ACPI / battery: Fix doubly added battery on system suspend
[linux-2.6-block.git] / mm / hugetlb.c
CommitLineData
1da177e4
LT
1/*
2 * Generic hugetlb support.
6d49e352 3 * (C) Nadia Yvette Chambers, April 2004
1da177e4 4 */
1da177e4
LT
5#include <linux/list.h>
6#include <linux/init.h>
7#include <linux/module.h>
8#include <linux/mm.h>
e1759c21 9#include <linux/seq_file.h>
1da177e4
LT
10#include <linux/sysctl.h>
11#include <linux/highmem.h>
cddb8a5c 12#include <linux/mmu_notifier.h>
1da177e4 13#include <linux/nodemask.h>
63551ae0 14#include <linux/pagemap.h>
5da7ca86 15#include <linux/mempolicy.h>
3b32123d 16#include <linux/compiler.h>
aea47ff3 17#include <linux/cpuset.h>
3935baa9 18#include <linux/mutex.h>
aa888a74 19#include <linux/bootmem.h>
a3437870 20#include <linux/sysfs.h>
5a0e3ad6 21#include <linux/slab.h>
0fe6e20b 22#include <linux/rmap.h>
fd6a03ed
NH
23#include <linux/swap.h>
24#include <linux/swapops.h>
c8721bbb 25#include <linux/page-isolation.h>
8382d914 26#include <linux/jhash.h>
d6606683 27
63551ae0
DG
28#include <asm/page.h>
29#include <asm/pgtable.h>
24669e58 30#include <asm/tlb.h>
63551ae0 31
24669e58 32#include <linux/io.h>
63551ae0 33#include <linux/hugetlb.h>
9dd540e2 34#include <linux/hugetlb_cgroup.h>
9a305230 35#include <linux/node.h>
7835e98b 36#include "internal.h"
1da177e4 37
753162cd 38int hugepages_treat_as_movable;
a5516438 39
c3f38a38 40int hugetlb_max_hstate __read_mostly;
e5ff2159
AK
41unsigned int default_hstate_idx;
42struct hstate hstates[HUGE_MAX_HSTATE];
43
53ba51d2
JT
44__initdata LIST_HEAD(huge_boot_pages);
45
e5ff2159
AK
46/* for command line parsing */
47static struct hstate * __initdata parsed_hstate;
48static unsigned long __initdata default_hstate_max_huge_pages;
e11bfbfc 49static unsigned long __initdata default_hstate_size;
e5ff2159 50
3935baa9 51/*
31caf665
NH
52 * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
53 * free_huge_pages, and surplus_huge_pages.
3935baa9 54 */
c3f38a38 55DEFINE_SPINLOCK(hugetlb_lock);
0bd0f9fb 56
8382d914
DB
57/*
58 * Serializes faults on the same logical page. This is used to
59 * prevent spurious OOMs when the hugepage pool is fully utilized.
60 */
61static int num_fault_mutexes;
62static struct mutex *htlb_fault_mutex_table ____cacheline_aligned_in_smp;
63
90481622
DG
64static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
65{
66 bool free = (spool->count == 0) && (spool->used_hpages == 0);
67
68 spin_unlock(&spool->lock);
69
70 /* If no pages are used, and no other handles to the subpool
71 * remain, free the subpool the subpool remain */
72 if (free)
73 kfree(spool);
74}
75
76struct hugepage_subpool *hugepage_new_subpool(long nr_blocks)
77{
78 struct hugepage_subpool *spool;
79
80 spool = kmalloc(sizeof(*spool), GFP_KERNEL);
81 if (!spool)
82 return NULL;
83
84 spin_lock_init(&spool->lock);
85 spool->count = 1;
86 spool->max_hpages = nr_blocks;
87 spool->used_hpages = 0;
88
89 return spool;
90}
91
92void hugepage_put_subpool(struct hugepage_subpool *spool)
93{
94 spin_lock(&spool->lock);
95 BUG_ON(!spool->count);
96 spool->count--;
97 unlock_or_release_subpool(spool);
98}
99
100static int hugepage_subpool_get_pages(struct hugepage_subpool *spool,
101 long delta)
102{
103 int ret = 0;
104
105 if (!spool)
106 return 0;
107
108 spin_lock(&spool->lock);
109 if ((spool->used_hpages + delta) <= spool->max_hpages) {
110 spool->used_hpages += delta;
111 } else {
112 ret = -ENOMEM;
113 }
114 spin_unlock(&spool->lock);
115
116 return ret;
117}
118
119static void hugepage_subpool_put_pages(struct hugepage_subpool *spool,
120 long delta)
121{
122 if (!spool)
123 return;
124
125 spin_lock(&spool->lock);
126 spool->used_hpages -= delta;
127 /* If hugetlbfs_put_super couldn't free spool due to
128 * an outstanding quota reference, free it now. */
129 unlock_or_release_subpool(spool);
130}
131
132static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
133{
134 return HUGETLBFS_SB(inode->i_sb)->spool;
135}
136
137static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
138{
496ad9aa 139 return subpool_inode(file_inode(vma->vm_file));
90481622
DG
140}
141
96822904
AW
142/*
143 * Region tracking -- allows tracking of reservations and instantiated pages
144 * across the pages in a mapping.
84afd99b 145 *
7b24d861
DB
146 * The region data structures are embedded into a resv_map and
147 * protected by a resv_map's lock
96822904
AW
148 */
149struct file_region {
150 struct list_head link;
151 long from;
152 long to;
153};
154
1406ec9b 155static long region_add(struct resv_map *resv, long f, long t)
96822904 156{
1406ec9b 157 struct list_head *head = &resv->regions;
96822904
AW
158 struct file_region *rg, *nrg, *trg;
159
7b24d861 160 spin_lock(&resv->lock);
96822904
AW
161 /* Locate the region we are either in or before. */
162 list_for_each_entry(rg, head, link)
163 if (f <= rg->to)
164 break;
165
166 /* Round our left edge to the current segment if it encloses us. */
167 if (f > rg->from)
168 f = rg->from;
169
170 /* Check for and consume any regions we now overlap with. */
171 nrg = rg;
172 list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
173 if (&rg->link == head)
174 break;
175 if (rg->from > t)
176 break;
177
178 /* If this area reaches higher then extend our area to
179 * include it completely. If this is not the first area
180 * which we intend to reuse, free it. */
181 if (rg->to > t)
182 t = rg->to;
183 if (rg != nrg) {
184 list_del(&rg->link);
185 kfree(rg);
186 }
187 }
188 nrg->from = f;
189 nrg->to = t;
7b24d861 190 spin_unlock(&resv->lock);
96822904
AW
191 return 0;
192}
193
1406ec9b 194static long region_chg(struct resv_map *resv, long f, long t)
96822904 195{
1406ec9b 196 struct list_head *head = &resv->regions;
7b24d861 197 struct file_region *rg, *nrg = NULL;
96822904
AW
198 long chg = 0;
199
7b24d861
DB
200retry:
201 spin_lock(&resv->lock);
96822904
AW
202 /* Locate the region we are before or in. */
203 list_for_each_entry(rg, head, link)
204 if (f <= rg->to)
205 break;
206
207 /* If we are below the current region then a new region is required.
208 * Subtle, allocate a new region at the position but make it zero
209 * size such that we can guarantee to record the reservation. */
210 if (&rg->link == head || t < rg->from) {
7b24d861
DB
211 if (!nrg) {
212 spin_unlock(&resv->lock);
213 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
214 if (!nrg)
215 return -ENOMEM;
216
217 nrg->from = f;
218 nrg->to = f;
219 INIT_LIST_HEAD(&nrg->link);
220 goto retry;
221 }
96822904 222
7b24d861
DB
223 list_add(&nrg->link, rg->link.prev);
224 chg = t - f;
225 goto out_nrg;
96822904
AW
226 }
227
228 /* Round our left edge to the current segment if it encloses us. */
229 if (f > rg->from)
230 f = rg->from;
231 chg = t - f;
232
233 /* Check for and consume any regions we now overlap with. */
234 list_for_each_entry(rg, rg->link.prev, link) {
235 if (&rg->link == head)
236 break;
237 if (rg->from > t)
7b24d861 238 goto out;
96822904 239
25985edc 240 /* We overlap with this area, if it extends further than
96822904
AW
241 * us then we must extend ourselves. Account for its
242 * existing reservation. */
243 if (rg->to > t) {
244 chg += rg->to - t;
245 t = rg->to;
246 }
247 chg -= rg->to - rg->from;
248 }
7b24d861
DB
249
250out:
251 spin_unlock(&resv->lock);
252 /* We already know we raced and no longer need the new region */
253 kfree(nrg);
254 return chg;
255out_nrg:
256 spin_unlock(&resv->lock);
96822904
AW
257 return chg;
258}
259
1406ec9b 260static long region_truncate(struct resv_map *resv, long end)
96822904 261{
1406ec9b 262 struct list_head *head = &resv->regions;
96822904
AW
263 struct file_region *rg, *trg;
264 long chg = 0;
265
7b24d861 266 spin_lock(&resv->lock);
96822904
AW
267 /* Locate the region we are either in or before. */
268 list_for_each_entry(rg, head, link)
269 if (end <= rg->to)
270 break;
271 if (&rg->link == head)
7b24d861 272 goto out;
96822904
AW
273
274 /* If we are in the middle of a region then adjust it. */
275 if (end > rg->from) {
276 chg = rg->to - end;
277 rg->to = end;
278 rg = list_entry(rg->link.next, typeof(*rg), link);
279 }
280
281 /* Drop any remaining regions. */
282 list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
283 if (&rg->link == head)
284 break;
285 chg += rg->to - rg->from;
286 list_del(&rg->link);
287 kfree(rg);
288 }
7b24d861
DB
289
290out:
291 spin_unlock(&resv->lock);
96822904
AW
292 return chg;
293}
294
1406ec9b 295static long region_count(struct resv_map *resv, long f, long t)
84afd99b 296{
1406ec9b 297 struct list_head *head = &resv->regions;
84afd99b
AW
298 struct file_region *rg;
299 long chg = 0;
300
7b24d861 301 spin_lock(&resv->lock);
84afd99b
AW
302 /* Locate each segment we overlap with, and count that overlap. */
303 list_for_each_entry(rg, head, link) {
f2135a4a
WSH
304 long seg_from;
305 long seg_to;
84afd99b
AW
306
307 if (rg->to <= f)
308 continue;
309 if (rg->from >= t)
310 break;
311
312 seg_from = max(rg->from, f);
313 seg_to = min(rg->to, t);
314
315 chg += seg_to - seg_from;
316 }
7b24d861 317 spin_unlock(&resv->lock);
84afd99b
AW
318
319 return chg;
320}
321
e7c4b0bf
AW
322/*
323 * Convert the address within this vma to the page offset within
324 * the mapping, in pagecache page units; huge pages here.
325 */
a5516438
AK
326static pgoff_t vma_hugecache_offset(struct hstate *h,
327 struct vm_area_struct *vma, unsigned long address)
e7c4b0bf 328{
a5516438
AK
329 return ((address - vma->vm_start) >> huge_page_shift(h)) +
330 (vma->vm_pgoff >> huge_page_order(h));
e7c4b0bf
AW
331}
332
0fe6e20b
NH
333pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
334 unsigned long address)
335{
336 return vma_hugecache_offset(hstate_vma(vma), vma, address);
337}
338
08fba699
MG
339/*
340 * Return the size of the pages allocated when backing a VMA. In the majority
341 * cases this will be same size as used by the page table entries.
342 */
343unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
344{
345 struct hstate *hstate;
346
347 if (!is_vm_hugetlb_page(vma))
348 return PAGE_SIZE;
349
350 hstate = hstate_vma(vma);
351
2415cf12 352 return 1UL << huge_page_shift(hstate);
08fba699 353}
f340ca0f 354EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
08fba699 355
3340289d
MG
356/*
357 * Return the page size being used by the MMU to back a VMA. In the majority
358 * of cases, the page size used by the kernel matches the MMU size. On
359 * architectures where it differs, an architecture-specific version of this
360 * function is required.
361 */
362#ifndef vma_mmu_pagesize
363unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
364{
365 return vma_kernel_pagesize(vma);
366}
367#endif
368
84afd99b
AW
369/*
370 * Flags for MAP_PRIVATE reservations. These are stored in the bottom
371 * bits of the reservation map pointer, which are always clear due to
372 * alignment.
373 */
374#define HPAGE_RESV_OWNER (1UL << 0)
375#define HPAGE_RESV_UNMAPPED (1UL << 1)
04f2cbe3 376#define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
84afd99b 377
a1e78772
MG
378/*
379 * These helpers are used to track how many pages are reserved for
380 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
381 * is guaranteed to have their future faults succeed.
382 *
383 * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
384 * the reserve counters are updated with the hugetlb_lock held. It is safe
385 * to reset the VMA at fork() time as it is not in use yet and there is no
386 * chance of the global counters getting corrupted as a result of the values.
84afd99b
AW
387 *
388 * The private mapping reservation is represented in a subtly different
389 * manner to a shared mapping. A shared mapping has a region map associated
390 * with the underlying file, this region map represents the backing file
391 * pages which have ever had a reservation assigned which this persists even
392 * after the page is instantiated. A private mapping has a region map
393 * associated with the original mmap which is attached to all VMAs which
394 * reference it, this region map represents those offsets which have consumed
395 * reservation ie. where pages have been instantiated.
a1e78772 396 */
e7c4b0bf
AW
397static unsigned long get_vma_private_data(struct vm_area_struct *vma)
398{
399 return (unsigned long)vma->vm_private_data;
400}
401
402static void set_vma_private_data(struct vm_area_struct *vma,
403 unsigned long value)
404{
405 vma->vm_private_data = (void *)value;
406}
407
9119a41e 408struct resv_map *resv_map_alloc(void)
84afd99b
AW
409{
410 struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
411 if (!resv_map)
412 return NULL;
413
414 kref_init(&resv_map->refs);
7b24d861 415 spin_lock_init(&resv_map->lock);
84afd99b
AW
416 INIT_LIST_HEAD(&resv_map->regions);
417
418 return resv_map;
419}
420
9119a41e 421void resv_map_release(struct kref *ref)
84afd99b
AW
422{
423 struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
424
425 /* Clear out any active regions before we release the map. */
1406ec9b 426 region_truncate(resv_map, 0);
84afd99b
AW
427 kfree(resv_map);
428}
429
4e35f483
JK
430static inline struct resv_map *inode_resv_map(struct inode *inode)
431{
432 return inode->i_mapping->private_data;
433}
434
84afd99b 435static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
a1e78772 436{
81d1b09c 437 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
4e35f483
JK
438 if (vma->vm_flags & VM_MAYSHARE) {
439 struct address_space *mapping = vma->vm_file->f_mapping;
440 struct inode *inode = mapping->host;
441
442 return inode_resv_map(inode);
443
444 } else {
84afd99b
AW
445 return (struct resv_map *)(get_vma_private_data(vma) &
446 ~HPAGE_RESV_MASK);
4e35f483 447 }
a1e78772
MG
448}
449
84afd99b 450static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
a1e78772 451{
81d1b09c
SL
452 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
453 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
a1e78772 454
84afd99b
AW
455 set_vma_private_data(vma, (get_vma_private_data(vma) &
456 HPAGE_RESV_MASK) | (unsigned long)map);
04f2cbe3
MG
457}
458
459static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
460{
81d1b09c
SL
461 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
462 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
e7c4b0bf
AW
463
464 set_vma_private_data(vma, get_vma_private_data(vma) | flags);
04f2cbe3
MG
465}
466
467static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
468{
81d1b09c 469 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
e7c4b0bf
AW
470
471 return (get_vma_private_data(vma) & flag) != 0;
a1e78772
MG
472}
473
04f2cbe3 474/* Reset counters to 0 and clear all HPAGE_RESV_* flags */
a1e78772
MG
475void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
476{
81d1b09c 477 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
f83a275d 478 if (!(vma->vm_flags & VM_MAYSHARE))
a1e78772
MG
479 vma->vm_private_data = (void *)0;
480}
481
482/* Returns true if the VMA has associated reserve pages */
af0ed73e 483static int vma_has_reserves(struct vm_area_struct *vma, long chg)
a1e78772 484{
af0ed73e
JK
485 if (vma->vm_flags & VM_NORESERVE) {
486 /*
487 * This address is already reserved by other process(chg == 0),
488 * so, we should decrement reserved count. Without decrementing,
489 * reserve count remains after releasing inode, because this
490 * allocated page will go into page cache and is regarded as
491 * coming from reserved pool in releasing step. Currently, we
492 * don't have any other solution to deal with this situation
493 * properly, so add work-around here.
494 */
495 if (vma->vm_flags & VM_MAYSHARE && chg == 0)
496 return 1;
497 else
498 return 0;
499 }
a63884e9
JK
500
501 /* Shared mappings always use reserves */
f83a275d 502 if (vma->vm_flags & VM_MAYSHARE)
7f09ca51 503 return 1;
a63884e9
JK
504
505 /*
506 * Only the process that called mmap() has reserves for
507 * private mappings.
508 */
7f09ca51
MG
509 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER))
510 return 1;
a63884e9 511
7f09ca51 512 return 0;
a1e78772
MG
513}
514
a5516438 515static void enqueue_huge_page(struct hstate *h, struct page *page)
1da177e4
LT
516{
517 int nid = page_to_nid(page);
0edaecfa 518 list_move(&page->lru, &h->hugepage_freelists[nid]);
a5516438
AK
519 h->free_huge_pages++;
520 h->free_huge_pages_node[nid]++;
1da177e4
LT
521}
522
bf50bab2
NH
523static struct page *dequeue_huge_page_node(struct hstate *h, int nid)
524{
525 struct page *page;
526
c8721bbb
NH
527 list_for_each_entry(page, &h->hugepage_freelists[nid], lru)
528 if (!is_migrate_isolate_page(page))
529 break;
530 /*
531 * if 'non-isolated free hugepage' not found on the list,
532 * the allocation fails.
533 */
534 if (&h->hugepage_freelists[nid] == &page->lru)
bf50bab2 535 return NULL;
0edaecfa 536 list_move(&page->lru, &h->hugepage_activelist);
a9869b83 537 set_page_refcounted(page);
bf50bab2
NH
538 h->free_huge_pages--;
539 h->free_huge_pages_node[nid]--;
540 return page;
541}
542
86cdb465
NH
543/* Movability of hugepages depends on migration support. */
544static inline gfp_t htlb_alloc_mask(struct hstate *h)
545{
100873d7 546 if (hugepages_treat_as_movable || hugepage_migration_supported(h))
86cdb465
NH
547 return GFP_HIGHUSER_MOVABLE;
548 else
549 return GFP_HIGHUSER;
550}
551
a5516438
AK
552static struct page *dequeue_huge_page_vma(struct hstate *h,
553 struct vm_area_struct *vma,
af0ed73e
JK
554 unsigned long address, int avoid_reserve,
555 long chg)
1da177e4 556{
b1c12cbc 557 struct page *page = NULL;
480eccf9 558 struct mempolicy *mpol;
19770b32 559 nodemask_t *nodemask;
c0ff7453 560 struct zonelist *zonelist;
dd1a239f
MG
561 struct zone *zone;
562 struct zoneref *z;
cc9a6c87 563 unsigned int cpuset_mems_cookie;
1da177e4 564
a1e78772
MG
565 /*
566 * A child process with MAP_PRIVATE mappings created by their parent
567 * have no page reserves. This check ensures that reservations are
568 * not "stolen". The child may still get SIGKILLed
569 */
af0ed73e 570 if (!vma_has_reserves(vma, chg) &&
a5516438 571 h->free_huge_pages - h->resv_huge_pages == 0)
c0ff7453 572 goto err;
a1e78772 573
04f2cbe3 574 /* If reserves cannot be used, ensure enough pages are in the pool */
a5516438 575 if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
6eab04a8 576 goto err;
04f2cbe3 577
9966c4bb 578retry_cpuset:
d26914d1 579 cpuset_mems_cookie = read_mems_allowed_begin();
9966c4bb 580 zonelist = huge_zonelist(vma, address,
86cdb465 581 htlb_alloc_mask(h), &mpol, &nodemask);
9966c4bb 582
19770b32
MG
583 for_each_zone_zonelist_nodemask(zone, z, zonelist,
584 MAX_NR_ZONES - 1, nodemask) {
344736f2 585 if (cpuset_zone_allowed(zone, htlb_alloc_mask(h))) {
bf50bab2
NH
586 page = dequeue_huge_page_node(h, zone_to_nid(zone));
587 if (page) {
af0ed73e
JK
588 if (avoid_reserve)
589 break;
590 if (!vma_has_reserves(vma, chg))
591 break;
592
07443a85 593 SetPagePrivate(page);
af0ed73e 594 h->resv_huge_pages--;
bf50bab2
NH
595 break;
596 }
3abf7afd 597 }
1da177e4 598 }
cc9a6c87 599
52cd3b07 600 mpol_cond_put(mpol);
d26914d1 601 if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie)))
cc9a6c87 602 goto retry_cpuset;
1da177e4 603 return page;
cc9a6c87
MG
604
605err:
cc9a6c87 606 return NULL;
1da177e4
LT
607}
608
1cac6f2c
LC
609/*
610 * common helper functions for hstate_next_node_to_{alloc|free}.
611 * We may have allocated or freed a huge page based on a different
612 * nodes_allowed previously, so h->next_node_to_{alloc|free} might
613 * be outside of *nodes_allowed. Ensure that we use an allowed
614 * node for alloc or free.
615 */
616static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
617{
618 nid = next_node(nid, *nodes_allowed);
619 if (nid == MAX_NUMNODES)
620 nid = first_node(*nodes_allowed);
621 VM_BUG_ON(nid >= MAX_NUMNODES);
622
623 return nid;
624}
625
626static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
627{
628 if (!node_isset(nid, *nodes_allowed))
629 nid = next_node_allowed(nid, nodes_allowed);
630 return nid;
631}
632
633/*
634 * returns the previously saved node ["this node"] from which to
635 * allocate a persistent huge page for the pool and advance the
636 * next node from which to allocate, handling wrap at end of node
637 * mask.
638 */
639static int hstate_next_node_to_alloc(struct hstate *h,
640 nodemask_t *nodes_allowed)
641{
642 int nid;
643
644 VM_BUG_ON(!nodes_allowed);
645
646 nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
647 h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
648
649 return nid;
650}
651
652/*
653 * helper for free_pool_huge_page() - return the previously saved
654 * node ["this node"] from which to free a huge page. Advance the
655 * next node id whether or not we find a free huge page to free so
656 * that the next attempt to free addresses the next node.
657 */
658static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
659{
660 int nid;
661
662 VM_BUG_ON(!nodes_allowed);
663
664 nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
665 h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
666
667 return nid;
668}
669
670#define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask) \
671 for (nr_nodes = nodes_weight(*mask); \
672 nr_nodes > 0 && \
673 ((node = hstate_next_node_to_alloc(hs, mask)) || 1); \
674 nr_nodes--)
675
676#define for_each_node_mask_to_free(hs, nr_nodes, node, mask) \
677 for (nr_nodes = nodes_weight(*mask); \
678 nr_nodes > 0 && \
679 ((node = hstate_next_node_to_free(hs, mask)) || 1); \
680 nr_nodes--)
681
944d9fec
LC
682#if defined(CONFIG_CMA) && defined(CONFIG_X86_64)
683static void destroy_compound_gigantic_page(struct page *page,
684 unsigned long order)
685{
686 int i;
687 int nr_pages = 1 << order;
688 struct page *p = page + 1;
689
690 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
691 __ClearPageTail(p);
692 set_page_refcounted(p);
693 p->first_page = NULL;
694 }
695
696 set_compound_order(page, 0);
697 __ClearPageHead(page);
698}
699
700static void free_gigantic_page(struct page *page, unsigned order)
701{
702 free_contig_range(page_to_pfn(page), 1 << order);
703}
704
705static int __alloc_gigantic_page(unsigned long start_pfn,
706 unsigned long nr_pages)
707{
708 unsigned long end_pfn = start_pfn + nr_pages;
709 return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE);
710}
711
712static bool pfn_range_valid_gigantic(unsigned long start_pfn,
713 unsigned long nr_pages)
714{
715 unsigned long i, end_pfn = start_pfn + nr_pages;
716 struct page *page;
717
718 for (i = start_pfn; i < end_pfn; i++) {
719 if (!pfn_valid(i))
720 return false;
721
722 page = pfn_to_page(i);
723
724 if (PageReserved(page))
725 return false;
726
727 if (page_count(page) > 0)
728 return false;
729
730 if (PageHuge(page))
731 return false;
732 }
733
734 return true;
735}
736
737static bool zone_spans_last_pfn(const struct zone *zone,
738 unsigned long start_pfn, unsigned long nr_pages)
739{
740 unsigned long last_pfn = start_pfn + nr_pages - 1;
741 return zone_spans_pfn(zone, last_pfn);
742}
743
744static struct page *alloc_gigantic_page(int nid, unsigned order)
745{
746 unsigned long nr_pages = 1 << order;
747 unsigned long ret, pfn, flags;
748 struct zone *z;
749
750 z = NODE_DATA(nid)->node_zones;
751 for (; z - NODE_DATA(nid)->node_zones < MAX_NR_ZONES; z++) {
752 spin_lock_irqsave(&z->lock, flags);
753
754 pfn = ALIGN(z->zone_start_pfn, nr_pages);
755 while (zone_spans_last_pfn(z, pfn, nr_pages)) {
756 if (pfn_range_valid_gigantic(pfn, nr_pages)) {
757 /*
758 * We release the zone lock here because
759 * alloc_contig_range() will also lock the zone
760 * at some point. If there's an allocation
761 * spinning on this lock, it may win the race
762 * and cause alloc_contig_range() to fail...
763 */
764 spin_unlock_irqrestore(&z->lock, flags);
765 ret = __alloc_gigantic_page(pfn, nr_pages);
766 if (!ret)
767 return pfn_to_page(pfn);
768 spin_lock_irqsave(&z->lock, flags);
769 }
770 pfn += nr_pages;
771 }
772
773 spin_unlock_irqrestore(&z->lock, flags);
774 }
775
776 return NULL;
777}
778
779static void prep_new_huge_page(struct hstate *h, struct page *page, int nid);
780static void prep_compound_gigantic_page(struct page *page, unsigned long order);
781
782static struct page *alloc_fresh_gigantic_page_node(struct hstate *h, int nid)
783{
784 struct page *page;
785
786 page = alloc_gigantic_page(nid, huge_page_order(h));
787 if (page) {
788 prep_compound_gigantic_page(page, huge_page_order(h));
789 prep_new_huge_page(h, page, nid);
790 }
791
792 return page;
793}
794
795static int alloc_fresh_gigantic_page(struct hstate *h,
796 nodemask_t *nodes_allowed)
797{
798 struct page *page = NULL;
799 int nr_nodes, node;
800
801 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
802 page = alloc_fresh_gigantic_page_node(h, node);
803 if (page)
804 return 1;
805 }
806
807 return 0;
808}
809
810static inline bool gigantic_page_supported(void) { return true; }
811#else
812static inline bool gigantic_page_supported(void) { return false; }
813static inline void free_gigantic_page(struct page *page, unsigned order) { }
814static inline void destroy_compound_gigantic_page(struct page *page,
815 unsigned long order) { }
816static inline int alloc_fresh_gigantic_page(struct hstate *h,
817 nodemask_t *nodes_allowed) { return 0; }
818#endif
819
a5516438 820static void update_and_free_page(struct hstate *h, struct page *page)
6af2acb6
AL
821{
822 int i;
a5516438 823
944d9fec
LC
824 if (hstate_is_gigantic(h) && !gigantic_page_supported())
825 return;
18229df5 826
a5516438
AK
827 h->nr_huge_pages--;
828 h->nr_huge_pages_node[page_to_nid(page)]--;
829 for (i = 0; i < pages_per_huge_page(h); i++) {
32f84528
CF
830 page[i].flags &= ~(1 << PG_locked | 1 << PG_error |
831 1 << PG_referenced | 1 << PG_dirty |
a7407a27
LC
832 1 << PG_active | 1 << PG_private |
833 1 << PG_writeback);
6af2acb6 834 }
309381fe 835 VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page);
6af2acb6
AL
836 set_compound_page_dtor(page, NULL);
837 set_page_refcounted(page);
944d9fec
LC
838 if (hstate_is_gigantic(h)) {
839 destroy_compound_gigantic_page(page, huge_page_order(h));
840 free_gigantic_page(page, huge_page_order(h));
841 } else {
842 arch_release_hugepage(page);
843 __free_pages(page, huge_page_order(h));
844 }
6af2acb6
AL
845}
846
e5ff2159
AK
847struct hstate *size_to_hstate(unsigned long size)
848{
849 struct hstate *h;
850
851 for_each_hstate(h) {
852 if (huge_page_size(h) == size)
853 return h;
854 }
855 return NULL;
856}
857
8f1d26d0 858void free_huge_page(struct page *page)
27a85ef1 859{
a5516438
AK
860 /*
861 * Can't pass hstate in here because it is called from the
862 * compound page destructor.
863 */
e5ff2159 864 struct hstate *h = page_hstate(page);
7893d1d5 865 int nid = page_to_nid(page);
90481622
DG
866 struct hugepage_subpool *spool =
867 (struct hugepage_subpool *)page_private(page);
07443a85 868 bool restore_reserve;
27a85ef1 869
e5df70ab 870 set_page_private(page, 0);
23be7468 871 page->mapping = NULL;
7893d1d5 872 BUG_ON(page_count(page));
0fe6e20b 873 BUG_ON(page_mapcount(page));
07443a85 874 restore_reserve = PagePrivate(page);
16c794b4 875 ClearPagePrivate(page);
27a85ef1
DG
876
877 spin_lock(&hugetlb_lock);
6d76dcf4
AK
878 hugetlb_cgroup_uncharge_page(hstate_index(h),
879 pages_per_huge_page(h), page);
07443a85
JK
880 if (restore_reserve)
881 h->resv_huge_pages++;
882
944d9fec 883 if (h->surplus_huge_pages_node[nid]) {
0edaecfa
AK
884 /* remove the page from active list */
885 list_del(&page->lru);
a5516438
AK
886 update_and_free_page(h, page);
887 h->surplus_huge_pages--;
888 h->surplus_huge_pages_node[nid]--;
7893d1d5 889 } else {
5d3a551c 890 arch_clear_hugepage_flags(page);
a5516438 891 enqueue_huge_page(h, page);
7893d1d5 892 }
27a85ef1 893 spin_unlock(&hugetlb_lock);
90481622 894 hugepage_subpool_put_pages(spool, 1);
27a85ef1
DG
895}
896
a5516438 897static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
b7ba30c6 898{
0edaecfa 899 INIT_LIST_HEAD(&page->lru);
b7ba30c6
AK
900 set_compound_page_dtor(page, free_huge_page);
901 spin_lock(&hugetlb_lock);
9dd540e2 902 set_hugetlb_cgroup(page, NULL);
a5516438
AK
903 h->nr_huge_pages++;
904 h->nr_huge_pages_node[nid]++;
b7ba30c6
AK
905 spin_unlock(&hugetlb_lock);
906 put_page(page); /* free it into the hugepage allocator */
907}
908
2906dd52 909static void prep_compound_gigantic_page(struct page *page, unsigned long order)
20a0307c
WF
910{
911 int i;
912 int nr_pages = 1 << order;
913 struct page *p = page + 1;
914
915 /* we rely on prep_new_huge_page to set the destructor */
916 set_compound_order(page, order);
917 __SetPageHead(page);
ef5a22be 918 __ClearPageReserved(page);
20a0307c 919 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
ef5a22be
AA
920 /*
921 * For gigantic hugepages allocated through bootmem at
922 * boot, it's safer to be consistent with the not-gigantic
923 * hugepages and clear the PG_reserved bit from all tail pages
924 * too. Otherwse drivers using get_user_pages() to access tail
925 * pages may get the reference counting wrong if they see
926 * PG_reserved set on a tail page (despite the head page not
927 * having PG_reserved set). Enforcing this consistency between
928 * head and tail pages allows drivers to optimize away a check
929 * on the head page when they need know if put_page() is needed
930 * after get_user_pages().
931 */
932 __ClearPageReserved(p);
58a84aa9 933 set_page_count(p, 0);
20a0307c 934 p->first_page = page;
44fc8057
DR
935 /* Make sure p->first_page is always valid for PageTail() */
936 smp_wmb();
937 __SetPageTail(p);
20a0307c
WF
938 }
939}
940
7795912c
AM
941/*
942 * PageHuge() only returns true for hugetlbfs pages, but not for normal or
943 * transparent huge pages. See the PageTransHuge() documentation for more
944 * details.
945 */
20a0307c
WF
946int PageHuge(struct page *page)
947{
20a0307c
WF
948 if (!PageCompound(page))
949 return 0;
950
951 page = compound_head(page);
758f66a2 952 return get_compound_page_dtor(page) == free_huge_page;
20a0307c 953}
43131e14
NH
954EXPORT_SYMBOL_GPL(PageHuge);
955
27c73ae7
AA
956/*
957 * PageHeadHuge() only returns true for hugetlbfs head page, but not for
958 * normal or transparent huge pages.
959 */
960int PageHeadHuge(struct page *page_head)
961{
27c73ae7
AA
962 if (!PageHead(page_head))
963 return 0;
964
758f66a2 965 return get_compound_page_dtor(page_head) == free_huge_page;
27c73ae7 966}
27c73ae7 967
13d60f4b
ZY
968pgoff_t __basepage_index(struct page *page)
969{
970 struct page *page_head = compound_head(page);
971 pgoff_t index = page_index(page_head);
972 unsigned long compound_idx;
973
974 if (!PageHuge(page_head))
975 return page_index(page);
976
977 if (compound_order(page_head) >= MAX_ORDER)
978 compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
979 else
980 compound_idx = page - page_head;
981
982 return (index << compound_order(page_head)) + compound_idx;
983}
984
a5516438 985static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid)
1da177e4 986{
1da177e4 987 struct page *page;
f96efd58 988
6484eb3e 989 page = alloc_pages_exact_node(nid,
86cdb465 990 htlb_alloc_mask(h)|__GFP_COMP|__GFP_THISNODE|
551883ae 991 __GFP_REPEAT|__GFP_NOWARN,
a5516438 992 huge_page_order(h));
1da177e4 993 if (page) {
7f2e9525 994 if (arch_prepare_hugepage(page)) {
caff3a2c 995 __free_pages(page, huge_page_order(h));
7b8ee84d 996 return NULL;
7f2e9525 997 }
a5516438 998 prep_new_huge_page(h, page, nid);
1da177e4 999 }
63b4613c
NA
1000
1001 return page;
1002}
1003
b2261026
JK
1004static int alloc_fresh_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
1005{
1006 struct page *page;
1007 int nr_nodes, node;
1008 int ret = 0;
1009
1010 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1011 page = alloc_fresh_huge_page_node(h, node);
1012 if (page) {
1013 ret = 1;
1014 break;
1015 }
1016 }
1017
1018 if (ret)
1019 count_vm_event(HTLB_BUDDY_PGALLOC);
1020 else
1021 count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1022
1023 return ret;
1024}
1025
e8c5c824
LS
1026/*
1027 * Free huge page from pool from next node to free.
1028 * Attempt to keep persistent huge pages more or less
1029 * balanced over allowed nodes.
1030 * Called with hugetlb_lock locked.
1031 */
6ae11b27
LS
1032static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
1033 bool acct_surplus)
e8c5c824 1034{
b2261026 1035 int nr_nodes, node;
e8c5c824
LS
1036 int ret = 0;
1037
b2261026 1038 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
685f3457
LS
1039 /*
1040 * If we're returning unused surplus pages, only examine
1041 * nodes with surplus pages.
1042 */
b2261026
JK
1043 if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
1044 !list_empty(&h->hugepage_freelists[node])) {
e8c5c824 1045 struct page *page =
b2261026 1046 list_entry(h->hugepage_freelists[node].next,
e8c5c824
LS
1047 struct page, lru);
1048 list_del(&page->lru);
1049 h->free_huge_pages--;
b2261026 1050 h->free_huge_pages_node[node]--;
685f3457
LS
1051 if (acct_surplus) {
1052 h->surplus_huge_pages--;
b2261026 1053 h->surplus_huge_pages_node[node]--;
685f3457 1054 }
e8c5c824
LS
1055 update_and_free_page(h, page);
1056 ret = 1;
9a76db09 1057 break;
e8c5c824 1058 }
b2261026 1059 }
e8c5c824
LS
1060
1061 return ret;
1062}
1063
c8721bbb
NH
1064/*
1065 * Dissolve a given free hugepage into free buddy pages. This function does
1066 * nothing for in-use (including surplus) hugepages.
1067 */
1068static void dissolve_free_huge_page(struct page *page)
1069{
1070 spin_lock(&hugetlb_lock);
1071 if (PageHuge(page) && !page_count(page)) {
1072 struct hstate *h = page_hstate(page);
1073 int nid = page_to_nid(page);
1074 list_del(&page->lru);
1075 h->free_huge_pages--;
1076 h->free_huge_pages_node[nid]--;
1077 update_and_free_page(h, page);
1078 }
1079 spin_unlock(&hugetlb_lock);
1080}
1081
1082/*
1083 * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
1084 * make specified memory blocks removable from the system.
1085 * Note that start_pfn should aligned with (minimum) hugepage size.
1086 */
1087void dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
1088{
1089 unsigned int order = 8 * sizeof(void *);
1090 unsigned long pfn;
1091 struct hstate *h;
1092
d0177639
LZ
1093 if (!hugepages_supported())
1094 return;
1095
c8721bbb
NH
1096 /* Set scan step to minimum hugepage size */
1097 for_each_hstate(h)
1098 if (order > huge_page_order(h))
1099 order = huge_page_order(h);
1100 VM_BUG_ON(!IS_ALIGNED(start_pfn, 1 << order));
1101 for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << order)
1102 dissolve_free_huge_page(pfn_to_page(pfn));
1103}
1104
bf50bab2 1105static struct page *alloc_buddy_huge_page(struct hstate *h, int nid)
7893d1d5
AL
1106{
1107 struct page *page;
bf50bab2 1108 unsigned int r_nid;
7893d1d5 1109
bae7f4ae 1110 if (hstate_is_gigantic(h))
aa888a74
AK
1111 return NULL;
1112
d1c3fb1f
NA
1113 /*
1114 * Assume we will successfully allocate the surplus page to
1115 * prevent racing processes from causing the surplus to exceed
1116 * overcommit
1117 *
1118 * This however introduces a different race, where a process B
1119 * tries to grow the static hugepage pool while alloc_pages() is
1120 * called by process A. B will only examine the per-node
1121 * counters in determining if surplus huge pages can be
1122 * converted to normal huge pages in adjust_pool_surplus(). A
1123 * won't be able to increment the per-node counter, until the
1124 * lock is dropped by B, but B doesn't drop hugetlb_lock until
1125 * no more huge pages can be converted from surplus to normal
1126 * state (and doesn't try to convert again). Thus, we have a
1127 * case where a surplus huge page exists, the pool is grown, and
1128 * the surplus huge page still exists after, even though it
1129 * should just have been converted to a normal huge page. This
1130 * does not leak memory, though, as the hugepage will be freed
1131 * once it is out of use. It also does not allow the counters to
1132 * go out of whack in adjust_pool_surplus() as we don't modify
1133 * the node values until we've gotten the hugepage and only the
1134 * per-node value is checked there.
1135 */
1136 spin_lock(&hugetlb_lock);
a5516438 1137 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
d1c3fb1f
NA
1138 spin_unlock(&hugetlb_lock);
1139 return NULL;
1140 } else {
a5516438
AK
1141 h->nr_huge_pages++;
1142 h->surplus_huge_pages++;
d1c3fb1f
NA
1143 }
1144 spin_unlock(&hugetlb_lock);
1145
bf50bab2 1146 if (nid == NUMA_NO_NODE)
86cdb465 1147 page = alloc_pages(htlb_alloc_mask(h)|__GFP_COMP|
bf50bab2
NH
1148 __GFP_REPEAT|__GFP_NOWARN,
1149 huge_page_order(h));
1150 else
1151 page = alloc_pages_exact_node(nid,
86cdb465 1152 htlb_alloc_mask(h)|__GFP_COMP|__GFP_THISNODE|
bf50bab2 1153 __GFP_REPEAT|__GFP_NOWARN, huge_page_order(h));
d1c3fb1f 1154
caff3a2c
GS
1155 if (page && arch_prepare_hugepage(page)) {
1156 __free_pages(page, huge_page_order(h));
ea5768c7 1157 page = NULL;
caff3a2c
GS
1158 }
1159
d1c3fb1f 1160 spin_lock(&hugetlb_lock);
7893d1d5 1161 if (page) {
0edaecfa 1162 INIT_LIST_HEAD(&page->lru);
bf50bab2 1163 r_nid = page_to_nid(page);
7893d1d5 1164 set_compound_page_dtor(page, free_huge_page);
9dd540e2 1165 set_hugetlb_cgroup(page, NULL);
d1c3fb1f
NA
1166 /*
1167 * We incremented the global counters already
1168 */
bf50bab2
NH
1169 h->nr_huge_pages_node[r_nid]++;
1170 h->surplus_huge_pages_node[r_nid]++;
3b116300 1171 __count_vm_event(HTLB_BUDDY_PGALLOC);
d1c3fb1f 1172 } else {
a5516438
AK
1173 h->nr_huge_pages--;
1174 h->surplus_huge_pages--;
3b116300 1175 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
7893d1d5 1176 }
d1c3fb1f 1177 spin_unlock(&hugetlb_lock);
7893d1d5
AL
1178
1179 return page;
1180}
1181
bf50bab2
NH
1182/*
1183 * This allocation function is useful in the context where vma is irrelevant.
1184 * E.g. soft-offlining uses this function because it only cares physical
1185 * address of error page.
1186 */
1187struct page *alloc_huge_page_node(struct hstate *h, int nid)
1188{
4ef91848 1189 struct page *page = NULL;
bf50bab2
NH
1190
1191 spin_lock(&hugetlb_lock);
4ef91848
JK
1192 if (h->free_huge_pages - h->resv_huge_pages > 0)
1193 page = dequeue_huge_page_node(h, nid);
bf50bab2
NH
1194 spin_unlock(&hugetlb_lock);
1195
94ae8ba7 1196 if (!page)
bf50bab2
NH
1197 page = alloc_buddy_huge_page(h, nid);
1198
1199 return page;
1200}
1201
e4e574b7 1202/*
25985edc 1203 * Increase the hugetlb pool such that it can accommodate a reservation
e4e574b7
AL
1204 * of size 'delta'.
1205 */
a5516438 1206static int gather_surplus_pages(struct hstate *h, int delta)
e4e574b7
AL
1207{
1208 struct list_head surplus_list;
1209 struct page *page, *tmp;
1210 int ret, i;
1211 int needed, allocated;
28073b02 1212 bool alloc_ok = true;
e4e574b7 1213
a5516438 1214 needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
ac09b3a1 1215 if (needed <= 0) {
a5516438 1216 h->resv_huge_pages += delta;
e4e574b7 1217 return 0;
ac09b3a1 1218 }
e4e574b7
AL
1219
1220 allocated = 0;
1221 INIT_LIST_HEAD(&surplus_list);
1222
1223 ret = -ENOMEM;
1224retry:
1225 spin_unlock(&hugetlb_lock);
1226 for (i = 0; i < needed; i++) {
bf50bab2 1227 page = alloc_buddy_huge_page(h, NUMA_NO_NODE);
28073b02
HD
1228 if (!page) {
1229 alloc_ok = false;
1230 break;
1231 }
e4e574b7
AL
1232 list_add(&page->lru, &surplus_list);
1233 }
28073b02 1234 allocated += i;
e4e574b7
AL
1235
1236 /*
1237 * After retaking hugetlb_lock, we need to recalculate 'needed'
1238 * because either resv_huge_pages or free_huge_pages may have changed.
1239 */
1240 spin_lock(&hugetlb_lock);
a5516438
AK
1241 needed = (h->resv_huge_pages + delta) -
1242 (h->free_huge_pages + allocated);
28073b02
HD
1243 if (needed > 0) {
1244 if (alloc_ok)
1245 goto retry;
1246 /*
1247 * We were not able to allocate enough pages to
1248 * satisfy the entire reservation so we free what
1249 * we've allocated so far.
1250 */
1251 goto free;
1252 }
e4e574b7
AL
1253 /*
1254 * The surplus_list now contains _at_least_ the number of extra pages
25985edc 1255 * needed to accommodate the reservation. Add the appropriate number
e4e574b7 1256 * of pages to the hugetlb pool and free the extras back to the buddy
ac09b3a1
AL
1257 * allocator. Commit the entire reservation here to prevent another
1258 * process from stealing the pages as they are added to the pool but
1259 * before they are reserved.
e4e574b7
AL
1260 */
1261 needed += allocated;
a5516438 1262 h->resv_huge_pages += delta;
e4e574b7 1263 ret = 0;
a9869b83 1264
19fc3f0a 1265 /* Free the needed pages to the hugetlb pool */
e4e574b7 1266 list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
19fc3f0a
AL
1267 if ((--needed) < 0)
1268 break;
a9869b83
NH
1269 /*
1270 * This page is now managed by the hugetlb allocator and has
1271 * no users -- drop the buddy allocator's reference.
1272 */
1273 put_page_testzero(page);
309381fe 1274 VM_BUG_ON_PAGE(page_count(page), page);
a5516438 1275 enqueue_huge_page(h, page);
19fc3f0a 1276 }
28073b02 1277free:
b0365c8d 1278 spin_unlock(&hugetlb_lock);
19fc3f0a
AL
1279
1280 /* Free unnecessary surplus pages to the buddy allocator */
c0d934ba
JK
1281 list_for_each_entry_safe(page, tmp, &surplus_list, lru)
1282 put_page(page);
a9869b83 1283 spin_lock(&hugetlb_lock);
e4e574b7
AL
1284
1285 return ret;
1286}
1287
1288/*
1289 * When releasing a hugetlb pool reservation, any surplus pages that were
1290 * allocated to satisfy the reservation must be explicitly freed if they were
1291 * never used.
685f3457 1292 * Called with hugetlb_lock held.
e4e574b7 1293 */
a5516438
AK
1294static void return_unused_surplus_pages(struct hstate *h,
1295 unsigned long unused_resv_pages)
e4e574b7 1296{
e4e574b7
AL
1297 unsigned long nr_pages;
1298
ac09b3a1 1299 /* Uncommit the reservation */
a5516438 1300 h->resv_huge_pages -= unused_resv_pages;
ac09b3a1 1301
aa888a74 1302 /* Cannot return gigantic pages currently */
bae7f4ae 1303 if (hstate_is_gigantic(h))
aa888a74
AK
1304 return;
1305
a5516438 1306 nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
e4e574b7 1307
685f3457
LS
1308 /*
1309 * We want to release as many surplus pages as possible, spread
9b5e5d0f
LS
1310 * evenly across all nodes with memory. Iterate across these nodes
1311 * until we can no longer free unreserved surplus pages. This occurs
1312 * when the nodes with surplus pages have no free pages.
1313 * free_pool_huge_page() will balance the the freed pages across the
1314 * on-line nodes with memory and will handle the hstate accounting.
685f3457
LS
1315 */
1316 while (nr_pages--) {
8cebfcd0 1317 if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1))
685f3457 1318 break;
7848a4bf 1319 cond_resched_lock(&hugetlb_lock);
e4e574b7
AL
1320 }
1321}
1322
c37f9fb1
AW
1323/*
1324 * Determine if the huge page at addr within the vma has an associated
1325 * reservation. Where it does not we will need to logically increase
90481622
DG
1326 * reservation and actually increase subpool usage before an allocation
1327 * can occur. Where any new reservation would be required the
1328 * reservation change is prepared, but not committed. Once the page
1329 * has been allocated from the subpool and instantiated the change should
1330 * be committed via vma_commit_reservation. No action is required on
1331 * failure.
c37f9fb1 1332 */
e2f17d94 1333static long vma_needs_reservation(struct hstate *h,
a5516438 1334 struct vm_area_struct *vma, unsigned long addr)
c37f9fb1 1335{
4e35f483
JK
1336 struct resv_map *resv;
1337 pgoff_t idx;
1338 long chg;
c37f9fb1 1339
4e35f483
JK
1340 resv = vma_resv_map(vma);
1341 if (!resv)
84afd99b 1342 return 1;
c37f9fb1 1343
4e35f483
JK
1344 idx = vma_hugecache_offset(h, vma, addr);
1345 chg = region_chg(resv, idx, idx + 1);
84afd99b 1346
4e35f483
JK
1347 if (vma->vm_flags & VM_MAYSHARE)
1348 return chg;
1349 else
1350 return chg < 0 ? chg : 0;
c37f9fb1 1351}
a5516438
AK
1352static void vma_commit_reservation(struct hstate *h,
1353 struct vm_area_struct *vma, unsigned long addr)
c37f9fb1 1354{
4e35f483
JK
1355 struct resv_map *resv;
1356 pgoff_t idx;
84afd99b 1357
4e35f483
JK
1358 resv = vma_resv_map(vma);
1359 if (!resv)
1360 return;
84afd99b 1361
4e35f483
JK
1362 idx = vma_hugecache_offset(h, vma, addr);
1363 region_add(resv, idx, idx + 1);
c37f9fb1
AW
1364}
1365
a1e78772 1366static struct page *alloc_huge_page(struct vm_area_struct *vma,
04f2cbe3 1367 unsigned long addr, int avoid_reserve)
1da177e4 1368{
90481622 1369 struct hugepage_subpool *spool = subpool_vma(vma);
a5516438 1370 struct hstate *h = hstate_vma(vma);
348ea204 1371 struct page *page;
e2f17d94 1372 long chg;
6d76dcf4
AK
1373 int ret, idx;
1374 struct hugetlb_cgroup *h_cg;
a1e78772 1375
6d76dcf4 1376 idx = hstate_index(h);
a1e78772 1377 /*
90481622
DG
1378 * Processes that did not create the mapping will have no
1379 * reserves and will not have accounted against subpool
1380 * limit. Check that the subpool limit can be made before
1381 * satisfying the allocation MAP_NORESERVE mappings may also
1382 * need pages and subpool limit allocated allocated if no reserve
1383 * mapping overlaps.
a1e78772 1384 */
a5516438 1385 chg = vma_needs_reservation(h, vma, addr);
c37f9fb1 1386 if (chg < 0)
76dcee75 1387 return ERR_PTR(-ENOMEM);
8bb3f12e
JK
1388 if (chg || avoid_reserve)
1389 if (hugepage_subpool_get_pages(spool, 1))
76dcee75 1390 return ERR_PTR(-ENOSPC);
1da177e4 1391
6d76dcf4 1392 ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
8f34af6f
JZ
1393 if (ret)
1394 goto out_subpool_put;
1395
1da177e4 1396 spin_lock(&hugetlb_lock);
af0ed73e 1397 page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, chg);
81a6fcae 1398 if (!page) {
94ae8ba7 1399 spin_unlock(&hugetlb_lock);
bf50bab2 1400 page = alloc_buddy_huge_page(h, NUMA_NO_NODE);
8f34af6f
JZ
1401 if (!page)
1402 goto out_uncharge_cgroup;
1403
79dbb236
AK
1404 spin_lock(&hugetlb_lock);
1405 list_move(&page->lru, &h->hugepage_activelist);
81a6fcae 1406 /* Fall through */
68842c9b 1407 }
81a6fcae
JK
1408 hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
1409 spin_unlock(&hugetlb_lock);
348ea204 1410
90481622 1411 set_page_private(page, (unsigned long)spool);
90d8b7e6 1412
a5516438 1413 vma_commit_reservation(h, vma, addr);
90d8b7e6 1414 return page;
8f34af6f
JZ
1415
1416out_uncharge_cgroup:
1417 hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
1418out_subpool_put:
1419 if (chg || avoid_reserve)
1420 hugepage_subpool_put_pages(spool, 1);
1421 return ERR_PTR(-ENOSPC);
b45b5bd6
DG
1422}
1423
74060e4d
NH
1424/*
1425 * alloc_huge_page()'s wrapper which simply returns the page if allocation
1426 * succeeds, otherwise NULL. This function is called from new_vma_page(),
1427 * where no ERR_VALUE is expected to be returned.
1428 */
1429struct page *alloc_huge_page_noerr(struct vm_area_struct *vma,
1430 unsigned long addr, int avoid_reserve)
1431{
1432 struct page *page = alloc_huge_page(vma, addr, avoid_reserve);
1433 if (IS_ERR(page))
1434 page = NULL;
1435 return page;
1436}
1437
91f47662 1438int __weak alloc_bootmem_huge_page(struct hstate *h)
aa888a74
AK
1439{
1440 struct huge_bootmem_page *m;
b2261026 1441 int nr_nodes, node;
aa888a74 1442
b2261026 1443 for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
aa888a74
AK
1444 void *addr;
1445
8b89a116
GS
1446 addr = memblock_virt_alloc_try_nid_nopanic(
1447 huge_page_size(h), huge_page_size(h),
1448 0, BOOTMEM_ALLOC_ACCESSIBLE, node);
aa888a74
AK
1449 if (addr) {
1450 /*
1451 * Use the beginning of the huge page to store the
1452 * huge_bootmem_page struct (until gather_bootmem
1453 * puts them into the mem_map).
1454 */
1455 m = addr;
91f47662 1456 goto found;
aa888a74 1457 }
aa888a74
AK
1458 }
1459 return 0;
1460
1461found:
df994ead 1462 BUG_ON(!IS_ALIGNED(virt_to_phys(m), huge_page_size(h)));
aa888a74
AK
1463 /* Put them into a private list first because mem_map is not up yet */
1464 list_add(&m->list, &huge_boot_pages);
1465 m->hstate = h;
1466 return 1;
1467}
1468
f412c97a 1469static void __init prep_compound_huge_page(struct page *page, int order)
18229df5
AW
1470{
1471 if (unlikely(order > (MAX_ORDER - 1)))
1472 prep_compound_gigantic_page(page, order);
1473 else
1474 prep_compound_page(page, order);
1475}
1476
aa888a74
AK
1477/* Put bootmem huge pages into the standard lists after mem_map is up */
1478static void __init gather_bootmem_prealloc(void)
1479{
1480 struct huge_bootmem_page *m;
1481
1482 list_for_each_entry(m, &huge_boot_pages, list) {
aa888a74 1483 struct hstate *h = m->hstate;
ee8f248d
BB
1484 struct page *page;
1485
1486#ifdef CONFIG_HIGHMEM
1487 page = pfn_to_page(m->phys >> PAGE_SHIFT);
8b89a116
GS
1488 memblock_free_late(__pa(m),
1489 sizeof(struct huge_bootmem_page));
ee8f248d
BB
1490#else
1491 page = virt_to_page(m);
1492#endif
aa888a74 1493 WARN_ON(page_count(page) != 1);
18229df5 1494 prep_compound_huge_page(page, h->order);
ef5a22be 1495 WARN_ON(PageReserved(page));
aa888a74 1496 prep_new_huge_page(h, page, page_to_nid(page));
b0320c7b
RA
1497 /*
1498 * If we had gigantic hugepages allocated at boot time, we need
1499 * to restore the 'stolen' pages to totalram_pages in order to
1500 * fix confusing memory reports from free(1) and another
1501 * side-effects, like CommitLimit going negative.
1502 */
bae7f4ae 1503 if (hstate_is_gigantic(h))
3dcc0571 1504 adjust_managed_page_count(page, 1 << h->order);
aa888a74
AK
1505 }
1506}
1507
8faa8b07 1508static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
1da177e4
LT
1509{
1510 unsigned long i;
a5516438 1511
e5ff2159 1512 for (i = 0; i < h->max_huge_pages; ++i) {
bae7f4ae 1513 if (hstate_is_gigantic(h)) {
aa888a74
AK
1514 if (!alloc_bootmem_huge_page(h))
1515 break;
9b5e5d0f 1516 } else if (!alloc_fresh_huge_page(h,
8cebfcd0 1517 &node_states[N_MEMORY]))
1da177e4 1518 break;
1da177e4 1519 }
8faa8b07 1520 h->max_huge_pages = i;
e5ff2159
AK
1521}
1522
1523static void __init hugetlb_init_hstates(void)
1524{
1525 struct hstate *h;
1526
1527 for_each_hstate(h) {
8faa8b07 1528 /* oversize hugepages were init'ed in early boot */
bae7f4ae 1529 if (!hstate_is_gigantic(h))
8faa8b07 1530 hugetlb_hstate_alloc_pages(h);
e5ff2159
AK
1531 }
1532}
1533
4abd32db
AK
1534static char * __init memfmt(char *buf, unsigned long n)
1535{
1536 if (n >= (1UL << 30))
1537 sprintf(buf, "%lu GB", n >> 30);
1538 else if (n >= (1UL << 20))
1539 sprintf(buf, "%lu MB", n >> 20);
1540 else
1541 sprintf(buf, "%lu KB", n >> 10);
1542 return buf;
1543}
1544
e5ff2159
AK
1545static void __init report_hugepages(void)
1546{
1547 struct hstate *h;
1548
1549 for_each_hstate(h) {
4abd32db 1550 char buf[32];
ffb22af5 1551 pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
4abd32db
AK
1552 memfmt(buf, huge_page_size(h)),
1553 h->free_huge_pages);
e5ff2159
AK
1554 }
1555}
1556
1da177e4 1557#ifdef CONFIG_HIGHMEM
6ae11b27
LS
1558static void try_to_free_low(struct hstate *h, unsigned long count,
1559 nodemask_t *nodes_allowed)
1da177e4 1560{
4415cc8d
CL
1561 int i;
1562
bae7f4ae 1563 if (hstate_is_gigantic(h))
aa888a74
AK
1564 return;
1565
6ae11b27 1566 for_each_node_mask(i, *nodes_allowed) {
1da177e4 1567 struct page *page, *next;
a5516438
AK
1568 struct list_head *freel = &h->hugepage_freelists[i];
1569 list_for_each_entry_safe(page, next, freel, lru) {
1570 if (count >= h->nr_huge_pages)
6b0c880d 1571 return;
1da177e4
LT
1572 if (PageHighMem(page))
1573 continue;
1574 list_del(&page->lru);
e5ff2159 1575 update_and_free_page(h, page);
a5516438
AK
1576 h->free_huge_pages--;
1577 h->free_huge_pages_node[page_to_nid(page)]--;
1da177e4
LT
1578 }
1579 }
1580}
1581#else
6ae11b27
LS
1582static inline void try_to_free_low(struct hstate *h, unsigned long count,
1583 nodemask_t *nodes_allowed)
1da177e4
LT
1584{
1585}
1586#endif
1587
20a0307c
WF
1588/*
1589 * Increment or decrement surplus_huge_pages. Keep node-specific counters
1590 * balanced by operating on them in a round-robin fashion.
1591 * Returns 1 if an adjustment was made.
1592 */
6ae11b27
LS
1593static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
1594 int delta)
20a0307c 1595{
b2261026 1596 int nr_nodes, node;
20a0307c
WF
1597
1598 VM_BUG_ON(delta != -1 && delta != 1);
20a0307c 1599
b2261026
JK
1600 if (delta < 0) {
1601 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1602 if (h->surplus_huge_pages_node[node])
1603 goto found;
e8c5c824 1604 }
b2261026
JK
1605 } else {
1606 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
1607 if (h->surplus_huge_pages_node[node] <
1608 h->nr_huge_pages_node[node])
1609 goto found;
e8c5c824 1610 }
b2261026
JK
1611 }
1612 return 0;
20a0307c 1613
b2261026
JK
1614found:
1615 h->surplus_huge_pages += delta;
1616 h->surplus_huge_pages_node[node] += delta;
1617 return 1;
20a0307c
WF
1618}
1619
a5516438 1620#define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
6ae11b27
LS
1621static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count,
1622 nodemask_t *nodes_allowed)
1da177e4 1623{
7893d1d5 1624 unsigned long min_count, ret;
1da177e4 1625
944d9fec 1626 if (hstate_is_gigantic(h) && !gigantic_page_supported())
aa888a74
AK
1627 return h->max_huge_pages;
1628
7893d1d5
AL
1629 /*
1630 * Increase the pool size
1631 * First take pages out of surplus state. Then make up the
1632 * remaining difference by allocating fresh huge pages.
d1c3fb1f
NA
1633 *
1634 * We might race with alloc_buddy_huge_page() here and be unable
1635 * to convert a surplus huge page to a normal huge page. That is
1636 * not critical, though, it just means the overall size of the
1637 * pool might be one hugepage larger than it needs to be, but
1638 * within all the constraints specified by the sysctls.
7893d1d5 1639 */
1da177e4 1640 spin_lock(&hugetlb_lock);
a5516438 1641 while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
6ae11b27 1642 if (!adjust_pool_surplus(h, nodes_allowed, -1))
7893d1d5
AL
1643 break;
1644 }
1645
a5516438 1646 while (count > persistent_huge_pages(h)) {
7893d1d5
AL
1647 /*
1648 * If this allocation races such that we no longer need the
1649 * page, free_huge_page will handle it by freeing the page
1650 * and reducing the surplus.
1651 */
1652 spin_unlock(&hugetlb_lock);
944d9fec
LC
1653 if (hstate_is_gigantic(h))
1654 ret = alloc_fresh_gigantic_page(h, nodes_allowed);
1655 else
1656 ret = alloc_fresh_huge_page(h, nodes_allowed);
7893d1d5
AL
1657 spin_lock(&hugetlb_lock);
1658 if (!ret)
1659 goto out;
1660
536240f2
MG
1661 /* Bail for signals. Probably ctrl-c from user */
1662 if (signal_pending(current))
1663 goto out;
7893d1d5 1664 }
7893d1d5
AL
1665
1666 /*
1667 * Decrease the pool size
1668 * First return free pages to the buddy allocator (being careful
1669 * to keep enough around to satisfy reservations). Then place
1670 * pages into surplus state as needed so the pool will shrink
1671 * to the desired size as pages become free.
d1c3fb1f
NA
1672 *
1673 * By placing pages into the surplus state independent of the
1674 * overcommit value, we are allowing the surplus pool size to
1675 * exceed overcommit. There are few sane options here. Since
1676 * alloc_buddy_huge_page() is checking the global counter,
1677 * though, we'll note that we're not allowed to exceed surplus
1678 * and won't grow the pool anywhere else. Not until one of the
1679 * sysctls are changed, or the surplus pages go out of use.
7893d1d5 1680 */
a5516438 1681 min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
6b0c880d 1682 min_count = max(count, min_count);
6ae11b27 1683 try_to_free_low(h, min_count, nodes_allowed);
a5516438 1684 while (min_count < persistent_huge_pages(h)) {
6ae11b27 1685 if (!free_pool_huge_page(h, nodes_allowed, 0))
1da177e4 1686 break;
55f67141 1687 cond_resched_lock(&hugetlb_lock);
1da177e4 1688 }
a5516438 1689 while (count < persistent_huge_pages(h)) {
6ae11b27 1690 if (!adjust_pool_surplus(h, nodes_allowed, 1))
7893d1d5
AL
1691 break;
1692 }
1693out:
a5516438 1694 ret = persistent_huge_pages(h);
1da177e4 1695 spin_unlock(&hugetlb_lock);
7893d1d5 1696 return ret;
1da177e4
LT
1697}
1698
a3437870
NA
1699#define HSTATE_ATTR_RO(_name) \
1700 static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
1701
1702#define HSTATE_ATTR(_name) \
1703 static struct kobj_attribute _name##_attr = \
1704 __ATTR(_name, 0644, _name##_show, _name##_store)
1705
1706static struct kobject *hugepages_kobj;
1707static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
1708
9a305230
LS
1709static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
1710
1711static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
a3437870
NA
1712{
1713 int i;
9a305230 1714
a3437870 1715 for (i = 0; i < HUGE_MAX_HSTATE; i++)
9a305230
LS
1716 if (hstate_kobjs[i] == kobj) {
1717 if (nidp)
1718 *nidp = NUMA_NO_NODE;
a3437870 1719 return &hstates[i];
9a305230
LS
1720 }
1721
1722 return kobj_to_node_hstate(kobj, nidp);
a3437870
NA
1723}
1724
06808b08 1725static ssize_t nr_hugepages_show_common(struct kobject *kobj,
a3437870
NA
1726 struct kobj_attribute *attr, char *buf)
1727{
9a305230
LS
1728 struct hstate *h;
1729 unsigned long nr_huge_pages;
1730 int nid;
1731
1732 h = kobj_to_hstate(kobj, &nid);
1733 if (nid == NUMA_NO_NODE)
1734 nr_huge_pages = h->nr_huge_pages;
1735 else
1736 nr_huge_pages = h->nr_huge_pages_node[nid];
1737
1738 return sprintf(buf, "%lu\n", nr_huge_pages);
a3437870 1739}
adbe8726 1740
238d3c13
DR
1741static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
1742 struct hstate *h, int nid,
1743 unsigned long count, size_t len)
a3437870
NA
1744{
1745 int err;
bad44b5b 1746 NODEMASK_ALLOC(nodemask_t, nodes_allowed, GFP_KERNEL | __GFP_NORETRY);
a3437870 1747
944d9fec 1748 if (hstate_is_gigantic(h) && !gigantic_page_supported()) {
adbe8726
EM
1749 err = -EINVAL;
1750 goto out;
1751 }
1752
9a305230
LS
1753 if (nid == NUMA_NO_NODE) {
1754 /*
1755 * global hstate attribute
1756 */
1757 if (!(obey_mempolicy &&
1758 init_nodemask_of_mempolicy(nodes_allowed))) {
1759 NODEMASK_FREE(nodes_allowed);
8cebfcd0 1760 nodes_allowed = &node_states[N_MEMORY];
9a305230
LS
1761 }
1762 } else if (nodes_allowed) {
1763 /*
1764 * per node hstate attribute: adjust count to global,
1765 * but restrict alloc/free to the specified node.
1766 */
1767 count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
1768 init_nodemask_of_node(nodes_allowed, nid);
1769 } else
8cebfcd0 1770 nodes_allowed = &node_states[N_MEMORY];
9a305230 1771
06808b08 1772 h->max_huge_pages = set_max_huge_pages(h, count, nodes_allowed);
a3437870 1773
8cebfcd0 1774 if (nodes_allowed != &node_states[N_MEMORY])
06808b08
LS
1775 NODEMASK_FREE(nodes_allowed);
1776
1777 return len;
adbe8726
EM
1778out:
1779 NODEMASK_FREE(nodes_allowed);
1780 return err;
06808b08
LS
1781}
1782
238d3c13
DR
1783static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
1784 struct kobject *kobj, const char *buf,
1785 size_t len)
1786{
1787 struct hstate *h;
1788 unsigned long count;
1789 int nid;
1790 int err;
1791
1792 err = kstrtoul(buf, 10, &count);
1793 if (err)
1794 return err;
1795
1796 h = kobj_to_hstate(kobj, &nid);
1797 return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
1798}
1799
06808b08
LS
1800static ssize_t nr_hugepages_show(struct kobject *kobj,
1801 struct kobj_attribute *attr, char *buf)
1802{
1803 return nr_hugepages_show_common(kobj, attr, buf);
1804}
1805
1806static ssize_t nr_hugepages_store(struct kobject *kobj,
1807 struct kobj_attribute *attr, const char *buf, size_t len)
1808{
238d3c13 1809 return nr_hugepages_store_common(false, kobj, buf, len);
a3437870
NA
1810}
1811HSTATE_ATTR(nr_hugepages);
1812
06808b08
LS
1813#ifdef CONFIG_NUMA
1814
1815/*
1816 * hstate attribute for optionally mempolicy-based constraint on persistent
1817 * huge page alloc/free.
1818 */
1819static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
1820 struct kobj_attribute *attr, char *buf)
1821{
1822 return nr_hugepages_show_common(kobj, attr, buf);
1823}
1824
1825static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
1826 struct kobj_attribute *attr, const char *buf, size_t len)
1827{
238d3c13 1828 return nr_hugepages_store_common(true, kobj, buf, len);
06808b08
LS
1829}
1830HSTATE_ATTR(nr_hugepages_mempolicy);
1831#endif
1832
1833
a3437870
NA
1834static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
1835 struct kobj_attribute *attr, char *buf)
1836{
9a305230 1837 struct hstate *h = kobj_to_hstate(kobj, NULL);
a3437870
NA
1838 return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
1839}
adbe8726 1840
a3437870
NA
1841static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
1842 struct kobj_attribute *attr, const char *buf, size_t count)
1843{
1844 int err;
1845 unsigned long input;
9a305230 1846 struct hstate *h = kobj_to_hstate(kobj, NULL);
a3437870 1847
bae7f4ae 1848 if (hstate_is_gigantic(h))
adbe8726
EM
1849 return -EINVAL;
1850
3dbb95f7 1851 err = kstrtoul(buf, 10, &input);
a3437870 1852 if (err)
73ae31e5 1853 return err;
a3437870
NA
1854
1855 spin_lock(&hugetlb_lock);
1856 h->nr_overcommit_huge_pages = input;
1857 spin_unlock(&hugetlb_lock);
1858
1859 return count;
1860}
1861HSTATE_ATTR(nr_overcommit_hugepages);
1862
1863static ssize_t free_hugepages_show(struct kobject *kobj,
1864 struct kobj_attribute *attr, char *buf)
1865{
9a305230
LS
1866 struct hstate *h;
1867 unsigned long free_huge_pages;
1868 int nid;
1869
1870 h = kobj_to_hstate(kobj, &nid);
1871 if (nid == NUMA_NO_NODE)
1872 free_huge_pages = h->free_huge_pages;
1873 else
1874 free_huge_pages = h->free_huge_pages_node[nid];
1875
1876 return sprintf(buf, "%lu\n", free_huge_pages);
a3437870
NA
1877}
1878HSTATE_ATTR_RO(free_hugepages);
1879
1880static ssize_t resv_hugepages_show(struct kobject *kobj,
1881 struct kobj_attribute *attr, char *buf)
1882{
9a305230 1883 struct hstate *h = kobj_to_hstate(kobj, NULL);
a3437870
NA
1884 return sprintf(buf, "%lu\n", h->resv_huge_pages);
1885}
1886HSTATE_ATTR_RO(resv_hugepages);
1887
1888static ssize_t surplus_hugepages_show(struct kobject *kobj,
1889 struct kobj_attribute *attr, char *buf)
1890{
9a305230
LS
1891 struct hstate *h;
1892 unsigned long surplus_huge_pages;
1893 int nid;
1894
1895 h = kobj_to_hstate(kobj, &nid);
1896 if (nid == NUMA_NO_NODE)
1897 surplus_huge_pages = h->surplus_huge_pages;
1898 else
1899 surplus_huge_pages = h->surplus_huge_pages_node[nid];
1900
1901 return sprintf(buf, "%lu\n", surplus_huge_pages);
a3437870
NA
1902}
1903HSTATE_ATTR_RO(surplus_hugepages);
1904
1905static struct attribute *hstate_attrs[] = {
1906 &nr_hugepages_attr.attr,
1907 &nr_overcommit_hugepages_attr.attr,
1908 &free_hugepages_attr.attr,
1909 &resv_hugepages_attr.attr,
1910 &surplus_hugepages_attr.attr,
06808b08
LS
1911#ifdef CONFIG_NUMA
1912 &nr_hugepages_mempolicy_attr.attr,
1913#endif
a3437870
NA
1914 NULL,
1915};
1916
1917static struct attribute_group hstate_attr_group = {
1918 .attrs = hstate_attrs,
1919};
1920
094e9539
JM
1921static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
1922 struct kobject **hstate_kobjs,
1923 struct attribute_group *hstate_attr_group)
a3437870
NA
1924{
1925 int retval;
972dc4de 1926 int hi = hstate_index(h);
a3437870 1927
9a305230
LS
1928 hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
1929 if (!hstate_kobjs[hi])
a3437870
NA
1930 return -ENOMEM;
1931
9a305230 1932 retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
a3437870 1933 if (retval)
9a305230 1934 kobject_put(hstate_kobjs[hi]);
a3437870
NA
1935
1936 return retval;
1937}
1938
1939static void __init hugetlb_sysfs_init(void)
1940{
1941 struct hstate *h;
1942 int err;
1943
1944 hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
1945 if (!hugepages_kobj)
1946 return;
1947
1948 for_each_hstate(h) {
9a305230
LS
1949 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
1950 hstate_kobjs, &hstate_attr_group);
a3437870 1951 if (err)
ffb22af5 1952 pr_err("Hugetlb: Unable to add hstate %s", h->name);
a3437870
NA
1953 }
1954}
1955
9a305230
LS
1956#ifdef CONFIG_NUMA
1957
1958/*
1959 * node_hstate/s - associate per node hstate attributes, via their kobjects,
10fbcf4c
KS
1960 * with node devices in node_devices[] using a parallel array. The array
1961 * index of a node device or _hstate == node id.
1962 * This is here to avoid any static dependency of the node device driver, in
9a305230
LS
1963 * the base kernel, on the hugetlb module.
1964 */
1965struct node_hstate {
1966 struct kobject *hugepages_kobj;
1967 struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
1968};
1969struct node_hstate node_hstates[MAX_NUMNODES];
1970
1971/*
10fbcf4c 1972 * A subset of global hstate attributes for node devices
9a305230
LS
1973 */
1974static struct attribute *per_node_hstate_attrs[] = {
1975 &nr_hugepages_attr.attr,
1976 &free_hugepages_attr.attr,
1977 &surplus_hugepages_attr.attr,
1978 NULL,
1979};
1980
1981static struct attribute_group per_node_hstate_attr_group = {
1982 .attrs = per_node_hstate_attrs,
1983};
1984
1985/*
10fbcf4c 1986 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
9a305230
LS
1987 * Returns node id via non-NULL nidp.
1988 */
1989static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
1990{
1991 int nid;
1992
1993 for (nid = 0; nid < nr_node_ids; nid++) {
1994 struct node_hstate *nhs = &node_hstates[nid];
1995 int i;
1996 for (i = 0; i < HUGE_MAX_HSTATE; i++)
1997 if (nhs->hstate_kobjs[i] == kobj) {
1998 if (nidp)
1999 *nidp = nid;
2000 return &hstates[i];
2001 }
2002 }
2003
2004 BUG();
2005 return NULL;
2006}
2007
2008/*
10fbcf4c 2009 * Unregister hstate attributes from a single node device.
9a305230
LS
2010 * No-op if no hstate attributes attached.
2011 */
3cd8b44f 2012static void hugetlb_unregister_node(struct node *node)
9a305230
LS
2013{
2014 struct hstate *h;
10fbcf4c 2015 struct node_hstate *nhs = &node_hstates[node->dev.id];
9a305230
LS
2016
2017 if (!nhs->hugepages_kobj)
9b5e5d0f 2018 return; /* no hstate attributes */
9a305230 2019
972dc4de
AK
2020 for_each_hstate(h) {
2021 int idx = hstate_index(h);
2022 if (nhs->hstate_kobjs[idx]) {
2023 kobject_put(nhs->hstate_kobjs[idx]);
2024 nhs->hstate_kobjs[idx] = NULL;
9a305230 2025 }
972dc4de 2026 }
9a305230
LS
2027
2028 kobject_put(nhs->hugepages_kobj);
2029 nhs->hugepages_kobj = NULL;
2030}
2031
2032/*
10fbcf4c 2033 * hugetlb module exit: unregister hstate attributes from node devices
9a305230
LS
2034 * that have them.
2035 */
2036static void hugetlb_unregister_all_nodes(void)
2037{
2038 int nid;
2039
2040 /*
10fbcf4c 2041 * disable node device registrations.
9a305230
LS
2042 */
2043 register_hugetlbfs_with_node(NULL, NULL);
2044
2045 /*
2046 * remove hstate attributes from any nodes that have them.
2047 */
2048 for (nid = 0; nid < nr_node_ids; nid++)
8732794b 2049 hugetlb_unregister_node(node_devices[nid]);
9a305230
LS
2050}
2051
2052/*
10fbcf4c 2053 * Register hstate attributes for a single node device.
9a305230
LS
2054 * No-op if attributes already registered.
2055 */
3cd8b44f 2056static void hugetlb_register_node(struct node *node)
9a305230
LS
2057{
2058 struct hstate *h;
10fbcf4c 2059 struct node_hstate *nhs = &node_hstates[node->dev.id];
9a305230
LS
2060 int err;
2061
2062 if (nhs->hugepages_kobj)
2063 return; /* already allocated */
2064
2065 nhs->hugepages_kobj = kobject_create_and_add("hugepages",
10fbcf4c 2066 &node->dev.kobj);
9a305230
LS
2067 if (!nhs->hugepages_kobj)
2068 return;
2069
2070 for_each_hstate(h) {
2071 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
2072 nhs->hstate_kobjs,
2073 &per_node_hstate_attr_group);
2074 if (err) {
ffb22af5
AM
2075 pr_err("Hugetlb: Unable to add hstate %s for node %d\n",
2076 h->name, node->dev.id);
9a305230
LS
2077 hugetlb_unregister_node(node);
2078 break;
2079 }
2080 }
2081}
2082
2083/*
9b5e5d0f 2084 * hugetlb init time: register hstate attributes for all registered node
10fbcf4c
KS
2085 * devices of nodes that have memory. All on-line nodes should have
2086 * registered their associated device by this time.
9a305230 2087 */
7d9ca000 2088static void __init hugetlb_register_all_nodes(void)
9a305230
LS
2089{
2090 int nid;
2091
8cebfcd0 2092 for_each_node_state(nid, N_MEMORY) {
8732794b 2093 struct node *node = node_devices[nid];
10fbcf4c 2094 if (node->dev.id == nid)
9a305230
LS
2095 hugetlb_register_node(node);
2096 }
2097
2098 /*
10fbcf4c 2099 * Let the node device driver know we're here so it can
9a305230
LS
2100 * [un]register hstate attributes on node hotplug.
2101 */
2102 register_hugetlbfs_with_node(hugetlb_register_node,
2103 hugetlb_unregister_node);
2104}
2105#else /* !CONFIG_NUMA */
2106
2107static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
2108{
2109 BUG();
2110 if (nidp)
2111 *nidp = -1;
2112 return NULL;
2113}
2114
2115static void hugetlb_unregister_all_nodes(void) { }
2116
2117static void hugetlb_register_all_nodes(void) { }
2118
2119#endif
2120
a3437870
NA
2121static void __exit hugetlb_exit(void)
2122{
2123 struct hstate *h;
2124
9a305230
LS
2125 hugetlb_unregister_all_nodes();
2126
a3437870 2127 for_each_hstate(h) {
972dc4de 2128 kobject_put(hstate_kobjs[hstate_index(h)]);
a3437870
NA
2129 }
2130
2131 kobject_put(hugepages_kobj);
8382d914 2132 kfree(htlb_fault_mutex_table);
a3437870
NA
2133}
2134module_exit(hugetlb_exit);
2135
2136static int __init hugetlb_init(void)
2137{
8382d914
DB
2138 int i;
2139
457c1b27 2140 if (!hugepages_supported())
0ef89d25 2141 return 0;
a3437870 2142
e11bfbfc
NP
2143 if (!size_to_hstate(default_hstate_size)) {
2144 default_hstate_size = HPAGE_SIZE;
2145 if (!size_to_hstate(default_hstate_size))
2146 hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
a3437870 2147 }
972dc4de 2148 default_hstate_idx = hstate_index(size_to_hstate(default_hstate_size));
e11bfbfc
NP
2149 if (default_hstate_max_huge_pages)
2150 default_hstate.max_huge_pages = default_hstate_max_huge_pages;
a3437870
NA
2151
2152 hugetlb_init_hstates();
aa888a74 2153 gather_bootmem_prealloc();
a3437870
NA
2154 report_hugepages();
2155
2156 hugetlb_sysfs_init();
9a305230 2157 hugetlb_register_all_nodes();
7179e7bf 2158 hugetlb_cgroup_file_init();
9a305230 2159
8382d914
DB
2160#ifdef CONFIG_SMP
2161 num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
2162#else
2163 num_fault_mutexes = 1;
2164#endif
2165 htlb_fault_mutex_table =
2166 kmalloc(sizeof(struct mutex) * num_fault_mutexes, GFP_KERNEL);
2167 BUG_ON(!htlb_fault_mutex_table);
2168
2169 for (i = 0; i < num_fault_mutexes; i++)
2170 mutex_init(&htlb_fault_mutex_table[i]);
a3437870
NA
2171 return 0;
2172}
2173module_init(hugetlb_init);
2174
2175/* Should be called on processing a hugepagesz=... option */
2176void __init hugetlb_add_hstate(unsigned order)
2177{
2178 struct hstate *h;
8faa8b07
AK
2179 unsigned long i;
2180
a3437870 2181 if (size_to_hstate(PAGE_SIZE << order)) {
ffb22af5 2182 pr_warning("hugepagesz= specified twice, ignoring\n");
a3437870
NA
2183 return;
2184 }
47d38344 2185 BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
a3437870 2186 BUG_ON(order == 0);
47d38344 2187 h = &hstates[hugetlb_max_hstate++];
a3437870
NA
2188 h->order = order;
2189 h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
8faa8b07
AK
2190 h->nr_huge_pages = 0;
2191 h->free_huge_pages = 0;
2192 for (i = 0; i < MAX_NUMNODES; ++i)
2193 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
0edaecfa 2194 INIT_LIST_HEAD(&h->hugepage_activelist);
8cebfcd0
LJ
2195 h->next_nid_to_alloc = first_node(node_states[N_MEMORY]);
2196 h->next_nid_to_free = first_node(node_states[N_MEMORY]);
a3437870
NA
2197 snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
2198 huge_page_size(h)/1024);
8faa8b07 2199
a3437870
NA
2200 parsed_hstate = h;
2201}
2202
e11bfbfc 2203static int __init hugetlb_nrpages_setup(char *s)
a3437870
NA
2204{
2205 unsigned long *mhp;
8faa8b07 2206 static unsigned long *last_mhp;
a3437870
NA
2207
2208 /*
47d38344 2209 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter yet,
a3437870
NA
2210 * so this hugepages= parameter goes to the "default hstate".
2211 */
47d38344 2212 if (!hugetlb_max_hstate)
a3437870
NA
2213 mhp = &default_hstate_max_huge_pages;
2214 else
2215 mhp = &parsed_hstate->max_huge_pages;
2216
8faa8b07 2217 if (mhp == last_mhp) {
ffb22af5
AM
2218 pr_warning("hugepages= specified twice without "
2219 "interleaving hugepagesz=, ignoring\n");
8faa8b07
AK
2220 return 1;
2221 }
2222
a3437870
NA
2223 if (sscanf(s, "%lu", mhp) <= 0)
2224 *mhp = 0;
2225
8faa8b07
AK
2226 /*
2227 * Global state is always initialized later in hugetlb_init.
2228 * But we need to allocate >= MAX_ORDER hstates here early to still
2229 * use the bootmem allocator.
2230 */
47d38344 2231 if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER)
8faa8b07
AK
2232 hugetlb_hstate_alloc_pages(parsed_hstate);
2233
2234 last_mhp = mhp;
2235
a3437870
NA
2236 return 1;
2237}
e11bfbfc
NP
2238__setup("hugepages=", hugetlb_nrpages_setup);
2239
2240static int __init hugetlb_default_setup(char *s)
2241{
2242 default_hstate_size = memparse(s, &s);
2243 return 1;
2244}
2245__setup("default_hugepagesz=", hugetlb_default_setup);
a3437870 2246
8a213460
NA
2247static unsigned int cpuset_mems_nr(unsigned int *array)
2248{
2249 int node;
2250 unsigned int nr = 0;
2251
2252 for_each_node_mask(node, cpuset_current_mems_allowed)
2253 nr += array[node];
2254
2255 return nr;
2256}
2257
2258#ifdef CONFIG_SYSCTL
06808b08
LS
2259static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
2260 struct ctl_table *table, int write,
2261 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 2262{
e5ff2159 2263 struct hstate *h = &default_hstate;
238d3c13 2264 unsigned long tmp = h->max_huge_pages;
08d4a246 2265 int ret;
e5ff2159 2266
457c1b27
NA
2267 if (!hugepages_supported())
2268 return -ENOTSUPP;
2269
e5ff2159
AK
2270 table->data = &tmp;
2271 table->maxlen = sizeof(unsigned long);
08d4a246
MH
2272 ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2273 if (ret)
2274 goto out;
e5ff2159 2275
238d3c13
DR
2276 if (write)
2277 ret = __nr_hugepages_store_common(obey_mempolicy, h,
2278 NUMA_NO_NODE, tmp, *length);
08d4a246
MH
2279out:
2280 return ret;
1da177e4 2281}
396faf03 2282
06808b08
LS
2283int hugetlb_sysctl_handler(struct ctl_table *table, int write,
2284 void __user *buffer, size_t *length, loff_t *ppos)
2285{
2286
2287 return hugetlb_sysctl_handler_common(false, table, write,
2288 buffer, length, ppos);
2289}
2290
2291#ifdef CONFIG_NUMA
2292int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
2293 void __user *buffer, size_t *length, loff_t *ppos)
2294{
2295 return hugetlb_sysctl_handler_common(true, table, write,
2296 buffer, length, ppos);
2297}
2298#endif /* CONFIG_NUMA */
2299
a3d0c6aa 2300int hugetlb_overcommit_handler(struct ctl_table *table, int write,
8d65af78 2301 void __user *buffer,
a3d0c6aa
NA
2302 size_t *length, loff_t *ppos)
2303{
a5516438 2304 struct hstate *h = &default_hstate;
e5ff2159 2305 unsigned long tmp;
08d4a246 2306 int ret;
e5ff2159 2307
457c1b27
NA
2308 if (!hugepages_supported())
2309 return -ENOTSUPP;
2310
c033a93c 2311 tmp = h->nr_overcommit_huge_pages;
e5ff2159 2312
bae7f4ae 2313 if (write && hstate_is_gigantic(h))
adbe8726
EM
2314 return -EINVAL;
2315
e5ff2159
AK
2316 table->data = &tmp;
2317 table->maxlen = sizeof(unsigned long);
08d4a246
MH
2318 ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2319 if (ret)
2320 goto out;
e5ff2159
AK
2321
2322 if (write) {
2323 spin_lock(&hugetlb_lock);
2324 h->nr_overcommit_huge_pages = tmp;
2325 spin_unlock(&hugetlb_lock);
2326 }
08d4a246
MH
2327out:
2328 return ret;
a3d0c6aa
NA
2329}
2330
1da177e4
LT
2331#endif /* CONFIG_SYSCTL */
2332
e1759c21 2333void hugetlb_report_meminfo(struct seq_file *m)
1da177e4 2334{
a5516438 2335 struct hstate *h = &default_hstate;
457c1b27
NA
2336 if (!hugepages_supported())
2337 return;
e1759c21 2338 seq_printf(m,
4f98a2fe
RR
2339 "HugePages_Total: %5lu\n"
2340 "HugePages_Free: %5lu\n"
2341 "HugePages_Rsvd: %5lu\n"
2342 "HugePages_Surp: %5lu\n"
2343 "Hugepagesize: %8lu kB\n",
a5516438
AK
2344 h->nr_huge_pages,
2345 h->free_huge_pages,
2346 h->resv_huge_pages,
2347 h->surplus_huge_pages,
2348 1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
1da177e4
LT
2349}
2350
2351int hugetlb_report_node_meminfo(int nid, char *buf)
2352{
a5516438 2353 struct hstate *h = &default_hstate;
457c1b27
NA
2354 if (!hugepages_supported())
2355 return 0;
1da177e4
LT
2356 return sprintf(buf,
2357 "Node %d HugePages_Total: %5u\n"
a1de0919
NA
2358 "Node %d HugePages_Free: %5u\n"
2359 "Node %d HugePages_Surp: %5u\n",
a5516438
AK
2360 nid, h->nr_huge_pages_node[nid],
2361 nid, h->free_huge_pages_node[nid],
2362 nid, h->surplus_huge_pages_node[nid]);
1da177e4
LT
2363}
2364
949f7ec5
DR
2365void hugetlb_show_meminfo(void)
2366{
2367 struct hstate *h;
2368 int nid;
2369
457c1b27
NA
2370 if (!hugepages_supported())
2371 return;
2372
949f7ec5
DR
2373 for_each_node_state(nid, N_MEMORY)
2374 for_each_hstate(h)
2375 pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
2376 nid,
2377 h->nr_huge_pages_node[nid],
2378 h->free_huge_pages_node[nid],
2379 h->surplus_huge_pages_node[nid],
2380 1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
2381}
2382
1da177e4
LT
2383/* Return the number pages of memory we physically have, in PAGE_SIZE units. */
2384unsigned long hugetlb_total_pages(void)
2385{
d0028588
WL
2386 struct hstate *h;
2387 unsigned long nr_total_pages = 0;
2388
2389 for_each_hstate(h)
2390 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
2391 return nr_total_pages;
1da177e4 2392}
1da177e4 2393
a5516438 2394static int hugetlb_acct_memory(struct hstate *h, long delta)
fc1b8a73
MG
2395{
2396 int ret = -ENOMEM;
2397
2398 spin_lock(&hugetlb_lock);
2399 /*
2400 * When cpuset is configured, it breaks the strict hugetlb page
2401 * reservation as the accounting is done on a global variable. Such
2402 * reservation is completely rubbish in the presence of cpuset because
2403 * the reservation is not checked against page availability for the
2404 * current cpuset. Application can still potentially OOM'ed by kernel
2405 * with lack of free htlb page in cpuset that the task is in.
2406 * Attempt to enforce strict accounting with cpuset is almost
2407 * impossible (or too ugly) because cpuset is too fluid that
2408 * task or memory node can be dynamically moved between cpusets.
2409 *
2410 * The change of semantics for shared hugetlb mapping with cpuset is
2411 * undesirable. However, in order to preserve some of the semantics,
2412 * we fall back to check against current free page availability as
2413 * a best attempt and hopefully to minimize the impact of changing
2414 * semantics that cpuset has.
2415 */
2416 if (delta > 0) {
a5516438 2417 if (gather_surplus_pages(h, delta) < 0)
fc1b8a73
MG
2418 goto out;
2419
a5516438
AK
2420 if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
2421 return_unused_surplus_pages(h, delta);
fc1b8a73
MG
2422 goto out;
2423 }
2424 }
2425
2426 ret = 0;
2427 if (delta < 0)
a5516438 2428 return_unused_surplus_pages(h, (unsigned long) -delta);
fc1b8a73
MG
2429
2430out:
2431 spin_unlock(&hugetlb_lock);
2432 return ret;
2433}
2434
84afd99b
AW
2435static void hugetlb_vm_op_open(struct vm_area_struct *vma)
2436{
f522c3ac 2437 struct resv_map *resv = vma_resv_map(vma);
84afd99b
AW
2438
2439 /*
2440 * This new VMA should share its siblings reservation map if present.
2441 * The VMA will only ever have a valid reservation map pointer where
2442 * it is being copied for another still existing VMA. As that VMA
25985edc 2443 * has a reference to the reservation map it cannot disappear until
84afd99b
AW
2444 * after this open call completes. It is therefore safe to take a
2445 * new reference here without additional locking.
2446 */
4e35f483 2447 if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
f522c3ac 2448 kref_get(&resv->refs);
84afd99b
AW
2449}
2450
a1e78772
MG
2451static void hugetlb_vm_op_close(struct vm_area_struct *vma)
2452{
a5516438 2453 struct hstate *h = hstate_vma(vma);
f522c3ac 2454 struct resv_map *resv = vma_resv_map(vma);
90481622 2455 struct hugepage_subpool *spool = subpool_vma(vma);
4e35f483 2456 unsigned long reserve, start, end;
84afd99b 2457
4e35f483
JK
2458 if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
2459 return;
84afd99b 2460
4e35f483
JK
2461 start = vma_hugecache_offset(h, vma, vma->vm_start);
2462 end = vma_hugecache_offset(h, vma, vma->vm_end);
84afd99b 2463
4e35f483 2464 reserve = (end - start) - region_count(resv, start, end);
84afd99b 2465
4e35f483
JK
2466 kref_put(&resv->refs, resv_map_release);
2467
2468 if (reserve) {
2469 hugetlb_acct_memory(h, -reserve);
2470 hugepage_subpool_put_pages(spool, reserve);
84afd99b 2471 }
a1e78772
MG
2472}
2473
1da177e4
LT
2474/*
2475 * We cannot handle pagefaults against hugetlb pages at all. They cause
2476 * handle_mm_fault() to try to instantiate regular-sized pages in the
2477 * hugegpage VMA. do_page_fault() is supposed to trap this, so BUG is we get
2478 * this far.
2479 */
d0217ac0 2480static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1da177e4
LT
2481{
2482 BUG();
d0217ac0 2483 return 0;
1da177e4
LT
2484}
2485
f0f37e2f 2486const struct vm_operations_struct hugetlb_vm_ops = {
d0217ac0 2487 .fault = hugetlb_vm_op_fault,
84afd99b 2488 .open = hugetlb_vm_op_open,
a1e78772 2489 .close = hugetlb_vm_op_close,
1da177e4
LT
2490};
2491
1e8f889b
DG
2492static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
2493 int writable)
63551ae0
DG
2494{
2495 pte_t entry;
2496
1e8f889b 2497 if (writable) {
106c992a
GS
2498 entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
2499 vma->vm_page_prot)));
63551ae0 2500 } else {
106c992a
GS
2501 entry = huge_pte_wrprotect(mk_huge_pte(page,
2502 vma->vm_page_prot));
63551ae0
DG
2503 }
2504 entry = pte_mkyoung(entry);
2505 entry = pte_mkhuge(entry);
d9ed9faa 2506 entry = arch_make_huge_pte(entry, vma, page, writable);
63551ae0
DG
2507
2508 return entry;
2509}
2510
1e8f889b
DG
2511static void set_huge_ptep_writable(struct vm_area_struct *vma,
2512 unsigned long address, pte_t *ptep)
2513{
2514 pte_t entry;
2515
106c992a 2516 entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
32f84528 2517 if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
4b3073e1 2518 update_mmu_cache(vma, address, ptep);
1e8f889b
DG
2519}
2520
4a705fef
NH
2521static int is_hugetlb_entry_migration(pte_t pte)
2522{
2523 swp_entry_t swp;
2524
2525 if (huge_pte_none(pte) || pte_present(pte))
2526 return 0;
2527 swp = pte_to_swp_entry(pte);
2528 if (non_swap_entry(swp) && is_migration_entry(swp))
2529 return 1;
2530 else
2531 return 0;
2532}
2533
2534static int is_hugetlb_entry_hwpoisoned(pte_t pte)
2535{
2536 swp_entry_t swp;
2537
2538 if (huge_pte_none(pte) || pte_present(pte))
2539 return 0;
2540 swp = pte_to_swp_entry(pte);
2541 if (non_swap_entry(swp) && is_hwpoison_entry(swp))
2542 return 1;
2543 else
2544 return 0;
2545}
1e8f889b 2546
63551ae0
DG
2547int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
2548 struct vm_area_struct *vma)
2549{
2550 pte_t *src_pte, *dst_pte, entry;
2551 struct page *ptepage;
1c59827d 2552 unsigned long addr;
1e8f889b 2553 int cow;
a5516438
AK
2554 struct hstate *h = hstate_vma(vma);
2555 unsigned long sz = huge_page_size(h);
e8569dd2
AS
2556 unsigned long mmun_start; /* For mmu_notifiers */
2557 unsigned long mmun_end; /* For mmu_notifiers */
2558 int ret = 0;
1e8f889b
DG
2559
2560 cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
63551ae0 2561
e8569dd2
AS
2562 mmun_start = vma->vm_start;
2563 mmun_end = vma->vm_end;
2564 if (cow)
2565 mmu_notifier_invalidate_range_start(src, mmun_start, mmun_end);
2566
a5516438 2567 for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
cb900f41 2568 spinlock_t *src_ptl, *dst_ptl;
c74df32c
HD
2569 src_pte = huge_pte_offset(src, addr);
2570 if (!src_pte)
2571 continue;
a5516438 2572 dst_pte = huge_pte_alloc(dst, addr, sz);
e8569dd2
AS
2573 if (!dst_pte) {
2574 ret = -ENOMEM;
2575 break;
2576 }
c5c99429
LW
2577
2578 /* If the pagetables are shared don't copy or take references */
2579 if (dst_pte == src_pte)
2580 continue;
2581
cb900f41
KS
2582 dst_ptl = huge_pte_lock(h, dst, dst_pte);
2583 src_ptl = huge_pte_lockptr(h, src, src_pte);
2584 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
4a705fef
NH
2585 entry = huge_ptep_get(src_pte);
2586 if (huge_pte_none(entry)) { /* skip none entry */
2587 ;
2588 } else if (unlikely(is_hugetlb_entry_migration(entry) ||
2589 is_hugetlb_entry_hwpoisoned(entry))) {
2590 swp_entry_t swp_entry = pte_to_swp_entry(entry);
2591
2592 if (is_write_migration_entry(swp_entry) && cow) {
2593 /*
2594 * COW mappings require pages in both
2595 * parent and child to be set to read.
2596 */
2597 make_migration_entry_read(&swp_entry);
2598 entry = swp_entry_to_pte(swp_entry);
2599 set_huge_pte_at(src, addr, src_pte, entry);
2600 }
2601 set_huge_pte_at(dst, addr, dst_pte, entry);
2602 } else {
34ee645e 2603 if (cow) {
7f2e9525 2604 huge_ptep_set_wrprotect(src, addr, src_pte);
34ee645e
JR
2605 mmu_notifier_invalidate_range(src, mmun_start,
2606 mmun_end);
2607 }
0253d634 2608 entry = huge_ptep_get(src_pte);
1c59827d
HD
2609 ptepage = pte_page(entry);
2610 get_page(ptepage);
0fe6e20b 2611 page_dup_rmap(ptepage);
1c59827d
HD
2612 set_huge_pte_at(dst, addr, dst_pte, entry);
2613 }
cb900f41
KS
2614 spin_unlock(src_ptl);
2615 spin_unlock(dst_ptl);
63551ae0 2616 }
63551ae0 2617
e8569dd2
AS
2618 if (cow)
2619 mmu_notifier_invalidate_range_end(src, mmun_start, mmun_end);
2620
2621 return ret;
63551ae0
DG
2622}
2623
24669e58
AK
2624void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
2625 unsigned long start, unsigned long end,
2626 struct page *ref_page)
63551ae0 2627{
24669e58 2628 int force_flush = 0;
63551ae0
DG
2629 struct mm_struct *mm = vma->vm_mm;
2630 unsigned long address;
c7546f8f 2631 pte_t *ptep;
63551ae0 2632 pte_t pte;
cb900f41 2633 spinlock_t *ptl;
63551ae0 2634 struct page *page;
a5516438
AK
2635 struct hstate *h = hstate_vma(vma);
2636 unsigned long sz = huge_page_size(h);
2ec74c3e
SG
2637 const unsigned long mmun_start = start; /* For mmu_notifiers */
2638 const unsigned long mmun_end = end; /* For mmu_notifiers */
a5516438 2639
63551ae0 2640 WARN_ON(!is_vm_hugetlb_page(vma));
a5516438
AK
2641 BUG_ON(start & ~huge_page_mask(h));
2642 BUG_ON(end & ~huge_page_mask(h));
63551ae0 2643
24669e58 2644 tlb_start_vma(tlb, vma);
2ec74c3e 2645 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
569f48b8 2646 address = start;
24669e58 2647again:
569f48b8 2648 for (; address < end; address += sz) {
c7546f8f 2649 ptep = huge_pte_offset(mm, address);
4c887265 2650 if (!ptep)
c7546f8f
DG
2651 continue;
2652
cb900f41 2653 ptl = huge_pte_lock(h, mm, ptep);
39dde65c 2654 if (huge_pmd_unshare(mm, &address, ptep))
cb900f41 2655 goto unlock;
39dde65c 2656
6629326b
HD
2657 pte = huge_ptep_get(ptep);
2658 if (huge_pte_none(pte))
cb900f41 2659 goto unlock;
6629326b
HD
2660
2661 /*
9fbc1f63
NH
2662 * Migrating hugepage or HWPoisoned hugepage is already
2663 * unmapped and its refcount is dropped, so just clear pte here.
6629326b 2664 */
9fbc1f63 2665 if (unlikely(!pte_present(pte))) {
106c992a 2666 huge_pte_clear(mm, address, ptep);
cb900f41 2667 goto unlock;
8c4894c6 2668 }
6629326b
HD
2669
2670 page = pte_page(pte);
04f2cbe3
MG
2671 /*
2672 * If a reference page is supplied, it is because a specific
2673 * page is being unmapped, not a range. Ensure the page we
2674 * are about to unmap is the actual page of interest.
2675 */
2676 if (ref_page) {
04f2cbe3 2677 if (page != ref_page)
cb900f41 2678 goto unlock;
04f2cbe3
MG
2679
2680 /*
2681 * Mark the VMA as having unmapped its page so that
2682 * future faults in this VMA will fail rather than
2683 * looking like data was lost
2684 */
2685 set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
2686 }
2687
c7546f8f 2688 pte = huge_ptep_get_and_clear(mm, address, ptep);
24669e58 2689 tlb_remove_tlb_entry(tlb, ptep, address);
106c992a 2690 if (huge_pte_dirty(pte))
6649a386 2691 set_page_dirty(page);
9e81130b 2692
24669e58
AK
2693 page_remove_rmap(page);
2694 force_flush = !__tlb_remove_page(tlb, page);
cb900f41 2695 if (force_flush) {
569f48b8 2696 address += sz;
cb900f41 2697 spin_unlock(ptl);
24669e58 2698 break;
cb900f41 2699 }
9e81130b 2700 /* Bail out after unmapping reference page if supplied */
cb900f41
KS
2701 if (ref_page) {
2702 spin_unlock(ptl);
9e81130b 2703 break;
cb900f41
KS
2704 }
2705unlock:
2706 spin_unlock(ptl);
63551ae0 2707 }
24669e58
AK
2708 /*
2709 * mmu_gather ran out of room to batch pages, we break out of
2710 * the PTE lock to avoid doing the potential expensive TLB invalidate
2711 * and page-free while holding it.
2712 */
2713 if (force_flush) {
2714 force_flush = 0;
2715 tlb_flush_mmu(tlb);
2716 if (address < end && !ref_page)
2717 goto again;
fe1668ae 2718 }
2ec74c3e 2719 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
24669e58 2720 tlb_end_vma(tlb, vma);
1da177e4 2721}
63551ae0 2722
d833352a
MG
2723void __unmap_hugepage_range_final(struct mmu_gather *tlb,
2724 struct vm_area_struct *vma, unsigned long start,
2725 unsigned long end, struct page *ref_page)
2726{
2727 __unmap_hugepage_range(tlb, vma, start, end, ref_page);
2728
2729 /*
2730 * Clear this flag so that x86's huge_pmd_share page_table_shareable
2731 * test will fail on a vma being torn down, and not grab a page table
2732 * on its way out. We're lucky that the flag has such an appropriate
2733 * name, and can in fact be safely cleared here. We could clear it
2734 * before the __unmap_hugepage_range above, but all that's necessary
c8c06efa 2735 * is to clear it before releasing the i_mmap_rwsem. This works
d833352a 2736 * because in the context this is called, the VMA is about to be
c8c06efa 2737 * destroyed and the i_mmap_rwsem is held.
d833352a
MG
2738 */
2739 vma->vm_flags &= ~VM_MAYSHARE;
2740}
2741
502717f4 2742void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
04f2cbe3 2743 unsigned long end, struct page *ref_page)
502717f4 2744{
24669e58
AK
2745 struct mm_struct *mm;
2746 struct mmu_gather tlb;
2747
2748 mm = vma->vm_mm;
2749
2b047252 2750 tlb_gather_mmu(&tlb, mm, start, end);
24669e58
AK
2751 __unmap_hugepage_range(&tlb, vma, start, end, ref_page);
2752 tlb_finish_mmu(&tlb, start, end);
502717f4
CK
2753}
2754
04f2cbe3
MG
2755/*
2756 * This is called when the original mapper is failing to COW a MAP_PRIVATE
2757 * mappping it owns the reserve page for. The intention is to unmap the page
2758 * from other VMAs and let the children be SIGKILLed if they are faulting the
2759 * same region.
2760 */
2f4612af
DB
2761static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
2762 struct page *page, unsigned long address)
04f2cbe3 2763{
7526674d 2764 struct hstate *h = hstate_vma(vma);
04f2cbe3
MG
2765 struct vm_area_struct *iter_vma;
2766 struct address_space *mapping;
04f2cbe3
MG
2767 pgoff_t pgoff;
2768
2769 /*
2770 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
2771 * from page cache lookup which is in HPAGE_SIZE units.
2772 */
7526674d 2773 address = address & huge_page_mask(h);
36e4f20a
MH
2774 pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
2775 vma->vm_pgoff;
496ad9aa 2776 mapping = file_inode(vma->vm_file)->i_mapping;
04f2cbe3 2777
4eb2b1dc
MG
2778 /*
2779 * Take the mapping lock for the duration of the table walk. As
2780 * this mapping should be shared between all the VMAs,
2781 * __unmap_hugepage_range() is called as the lock is already held
2782 */
83cde9e8 2783 i_mmap_lock_write(mapping);
6b2dbba8 2784 vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
04f2cbe3
MG
2785 /* Do not unmap the current VMA */
2786 if (iter_vma == vma)
2787 continue;
2788
2789 /*
2790 * Unmap the page from other VMAs without their own reserves.
2791 * They get marked to be SIGKILLed if they fault in these
2792 * areas. This is because a future no-page fault on this VMA
2793 * could insert a zeroed page instead of the data existing
2794 * from the time of fork. This would look like data corruption
2795 */
2796 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
24669e58
AK
2797 unmap_hugepage_range(iter_vma, address,
2798 address + huge_page_size(h), page);
04f2cbe3 2799 }
83cde9e8 2800 i_mmap_unlock_write(mapping);
04f2cbe3
MG
2801}
2802
0fe6e20b
NH
2803/*
2804 * Hugetlb_cow() should be called with page lock of the original hugepage held.
ef009b25
MH
2805 * Called with hugetlb_instantiation_mutex held and pte_page locked so we
2806 * cannot race with other handlers or page migration.
2807 * Keep the pte_same checks anyway to make transition from the mutex easier.
0fe6e20b 2808 */
1e8f889b 2809static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
04f2cbe3 2810 unsigned long address, pte_t *ptep, pte_t pte,
cb900f41 2811 struct page *pagecache_page, spinlock_t *ptl)
1e8f889b 2812{
a5516438 2813 struct hstate *h = hstate_vma(vma);
1e8f889b 2814 struct page *old_page, *new_page;
ad4404a2 2815 int ret = 0, outside_reserve = 0;
2ec74c3e
SG
2816 unsigned long mmun_start; /* For mmu_notifiers */
2817 unsigned long mmun_end; /* For mmu_notifiers */
1e8f889b
DG
2818
2819 old_page = pte_page(pte);
2820
04f2cbe3 2821retry_avoidcopy:
1e8f889b
DG
2822 /* If no-one else is actually using this page, avoid the copy
2823 * and just make the page writable */
37a2140d
JK
2824 if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
2825 page_move_anon_rmap(old_page, vma, address);
1e8f889b 2826 set_huge_ptep_writable(vma, address, ptep);
83c54070 2827 return 0;
1e8f889b
DG
2828 }
2829
04f2cbe3
MG
2830 /*
2831 * If the process that created a MAP_PRIVATE mapping is about to
2832 * perform a COW due to a shared page count, attempt to satisfy
2833 * the allocation without using the existing reserves. The pagecache
2834 * page is used to determine if the reserve at this address was
2835 * consumed or not. If reserves were used, a partial faulted mapping
2836 * at the time of fork() could consume its reserves on COW instead
2837 * of the full address range.
2838 */
5944d011 2839 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
04f2cbe3
MG
2840 old_page != pagecache_page)
2841 outside_reserve = 1;
2842
1e8f889b 2843 page_cache_get(old_page);
b76c8cfb 2844
ad4404a2
DB
2845 /*
2846 * Drop page table lock as buddy allocator may be called. It will
2847 * be acquired again before returning to the caller, as expected.
2848 */
cb900f41 2849 spin_unlock(ptl);
04f2cbe3 2850 new_page = alloc_huge_page(vma, address, outside_reserve);
1e8f889b 2851
2fc39cec 2852 if (IS_ERR(new_page)) {
04f2cbe3
MG
2853 /*
2854 * If a process owning a MAP_PRIVATE mapping fails to COW,
2855 * it is due to references held by a child and an insufficient
2856 * huge page pool. To guarantee the original mappers
2857 * reliability, unmap the page from child processes. The child
2858 * may get SIGKILLed if it later faults.
2859 */
2860 if (outside_reserve) {
ad4404a2 2861 page_cache_release(old_page);
04f2cbe3 2862 BUG_ON(huge_pte_none(pte));
2f4612af
DB
2863 unmap_ref_private(mm, vma, old_page, address);
2864 BUG_ON(huge_pte_none(pte));
2865 spin_lock(ptl);
2866 ptep = huge_pte_offset(mm, address & huge_page_mask(h));
2867 if (likely(ptep &&
2868 pte_same(huge_ptep_get(ptep), pte)))
2869 goto retry_avoidcopy;
2870 /*
2871 * race occurs while re-acquiring page table
2872 * lock, and our job is done.
2873 */
2874 return 0;
04f2cbe3
MG
2875 }
2876
ad4404a2
DB
2877 ret = (PTR_ERR(new_page) == -ENOMEM) ?
2878 VM_FAULT_OOM : VM_FAULT_SIGBUS;
2879 goto out_release_old;
1e8f889b
DG
2880 }
2881
0fe6e20b
NH
2882 /*
2883 * When the original hugepage is shared one, it does not have
2884 * anon_vma prepared.
2885 */
44e2aa93 2886 if (unlikely(anon_vma_prepare(vma))) {
ad4404a2
DB
2887 ret = VM_FAULT_OOM;
2888 goto out_release_all;
44e2aa93 2889 }
0fe6e20b 2890
47ad8475
AA
2891 copy_user_huge_page(new_page, old_page, address, vma,
2892 pages_per_huge_page(h));
0ed361de 2893 __SetPageUptodate(new_page);
1e8f889b 2894
2ec74c3e
SG
2895 mmun_start = address & huge_page_mask(h);
2896 mmun_end = mmun_start + huge_page_size(h);
2897 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
ad4404a2 2898
b76c8cfb 2899 /*
cb900f41 2900 * Retake the page table lock to check for racing updates
b76c8cfb
LW
2901 * before the page tables are altered
2902 */
cb900f41 2903 spin_lock(ptl);
a5516438 2904 ptep = huge_pte_offset(mm, address & huge_page_mask(h));
a9af0c5d 2905 if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
07443a85
JK
2906 ClearPagePrivate(new_page);
2907
1e8f889b 2908 /* Break COW */
8fe627ec 2909 huge_ptep_clear_flush(vma, address, ptep);
34ee645e 2910 mmu_notifier_invalidate_range(mm, mmun_start, mmun_end);
1e8f889b
DG
2911 set_huge_pte_at(mm, address, ptep,
2912 make_huge_pte(vma, new_page, 1));
0fe6e20b 2913 page_remove_rmap(old_page);
cd67f0d2 2914 hugepage_add_new_anon_rmap(new_page, vma, address);
1e8f889b
DG
2915 /* Make the old page be freed below */
2916 new_page = old_page;
2917 }
cb900f41 2918 spin_unlock(ptl);
2ec74c3e 2919 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
ad4404a2 2920out_release_all:
1e8f889b 2921 page_cache_release(new_page);
ad4404a2 2922out_release_old:
1e8f889b 2923 page_cache_release(old_page);
8312034f 2924
ad4404a2
DB
2925 spin_lock(ptl); /* Caller expects lock to be held */
2926 return ret;
1e8f889b
DG
2927}
2928
04f2cbe3 2929/* Return the pagecache page at a given address within a VMA */
a5516438
AK
2930static struct page *hugetlbfs_pagecache_page(struct hstate *h,
2931 struct vm_area_struct *vma, unsigned long address)
04f2cbe3
MG
2932{
2933 struct address_space *mapping;
e7c4b0bf 2934 pgoff_t idx;
04f2cbe3
MG
2935
2936 mapping = vma->vm_file->f_mapping;
a5516438 2937 idx = vma_hugecache_offset(h, vma, address);
04f2cbe3
MG
2938
2939 return find_lock_page(mapping, idx);
2940}
2941
3ae77f43
HD
2942/*
2943 * Return whether there is a pagecache page to back given address within VMA.
2944 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
2945 */
2946static bool hugetlbfs_pagecache_present(struct hstate *h,
2a15efc9
HD
2947 struct vm_area_struct *vma, unsigned long address)
2948{
2949 struct address_space *mapping;
2950 pgoff_t idx;
2951 struct page *page;
2952
2953 mapping = vma->vm_file->f_mapping;
2954 idx = vma_hugecache_offset(h, vma, address);
2955
2956 page = find_get_page(mapping, idx);
2957 if (page)
2958 put_page(page);
2959 return page != NULL;
2960}
2961
a1ed3dda 2962static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
8382d914
DB
2963 struct address_space *mapping, pgoff_t idx,
2964 unsigned long address, pte_t *ptep, unsigned int flags)
ac9b9c66 2965{
a5516438 2966 struct hstate *h = hstate_vma(vma);
ac9b9c66 2967 int ret = VM_FAULT_SIGBUS;
409eb8c2 2968 int anon_rmap = 0;
4c887265 2969 unsigned long size;
4c887265 2970 struct page *page;
1e8f889b 2971 pte_t new_pte;
cb900f41 2972 spinlock_t *ptl;
4c887265 2973
04f2cbe3
MG
2974 /*
2975 * Currently, we are forced to kill the process in the event the
2976 * original mapper has unmapped pages from the child due to a failed
25985edc 2977 * COW. Warn that such a situation has occurred as it may not be obvious
04f2cbe3
MG
2978 */
2979 if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
ffb22af5
AM
2980 pr_warning("PID %d killed due to inadequate hugepage pool\n",
2981 current->pid);
04f2cbe3
MG
2982 return ret;
2983 }
2984
4c887265
AL
2985 /*
2986 * Use page lock to guard against racing truncation
2987 * before we get page_table_lock.
2988 */
6bda666a
CL
2989retry:
2990 page = find_lock_page(mapping, idx);
2991 if (!page) {
a5516438 2992 size = i_size_read(mapping->host) >> huge_page_shift(h);
ebed4bfc
HD
2993 if (idx >= size)
2994 goto out;
04f2cbe3 2995 page = alloc_huge_page(vma, address, 0);
2fc39cec 2996 if (IS_ERR(page)) {
76dcee75
AK
2997 ret = PTR_ERR(page);
2998 if (ret == -ENOMEM)
2999 ret = VM_FAULT_OOM;
3000 else
3001 ret = VM_FAULT_SIGBUS;
6bda666a
CL
3002 goto out;
3003 }
47ad8475 3004 clear_huge_page(page, address, pages_per_huge_page(h));
0ed361de 3005 __SetPageUptodate(page);
ac9b9c66 3006
f83a275d 3007 if (vma->vm_flags & VM_MAYSHARE) {
6bda666a 3008 int err;
45c682a6 3009 struct inode *inode = mapping->host;
6bda666a
CL
3010
3011 err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
3012 if (err) {
3013 put_page(page);
6bda666a
CL
3014 if (err == -EEXIST)
3015 goto retry;
3016 goto out;
3017 }
07443a85 3018 ClearPagePrivate(page);
45c682a6
KC
3019
3020 spin_lock(&inode->i_lock);
a5516438 3021 inode->i_blocks += blocks_per_huge_page(h);
45c682a6 3022 spin_unlock(&inode->i_lock);
23be7468 3023 } else {
6bda666a 3024 lock_page(page);
0fe6e20b
NH
3025 if (unlikely(anon_vma_prepare(vma))) {
3026 ret = VM_FAULT_OOM;
3027 goto backout_unlocked;
3028 }
409eb8c2 3029 anon_rmap = 1;
23be7468 3030 }
0fe6e20b 3031 } else {
998b4382
NH
3032 /*
3033 * If memory error occurs between mmap() and fault, some process
3034 * don't have hwpoisoned swap entry for errored virtual address.
3035 * So we need to block hugepage fault by PG_hwpoison bit check.
3036 */
3037 if (unlikely(PageHWPoison(page))) {
32f84528 3038 ret = VM_FAULT_HWPOISON |
972dc4de 3039 VM_FAULT_SET_HINDEX(hstate_index(h));
998b4382
NH
3040 goto backout_unlocked;
3041 }
6bda666a 3042 }
1e8f889b 3043
57303d80
AW
3044 /*
3045 * If we are going to COW a private mapping later, we examine the
3046 * pending reservations for this page now. This will ensure that
3047 * any allocations necessary to record that reservation occur outside
3048 * the spinlock.
3049 */
788c7df4 3050 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED))
2b26736c
AW
3051 if (vma_needs_reservation(h, vma, address) < 0) {
3052 ret = VM_FAULT_OOM;
3053 goto backout_unlocked;
3054 }
57303d80 3055
cb900f41
KS
3056 ptl = huge_pte_lockptr(h, mm, ptep);
3057 spin_lock(ptl);
a5516438 3058 size = i_size_read(mapping->host) >> huge_page_shift(h);
4c887265
AL
3059 if (idx >= size)
3060 goto backout;
3061
83c54070 3062 ret = 0;
7f2e9525 3063 if (!huge_pte_none(huge_ptep_get(ptep)))
4c887265
AL
3064 goto backout;
3065
07443a85
JK
3066 if (anon_rmap) {
3067 ClearPagePrivate(page);
409eb8c2 3068 hugepage_add_new_anon_rmap(page, vma, address);
ac714904 3069 } else
409eb8c2 3070 page_dup_rmap(page);
1e8f889b
DG
3071 new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
3072 && (vma->vm_flags & VM_SHARED)));
3073 set_huge_pte_at(mm, address, ptep, new_pte);
3074
788c7df4 3075 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
1e8f889b 3076 /* Optimization, do the COW without a second fault */
cb900f41 3077 ret = hugetlb_cow(mm, vma, address, ptep, new_pte, page, ptl);
1e8f889b
DG
3078 }
3079
cb900f41 3080 spin_unlock(ptl);
4c887265
AL
3081 unlock_page(page);
3082out:
ac9b9c66 3083 return ret;
4c887265
AL
3084
3085backout:
cb900f41 3086 spin_unlock(ptl);
2b26736c 3087backout_unlocked:
4c887265
AL
3088 unlock_page(page);
3089 put_page(page);
3090 goto out;
ac9b9c66
HD
3091}
3092
8382d914
DB
3093#ifdef CONFIG_SMP
3094static u32 fault_mutex_hash(struct hstate *h, struct mm_struct *mm,
3095 struct vm_area_struct *vma,
3096 struct address_space *mapping,
3097 pgoff_t idx, unsigned long address)
3098{
3099 unsigned long key[2];
3100 u32 hash;
3101
3102 if (vma->vm_flags & VM_SHARED) {
3103 key[0] = (unsigned long) mapping;
3104 key[1] = idx;
3105 } else {
3106 key[0] = (unsigned long) mm;
3107 key[1] = address >> huge_page_shift(h);
3108 }
3109
3110 hash = jhash2((u32 *)&key, sizeof(key)/sizeof(u32), 0);
3111
3112 return hash & (num_fault_mutexes - 1);
3113}
3114#else
3115/*
3116 * For uniprocesor systems we always use a single mutex, so just
3117 * return 0 and avoid the hashing overhead.
3118 */
3119static u32 fault_mutex_hash(struct hstate *h, struct mm_struct *mm,
3120 struct vm_area_struct *vma,
3121 struct address_space *mapping,
3122 pgoff_t idx, unsigned long address)
3123{
3124 return 0;
3125}
3126#endif
3127
86e5216f 3128int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
788c7df4 3129 unsigned long address, unsigned int flags)
86e5216f 3130{
8382d914 3131 pte_t *ptep, entry;
cb900f41 3132 spinlock_t *ptl;
1e8f889b 3133 int ret;
8382d914
DB
3134 u32 hash;
3135 pgoff_t idx;
0fe6e20b 3136 struct page *page = NULL;
57303d80 3137 struct page *pagecache_page = NULL;
a5516438 3138 struct hstate *h = hstate_vma(vma);
8382d914 3139 struct address_space *mapping;
0f792cf9 3140 int need_wait_lock = 0;
86e5216f 3141
1e16a539
KH
3142 address &= huge_page_mask(h);
3143
fd6a03ed
NH
3144 ptep = huge_pte_offset(mm, address);
3145 if (ptep) {
3146 entry = huge_ptep_get(ptep);
290408d4 3147 if (unlikely(is_hugetlb_entry_migration(entry))) {
cb900f41 3148 migration_entry_wait_huge(vma, mm, ptep);
290408d4
NH
3149 return 0;
3150 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
32f84528 3151 return VM_FAULT_HWPOISON_LARGE |
972dc4de 3152 VM_FAULT_SET_HINDEX(hstate_index(h));
fd6a03ed
NH
3153 }
3154
a5516438 3155 ptep = huge_pte_alloc(mm, address, huge_page_size(h));
86e5216f
AL
3156 if (!ptep)
3157 return VM_FAULT_OOM;
3158
8382d914
DB
3159 mapping = vma->vm_file->f_mapping;
3160 idx = vma_hugecache_offset(h, vma, address);
3161
3935baa9
DG
3162 /*
3163 * Serialize hugepage allocation and instantiation, so that we don't
3164 * get spurious allocation failures if two CPUs race to instantiate
3165 * the same page in the page cache.
3166 */
8382d914
DB
3167 hash = fault_mutex_hash(h, mm, vma, mapping, idx, address);
3168 mutex_lock(&htlb_fault_mutex_table[hash]);
3169
7f2e9525
GS
3170 entry = huge_ptep_get(ptep);
3171 if (huge_pte_none(entry)) {
8382d914 3172 ret = hugetlb_no_page(mm, vma, mapping, idx, address, ptep, flags);
b4d1d99f 3173 goto out_mutex;
3935baa9 3174 }
86e5216f 3175
83c54070 3176 ret = 0;
1e8f889b 3177
0f792cf9
NH
3178 /*
3179 * entry could be a migration/hwpoison entry at this point, so this
3180 * check prevents the kernel from going below assuming that we have
3181 * a active hugepage in pagecache. This goto expects the 2nd page fault,
3182 * and is_hugetlb_entry_(migration|hwpoisoned) check will properly
3183 * handle it.
3184 */
3185 if (!pte_present(entry))
3186 goto out_mutex;
3187
57303d80
AW
3188 /*
3189 * If we are going to COW the mapping later, we examine the pending
3190 * reservations for this page now. This will ensure that any
3191 * allocations necessary to record that reservation occur outside the
3192 * spinlock. For private mappings, we also lookup the pagecache
3193 * page now as it is used to determine if a reservation has been
3194 * consumed.
3195 */
106c992a 3196 if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
2b26736c
AW
3197 if (vma_needs_reservation(h, vma, address) < 0) {
3198 ret = VM_FAULT_OOM;
b4d1d99f 3199 goto out_mutex;
2b26736c 3200 }
57303d80 3201
f83a275d 3202 if (!(vma->vm_flags & VM_MAYSHARE))
57303d80
AW
3203 pagecache_page = hugetlbfs_pagecache_page(h,
3204 vma, address);
3205 }
3206
0f792cf9
NH
3207 ptl = huge_pte_lock(h, mm, ptep);
3208
3209 /* Check for a racing update before calling hugetlb_cow */
3210 if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
3211 goto out_ptl;
3212
56c9cfb1
NH
3213 /*
3214 * hugetlb_cow() requires page locks of pte_page(entry) and
3215 * pagecache_page, so here we need take the former one
3216 * when page != pagecache_page or !pagecache_page.
56c9cfb1
NH
3217 */
3218 page = pte_page(entry);
3219 if (page != pagecache_page)
0f792cf9
NH
3220 if (!trylock_page(page)) {
3221 need_wait_lock = 1;
3222 goto out_ptl;
3223 }
b4d1d99f 3224
0f792cf9 3225 get_page(page);
b4d1d99f 3226
788c7df4 3227 if (flags & FAULT_FLAG_WRITE) {
106c992a 3228 if (!huge_pte_write(entry)) {
57303d80 3229 ret = hugetlb_cow(mm, vma, address, ptep, entry,
cb900f41 3230 pagecache_page, ptl);
0f792cf9 3231 goto out_put_page;
b4d1d99f 3232 }
106c992a 3233 entry = huge_pte_mkdirty(entry);
b4d1d99f
DG
3234 }
3235 entry = pte_mkyoung(entry);
788c7df4
HD
3236 if (huge_ptep_set_access_flags(vma, address, ptep, entry,
3237 flags & FAULT_FLAG_WRITE))
4b3073e1 3238 update_mmu_cache(vma, address, ptep);
0f792cf9
NH
3239out_put_page:
3240 if (page != pagecache_page)
3241 unlock_page(page);
3242 put_page(page);
cb900f41
KS
3243out_ptl:
3244 spin_unlock(ptl);
57303d80
AW
3245
3246 if (pagecache_page) {
3247 unlock_page(pagecache_page);
3248 put_page(pagecache_page);
3249 }
b4d1d99f 3250out_mutex:
8382d914 3251 mutex_unlock(&htlb_fault_mutex_table[hash]);
0f792cf9
NH
3252 /*
3253 * Generally it's safe to hold refcount during waiting page lock. But
3254 * here we just wait to defer the next page fault to avoid busy loop and
3255 * the page is not used after unlocked before returning from the current
3256 * page fault. So we are safe from accessing freed page, even if we wait
3257 * here without taking refcount.
3258 */
3259 if (need_wait_lock)
3260 wait_on_page_locked(page);
1e8f889b 3261 return ret;
86e5216f
AL
3262}
3263
28a35716
ML
3264long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
3265 struct page **pages, struct vm_area_struct **vmas,
3266 unsigned long *position, unsigned long *nr_pages,
3267 long i, unsigned int flags)
63551ae0 3268{
d5d4b0aa
CK
3269 unsigned long pfn_offset;
3270 unsigned long vaddr = *position;
28a35716 3271 unsigned long remainder = *nr_pages;
a5516438 3272 struct hstate *h = hstate_vma(vma);
63551ae0 3273
63551ae0 3274 while (vaddr < vma->vm_end && remainder) {
4c887265 3275 pte_t *pte;
cb900f41 3276 spinlock_t *ptl = NULL;
2a15efc9 3277 int absent;
4c887265 3278 struct page *page;
63551ae0 3279
4c887265
AL
3280 /*
3281 * Some archs (sparc64, sh*) have multiple pte_ts to
2a15efc9 3282 * each hugepage. We have to make sure we get the
4c887265 3283 * first, for the page indexing below to work.
cb900f41
KS
3284 *
3285 * Note that page table lock is not held when pte is null.
4c887265 3286 */
a5516438 3287 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h));
cb900f41
KS
3288 if (pte)
3289 ptl = huge_pte_lock(h, mm, pte);
2a15efc9
HD
3290 absent = !pte || huge_pte_none(huge_ptep_get(pte));
3291
3292 /*
3293 * When coredumping, it suits get_dump_page if we just return
3ae77f43
HD
3294 * an error where there's an empty slot with no huge pagecache
3295 * to back it. This way, we avoid allocating a hugepage, and
3296 * the sparse dumpfile avoids allocating disk blocks, but its
3297 * huge holes still show up with zeroes where they need to be.
2a15efc9 3298 */
3ae77f43
HD
3299 if (absent && (flags & FOLL_DUMP) &&
3300 !hugetlbfs_pagecache_present(h, vma, vaddr)) {
cb900f41
KS
3301 if (pte)
3302 spin_unlock(ptl);
2a15efc9
HD
3303 remainder = 0;
3304 break;
3305 }
63551ae0 3306
9cc3a5bd
NH
3307 /*
3308 * We need call hugetlb_fault for both hugepages under migration
3309 * (in which case hugetlb_fault waits for the migration,) and
3310 * hwpoisoned hugepages (in which case we need to prevent the
3311 * caller from accessing to them.) In order to do this, we use
3312 * here is_swap_pte instead of is_hugetlb_entry_migration and
3313 * is_hugetlb_entry_hwpoisoned. This is because it simply covers
3314 * both cases, and because we can't follow correct pages
3315 * directly from any kind of swap entries.
3316 */
3317 if (absent || is_swap_pte(huge_ptep_get(pte)) ||
106c992a
GS
3318 ((flags & FOLL_WRITE) &&
3319 !huge_pte_write(huge_ptep_get(pte)))) {
4c887265 3320 int ret;
63551ae0 3321
cb900f41
KS
3322 if (pte)
3323 spin_unlock(ptl);
2a15efc9
HD
3324 ret = hugetlb_fault(mm, vma, vaddr,
3325 (flags & FOLL_WRITE) ? FAULT_FLAG_WRITE : 0);
a89182c7 3326 if (!(ret & VM_FAULT_ERROR))
4c887265 3327 continue;
63551ae0 3328
4c887265 3329 remainder = 0;
4c887265
AL
3330 break;
3331 }
3332
a5516438 3333 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
7f2e9525 3334 page = pte_page(huge_ptep_get(pte));
d5d4b0aa 3335same_page:
d6692183 3336 if (pages) {
2a15efc9 3337 pages[i] = mem_map_offset(page, pfn_offset);
a0368d4e 3338 get_page_foll(pages[i]);
d6692183 3339 }
63551ae0
DG
3340
3341 if (vmas)
3342 vmas[i] = vma;
3343
3344 vaddr += PAGE_SIZE;
d5d4b0aa 3345 ++pfn_offset;
63551ae0
DG
3346 --remainder;
3347 ++i;
d5d4b0aa 3348 if (vaddr < vma->vm_end && remainder &&
a5516438 3349 pfn_offset < pages_per_huge_page(h)) {
d5d4b0aa
CK
3350 /*
3351 * We use pfn_offset to avoid touching the pageframes
3352 * of this compound page.
3353 */
3354 goto same_page;
3355 }
cb900f41 3356 spin_unlock(ptl);
63551ae0 3357 }
28a35716 3358 *nr_pages = remainder;
63551ae0
DG
3359 *position = vaddr;
3360
2a15efc9 3361 return i ? i : -EFAULT;
63551ae0 3362}
8f860591 3363
7da4d641 3364unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
8f860591
ZY
3365 unsigned long address, unsigned long end, pgprot_t newprot)
3366{
3367 struct mm_struct *mm = vma->vm_mm;
3368 unsigned long start = address;
3369 pte_t *ptep;
3370 pte_t pte;
a5516438 3371 struct hstate *h = hstate_vma(vma);
7da4d641 3372 unsigned long pages = 0;
8f860591
ZY
3373
3374 BUG_ON(address >= end);
3375 flush_cache_range(vma, address, end);
3376
a5338093 3377 mmu_notifier_invalidate_range_start(mm, start, end);
83cde9e8 3378 i_mmap_lock_write(vma->vm_file->f_mapping);
a5516438 3379 for (; address < end; address += huge_page_size(h)) {
cb900f41 3380 spinlock_t *ptl;
8f860591
ZY
3381 ptep = huge_pte_offset(mm, address);
3382 if (!ptep)
3383 continue;
cb900f41 3384 ptl = huge_pte_lock(h, mm, ptep);
7da4d641
PZ
3385 if (huge_pmd_unshare(mm, &address, ptep)) {
3386 pages++;
cb900f41 3387 spin_unlock(ptl);
39dde65c 3388 continue;
7da4d641 3389 }
a8bda28d
NH
3390 pte = huge_ptep_get(ptep);
3391 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
3392 spin_unlock(ptl);
3393 continue;
3394 }
3395 if (unlikely(is_hugetlb_entry_migration(pte))) {
3396 swp_entry_t entry = pte_to_swp_entry(pte);
3397
3398 if (is_write_migration_entry(entry)) {
3399 pte_t newpte;
3400
3401 make_migration_entry_read(&entry);
3402 newpte = swp_entry_to_pte(entry);
3403 set_huge_pte_at(mm, address, ptep, newpte);
3404 pages++;
3405 }
3406 spin_unlock(ptl);
3407 continue;
3408 }
3409 if (!huge_pte_none(pte)) {
8f860591 3410 pte = huge_ptep_get_and_clear(mm, address, ptep);
106c992a 3411 pte = pte_mkhuge(huge_pte_modify(pte, newprot));
be7517d6 3412 pte = arch_make_huge_pte(pte, vma, NULL, 0);
8f860591 3413 set_huge_pte_at(mm, address, ptep, pte);
7da4d641 3414 pages++;
8f860591 3415 }
cb900f41 3416 spin_unlock(ptl);
8f860591 3417 }
d833352a 3418 /*
c8c06efa 3419 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
d833352a 3420 * may have cleared our pud entry and done put_page on the page table:
c8c06efa 3421 * once we release i_mmap_rwsem, another task can do the final put_page
d833352a
MG
3422 * and that page table be reused and filled with junk.
3423 */
8f860591 3424 flush_tlb_range(vma, start, end);
34ee645e 3425 mmu_notifier_invalidate_range(mm, start, end);
83cde9e8 3426 i_mmap_unlock_write(vma->vm_file->f_mapping);
a5338093 3427 mmu_notifier_invalidate_range_end(mm, start, end);
7da4d641
PZ
3428
3429 return pages << h->order;
8f860591
ZY
3430}
3431
a1e78772
MG
3432int hugetlb_reserve_pages(struct inode *inode,
3433 long from, long to,
5a6fe125 3434 struct vm_area_struct *vma,
ca16d140 3435 vm_flags_t vm_flags)
e4e574b7 3436{
17c9d12e 3437 long ret, chg;
a5516438 3438 struct hstate *h = hstate_inode(inode);
90481622 3439 struct hugepage_subpool *spool = subpool_inode(inode);
9119a41e 3440 struct resv_map *resv_map;
e4e574b7 3441
17c9d12e
MG
3442 /*
3443 * Only apply hugepage reservation if asked. At fault time, an
3444 * attempt will be made for VM_NORESERVE to allocate a page
90481622 3445 * without using reserves
17c9d12e 3446 */
ca16d140 3447 if (vm_flags & VM_NORESERVE)
17c9d12e
MG
3448 return 0;
3449
a1e78772
MG
3450 /*
3451 * Shared mappings base their reservation on the number of pages that
3452 * are already allocated on behalf of the file. Private mappings need
3453 * to reserve the full area even if read-only as mprotect() may be
3454 * called to make the mapping read-write. Assume !vma is a shm mapping
3455 */
9119a41e 3456 if (!vma || vma->vm_flags & VM_MAYSHARE) {
4e35f483 3457 resv_map = inode_resv_map(inode);
9119a41e 3458
1406ec9b 3459 chg = region_chg(resv_map, from, to);
9119a41e
JK
3460
3461 } else {
3462 resv_map = resv_map_alloc();
17c9d12e
MG
3463 if (!resv_map)
3464 return -ENOMEM;
3465
a1e78772 3466 chg = to - from;
84afd99b 3467
17c9d12e
MG
3468 set_vma_resv_map(vma, resv_map);
3469 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
3470 }
3471
c50ac050
DH
3472 if (chg < 0) {
3473 ret = chg;
3474 goto out_err;
3475 }
8a630112 3476
90481622 3477 /* There must be enough pages in the subpool for the mapping */
c50ac050
DH
3478 if (hugepage_subpool_get_pages(spool, chg)) {
3479 ret = -ENOSPC;
3480 goto out_err;
3481 }
5a6fe125
MG
3482
3483 /*
17c9d12e 3484 * Check enough hugepages are available for the reservation.
90481622 3485 * Hand the pages back to the subpool if there are not
5a6fe125 3486 */
a5516438 3487 ret = hugetlb_acct_memory(h, chg);
68842c9b 3488 if (ret < 0) {
90481622 3489 hugepage_subpool_put_pages(spool, chg);
c50ac050 3490 goto out_err;
68842c9b 3491 }
17c9d12e
MG
3492
3493 /*
3494 * Account for the reservations made. Shared mappings record regions
3495 * that have reservations as they are shared by multiple VMAs.
3496 * When the last VMA disappears, the region map says how much
3497 * the reservation was and the page cache tells how much of
3498 * the reservation was consumed. Private mappings are per-VMA and
3499 * only the consumed reservations are tracked. When the VMA
3500 * disappears, the original reservation is the VMA size and the
3501 * consumed reservations are stored in the map. Hence, nothing
3502 * else has to be done for private mappings here
3503 */
f83a275d 3504 if (!vma || vma->vm_flags & VM_MAYSHARE)
1406ec9b 3505 region_add(resv_map, from, to);
a43a8c39 3506 return 0;
c50ac050 3507out_err:
f031dd27
JK
3508 if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
3509 kref_put(&resv_map->refs, resv_map_release);
c50ac050 3510 return ret;
a43a8c39
CK
3511}
3512
3513void hugetlb_unreserve_pages(struct inode *inode, long offset, long freed)
3514{
a5516438 3515 struct hstate *h = hstate_inode(inode);
4e35f483 3516 struct resv_map *resv_map = inode_resv_map(inode);
9119a41e 3517 long chg = 0;
90481622 3518 struct hugepage_subpool *spool = subpool_inode(inode);
45c682a6 3519
9119a41e 3520 if (resv_map)
1406ec9b 3521 chg = region_truncate(resv_map, offset);
45c682a6 3522 spin_lock(&inode->i_lock);
e4c6f8be 3523 inode->i_blocks -= (blocks_per_huge_page(h) * freed);
45c682a6
KC
3524 spin_unlock(&inode->i_lock);
3525
90481622 3526 hugepage_subpool_put_pages(spool, (chg - freed));
a5516438 3527 hugetlb_acct_memory(h, -(chg - freed));
a43a8c39 3528}
93f70f90 3529
3212b535
SC
3530#ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
3531static unsigned long page_table_shareable(struct vm_area_struct *svma,
3532 struct vm_area_struct *vma,
3533 unsigned long addr, pgoff_t idx)
3534{
3535 unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
3536 svma->vm_start;
3537 unsigned long sbase = saddr & PUD_MASK;
3538 unsigned long s_end = sbase + PUD_SIZE;
3539
3540 /* Allow segments to share if only one is marked locked */
3541 unsigned long vm_flags = vma->vm_flags & ~VM_LOCKED;
3542 unsigned long svm_flags = svma->vm_flags & ~VM_LOCKED;
3543
3544 /*
3545 * match the virtual addresses, permission and the alignment of the
3546 * page table page.
3547 */
3548 if (pmd_index(addr) != pmd_index(saddr) ||
3549 vm_flags != svm_flags ||
3550 sbase < svma->vm_start || svma->vm_end < s_end)
3551 return 0;
3552
3553 return saddr;
3554}
3555
3556static int vma_shareable(struct vm_area_struct *vma, unsigned long addr)
3557{
3558 unsigned long base = addr & PUD_MASK;
3559 unsigned long end = base + PUD_SIZE;
3560
3561 /*
3562 * check on proper vm_flags and page table alignment
3563 */
3564 if (vma->vm_flags & VM_MAYSHARE &&
3565 vma->vm_start <= base && end <= vma->vm_end)
3566 return 1;
3567 return 0;
3568}
3569
3570/*
3571 * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
3572 * and returns the corresponding pte. While this is not necessary for the
3573 * !shared pmd case because we can allocate the pmd later as well, it makes the
3574 * code much cleaner. pmd allocation is essential for the shared case because
c8c06efa 3575 * pud has to be populated inside the same i_mmap_rwsem section - otherwise
3212b535
SC
3576 * racing tasks could either miss the sharing (see huge_pte_offset) or select a
3577 * bad pmd for sharing.
3578 */
3579pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
3580{
3581 struct vm_area_struct *vma = find_vma(mm, addr);
3582 struct address_space *mapping = vma->vm_file->f_mapping;
3583 pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
3584 vma->vm_pgoff;
3585 struct vm_area_struct *svma;
3586 unsigned long saddr;
3587 pte_t *spte = NULL;
3588 pte_t *pte;
cb900f41 3589 spinlock_t *ptl;
3212b535
SC
3590
3591 if (!vma_shareable(vma, addr))
3592 return (pte_t *)pmd_alloc(mm, pud, addr);
3593
83cde9e8 3594 i_mmap_lock_write(mapping);
3212b535
SC
3595 vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
3596 if (svma == vma)
3597 continue;
3598
3599 saddr = page_table_shareable(svma, vma, addr, idx);
3600 if (saddr) {
3601 spte = huge_pte_offset(svma->vm_mm, saddr);
3602 if (spte) {
dc6c9a35 3603 mm_inc_nr_pmds(mm);
3212b535
SC
3604 get_page(virt_to_page(spte));
3605 break;
3606 }
3607 }
3608 }
3609
3610 if (!spte)
3611 goto out;
3612
cb900f41
KS
3613 ptl = huge_pte_lockptr(hstate_vma(vma), mm, spte);
3614 spin_lock(ptl);
dc6c9a35 3615 if (pud_none(*pud)) {
3212b535
SC
3616 pud_populate(mm, pud,
3617 (pmd_t *)((unsigned long)spte & PAGE_MASK));
dc6c9a35 3618 } else {
3212b535 3619 put_page(virt_to_page(spte));
dc6c9a35
KS
3620 mm_inc_nr_pmds(mm);
3621 }
cb900f41 3622 spin_unlock(ptl);
3212b535
SC
3623out:
3624 pte = (pte_t *)pmd_alloc(mm, pud, addr);
83cde9e8 3625 i_mmap_unlock_write(mapping);
3212b535
SC
3626 return pte;
3627}
3628
3629/*
3630 * unmap huge page backed by shared pte.
3631 *
3632 * Hugetlb pte page is ref counted at the time of mapping. If pte is shared
3633 * indicated by page_count > 1, unmap is achieved by clearing pud and
3634 * decrementing the ref count. If count == 1, the pte page is not shared.
3635 *
cb900f41 3636 * called with page table lock held.
3212b535
SC
3637 *
3638 * returns: 1 successfully unmapped a shared pte page
3639 * 0 the underlying pte page is not shared, or it is the last user
3640 */
3641int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
3642{
3643 pgd_t *pgd = pgd_offset(mm, *addr);
3644 pud_t *pud = pud_offset(pgd, *addr);
3645
3646 BUG_ON(page_count(virt_to_page(ptep)) == 0);
3647 if (page_count(virt_to_page(ptep)) == 1)
3648 return 0;
3649
3650 pud_clear(pud);
3651 put_page(virt_to_page(ptep));
dc6c9a35 3652 mm_dec_nr_pmds(mm);
3212b535
SC
3653 *addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE;
3654 return 1;
3655}
9e5fc74c
SC
3656#define want_pmd_share() (1)
3657#else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
3658pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
3659{
3660 return NULL;
3661}
3662#define want_pmd_share() (0)
3212b535
SC
3663#endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
3664
9e5fc74c
SC
3665#ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
3666pte_t *huge_pte_alloc(struct mm_struct *mm,
3667 unsigned long addr, unsigned long sz)
3668{
3669 pgd_t *pgd;
3670 pud_t *pud;
3671 pte_t *pte = NULL;
3672
3673 pgd = pgd_offset(mm, addr);
3674 pud = pud_alloc(mm, pgd, addr);
3675 if (pud) {
3676 if (sz == PUD_SIZE) {
3677 pte = (pte_t *)pud;
3678 } else {
3679 BUG_ON(sz != PMD_SIZE);
3680 if (want_pmd_share() && pud_none(*pud))
3681 pte = huge_pmd_share(mm, addr, pud);
3682 else
3683 pte = (pte_t *)pmd_alloc(mm, pud, addr);
3684 }
3685 }
3686 BUG_ON(pte && !pte_none(*pte) && !pte_huge(*pte));
3687
3688 return pte;
3689}
3690
3691pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr)
3692{
3693 pgd_t *pgd;
3694 pud_t *pud;
3695 pmd_t *pmd = NULL;
3696
3697 pgd = pgd_offset(mm, addr);
3698 if (pgd_present(*pgd)) {
3699 pud = pud_offset(pgd, addr);
3700 if (pud_present(*pud)) {
3701 if (pud_huge(*pud))
3702 return (pte_t *)pud;
3703 pmd = pmd_offset(pud, addr);
3704 }
3705 }
3706 return (pte_t *) pmd;
3707}
3708
61f77eda
NH
3709#endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
3710
3711/*
3712 * These functions are overwritable if your architecture needs its own
3713 * behavior.
3714 */
3715struct page * __weak
3716follow_huge_addr(struct mm_struct *mm, unsigned long address,
3717 int write)
3718{
3719 return ERR_PTR(-EINVAL);
3720}
3721
3722struct page * __weak
9e5fc74c 3723follow_huge_pmd(struct mm_struct *mm, unsigned long address,
e66f17ff 3724 pmd_t *pmd, int flags)
9e5fc74c 3725{
e66f17ff
NH
3726 struct page *page = NULL;
3727 spinlock_t *ptl;
3728retry:
3729 ptl = pmd_lockptr(mm, pmd);
3730 spin_lock(ptl);
3731 /*
3732 * make sure that the address range covered by this pmd is not
3733 * unmapped from other threads.
3734 */
3735 if (!pmd_huge(*pmd))
3736 goto out;
3737 if (pmd_present(*pmd)) {
3738 page = pte_page(*(pte_t *)pmd) +
3739 ((address & ~PMD_MASK) >> PAGE_SHIFT);
3740 if (flags & FOLL_GET)
3741 get_page(page);
3742 } else {
3743 if (is_hugetlb_entry_migration(huge_ptep_get((pte_t *)pmd))) {
3744 spin_unlock(ptl);
3745 __migration_entry_wait(mm, (pte_t *)pmd, ptl);
3746 goto retry;
3747 }
3748 /*
3749 * hwpoisoned entry is treated as no_page_table in
3750 * follow_page_mask().
3751 */
3752 }
3753out:
3754 spin_unlock(ptl);
9e5fc74c
SC
3755 return page;
3756}
3757
61f77eda 3758struct page * __weak
9e5fc74c 3759follow_huge_pud(struct mm_struct *mm, unsigned long address,
e66f17ff 3760 pud_t *pud, int flags)
9e5fc74c 3761{
e66f17ff
NH
3762 if (flags & FOLL_GET)
3763 return NULL;
9e5fc74c 3764
e66f17ff 3765 return pte_page(*(pte_t *)pud) + ((address & ~PUD_MASK) >> PAGE_SHIFT);
9e5fc74c
SC
3766}
3767
d5bd9106
AK
3768#ifdef CONFIG_MEMORY_FAILURE
3769
6de2b1aa
NH
3770/* Should be called in hugetlb_lock */
3771static int is_hugepage_on_freelist(struct page *hpage)
3772{
3773 struct page *page;
3774 struct page *tmp;
3775 struct hstate *h = page_hstate(hpage);
3776 int nid = page_to_nid(hpage);
3777
3778 list_for_each_entry_safe(page, tmp, &h->hugepage_freelists[nid], lru)
3779 if (page == hpage)
3780 return 1;
3781 return 0;
3782}
3783
93f70f90
NH
3784/*
3785 * This function is called from memory failure code.
3786 * Assume the caller holds page lock of the head page.
3787 */
6de2b1aa 3788int dequeue_hwpoisoned_huge_page(struct page *hpage)
93f70f90
NH
3789{
3790 struct hstate *h = page_hstate(hpage);
3791 int nid = page_to_nid(hpage);
6de2b1aa 3792 int ret = -EBUSY;
93f70f90
NH
3793
3794 spin_lock(&hugetlb_lock);
6de2b1aa 3795 if (is_hugepage_on_freelist(hpage)) {
56f2fb14
NH
3796 /*
3797 * Hwpoisoned hugepage isn't linked to activelist or freelist,
3798 * but dangling hpage->lru can trigger list-debug warnings
3799 * (this happens when we call unpoison_memory() on it),
3800 * so let it point to itself with list_del_init().
3801 */
3802 list_del_init(&hpage->lru);
8c6c2ecb 3803 set_page_refcounted(hpage);
6de2b1aa
NH
3804 h->free_huge_pages--;
3805 h->free_huge_pages_node[nid]--;
3806 ret = 0;
3807 }
93f70f90 3808 spin_unlock(&hugetlb_lock);
6de2b1aa 3809 return ret;
93f70f90 3810}
6de2b1aa 3811#endif
31caf665
NH
3812
3813bool isolate_huge_page(struct page *page, struct list_head *list)
3814{
309381fe 3815 VM_BUG_ON_PAGE(!PageHead(page), page);
31caf665
NH
3816 if (!get_page_unless_zero(page))
3817 return false;
3818 spin_lock(&hugetlb_lock);
3819 list_move_tail(&page->lru, list);
3820 spin_unlock(&hugetlb_lock);
3821 return true;
3822}
3823
3824void putback_active_hugepage(struct page *page)
3825{
309381fe 3826 VM_BUG_ON_PAGE(!PageHead(page), page);
31caf665
NH
3827 spin_lock(&hugetlb_lock);
3828 list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
3829 spin_unlock(&hugetlb_lock);
3830 put_page(page);
3831}
c8721bbb
NH
3832
3833bool is_hugepage_active(struct page *page)
3834{
309381fe 3835 VM_BUG_ON_PAGE(!PageHuge(page), page);
c8721bbb
NH
3836 /*
3837 * This function can be called for a tail page because the caller,
3838 * scan_movable_pages, scans through a given pfn-range which typically
3839 * covers one memory block. In systems using gigantic hugepage (1GB
3840 * for x86_64,) a hugepage is larger than a memory block, and we don't
3841 * support migrating such large hugepages for now, so return false
3842 * when called for tail pages.
3843 */
3844 if (PageTail(page))
3845 return false;
3846 /*
3847 * Refcount of a hwpoisoned hugepages is 1, but they are not active,
3848 * so we should return false for them.
3849 */
3850 if (unlikely(PageHWPoison(page)))
3851 return false;
3852 return page_count(page) > 0;
3853}