is_hugetlb_entry_hwpoisoned. This is because it simply covers
3066 * both cases, and because we can't follow correct pages
3067 * directly from any kind of swap entries.
3068 */
3069 if (absent || is_swap_pte(huge_ptep_get(pte)) ||
106c992a
GS
3070 ((flags & FOLL_WRITE) &&
3071 !huge_pte_write(huge_ptep_get(pte)))) {
4c887265 3072 int ret;
63551ae0 3073
cb900f41
KS
3074 if (pte)
3075 spin_unlock(ptl);
2a15efc9
HD
3076 ret = hugetlb_fault(mm, vma, vaddr,
3077 (flags & FOLL_WRITE) ? FAULT_FLAG_WRITE : 0);
a89182c7 3078 if (!(ret & VM_FAULT_ERROR))
4c887265 3079 continue;
63551ae0 3080
4c887265 3081 remainder = 0;
4c887265
AL
3082 break;
3083 }
3084
a5516438 3085 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
7f2e9525 3086 page = pte_page(huge_ptep_get(pte));
d5d4b0aa 3087same_page:
d6692183 3088 if (pages) {
2a15efc9 3089 pages[i] = mem_map_offset(page, pfn_offset);
a0368d4e 3090 get_page_foll(pages[i]);
d6692183 3091 }
63551ae0
DG
3092
3093 if (vmas)
3094 vmas[i] = vma;
3095
3096 vaddr += PAGE_SIZE;
d5d4b0aa 3097 ++pfn_offset;
63551ae0
DG
3098 --remainder;
3099 ++i;
d5d4b0aa 3100 if (vaddr < vma->vm_end && remainder &&
a5516438 3101 pfn_offset < pages_per_huge_page(h)) {
d5d4b0aa
CK
3102 /*
3103 * We use pfn_offset to avoid touching the pageframes
3104 * of this compound page.
3105 */
3106 goto same_page;
3107 }
cb900f41 3108 spin_unlock(ptl);
63551ae0 3109 }
28a35716 3110 *nr_pages = remainder;
63551ae0
DG
3111 *position = vaddr;
3112
2a15efc9 3113 return i ? i : -EFAULT;
63551ae0 3114}
8f860591 3115
7da4d641 3116unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
8f860591
ZY
3117 unsigned long address, unsigned long end, pgprot_t newprot)
3118{
3119 struct mm_struct *mm = vma->vm_mm;
3120 unsigned long start = address;
3121 pte_t *ptep;
3122 pte_t pte;
a5516438 3123 struct hstate *h = hstate_vma(vma);
7da4d641 3124 unsigned long pages = 0;
8f860591
ZY
3125
3126 BUG_ON(address >= end);
3127 flush_cache_range(vma, address, end);
3128
3d48ae45 3129 mutex_lock(&vma->vm_file->f_mapping->i_mmap_mutex);
a5516438 3130 for (; address < end; address += huge_page_size(h)) {
cb900f41 3131 spinlock_t *ptl;
8f860591
ZY
3132 ptep = huge_pte_offset(mm, address);
3133 if (!ptep)
3134 continue;
cb900f41 3135 ptl = huge_pte_lock(h, mm, ptep);
7da4d641
PZ
3136 if (huge_pmd_unshare(mm, &address, ptep)) {
3137 pages++;
cb900f41 3138 spin_unlock(ptl);
39dde65c 3139 continue;
7da4d641 3140 }
7f2e9525 3141 if (!huge_pte_none(huge_ptep_get(ptep))) {
8f860591 3142 pte = huge_ptep_get_and_clear(mm, address, ptep);
106c992a 3143 pte = pte_mkhuge(huge_pte_modify(pte, newprot));
be7517d6 3144 pte = arch_make_huge_pte(pte, vma, NULL, 0);
8f860591 3145 set_huge_pte_at(mm, address, ptep, pte);
7da4d641 3146 pages++;
8f860591 3147 }
cb900f41 3148 spin_unlock(ptl);
8f860591 3149 }
d833352a
MG
3150 /*
3151 * Must flush TLB before releasing i_mmap_mutex: x86's huge_pmd_unshare
3152 * may have cleared our pud entry and done put_page on the page table:
3153 * once we release i_mmap_mutex, another task can do the final put_page
3154 * and that page table be reused and filled with junk.
3155 */
8f860591 3156 flush_tlb_range(vma, start, end);
d833352a 3157 mutex_unlock(&vma->vm_file->f_mapping->i_mmap_mutex);
7da4d641
PZ
3158
3159 return pages << h->order;
8f860591
ZY
3160}
3161
a1e78772
MG
3162int hugetlb_reserve_pages(struct inode *inode,
3163 long from, long to,
5a6fe125 3164 struct vm_area_struct *vma,
ca16d140 3165 vm_flags_t vm_flags)
e4e574b7 3166{
17c9d12e 3167 long ret, chg;
a5516438 3168 struct hstate *h = hstate_inode(inode);
90481622 3169 struct hugepage_subpool *spool = subpool_inode(inode);
9119a41e 3170 struct resv_map *resv_map;
e4e574b7 3171
17c9d12e
MG
3172 /*
3173 * Only apply hugepage reservation if asked. At fault time, an
3174 * attempt will be made for VM_NORESERVE to allocate a page
90481622 3175 * without using reserves
17c9d12e 3176 */
ca16d140 3177 if (vm_flags & VM_NORESERVE)
17c9d12e
MG
3178 return 0;
3179
a1e78772
MG
3180 /*
3181 * Shared mappings base their reservation on the number of pages that
3182 * are already allocated on behalf of the file. Private mappings need
3183 * to reserve the full area even if read-only as mprotect() may be
3184 * called to make the mapping read-write. Assume !vma is a shm mapping
3185 */
9119a41e 3186 if (!vma || vma->vm_flags & VM_MAYSHARE) {
4e35f483 3187 resv_map = inode_resv_map(inode);
9119a41e 3188
1406ec9b 3189 chg = region_chg(resv_map, from, to);
9119a41e
JK
3190
3191 } else {
3192 resv_map = resv_map_alloc();
17c9d12e
MG
3193 if (!resv_map)
3194 return -ENOMEM;
3195
a1e78772 3196 chg = to - from;
84afd99b 3197
17c9d12e
MG
3198 set_vma_resv_map(vma, resv_map);
3199 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
3200 }
3201
c50ac050
DH
3202 if (chg < 0) {
3203 ret = chg;
3204 goto out_err;
3205 }
8a630112 3206
90481622 3207 /* There must be enough pages in the subpool for the mapping */
c50ac050
DH
3208 if (hugepage_subpool_get_pages(spool, chg)) {
3209 ret = -ENOSPC;
3210 goto out_err;
3211 }
5a6fe125
MG
3212
3213 /*
17c9d12e 3214 * Check enough hugepages are available for the reservation.
90481622 3215 * Hand the pages back to the subpool if there are not
5a6fe125 3216 */
a5516438 3217 ret = hugetlb_acct_memory(h, chg);
68842c9b 3218 if (ret < 0) {
90481622 3219 hugepage_subpool_put_pages(spool, chg);
c50ac050 3220 goto out_err;
68842c9b 3221 }
17c9d12e
MG
3222
3223 /*
3224 * Account for the reservations made. Shared mappings record regions
3225 * that have reservations as they are shared by multiple VMAs.
3226 * When the last VMA disappears, the region map says how much
3227 * the reservation was and the page cache tells how much of
3228 * the reservation was consumed. Private mappings are per-VMA and
3229 * only the consumed reservations are tracked. When the VMA
3230 * disappears, the original reservation is the VMA size and the
3231 * consumed reservations are stored in the map. Hence, nothing
3232 * else has to be done for private mappings here
3233 */
f83a275d 3234 if (!vma || vma->vm_flags & VM_MAYSHARE)
1406ec9b 3235 region_add(resv_map, from, to);
a43a8c39 3236 return 0;
c50ac050 3237out_err:
f031dd27
JK
3238 if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
3239 kref_put(&resv_map->refs, resv_map_release);
c50ac050 3240 return ret;
a43a8c39
CK
3241}
3242
3243void hugetlb_unreserve_pages(struct inode *inode, long offset, long freed)
3244{
a5516438 3245 struct hstate *h = hstate_inode(inode);
4e35f483 3246 struct resv_map *resv_map = inode_resv_map(inode);
9119a41e 3247 long chg = 0;
90481622 3248 struct hugepage_subpool *spool = subpool_inode(inode);
45c682a6 3249
9119a41e 3250 if (resv_map)
1406ec9b 3251 chg = region_truncate(resv_map, offset);
45c682a6 3252 spin_lock(&inode->i_lock);
e4c6f8be 3253 inode->i_blocks -= (blocks_per_huge_page(h) * freed);
45c682a6
KC
3254 spin_unlock(&inode->i_lock);
3255
90481622 3256 hugepage_subpool_put_pages(spool, (chg - freed));
a5516438 3257 hugetlb_acct_memory(h, -(chg - freed));
a43a8c39 3258}
93f70f90 3259
3212b535
SC
3260#ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
3261static unsigned long page_table_shareable(struct vm_area_struct *svma,
3262 struct vm_area_struct *vma,
3263 unsigned long addr, pgoff_t idx)
3264{
3265 unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
3266 svma->vm_start;
3267 unsigned long sbase = saddr & PUD_MASK;
3268 unsigned long s_end = sbase + PUD_SIZE;
3269
3270 /* Allow segments to share if only one is marked locked */
3271 unsigned long vm_flags = vma->vm_flags & ~VM_LOCKED;
3272 unsigned long svm_flags = svma->vm_flags & ~VM_LOCKED;
3273
3274 /*
3275 * match the virtual addresses, permission and the alignment of the
3276 * page table page.
3277 */
3278 if (pmd_index(addr) != pmd_index(saddr) ||
3279 vm_flags != svm_flags ||
3280 sbase < svma->vm_start || svma->vm_end < s_end)
3281 return 0;
3282
3283 return saddr;
3284}
3285
3286static int vma_shareable(struct vm_area_struct *vma, unsigned long addr)
3287{
3288 unsigned long base = addr & PUD_MASK;
3289 unsigned long end = base + PUD_SIZE;
3290
3291 /*
3292 * check on proper vm_flags and page table alignment
3293 */
3294 if (vma->vm_flags & VM_MAYSHARE &&
3295 vma->vm_start <= base && end <= vma->vm_end)
3296 return 1;
3297 return 0;
3298}
3299
3300/*
3301 * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
3302 * and returns the corresponding pte. While this is not necessary for the
3303 * !shared pmd case because we can allocate the pmd later as well, it makes the
3304 * code much cleaner. pmd allocation is essential for the shared case because
3305 * pud has to be populated inside the same i_mmap_mutex section - otherwise
3306 * racing tasks could either miss the sharing (see huge_pte_offset) or select a
3307 * bad pmd for sharing.
3308 */
3309pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
3310{
3311 struct vm_area_struct *vma = find_vma(mm, addr);
3312 struct address_space *mapping = vma->vm_file->f_mapping;
3313 pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
3314 vma->vm_pgoff;
3315 struct vm_area_struct *svma;
3316 unsigned long saddr;
3317 pte_t *spte = NULL;
3318 pte_t *pte;
cb900f41 3319 spinlock_t *ptl;
3212b535
SC
3320
3321 if (!vma_shareable(vma, addr))
3322 return (pte_t *)pmd_alloc(mm, pud, addr);
3323
3324 mutex_lock(&mapping->i_mmap_mutex);
3325 vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
3326 if (svma == vma)
3327 continue;
3328
3329 saddr = page_table_shareable(svma, vma, addr, idx);
3330 if (saddr) {
3331 spte = huge_pte_offset(svma->vm_mm, saddr);
3332 if (spte) {
3333 get_page(virt_to_page(spte));
3334 break;
3335 }
3336 }
3337 }
3338
3339 if (!spte)
3340 goto out;
3341
cb900f41
KS
3342 ptl = huge_pte_lockptr(hstate_vma(vma), mm, spte);
3343 spin_lock(ptl);
3212b535
SC
3344 if (pud_none(*pud))
3345 pud_populate(mm, pud,
3346 (pmd_t *)((unsigned long)spte & PAGE_MASK));
3347 else
3348 put_page(virt_to_page(spte));
cb900f41 3349 spin_unlock(ptl);
3212b535
SC
3350out:
3351 pte = (pte_t *)pmd_alloc(mm, pud, addr);
3352 mutex_unlock(&mapping->i_mmap_mutex);
3353 return pte;
3354}
3355
3356/*
3357 * unmap huge page backed by shared pte.
3358 *
3359 * Hugetlb pte page is ref counted at the time of mapping. If pte is shared
3360 * indicated by page_count > 1, unmap is achieved by clearing pud and
3361 * decrementing the ref count. If count == 1, the pte page is not shared.
3362 *
cb900f41 3363 * called with page table lock held.
3212b535
SC
3364 *
3365 * returns: 1 successfully unmapped a shared pte page
3366 * 0 the underlying pte page is not shared, or it is the last user
3367 */
3368int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
3369{
3370 pgd_t *pgd = pgd_offset(mm, *addr);
3371 pud_t *pud = pud_offset(pgd, *addr);
3372
3373 BUG_ON(page_count(virt_to_page(ptep)) == 0);
3374 if (page_count(virt_to_page(ptep)) == 1)
3375 return 0;
3376
3377 pud_clear(pud);
3378 put_page(virt_to_page(ptep));
3379 *addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE;
3380 return 1;
3381}
9e5fc74c
SC
3382#define want_pmd_share() (1)
3383#else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
3384pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
3385{
3386 return NULL;
3387}
3388#define want_pmd_share() (0)
3212b535
SC
3389#endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
3390
9e5fc74c
SC
3391#ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
3392pte_t *huge_pte_alloc(struct mm_struct *mm,
3393 unsigned long addr, unsigned long sz)
3394{
3395 pgd_t *pgd;
3396 pud_t *pud;
3397 pte_t *pte = NULL;
3398
3399 pgd = pgd_offset(mm, addr);
3400 pud = pud_alloc(mm, pgd, addr);
3401 if (pud) {
3402 if (sz == PUD_SIZE) {
3403 pte = (pte_t *)pud;
3404 } else {
3405 BUG_ON(sz != PMD_SIZE);
3406 if (want_pmd_share() && pud_none(*pud))
3407 pte = huge_pmd_share(mm, addr, pud);
3408 else
3409 pte = (pte_t *)pmd_alloc(mm, pud, addr);
3410 }
3411 }
3412 BUG_ON(pte && !pte_none(*pte) && !pte_huge(*pte));
3413
3414 return pte;
3415}
3416
3417pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr)
3418{
3419 pgd_t *pgd;
3420 pud_t *pud;
3421 pmd_t *pmd = NULL;
3422
3423 pgd = pgd_offset(mm, addr);
3424 if (pgd_present(*pgd)) {
3425 pud = pud_offset(pgd, addr);
3426 if (pud_present(*pud)) {
3427 if (pud_huge(*pud))
3428 return (pte_t *)pud;
3429 pmd = pmd_offset(pud, addr);
3430 }
3431 }
3432 return (pte_t *) pmd;
3433}
3434
3435struct page *
3436follow_huge_pmd(struct mm_struct *mm, unsigned long address,
3437 pmd_t *pmd, int write)
3438{
3439 struct page *page;
3440
3441 page = pte_page(*(pte_t *)pmd);
3442 if (page)
3443 page += ((address & ~PMD_MASK) >> PAGE_SHIFT);
3444 return page;
3445}
3446
3447struct page *
3448follow_huge_pud(struct mm_struct *mm, unsigned long address,
3449 pud_t *pud, int write)
3450{
3451 struct page *page;
3452
3453 page = pte_page(*(pte_t *)pud);
3454 if (page)
3455 page += ((address & ~PUD_MASK) >> PAGE_SHIFT);
3456 return page;
3457}
3458
3459#else /* !CONFIG_ARCH_WANT_GENERAL_HUGETLB */
3460
3461/* Can be overriden by architectures */
3462__attribute__((weak)) struct page *
3463follow_huge_pud(struct mm_struct *mm, unsigned long address,
3464 pud_t *pud, int write)
3465{
3466 BUG();
3467 return NULL;
3468}
3469
3470#endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
3471
d5bd9106
AK
3472#ifdef CONFIG_MEMORY_FAILURE
3473
6de2b1aa
NH
3474/* Should be called in hugetlb_lock */
3475static int is_hugepage_on_freelist(struct page *hpage)
3476{
3477 struct page *page;
3478 struct page *tmp;
3479 struct hstate *h = page_hstate(hpage);
3480 int nid = page_to_nid(hpage);
3481
3482 list_for_each_entry_safe(page, tmp, &h->hugepage_freelists[nid], lru)
3483 if (page == hpage)
3484 return 1;
3485 return 0;
3486}
3487
93f70f90
NH
3488/*
3489 * This function is called from memory failure code.
3490 * Assume the caller holds page lock of the head page.
3491 */
6de2b1aa 3492int dequeue_hwpoisoned_huge_page(struct page *hpage)
93f70f90
NH
3493{
3494 struct hstate *h = page_hstate(hpage);
3495 int nid = page_to_nid(hpage);
6de2b1aa 3496 int ret = -EBUSY;
93f70f90
NH
3497
3498 spin_lock(&hugetlb_lock);
6de2b1aa 3499 if (is_hugepage_on_freelist(hpage)) {
56f2fb14
NH
3500 /*
3501 * Hwpoisoned hugepage isn't linked to activelist or freelist,
3502 * but dangling hpage->lru can trigger list-debug warnings
3503 * (this happens when we call unpoison_memory() on it),
3504 * so let it point to itself with list_del_init().
3505 */
3506 list_del_init(&hpage->lru);
8c6c2ecb 3507 set_page_refcounted(hpage);
6de2b1aa
NH
3508 h->free_huge_pages--;
3509 h->free_huge_pages_node[nid]--;
3510 ret = 0;
3511 }
93f70f90 3512 spin_unlock(&hugetlb_lock);
6de2b1aa 3513 return ret;
93f70f90 3514}
6de2b1aa 3515#endif
31caf665
NH
3516
3517bool isolate_huge_page(struct page *page, struct list_head *list)
3518{
309381fe 3519 VM_BUG_ON_PAGE(!PageHead(page), page);
31caf665
NH
3520 if (!get_page_unless_zero(page))
3521 return false;
3522 spin_lock(&hugetlb_lock);
3523 list_move_tail(&page->lru, list);
3524 spin_unlock(&hugetlb_lock);
3525 return true;
3526}
3527
3528void putback_active_hugepage(struct page *page)
3529{
309381fe 3530 VM_BUG_ON_PAGE(!PageHead(page), page);
31caf665
NH
3531 spin_lock(&hugetlb_lock);
3532 list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
3533 spin_unlock(&hugetlb_lock);
3534 put_page(page);
3535}
c8721bbb
NH
3536
3537bool is_hugepage_active(struct page *page)
3538{
309381fe 3539 VM_BUG_ON_PAGE(!PageHuge(page), page);
c8721bbb
NH
3540 /*
3541 * This function can be called for a tail page because the caller,
3542 * scan_movable_pages, scans through a given pfn-range which typically
3543 * covers one memory block. In systems using gigantic hugepage (1GB
3544 * for x86_64,) a hugepage is larger than a memory block, and we don't
3545 * support migrating such large hugepages for now, so return false
3546 * when called for tail pages.
3547 */
3548 if (PageTail(page))
3549 return false;
3550 /*
3551 * Refcount of a hwpoisoned hugepages is 1, but they are not active,
3552 * so we should return false for them.
3553 */
3554 if (unlikely(PageHWPoison(page)))
3555 return false;
3556 return page_count(page) > 0;
3557}