mm/hugetlb: add new HugeTLB cgroup
[linux-2.6-block.git] / mm / hugetlb.c
CommitLineData
1da177e4
LT
1/*
2 * Generic hugetlb support.
3 * (C) William Irwin, April 2004
4 */
1da177e4
LT
5#include <linux/list.h>
6#include <linux/init.h>
7#include <linux/module.h>
8#include <linux/mm.h>
e1759c21 9#include <linux/seq_file.h>
1da177e4
LT
10#include <linux/sysctl.h>
11#include <linux/highmem.h>
cddb8a5c 12#include <linux/mmu_notifier.h>
1da177e4 13#include <linux/nodemask.h>
63551ae0 14#include <linux/pagemap.h>
5da7ca86 15#include <linux/mempolicy.h>
aea47ff3 16#include <linux/cpuset.h>
3935baa9 17#include <linux/mutex.h>
aa888a74 18#include <linux/bootmem.h>
a3437870 19#include <linux/sysfs.h>
5a0e3ad6 20#include <linux/slab.h>
0fe6e20b 21#include <linux/rmap.h>
fd6a03ed
NH
22#include <linux/swap.h>
23#include <linux/swapops.h>
d6606683 24
63551ae0
DG
25#include <asm/page.h>
26#include <asm/pgtable.h>
24669e58 27#include <asm/tlb.h>
63551ae0 28
24669e58 29#include <linux/io.h>
63551ae0 30#include <linux/hugetlb.h>
9a305230 31#include <linux/node.h>
7835e98b 32#include "internal.h"
1da177e4
LT
33
34const unsigned long hugetlb_zero = 0, hugetlb_infinity = ~0UL;
396faf03
MG
35static gfp_t htlb_alloc_mask = GFP_HIGHUSER;
36unsigned long hugepages_treat_as_movable;
a5516438 37
c3f38a38 38int hugetlb_max_hstate __read_mostly;
e5ff2159
AK
39unsigned int default_hstate_idx;
40struct hstate hstates[HUGE_MAX_HSTATE];
41
53ba51d2
JT
42__initdata LIST_HEAD(huge_boot_pages);
43
e5ff2159
AK
44/* for command line parsing */
45static struct hstate * __initdata parsed_hstate;
46static unsigned long __initdata default_hstate_max_huge_pages;
e11bfbfc 47static unsigned long __initdata default_hstate_size;
e5ff2159 48
3935baa9
DG
49/*
50 * Protects updates to hugepage_freelists, nr_huge_pages, and free_huge_pages
51 */
c3f38a38 52DEFINE_SPINLOCK(hugetlb_lock);
0bd0f9fb 53
90481622
DG
54static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
55{
56 bool free = (spool->count == 0) && (spool->used_hpages == 0);
57
58 spin_unlock(&spool->lock);
59
60 /* If no pages are used, and no other handles to the subpool
61 * remain, free the subpool the subpool remain */
62 if (free)
63 kfree(spool);
64}
65
66struct hugepage_subpool *hugepage_new_subpool(long nr_blocks)
67{
68 struct hugepage_subpool *spool;
69
70 spool = kmalloc(sizeof(*spool), GFP_KERNEL);
71 if (!spool)
72 return NULL;
73
74 spin_lock_init(&spool->lock);
75 spool->count = 1;
76 spool->max_hpages = nr_blocks;
77 spool->used_hpages = 0;
78
79 return spool;
80}
81
82void hugepage_put_subpool(struct hugepage_subpool *spool)
83{
84 spin_lock(&spool->lock);
85 BUG_ON(!spool->count);
86 spool->count--;
87 unlock_or_release_subpool(spool);
88}
89
90static int hugepage_subpool_get_pages(struct hugepage_subpool *spool,
91 long delta)
92{
93 int ret = 0;
94
95 if (!spool)
96 return 0;
97
98 spin_lock(&spool->lock);
99 if ((spool->used_hpages + delta) <= spool->max_hpages) {
100 spool->used_hpages += delta;
101 } else {
102 ret = -ENOMEM;
103 }
104 spin_unlock(&spool->lock);
105
106 return ret;
107}
108
109static void hugepage_subpool_put_pages(struct hugepage_subpool *spool,
110 long delta)
111{
112 if (!spool)
113 return;
114
115 spin_lock(&spool->lock);
116 spool->used_hpages -= delta;
117 /* If hugetlbfs_put_super couldn't free spool due to
118 * an outstanding quota reference, free it now. */
119 unlock_or_release_subpool(spool);
120}
121
122static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
123{
124 return HUGETLBFS_SB(inode->i_sb)->spool;
125}
126
127static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
128{
129 return subpool_inode(vma->vm_file->f_dentry->d_inode);
130}
131
96822904
AW
132/*
133 * Region tracking -- allows tracking of reservations and instantiated pages
134 * across the pages in a mapping.
84afd99b
AW
135 *
136 * The region data structures are protected by a combination of the mmap_sem
137 * and the hugetlb_instantion_mutex. To access or modify a region the caller
138 * must either hold the mmap_sem for write, or the mmap_sem for read and
139 * the hugetlb_instantiation mutex:
140 *
32f84528 141 * down_write(&mm->mmap_sem);
84afd99b 142 * or
32f84528
CF
143 * down_read(&mm->mmap_sem);
144 * mutex_lock(&hugetlb_instantiation_mutex);
96822904
AW
145 */
146struct file_region {
147 struct list_head link;
148 long from;
149 long to;
150};
151
152static long region_add(struct list_head *head, long f, long t)
153{
154 struct file_region *rg, *nrg, *trg;
155
156 /* Locate the region we are either in or before. */
157 list_for_each_entry(rg, head, link)
158 if (f <= rg->to)
159 break;
160
161 /* Round our left edge to the current segment if it encloses us. */
162 if (f > rg->from)
163 f = rg->from;
164
165 /* Check for and consume any regions we now overlap with. */
166 nrg = rg;
167 list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
168 if (&rg->link == head)
169 break;
170 if (rg->from > t)
171 break;
172
173 /* If this area reaches higher then extend our area to
174 * include it completely. If this is not the first area
175 * which we intend to reuse, free it. */
176 if (rg->to > t)
177 t = rg->to;
178 if (rg != nrg) {
179 list_del(&rg->link);
180 kfree(rg);
181 }
182 }
183 nrg->from = f;
184 nrg->to = t;
185 return 0;
186}
187
188static long region_chg(struct list_head *head, long f, long t)
189{
190 struct file_region *rg, *nrg;
191 long chg = 0;
192
193 /* Locate the region we are before or in. */
194 list_for_each_entry(rg, head, link)
195 if (f <= rg->to)
196 break;
197
198 /* If we are below the current region then a new region is required.
199 * Subtle, allocate a new region at the position but make it zero
200 * size such that we can guarantee to record the reservation. */
201 if (&rg->link == head || t < rg->from) {
202 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
203 if (!nrg)
204 return -ENOMEM;
205 nrg->from = f;
206 nrg->to = f;
207 INIT_LIST_HEAD(&nrg->link);
208 list_add(&nrg->link, rg->link.prev);
209
210 return t - f;
211 }
212
213 /* Round our left edge to the current segment if it encloses us. */
214 if (f > rg->from)
215 f = rg->from;
216 chg = t - f;
217
218 /* Check for and consume any regions we now overlap with. */
219 list_for_each_entry(rg, rg->link.prev, link) {
220 if (&rg->link == head)
221 break;
222 if (rg->from > t)
223 return chg;
224
25985edc 225 /* We overlap with this area, if it extends further than
96822904
AW
226 * us then we must extend ourselves. Account for its
227 * existing reservation. */
228 if (rg->to > t) {
229 chg += rg->to - t;
230 t = rg->to;
231 }
232 chg -= rg->to - rg->from;
233 }
234 return chg;
235}
236
237static long region_truncate(struct list_head *head, long end)
238{
239 struct file_region *rg, *trg;
240 long chg = 0;
241
242 /* Locate the region we are either in or before. */
243 list_for_each_entry(rg, head, link)
244 if (end <= rg->to)
245 break;
246 if (&rg->link == head)
247 return 0;
248
249 /* If we are in the middle of a region then adjust it. */
250 if (end > rg->from) {
251 chg = rg->to - end;
252 rg->to = end;
253 rg = list_entry(rg->link.next, typeof(*rg), link);
254 }
255
256 /* Drop any remaining regions. */
257 list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
258 if (&rg->link == head)
259 break;
260 chg += rg->to - rg->from;
261 list_del(&rg->link);
262 kfree(rg);
263 }
264 return chg;
265}
266
84afd99b
AW
267static long region_count(struct list_head *head, long f, long t)
268{
269 struct file_region *rg;
270 long chg = 0;
271
272 /* Locate each segment we overlap with, and count that overlap. */
273 list_for_each_entry(rg, head, link) {
f2135a4a
WSH
274 long seg_from;
275 long seg_to;
84afd99b
AW
276
277 if (rg->to <= f)
278 continue;
279 if (rg->from >= t)
280 break;
281
282 seg_from = max(rg->from, f);
283 seg_to = min(rg->to, t);
284
285 chg += seg_to - seg_from;
286 }
287
288 return chg;
289}
290
e7c4b0bf
AW
291/*
292 * Convert the address within this vma to the page offset within
293 * the mapping, in pagecache page units; huge pages here.
294 */
a5516438
AK
295static pgoff_t vma_hugecache_offset(struct hstate *h,
296 struct vm_area_struct *vma, unsigned long address)
e7c4b0bf 297{
a5516438
AK
298 return ((address - vma->vm_start) >> huge_page_shift(h)) +
299 (vma->vm_pgoff >> huge_page_order(h));
e7c4b0bf
AW
300}
301
0fe6e20b
NH
302pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
303 unsigned long address)
304{
305 return vma_hugecache_offset(hstate_vma(vma), vma, address);
306}
307
08fba699
MG
308/*
309 * Return the size of the pages allocated when backing a VMA. In the majority
310 * cases this will be same size as used by the page table entries.
311 */
312unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
313{
314 struct hstate *hstate;
315
316 if (!is_vm_hugetlb_page(vma))
317 return PAGE_SIZE;
318
319 hstate = hstate_vma(vma);
320
321 return 1UL << (hstate->order + PAGE_SHIFT);
322}
f340ca0f 323EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
08fba699 324
3340289d
MG
325/*
326 * Return the page size being used by the MMU to back a VMA. In the majority
327 * of cases, the page size used by the kernel matches the MMU size. On
328 * architectures where it differs, an architecture-specific version of this
329 * function is required.
330 */
331#ifndef vma_mmu_pagesize
332unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
333{
334 return vma_kernel_pagesize(vma);
335}
336#endif
337
84afd99b
AW
338/*
339 * Flags for MAP_PRIVATE reservations. These are stored in the bottom
340 * bits of the reservation map pointer, which are always clear due to
341 * alignment.
342 */
343#define HPAGE_RESV_OWNER (1UL << 0)
344#define HPAGE_RESV_UNMAPPED (1UL << 1)
04f2cbe3 345#define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
84afd99b 346
a1e78772
MG
347/*
348 * These helpers are used to track how many pages are reserved for
349 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
350 * is guaranteed to have their future faults succeed.
351 *
352 * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
353 * the reserve counters are updated with the hugetlb_lock held. It is safe
354 * to reset the VMA at fork() time as it is not in use yet and there is no
355 * chance of the global counters getting corrupted as a result of the values.
84afd99b
AW
356 *
357 * The private mapping reservation is represented in a subtly different
358 * manner to a shared mapping. A shared mapping has a region map associated
359 * with the underlying file, this region map represents the backing file
360 * pages which have ever had a reservation assigned which this persists even
361 * after the page is instantiated. A private mapping has a region map
362 * associated with the original mmap which is attached to all VMAs which
363 * reference it, this region map represents those offsets which have consumed
364 * reservation ie. where pages have been instantiated.
a1e78772 365 */
e7c4b0bf
AW
366static unsigned long get_vma_private_data(struct vm_area_struct *vma)
367{
368 return (unsigned long)vma->vm_private_data;
369}
370
371static void set_vma_private_data(struct vm_area_struct *vma,
372 unsigned long value)
373{
374 vma->vm_private_data = (void *)value;
375}
376
84afd99b
AW
377struct resv_map {
378 struct kref refs;
379 struct list_head regions;
380};
381
2a4b3ded 382static struct resv_map *resv_map_alloc(void)
84afd99b
AW
383{
384 struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
385 if (!resv_map)
386 return NULL;
387
388 kref_init(&resv_map->refs);
389 INIT_LIST_HEAD(&resv_map->regions);
390
391 return resv_map;
392}
393
2a4b3ded 394static void resv_map_release(struct kref *ref)
84afd99b
AW
395{
396 struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
397
398 /* Clear out any active regions before we release the map. */
399 region_truncate(&resv_map->regions, 0);
400 kfree(resv_map);
401}
402
403static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
a1e78772
MG
404{
405 VM_BUG_ON(!is_vm_hugetlb_page(vma));
f83a275d 406 if (!(vma->vm_flags & VM_MAYSHARE))
84afd99b
AW
407 return (struct resv_map *)(get_vma_private_data(vma) &
408 ~HPAGE_RESV_MASK);
2a4b3ded 409 return NULL;
a1e78772
MG
410}
411
84afd99b 412static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
a1e78772
MG
413{
414 VM_BUG_ON(!is_vm_hugetlb_page(vma));
f83a275d 415 VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
a1e78772 416
84afd99b
AW
417 set_vma_private_data(vma, (get_vma_private_data(vma) &
418 HPAGE_RESV_MASK) | (unsigned long)map);
04f2cbe3
MG
419}
420
421static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
422{
04f2cbe3 423 VM_BUG_ON(!is_vm_hugetlb_page(vma));
f83a275d 424 VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
e7c4b0bf
AW
425
426 set_vma_private_data(vma, get_vma_private_data(vma) | flags);
04f2cbe3
MG
427}
428
429static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
430{
431 VM_BUG_ON(!is_vm_hugetlb_page(vma));
e7c4b0bf
AW
432
433 return (get_vma_private_data(vma) & flag) != 0;
a1e78772
MG
434}
435
436/* Decrement the reserved pages in the hugepage pool by one */
a5516438
AK
437static void decrement_hugepage_resv_vma(struct hstate *h,
438 struct vm_area_struct *vma)
a1e78772 439{
c37f9fb1
AW
440 if (vma->vm_flags & VM_NORESERVE)
441 return;
442
f83a275d 443 if (vma->vm_flags & VM_MAYSHARE) {
a1e78772 444 /* Shared mappings always use reserves */
a5516438 445 h->resv_huge_pages--;
84afd99b 446 } else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
a1e78772
MG
447 /*
448 * Only the process that called mmap() has reserves for
449 * private mappings.
450 */
a5516438 451 h->resv_huge_pages--;
a1e78772
MG
452 }
453}
454
04f2cbe3 455/* Reset counters to 0 and clear all HPAGE_RESV_* flags */
a1e78772
MG
456void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
457{
458 VM_BUG_ON(!is_vm_hugetlb_page(vma));
f83a275d 459 if (!(vma->vm_flags & VM_MAYSHARE))
a1e78772
MG
460 vma->vm_private_data = (void *)0;
461}
462
463/* Returns true if the VMA has associated reserve pages */
7f09ca51 464static int vma_has_reserves(struct vm_area_struct *vma)
a1e78772 465{
f83a275d 466 if (vma->vm_flags & VM_MAYSHARE)
7f09ca51
MG
467 return 1;
468 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER))
469 return 1;
470 return 0;
a1e78772
MG
471}
472
0ebabb41
NH
473static void copy_gigantic_page(struct page *dst, struct page *src)
474{
475 int i;
476 struct hstate *h = page_hstate(src);
477 struct page *dst_base = dst;
478 struct page *src_base = src;
479
480 for (i = 0; i < pages_per_huge_page(h); ) {
481 cond_resched();
482 copy_highpage(dst, src);
483
484 i++;
485 dst = mem_map_next(dst, dst_base, i);
486 src = mem_map_next(src, src_base, i);
487 }
488}
489
490void copy_huge_page(struct page *dst, struct page *src)
491{
492 int i;
493 struct hstate *h = page_hstate(src);
494
495 if (unlikely(pages_per_huge_page(h) > MAX_ORDER_NR_PAGES)) {
496 copy_gigantic_page(dst, src);
497 return;
498 }
499
500 might_sleep();
501 for (i = 0; i < pages_per_huge_page(h); i++) {
502 cond_resched();
503 copy_highpage(dst + i, src + i);
504 }
505}
506
a5516438 507static void enqueue_huge_page(struct hstate *h, struct page *page)
1da177e4
LT
508{
509 int nid = page_to_nid(page);
0edaecfa 510 list_move(&page->lru, &h->hugepage_freelists[nid]);
a5516438
AK
511 h->free_huge_pages++;
512 h->free_huge_pages_node[nid]++;
1da177e4
LT
513}
514
bf50bab2
NH
515static struct page *dequeue_huge_page_node(struct hstate *h, int nid)
516{
517 struct page *page;
518
519 if (list_empty(&h->hugepage_freelists[nid]))
520 return NULL;
521 page = list_entry(h->hugepage_freelists[nid].next, struct page, lru);
0edaecfa 522 list_move(&page->lru, &h->hugepage_activelist);
a9869b83 523 set_page_refcounted(page);
bf50bab2
NH
524 h->free_huge_pages--;
525 h->free_huge_pages_node[nid]--;
526 return page;
527}
528
a5516438
AK
529static struct page *dequeue_huge_page_vma(struct hstate *h,
530 struct vm_area_struct *vma,
04f2cbe3 531 unsigned long address, int avoid_reserve)
1da177e4 532{
b1c12cbc 533 struct page *page = NULL;
480eccf9 534 struct mempolicy *mpol;
19770b32 535 nodemask_t *nodemask;
c0ff7453 536 struct zonelist *zonelist;
dd1a239f
MG
537 struct zone *zone;
538 struct zoneref *z;
cc9a6c87 539 unsigned int cpuset_mems_cookie;
1da177e4 540
cc9a6c87
MG
541retry_cpuset:
542 cpuset_mems_cookie = get_mems_allowed();
c0ff7453
MX
543 zonelist = huge_zonelist(vma, address,
544 htlb_alloc_mask, &mpol, &nodemask);
a1e78772
MG
545 /*
546 * A child process with MAP_PRIVATE mappings created by their parent
547 * have no page reserves. This check ensures that reservations are
548 * not "stolen". The child may still get SIGKILLed
549 */
7f09ca51 550 if (!vma_has_reserves(vma) &&
a5516438 551 h->free_huge_pages - h->resv_huge_pages == 0)
c0ff7453 552 goto err;
a1e78772 553
04f2cbe3 554 /* If reserves cannot be used, ensure enough pages are in the pool */
a5516438 555 if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
6eab04a8 556 goto err;
04f2cbe3 557
19770b32
MG
558 for_each_zone_zonelist_nodemask(zone, z, zonelist,
559 MAX_NR_ZONES - 1, nodemask) {
bf50bab2
NH
560 if (cpuset_zone_allowed_softwall(zone, htlb_alloc_mask)) {
561 page = dequeue_huge_page_node(h, zone_to_nid(zone));
562 if (page) {
563 if (!avoid_reserve)
564 decrement_hugepage_resv_vma(h, vma);
565 break;
566 }
3abf7afd 567 }
1da177e4 568 }
cc9a6c87 569
52cd3b07 570 mpol_cond_put(mpol);
cc9a6c87
MG
571 if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !page))
572 goto retry_cpuset;
1da177e4 573 return page;
cc9a6c87
MG
574
575err:
576 mpol_cond_put(mpol);
577 return NULL;
1da177e4
LT
578}
579
a5516438 580static void update_and_free_page(struct hstate *h, struct page *page)
6af2acb6
AL
581{
582 int i;
a5516438 583
18229df5
AW
584 VM_BUG_ON(h->order >= MAX_ORDER);
585
a5516438
AK
586 h->nr_huge_pages--;
587 h->nr_huge_pages_node[page_to_nid(page)]--;
588 for (i = 0; i < pages_per_huge_page(h); i++) {
32f84528
CF
589 page[i].flags &= ~(1 << PG_locked | 1 << PG_error |
590 1 << PG_referenced | 1 << PG_dirty |
591 1 << PG_active | 1 << PG_reserved |
592 1 << PG_private | 1 << PG_writeback);
6af2acb6
AL
593 }
594 set_compound_page_dtor(page, NULL);
595 set_page_refcounted(page);
7f2e9525 596 arch_release_hugepage(page);
a5516438 597 __free_pages(page, huge_page_order(h));
6af2acb6
AL
598}
599
e5ff2159
AK
600struct hstate *size_to_hstate(unsigned long size)
601{
602 struct hstate *h;
603
604 for_each_hstate(h) {
605 if (huge_page_size(h) == size)
606 return h;
607 }
608 return NULL;
609}
610
27a85ef1
DG
611static void free_huge_page(struct page *page)
612{
a5516438
AK
613 /*
614 * Can't pass hstate in here because it is called from the
615 * compound page destructor.
616 */
e5ff2159 617 struct hstate *h = page_hstate(page);
7893d1d5 618 int nid = page_to_nid(page);
90481622
DG
619 struct hugepage_subpool *spool =
620 (struct hugepage_subpool *)page_private(page);
27a85ef1 621
e5df70ab 622 set_page_private(page, 0);
23be7468 623 page->mapping = NULL;
7893d1d5 624 BUG_ON(page_count(page));
0fe6e20b 625 BUG_ON(page_mapcount(page));
27a85ef1
DG
626
627 spin_lock(&hugetlb_lock);
aa888a74 628 if (h->surplus_huge_pages_node[nid] && huge_page_order(h) < MAX_ORDER) {
0edaecfa
AK
629 /* remove the page from active list */
630 list_del(&page->lru);
a5516438
AK
631 update_and_free_page(h, page);
632 h->surplus_huge_pages--;
633 h->surplus_huge_pages_node[nid]--;
7893d1d5 634 } else {
a5516438 635 enqueue_huge_page(h, page);
7893d1d5 636 }
27a85ef1 637 spin_unlock(&hugetlb_lock);
90481622 638 hugepage_subpool_put_pages(spool, 1);
27a85ef1
DG
639}
640
a5516438 641static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
b7ba30c6 642{
0edaecfa 643 INIT_LIST_HEAD(&page->lru);
b7ba30c6
AK
644 set_compound_page_dtor(page, free_huge_page);
645 spin_lock(&hugetlb_lock);
a5516438
AK
646 h->nr_huge_pages++;
647 h->nr_huge_pages_node[nid]++;
b7ba30c6
AK
648 spin_unlock(&hugetlb_lock);
649 put_page(page); /* free it into the hugepage allocator */
650}
651
20a0307c
WF
652static void prep_compound_gigantic_page(struct page *page, unsigned long order)
653{
654 int i;
655 int nr_pages = 1 << order;
656 struct page *p = page + 1;
657
658 /* we rely on prep_new_huge_page to set the destructor */
659 set_compound_order(page, order);
660 __SetPageHead(page);
661 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
662 __SetPageTail(p);
58a84aa9 663 set_page_count(p, 0);
20a0307c
WF
664 p->first_page = page;
665 }
666}
667
668int PageHuge(struct page *page)
669{
670 compound_page_dtor *dtor;
671
672 if (!PageCompound(page))
673 return 0;
674
675 page = compound_head(page);
676 dtor = get_compound_page_dtor(page);
677
678 return dtor == free_huge_page;
679}
43131e14
NH
680EXPORT_SYMBOL_GPL(PageHuge);
681
a5516438 682static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid)
1da177e4 683{
1da177e4 684 struct page *page;
f96efd58 685
aa888a74
AK
686 if (h->order >= MAX_ORDER)
687 return NULL;
688
6484eb3e 689 page = alloc_pages_exact_node(nid,
551883ae
NA
690 htlb_alloc_mask|__GFP_COMP|__GFP_THISNODE|
691 __GFP_REPEAT|__GFP_NOWARN,
a5516438 692 huge_page_order(h));
1da177e4 693 if (page) {
7f2e9525 694 if (arch_prepare_hugepage(page)) {
caff3a2c 695 __free_pages(page, huge_page_order(h));
7b8ee84d 696 return NULL;
7f2e9525 697 }
a5516438 698 prep_new_huge_page(h, page, nid);
1da177e4 699 }
63b4613c
NA
700
701 return page;
702}
703
9a76db09 704/*
6ae11b27
LS
705 * common helper functions for hstate_next_node_to_{alloc|free}.
706 * We may have allocated or freed a huge page based on a different
707 * nodes_allowed previously, so h->next_node_to_{alloc|free} might
708 * be outside of *nodes_allowed. Ensure that we use an allowed
709 * node for alloc or free.
9a76db09 710 */
6ae11b27 711static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
9a76db09 712{
6ae11b27 713 nid = next_node(nid, *nodes_allowed);
9a76db09 714 if (nid == MAX_NUMNODES)
6ae11b27 715 nid = first_node(*nodes_allowed);
9a76db09
LS
716 VM_BUG_ON(nid >= MAX_NUMNODES);
717
718 return nid;
719}
720
6ae11b27
LS
721static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
722{
723 if (!node_isset(nid, *nodes_allowed))
724 nid = next_node_allowed(nid, nodes_allowed);
725 return nid;
726}
727
5ced66c9 728/*
6ae11b27
LS
729 * returns the previously saved node ["this node"] from which to
730 * allocate a persistent huge page for the pool and advance the
731 * next node from which to allocate, handling wrap at end of node
732 * mask.
5ced66c9 733 */
6ae11b27
LS
734static int hstate_next_node_to_alloc(struct hstate *h,
735 nodemask_t *nodes_allowed)
5ced66c9 736{
6ae11b27
LS
737 int nid;
738
739 VM_BUG_ON(!nodes_allowed);
740
741 nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
742 h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
9a76db09 743
9a76db09 744 return nid;
5ced66c9
AK
745}
746
6ae11b27 747static int alloc_fresh_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
63b4613c
NA
748{
749 struct page *page;
750 int start_nid;
751 int next_nid;
752 int ret = 0;
753
6ae11b27 754 start_nid = hstate_next_node_to_alloc(h, nodes_allowed);
e8c5c824 755 next_nid = start_nid;
63b4613c
NA
756
757 do {
e8c5c824 758 page = alloc_fresh_huge_page_node(h, next_nid);
9a76db09 759 if (page) {
63b4613c 760 ret = 1;
9a76db09
LS
761 break;
762 }
6ae11b27 763 next_nid = hstate_next_node_to_alloc(h, nodes_allowed);
9a76db09 764 } while (next_nid != start_nid);
63b4613c 765
3b116300
AL
766 if (ret)
767 count_vm_event(HTLB_BUDDY_PGALLOC);
768 else
769 count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
770
63b4613c 771 return ret;
1da177e4
LT
772}
773
e8c5c824 774/*
6ae11b27
LS
775 * helper for free_pool_huge_page() - return the previously saved
776 * node ["this node"] from which to free a huge page. Advance the
777 * next node id whether or not we find a free huge page to free so
778 * that the next attempt to free addresses the next node.
e8c5c824 779 */
6ae11b27 780static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
e8c5c824 781{
6ae11b27
LS
782 int nid;
783
784 VM_BUG_ON(!nodes_allowed);
785
786 nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
787 h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
9a76db09 788
9a76db09 789 return nid;
e8c5c824
LS
790}
791
792/*
793 * Free huge page from pool from next node to free.
794 * Attempt to keep persistent huge pages more or less
795 * balanced over allowed nodes.
796 * Called with hugetlb_lock locked.
797 */
6ae11b27
LS
798static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
799 bool acct_surplus)
e8c5c824
LS
800{
801 int start_nid;
802 int next_nid;
803 int ret = 0;
804
6ae11b27 805 start_nid = hstate_next_node_to_free(h, nodes_allowed);
e8c5c824
LS
806 next_nid = start_nid;
807
808 do {
685f3457
LS
809 /*
810 * If we're returning unused surplus pages, only examine
811 * nodes with surplus pages.
812 */
813 if ((!acct_surplus || h->surplus_huge_pages_node[next_nid]) &&
814 !list_empty(&h->hugepage_freelists[next_nid])) {
e8c5c824
LS
815 struct page *page =
816 list_entry(h->hugepage_freelists[next_nid].next,
817 struct page, lru);
818 list_del(&page->lru);
819 h->free_huge_pages--;
820 h->free_huge_pages_node[next_nid]--;
685f3457
LS
821 if (acct_surplus) {
822 h->surplus_huge_pages--;
823 h->surplus_huge_pages_node[next_nid]--;
824 }
e8c5c824
LS
825 update_and_free_page(h, page);
826 ret = 1;
9a76db09 827 break;
e8c5c824 828 }
6ae11b27 829 next_nid = hstate_next_node_to_free(h, nodes_allowed);
9a76db09 830 } while (next_nid != start_nid);
e8c5c824
LS
831
832 return ret;
833}
834
bf50bab2 835static struct page *alloc_buddy_huge_page(struct hstate *h, int nid)
7893d1d5
AL
836{
837 struct page *page;
bf50bab2 838 unsigned int r_nid;
7893d1d5 839
aa888a74
AK
840 if (h->order >= MAX_ORDER)
841 return NULL;
842
d1c3fb1f
NA
843 /*
844 * Assume we will successfully allocate the surplus page to
845 * prevent racing processes from causing the surplus to exceed
846 * overcommit
847 *
848 * This however introduces a different race, where a process B
849 * tries to grow the static hugepage pool while alloc_pages() is
850 * called by process A. B will only examine the per-node
851 * counters in determining if surplus huge pages can be
852 * converted to normal huge pages in adjust_pool_surplus(). A
853 * won't be able to increment the per-node counter, until the
854 * lock is dropped by B, but B doesn't drop hugetlb_lock until
855 * no more huge pages can be converted from surplus to normal
856 * state (and doesn't try to convert again). Thus, we have a
857 * case where a surplus huge page exists, the pool is grown, and
858 * the surplus huge page still exists after, even though it
859 * should just have been converted to a normal huge page. This
860 * does not leak memory, though, as the hugepage will be freed
861 * once it is out of use. It also does not allow the counters to
862 * go out of whack in adjust_pool_surplus() as we don't modify
863 * the node values until we've gotten the hugepage and only the
864 * per-node value is checked there.
865 */
866 spin_lock(&hugetlb_lock);
a5516438 867 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
d1c3fb1f
NA
868 spin_unlock(&hugetlb_lock);
869 return NULL;
870 } else {
a5516438
AK
871 h->nr_huge_pages++;
872 h->surplus_huge_pages++;
d1c3fb1f
NA
873 }
874 spin_unlock(&hugetlb_lock);
875
bf50bab2
NH
876 if (nid == NUMA_NO_NODE)
877 page = alloc_pages(htlb_alloc_mask|__GFP_COMP|
878 __GFP_REPEAT|__GFP_NOWARN,
879 huge_page_order(h));
880 else
881 page = alloc_pages_exact_node(nid,
882 htlb_alloc_mask|__GFP_COMP|__GFP_THISNODE|
883 __GFP_REPEAT|__GFP_NOWARN, huge_page_order(h));
d1c3fb1f 884
caff3a2c
GS
885 if (page && arch_prepare_hugepage(page)) {
886 __free_pages(page, huge_page_order(h));
ea5768c7 887 page = NULL;
caff3a2c
GS
888 }
889
d1c3fb1f 890 spin_lock(&hugetlb_lock);
7893d1d5 891 if (page) {
0edaecfa 892 INIT_LIST_HEAD(&page->lru);
bf50bab2 893 r_nid = page_to_nid(page);
7893d1d5 894 set_compound_page_dtor(page, free_huge_page);
d1c3fb1f
NA
895 /*
896 * We incremented the global counters already
897 */
bf50bab2
NH
898 h->nr_huge_pages_node[r_nid]++;
899 h->surplus_huge_pages_node[r_nid]++;
3b116300 900 __count_vm_event(HTLB_BUDDY_PGALLOC);
d1c3fb1f 901 } else {
a5516438
AK
902 h->nr_huge_pages--;
903 h->surplus_huge_pages--;
3b116300 904 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
7893d1d5 905 }
d1c3fb1f 906 spin_unlock(&hugetlb_lock);
7893d1d5
AL
907
908 return page;
909}
910
bf50bab2
NH
911/*
912 * This allocation function is useful in the context where vma is irrelevant.
913 * E.g. soft-offlining uses this function because it only cares physical
914 * address of error page.
915 */
916struct page *alloc_huge_page_node(struct hstate *h, int nid)
917{
918 struct page *page;
919
920 spin_lock(&hugetlb_lock);
921 page = dequeue_huge_page_node(h, nid);
922 spin_unlock(&hugetlb_lock);
923
924 if (!page)
925 page = alloc_buddy_huge_page(h, nid);
926
927 return page;
928}
929
e4e574b7 930/*
25985edc 931 * Increase the hugetlb pool such that it can accommodate a reservation
e4e574b7
AL
932 * of size 'delta'.
933 */
a5516438 934static int gather_surplus_pages(struct hstate *h, int delta)
e4e574b7
AL
935{
936 struct list_head surplus_list;
937 struct page *page, *tmp;
938 int ret, i;
939 int needed, allocated;
28073b02 940 bool alloc_ok = true;
e4e574b7 941
a5516438 942 needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
ac09b3a1 943 if (needed <= 0) {
a5516438 944 h->resv_huge_pages += delta;
e4e574b7 945 return 0;
ac09b3a1 946 }
e4e574b7
AL
947
948 allocated = 0;
949 INIT_LIST_HEAD(&surplus_list);
950
951 ret = -ENOMEM;
952retry:
953 spin_unlock(&hugetlb_lock);
954 for (i = 0; i < needed; i++) {
bf50bab2 955 page = alloc_buddy_huge_page(h, NUMA_NO_NODE);
28073b02
HD
956 if (!page) {
957 alloc_ok = false;
958 break;
959 }
e4e574b7
AL
960 list_add(&page->lru, &surplus_list);
961 }
28073b02 962 allocated += i;
e4e574b7
AL
963
964 /*
965 * After retaking hugetlb_lock, we need to recalculate 'needed'
966 * because either resv_huge_pages or free_huge_pages may have changed.
967 */
968 spin_lock(&hugetlb_lock);
a5516438
AK
969 needed = (h->resv_huge_pages + delta) -
970 (h->free_huge_pages + allocated);
28073b02
HD
971 if (needed > 0) {
972 if (alloc_ok)
973 goto retry;
974 /*
975 * We were not able to allocate enough pages to
976 * satisfy the entire reservation so we free what
977 * we've allocated so far.
978 */
979 goto free;
980 }
e4e574b7
AL
981 /*
982 * The surplus_list now contains _at_least_ the number of extra pages
25985edc 983 * needed to accommodate the reservation. Add the appropriate number
e4e574b7 984 * of pages to the hugetlb pool and free the extras back to the buddy
ac09b3a1
AL
985 * allocator. Commit the entire reservation here to prevent another
986 * process from stealing the pages as they are added to the pool but
987 * before they are reserved.
e4e574b7
AL
988 */
989 needed += allocated;
a5516438 990 h->resv_huge_pages += delta;
e4e574b7 991 ret = 0;
a9869b83 992
19fc3f0a 993 /* Free the needed pages to the hugetlb pool */
e4e574b7 994 list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
19fc3f0a
AL
995 if ((--needed) < 0)
996 break;
a9869b83
NH
997 /*
998 * This page is now managed by the hugetlb allocator and has
999 * no users -- drop the buddy allocator's reference.
1000 */
1001 put_page_testzero(page);
1002 VM_BUG_ON(page_count(page));
a5516438 1003 enqueue_huge_page(h, page);
19fc3f0a 1004 }
28073b02 1005free:
b0365c8d 1006 spin_unlock(&hugetlb_lock);
19fc3f0a
AL
1007
1008 /* Free unnecessary surplus pages to the buddy allocator */
1009 if (!list_empty(&surplus_list)) {
19fc3f0a 1010 list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
a9869b83 1011 put_page(page);
af767cbd 1012 }
e4e574b7 1013 }
a9869b83 1014 spin_lock(&hugetlb_lock);
e4e574b7
AL
1015
1016 return ret;
1017}
1018
1019/*
1020 * When releasing a hugetlb pool reservation, any surplus pages that were
1021 * allocated to satisfy the reservation must be explicitly freed if they were
1022 * never used.
685f3457 1023 * Called with hugetlb_lock held.
e4e574b7 1024 */
a5516438
AK
1025static void return_unused_surplus_pages(struct hstate *h,
1026 unsigned long unused_resv_pages)
e4e574b7 1027{
e4e574b7
AL
1028 unsigned long nr_pages;
1029
ac09b3a1 1030 /* Uncommit the reservation */
a5516438 1031 h->resv_huge_pages -= unused_resv_pages;
ac09b3a1 1032
aa888a74
AK
1033 /* Cannot return gigantic pages currently */
1034 if (h->order >= MAX_ORDER)
1035 return;
1036
a5516438 1037 nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
e4e574b7 1038
685f3457
LS
1039 /*
1040 * We want to release as many surplus pages as possible, spread
9b5e5d0f
LS
1041 * evenly across all nodes with memory. Iterate across these nodes
1042 * until we can no longer free unreserved surplus pages. This occurs
1043 * when the nodes with surplus pages have no free pages.
1044 * free_pool_huge_page() will balance the the freed pages across the
1045 * on-line nodes with memory and will handle the hstate accounting.
685f3457
LS
1046 */
1047 while (nr_pages--) {
9b5e5d0f 1048 if (!free_pool_huge_page(h, &node_states[N_HIGH_MEMORY], 1))
685f3457 1049 break;
e4e574b7
AL
1050 }
1051}
1052
c37f9fb1
AW
1053/*
1054 * Determine if the huge page at addr within the vma has an associated
1055 * reservation. Where it does not we will need to logically increase
90481622
DG
1056 * reservation and actually increase subpool usage before an allocation
1057 * can occur. Where any new reservation would be required the
1058 * reservation change is prepared, but not committed. Once the page
1059 * has been allocated from the subpool and instantiated the change should
1060 * be committed via vma_commit_reservation. No action is required on
1061 * failure.
c37f9fb1 1062 */
e2f17d94 1063static long vma_needs_reservation(struct hstate *h,
a5516438 1064 struct vm_area_struct *vma, unsigned long addr)
c37f9fb1
AW
1065{
1066 struct address_space *mapping = vma->vm_file->f_mapping;
1067 struct inode *inode = mapping->host;
1068
f83a275d 1069 if (vma->vm_flags & VM_MAYSHARE) {
a5516438 1070 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
c37f9fb1
AW
1071 return region_chg(&inode->i_mapping->private_list,
1072 idx, idx + 1);
1073
84afd99b
AW
1074 } else if (!is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1075 return 1;
c37f9fb1 1076
84afd99b 1077 } else {
e2f17d94 1078 long err;
a5516438 1079 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
84afd99b
AW
1080 struct resv_map *reservations = vma_resv_map(vma);
1081
1082 err = region_chg(&reservations->regions, idx, idx + 1);
1083 if (err < 0)
1084 return err;
1085 return 0;
1086 }
c37f9fb1 1087}
a5516438
AK
1088static void vma_commit_reservation(struct hstate *h,
1089 struct vm_area_struct *vma, unsigned long addr)
c37f9fb1
AW
1090{
1091 struct address_space *mapping = vma->vm_file->f_mapping;
1092 struct inode *inode = mapping->host;
1093
f83a275d 1094 if (vma->vm_flags & VM_MAYSHARE) {
a5516438 1095 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
c37f9fb1 1096 region_add(&inode->i_mapping->private_list, idx, idx + 1);
84afd99b
AW
1097
1098 } else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
a5516438 1099 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
84afd99b
AW
1100 struct resv_map *reservations = vma_resv_map(vma);
1101
1102 /* Mark this page used in the map. */
1103 region_add(&reservations->regions, idx, idx + 1);
c37f9fb1
AW
1104 }
1105}
1106
a1e78772 1107static struct page *alloc_huge_page(struct vm_area_struct *vma,
04f2cbe3 1108 unsigned long addr, int avoid_reserve)
1da177e4 1109{
90481622 1110 struct hugepage_subpool *spool = subpool_vma(vma);
a5516438 1111 struct hstate *h = hstate_vma(vma);
348ea204 1112 struct page *page;
e2f17d94 1113 long chg;
a1e78772
MG
1114
1115 /*
90481622
DG
1116 * Processes that did not create the mapping will have no
1117 * reserves and will not have accounted against subpool
1118 * limit. Check that the subpool limit can be made before
1119 * satisfying the allocation MAP_NORESERVE mappings may also
1120 * need pages and subpool limit allocated allocated if no reserve
1121 * mapping overlaps.
a1e78772 1122 */
a5516438 1123 chg = vma_needs_reservation(h, vma, addr);
c37f9fb1 1124 if (chg < 0)
76dcee75 1125 return ERR_PTR(-ENOMEM);
c37f9fb1 1126 if (chg)
90481622 1127 if (hugepage_subpool_get_pages(spool, chg))
76dcee75 1128 return ERR_PTR(-ENOSPC);
1da177e4
LT
1129
1130 spin_lock(&hugetlb_lock);
a5516438 1131 page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve);
1da177e4 1132 spin_unlock(&hugetlb_lock);
b45b5bd6 1133
68842c9b 1134 if (!page) {
bf50bab2 1135 page = alloc_buddy_huge_page(h, NUMA_NO_NODE);
68842c9b 1136 if (!page) {
90481622 1137 hugepage_subpool_put_pages(spool, chg);
76dcee75 1138 return ERR_PTR(-ENOSPC);
68842c9b
KC
1139 }
1140 }
348ea204 1141
90481622 1142 set_page_private(page, (unsigned long)spool);
90d8b7e6 1143
a5516438 1144 vma_commit_reservation(h, vma, addr);
c37f9fb1 1145
90d8b7e6 1146 return page;
b45b5bd6
DG
1147}
1148
91f47662 1149int __weak alloc_bootmem_huge_page(struct hstate *h)
aa888a74
AK
1150{
1151 struct huge_bootmem_page *m;
9b5e5d0f 1152 int nr_nodes = nodes_weight(node_states[N_HIGH_MEMORY]);
aa888a74
AK
1153
1154 while (nr_nodes) {
1155 void *addr;
1156
1157 addr = __alloc_bootmem_node_nopanic(
6ae11b27 1158 NODE_DATA(hstate_next_node_to_alloc(h,
9b5e5d0f 1159 &node_states[N_HIGH_MEMORY])),
aa888a74
AK
1160 huge_page_size(h), huge_page_size(h), 0);
1161
1162 if (addr) {
1163 /*
1164 * Use the beginning of the huge page to store the
1165 * huge_bootmem_page struct (until gather_bootmem
1166 * puts them into the mem_map).
1167 */
1168 m = addr;
91f47662 1169 goto found;
aa888a74 1170 }
aa888a74
AK
1171 nr_nodes--;
1172 }
1173 return 0;
1174
1175found:
1176 BUG_ON((unsigned long)virt_to_phys(m) & (huge_page_size(h) - 1));
1177 /* Put them into a private list first because mem_map is not up yet */
1178 list_add(&m->list, &huge_boot_pages);
1179 m->hstate = h;
1180 return 1;
1181}
1182
18229df5
AW
1183static void prep_compound_huge_page(struct page *page, int order)
1184{
1185 if (unlikely(order > (MAX_ORDER - 1)))
1186 prep_compound_gigantic_page(page, order);
1187 else
1188 prep_compound_page(page, order);
1189}
1190
aa888a74
AK
1191/* Put bootmem huge pages into the standard lists after mem_map is up */
1192static void __init gather_bootmem_prealloc(void)
1193{
1194 struct huge_bootmem_page *m;
1195
1196 list_for_each_entry(m, &huge_boot_pages, list) {
aa888a74 1197 struct hstate *h = m->hstate;
ee8f248d
BB
1198 struct page *page;
1199
1200#ifdef CONFIG_HIGHMEM
1201 page = pfn_to_page(m->phys >> PAGE_SHIFT);
1202 free_bootmem_late((unsigned long)m,
1203 sizeof(struct huge_bootmem_page));
1204#else
1205 page = virt_to_page(m);
1206#endif
aa888a74
AK
1207 __ClearPageReserved(page);
1208 WARN_ON(page_count(page) != 1);
18229df5 1209 prep_compound_huge_page(page, h->order);
aa888a74 1210 prep_new_huge_page(h, page, page_to_nid(page));
b0320c7b
RA
1211 /*
1212 * If we had gigantic hugepages allocated at boot time, we need
1213 * to restore the 'stolen' pages to totalram_pages in order to
1214 * fix confusing memory reports from free(1) and another
1215 * side-effects, like CommitLimit going negative.
1216 */
1217 if (h->order > (MAX_ORDER - 1))
1218 totalram_pages += 1 << h->order;
aa888a74
AK
1219 }
1220}
1221
8faa8b07 1222static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
1da177e4
LT
1223{
1224 unsigned long i;
a5516438 1225
e5ff2159 1226 for (i = 0; i < h->max_huge_pages; ++i) {
aa888a74
AK
1227 if (h->order >= MAX_ORDER) {
1228 if (!alloc_bootmem_huge_page(h))
1229 break;
9b5e5d0f
LS
1230 } else if (!alloc_fresh_huge_page(h,
1231 &node_states[N_HIGH_MEMORY]))
1da177e4 1232 break;
1da177e4 1233 }
8faa8b07 1234 h->max_huge_pages = i;
e5ff2159
AK
1235}
1236
1237static void __init hugetlb_init_hstates(void)
1238{
1239 struct hstate *h;
1240
1241 for_each_hstate(h) {
8faa8b07
AK
1242 /* oversize hugepages were init'ed in early boot */
1243 if (h->order < MAX_ORDER)
1244 hugetlb_hstate_alloc_pages(h);
e5ff2159
AK
1245 }
1246}
1247
4abd32db
AK
1248static char * __init memfmt(char *buf, unsigned long n)
1249{
1250 if (n >= (1UL << 30))
1251 sprintf(buf, "%lu GB", n >> 30);
1252 else if (n >= (1UL << 20))
1253 sprintf(buf, "%lu MB", n >> 20);
1254 else
1255 sprintf(buf, "%lu KB", n >> 10);
1256 return buf;
1257}
1258
e5ff2159
AK
1259static void __init report_hugepages(void)
1260{
1261 struct hstate *h;
1262
1263 for_each_hstate(h) {
4abd32db
AK
1264 char buf[32];
1265 printk(KERN_INFO "HugeTLB registered %s page size, "
1266 "pre-allocated %ld pages\n",
1267 memfmt(buf, huge_page_size(h)),
1268 h->free_huge_pages);
e5ff2159
AK
1269 }
1270}
1271
1da177e4 1272#ifdef CONFIG_HIGHMEM
6ae11b27
LS
1273static void try_to_free_low(struct hstate *h, unsigned long count,
1274 nodemask_t *nodes_allowed)
1da177e4 1275{
4415cc8d
CL
1276 int i;
1277
aa888a74
AK
1278 if (h->order >= MAX_ORDER)
1279 return;
1280
6ae11b27 1281 for_each_node_mask(i, *nodes_allowed) {
1da177e4 1282 struct page *page, *next;
a5516438
AK
1283 struct list_head *freel = &h->hugepage_freelists[i];
1284 list_for_each_entry_safe(page, next, freel, lru) {
1285 if (count >= h->nr_huge_pages)
6b0c880d 1286 return;
1da177e4
LT
1287 if (PageHighMem(page))
1288 continue;
1289 list_del(&page->lru);
e5ff2159 1290 update_and_free_page(h, page);
a5516438
AK
1291 h->free_huge_pages--;
1292 h->free_huge_pages_node[page_to_nid(page)]--;
1da177e4
LT
1293 }
1294 }
1295}
1296#else
6ae11b27
LS
1297static inline void try_to_free_low(struct hstate *h, unsigned long count,
1298 nodemask_t *nodes_allowed)
1da177e4
LT
1299{
1300}
1301#endif
1302
20a0307c
WF
1303/*
1304 * Increment or decrement surplus_huge_pages. Keep node-specific counters
1305 * balanced by operating on them in a round-robin fashion.
1306 * Returns 1 if an adjustment was made.
1307 */
6ae11b27
LS
1308static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
1309 int delta)
20a0307c 1310{
e8c5c824 1311 int start_nid, next_nid;
20a0307c
WF
1312 int ret = 0;
1313
1314 VM_BUG_ON(delta != -1 && delta != 1);
20a0307c 1315
e8c5c824 1316 if (delta < 0)
6ae11b27 1317 start_nid = hstate_next_node_to_alloc(h, nodes_allowed);
e8c5c824 1318 else
6ae11b27 1319 start_nid = hstate_next_node_to_free(h, nodes_allowed);
e8c5c824
LS
1320 next_nid = start_nid;
1321
1322 do {
1323 int nid = next_nid;
1324 if (delta < 0) {
e8c5c824
LS
1325 /*
1326 * To shrink on this node, there must be a surplus page
1327 */
9a76db09 1328 if (!h->surplus_huge_pages_node[nid]) {
6ae11b27
LS
1329 next_nid = hstate_next_node_to_alloc(h,
1330 nodes_allowed);
e8c5c824 1331 continue;
9a76db09 1332 }
e8c5c824
LS
1333 }
1334 if (delta > 0) {
e8c5c824
LS
1335 /*
1336 * Surplus cannot exceed the total number of pages
1337 */
1338 if (h->surplus_huge_pages_node[nid] >=
9a76db09 1339 h->nr_huge_pages_node[nid]) {
6ae11b27
LS
1340 next_nid = hstate_next_node_to_free(h,
1341 nodes_allowed);
e8c5c824 1342 continue;
9a76db09 1343 }
e8c5c824 1344 }
20a0307c
WF
1345
1346 h->surplus_huge_pages += delta;
1347 h->surplus_huge_pages_node[nid] += delta;
1348 ret = 1;
1349 break;
e8c5c824 1350 } while (next_nid != start_nid);
20a0307c 1351
20a0307c
WF
1352 return ret;
1353}
1354
a5516438 1355#define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
6ae11b27
LS
1356static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count,
1357 nodemask_t *nodes_allowed)
1da177e4 1358{
7893d1d5 1359 unsigned long min_count, ret;
1da177e4 1360
aa888a74
AK
1361 if (h->order >= MAX_ORDER)
1362 return h->max_huge_pages;
1363
7893d1d5
AL
1364 /*
1365 * Increase the pool size
1366 * First take pages out of surplus state. Then make up the
1367 * remaining difference by allocating fresh huge pages.
d1c3fb1f
NA
1368 *
1369 * We might race with alloc_buddy_huge_page() here and be unable
1370 * to convert a surplus huge page to a normal huge page. That is
1371 * not critical, though, it just means the overall size of the
1372 * pool might be one hugepage larger than it needs to be, but
1373 * within all the constraints specified by the sysctls.
7893d1d5 1374 */
1da177e4 1375 spin_lock(&hugetlb_lock);
a5516438 1376 while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
6ae11b27 1377 if (!adjust_pool_surplus(h, nodes_allowed, -1))
7893d1d5
AL
1378 break;
1379 }
1380
a5516438 1381 while (count > persistent_huge_pages(h)) {
7893d1d5
AL
1382 /*
1383 * If this allocation races such that we no longer need the
1384 * page, free_huge_page will handle it by freeing the page
1385 * and reducing the surplus.
1386 */
1387 spin_unlock(&hugetlb_lock);
6ae11b27 1388 ret = alloc_fresh_huge_page(h, nodes_allowed);
7893d1d5
AL
1389 spin_lock(&hugetlb_lock);
1390 if (!ret)
1391 goto out;
1392
536240f2
MG
1393 /* Bail for signals. Probably ctrl-c from user */
1394 if (signal_pending(current))
1395 goto out;
7893d1d5 1396 }
7893d1d5
AL
1397
1398 /*
1399 * Decrease the pool size
1400 * First return free pages to the buddy allocator (being careful
1401 * to keep enough around to satisfy reservations). Then place
1402 * pages into surplus state as needed so the pool will shrink
1403 * to the desired size as pages become free.
d1c3fb1f
NA
1404 *
1405 * By placing pages into the surplus state independent of the
1406 * overcommit value, we are allowing the surplus pool size to
1407 * exceed overcommit. There are few sane options here. Since
1408 * alloc_buddy_huge_page() is checking the global counter,
1409 * though, we'll note that we're not allowed to exceed surplus
1410 * and won't grow the pool anywhere else. Not until one of the
1411 * sysctls are changed, or the surplus pages go out of use.
7893d1d5 1412 */
a5516438 1413 min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
6b0c880d 1414 min_count = max(count, min_count);
6ae11b27 1415 try_to_free_low(h, min_count, nodes_allowed);
a5516438 1416 while (min_count < persistent_huge_pages(h)) {
6ae11b27 1417 if (!free_pool_huge_page(h, nodes_allowed, 0))
1da177e4 1418 break;
1da177e4 1419 }
a5516438 1420 while (count < persistent_huge_pages(h)) {
6ae11b27 1421 if (!adjust_pool_surplus(h, nodes_allowed, 1))
7893d1d5
AL
1422 break;
1423 }
1424out:
a5516438 1425 ret = persistent_huge_pages(h);
1da177e4 1426 spin_unlock(&hugetlb_lock);
7893d1d5 1427 return ret;
1da177e4
LT
1428}
1429
a3437870
NA
1430#define HSTATE_ATTR_RO(_name) \
1431 static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
1432
1433#define HSTATE_ATTR(_name) \
1434 static struct kobj_attribute _name##_attr = \
1435 __ATTR(_name, 0644, _name##_show, _name##_store)
1436
1437static struct kobject *hugepages_kobj;
1438static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
1439
9a305230
LS
1440static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
1441
1442static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
a3437870
NA
1443{
1444 int i;
9a305230 1445
a3437870 1446 for (i = 0; i < HUGE_MAX_HSTATE; i++)
9a305230
LS
1447 if (hstate_kobjs[i] == kobj) {
1448 if (nidp)
1449 *nidp = NUMA_NO_NODE;
a3437870 1450 return &hstates[i];
9a305230
LS
1451 }
1452
1453 return kobj_to_node_hstate(kobj, nidp);
a3437870
NA
1454}
1455
06808b08 1456static ssize_t nr_hugepages_show_common(struct kobject *kobj,
a3437870
NA
1457 struct kobj_attribute *attr, char *buf)
1458{
9a305230
LS
1459 struct hstate *h;
1460 unsigned long nr_huge_pages;
1461 int nid;
1462
1463 h = kobj_to_hstate(kobj, &nid);
1464 if (nid == NUMA_NO_NODE)
1465 nr_huge_pages = h->nr_huge_pages;
1466 else
1467 nr_huge_pages = h->nr_huge_pages_node[nid];
1468
1469 return sprintf(buf, "%lu\n", nr_huge_pages);
a3437870 1470}
adbe8726 1471
06808b08
LS
1472static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
1473 struct kobject *kobj, struct kobj_attribute *attr,
1474 const char *buf, size_t len)
a3437870
NA
1475{
1476 int err;
9a305230 1477 int nid;
06808b08 1478 unsigned long count;
9a305230 1479 struct hstate *h;
bad44b5b 1480 NODEMASK_ALLOC(nodemask_t, nodes_allowed, GFP_KERNEL | __GFP_NORETRY);
a3437870 1481
06808b08 1482 err = strict_strtoul(buf, 10, &count);
73ae31e5 1483 if (err)
adbe8726 1484 goto out;
a3437870 1485
9a305230 1486 h = kobj_to_hstate(kobj, &nid);
adbe8726
EM
1487 if (h->order >= MAX_ORDER) {
1488 err = -EINVAL;
1489 goto out;
1490 }
1491
9a305230
LS
1492 if (nid == NUMA_NO_NODE) {
1493 /*
1494 * global hstate attribute
1495 */
1496 if (!(obey_mempolicy &&
1497 init_nodemask_of_mempolicy(nodes_allowed))) {
1498 NODEMASK_FREE(nodes_allowed);
1499 nodes_allowed = &node_states[N_HIGH_MEMORY];
1500 }
1501 } else if (nodes_allowed) {
1502 /*
1503 * per node hstate attribute: adjust count to global,
1504 * but restrict alloc/free to the specified node.
1505 */
1506 count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
1507 init_nodemask_of_node(nodes_allowed, nid);
1508 } else
1509 nodes_allowed = &node_states[N_HIGH_MEMORY];
1510
06808b08 1511 h->max_huge_pages = set_max_huge_pages(h, count, nodes_allowed);
a3437870 1512
9b5e5d0f 1513 if (nodes_allowed != &node_states[N_HIGH_MEMORY])
06808b08
LS
1514 NODEMASK_FREE(nodes_allowed);
1515
1516 return len;
adbe8726
EM
1517out:
1518 NODEMASK_FREE(nodes_allowed);
1519 return err;
06808b08
LS
1520}
1521
1522static ssize_t nr_hugepages_show(struct kobject *kobj,
1523 struct kobj_attribute *attr, char *buf)
1524{
1525 return nr_hugepages_show_common(kobj, attr, buf);
1526}
1527
1528static ssize_t nr_hugepages_store(struct kobject *kobj,
1529 struct kobj_attribute *attr, const char *buf, size_t len)
1530{
1531 return nr_hugepages_store_common(false, kobj, attr, buf, len);
a3437870
NA
1532}
1533HSTATE_ATTR(nr_hugepages);
1534
06808b08
LS
1535#ifdef CONFIG_NUMA
1536
1537/*
1538 * hstate attribute for optionally mempolicy-based constraint on persistent
1539 * huge page alloc/free.
1540 */
1541static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
1542 struct kobj_attribute *attr, char *buf)
1543{
1544 return nr_hugepages_show_common(kobj, attr, buf);
1545}
1546
1547static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
1548 struct kobj_attribute *attr, const char *buf, size_t len)
1549{
1550 return nr_hugepages_store_common(true, kobj, attr, buf, len);
1551}
1552HSTATE_ATTR(nr_hugepages_mempolicy);
1553#endif
1554
1555
a3437870
NA
1556static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
1557 struct kobj_attribute *attr, char *buf)
1558{
9a305230 1559 struct hstate *h = kobj_to_hstate(kobj, NULL);
a3437870
NA
1560 return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
1561}
adbe8726 1562
a3437870
NA
1563static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
1564 struct kobj_attribute *attr, const char *buf, size_t count)
1565{
1566 int err;
1567 unsigned long input;
9a305230 1568 struct hstate *h = kobj_to_hstate(kobj, NULL);
a3437870 1569
adbe8726
EM
1570 if (h->order >= MAX_ORDER)
1571 return -EINVAL;
1572
a3437870
NA
1573 err = strict_strtoul(buf, 10, &input);
1574 if (err)
73ae31e5 1575 return err;
a3437870
NA
1576
1577 spin_lock(&hugetlb_lock);
1578 h->nr_overcommit_huge_pages = input;
1579 spin_unlock(&hugetlb_lock);
1580
1581 return count;
1582}
1583HSTATE_ATTR(nr_overcommit_hugepages);
1584
1585static ssize_t free_hugepages_show(struct kobject *kobj,
1586 struct kobj_attribute *attr, char *buf)
1587{
9a305230
LS
1588 struct hstate *h;
1589 unsigned long free_huge_pages;
1590 int nid;
1591
1592 h = kobj_to_hstate(kobj, &nid);
1593 if (nid == NUMA_NO_NODE)
1594 free_huge_pages = h->free_huge_pages;
1595 else
1596 free_huge_pages = h->free_huge_pages_node[nid];
1597
1598 return sprintf(buf, "%lu\n", free_huge_pages);
a3437870
NA
1599}
1600HSTATE_ATTR_RO(free_hugepages);
1601
1602static ssize_t resv_hugepages_show(struct kobject *kobj,
1603 struct kobj_attribute *attr, char *buf)
1604{
9a305230 1605 struct hstate *h = kobj_to_hstate(kobj, NULL);
a3437870
NA
1606 return sprintf(buf, "%lu\n", h->resv_huge_pages);
1607}
1608HSTATE_ATTR_RO(resv_hugepages);
1609
1610static ssize_t surplus_hugepages_show(struct kobject *kobj,
1611 struct kobj_attribute *attr, char *buf)
1612{
9a305230
LS
1613 struct hstate *h;
1614 unsigned long surplus_huge_pages;
1615 int nid;
1616
1617 h = kobj_to_hstate(kobj, &nid);
1618 if (nid == NUMA_NO_NODE)
1619 surplus_huge_pages = h->surplus_huge_pages;
1620 else
1621 surplus_huge_pages = h->surplus_huge_pages_node[nid];
1622
1623 return sprintf(buf, "%lu\n", surplus_huge_pages);
a3437870
NA
1624}
1625HSTATE_ATTR_RO(surplus_hugepages);
1626
1627static struct attribute *hstate_attrs[] = {
1628 &nr_hugepages_attr.attr,
1629 &nr_overcommit_hugepages_attr.attr,
1630 &free_hugepages_attr.attr,
1631 &resv_hugepages_attr.attr,
1632 &surplus_hugepages_attr.attr,
06808b08
LS
1633#ifdef CONFIG_NUMA
1634 &nr_hugepages_mempolicy_attr.attr,
1635#endif
a3437870
NA
1636 NULL,
1637};
1638
1639static struct attribute_group hstate_attr_group = {
1640 .attrs = hstate_attrs,
1641};
1642
094e9539
JM
1643static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
1644 struct kobject **hstate_kobjs,
1645 struct attribute_group *hstate_attr_group)
a3437870
NA
1646{
1647 int retval;
972dc4de 1648 int hi = hstate_index(h);
a3437870 1649
9a305230
LS
1650 hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
1651 if (!hstate_kobjs[hi])
a3437870
NA
1652 return -ENOMEM;
1653
9a305230 1654 retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
a3437870 1655 if (retval)
9a305230 1656 kobject_put(hstate_kobjs[hi]);
a3437870
NA
1657
1658 return retval;
1659}
1660
1661static void __init hugetlb_sysfs_init(void)
1662{
1663 struct hstate *h;
1664 int err;
1665
1666 hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
1667 if (!hugepages_kobj)
1668 return;
1669
1670 for_each_hstate(h) {
9a305230
LS
1671 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
1672 hstate_kobjs, &hstate_attr_group);
a3437870
NA
1673 if (err)
1674 printk(KERN_ERR "Hugetlb: Unable to add hstate %s",
1675 h->name);
1676 }
1677}
1678
9a305230
LS
1679#ifdef CONFIG_NUMA
1680
1681/*
1682 * node_hstate/s - associate per node hstate attributes, via their kobjects,
10fbcf4c
KS
1683 * with node devices in node_devices[] using a parallel array. The array
1684 * index of a node device or _hstate == node id.
1685 * This is here to avoid any static dependency of the node device driver, in
9a305230
LS
1686 * the base kernel, on the hugetlb module.
1687 */
1688struct node_hstate {
1689 struct kobject *hugepages_kobj;
1690 struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
1691};
1692struct node_hstate node_hstates[MAX_NUMNODES];
1693
1694/*
10fbcf4c 1695 * A subset of global hstate attributes for node devices
9a305230
LS
1696 */
1697static struct attribute *per_node_hstate_attrs[] = {
1698 &nr_hugepages_attr.attr,
1699 &free_hugepages_attr.attr,
1700 &surplus_hugepages_attr.attr,
1701 NULL,
1702};
1703
1704static struct attribute_group per_node_hstate_attr_group = {
1705 .attrs = per_node_hstate_attrs,
1706};
1707
1708/*
10fbcf4c 1709 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
9a305230
LS
1710 * Returns node id via non-NULL nidp.
1711 */
1712static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
1713{
1714 int nid;
1715
1716 for (nid = 0; nid < nr_node_ids; nid++) {
1717 struct node_hstate *nhs = &node_hstates[nid];
1718 int i;
1719 for (i = 0; i < HUGE_MAX_HSTATE; i++)
1720 if (nhs->hstate_kobjs[i] == kobj) {
1721 if (nidp)
1722 *nidp = nid;
1723 return &hstates[i];
1724 }
1725 }
1726
1727 BUG();
1728 return NULL;
1729}
1730
1731/*
10fbcf4c 1732 * Unregister hstate attributes from a single node device.
9a305230
LS
1733 * No-op if no hstate attributes attached.
1734 */
1735void hugetlb_unregister_node(struct node *node)
1736{
1737 struct hstate *h;
10fbcf4c 1738 struct node_hstate *nhs = &node_hstates[node->dev.id];
9a305230
LS
1739
1740 if (!nhs->hugepages_kobj)
9b5e5d0f 1741 return; /* no hstate attributes */
9a305230 1742
972dc4de
AK
1743 for_each_hstate(h) {
1744 int idx = hstate_index(h);
1745 if (nhs->hstate_kobjs[idx]) {
1746 kobject_put(nhs->hstate_kobjs[idx]);
1747 nhs->hstate_kobjs[idx] = NULL;
9a305230 1748 }
972dc4de 1749 }
9a305230
LS
1750
1751 kobject_put(nhs->hugepages_kobj);
1752 nhs->hugepages_kobj = NULL;
1753}
1754
1755/*
10fbcf4c 1756 * hugetlb module exit: unregister hstate attributes from node devices
9a305230
LS
1757 * that have them.
1758 */
1759static void hugetlb_unregister_all_nodes(void)
1760{
1761 int nid;
1762
1763 /*
10fbcf4c 1764 * disable node device registrations.
9a305230
LS
1765 */
1766 register_hugetlbfs_with_node(NULL, NULL);
1767
1768 /*
1769 * remove hstate attributes from any nodes that have them.
1770 */
1771 for (nid = 0; nid < nr_node_ids; nid++)
1772 hugetlb_unregister_node(&node_devices[nid]);
1773}
1774
1775/*
10fbcf4c 1776 * Register hstate attributes for a single node device.
9a305230
LS
1777 * No-op if attributes already registered.
1778 */
1779void hugetlb_register_node(struct node *node)
1780{
1781 struct hstate *h;
10fbcf4c 1782 struct node_hstate *nhs = &node_hstates[node->dev.id];
9a305230
LS
1783 int err;
1784
1785 if (nhs->hugepages_kobj)
1786 return; /* already allocated */
1787
1788 nhs->hugepages_kobj = kobject_create_and_add("hugepages",
10fbcf4c 1789 &node->dev.kobj);
9a305230
LS
1790 if (!nhs->hugepages_kobj)
1791 return;
1792
1793 for_each_hstate(h) {
1794 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
1795 nhs->hstate_kobjs,
1796 &per_node_hstate_attr_group);
1797 if (err) {
1798 printk(KERN_ERR "Hugetlb: Unable to add hstate %s"
1799 " for node %d\n",
10fbcf4c 1800 h->name, node->dev.id);
9a305230
LS
1801 hugetlb_unregister_node(node);
1802 break;
1803 }
1804 }
1805}
1806
1807/*
9b5e5d0f 1808 * hugetlb init time: register hstate attributes for all registered node
10fbcf4c
KS
1809 * devices of nodes that have memory. All on-line nodes should have
1810 * registered their associated device by this time.
9a305230
LS
1811 */
1812static void hugetlb_register_all_nodes(void)
1813{
1814 int nid;
1815
9b5e5d0f 1816 for_each_node_state(nid, N_HIGH_MEMORY) {
9a305230 1817 struct node *node = &node_devices[nid];
10fbcf4c 1818 if (node->dev.id == nid)
9a305230
LS
1819 hugetlb_register_node(node);
1820 }
1821
1822 /*
10fbcf4c 1823 * Let the node device driver know we're here so it can
9a305230
LS
1824 * [un]register hstate attributes on node hotplug.
1825 */
1826 register_hugetlbfs_with_node(hugetlb_register_node,
1827 hugetlb_unregister_node);
1828}
1829#else /* !CONFIG_NUMA */
1830
1831static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
1832{
1833 BUG();
1834 if (nidp)
1835 *nidp = -1;
1836 return NULL;
1837}
1838
1839static void hugetlb_unregister_all_nodes(void) { }
1840
1841static void hugetlb_register_all_nodes(void) { }
1842
1843#endif
1844
a3437870
NA
1845static void __exit hugetlb_exit(void)
1846{
1847 struct hstate *h;
1848
9a305230
LS
1849 hugetlb_unregister_all_nodes();
1850
a3437870 1851 for_each_hstate(h) {
972dc4de 1852 kobject_put(hstate_kobjs[hstate_index(h)]);
a3437870
NA
1853 }
1854
1855 kobject_put(hugepages_kobj);
1856}
1857module_exit(hugetlb_exit);
1858
1859static int __init hugetlb_init(void)
1860{
0ef89d25
BH
1861 /* Some platform decide whether they support huge pages at boot
1862 * time. On these, such as powerpc, HPAGE_SHIFT is set to 0 when
1863 * there is no such support
1864 */
1865 if (HPAGE_SHIFT == 0)
1866 return 0;
a3437870 1867
e11bfbfc
NP
1868 if (!size_to_hstate(default_hstate_size)) {
1869 default_hstate_size = HPAGE_SIZE;
1870 if (!size_to_hstate(default_hstate_size))
1871 hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
a3437870 1872 }
972dc4de 1873 default_hstate_idx = hstate_index(size_to_hstate(default_hstate_size));
e11bfbfc
NP
1874 if (default_hstate_max_huge_pages)
1875 default_hstate.max_huge_pages = default_hstate_max_huge_pages;
a3437870
NA
1876
1877 hugetlb_init_hstates();
1878
aa888a74
AK
1879 gather_bootmem_prealloc();
1880
a3437870
NA
1881 report_hugepages();
1882
1883 hugetlb_sysfs_init();
1884
9a305230
LS
1885 hugetlb_register_all_nodes();
1886
a3437870
NA
1887 return 0;
1888}
1889module_init(hugetlb_init);
1890
1891/* Should be called on processing a hugepagesz=... option */
1892void __init hugetlb_add_hstate(unsigned order)
1893{
1894 struct hstate *h;
8faa8b07
AK
1895 unsigned long i;
1896
a3437870
NA
1897 if (size_to_hstate(PAGE_SIZE << order)) {
1898 printk(KERN_WARNING "hugepagesz= specified twice, ignoring\n");
1899 return;
1900 }
47d38344 1901 BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
a3437870 1902 BUG_ON(order == 0);
47d38344 1903 h = &hstates[hugetlb_max_hstate++];
a3437870
NA
1904 h->order = order;
1905 h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
8faa8b07
AK
1906 h->nr_huge_pages = 0;
1907 h->free_huge_pages = 0;
1908 for (i = 0; i < MAX_NUMNODES; ++i)
1909 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
0edaecfa 1910 INIT_LIST_HEAD(&h->hugepage_activelist);
9b5e5d0f
LS
1911 h->next_nid_to_alloc = first_node(node_states[N_HIGH_MEMORY]);
1912 h->next_nid_to_free = first_node(node_states[N_HIGH_MEMORY]);
a3437870
NA
1913 snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
1914 huge_page_size(h)/1024);
8faa8b07 1915
a3437870
NA
1916 parsed_hstate = h;
1917}
1918
e11bfbfc 1919static int __init hugetlb_nrpages_setup(char *s)
a3437870
NA
1920{
1921 unsigned long *mhp;
8faa8b07 1922 static unsigned long *last_mhp;
a3437870
NA
1923
1924 /*
47d38344 1925 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter yet,
a3437870
NA
1926 * so this hugepages= parameter goes to the "default hstate".
1927 */
47d38344 1928 if (!hugetlb_max_hstate)
a3437870
NA
1929 mhp = &default_hstate_max_huge_pages;
1930 else
1931 mhp = &parsed_hstate->max_huge_pages;
1932
8faa8b07
AK
1933 if (mhp == last_mhp) {
1934 printk(KERN_WARNING "hugepages= specified twice without "
1935 "interleaving hugepagesz=, ignoring\n");
1936 return 1;
1937 }
1938
a3437870
NA
1939 if (sscanf(s, "%lu", mhp) <= 0)
1940 *mhp = 0;
1941
8faa8b07
AK
1942 /*
1943 * Global state is always initialized later in hugetlb_init.
1944 * But we need to allocate >= MAX_ORDER hstates here early to still
1945 * use the bootmem allocator.
1946 */
47d38344 1947 if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER)
8faa8b07
AK
1948 hugetlb_hstate_alloc_pages(parsed_hstate);
1949
1950 last_mhp = mhp;
1951
a3437870
NA
1952 return 1;
1953}
e11bfbfc
NP
1954__setup("hugepages=", hugetlb_nrpages_setup);
1955
1956static int __init hugetlb_default_setup(char *s)
1957{
1958 default_hstate_size = memparse(s, &s);
1959 return 1;
1960}
1961__setup("default_hugepagesz=", hugetlb_default_setup);
a3437870 1962
8a213460
NA
1963static unsigned int cpuset_mems_nr(unsigned int *array)
1964{
1965 int node;
1966 unsigned int nr = 0;
1967
1968 for_each_node_mask(node, cpuset_current_mems_allowed)
1969 nr += array[node];
1970
1971 return nr;
1972}
1973
1974#ifdef CONFIG_SYSCTL
06808b08
LS
1975static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
1976 struct ctl_table *table, int write,
1977 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 1978{
e5ff2159
AK
1979 struct hstate *h = &default_hstate;
1980 unsigned long tmp;
08d4a246 1981 int ret;
e5ff2159 1982
c033a93c 1983 tmp = h->max_huge_pages;
e5ff2159 1984
adbe8726
EM
1985 if (write && h->order >= MAX_ORDER)
1986 return -EINVAL;
1987
e5ff2159
AK
1988 table->data = &tmp;
1989 table->maxlen = sizeof(unsigned long);
08d4a246
MH
1990 ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
1991 if (ret)
1992 goto out;
e5ff2159 1993
06808b08 1994 if (write) {
bad44b5b
DR
1995 NODEMASK_ALLOC(nodemask_t, nodes_allowed,
1996 GFP_KERNEL | __GFP_NORETRY);
06808b08
LS
1997 if (!(obey_mempolicy &&
1998 init_nodemask_of_mempolicy(nodes_allowed))) {
1999 NODEMASK_FREE(nodes_allowed);
2000 nodes_allowed = &node_states[N_HIGH_MEMORY];
2001 }
2002 h->max_huge_pages = set_max_huge_pages(h, tmp, nodes_allowed);
2003
2004 if (nodes_allowed != &node_states[N_HIGH_MEMORY])
2005 NODEMASK_FREE(nodes_allowed);
2006 }
08d4a246
MH
2007out:
2008 return ret;
1da177e4 2009}
396faf03 2010
06808b08
LS
2011int hugetlb_sysctl_handler(struct ctl_table *table, int write,
2012 void __user *buffer, size_t *length, loff_t *ppos)
2013{
2014
2015 return hugetlb_sysctl_handler_common(false, table, write,
2016 buffer, length, ppos);
2017}
2018
2019#ifdef CONFIG_NUMA
2020int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
2021 void __user *buffer, size_t *length, loff_t *ppos)
2022{
2023 return hugetlb_sysctl_handler_common(true, table, write,
2024 buffer, length, ppos);
2025}
2026#endif /* CONFIG_NUMA */
2027
396faf03 2028int hugetlb_treat_movable_handler(struct ctl_table *table, int write,
8d65af78 2029 void __user *buffer,
396faf03
MG
2030 size_t *length, loff_t *ppos)
2031{
8d65af78 2032 proc_dointvec(table, write, buffer, length, ppos);
396faf03
MG
2033 if (hugepages_treat_as_movable)
2034 htlb_alloc_mask = GFP_HIGHUSER_MOVABLE;
2035 else
2036 htlb_alloc_mask = GFP_HIGHUSER;
2037 return 0;
2038}
2039
a3d0c6aa 2040int hugetlb_overcommit_handler(struct ctl_table *table, int write,
8d65af78 2041 void __user *buffer,
a3d0c6aa
NA
2042 size_t *length, loff_t *ppos)
2043{
a5516438 2044 struct hstate *h = &default_hstate;
e5ff2159 2045 unsigned long tmp;
08d4a246 2046 int ret;
e5ff2159 2047
c033a93c 2048 tmp = h->nr_overcommit_huge_pages;
e5ff2159 2049
adbe8726
EM
2050 if (write && h->order >= MAX_ORDER)
2051 return -EINVAL;
2052
e5ff2159
AK
2053 table->data = &tmp;
2054 table->maxlen = sizeof(unsigned long);
08d4a246
MH
2055 ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2056 if (ret)
2057 goto out;
e5ff2159
AK
2058
2059 if (write) {
2060 spin_lock(&hugetlb_lock);
2061 h->nr_overcommit_huge_pages = tmp;
2062 spin_unlock(&hugetlb_lock);
2063 }
08d4a246
MH
2064out:
2065 return ret;
a3d0c6aa
NA
2066}
2067
1da177e4
LT
2068#endif /* CONFIG_SYSCTL */
2069
e1759c21 2070void hugetlb_report_meminfo(struct seq_file *m)
1da177e4 2071{
a5516438 2072 struct hstate *h = &default_hstate;
e1759c21 2073 seq_printf(m,
4f98a2fe
RR
2074 "HugePages_Total: %5lu\n"
2075 "HugePages_Free: %5lu\n"
2076 "HugePages_Rsvd: %5lu\n"
2077 "HugePages_Surp: %5lu\n"
2078 "Hugepagesize: %8lu kB\n",
a5516438
AK
2079 h->nr_huge_pages,
2080 h->free_huge_pages,
2081 h->resv_huge_pages,
2082 h->surplus_huge_pages,
2083 1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
1da177e4
LT
2084}
2085
2086int hugetlb_report_node_meminfo(int nid, char *buf)
2087{
a5516438 2088 struct hstate *h = &default_hstate;
1da177e4
LT
2089 return sprintf(buf,
2090 "Node %d HugePages_Total: %5u\n"
a1de0919
NA
2091 "Node %d HugePages_Free: %5u\n"
2092 "Node %d HugePages_Surp: %5u\n",
a5516438
AK
2093 nid, h->nr_huge_pages_node[nid],
2094 nid, h->free_huge_pages_node[nid],
2095 nid, h->surplus_huge_pages_node[nid]);
1da177e4
LT
2096}
2097
1da177e4
LT
2098/* Return the number pages of memory we physically have, in PAGE_SIZE units. */
2099unsigned long hugetlb_total_pages(void)
2100{
a5516438
AK
2101 struct hstate *h = &default_hstate;
2102 return h->nr_huge_pages * pages_per_huge_page(h);
1da177e4 2103}
1da177e4 2104
a5516438 2105static int hugetlb_acct_memory(struct hstate *h, long delta)
fc1b8a73
MG
2106{
2107 int ret = -ENOMEM;
2108
2109 spin_lock(&hugetlb_lock);
2110 /*
2111 * When cpuset is configured, it breaks the strict hugetlb page
2112 * reservation as the accounting is done on a global variable. Such
2113 * reservation is completely rubbish in the presence of cpuset because
2114 * the reservation is not checked against page availability for the
2115 * current cpuset. Application can still potentially OOM'ed by kernel
2116 * with lack of free htlb page in cpuset that the task is in.
2117 * Attempt to enforce strict accounting with cpuset is almost
2118 * impossible (or too ugly) because cpuset is too fluid that
2119 * task or memory node can be dynamically moved between cpusets.
2120 *
2121 * The change of semantics for shared hugetlb mapping with cpuset is
2122 * undesirable. However, in order to preserve some of the semantics,
2123 * we fall back to check against current free page availability as
2124 * a best attempt and hopefully to minimize the impact of changing
2125 * semantics that cpuset has.
2126 */
2127 if (delta > 0) {
a5516438 2128 if (gather_surplus_pages(h, delta) < 0)
fc1b8a73
MG
2129 goto out;
2130
a5516438
AK
2131 if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
2132 return_unused_surplus_pages(h, delta);
fc1b8a73
MG
2133 goto out;
2134 }
2135 }
2136
2137 ret = 0;
2138 if (delta < 0)
a5516438 2139 return_unused_surplus_pages(h, (unsigned long) -delta);
fc1b8a73
MG
2140
2141out:
2142 spin_unlock(&hugetlb_lock);
2143 return ret;
2144}
2145
84afd99b
AW
2146static void hugetlb_vm_op_open(struct vm_area_struct *vma)
2147{
2148 struct resv_map *reservations = vma_resv_map(vma);
2149
2150 /*
2151 * This new VMA should share its siblings reservation map if present.
2152 * The VMA will only ever have a valid reservation map pointer where
2153 * it is being copied for another still existing VMA. As that VMA
25985edc 2154 * has a reference to the reservation map it cannot disappear until
84afd99b
AW
2155 * after this open call completes. It is therefore safe to take a
2156 * new reference here without additional locking.
2157 */
2158 if (reservations)
2159 kref_get(&reservations->refs);
2160}
2161
c50ac050
DH
2162static void resv_map_put(struct vm_area_struct *vma)
2163{
2164 struct resv_map *reservations = vma_resv_map(vma);
2165
2166 if (!reservations)
2167 return;
2168 kref_put(&reservations->refs, resv_map_release);
2169}
2170
a1e78772
MG
2171static void hugetlb_vm_op_close(struct vm_area_struct *vma)
2172{
a5516438 2173 struct hstate *h = hstate_vma(vma);
84afd99b 2174 struct resv_map *reservations = vma_resv_map(vma);
90481622 2175 struct hugepage_subpool *spool = subpool_vma(vma);
84afd99b
AW
2176 unsigned long reserve;
2177 unsigned long start;
2178 unsigned long end;
2179
2180 if (reservations) {
a5516438
AK
2181 start = vma_hugecache_offset(h, vma, vma->vm_start);
2182 end = vma_hugecache_offset(h, vma, vma->vm_end);
84afd99b
AW
2183
2184 reserve = (end - start) -
2185 region_count(&reservations->regions, start, end);
2186
c50ac050 2187 resv_map_put(vma);
84afd99b 2188
7251ff78 2189 if (reserve) {
a5516438 2190 hugetlb_acct_memory(h, -reserve);
90481622 2191 hugepage_subpool_put_pages(spool, reserve);
7251ff78 2192 }
84afd99b 2193 }
a1e78772
MG
2194}
2195
1da177e4
LT
2196/*
2197 * We cannot handle pagefaults against hugetlb pages at all. They cause
2198 * handle_mm_fault() to try to instantiate regular-sized pages in the
2199 * hugegpage VMA. do_page_fault() is supposed to trap this, so BUG is we get
2200 * this far.
2201 */
d0217ac0 2202static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1da177e4
LT
2203{
2204 BUG();
d0217ac0 2205 return 0;
1da177e4
LT
2206}
2207
f0f37e2f 2208const struct vm_operations_struct hugetlb_vm_ops = {
d0217ac0 2209 .fault = hugetlb_vm_op_fault,
84afd99b 2210 .open = hugetlb_vm_op_open,
a1e78772 2211 .close = hugetlb_vm_op_close,
1da177e4
LT
2212};
2213
1e8f889b
DG
2214static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
2215 int writable)
63551ae0
DG
2216{
2217 pte_t entry;
2218
1e8f889b 2219 if (writable) {
63551ae0
DG
2220 entry =
2221 pte_mkwrite(pte_mkdirty(mk_pte(page, vma->vm_page_prot)));
2222 } else {
7f2e9525 2223 entry = huge_pte_wrprotect(mk_pte(page, vma->vm_page_prot));
63551ae0
DG
2224 }
2225 entry = pte_mkyoung(entry);
2226 entry = pte_mkhuge(entry);
d9ed9faa 2227 entry = arch_make_huge_pte(entry, vma, page, writable);
63551ae0
DG
2228
2229 return entry;
2230}
2231
1e8f889b
DG
2232static void set_huge_ptep_writable(struct vm_area_struct *vma,
2233 unsigned long address, pte_t *ptep)
2234{
2235 pte_t entry;
2236
7f2e9525 2237 entry = pte_mkwrite(pte_mkdirty(huge_ptep_get(ptep)));
32f84528 2238 if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
4b3073e1 2239 update_mmu_cache(vma, address, ptep);
1e8f889b
DG
2240}
2241
2242
63551ae0
DG
2243int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
2244 struct vm_area_struct *vma)
2245{
2246 pte_t *src_pte, *dst_pte, entry;
2247 struct page *ptepage;
1c59827d 2248 unsigned long addr;
1e8f889b 2249 int cow;
a5516438
AK
2250 struct hstate *h = hstate_vma(vma);
2251 unsigned long sz = huge_page_size(h);
1e8f889b
DG
2252
2253 cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
63551ae0 2254
a5516438 2255 for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
c74df32c
HD
2256 src_pte = huge_pte_offset(src, addr);
2257 if (!src_pte)
2258 continue;
a5516438 2259 dst_pte = huge_pte_alloc(dst, addr, sz);
63551ae0
DG
2260 if (!dst_pte)
2261 goto nomem;
c5c99429
LW
2262
2263 /* If the pagetables are shared don't copy or take references */
2264 if (dst_pte == src_pte)
2265 continue;
2266
c74df32c 2267 spin_lock(&dst->page_table_lock);
46478758 2268 spin_lock_nested(&src->page_table_lock, SINGLE_DEPTH_NESTING);
7f2e9525 2269 if (!huge_pte_none(huge_ptep_get(src_pte))) {
1e8f889b 2270 if (cow)
7f2e9525
GS
2271 huge_ptep_set_wrprotect(src, addr, src_pte);
2272 entry = huge_ptep_get(src_pte);
1c59827d
HD
2273 ptepage = pte_page(entry);
2274 get_page(ptepage);
0fe6e20b 2275 page_dup_rmap(ptepage);
1c59827d
HD
2276 set_huge_pte_at(dst, addr, dst_pte, entry);
2277 }
2278 spin_unlock(&src->page_table_lock);
c74df32c 2279 spin_unlock(&dst->page_table_lock);
63551ae0
DG
2280 }
2281 return 0;
2282
2283nomem:
2284 return -ENOMEM;
2285}
2286
290408d4
NH
2287static int is_hugetlb_entry_migration(pte_t pte)
2288{
2289 swp_entry_t swp;
2290
2291 if (huge_pte_none(pte) || pte_present(pte))
2292 return 0;
2293 swp = pte_to_swp_entry(pte);
32f84528 2294 if (non_swap_entry(swp) && is_migration_entry(swp))
290408d4 2295 return 1;
32f84528 2296 else
290408d4
NH
2297 return 0;
2298}
2299
fd6a03ed
NH
2300static int is_hugetlb_entry_hwpoisoned(pte_t pte)
2301{
2302 swp_entry_t swp;
2303
2304 if (huge_pte_none(pte) || pte_present(pte))
2305 return 0;
2306 swp = pte_to_swp_entry(pte);
32f84528 2307 if (non_swap_entry(swp) && is_hwpoison_entry(swp))
fd6a03ed 2308 return 1;
32f84528 2309 else
fd6a03ed
NH
2310 return 0;
2311}
2312
24669e58
AK
2313void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
2314 unsigned long start, unsigned long end,
2315 struct page *ref_page)
63551ae0 2316{
24669e58 2317 int force_flush = 0;
63551ae0
DG
2318 struct mm_struct *mm = vma->vm_mm;
2319 unsigned long address;
c7546f8f 2320 pte_t *ptep;
63551ae0
DG
2321 pte_t pte;
2322 struct page *page;
a5516438
AK
2323 struct hstate *h = hstate_vma(vma);
2324 unsigned long sz = huge_page_size(h);
2325
63551ae0 2326 WARN_ON(!is_vm_hugetlb_page(vma));
a5516438
AK
2327 BUG_ON(start & ~huge_page_mask(h));
2328 BUG_ON(end & ~huge_page_mask(h));
63551ae0 2329
24669e58 2330 tlb_start_vma(tlb, vma);
cddb8a5c 2331 mmu_notifier_invalidate_range_start(mm, start, end);
24669e58 2332again:
508034a3 2333 spin_lock(&mm->page_table_lock);
a5516438 2334 for (address = start; address < end; address += sz) {
c7546f8f 2335 ptep = huge_pte_offset(mm, address);
4c887265 2336 if (!ptep)
c7546f8f
DG
2337 continue;
2338
39dde65c
CK
2339 if (huge_pmd_unshare(mm, &address, ptep))
2340 continue;
2341
6629326b
HD
2342 pte = huge_ptep_get(ptep);
2343 if (huge_pte_none(pte))
2344 continue;
2345
2346 /*
2347 * HWPoisoned hugepage is already unmapped and dropped reference
2348 */
2349 if (unlikely(is_hugetlb_entry_hwpoisoned(pte)))
2350 continue;
2351
2352 page = pte_page(pte);
04f2cbe3
MG
2353 /*
2354 * If a reference page is supplied, it is because a specific
2355 * page is being unmapped, not a range. Ensure the page we
2356 * are about to unmap is the actual page of interest.
2357 */
2358 if (ref_page) {
04f2cbe3
MG
2359 if (page != ref_page)
2360 continue;
2361
2362 /*
2363 * Mark the VMA as having unmapped its page so that
2364 * future faults in this VMA will fail rather than
2365 * looking like data was lost
2366 */
2367 set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
2368 }
2369
c7546f8f 2370 pte = huge_ptep_get_and_clear(mm, address, ptep);
24669e58 2371 tlb_remove_tlb_entry(tlb, ptep, address);
6649a386
KC
2372 if (pte_dirty(pte))
2373 set_page_dirty(page);
9e81130b 2374
24669e58
AK
2375 page_remove_rmap(page);
2376 force_flush = !__tlb_remove_page(tlb, page);
2377 if (force_flush)
2378 break;
9e81130b
HD
2379 /* Bail out after unmapping reference page if supplied */
2380 if (ref_page)
2381 break;
63551ae0 2382 }
cd2934a3 2383 spin_unlock(&mm->page_table_lock);
24669e58
AK
2384 /*
2385 * mmu_gather ran out of room to batch pages, we break out of
2386 * the PTE lock to avoid doing the potential expensive TLB invalidate
2387 * and page-free while holding it.
2388 */
2389 if (force_flush) {
2390 force_flush = 0;
2391 tlb_flush_mmu(tlb);
2392 if (address < end && !ref_page)
2393 goto again;
fe1668ae 2394 }
24669e58
AK
2395 mmu_notifier_invalidate_range_end(mm, start, end);
2396 tlb_end_vma(tlb, vma);
1da177e4 2397}
63551ae0 2398
502717f4 2399void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
04f2cbe3 2400 unsigned long end, struct page *ref_page)
502717f4 2401{
24669e58
AK
2402 struct mm_struct *mm;
2403 struct mmu_gather tlb;
2404
2405 mm = vma->vm_mm;
2406
2407 tlb_gather_mmu(&tlb, mm, 0);
2408 __unmap_hugepage_range(&tlb, vma, start, end, ref_page);
2409 tlb_finish_mmu(&tlb, start, end);
502717f4
CK
2410}
2411
04f2cbe3
MG
2412/*
2413 * This is called when the original mapper is failing to COW a MAP_PRIVATE
2414 * mappping it owns the reserve page for. The intention is to unmap the page
2415 * from other VMAs and let the children be SIGKILLed if they are faulting the
2416 * same region.
2417 */
2a4b3ded
HH
2418static int unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
2419 struct page *page, unsigned long address)
04f2cbe3 2420{
7526674d 2421 struct hstate *h = hstate_vma(vma);
04f2cbe3
MG
2422 struct vm_area_struct *iter_vma;
2423 struct address_space *mapping;
2424 struct prio_tree_iter iter;
2425 pgoff_t pgoff;
2426
2427 /*
2428 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
2429 * from page cache lookup which is in HPAGE_SIZE units.
2430 */
7526674d 2431 address = address & huge_page_mask(h);
0c176d52 2432 pgoff = vma_hugecache_offset(h, vma, address);
90481622 2433 mapping = vma->vm_file->f_dentry->d_inode->i_mapping;
04f2cbe3 2434
4eb2b1dc
MG
2435 /*
2436 * Take the mapping lock for the duration of the table walk. As
2437 * this mapping should be shared between all the VMAs,
2438 * __unmap_hugepage_range() is called as the lock is already held
2439 */
3d48ae45 2440 mutex_lock(&mapping->i_mmap_mutex);
04f2cbe3
MG
2441 vma_prio_tree_foreach(iter_vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
2442 /* Do not unmap the current VMA */
2443 if (iter_vma == vma)
2444 continue;
2445
2446 /*
2447 * Unmap the page from other VMAs without their own reserves.
2448 * They get marked to be SIGKILLed if they fault in these
2449 * areas. This is because a future no-page fault on this VMA
2450 * could insert a zeroed page instead of the data existing
2451 * from the time of fork. This would look like data corruption
2452 */
2453 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
24669e58
AK
2454 unmap_hugepage_range(iter_vma, address,
2455 address + huge_page_size(h), page);
04f2cbe3 2456 }
3d48ae45 2457 mutex_unlock(&mapping->i_mmap_mutex);
04f2cbe3
MG
2458
2459 return 1;
2460}
2461
0fe6e20b
NH
2462/*
2463 * Hugetlb_cow() should be called with page lock of the original hugepage held.
ef009b25
MH
2464 * Called with hugetlb_instantiation_mutex held and pte_page locked so we
2465 * cannot race with other handlers or page migration.
2466 * Keep the pte_same checks anyway to make transition from the mutex easier.
0fe6e20b 2467 */
1e8f889b 2468static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
04f2cbe3
MG
2469 unsigned long address, pte_t *ptep, pte_t pte,
2470 struct page *pagecache_page)
1e8f889b 2471{
a5516438 2472 struct hstate *h = hstate_vma(vma);
1e8f889b 2473 struct page *old_page, *new_page;
79ac6ba4 2474 int avoidcopy;
04f2cbe3 2475 int outside_reserve = 0;
1e8f889b
DG
2476
2477 old_page = pte_page(pte);
2478
04f2cbe3 2479retry_avoidcopy:
1e8f889b
DG
2480 /* If no-one else is actually using this page, avoid the copy
2481 * and just make the page writable */
0fe6e20b 2482 avoidcopy = (page_mapcount(old_page) == 1);
1e8f889b 2483 if (avoidcopy) {
56c9cfb1
NH
2484 if (PageAnon(old_page))
2485 page_move_anon_rmap(old_page, vma, address);
1e8f889b 2486 set_huge_ptep_writable(vma, address, ptep);
83c54070 2487 return 0;
1e8f889b
DG
2488 }
2489
04f2cbe3
MG
2490 /*
2491 * If the process that created a MAP_PRIVATE mapping is about to
2492 * perform a COW due to a shared page count, attempt to satisfy
2493 * the allocation without using the existing reserves. The pagecache
2494 * page is used to determine if the reserve at this address was
2495 * consumed or not. If reserves were used, a partial faulted mapping
2496 * at the time of fork() could consume its reserves on COW instead
2497 * of the full address range.
2498 */
f83a275d 2499 if (!(vma->vm_flags & VM_MAYSHARE) &&
04f2cbe3
MG
2500 is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
2501 old_page != pagecache_page)
2502 outside_reserve = 1;
2503
1e8f889b 2504 page_cache_get(old_page);
b76c8cfb
LW
2505
2506 /* Drop page_table_lock as buddy allocator may be called */
2507 spin_unlock(&mm->page_table_lock);
04f2cbe3 2508 new_page = alloc_huge_page(vma, address, outside_reserve);
1e8f889b 2509
2fc39cec 2510 if (IS_ERR(new_page)) {
76dcee75 2511 long err = PTR_ERR(new_page);
1e8f889b 2512 page_cache_release(old_page);
04f2cbe3
MG
2513
2514 /*
2515 * If a process owning a MAP_PRIVATE mapping fails to COW,
2516 * it is due to references held by a child and an insufficient
2517 * huge page pool. To guarantee the original mappers
2518 * reliability, unmap the page from child processes. The child
2519 * may get SIGKILLed if it later faults.
2520 */
2521 if (outside_reserve) {
2522 BUG_ON(huge_pte_none(pte));
2523 if (unmap_ref_private(mm, vma, old_page, address)) {
04f2cbe3 2524 BUG_ON(huge_pte_none(pte));
b76c8cfb 2525 spin_lock(&mm->page_table_lock);
a734bcc8
HD
2526 ptep = huge_pte_offset(mm, address & huge_page_mask(h));
2527 if (likely(pte_same(huge_ptep_get(ptep), pte)))
2528 goto retry_avoidcopy;
2529 /*
2530 * race occurs while re-acquiring page_table_lock, and
2531 * our job is done.
2532 */
2533 return 0;
04f2cbe3
MG
2534 }
2535 WARN_ON_ONCE(1);
2536 }
2537
b76c8cfb
LW
2538 /* Caller expects lock to be held */
2539 spin_lock(&mm->page_table_lock);
76dcee75
AK
2540 if (err == -ENOMEM)
2541 return VM_FAULT_OOM;
2542 else
2543 return VM_FAULT_SIGBUS;
1e8f889b
DG
2544 }
2545
0fe6e20b
NH
2546 /*
2547 * When the original hugepage is shared one, it does not have
2548 * anon_vma prepared.
2549 */
44e2aa93 2550 if (unlikely(anon_vma_prepare(vma))) {
ea4039a3
HD
2551 page_cache_release(new_page);
2552 page_cache_release(old_page);
44e2aa93
DN
2553 /* Caller expects lock to be held */
2554 spin_lock(&mm->page_table_lock);
0fe6e20b 2555 return VM_FAULT_OOM;
44e2aa93 2556 }
0fe6e20b 2557
47ad8475
AA
2558 copy_user_huge_page(new_page, old_page, address, vma,
2559 pages_per_huge_page(h));
0ed361de 2560 __SetPageUptodate(new_page);
1e8f889b 2561
b76c8cfb
LW
2562 /*
2563 * Retake the page_table_lock to check for racing updates
2564 * before the page tables are altered
2565 */
2566 spin_lock(&mm->page_table_lock);
a5516438 2567 ptep = huge_pte_offset(mm, address & huge_page_mask(h));
7f2e9525 2568 if (likely(pte_same(huge_ptep_get(ptep), pte))) {
1e8f889b 2569 /* Break COW */
3edd4fc9
DD
2570 mmu_notifier_invalidate_range_start(mm,
2571 address & huge_page_mask(h),
2572 (address & huge_page_mask(h)) + huge_page_size(h));
8fe627ec 2573 huge_ptep_clear_flush(vma, address, ptep);
1e8f889b
DG
2574 set_huge_pte_at(mm, address, ptep,
2575 make_huge_pte(vma, new_page, 1));
0fe6e20b 2576 page_remove_rmap(old_page);
cd67f0d2 2577 hugepage_add_new_anon_rmap(new_page, vma, address);
1e8f889b
DG
2578 /* Make the old page be freed below */
2579 new_page = old_page;
3edd4fc9
DD
2580 mmu_notifier_invalidate_range_end(mm,
2581 address & huge_page_mask(h),
2582 (address & huge_page_mask(h)) + huge_page_size(h));
1e8f889b
DG
2583 }
2584 page_cache_release(new_page);
2585 page_cache_release(old_page);
83c54070 2586 return 0;
1e8f889b
DG
2587}
2588
04f2cbe3 2589/* Return the pagecache page at a given address within a VMA */
a5516438
AK
2590static struct page *hugetlbfs_pagecache_page(struct hstate *h,
2591 struct vm_area_struct *vma, unsigned long address)
04f2cbe3
MG
2592{
2593 struct address_space *mapping;
e7c4b0bf 2594 pgoff_t idx;
04f2cbe3
MG
2595
2596 mapping = vma->vm_file->f_mapping;
a5516438 2597 idx = vma_hugecache_offset(h, vma, address);
04f2cbe3
MG
2598
2599 return find_lock_page(mapping, idx);
2600}
2601
3ae77f43
HD
2602/*
2603 * Return whether there is a pagecache page to back given address within VMA.
2604 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
2605 */
2606static bool hugetlbfs_pagecache_present(struct hstate *h,
2a15efc9
HD
2607 struct vm_area_struct *vma, unsigned long address)
2608{
2609 struct address_space *mapping;
2610 pgoff_t idx;
2611 struct page *page;
2612
2613 mapping = vma->vm_file->f_mapping;
2614 idx = vma_hugecache_offset(h, vma, address);
2615
2616 page = find_get_page(mapping, idx);
2617 if (page)
2618 put_page(page);
2619 return page != NULL;
2620}
2621
a1ed3dda 2622static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
788c7df4 2623 unsigned long address, pte_t *ptep, unsigned int flags)
ac9b9c66 2624{
a5516438 2625 struct hstate *h = hstate_vma(vma);
ac9b9c66 2626 int ret = VM_FAULT_SIGBUS;
409eb8c2 2627 int anon_rmap = 0;
e7c4b0bf 2628 pgoff_t idx;
4c887265 2629 unsigned long size;
4c887265
AL
2630 struct page *page;
2631 struct address_space *mapping;
1e8f889b 2632 pte_t new_pte;
4c887265 2633
04f2cbe3
MG
2634 /*
2635 * Currently, we are forced to kill the process in the event the
2636 * original mapper has unmapped pages from the child due to a failed
25985edc 2637 * COW. Warn that such a situation has occurred as it may not be obvious
04f2cbe3
MG
2638 */
2639 if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
2640 printk(KERN_WARNING
2641 "PID %d killed due to inadequate hugepage pool\n",
2642 current->pid);
2643 return ret;
2644 }
2645
4c887265 2646 mapping = vma->vm_file->f_mapping;
a5516438 2647 idx = vma_hugecache_offset(h, vma, address);
4c887265
AL
2648
2649 /*
2650 * Use page lock to guard against racing truncation
2651 * before we get page_table_lock.
2652 */
6bda666a
CL
2653retry:
2654 page = find_lock_page(mapping, idx);
2655 if (!page) {
a5516438 2656 size = i_size_read(mapping->host) >> huge_page_shift(h);
ebed4bfc
HD
2657 if (idx >= size)
2658 goto out;
04f2cbe3 2659 page = alloc_huge_page(vma, address, 0);
2fc39cec 2660 if (IS_ERR(page)) {
76dcee75
AK
2661 ret = PTR_ERR(page);
2662 if (ret == -ENOMEM)
2663 ret = VM_FAULT_OOM;
2664 else
2665 ret = VM_FAULT_SIGBUS;
6bda666a
CL
2666 goto out;
2667 }
47ad8475 2668 clear_huge_page(page, address, pages_per_huge_page(h));
0ed361de 2669 __SetPageUptodate(page);
ac9b9c66 2670
f83a275d 2671 if (vma->vm_flags & VM_MAYSHARE) {
6bda666a 2672 int err;
45c682a6 2673 struct inode *inode = mapping->host;
6bda666a
CL
2674
2675 err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
2676 if (err) {
2677 put_page(page);
6bda666a
CL
2678 if (err == -EEXIST)
2679 goto retry;
2680 goto out;
2681 }
45c682a6
KC
2682
2683 spin_lock(&inode->i_lock);
a5516438 2684 inode->i_blocks += blocks_per_huge_page(h);
45c682a6 2685 spin_unlock(&inode->i_lock);
23be7468 2686 } else {
6bda666a 2687 lock_page(page);
0fe6e20b
NH
2688 if (unlikely(anon_vma_prepare(vma))) {
2689 ret = VM_FAULT_OOM;
2690 goto backout_unlocked;
2691 }
409eb8c2 2692 anon_rmap = 1;
23be7468 2693 }
0fe6e20b 2694 } else {
998b4382
NH
2695 /*
2696 * If memory error occurs between mmap() and fault, some process
2697 * don't have hwpoisoned swap entry for errored virtual address.
2698 * So we need to block hugepage fault by PG_hwpoison bit check.
2699 */
2700 if (unlikely(PageHWPoison(page))) {
32f84528 2701 ret = VM_FAULT_HWPOISON |
972dc4de 2702 VM_FAULT_SET_HINDEX(hstate_index(h));
998b4382
NH
2703 goto backout_unlocked;
2704 }
6bda666a 2705 }
1e8f889b 2706
57303d80
AW
2707 /*
2708 * If we are going to COW a private mapping later, we examine the
2709 * pending reservations for this page now. This will ensure that
2710 * any allocations necessary to record that reservation occur outside
2711 * the spinlock.
2712 */
788c7df4 2713 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED))
2b26736c
AW
2714 if (vma_needs_reservation(h, vma, address) < 0) {
2715 ret = VM_FAULT_OOM;
2716 goto backout_unlocked;
2717 }
57303d80 2718
ac9b9c66 2719 spin_lock(&mm->page_table_lock);
a5516438 2720 size = i_size_read(mapping->host) >> huge_page_shift(h);
4c887265
AL
2721 if (idx >= size)
2722 goto backout;
2723
83c54070 2724 ret = 0;
7f2e9525 2725 if (!huge_pte_none(huge_ptep_get(ptep)))
4c887265
AL
2726 goto backout;
2727
409eb8c2
HD
2728 if (anon_rmap)
2729 hugepage_add_new_anon_rmap(page, vma, address);
2730 else
2731 page_dup_rmap(page);
1e8f889b
DG
2732 new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
2733 && (vma->vm_flags & VM_SHARED)));
2734 set_huge_pte_at(mm, address, ptep, new_pte);
2735
788c7df4 2736 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
1e8f889b 2737 /* Optimization, do the COW without a second fault */
04f2cbe3 2738 ret = hugetlb_cow(mm, vma, address, ptep, new_pte, page);
1e8f889b
DG
2739 }
2740
ac9b9c66 2741 spin_unlock(&mm->page_table_lock);
4c887265
AL
2742 unlock_page(page);
2743out:
ac9b9c66 2744 return ret;
4c887265
AL
2745
2746backout:
2747 spin_unlock(&mm->page_table_lock);
2b26736c 2748backout_unlocked:
4c887265
AL
2749 unlock_page(page);
2750 put_page(page);
2751 goto out;
ac9b9c66
HD
2752}
2753
86e5216f 2754int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
788c7df4 2755 unsigned long address, unsigned int flags)
86e5216f
AL
2756{
2757 pte_t *ptep;
2758 pte_t entry;
1e8f889b 2759 int ret;
0fe6e20b 2760 struct page *page = NULL;
57303d80 2761 struct page *pagecache_page = NULL;
3935baa9 2762 static DEFINE_MUTEX(hugetlb_instantiation_mutex);
a5516438 2763 struct hstate *h = hstate_vma(vma);
86e5216f 2764
1e16a539
KH
2765 address &= huge_page_mask(h);
2766
fd6a03ed
NH
2767 ptep = huge_pte_offset(mm, address);
2768 if (ptep) {
2769 entry = huge_ptep_get(ptep);
290408d4
NH
2770 if (unlikely(is_hugetlb_entry_migration(entry))) {
2771 migration_entry_wait(mm, (pmd_t *)ptep, address);
2772 return 0;
2773 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
32f84528 2774 return VM_FAULT_HWPOISON_LARGE |
972dc4de 2775 VM_FAULT_SET_HINDEX(hstate_index(h));
fd6a03ed
NH
2776 }
2777
a5516438 2778 ptep = huge_pte_alloc(mm, address, huge_page_size(h));
86e5216f
AL
2779 if (!ptep)
2780 return VM_FAULT_OOM;
2781
3935baa9
DG
2782 /*
2783 * Serialize hugepage allocation and instantiation, so that we don't
2784 * get spurious allocation failures if two CPUs race to instantiate
2785 * the same page in the page cache.
2786 */
2787 mutex_lock(&hugetlb_instantiation_mutex);
7f2e9525
GS
2788 entry = huge_ptep_get(ptep);
2789 if (huge_pte_none(entry)) {
788c7df4 2790 ret = hugetlb_no_page(mm, vma, address, ptep, flags);
b4d1d99f 2791 goto out_mutex;
3935baa9 2792 }
86e5216f 2793
83c54070 2794 ret = 0;
1e8f889b 2795
57303d80
AW
2796 /*
2797 * If we are going to COW the mapping later, we examine the pending
2798 * reservations for this page now. This will ensure that any
2799 * allocations necessary to record that reservation occur outside the
2800 * spinlock. For private mappings, we also lookup the pagecache
2801 * page now as it is used to determine if a reservation has been
2802 * consumed.
2803 */
788c7df4 2804 if ((flags & FAULT_FLAG_WRITE) && !pte_write(entry)) {
2b26736c
AW
2805 if (vma_needs_reservation(h, vma, address) < 0) {
2806 ret = VM_FAULT_OOM;
b4d1d99f 2807 goto out_mutex;
2b26736c 2808 }
57303d80 2809
f83a275d 2810 if (!(vma->vm_flags & VM_MAYSHARE))
57303d80
AW
2811 pagecache_page = hugetlbfs_pagecache_page(h,
2812 vma, address);
2813 }
2814
56c9cfb1
NH
2815 /*
2816 * hugetlb_cow() requires page locks of pte_page(entry) and
2817 * pagecache_page, so here we need take the former one
2818 * when page != pagecache_page or !pagecache_page.
2819 * Note that locking order is always pagecache_page -> page,
2820 * so no worry about deadlock.
2821 */
2822 page = pte_page(entry);
66aebce7 2823 get_page(page);
56c9cfb1 2824 if (page != pagecache_page)
0fe6e20b 2825 lock_page(page);
0fe6e20b 2826
1e8f889b
DG
2827 spin_lock(&mm->page_table_lock);
2828 /* Check for a racing update before calling hugetlb_cow */
b4d1d99f
DG
2829 if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
2830 goto out_page_table_lock;
2831
2832
788c7df4 2833 if (flags & FAULT_FLAG_WRITE) {
b4d1d99f 2834 if (!pte_write(entry)) {
57303d80
AW
2835 ret = hugetlb_cow(mm, vma, address, ptep, entry,
2836 pagecache_page);
b4d1d99f
DG
2837 goto out_page_table_lock;
2838 }
2839 entry = pte_mkdirty(entry);
2840 }
2841 entry = pte_mkyoung(entry);
788c7df4
HD
2842 if (huge_ptep_set_access_flags(vma, address, ptep, entry,
2843 flags & FAULT_FLAG_WRITE))
4b3073e1 2844 update_mmu_cache(vma, address, ptep);
b4d1d99f
DG
2845
2846out_page_table_lock:
1e8f889b 2847 spin_unlock(&mm->page_table_lock);
57303d80
AW
2848
2849 if (pagecache_page) {
2850 unlock_page(pagecache_page);
2851 put_page(pagecache_page);
2852 }
1f64d69c
DN
2853 if (page != pagecache_page)
2854 unlock_page(page);
66aebce7 2855 put_page(page);
57303d80 2856
b4d1d99f 2857out_mutex:
3935baa9 2858 mutex_unlock(&hugetlb_instantiation_mutex);
1e8f889b
DG
2859
2860 return ret;
86e5216f
AL
2861}
2862
ceb86879
AK
2863/* Can be overriden by architectures */
2864__attribute__((weak)) struct page *
2865follow_huge_pud(struct mm_struct *mm, unsigned long address,
2866 pud_t *pud, int write)
2867{
2868 BUG();
2869 return NULL;
2870}
2871
63551ae0
DG
2872int follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
2873 struct page **pages, struct vm_area_struct **vmas,
5b23dbe8 2874 unsigned long *position, int *length, int i,
2a15efc9 2875 unsigned int flags)
63551ae0 2876{
d5d4b0aa
CK
2877 unsigned long pfn_offset;
2878 unsigned long vaddr = *position;
63551ae0 2879 int remainder = *length;
a5516438 2880 struct hstate *h = hstate_vma(vma);
63551ae0 2881
1c59827d 2882 spin_lock(&mm->page_table_lock);
63551ae0 2883 while (vaddr < vma->vm_end && remainder) {
4c887265 2884 pte_t *pte;
2a15efc9 2885 int absent;
4c887265 2886 struct page *page;
63551ae0 2887
4c887265
AL
2888 /*
2889 * Some archs (sparc64, sh*) have multiple pte_ts to
2a15efc9 2890 * each hugepage. We have to make sure we get the
4c887265
AL
2891 * first, for the page indexing below to work.
2892 */
a5516438 2893 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h));
2a15efc9
HD
2894 absent = !pte || huge_pte_none(huge_ptep_get(pte));
2895
2896 /*
2897 * When coredumping, it suits get_dump_page if we just return
3ae77f43
HD
2898 * an error where there's an empty slot with no huge pagecache
2899 * to back it. This way, we avoid allocating a hugepage, and
2900 * the sparse dumpfile avoids allocating disk blocks, but its
2901 * huge holes still show up with zeroes where they need to be.
2a15efc9 2902 */
3ae77f43
HD
2903 if (absent && (flags & FOLL_DUMP) &&
2904 !hugetlbfs_pagecache_present(h, vma, vaddr)) {
2a15efc9
HD
2905 remainder = 0;
2906 break;
2907 }
63551ae0 2908
2a15efc9
HD
2909 if (absent ||
2910 ((flags & FOLL_WRITE) && !pte_write(huge_ptep_get(pte)))) {
4c887265 2911 int ret;
63551ae0 2912
4c887265 2913 spin_unlock(&mm->page_table_lock);
2a15efc9
HD
2914 ret = hugetlb_fault(mm, vma, vaddr,
2915 (flags & FOLL_WRITE) ? FAULT_FLAG_WRITE : 0);
4c887265 2916 spin_lock(&mm->page_table_lock);
a89182c7 2917 if (!(ret & VM_FAULT_ERROR))
4c887265 2918 continue;
63551ae0 2919
4c887265 2920 remainder = 0;
4c887265
AL
2921 break;
2922 }
2923
a5516438 2924 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
7f2e9525 2925 page = pte_page(huge_ptep_get(pte));
d5d4b0aa 2926same_page:
d6692183 2927 if (pages) {
2a15efc9 2928 pages[i] = mem_map_offset(page, pfn_offset);
4b2e38ad 2929 get_page(pages[i]);
d6692183 2930 }
63551ae0
DG
2931
2932 if (vmas)
2933 vmas[i] = vma;
2934
2935 vaddr += PAGE_SIZE;
d5d4b0aa 2936 ++pfn_offset;
63551ae0
DG
2937 --remainder;
2938 ++i;
d5d4b0aa 2939 if (vaddr < vma->vm_end && remainder &&
a5516438 2940 pfn_offset < pages_per_huge_page(h)) {
d5d4b0aa
CK
2941 /*
2942 * We use pfn_offset to avoid touching the pageframes
2943 * of this compound page.
2944 */
2945 goto same_page;
2946 }
63551ae0 2947 }
1c59827d 2948 spin_unlock(&mm->page_table_lock);
63551ae0
DG
2949 *length = remainder;
2950 *position = vaddr;
2951
2a15efc9 2952 return i ? i : -EFAULT;
63551ae0 2953}
8f860591
ZY
2954
2955void hugetlb_change_protection(struct vm_area_struct *vma,
2956 unsigned long address, unsigned long end, pgprot_t newprot)
2957{
2958 struct mm_struct *mm = vma->vm_mm;
2959 unsigned long start = address;
2960 pte_t *ptep;
2961 pte_t pte;
a5516438 2962 struct hstate *h = hstate_vma(vma);
8f860591
ZY
2963
2964 BUG_ON(address >= end);
2965 flush_cache_range(vma, address, end);
2966
3d48ae45 2967 mutex_lock(&vma->vm_file->f_mapping->i_mmap_mutex);
8f860591 2968 spin_lock(&mm->page_table_lock);
a5516438 2969 for (; address < end; address += huge_page_size(h)) {
8f860591
ZY
2970 ptep = huge_pte_offset(mm, address);
2971 if (!ptep)
2972 continue;
39dde65c
CK
2973 if (huge_pmd_unshare(mm, &address, ptep))
2974 continue;
7f2e9525 2975 if (!huge_pte_none(huge_ptep_get(ptep))) {
8f860591
ZY
2976 pte = huge_ptep_get_and_clear(mm, address, ptep);
2977 pte = pte_mkhuge(pte_modify(pte, newprot));
2978 set_huge_pte_at(mm, address, ptep, pte);
8f860591
ZY
2979 }
2980 }
2981 spin_unlock(&mm->page_table_lock);
3d48ae45 2982 mutex_unlock(&vma->vm_file->f_mapping->i_mmap_mutex);
8f860591
ZY
2983
2984 flush_tlb_range(vma, start, end);
2985}
2986
a1e78772
MG
2987int hugetlb_reserve_pages(struct inode *inode,
2988 long from, long to,
5a6fe125 2989 struct vm_area_struct *vma,
ca16d140 2990 vm_flags_t vm_flags)
e4e574b7 2991{
17c9d12e 2992 long ret, chg;
a5516438 2993 struct hstate *h = hstate_inode(inode);
90481622 2994 struct hugepage_subpool *spool = subpool_inode(inode);
e4e574b7 2995
17c9d12e
MG
2996 /*
2997 * Only apply hugepage reservation if asked. At fault time, an
2998 * attempt will be made for VM_NORESERVE to allocate a page
90481622 2999 * without using reserves
17c9d12e 3000 */
ca16d140 3001 if (vm_flags & VM_NORESERVE)
17c9d12e
MG
3002 return 0;
3003
a1e78772
MG
3004 /*
3005 * Shared mappings base their reservation on the number of pages that
3006 * are already allocated on behalf of the file. Private mappings need
3007 * to reserve the full area even if read-only as mprotect() may be
3008 * called to make the mapping read-write. Assume !vma is a shm mapping
3009 */
f83a275d 3010 if (!vma || vma->vm_flags & VM_MAYSHARE)
a1e78772 3011 chg = region_chg(&inode->i_mapping->private_list, from, to);
17c9d12e
MG
3012 else {
3013 struct resv_map *resv_map = resv_map_alloc();
3014 if (!resv_map)
3015 return -ENOMEM;
3016
a1e78772 3017 chg = to - from;
84afd99b 3018
17c9d12e
MG
3019 set_vma_resv_map(vma, resv_map);
3020 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
3021 }
3022
c50ac050
DH
3023 if (chg < 0) {
3024 ret = chg;
3025 goto out_err;
3026 }
8a630112 3027
90481622 3028 /* There must be enough pages in the subpool for the mapping */
c50ac050
DH
3029 if (hugepage_subpool_get_pages(spool, chg)) {
3030 ret = -ENOSPC;
3031 goto out_err;
3032 }
5a6fe125
MG
3033
3034 /*
17c9d12e 3035 * Check enough hugepages are available for the reservation.
90481622 3036 * Hand the pages back to the subpool if there are not
5a6fe125 3037 */
a5516438 3038 ret = hugetlb_acct_memory(h, chg);
68842c9b 3039 if (ret < 0) {
90481622 3040 hugepage_subpool_put_pages(spool, chg);
c50ac050 3041 goto out_err;
68842c9b 3042 }
17c9d12e
MG
3043
3044 /*
3045 * Account for the reservations made. Shared mappings record regions
3046 * that have reservations as they are shared by multiple VMAs.
3047 * When the last VMA disappears, the region map says how much
3048 * the reservation was and the page cache tells how much of
3049 * the reservation was consumed. Private mappings are per-VMA and
3050 * only the consumed reservations are tracked. When the VMA
3051 * disappears, the original reservation is the VMA size and the
3052 * consumed reservations are stored in the map. Hence, nothing
3053 * else has to be done for private mappings here
3054 */
f83a275d 3055 if (!vma || vma->vm_flags & VM_MAYSHARE)
a1e78772 3056 region_add(&inode->i_mapping->private_list, from, to);
a43a8c39 3057 return 0;
c50ac050 3058out_err:
4523e145
DH
3059 if (vma)
3060 resv_map_put(vma);
c50ac050 3061 return ret;
a43a8c39
CK
3062}
3063
3064void hugetlb_unreserve_pages(struct inode *inode, long offset, long freed)
3065{
a5516438 3066 struct hstate *h = hstate_inode(inode);
a43a8c39 3067 long chg = region_truncate(&inode->i_mapping->private_list, offset);
90481622 3068 struct hugepage_subpool *spool = subpool_inode(inode);
45c682a6
KC
3069
3070 spin_lock(&inode->i_lock);
e4c6f8be 3071 inode->i_blocks -= (blocks_per_huge_page(h) * freed);
45c682a6
KC
3072 spin_unlock(&inode->i_lock);
3073
90481622 3074 hugepage_subpool_put_pages(spool, (chg - freed));
a5516438 3075 hugetlb_acct_memory(h, -(chg - freed));
a43a8c39 3076}
93f70f90 3077
d5bd9106
AK
3078#ifdef CONFIG_MEMORY_FAILURE
3079
6de2b1aa
NH
3080/* Should be called in hugetlb_lock */
3081static int is_hugepage_on_freelist(struct page *hpage)
3082{
3083 struct page *page;
3084 struct page *tmp;
3085 struct hstate *h = page_hstate(hpage);
3086 int nid = page_to_nid(hpage);
3087
3088 list_for_each_entry_safe(page, tmp, &h->hugepage_freelists[nid], lru)
3089 if (page == hpage)
3090 return 1;
3091 return 0;
3092}
3093
93f70f90
NH
3094/*
3095 * This function is called from memory failure code.
3096 * Assume the caller holds page lock of the head page.
3097 */
6de2b1aa 3098int dequeue_hwpoisoned_huge_page(struct page *hpage)
93f70f90
NH
3099{
3100 struct hstate *h = page_hstate(hpage);
3101 int nid = page_to_nid(hpage);
6de2b1aa 3102 int ret = -EBUSY;
93f70f90
NH
3103
3104 spin_lock(&hugetlb_lock);
6de2b1aa
NH
3105 if (is_hugepage_on_freelist(hpage)) {
3106 list_del(&hpage->lru);
8c6c2ecb 3107 set_page_refcounted(hpage);
6de2b1aa
NH
3108 h->free_huge_pages--;
3109 h->free_huge_pages_node[nid]--;
3110 ret = 0;
3111 }
93f70f90 3112 spin_unlock(&hugetlb_lock);
6de2b1aa 3113 return ret;
93f70f90 3114}
6de2b1aa 3115#endif