Merge git://git.kernel.org/pub/scm/linux/kernel/git/mason/btrfs-unstable
[linux-2.6-block.git] / mm / hugetlb.c
CommitLineData
1da177e4
LT
1/*
2 * Generic hugetlb support.
3 * (C) William Irwin, April 2004
4 */
5#include <linux/gfp.h>
6#include <linux/list.h>
7#include <linux/init.h>
8#include <linux/module.h>
9#include <linux/mm.h>
e1759c21 10#include <linux/seq_file.h>
1da177e4
LT
11#include <linux/sysctl.h>
12#include <linux/highmem.h>
cddb8a5c 13#include <linux/mmu_notifier.h>
1da177e4 14#include <linux/nodemask.h>
63551ae0 15#include <linux/pagemap.h>
5da7ca86 16#include <linux/mempolicy.h>
aea47ff3 17#include <linux/cpuset.h>
3935baa9 18#include <linux/mutex.h>
aa888a74 19#include <linux/bootmem.h>
a3437870 20#include <linux/sysfs.h>
d6606683 21
63551ae0
DG
22#include <asm/page.h>
23#include <asm/pgtable.h>
78a34ae2 24#include <asm/io.h>
63551ae0
DG
25
26#include <linux/hugetlb.h>
7835e98b 27#include "internal.h"
1da177e4
LT
28
29const unsigned long hugetlb_zero = 0, hugetlb_infinity = ~0UL;
396faf03
MG
30static gfp_t htlb_alloc_mask = GFP_HIGHUSER;
31unsigned long hugepages_treat_as_movable;
a5516438 32
e5ff2159
AK
33static int max_hstate;
34unsigned int default_hstate_idx;
35struct hstate hstates[HUGE_MAX_HSTATE];
36
53ba51d2
JT
37__initdata LIST_HEAD(huge_boot_pages);
38
e5ff2159
AK
39/* for command line parsing */
40static struct hstate * __initdata parsed_hstate;
41static unsigned long __initdata default_hstate_max_huge_pages;
e11bfbfc 42static unsigned long __initdata default_hstate_size;
e5ff2159
AK
43
44#define for_each_hstate(h) \
45 for ((h) = hstates; (h) < &hstates[max_hstate]; (h)++)
396faf03 46
3935baa9
DG
47/*
48 * Protects updates to hugepage_freelists, nr_huge_pages, and free_huge_pages
49 */
50static DEFINE_SPINLOCK(hugetlb_lock);
0bd0f9fb 51
96822904
AW
52/*
53 * Region tracking -- allows tracking of reservations and instantiated pages
54 * across the pages in a mapping.
84afd99b
AW
55 *
56 * The region data structures are protected by a combination of the mmap_sem
57 * and the hugetlb_instantion_mutex. To access or modify a region the caller
58 * must either hold the mmap_sem for write, or the mmap_sem for read and
59 * the hugetlb_instantiation mutex:
60 *
61 * down_write(&mm->mmap_sem);
62 * or
63 * down_read(&mm->mmap_sem);
64 * mutex_lock(&hugetlb_instantiation_mutex);
96822904
AW
65 */
66struct file_region {
67 struct list_head link;
68 long from;
69 long to;
70};
71
72static long region_add(struct list_head *head, long f, long t)
73{
74 struct file_region *rg, *nrg, *trg;
75
76 /* Locate the region we are either in or before. */
77 list_for_each_entry(rg, head, link)
78 if (f <= rg->to)
79 break;
80
81 /* Round our left edge to the current segment if it encloses us. */
82 if (f > rg->from)
83 f = rg->from;
84
85 /* Check for and consume any regions we now overlap with. */
86 nrg = rg;
87 list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
88 if (&rg->link == head)
89 break;
90 if (rg->from > t)
91 break;
92
93 /* If this area reaches higher then extend our area to
94 * include it completely. If this is not the first area
95 * which we intend to reuse, free it. */
96 if (rg->to > t)
97 t = rg->to;
98 if (rg != nrg) {
99 list_del(&rg->link);
100 kfree(rg);
101 }
102 }
103 nrg->from = f;
104 nrg->to = t;
105 return 0;
106}
107
108static long region_chg(struct list_head *head, long f, long t)
109{
110 struct file_region *rg, *nrg;
111 long chg = 0;
112
113 /* Locate the region we are before or in. */
114 list_for_each_entry(rg, head, link)
115 if (f <= rg->to)
116 break;
117
118 /* If we are below the current region then a new region is required.
119 * Subtle, allocate a new region at the position but make it zero
120 * size such that we can guarantee to record the reservation. */
121 if (&rg->link == head || t < rg->from) {
122 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
123 if (!nrg)
124 return -ENOMEM;
125 nrg->from = f;
126 nrg->to = f;
127 INIT_LIST_HEAD(&nrg->link);
128 list_add(&nrg->link, rg->link.prev);
129
130 return t - f;
131 }
132
133 /* Round our left edge to the current segment if it encloses us. */
134 if (f > rg->from)
135 f = rg->from;
136 chg = t - f;
137
138 /* Check for and consume any regions we now overlap with. */
139 list_for_each_entry(rg, rg->link.prev, link) {
140 if (&rg->link == head)
141 break;
142 if (rg->from > t)
143 return chg;
144
145 /* We overlap with this area, if it extends futher than
146 * us then we must extend ourselves. Account for its
147 * existing reservation. */
148 if (rg->to > t) {
149 chg += rg->to - t;
150 t = rg->to;
151 }
152 chg -= rg->to - rg->from;
153 }
154 return chg;
155}
156
157static long region_truncate(struct list_head *head, long end)
158{
159 struct file_region *rg, *trg;
160 long chg = 0;
161
162 /* Locate the region we are either in or before. */
163 list_for_each_entry(rg, head, link)
164 if (end <= rg->to)
165 break;
166 if (&rg->link == head)
167 return 0;
168
169 /* If we are in the middle of a region then adjust it. */
170 if (end > rg->from) {
171 chg = rg->to - end;
172 rg->to = end;
173 rg = list_entry(rg->link.next, typeof(*rg), link);
174 }
175
176 /* Drop any remaining regions. */
177 list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
178 if (&rg->link == head)
179 break;
180 chg += rg->to - rg->from;
181 list_del(&rg->link);
182 kfree(rg);
183 }
184 return chg;
185}
186
84afd99b
AW
187static long region_count(struct list_head *head, long f, long t)
188{
189 struct file_region *rg;
190 long chg = 0;
191
192 /* Locate each segment we overlap with, and count that overlap. */
193 list_for_each_entry(rg, head, link) {
194 int seg_from;
195 int seg_to;
196
197 if (rg->to <= f)
198 continue;
199 if (rg->from >= t)
200 break;
201
202 seg_from = max(rg->from, f);
203 seg_to = min(rg->to, t);
204
205 chg += seg_to - seg_from;
206 }
207
208 return chg;
209}
210
e7c4b0bf
AW
211/*
212 * Convert the address within this vma to the page offset within
213 * the mapping, in pagecache page units; huge pages here.
214 */
a5516438
AK
215static pgoff_t vma_hugecache_offset(struct hstate *h,
216 struct vm_area_struct *vma, unsigned long address)
e7c4b0bf 217{
a5516438
AK
218 return ((address - vma->vm_start) >> huge_page_shift(h)) +
219 (vma->vm_pgoff >> huge_page_order(h));
e7c4b0bf
AW
220}
221
08fba699
MG
222/*
223 * Return the size of the pages allocated when backing a VMA. In the majority
224 * cases this will be same size as used by the page table entries.
225 */
226unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
227{
228 struct hstate *hstate;
229
230 if (!is_vm_hugetlb_page(vma))
231 return PAGE_SIZE;
232
233 hstate = hstate_vma(vma);
234
235 return 1UL << (hstate->order + PAGE_SHIFT);
236}
237
3340289d
MG
238/*
239 * Return the page size being used by the MMU to back a VMA. In the majority
240 * of cases, the page size used by the kernel matches the MMU size. On
241 * architectures where it differs, an architecture-specific version of this
242 * function is required.
243 */
244#ifndef vma_mmu_pagesize
245unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
246{
247 return vma_kernel_pagesize(vma);
248}
249#endif
250
84afd99b
AW
251/*
252 * Flags for MAP_PRIVATE reservations. These are stored in the bottom
253 * bits of the reservation map pointer, which are always clear due to
254 * alignment.
255 */
256#define HPAGE_RESV_OWNER (1UL << 0)
257#define HPAGE_RESV_UNMAPPED (1UL << 1)
04f2cbe3 258#define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
84afd99b 259
a1e78772
MG
260/*
261 * These helpers are used to track how many pages are reserved for
262 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
263 * is guaranteed to have their future faults succeed.
264 *
265 * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
266 * the reserve counters are updated with the hugetlb_lock held. It is safe
267 * to reset the VMA at fork() time as it is not in use yet and there is no
268 * chance of the global counters getting corrupted as a result of the values.
84afd99b
AW
269 *
270 * The private mapping reservation is represented in a subtly different
271 * manner to a shared mapping. A shared mapping has a region map associated
272 * with the underlying file, this region map represents the backing file
273 * pages which have ever had a reservation assigned which this persists even
274 * after the page is instantiated. A private mapping has a region map
275 * associated with the original mmap which is attached to all VMAs which
276 * reference it, this region map represents those offsets which have consumed
277 * reservation ie. where pages have been instantiated.
a1e78772 278 */
e7c4b0bf
AW
279static unsigned long get_vma_private_data(struct vm_area_struct *vma)
280{
281 return (unsigned long)vma->vm_private_data;
282}
283
284static void set_vma_private_data(struct vm_area_struct *vma,
285 unsigned long value)
286{
287 vma->vm_private_data = (void *)value;
288}
289
84afd99b
AW
290struct resv_map {
291 struct kref refs;
292 struct list_head regions;
293};
294
2a4b3ded 295static struct resv_map *resv_map_alloc(void)
84afd99b
AW
296{
297 struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
298 if (!resv_map)
299 return NULL;
300
301 kref_init(&resv_map->refs);
302 INIT_LIST_HEAD(&resv_map->regions);
303
304 return resv_map;
305}
306
2a4b3ded 307static void resv_map_release(struct kref *ref)
84afd99b
AW
308{
309 struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
310
311 /* Clear out any active regions before we release the map. */
312 region_truncate(&resv_map->regions, 0);
313 kfree(resv_map);
314}
315
316static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
a1e78772
MG
317{
318 VM_BUG_ON(!is_vm_hugetlb_page(vma));
319 if (!(vma->vm_flags & VM_SHARED))
84afd99b
AW
320 return (struct resv_map *)(get_vma_private_data(vma) &
321 ~HPAGE_RESV_MASK);
2a4b3ded 322 return NULL;
a1e78772
MG
323}
324
84afd99b 325static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
a1e78772
MG
326{
327 VM_BUG_ON(!is_vm_hugetlb_page(vma));
328 VM_BUG_ON(vma->vm_flags & VM_SHARED);
329
84afd99b
AW
330 set_vma_private_data(vma, (get_vma_private_data(vma) &
331 HPAGE_RESV_MASK) | (unsigned long)map);
04f2cbe3
MG
332}
333
334static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
335{
04f2cbe3 336 VM_BUG_ON(!is_vm_hugetlb_page(vma));
e7c4b0bf
AW
337 VM_BUG_ON(vma->vm_flags & VM_SHARED);
338
339 set_vma_private_data(vma, get_vma_private_data(vma) | flags);
04f2cbe3
MG
340}
341
342static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
343{
344 VM_BUG_ON(!is_vm_hugetlb_page(vma));
e7c4b0bf
AW
345
346 return (get_vma_private_data(vma) & flag) != 0;
a1e78772
MG
347}
348
349/* Decrement the reserved pages in the hugepage pool by one */
a5516438
AK
350static void decrement_hugepage_resv_vma(struct hstate *h,
351 struct vm_area_struct *vma)
a1e78772 352{
c37f9fb1
AW
353 if (vma->vm_flags & VM_NORESERVE)
354 return;
355
a1e78772
MG
356 if (vma->vm_flags & VM_SHARED) {
357 /* Shared mappings always use reserves */
a5516438 358 h->resv_huge_pages--;
84afd99b 359 } else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
a1e78772
MG
360 /*
361 * Only the process that called mmap() has reserves for
362 * private mappings.
363 */
a5516438 364 h->resv_huge_pages--;
a1e78772
MG
365 }
366}
367
04f2cbe3 368/* Reset counters to 0 and clear all HPAGE_RESV_* flags */
a1e78772
MG
369void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
370{
371 VM_BUG_ON(!is_vm_hugetlb_page(vma));
372 if (!(vma->vm_flags & VM_SHARED))
373 vma->vm_private_data = (void *)0;
374}
375
376/* Returns true if the VMA has associated reserve pages */
7f09ca51 377static int vma_has_reserves(struct vm_area_struct *vma)
a1e78772
MG
378{
379 if (vma->vm_flags & VM_SHARED)
7f09ca51
MG
380 return 1;
381 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER))
382 return 1;
383 return 0;
a1e78772
MG
384}
385
69d177c2
AW
386static void clear_gigantic_page(struct page *page,
387 unsigned long addr, unsigned long sz)
388{
389 int i;
390 struct page *p = page;
391
392 might_sleep();
393 for (i = 0; i < sz/PAGE_SIZE; i++, p = mem_map_next(p, page, i)) {
394 cond_resched();
395 clear_user_highpage(p, addr + i * PAGE_SIZE);
396 }
397}
a5516438
AK
398static void clear_huge_page(struct page *page,
399 unsigned long addr, unsigned long sz)
79ac6ba4
DG
400{
401 int i;
402
ebdd4aea
HE
403 if (unlikely(sz > MAX_ORDER_NR_PAGES)) {
404 clear_gigantic_page(page, addr, sz);
405 return;
406 }
69d177c2 407
79ac6ba4 408 might_sleep();
a5516438 409 for (i = 0; i < sz/PAGE_SIZE; i++) {
79ac6ba4 410 cond_resched();
281e0e3b 411 clear_user_highpage(page + i, addr + i * PAGE_SIZE);
79ac6ba4
DG
412 }
413}
414
69d177c2
AW
415static void copy_gigantic_page(struct page *dst, struct page *src,
416 unsigned long addr, struct vm_area_struct *vma)
417{
418 int i;
419 struct hstate *h = hstate_vma(vma);
420 struct page *dst_base = dst;
421 struct page *src_base = src;
422 might_sleep();
423 for (i = 0; i < pages_per_huge_page(h); ) {
424 cond_resched();
425 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
426
427 i++;
428 dst = mem_map_next(dst, dst_base, i);
429 src = mem_map_next(src, src_base, i);
430 }
431}
79ac6ba4 432static void copy_huge_page(struct page *dst, struct page *src,
9de455b2 433 unsigned long addr, struct vm_area_struct *vma)
79ac6ba4
DG
434{
435 int i;
a5516438 436 struct hstate *h = hstate_vma(vma);
79ac6ba4 437
ebdd4aea
HE
438 if (unlikely(pages_per_huge_page(h) > MAX_ORDER_NR_PAGES)) {
439 copy_gigantic_page(dst, src, addr, vma);
440 return;
441 }
69d177c2 442
79ac6ba4 443 might_sleep();
a5516438 444 for (i = 0; i < pages_per_huge_page(h); i++) {
79ac6ba4 445 cond_resched();
9de455b2 446 copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
79ac6ba4
DG
447 }
448}
449
a5516438 450static void enqueue_huge_page(struct hstate *h, struct page *page)
1da177e4
LT
451{
452 int nid = page_to_nid(page);
a5516438
AK
453 list_add(&page->lru, &h->hugepage_freelists[nid]);
454 h->free_huge_pages++;
455 h->free_huge_pages_node[nid]++;
1da177e4
LT
456}
457
a5516438 458static struct page *dequeue_huge_page(struct hstate *h)
348e1e04
NA
459{
460 int nid;
461 struct page *page = NULL;
462
463 for (nid = 0; nid < MAX_NUMNODES; ++nid) {
a5516438
AK
464 if (!list_empty(&h->hugepage_freelists[nid])) {
465 page = list_entry(h->hugepage_freelists[nid].next,
348e1e04
NA
466 struct page, lru);
467 list_del(&page->lru);
a5516438
AK
468 h->free_huge_pages--;
469 h->free_huge_pages_node[nid]--;
348e1e04
NA
470 break;
471 }
472 }
473 return page;
474}
475
a5516438
AK
476static struct page *dequeue_huge_page_vma(struct hstate *h,
477 struct vm_area_struct *vma,
04f2cbe3 478 unsigned long address, int avoid_reserve)
1da177e4 479{
31a5c6e4 480 int nid;
1da177e4 481 struct page *page = NULL;
480eccf9 482 struct mempolicy *mpol;
19770b32 483 nodemask_t *nodemask;
396faf03 484 struct zonelist *zonelist = huge_zonelist(vma, address,
19770b32 485 htlb_alloc_mask, &mpol, &nodemask);
dd1a239f
MG
486 struct zone *zone;
487 struct zoneref *z;
1da177e4 488
a1e78772
MG
489 /*
490 * A child process with MAP_PRIVATE mappings created by their parent
491 * have no page reserves. This check ensures that reservations are
492 * not "stolen". The child may still get SIGKILLed
493 */
7f09ca51 494 if (!vma_has_reserves(vma) &&
a5516438 495 h->free_huge_pages - h->resv_huge_pages == 0)
a1e78772
MG
496 return NULL;
497
04f2cbe3 498 /* If reserves cannot be used, ensure enough pages are in the pool */
a5516438 499 if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
04f2cbe3
MG
500 return NULL;
501
19770b32
MG
502 for_each_zone_zonelist_nodemask(zone, z, zonelist,
503 MAX_NR_ZONES - 1, nodemask) {
54a6eb5c
MG
504 nid = zone_to_nid(zone);
505 if (cpuset_zone_allowed_softwall(zone, htlb_alloc_mask) &&
a5516438
AK
506 !list_empty(&h->hugepage_freelists[nid])) {
507 page = list_entry(h->hugepage_freelists[nid].next,
3abf7afd
AM
508 struct page, lru);
509 list_del(&page->lru);
a5516438
AK
510 h->free_huge_pages--;
511 h->free_huge_pages_node[nid]--;
04f2cbe3
MG
512
513 if (!avoid_reserve)
a5516438 514 decrement_hugepage_resv_vma(h, vma);
a1e78772 515
5ab3ee7b 516 break;
3abf7afd 517 }
1da177e4 518 }
52cd3b07 519 mpol_cond_put(mpol);
1da177e4
LT
520 return page;
521}
522
a5516438 523static void update_and_free_page(struct hstate *h, struct page *page)
6af2acb6
AL
524{
525 int i;
a5516438 526
18229df5
AW
527 VM_BUG_ON(h->order >= MAX_ORDER);
528
a5516438
AK
529 h->nr_huge_pages--;
530 h->nr_huge_pages_node[page_to_nid(page)]--;
531 for (i = 0; i < pages_per_huge_page(h); i++) {
6af2acb6
AL
532 page[i].flags &= ~(1 << PG_locked | 1 << PG_error | 1 << PG_referenced |
533 1 << PG_dirty | 1 << PG_active | 1 << PG_reserved |
534 1 << PG_private | 1<< PG_writeback);
535 }
536 set_compound_page_dtor(page, NULL);
537 set_page_refcounted(page);
7f2e9525 538 arch_release_hugepage(page);
a5516438 539 __free_pages(page, huge_page_order(h));
6af2acb6
AL
540}
541
e5ff2159
AK
542struct hstate *size_to_hstate(unsigned long size)
543{
544 struct hstate *h;
545
546 for_each_hstate(h) {
547 if (huge_page_size(h) == size)
548 return h;
549 }
550 return NULL;
551}
552
27a85ef1
DG
553static void free_huge_page(struct page *page)
554{
a5516438
AK
555 /*
556 * Can't pass hstate in here because it is called from the
557 * compound page destructor.
558 */
e5ff2159 559 struct hstate *h = page_hstate(page);
7893d1d5 560 int nid = page_to_nid(page);
c79fb75e 561 struct address_space *mapping;
27a85ef1 562
c79fb75e 563 mapping = (struct address_space *) page_private(page);
e5df70ab 564 set_page_private(page, 0);
7893d1d5 565 BUG_ON(page_count(page));
27a85ef1
DG
566 INIT_LIST_HEAD(&page->lru);
567
568 spin_lock(&hugetlb_lock);
aa888a74 569 if (h->surplus_huge_pages_node[nid] && huge_page_order(h) < MAX_ORDER) {
a5516438
AK
570 update_and_free_page(h, page);
571 h->surplus_huge_pages--;
572 h->surplus_huge_pages_node[nid]--;
7893d1d5 573 } else {
a5516438 574 enqueue_huge_page(h, page);
7893d1d5 575 }
27a85ef1 576 spin_unlock(&hugetlb_lock);
c79fb75e 577 if (mapping)
9a119c05 578 hugetlb_put_quota(mapping, 1);
27a85ef1
DG
579}
580
7893d1d5
AL
581/*
582 * Increment or decrement surplus_huge_pages. Keep node-specific counters
583 * balanced by operating on them in a round-robin fashion.
584 * Returns 1 if an adjustment was made.
585 */
a5516438 586static int adjust_pool_surplus(struct hstate *h, int delta)
7893d1d5
AL
587{
588 static int prev_nid;
589 int nid = prev_nid;
590 int ret = 0;
591
592 VM_BUG_ON(delta != -1 && delta != 1);
593 do {
594 nid = next_node(nid, node_online_map);
595 if (nid == MAX_NUMNODES)
596 nid = first_node(node_online_map);
597
598 /* To shrink on this node, there must be a surplus page */
a5516438 599 if (delta < 0 && !h->surplus_huge_pages_node[nid])
7893d1d5
AL
600 continue;
601 /* Surplus cannot exceed the total number of pages */
a5516438
AK
602 if (delta > 0 && h->surplus_huge_pages_node[nid] >=
603 h->nr_huge_pages_node[nid])
7893d1d5
AL
604 continue;
605
a5516438
AK
606 h->surplus_huge_pages += delta;
607 h->surplus_huge_pages_node[nid] += delta;
7893d1d5
AL
608 ret = 1;
609 break;
610 } while (nid != prev_nid);
611
612 prev_nid = nid;
613 return ret;
614}
615
a5516438 616static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
b7ba30c6
AK
617{
618 set_compound_page_dtor(page, free_huge_page);
619 spin_lock(&hugetlb_lock);
a5516438
AK
620 h->nr_huge_pages++;
621 h->nr_huge_pages_node[nid]++;
b7ba30c6
AK
622 spin_unlock(&hugetlb_lock);
623 put_page(page); /* free it into the hugepage allocator */
624}
625
a5516438 626static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid)
1da177e4 627{
1da177e4 628 struct page *page;
f96efd58 629
aa888a74
AK
630 if (h->order >= MAX_ORDER)
631 return NULL;
632
63b4613c 633 page = alloc_pages_node(nid,
551883ae
NA
634 htlb_alloc_mask|__GFP_COMP|__GFP_THISNODE|
635 __GFP_REPEAT|__GFP_NOWARN,
a5516438 636 huge_page_order(h));
1da177e4 637 if (page) {
7f2e9525 638 if (arch_prepare_hugepage(page)) {
caff3a2c 639 __free_pages(page, huge_page_order(h));
7b8ee84d 640 return NULL;
7f2e9525 641 }
a5516438 642 prep_new_huge_page(h, page, nid);
1da177e4 643 }
63b4613c
NA
644
645 return page;
646}
647
5ced66c9
AK
648/*
649 * Use a helper variable to find the next node and then
650 * copy it back to hugetlb_next_nid afterwards:
651 * otherwise there's a window in which a racer might
652 * pass invalid nid MAX_NUMNODES to alloc_pages_node.
653 * But we don't need to use a spin_lock here: it really
654 * doesn't matter if occasionally a racer chooses the
655 * same nid as we do. Move nid forward in the mask even
656 * if we just successfully allocated a hugepage so that
657 * the next caller gets hugepages on the next node.
658 */
659static int hstate_next_node(struct hstate *h)
660{
661 int next_nid;
662 next_nid = next_node(h->hugetlb_next_nid, node_online_map);
663 if (next_nid == MAX_NUMNODES)
664 next_nid = first_node(node_online_map);
665 h->hugetlb_next_nid = next_nid;
666 return next_nid;
667}
668
a5516438 669static int alloc_fresh_huge_page(struct hstate *h)
63b4613c
NA
670{
671 struct page *page;
672 int start_nid;
673 int next_nid;
674 int ret = 0;
675
a5516438 676 start_nid = h->hugetlb_next_nid;
63b4613c
NA
677
678 do {
a5516438 679 page = alloc_fresh_huge_page_node(h, h->hugetlb_next_nid);
63b4613c
NA
680 if (page)
681 ret = 1;
5ced66c9 682 next_nid = hstate_next_node(h);
a5516438 683 } while (!page && h->hugetlb_next_nid != start_nid);
63b4613c 684
3b116300
AL
685 if (ret)
686 count_vm_event(HTLB_BUDDY_PGALLOC);
687 else
688 count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
689
63b4613c 690 return ret;
1da177e4
LT
691}
692
a5516438
AK
693static struct page *alloc_buddy_huge_page(struct hstate *h,
694 struct vm_area_struct *vma, unsigned long address)
7893d1d5
AL
695{
696 struct page *page;
d1c3fb1f 697 unsigned int nid;
7893d1d5 698
aa888a74
AK
699 if (h->order >= MAX_ORDER)
700 return NULL;
701
d1c3fb1f
NA
702 /*
703 * Assume we will successfully allocate the surplus page to
704 * prevent racing processes from causing the surplus to exceed
705 * overcommit
706 *
707 * This however introduces a different race, where a process B
708 * tries to grow the static hugepage pool while alloc_pages() is
709 * called by process A. B will only examine the per-node
710 * counters in determining if surplus huge pages can be
711 * converted to normal huge pages in adjust_pool_surplus(). A
712 * won't be able to increment the per-node counter, until the
713 * lock is dropped by B, but B doesn't drop hugetlb_lock until
714 * no more huge pages can be converted from surplus to normal
715 * state (and doesn't try to convert again). Thus, we have a
716 * case where a surplus huge page exists, the pool is grown, and
717 * the surplus huge page still exists after, even though it
718 * should just have been converted to a normal huge page. This
719 * does not leak memory, though, as the hugepage will be freed
720 * once it is out of use. It also does not allow the counters to
721 * go out of whack in adjust_pool_surplus() as we don't modify
722 * the node values until we've gotten the hugepage and only the
723 * per-node value is checked there.
724 */
725 spin_lock(&hugetlb_lock);
a5516438 726 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
d1c3fb1f
NA
727 spin_unlock(&hugetlb_lock);
728 return NULL;
729 } else {
a5516438
AK
730 h->nr_huge_pages++;
731 h->surplus_huge_pages++;
d1c3fb1f
NA
732 }
733 spin_unlock(&hugetlb_lock);
734
551883ae
NA
735 page = alloc_pages(htlb_alloc_mask|__GFP_COMP|
736 __GFP_REPEAT|__GFP_NOWARN,
a5516438 737 huge_page_order(h));
d1c3fb1f 738
caff3a2c
GS
739 if (page && arch_prepare_hugepage(page)) {
740 __free_pages(page, huge_page_order(h));
741 return NULL;
742 }
743
d1c3fb1f 744 spin_lock(&hugetlb_lock);
7893d1d5 745 if (page) {
2668db91
AL
746 /*
747 * This page is now managed by the hugetlb allocator and has
748 * no users -- drop the buddy allocator's reference.
749 */
750 put_page_testzero(page);
751 VM_BUG_ON(page_count(page));
d1c3fb1f 752 nid = page_to_nid(page);
7893d1d5 753 set_compound_page_dtor(page, free_huge_page);
d1c3fb1f
NA
754 /*
755 * We incremented the global counters already
756 */
a5516438
AK
757 h->nr_huge_pages_node[nid]++;
758 h->surplus_huge_pages_node[nid]++;
3b116300 759 __count_vm_event(HTLB_BUDDY_PGALLOC);
d1c3fb1f 760 } else {
a5516438
AK
761 h->nr_huge_pages--;
762 h->surplus_huge_pages--;
3b116300 763 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
7893d1d5 764 }
d1c3fb1f 765 spin_unlock(&hugetlb_lock);
7893d1d5
AL
766
767 return page;
768}
769
e4e574b7
AL
770/*
771 * Increase the hugetlb pool such that it can accomodate a reservation
772 * of size 'delta'.
773 */
a5516438 774static int gather_surplus_pages(struct hstate *h, int delta)
e4e574b7
AL
775{
776 struct list_head surplus_list;
777 struct page *page, *tmp;
778 int ret, i;
779 int needed, allocated;
780
a5516438 781 needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
ac09b3a1 782 if (needed <= 0) {
a5516438 783 h->resv_huge_pages += delta;
e4e574b7 784 return 0;
ac09b3a1 785 }
e4e574b7
AL
786
787 allocated = 0;
788 INIT_LIST_HEAD(&surplus_list);
789
790 ret = -ENOMEM;
791retry:
792 spin_unlock(&hugetlb_lock);
793 for (i = 0; i < needed; i++) {
a5516438 794 page = alloc_buddy_huge_page(h, NULL, 0);
e4e574b7
AL
795 if (!page) {
796 /*
797 * We were not able to allocate enough pages to
798 * satisfy the entire reservation so we free what
799 * we've allocated so far.
800 */
801 spin_lock(&hugetlb_lock);
802 needed = 0;
803 goto free;
804 }
805
806 list_add(&page->lru, &surplus_list);
807 }
808 allocated += needed;
809
810 /*
811 * After retaking hugetlb_lock, we need to recalculate 'needed'
812 * because either resv_huge_pages or free_huge_pages may have changed.
813 */
814 spin_lock(&hugetlb_lock);
a5516438
AK
815 needed = (h->resv_huge_pages + delta) -
816 (h->free_huge_pages + allocated);
e4e574b7
AL
817 if (needed > 0)
818 goto retry;
819
820 /*
821 * The surplus_list now contains _at_least_ the number of extra pages
822 * needed to accomodate the reservation. Add the appropriate number
823 * of pages to the hugetlb pool and free the extras back to the buddy
ac09b3a1
AL
824 * allocator. Commit the entire reservation here to prevent another
825 * process from stealing the pages as they are added to the pool but
826 * before they are reserved.
e4e574b7
AL
827 */
828 needed += allocated;
a5516438 829 h->resv_huge_pages += delta;
e4e574b7
AL
830 ret = 0;
831free:
19fc3f0a 832 /* Free the needed pages to the hugetlb pool */
e4e574b7 833 list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
19fc3f0a
AL
834 if ((--needed) < 0)
835 break;
e4e574b7 836 list_del(&page->lru);
a5516438 837 enqueue_huge_page(h, page);
19fc3f0a
AL
838 }
839
840 /* Free unnecessary surplus pages to the buddy allocator */
841 if (!list_empty(&surplus_list)) {
842 spin_unlock(&hugetlb_lock);
843 list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
844 list_del(&page->lru);
af767cbd 845 /*
2668db91
AL
846 * The page has a reference count of zero already, so
847 * call free_huge_page directly instead of using
848 * put_page. This must be done with hugetlb_lock
af767cbd
AL
849 * unlocked which is safe because free_huge_page takes
850 * hugetlb_lock before deciding how to free the page.
851 */
2668db91 852 free_huge_page(page);
af767cbd 853 }
19fc3f0a 854 spin_lock(&hugetlb_lock);
e4e574b7
AL
855 }
856
857 return ret;
858}
859
860/*
861 * When releasing a hugetlb pool reservation, any surplus pages that were
862 * allocated to satisfy the reservation must be explicitly freed if they were
863 * never used.
864 */
a5516438
AK
865static void return_unused_surplus_pages(struct hstate *h,
866 unsigned long unused_resv_pages)
e4e574b7
AL
867{
868 static int nid = -1;
869 struct page *page;
870 unsigned long nr_pages;
871
11320d17
NA
872 /*
873 * We want to release as many surplus pages as possible, spread
874 * evenly across all nodes. Iterate across all nodes until we
875 * can no longer free unreserved surplus pages. This occurs when
876 * the nodes with surplus pages have no free pages.
877 */
878 unsigned long remaining_iterations = num_online_nodes();
879
ac09b3a1 880 /* Uncommit the reservation */
a5516438 881 h->resv_huge_pages -= unused_resv_pages;
ac09b3a1 882
aa888a74
AK
883 /* Cannot return gigantic pages currently */
884 if (h->order >= MAX_ORDER)
885 return;
886
a5516438 887 nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
e4e574b7 888
11320d17 889 while (remaining_iterations-- && nr_pages) {
e4e574b7
AL
890 nid = next_node(nid, node_online_map);
891 if (nid == MAX_NUMNODES)
892 nid = first_node(node_online_map);
893
a5516438 894 if (!h->surplus_huge_pages_node[nid])
e4e574b7
AL
895 continue;
896
a5516438
AK
897 if (!list_empty(&h->hugepage_freelists[nid])) {
898 page = list_entry(h->hugepage_freelists[nid].next,
e4e574b7
AL
899 struct page, lru);
900 list_del(&page->lru);
a5516438
AK
901 update_and_free_page(h, page);
902 h->free_huge_pages--;
903 h->free_huge_pages_node[nid]--;
904 h->surplus_huge_pages--;
905 h->surplus_huge_pages_node[nid]--;
e4e574b7 906 nr_pages--;
11320d17 907 remaining_iterations = num_online_nodes();
e4e574b7
AL
908 }
909 }
910}
911
c37f9fb1
AW
912/*
913 * Determine if the huge page at addr within the vma has an associated
914 * reservation. Where it does not we will need to logically increase
915 * reservation and actually increase quota before an allocation can occur.
916 * Where any new reservation would be required the reservation change is
917 * prepared, but not committed. Once the page has been quota'd allocated
918 * an instantiated the change should be committed via vma_commit_reservation.
919 * No action is required on failure.
920 */
a5516438
AK
921static int vma_needs_reservation(struct hstate *h,
922 struct vm_area_struct *vma, unsigned long addr)
c37f9fb1
AW
923{
924 struct address_space *mapping = vma->vm_file->f_mapping;
925 struct inode *inode = mapping->host;
926
927 if (vma->vm_flags & VM_SHARED) {
a5516438 928 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
c37f9fb1
AW
929 return region_chg(&inode->i_mapping->private_list,
930 idx, idx + 1);
931
84afd99b
AW
932 } else if (!is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
933 return 1;
c37f9fb1 934
84afd99b
AW
935 } else {
936 int err;
a5516438 937 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
84afd99b
AW
938 struct resv_map *reservations = vma_resv_map(vma);
939
940 err = region_chg(&reservations->regions, idx, idx + 1);
941 if (err < 0)
942 return err;
943 return 0;
944 }
c37f9fb1 945}
a5516438
AK
946static void vma_commit_reservation(struct hstate *h,
947 struct vm_area_struct *vma, unsigned long addr)
c37f9fb1
AW
948{
949 struct address_space *mapping = vma->vm_file->f_mapping;
950 struct inode *inode = mapping->host;
951
952 if (vma->vm_flags & VM_SHARED) {
a5516438 953 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
c37f9fb1 954 region_add(&inode->i_mapping->private_list, idx, idx + 1);
84afd99b
AW
955
956 } else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
a5516438 957 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
84afd99b
AW
958 struct resv_map *reservations = vma_resv_map(vma);
959
960 /* Mark this page used in the map. */
961 region_add(&reservations->regions, idx, idx + 1);
c37f9fb1
AW
962 }
963}
964
a1e78772 965static struct page *alloc_huge_page(struct vm_area_struct *vma,
04f2cbe3 966 unsigned long addr, int avoid_reserve)
1da177e4 967{
a5516438 968 struct hstate *h = hstate_vma(vma);
348ea204 969 struct page *page;
a1e78772
MG
970 struct address_space *mapping = vma->vm_file->f_mapping;
971 struct inode *inode = mapping->host;
c37f9fb1 972 unsigned int chg;
a1e78772
MG
973
974 /*
975 * Processes that did not create the mapping will have no reserves and
976 * will not have accounted against quota. Check that the quota can be
977 * made before satisfying the allocation
c37f9fb1
AW
978 * MAP_NORESERVE mappings may also need pages and quota allocated
979 * if no reserve mapping overlaps.
a1e78772 980 */
a5516438 981 chg = vma_needs_reservation(h, vma, addr);
c37f9fb1
AW
982 if (chg < 0)
983 return ERR_PTR(chg);
984 if (chg)
a1e78772
MG
985 if (hugetlb_get_quota(inode->i_mapping, chg))
986 return ERR_PTR(-ENOSPC);
1da177e4
LT
987
988 spin_lock(&hugetlb_lock);
a5516438 989 page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve);
1da177e4 990 spin_unlock(&hugetlb_lock);
b45b5bd6 991
68842c9b 992 if (!page) {
a5516438 993 page = alloc_buddy_huge_page(h, vma, addr);
68842c9b 994 if (!page) {
a1e78772 995 hugetlb_put_quota(inode->i_mapping, chg);
68842c9b
KC
996 return ERR_PTR(-VM_FAULT_OOM);
997 }
998 }
348ea204 999
a1e78772
MG
1000 set_page_refcounted(page);
1001 set_page_private(page, (unsigned long) mapping);
90d8b7e6 1002
a5516438 1003 vma_commit_reservation(h, vma, addr);
c37f9fb1 1004
90d8b7e6 1005 return page;
b45b5bd6
DG
1006}
1007
91f47662 1008int __weak alloc_bootmem_huge_page(struct hstate *h)
aa888a74
AK
1009{
1010 struct huge_bootmem_page *m;
1011 int nr_nodes = nodes_weight(node_online_map);
1012
1013 while (nr_nodes) {
1014 void *addr;
1015
1016 addr = __alloc_bootmem_node_nopanic(
1017 NODE_DATA(h->hugetlb_next_nid),
1018 huge_page_size(h), huge_page_size(h), 0);
1019
1020 if (addr) {
1021 /*
1022 * Use the beginning of the huge page to store the
1023 * huge_bootmem_page struct (until gather_bootmem
1024 * puts them into the mem_map).
1025 */
1026 m = addr;
91f47662 1027 goto found;
aa888a74
AK
1028 }
1029 hstate_next_node(h);
1030 nr_nodes--;
1031 }
1032 return 0;
1033
1034found:
1035 BUG_ON((unsigned long)virt_to_phys(m) & (huge_page_size(h) - 1));
1036 /* Put them into a private list first because mem_map is not up yet */
1037 list_add(&m->list, &huge_boot_pages);
1038 m->hstate = h;
1039 return 1;
1040}
1041
18229df5
AW
1042static void prep_compound_huge_page(struct page *page, int order)
1043{
1044 if (unlikely(order > (MAX_ORDER - 1)))
1045 prep_compound_gigantic_page(page, order);
1046 else
1047 prep_compound_page(page, order);
1048}
1049
aa888a74
AK
1050/* Put bootmem huge pages into the standard lists after mem_map is up */
1051static void __init gather_bootmem_prealloc(void)
1052{
1053 struct huge_bootmem_page *m;
1054
1055 list_for_each_entry(m, &huge_boot_pages, list) {
1056 struct page *page = virt_to_page(m);
1057 struct hstate *h = m->hstate;
1058 __ClearPageReserved(page);
1059 WARN_ON(page_count(page) != 1);
18229df5 1060 prep_compound_huge_page(page, h->order);
aa888a74
AK
1061 prep_new_huge_page(h, page, page_to_nid(page));
1062 }
1063}
1064
8faa8b07 1065static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
1da177e4
LT
1066{
1067 unsigned long i;
a5516438 1068
e5ff2159 1069 for (i = 0; i < h->max_huge_pages; ++i) {
aa888a74
AK
1070 if (h->order >= MAX_ORDER) {
1071 if (!alloc_bootmem_huge_page(h))
1072 break;
1073 } else if (!alloc_fresh_huge_page(h))
1da177e4 1074 break;
1da177e4 1075 }
8faa8b07 1076 h->max_huge_pages = i;
e5ff2159
AK
1077}
1078
1079static void __init hugetlb_init_hstates(void)
1080{
1081 struct hstate *h;
1082
1083 for_each_hstate(h) {
8faa8b07
AK
1084 /* oversize hugepages were init'ed in early boot */
1085 if (h->order < MAX_ORDER)
1086 hugetlb_hstate_alloc_pages(h);
e5ff2159
AK
1087 }
1088}
1089
4abd32db
AK
1090static char * __init memfmt(char *buf, unsigned long n)
1091{
1092 if (n >= (1UL << 30))
1093 sprintf(buf, "%lu GB", n >> 30);
1094 else if (n >= (1UL << 20))
1095 sprintf(buf, "%lu MB", n >> 20);
1096 else
1097 sprintf(buf, "%lu KB", n >> 10);
1098 return buf;
1099}
1100
e5ff2159
AK
1101static void __init report_hugepages(void)
1102{
1103 struct hstate *h;
1104
1105 for_each_hstate(h) {
4abd32db
AK
1106 char buf[32];
1107 printk(KERN_INFO "HugeTLB registered %s page size, "
1108 "pre-allocated %ld pages\n",
1109 memfmt(buf, huge_page_size(h)),
1110 h->free_huge_pages);
e5ff2159
AK
1111 }
1112}
1113
1da177e4 1114#ifdef CONFIG_HIGHMEM
a5516438 1115static void try_to_free_low(struct hstate *h, unsigned long count)
1da177e4 1116{
4415cc8d
CL
1117 int i;
1118
aa888a74
AK
1119 if (h->order >= MAX_ORDER)
1120 return;
1121
1da177e4
LT
1122 for (i = 0; i < MAX_NUMNODES; ++i) {
1123 struct page *page, *next;
a5516438
AK
1124 struct list_head *freel = &h->hugepage_freelists[i];
1125 list_for_each_entry_safe(page, next, freel, lru) {
1126 if (count >= h->nr_huge_pages)
6b0c880d 1127 return;
1da177e4
LT
1128 if (PageHighMem(page))
1129 continue;
1130 list_del(&page->lru);
e5ff2159 1131 update_and_free_page(h, page);
a5516438
AK
1132 h->free_huge_pages--;
1133 h->free_huge_pages_node[page_to_nid(page)]--;
1da177e4
LT
1134 }
1135 }
1136}
1137#else
a5516438 1138static inline void try_to_free_low(struct hstate *h, unsigned long count)
1da177e4
LT
1139{
1140}
1141#endif
1142
a5516438 1143#define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
e5ff2159 1144static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count)
1da177e4 1145{
7893d1d5 1146 unsigned long min_count, ret;
1da177e4 1147
aa888a74
AK
1148 if (h->order >= MAX_ORDER)
1149 return h->max_huge_pages;
1150
7893d1d5
AL
1151 /*
1152 * Increase the pool size
1153 * First take pages out of surplus state. Then make up the
1154 * remaining difference by allocating fresh huge pages.
d1c3fb1f
NA
1155 *
1156 * We might race with alloc_buddy_huge_page() here and be unable
1157 * to convert a surplus huge page to a normal huge page. That is
1158 * not critical, though, it just means the overall size of the
1159 * pool might be one hugepage larger than it needs to be, but
1160 * within all the constraints specified by the sysctls.
7893d1d5 1161 */
1da177e4 1162 spin_lock(&hugetlb_lock);
a5516438
AK
1163 while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
1164 if (!adjust_pool_surplus(h, -1))
7893d1d5
AL
1165 break;
1166 }
1167
a5516438 1168 while (count > persistent_huge_pages(h)) {
7893d1d5
AL
1169 /*
1170 * If this allocation races such that we no longer need the
1171 * page, free_huge_page will handle it by freeing the page
1172 * and reducing the surplus.
1173 */
1174 spin_unlock(&hugetlb_lock);
a5516438 1175 ret = alloc_fresh_huge_page(h);
7893d1d5
AL
1176 spin_lock(&hugetlb_lock);
1177 if (!ret)
1178 goto out;
1179
1180 }
7893d1d5
AL
1181
1182 /*
1183 * Decrease the pool size
1184 * First return free pages to the buddy allocator (being careful
1185 * to keep enough around to satisfy reservations). Then place
1186 * pages into surplus state as needed so the pool will shrink
1187 * to the desired size as pages become free.
d1c3fb1f
NA
1188 *
1189 * By placing pages into the surplus state independent of the
1190 * overcommit value, we are allowing the surplus pool size to
1191 * exceed overcommit. There are few sane options here. Since
1192 * alloc_buddy_huge_page() is checking the global counter,
1193 * though, we'll note that we're not allowed to exceed surplus
1194 * and won't grow the pool anywhere else. Not until one of the
1195 * sysctls are changed, or the surplus pages go out of use.
7893d1d5 1196 */
a5516438 1197 min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
6b0c880d 1198 min_count = max(count, min_count);
a5516438
AK
1199 try_to_free_low(h, min_count);
1200 while (min_count < persistent_huge_pages(h)) {
1201 struct page *page = dequeue_huge_page(h);
1da177e4
LT
1202 if (!page)
1203 break;
a5516438 1204 update_and_free_page(h, page);
1da177e4 1205 }
a5516438
AK
1206 while (count < persistent_huge_pages(h)) {
1207 if (!adjust_pool_surplus(h, 1))
7893d1d5
AL
1208 break;
1209 }
1210out:
a5516438 1211 ret = persistent_huge_pages(h);
1da177e4 1212 spin_unlock(&hugetlb_lock);
7893d1d5 1213 return ret;
1da177e4
LT
1214}
1215
a3437870
NA
1216#define HSTATE_ATTR_RO(_name) \
1217 static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
1218
1219#define HSTATE_ATTR(_name) \
1220 static struct kobj_attribute _name##_attr = \
1221 __ATTR(_name, 0644, _name##_show, _name##_store)
1222
1223static struct kobject *hugepages_kobj;
1224static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
1225
1226static struct hstate *kobj_to_hstate(struct kobject *kobj)
1227{
1228 int i;
1229 for (i = 0; i < HUGE_MAX_HSTATE; i++)
1230 if (hstate_kobjs[i] == kobj)
1231 return &hstates[i];
1232 BUG();
1233 return NULL;
1234}
1235
1236static ssize_t nr_hugepages_show(struct kobject *kobj,
1237 struct kobj_attribute *attr, char *buf)
1238{
1239 struct hstate *h = kobj_to_hstate(kobj);
1240 return sprintf(buf, "%lu\n", h->nr_huge_pages);
1241}
1242static ssize_t nr_hugepages_store(struct kobject *kobj,
1243 struct kobj_attribute *attr, const char *buf, size_t count)
1244{
1245 int err;
1246 unsigned long input;
1247 struct hstate *h = kobj_to_hstate(kobj);
1248
1249 err = strict_strtoul(buf, 10, &input);
1250 if (err)
1251 return 0;
1252
1253 h->max_huge_pages = set_max_huge_pages(h, input);
1254
1255 return count;
1256}
1257HSTATE_ATTR(nr_hugepages);
1258
1259static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
1260 struct kobj_attribute *attr, char *buf)
1261{
1262 struct hstate *h = kobj_to_hstate(kobj);
1263 return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
1264}
1265static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
1266 struct kobj_attribute *attr, const char *buf, size_t count)
1267{
1268 int err;
1269 unsigned long input;
1270 struct hstate *h = kobj_to_hstate(kobj);
1271
1272 err = strict_strtoul(buf, 10, &input);
1273 if (err)
1274 return 0;
1275
1276 spin_lock(&hugetlb_lock);
1277 h->nr_overcommit_huge_pages = input;
1278 spin_unlock(&hugetlb_lock);
1279
1280 return count;
1281}
1282HSTATE_ATTR(nr_overcommit_hugepages);
1283
1284static ssize_t free_hugepages_show(struct kobject *kobj,
1285 struct kobj_attribute *attr, char *buf)
1286{
1287 struct hstate *h = kobj_to_hstate(kobj);
1288 return sprintf(buf, "%lu\n", h->free_huge_pages);
1289}
1290HSTATE_ATTR_RO(free_hugepages);
1291
1292static ssize_t resv_hugepages_show(struct kobject *kobj,
1293 struct kobj_attribute *attr, char *buf)
1294{
1295 struct hstate *h = kobj_to_hstate(kobj);
1296 return sprintf(buf, "%lu\n", h->resv_huge_pages);
1297}
1298HSTATE_ATTR_RO(resv_hugepages);
1299
1300static ssize_t surplus_hugepages_show(struct kobject *kobj,
1301 struct kobj_attribute *attr, char *buf)
1302{
1303 struct hstate *h = kobj_to_hstate(kobj);
1304 return sprintf(buf, "%lu\n", h->surplus_huge_pages);
1305}
1306HSTATE_ATTR_RO(surplus_hugepages);
1307
1308static struct attribute *hstate_attrs[] = {
1309 &nr_hugepages_attr.attr,
1310 &nr_overcommit_hugepages_attr.attr,
1311 &free_hugepages_attr.attr,
1312 &resv_hugepages_attr.attr,
1313 &surplus_hugepages_attr.attr,
1314 NULL,
1315};
1316
1317static struct attribute_group hstate_attr_group = {
1318 .attrs = hstate_attrs,
1319};
1320
1321static int __init hugetlb_sysfs_add_hstate(struct hstate *h)
1322{
1323 int retval;
1324
1325 hstate_kobjs[h - hstates] = kobject_create_and_add(h->name,
1326 hugepages_kobj);
1327 if (!hstate_kobjs[h - hstates])
1328 return -ENOMEM;
1329
1330 retval = sysfs_create_group(hstate_kobjs[h - hstates],
1331 &hstate_attr_group);
1332 if (retval)
1333 kobject_put(hstate_kobjs[h - hstates]);
1334
1335 return retval;
1336}
1337
1338static void __init hugetlb_sysfs_init(void)
1339{
1340 struct hstate *h;
1341 int err;
1342
1343 hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
1344 if (!hugepages_kobj)
1345 return;
1346
1347 for_each_hstate(h) {
1348 err = hugetlb_sysfs_add_hstate(h);
1349 if (err)
1350 printk(KERN_ERR "Hugetlb: Unable to add hstate %s",
1351 h->name);
1352 }
1353}
1354
1355static void __exit hugetlb_exit(void)
1356{
1357 struct hstate *h;
1358
1359 for_each_hstate(h) {
1360 kobject_put(hstate_kobjs[h - hstates]);
1361 }
1362
1363 kobject_put(hugepages_kobj);
1364}
1365module_exit(hugetlb_exit);
1366
1367static int __init hugetlb_init(void)
1368{
0ef89d25
BH
1369 /* Some platform decide whether they support huge pages at boot
1370 * time. On these, such as powerpc, HPAGE_SHIFT is set to 0 when
1371 * there is no such support
1372 */
1373 if (HPAGE_SHIFT == 0)
1374 return 0;
a3437870 1375
e11bfbfc
NP
1376 if (!size_to_hstate(default_hstate_size)) {
1377 default_hstate_size = HPAGE_SIZE;
1378 if (!size_to_hstate(default_hstate_size))
1379 hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
a3437870 1380 }
e11bfbfc
NP
1381 default_hstate_idx = size_to_hstate(default_hstate_size) - hstates;
1382 if (default_hstate_max_huge_pages)
1383 default_hstate.max_huge_pages = default_hstate_max_huge_pages;
a3437870
NA
1384
1385 hugetlb_init_hstates();
1386
aa888a74
AK
1387 gather_bootmem_prealloc();
1388
a3437870
NA
1389 report_hugepages();
1390
1391 hugetlb_sysfs_init();
1392
1393 return 0;
1394}
1395module_init(hugetlb_init);
1396
1397/* Should be called on processing a hugepagesz=... option */
1398void __init hugetlb_add_hstate(unsigned order)
1399{
1400 struct hstate *h;
8faa8b07
AK
1401 unsigned long i;
1402
a3437870
NA
1403 if (size_to_hstate(PAGE_SIZE << order)) {
1404 printk(KERN_WARNING "hugepagesz= specified twice, ignoring\n");
1405 return;
1406 }
1407 BUG_ON(max_hstate >= HUGE_MAX_HSTATE);
1408 BUG_ON(order == 0);
1409 h = &hstates[max_hstate++];
1410 h->order = order;
1411 h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
8faa8b07
AK
1412 h->nr_huge_pages = 0;
1413 h->free_huge_pages = 0;
1414 for (i = 0; i < MAX_NUMNODES; ++i)
1415 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
1416 h->hugetlb_next_nid = first_node(node_online_map);
a3437870
NA
1417 snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
1418 huge_page_size(h)/1024);
8faa8b07 1419
a3437870
NA
1420 parsed_hstate = h;
1421}
1422
e11bfbfc 1423static int __init hugetlb_nrpages_setup(char *s)
a3437870
NA
1424{
1425 unsigned long *mhp;
8faa8b07 1426 static unsigned long *last_mhp;
a3437870
NA
1427
1428 /*
1429 * !max_hstate means we haven't parsed a hugepagesz= parameter yet,
1430 * so this hugepages= parameter goes to the "default hstate".
1431 */
1432 if (!max_hstate)
1433 mhp = &default_hstate_max_huge_pages;
1434 else
1435 mhp = &parsed_hstate->max_huge_pages;
1436
8faa8b07
AK
1437 if (mhp == last_mhp) {
1438 printk(KERN_WARNING "hugepages= specified twice without "
1439 "interleaving hugepagesz=, ignoring\n");
1440 return 1;
1441 }
1442
a3437870
NA
1443 if (sscanf(s, "%lu", mhp) <= 0)
1444 *mhp = 0;
1445
8faa8b07
AK
1446 /*
1447 * Global state is always initialized later in hugetlb_init.
1448 * But we need to allocate >= MAX_ORDER hstates here early to still
1449 * use the bootmem allocator.
1450 */
1451 if (max_hstate && parsed_hstate->order >= MAX_ORDER)
1452 hugetlb_hstate_alloc_pages(parsed_hstate);
1453
1454 last_mhp = mhp;
1455
a3437870
NA
1456 return 1;
1457}
e11bfbfc
NP
1458__setup("hugepages=", hugetlb_nrpages_setup);
1459
1460static int __init hugetlb_default_setup(char *s)
1461{
1462 default_hstate_size = memparse(s, &s);
1463 return 1;
1464}
1465__setup("default_hugepagesz=", hugetlb_default_setup);
a3437870 1466
8a213460
NA
1467static unsigned int cpuset_mems_nr(unsigned int *array)
1468{
1469 int node;
1470 unsigned int nr = 0;
1471
1472 for_each_node_mask(node, cpuset_current_mems_allowed)
1473 nr += array[node];
1474
1475 return nr;
1476}
1477
1478#ifdef CONFIG_SYSCTL
1da177e4
LT
1479int hugetlb_sysctl_handler(struct ctl_table *table, int write,
1480 struct file *file, void __user *buffer,
1481 size_t *length, loff_t *ppos)
1482{
e5ff2159
AK
1483 struct hstate *h = &default_hstate;
1484 unsigned long tmp;
1485
1486 if (!write)
1487 tmp = h->max_huge_pages;
1488
1489 table->data = &tmp;
1490 table->maxlen = sizeof(unsigned long);
1da177e4 1491 proc_doulongvec_minmax(table, write, file, buffer, length, ppos);
e5ff2159
AK
1492
1493 if (write)
1494 h->max_huge_pages = set_max_huge_pages(h, tmp);
1495
1da177e4
LT
1496 return 0;
1497}
396faf03
MG
1498
1499int hugetlb_treat_movable_handler(struct ctl_table *table, int write,
1500 struct file *file, void __user *buffer,
1501 size_t *length, loff_t *ppos)
1502{
1503 proc_dointvec(table, write, file, buffer, length, ppos);
1504 if (hugepages_treat_as_movable)
1505 htlb_alloc_mask = GFP_HIGHUSER_MOVABLE;
1506 else
1507 htlb_alloc_mask = GFP_HIGHUSER;
1508 return 0;
1509}
1510
a3d0c6aa
NA
1511int hugetlb_overcommit_handler(struct ctl_table *table, int write,
1512 struct file *file, void __user *buffer,
1513 size_t *length, loff_t *ppos)
1514{
a5516438 1515 struct hstate *h = &default_hstate;
e5ff2159
AK
1516 unsigned long tmp;
1517
1518 if (!write)
1519 tmp = h->nr_overcommit_huge_pages;
1520
1521 table->data = &tmp;
1522 table->maxlen = sizeof(unsigned long);
a3d0c6aa 1523 proc_doulongvec_minmax(table, write, file, buffer, length, ppos);
e5ff2159
AK
1524
1525 if (write) {
1526 spin_lock(&hugetlb_lock);
1527 h->nr_overcommit_huge_pages = tmp;
1528 spin_unlock(&hugetlb_lock);
1529 }
1530
a3d0c6aa
NA
1531 return 0;
1532}
1533
1da177e4
LT
1534#endif /* CONFIG_SYSCTL */
1535
e1759c21 1536void hugetlb_report_meminfo(struct seq_file *m)
1da177e4 1537{
a5516438 1538 struct hstate *h = &default_hstate;
e1759c21 1539 seq_printf(m,
4f98a2fe
RR
1540 "HugePages_Total: %5lu\n"
1541 "HugePages_Free: %5lu\n"
1542 "HugePages_Rsvd: %5lu\n"
1543 "HugePages_Surp: %5lu\n"
1544 "Hugepagesize: %8lu kB\n",
a5516438
AK
1545 h->nr_huge_pages,
1546 h->free_huge_pages,
1547 h->resv_huge_pages,
1548 h->surplus_huge_pages,
1549 1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
1da177e4
LT
1550}
1551
1552int hugetlb_report_node_meminfo(int nid, char *buf)
1553{
a5516438 1554 struct hstate *h = &default_hstate;
1da177e4
LT
1555 return sprintf(buf,
1556 "Node %d HugePages_Total: %5u\n"
a1de0919
NA
1557 "Node %d HugePages_Free: %5u\n"
1558 "Node %d HugePages_Surp: %5u\n",
a5516438
AK
1559 nid, h->nr_huge_pages_node[nid],
1560 nid, h->free_huge_pages_node[nid],
1561 nid, h->surplus_huge_pages_node[nid]);
1da177e4
LT
1562}
1563
1da177e4
LT
1564/* Return the number pages of memory we physically have, in PAGE_SIZE units. */
1565unsigned long hugetlb_total_pages(void)
1566{
a5516438
AK
1567 struct hstate *h = &default_hstate;
1568 return h->nr_huge_pages * pages_per_huge_page(h);
1da177e4 1569}
1da177e4 1570
a5516438 1571static int hugetlb_acct_memory(struct hstate *h, long delta)
fc1b8a73
MG
1572{
1573 int ret = -ENOMEM;
1574
1575 spin_lock(&hugetlb_lock);
1576 /*
1577 * When cpuset is configured, it breaks the strict hugetlb page
1578 * reservation as the accounting is done on a global variable. Such
1579 * reservation is completely rubbish in the presence of cpuset because
1580 * the reservation is not checked against page availability for the
1581 * current cpuset. Application can still potentially OOM'ed by kernel
1582 * with lack of free htlb page in cpuset that the task is in.
1583 * Attempt to enforce strict accounting with cpuset is almost
1584 * impossible (or too ugly) because cpuset is too fluid that
1585 * task or memory node can be dynamically moved between cpusets.
1586 *
1587 * The change of semantics for shared hugetlb mapping with cpuset is
1588 * undesirable. However, in order to preserve some of the semantics,
1589 * we fall back to check against current free page availability as
1590 * a best attempt and hopefully to minimize the impact of changing
1591 * semantics that cpuset has.
1592 */
1593 if (delta > 0) {
a5516438 1594 if (gather_surplus_pages(h, delta) < 0)
fc1b8a73
MG
1595 goto out;
1596
a5516438
AK
1597 if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
1598 return_unused_surplus_pages(h, delta);
fc1b8a73
MG
1599 goto out;
1600 }
1601 }
1602
1603 ret = 0;
1604 if (delta < 0)
a5516438 1605 return_unused_surplus_pages(h, (unsigned long) -delta);
fc1b8a73
MG
1606
1607out:
1608 spin_unlock(&hugetlb_lock);
1609 return ret;
1610}
1611
84afd99b
AW
1612static void hugetlb_vm_op_open(struct vm_area_struct *vma)
1613{
1614 struct resv_map *reservations = vma_resv_map(vma);
1615
1616 /*
1617 * This new VMA should share its siblings reservation map if present.
1618 * The VMA will only ever have a valid reservation map pointer where
1619 * it is being copied for another still existing VMA. As that VMA
1620 * has a reference to the reservation map it cannot dissappear until
1621 * after this open call completes. It is therefore safe to take a
1622 * new reference here without additional locking.
1623 */
1624 if (reservations)
1625 kref_get(&reservations->refs);
1626}
1627
a1e78772
MG
1628static void hugetlb_vm_op_close(struct vm_area_struct *vma)
1629{
a5516438 1630 struct hstate *h = hstate_vma(vma);
84afd99b
AW
1631 struct resv_map *reservations = vma_resv_map(vma);
1632 unsigned long reserve;
1633 unsigned long start;
1634 unsigned long end;
1635
1636 if (reservations) {
a5516438
AK
1637 start = vma_hugecache_offset(h, vma, vma->vm_start);
1638 end = vma_hugecache_offset(h, vma, vma->vm_end);
84afd99b
AW
1639
1640 reserve = (end - start) -
1641 region_count(&reservations->regions, start, end);
1642
1643 kref_put(&reservations->refs, resv_map_release);
1644
7251ff78 1645 if (reserve) {
a5516438 1646 hugetlb_acct_memory(h, -reserve);
7251ff78
AL
1647 hugetlb_put_quota(vma->vm_file->f_mapping, reserve);
1648 }
84afd99b 1649 }
a1e78772
MG
1650}
1651
1da177e4
LT
1652/*
1653 * We cannot handle pagefaults against hugetlb pages at all. They cause
1654 * handle_mm_fault() to try to instantiate regular-sized pages in the
1655 * hugegpage VMA. do_page_fault() is supposed to trap this, so BUG is we get
1656 * this far.
1657 */
d0217ac0 1658static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1da177e4
LT
1659{
1660 BUG();
d0217ac0 1661 return 0;
1da177e4
LT
1662}
1663
1664struct vm_operations_struct hugetlb_vm_ops = {
d0217ac0 1665 .fault = hugetlb_vm_op_fault,
84afd99b 1666 .open = hugetlb_vm_op_open,
a1e78772 1667 .close = hugetlb_vm_op_close,
1da177e4
LT
1668};
1669
1e8f889b
DG
1670static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
1671 int writable)
63551ae0
DG
1672{
1673 pte_t entry;
1674
1e8f889b 1675 if (writable) {
63551ae0
DG
1676 entry =
1677 pte_mkwrite(pte_mkdirty(mk_pte(page, vma->vm_page_prot)));
1678 } else {
7f2e9525 1679 entry = huge_pte_wrprotect(mk_pte(page, vma->vm_page_prot));
63551ae0
DG
1680 }
1681 entry = pte_mkyoung(entry);
1682 entry = pte_mkhuge(entry);
1683
1684 return entry;
1685}
1686
1e8f889b
DG
1687static void set_huge_ptep_writable(struct vm_area_struct *vma,
1688 unsigned long address, pte_t *ptep)
1689{
1690 pte_t entry;
1691
7f2e9525
GS
1692 entry = pte_mkwrite(pte_mkdirty(huge_ptep_get(ptep)));
1693 if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1)) {
8dab5241 1694 update_mmu_cache(vma, address, entry);
8dab5241 1695 }
1e8f889b
DG
1696}
1697
1698
63551ae0
DG
1699int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
1700 struct vm_area_struct *vma)
1701{
1702 pte_t *src_pte, *dst_pte, entry;
1703 struct page *ptepage;
1c59827d 1704 unsigned long addr;
1e8f889b 1705 int cow;
a5516438
AK
1706 struct hstate *h = hstate_vma(vma);
1707 unsigned long sz = huge_page_size(h);
1e8f889b
DG
1708
1709 cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
63551ae0 1710
a5516438 1711 for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
c74df32c
HD
1712 src_pte = huge_pte_offset(src, addr);
1713 if (!src_pte)
1714 continue;
a5516438 1715 dst_pte = huge_pte_alloc(dst, addr, sz);
63551ae0
DG
1716 if (!dst_pte)
1717 goto nomem;
c5c99429
LW
1718
1719 /* If the pagetables are shared don't copy or take references */
1720 if (dst_pte == src_pte)
1721 continue;
1722
c74df32c 1723 spin_lock(&dst->page_table_lock);
46478758 1724 spin_lock_nested(&src->page_table_lock, SINGLE_DEPTH_NESTING);
7f2e9525 1725 if (!huge_pte_none(huge_ptep_get(src_pte))) {
1e8f889b 1726 if (cow)
7f2e9525
GS
1727 huge_ptep_set_wrprotect(src, addr, src_pte);
1728 entry = huge_ptep_get(src_pte);
1c59827d
HD
1729 ptepage = pte_page(entry);
1730 get_page(ptepage);
1c59827d
HD
1731 set_huge_pte_at(dst, addr, dst_pte, entry);
1732 }
1733 spin_unlock(&src->page_table_lock);
c74df32c 1734 spin_unlock(&dst->page_table_lock);
63551ae0
DG
1735 }
1736 return 0;
1737
1738nomem:
1739 return -ENOMEM;
1740}
1741
502717f4 1742void __unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
04f2cbe3 1743 unsigned long end, struct page *ref_page)
63551ae0
DG
1744{
1745 struct mm_struct *mm = vma->vm_mm;
1746 unsigned long address;
c7546f8f 1747 pte_t *ptep;
63551ae0
DG
1748 pte_t pte;
1749 struct page *page;
fe1668ae 1750 struct page *tmp;
a5516438
AK
1751 struct hstate *h = hstate_vma(vma);
1752 unsigned long sz = huge_page_size(h);
1753
c0a499c2
CK
1754 /*
1755 * A page gathering list, protected by per file i_mmap_lock. The
1756 * lock is used to avoid list corruption from multiple unmapping
1757 * of the same page since we are using page->lru.
1758 */
fe1668ae 1759 LIST_HEAD(page_list);
63551ae0
DG
1760
1761 WARN_ON(!is_vm_hugetlb_page(vma));
a5516438
AK
1762 BUG_ON(start & ~huge_page_mask(h));
1763 BUG_ON(end & ~huge_page_mask(h));
63551ae0 1764
cddb8a5c 1765 mmu_notifier_invalidate_range_start(mm, start, end);
508034a3 1766 spin_lock(&mm->page_table_lock);
a5516438 1767 for (address = start; address < end; address += sz) {
c7546f8f 1768 ptep = huge_pte_offset(mm, address);
4c887265 1769 if (!ptep)
c7546f8f
DG
1770 continue;
1771
39dde65c
CK
1772 if (huge_pmd_unshare(mm, &address, ptep))
1773 continue;
1774
04f2cbe3
MG
1775 /*
1776 * If a reference page is supplied, it is because a specific
1777 * page is being unmapped, not a range. Ensure the page we
1778 * are about to unmap is the actual page of interest.
1779 */
1780 if (ref_page) {
1781 pte = huge_ptep_get(ptep);
1782 if (huge_pte_none(pte))
1783 continue;
1784 page = pte_page(pte);
1785 if (page != ref_page)
1786 continue;
1787
1788 /*
1789 * Mark the VMA as having unmapped its page so that
1790 * future faults in this VMA will fail rather than
1791 * looking like data was lost
1792 */
1793 set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
1794 }
1795
c7546f8f 1796 pte = huge_ptep_get_and_clear(mm, address, ptep);
7f2e9525 1797 if (huge_pte_none(pte))
63551ae0 1798 continue;
c7546f8f 1799
63551ae0 1800 page = pte_page(pte);
6649a386
KC
1801 if (pte_dirty(pte))
1802 set_page_dirty(page);
fe1668ae 1803 list_add(&page->lru, &page_list);
63551ae0 1804 }
1da177e4 1805 spin_unlock(&mm->page_table_lock);
508034a3 1806 flush_tlb_range(vma, start, end);
cddb8a5c 1807 mmu_notifier_invalidate_range_end(mm, start, end);
fe1668ae
CK
1808 list_for_each_entry_safe(page, tmp, &page_list, lru) {
1809 list_del(&page->lru);
1810 put_page(page);
1811 }
1da177e4 1812}
63551ae0 1813
502717f4 1814void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
04f2cbe3 1815 unsigned long end, struct page *ref_page)
502717f4 1816{
a137e1cc
AK
1817 spin_lock(&vma->vm_file->f_mapping->i_mmap_lock);
1818 __unmap_hugepage_range(vma, start, end, ref_page);
1819 spin_unlock(&vma->vm_file->f_mapping->i_mmap_lock);
502717f4
CK
1820}
1821
04f2cbe3
MG
1822/*
1823 * This is called when the original mapper is failing to COW a MAP_PRIVATE
1824 * mappping it owns the reserve page for. The intention is to unmap the page
1825 * from other VMAs and let the children be SIGKILLed if they are faulting the
1826 * same region.
1827 */
2a4b3ded
HH
1828static int unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
1829 struct page *page, unsigned long address)
04f2cbe3 1830{
7526674d 1831 struct hstate *h = hstate_vma(vma);
04f2cbe3
MG
1832 struct vm_area_struct *iter_vma;
1833 struct address_space *mapping;
1834 struct prio_tree_iter iter;
1835 pgoff_t pgoff;
1836
1837 /*
1838 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
1839 * from page cache lookup which is in HPAGE_SIZE units.
1840 */
7526674d 1841 address = address & huge_page_mask(h);
04f2cbe3
MG
1842 pgoff = ((address - vma->vm_start) >> PAGE_SHIFT)
1843 + (vma->vm_pgoff >> PAGE_SHIFT);
1844 mapping = (struct address_space *)page_private(page);
1845
1846 vma_prio_tree_foreach(iter_vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
1847 /* Do not unmap the current VMA */
1848 if (iter_vma == vma)
1849 continue;
1850
1851 /*
1852 * Unmap the page from other VMAs without their own reserves.
1853 * They get marked to be SIGKILLed if they fault in these
1854 * areas. This is because a future no-page fault on this VMA
1855 * could insert a zeroed page instead of the data existing
1856 * from the time of fork. This would look like data corruption
1857 */
1858 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
1859 unmap_hugepage_range(iter_vma,
7526674d 1860 address, address + huge_page_size(h),
04f2cbe3
MG
1861 page);
1862 }
1863
1864 return 1;
1865}
1866
1e8f889b 1867static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
04f2cbe3
MG
1868 unsigned long address, pte_t *ptep, pte_t pte,
1869 struct page *pagecache_page)
1e8f889b 1870{
a5516438 1871 struct hstate *h = hstate_vma(vma);
1e8f889b 1872 struct page *old_page, *new_page;
79ac6ba4 1873 int avoidcopy;
04f2cbe3 1874 int outside_reserve = 0;
1e8f889b
DG
1875
1876 old_page = pte_page(pte);
1877
04f2cbe3 1878retry_avoidcopy:
1e8f889b
DG
1879 /* If no-one else is actually using this page, avoid the copy
1880 * and just make the page writable */
1881 avoidcopy = (page_count(old_page) == 1);
1882 if (avoidcopy) {
1883 set_huge_ptep_writable(vma, address, ptep);
83c54070 1884 return 0;
1e8f889b
DG
1885 }
1886
04f2cbe3
MG
1887 /*
1888 * If the process that created a MAP_PRIVATE mapping is about to
1889 * perform a COW due to a shared page count, attempt to satisfy
1890 * the allocation without using the existing reserves. The pagecache
1891 * page is used to determine if the reserve at this address was
1892 * consumed or not. If reserves were used, a partial faulted mapping
1893 * at the time of fork() could consume its reserves on COW instead
1894 * of the full address range.
1895 */
1896 if (!(vma->vm_flags & VM_SHARED) &&
1897 is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
1898 old_page != pagecache_page)
1899 outside_reserve = 1;
1900
1e8f889b 1901 page_cache_get(old_page);
04f2cbe3 1902 new_page = alloc_huge_page(vma, address, outside_reserve);
1e8f889b 1903
2fc39cec 1904 if (IS_ERR(new_page)) {
1e8f889b 1905 page_cache_release(old_page);
04f2cbe3
MG
1906
1907 /*
1908 * If a process owning a MAP_PRIVATE mapping fails to COW,
1909 * it is due to references held by a child and an insufficient
1910 * huge page pool. To guarantee the original mappers
1911 * reliability, unmap the page from child processes. The child
1912 * may get SIGKILLed if it later faults.
1913 */
1914 if (outside_reserve) {
1915 BUG_ON(huge_pte_none(pte));
1916 if (unmap_ref_private(mm, vma, old_page, address)) {
1917 BUG_ON(page_count(old_page) != 1);
1918 BUG_ON(huge_pte_none(pte));
1919 goto retry_avoidcopy;
1920 }
1921 WARN_ON_ONCE(1);
1922 }
1923
2fc39cec 1924 return -PTR_ERR(new_page);
1e8f889b
DG
1925 }
1926
1927 spin_unlock(&mm->page_table_lock);
9de455b2 1928 copy_huge_page(new_page, old_page, address, vma);
0ed361de 1929 __SetPageUptodate(new_page);
1e8f889b
DG
1930 spin_lock(&mm->page_table_lock);
1931
a5516438 1932 ptep = huge_pte_offset(mm, address & huge_page_mask(h));
7f2e9525 1933 if (likely(pte_same(huge_ptep_get(ptep), pte))) {
1e8f889b 1934 /* Break COW */
8fe627ec 1935 huge_ptep_clear_flush(vma, address, ptep);
1e8f889b
DG
1936 set_huge_pte_at(mm, address, ptep,
1937 make_huge_pte(vma, new_page, 1));
1938 /* Make the old page be freed below */
1939 new_page = old_page;
1940 }
1941 page_cache_release(new_page);
1942 page_cache_release(old_page);
83c54070 1943 return 0;
1e8f889b
DG
1944}
1945
04f2cbe3 1946/* Return the pagecache page at a given address within a VMA */
a5516438
AK
1947static struct page *hugetlbfs_pagecache_page(struct hstate *h,
1948 struct vm_area_struct *vma, unsigned long address)
04f2cbe3
MG
1949{
1950 struct address_space *mapping;
e7c4b0bf 1951 pgoff_t idx;
04f2cbe3
MG
1952
1953 mapping = vma->vm_file->f_mapping;
a5516438 1954 idx = vma_hugecache_offset(h, vma, address);
04f2cbe3
MG
1955
1956 return find_lock_page(mapping, idx);
1957}
1958
a1ed3dda 1959static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
1e8f889b 1960 unsigned long address, pte_t *ptep, int write_access)
ac9b9c66 1961{
a5516438 1962 struct hstate *h = hstate_vma(vma);
ac9b9c66 1963 int ret = VM_FAULT_SIGBUS;
e7c4b0bf 1964 pgoff_t idx;
4c887265 1965 unsigned long size;
4c887265
AL
1966 struct page *page;
1967 struct address_space *mapping;
1e8f889b 1968 pte_t new_pte;
4c887265 1969
04f2cbe3
MG
1970 /*
1971 * Currently, we are forced to kill the process in the event the
1972 * original mapper has unmapped pages from the child due to a failed
1973 * COW. Warn that such a situation has occured as it may not be obvious
1974 */
1975 if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
1976 printk(KERN_WARNING
1977 "PID %d killed due to inadequate hugepage pool\n",
1978 current->pid);
1979 return ret;
1980 }
1981
4c887265 1982 mapping = vma->vm_file->f_mapping;
a5516438 1983 idx = vma_hugecache_offset(h, vma, address);
4c887265
AL
1984
1985 /*
1986 * Use page lock to guard against racing truncation
1987 * before we get page_table_lock.
1988 */
6bda666a
CL
1989retry:
1990 page = find_lock_page(mapping, idx);
1991 if (!page) {
a5516438 1992 size = i_size_read(mapping->host) >> huge_page_shift(h);
ebed4bfc
HD
1993 if (idx >= size)
1994 goto out;
04f2cbe3 1995 page = alloc_huge_page(vma, address, 0);
2fc39cec
AL
1996 if (IS_ERR(page)) {
1997 ret = -PTR_ERR(page);
6bda666a
CL
1998 goto out;
1999 }
a5516438 2000 clear_huge_page(page, address, huge_page_size(h));
0ed361de 2001 __SetPageUptodate(page);
ac9b9c66 2002
6bda666a
CL
2003 if (vma->vm_flags & VM_SHARED) {
2004 int err;
45c682a6 2005 struct inode *inode = mapping->host;
6bda666a
CL
2006
2007 err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
2008 if (err) {
2009 put_page(page);
6bda666a
CL
2010 if (err == -EEXIST)
2011 goto retry;
2012 goto out;
2013 }
45c682a6
KC
2014
2015 spin_lock(&inode->i_lock);
a5516438 2016 inode->i_blocks += blocks_per_huge_page(h);
45c682a6 2017 spin_unlock(&inode->i_lock);
6bda666a
CL
2018 } else
2019 lock_page(page);
2020 }
1e8f889b 2021
57303d80
AW
2022 /*
2023 * If we are going to COW a private mapping later, we examine the
2024 * pending reservations for this page now. This will ensure that
2025 * any allocations necessary to record that reservation occur outside
2026 * the spinlock.
2027 */
2028 if (write_access && !(vma->vm_flags & VM_SHARED))
2b26736c
AW
2029 if (vma_needs_reservation(h, vma, address) < 0) {
2030 ret = VM_FAULT_OOM;
2031 goto backout_unlocked;
2032 }
57303d80 2033
ac9b9c66 2034 spin_lock(&mm->page_table_lock);
a5516438 2035 size = i_size_read(mapping->host) >> huge_page_shift(h);
4c887265
AL
2036 if (idx >= size)
2037 goto backout;
2038
83c54070 2039 ret = 0;
7f2e9525 2040 if (!huge_pte_none(huge_ptep_get(ptep)))
4c887265
AL
2041 goto backout;
2042
1e8f889b
DG
2043 new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
2044 && (vma->vm_flags & VM_SHARED)));
2045 set_huge_pte_at(mm, address, ptep, new_pte);
2046
2047 if (write_access && !(vma->vm_flags & VM_SHARED)) {
2048 /* Optimization, do the COW without a second fault */
04f2cbe3 2049 ret = hugetlb_cow(mm, vma, address, ptep, new_pte, page);
1e8f889b
DG
2050 }
2051
ac9b9c66 2052 spin_unlock(&mm->page_table_lock);
4c887265
AL
2053 unlock_page(page);
2054out:
ac9b9c66 2055 return ret;
4c887265
AL
2056
2057backout:
2058 spin_unlock(&mm->page_table_lock);
2b26736c 2059backout_unlocked:
4c887265
AL
2060 unlock_page(page);
2061 put_page(page);
2062 goto out;
ac9b9c66
HD
2063}
2064
86e5216f
AL
2065int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2066 unsigned long address, int write_access)
2067{
2068 pte_t *ptep;
2069 pte_t entry;
1e8f889b 2070 int ret;
57303d80 2071 struct page *pagecache_page = NULL;
3935baa9 2072 static DEFINE_MUTEX(hugetlb_instantiation_mutex);
a5516438 2073 struct hstate *h = hstate_vma(vma);
86e5216f 2074
a5516438 2075 ptep = huge_pte_alloc(mm, address, huge_page_size(h));
86e5216f
AL
2076 if (!ptep)
2077 return VM_FAULT_OOM;
2078
3935baa9
DG
2079 /*
2080 * Serialize hugepage allocation and instantiation, so that we don't
2081 * get spurious allocation failures if two CPUs race to instantiate
2082 * the same page in the page cache.
2083 */
2084 mutex_lock(&hugetlb_instantiation_mutex);
7f2e9525
GS
2085 entry = huge_ptep_get(ptep);
2086 if (huge_pte_none(entry)) {
3935baa9 2087 ret = hugetlb_no_page(mm, vma, address, ptep, write_access);
b4d1d99f 2088 goto out_mutex;
3935baa9 2089 }
86e5216f 2090
83c54070 2091 ret = 0;
1e8f889b 2092
57303d80
AW
2093 /*
2094 * If we are going to COW the mapping later, we examine the pending
2095 * reservations for this page now. This will ensure that any
2096 * allocations necessary to record that reservation occur outside the
2097 * spinlock. For private mappings, we also lookup the pagecache
2098 * page now as it is used to determine if a reservation has been
2099 * consumed.
2100 */
2101 if (write_access && !pte_write(entry)) {
2b26736c
AW
2102 if (vma_needs_reservation(h, vma, address) < 0) {
2103 ret = VM_FAULT_OOM;
b4d1d99f 2104 goto out_mutex;
2b26736c 2105 }
57303d80
AW
2106
2107 if (!(vma->vm_flags & VM_SHARED))
2108 pagecache_page = hugetlbfs_pagecache_page(h,
2109 vma, address);
2110 }
2111
1e8f889b
DG
2112 spin_lock(&mm->page_table_lock);
2113 /* Check for a racing update before calling hugetlb_cow */
b4d1d99f
DG
2114 if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
2115 goto out_page_table_lock;
2116
2117
2118 if (write_access) {
2119 if (!pte_write(entry)) {
57303d80
AW
2120 ret = hugetlb_cow(mm, vma, address, ptep, entry,
2121 pagecache_page);
b4d1d99f
DG
2122 goto out_page_table_lock;
2123 }
2124 entry = pte_mkdirty(entry);
2125 }
2126 entry = pte_mkyoung(entry);
2127 if (huge_ptep_set_access_flags(vma, address, ptep, entry, write_access))
2128 update_mmu_cache(vma, address, entry);
2129
2130out_page_table_lock:
1e8f889b 2131 spin_unlock(&mm->page_table_lock);
57303d80
AW
2132
2133 if (pagecache_page) {
2134 unlock_page(pagecache_page);
2135 put_page(pagecache_page);
2136 }
2137
b4d1d99f 2138out_mutex:
3935baa9 2139 mutex_unlock(&hugetlb_instantiation_mutex);
1e8f889b
DG
2140
2141 return ret;
86e5216f
AL
2142}
2143
ceb86879
AK
2144/* Can be overriden by architectures */
2145__attribute__((weak)) struct page *
2146follow_huge_pud(struct mm_struct *mm, unsigned long address,
2147 pud_t *pud, int write)
2148{
2149 BUG();
2150 return NULL;
2151}
2152
4b2e38ad
KM
2153static int huge_zeropage_ok(pte_t *ptep, int write, int shared)
2154{
2155 if (!ptep || write || shared)
2156 return 0;
2157 else
2158 return huge_pte_none(huge_ptep_get(ptep));
2159}
2160
63551ae0
DG
2161int follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
2162 struct page **pages, struct vm_area_struct **vmas,
5b23dbe8
AL
2163 unsigned long *position, int *length, int i,
2164 int write)
63551ae0 2165{
d5d4b0aa
CK
2166 unsigned long pfn_offset;
2167 unsigned long vaddr = *position;
63551ae0 2168 int remainder = *length;
a5516438 2169 struct hstate *h = hstate_vma(vma);
4b2e38ad
KM
2170 int zeropage_ok = 0;
2171 int shared = vma->vm_flags & VM_SHARED;
63551ae0 2172
1c59827d 2173 spin_lock(&mm->page_table_lock);
63551ae0 2174 while (vaddr < vma->vm_end && remainder) {
4c887265
AL
2175 pte_t *pte;
2176 struct page *page;
63551ae0 2177
4c887265
AL
2178 /*
2179 * Some archs (sparc64, sh*) have multiple pte_ts to
2180 * each hugepage. We have to make * sure we get the
2181 * first, for the page indexing below to work.
2182 */
a5516438 2183 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h));
4b2e38ad
KM
2184 if (huge_zeropage_ok(pte, write, shared))
2185 zeropage_ok = 1;
63551ae0 2186
4b2e38ad
KM
2187 if (!pte ||
2188 (huge_pte_none(huge_ptep_get(pte)) && !zeropage_ok) ||
7f2e9525 2189 (write && !pte_write(huge_ptep_get(pte)))) {
4c887265 2190 int ret;
63551ae0 2191
4c887265 2192 spin_unlock(&mm->page_table_lock);
5b23dbe8 2193 ret = hugetlb_fault(mm, vma, vaddr, write);
4c887265 2194 spin_lock(&mm->page_table_lock);
a89182c7 2195 if (!(ret & VM_FAULT_ERROR))
4c887265 2196 continue;
63551ae0 2197
4c887265
AL
2198 remainder = 0;
2199 if (!i)
2200 i = -EFAULT;
2201 break;
2202 }
2203
a5516438 2204 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
7f2e9525 2205 page = pte_page(huge_ptep_get(pte));
d5d4b0aa 2206same_page:
d6692183 2207 if (pages) {
4b2e38ad
KM
2208 if (zeropage_ok)
2209 pages[i] = ZERO_PAGE(0);
2210 else
69d177c2 2211 pages[i] = mem_map_offset(page, pfn_offset);
4b2e38ad 2212 get_page(pages[i]);
d6692183 2213 }
63551ae0
DG
2214
2215 if (vmas)
2216 vmas[i] = vma;
2217
2218 vaddr += PAGE_SIZE;
d5d4b0aa 2219 ++pfn_offset;
63551ae0
DG
2220 --remainder;
2221 ++i;
d5d4b0aa 2222 if (vaddr < vma->vm_end && remainder &&
a5516438 2223 pfn_offset < pages_per_huge_page(h)) {
d5d4b0aa
CK
2224 /*
2225 * We use pfn_offset to avoid touching the pageframes
2226 * of this compound page.
2227 */
2228 goto same_page;
2229 }
63551ae0 2230 }
1c59827d 2231 spin_unlock(&mm->page_table_lock);
63551ae0
DG
2232 *length = remainder;
2233 *position = vaddr;
2234
2235 return i;
2236}
8f860591
ZY
2237
2238void hugetlb_change_protection(struct vm_area_struct *vma,
2239 unsigned long address, unsigned long end, pgprot_t newprot)
2240{
2241 struct mm_struct *mm = vma->vm_mm;
2242 unsigned long start = address;
2243 pte_t *ptep;
2244 pte_t pte;
a5516438 2245 struct hstate *h = hstate_vma(vma);
8f860591
ZY
2246
2247 BUG_ON(address >= end);
2248 flush_cache_range(vma, address, end);
2249
39dde65c 2250 spin_lock(&vma->vm_file->f_mapping->i_mmap_lock);
8f860591 2251 spin_lock(&mm->page_table_lock);
a5516438 2252 for (; address < end; address += huge_page_size(h)) {
8f860591
ZY
2253 ptep = huge_pte_offset(mm, address);
2254 if (!ptep)
2255 continue;
39dde65c
CK
2256 if (huge_pmd_unshare(mm, &address, ptep))
2257 continue;
7f2e9525 2258 if (!huge_pte_none(huge_ptep_get(ptep))) {
8f860591
ZY
2259 pte = huge_ptep_get_and_clear(mm, address, ptep);
2260 pte = pte_mkhuge(pte_modify(pte, newprot));
2261 set_huge_pte_at(mm, address, ptep, pte);
8f860591
ZY
2262 }
2263 }
2264 spin_unlock(&mm->page_table_lock);
39dde65c 2265 spin_unlock(&vma->vm_file->f_mapping->i_mmap_lock);
8f860591
ZY
2266
2267 flush_tlb_range(vma, start, end);
2268}
2269
a1e78772
MG
2270int hugetlb_reserve_pages(struct inode *inode,
2271 long from, long to,
2272 struct vm_area_struct *vma)
e4e574b7
AL
2273{
2274 long ret, chg;
a5516438 2275 struct hstate *h = hstate_inode(inode);
e4e574b7 2276
c37f9fb1
AW
2277 if (vma && vma->vm_flags & VM_NORESERVE)
2278 return 0;
2279
a1e78772
MG
2280 /*
2281 * Shared mappings base their reservation on the number of pages that
2282 * are already allocated on behalf of the file. Private mappings need
2283 * to reserve the full area even if read-only as mprotect() may be
2284 * called to make the mapping read-write. Assume !vma is a shm mapping
2285 */
2286 if (!vma || vma->vm_flags & VM_SHARED)
2287 chg = region_chg(&inode->i_mapping->private_list, from, to);
2288 else {
84afd99b
AW
2289 struct resv_map *resv_map = resv_map_alloc();
2290 if (!resv_map)
2291 return -ENOMEM;
2292
a1e78772 2293 chg = to - from;
84afd99b
AW
2294
2295 set_vma_resv_map(vma, resv_map);
04f2cbe3 2296 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
a1e78772
MG
2297 }
2298
e4e574b7
AL
2299 if (chg < 0)
2300 return chg;
8a630112 2301
90d8b7e6
AL
2302 if (hugetlb_get_quota(inode->i_mapping, chg))
2303 return -ENOSPC;
a5516438 2304 ret = hugetlb_acct_memory(h, chg);
68842c9b
KC
2305 if (ret < 0) {
2306 hugetlb_put_quota(inode->i_mapping, chg);
a43a8c39 2307 return ret;
68842c9b 2308 }
a1e78772
MG
2309 if (!vma || vma->vm_flags & VM_SHARED)
2310 region_add(&inode->i_mapping->private_list, from, to);
a43a8c39
CK
2311 return 0;
2312}
2313
2314void hugetlb_unreserve_pages(struct inode *inode, long offset, long freed)
2315{
a5516438 2316 struct hstate *h = hstate_inode(inode);
a43a8c39 2317 long chg = region_truncate(&inode->i_mapping->private_list, offset);
45c682a6
KC
2318
2319 spin_lock(&inode->i_lock);
a5516438 2320 inode->i_blocks -= blocks_per_huge_page(h);
45c682a6
KC
2321 spin_unlock(&inode->i_lock);
2322
90d8b7e6 2323 hugetlb_put_quota(inode->i_mapping, (chg - freed));
a5516438 2324 hugetlb_acct_memory(h, -(chg - freed));
a43a8c39 2325}