hugetlbfs: add minimum size accounting to subpools
[linux-2.6-block.git] / mm / hugetlb.c
CommitLineData
1da177e4
LT
1/*
2 * Generic hugetlb support.
6d49e352 3 * (C) Nadia Yvette Chambers, April 2004
1da177e4 4 */
1da177e4
LT
5#include <linux/list.h>
6#include <linux/init.h>
7#include <linux/module.h>
8#include <linux/mm.h>
e1759c21 9#include <linux/seq_file.h>
1da177e4
LT
10#include <linux/sysctl.h>
11#include <linux/highmem.h>
cddb8a5c 12#include <linux/mmu_notifier.h>
1da177e4 13#include <linux/nodemask.h>
63551ae0 14#include <linux/pagemap.h>
5da7ca86 15#include <linux/mempolicy.h>
3b32123d 16#include <linux/compiler.h>
aea47ff3 17#include <linux/cpuset.h>
3935baa9 18#include <linux/mutex.h>
aa888a74 19#include <linux/bootmem.h>
a3437870 20#include <linux/sysfs.h>
5a0e3ad6 21#include <linux/slab.h>
0fe6e20b 22#include <linux/rmap.h>
fd6a03ed
NH
23#include <linux/swap.h>
24#include <linux/swapops.h>
c8721bbb 25#include <linux/page-isolation.h>
8382d914 26#include <linux/jhash.h>
d6606683 27
63551ae0
DG
28#include <asm/page.h>
29#include <asm/pgtable.h>
24669e58 30#include <asm/tlb.h>
63551ae0 31
24669e58 32#include <linux/io.h>
63551ae0 33#include <linux/hugetlb.h>
9dd540e2 34#include <linux/hugetlb_cgroup.h>
9a305230 35#include <linux/node.h>
7835e98b 36#include "internal.h"
1da177e4 37
753162cd 38int hugepages_treat_as_movable;
a5516438 39
c3f38a38 40int hugetlb_max_hstate __read_mostly;
e5ff2159
AK
41unsigned int default_hstate_idx;
42struct hstate hstates[HUGE_MAX_HSTATE];
43
53ba51d2
JT
44__initdata LIST_HEAD(huge_boot_pages);
45
e5ff2159
AK
46/* for command line parsing */
47static struct hstate * __initdata parsed_hstate;
48static unsigned long __initdata default_hstate_max_huge_pages;
e11bfbfc 49static unsigned long __initdata default_hstate_size;
e5ff2159 50
3935baa9 51/*
31caf665
NH
52 * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
53 * free_huge_pages, and surplus_huge_pages.
3935baa9 54 */
c3f38a38 55DEFINE_SPINLOCK(hugetlb_lock);
0bd0f9fb 56
8382d914
DB
57/*
58 * Serializes faults on the same logical page. This is used to
59 * prevent spurious OOMs when the hugepage pool is fully utilized.
60 */
61static int num_fault_mutexes;
62static struct mutex *htlb_fault_mutex_table ____cacheline_aligned_in_smp;
63
90481622
DG
64static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
65{
66 bool free = (spool->count == 0) && (spool->used_hpages == 0);
67
68 spin_unlock(&spool->lock);
69
70 /* If no pages are used, and no other handles to the subpool
71 * remain, free the subpool the subpool remain */
72 if (free)
73 kfree(spool);
74}
75
76struct hugepage_subpool *hugepage_new_subpool(long nr_blocks)
77{
78 struct hugepage_subpool *spool;
79
c6a91820 80 spool = kzalloc(sizeof(*spool), GFP_KERNEL);
90481622
DG
81 if (!spool)
82 return NULL;
83
84 spin_lock_init(&spool->lock);
85 spool->count = 1;
86 spool->max_hpages = nr_blocks;
90481622
DG
87
88 return spool;
89}
90
91void hugepage_put_subpool(struct hugepage_subpool *spool)
92{
93 spin_lock(&spool->lock);
94 BUG_ON(!spool->count);
95 spool->count--;
96 unlock_or_release_subpool(spool);
97}
98
1c5ecae3
MK
99/*
100 * Subpool accounting for allocating and reserving pages.
101 * Return -ENOMEM if there are not enough resources to satisfy the
102 * the request. Otherwise, return the number of pages by which the
103 * global pools must be adjusted (upward). The returned value may
104 * only be different than the passed value (delta) in the case where
105 * a subpool minimum size must be manitained.
106 */
107static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
90481622
DG
108 long delta)
109{
1c5ecae3 110 long ret = delta;
90481622
DG
111
112 if (!spool)
1c5ecae3 113 return ret;
90481622
DG
114
115 spin_lock(&spool->lock);
1c5ecae3
MK
116
117 if (spool->max_hpages != -1) { /* maximum size accounting */
118 if ((spool->used_hpages + delta) <= spool->max_hpages)
119 spool->used_hpages += delta;
120 else {
121 ret = -ENOMEM;
122 goto unlock_ret;
123 }
90481622 124 }
90481622 125
1c5ecae3
MK
126 if (spool->min_hpages != -1) { /* minimum size accounting */
127 if (delta > spool->rsv_hpages) {
128 /*
129 * Asking for more reserves than those already taken on
130 * behalf of subpool. Return difference.
131 */
132 ret = delta - spool->rsv_hpages;
133 spool->rsv_hpages = 0;
134 } else {
135 ret = 0; /* reserves already accounted for */
136 spool->rsv_hpages -= delta;
137 }
138 }
139
140unlock_ret:
141 spin_unlock(&spool->lock);
90481622
DG
142 return ret;
143}
144
1c5ecae3
MK
145/*
146 * Subpool accounting for freeing and unreserving pages.
147 * Return the number of global page reservations that must be dropped.
148 * The return value may only be different than the passed value (delta)
149 * in the case where a subpool minimum size must be maintained.
150 */
151static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
90481622
DG
152 long delta)
153{
1c5ecae3
MK
154 long ret = delta;
155
90481622 156 if (!spool)
1c5ecae3 157 return delta;
90481622
DG
158
159 spin_lock(&spool->lock);
1c5ecae3
MK
160
161 if (spool->max_hpages != -1) /* maximum size accounting */
162 spool->used_hpages -= delta;
163
164 if (spool->min_hpages != -1) { /* minimum size accounting */
165 if (spool->rsv_hpages + delta <= spool->min_hpages)
166 ret = 0;
167 else
168 ret = spool->rsv_hpages + delta - spool->min_hpages;
169
170 spool->rsv_hpages += delta;
171 if (spool->rsv_hpages > spool->min_hpages)
172 spool->rsv_hpages = spool->min_hpages;
173 }
174
175 /*
176 * If hugetlbfs_put_super couldn't free spool due to an outstanding
177 * quota reference, free it now.
178 */
90481622 179 unlock_or_release_subpool(spool);
1c5ecae3
MK
180
181 return ret;
90481622
DG
182}
183
184static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
185{
186 return HUGETLBFS_SB(inode->i_sb)->spool;
187}
188
189static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
190{
496ad9aa 191 return subpool_inode(file_inode(vma->vm_file));
90481622
DG
192}
193
96822904
AW
194/*
195 * Region tracking -- allows tracking of reservations and instantiated pages
196 * across the pages in a mapping.
84afd99b 197 *
7b24d861
DB
198 * The region data structures are embedded into a resv_map and
199 * protected by a resv_map's lock
96822904
AW
200 */
201struct file_region {
202 struct list_head link;
203 long from;
204 long to;
205};
206
1406ec9b 207static long region_add(struct resv_map *resv, long f, long t)
96822904 208{
1406ec9b 209 struct list_head *head = &resv->regions;
96822904
AW
210 struct file_region *rg, *nrg, *trg;
211
7b24d861 212 spin_lock(&resv->lock);
96822904
AW
213 /* Locate the region we are either in or before. */
214 list_for_each_entry(rg, head, link)
215 if (f <= rg->to)
216 break;
217
218 /* Round our left edge to the current segment if it encloses us. */
219 if (f > rg->from)
220 f = rg->from;
221
222 /* Check for and consume any regions we now overlap with. */
223 nrg = rg;
224 list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
225 if (&rg->link == head)
226 break;
227 if (rg->from > t)
228 break;
229
230 /* If this area reaches higher then extend our area to
231 * include it completely. If this is not the first area
232 * which we intend to reuse, free it. */
233 if (rg->to > t)
234 t = rg->to;
235 if (rg != nrg) {
236 list_del(&rg->link);
237 kfree(rg);
238 }
239 }
240 nrg->from = f;
241 nrg->to = t;
7b24d861 242 spin_unlock(&resv->lock);
96822904
AW
243 return 0;
244}
245
1406ec9b 246static long region_chg(struct resv_map *resv, long f, long t)
96822904 247{
1406ec9b 248 struct list_head *head = &resv->regions;
7b24d861 249 struct file_region *rg, *nrg = NULL;
96822904
AW
250 long chg = 0;
251
7b24d861
DB
252retry:
253 spin_lock(&resv->lock);
96822904
AW
254 /* Locate the region we are before or in. */
255 list_for_each_entry(rg, head, link)
256 if (f <= rg->to)
257 break;
258
259 /* If we are below the current region then a new region is required.
260 * Subtle, allocate a new region at the position but make it zero
261 * size such that we can guarantee to record the reservation. */
262 if (&rg->link == head || t < rg->from) {
7b24d861
DB
263 if (!nrg) {
264 spin_unlock(&resv->lock);
265 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
266 if (!nrg)
267 return -ENOMEM;
268
269 nrg->from = f;
270 nrg->to = f;
271 INIT_LIST_HEAD(&nrg->link);
272 goto retry;
273 }
96822904 274
7b24d861
DB
275 list_add(&nrg->link, rg->link.prev);
276 chg = t - f;
277 goto out_nrg;
96822904
AW
278 }
279
280 /* Round our left edge to the current segment if it encloses us. */
281 if (f > rg->from)
282 f = rg->from;
283 chg = t - f;
284
285 /* Check for and consume any regions we now overlap with. */
286 list_for_each_entry(rg, rg->link.prev, link) {
287 if (&rg->link == head)
288 break;
289 if (rg->from > t)
7b24d861 290 goto out;
96822904 291
25985edc 292 /* We overlap with this area, if it extends further than
96822904
AW
293 * us then we must extend ourselves. Account for its
294 * existing reservation. */
295 if (rg->to > t) {
296 chg += rg->to - t;
297 t = rg->to;
298 }
299 chg -= rg->to - rg->from;
300 }
7b24d861
DB
301
302out:
303 spin_unlock(&resv->lock);
304 /* We already know we raced and no longer need the new region */
305 kfree(nrg);
306 return chg;
307out_nrg:
308 spin_unlock(&resv->lock);
96822904
AW
309 return chg;
310}
311
1406ec9b 312static long region_truncate(struct resv_map *resv, long end)
96822904 313{
1406ec9b 314 struct list_head *head = &resv->regions;
96822904
AW
315 struct file_region *rg, *trg;
316 long chg = 0;
317
7b24d861 318 spin_lock(&resv->lock);
96822904
AW
319 /* Locate the region we are either in or before. */
320 list_for_each_entry(rg, head, link)
321 if (end <= rg->to)
322 break;
323 if (&rg->link == head)
7b24d861 324 goto out;
96822904
AW
325
326 /* If we are in the middle of a region then adjust it. */
327 if (end > rg->from) {
328 chg = rg->to - end;
329 rg->to = end;
330 rg = list_entry(rg->link.next, typeof(*rg), link);
331 }
332
333 /* Drop any remaining regions. */
334 list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
335 if (&rg->link == head)
336 break;
337 chg += rg->to - rg->from;
338 list_del(&rg->link);
339 kfree(rg);
340 }
7b24d861
DB
341
342out:
343 spin_unlock(&resv->lock);
96822904
AW
344 return chg;
345}
346
1406ec9b 347static long region_count(struct resv_map *resv, long f, long t)
84afd99b 348{
1406ec9b 349 struct list_head *head = &resv->regions;
84afd99b
AW
350 struct file_region *rg;
351 long chg = 0;
352
7b24d861 353 spin_lock(&resv->lock);
84afd99b
AW
354 /* Locate each segment we overlap with, and count that overlap. */
355 list_for_each_entry(rg, head, link) {
f2135a4a
WSH
356 long seg_from;
357 long seg_to;
84afd99b
AW
358
359 if (rg->to <= f)
360 continue;
361 if (rg->from >= t)
362 break;
363
364 seg_from = max(rg->from, f);
365 seg_to = min(rg->to, t);
366
367 chg += seg_to - seg_from;
368 }
7b24d861 369 spin_unlock(&resv->lock);
84afd99b
AW
370
371 return chg;
372}
373
e7c4b0bf
AW
374/*
375 * Convert the address within this vma to the page offset within
376 * the mapping, in pagecache page units; huge pages here.
377 */
a5516438
AK
378static pgoff_t vma_hugecache_offset(struct hstate *h,
379 struct vm_area_struct *vma, unsigned long address)
e7c4b0bf 380{
a5516438
AK
381 return ((address - vma->vm_start) >> huge_page_shift(h)) +
382 (vma->vm_pgoff >> huge_page_order(h));
e7c4b0bf
AW
383}
384
0fe6e20b
NH
385pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
386 unsigned long address)
387{
388 return vma_hugecache_offset(hstate_vma(vma), vma, address);
389}
390
08fba699
MG
391/*
392 * Return the size of the pages allocated when backing a VMA. In the majority
393 * cases this will be same size as used by the page table entries.
394 */
395unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
396{
397 struct hstate *hstate;
398
399 if (!is_vm_hugetlb_page(vma))
400 return PAGE_SIZE;
401
402 hstate = hstate_vma(vma);
403
2415cf12 404 return 1UL << huge_page_shift(hstate);
08fba699 405}
f340ca0f 406EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
08fba699 407
3340289d
MG
408/*
409 * Return the page size being used by the MMU to back a VMA. In the majority
410 * of cases, the page size used by the kernel matches the MMU size. On
411 * architectures where it differs, an architecture-specific version of this
412 * function is required.
413 */
414#ifndef vma_mmu_pagesize
415unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
416{
417 return vma_kernel_pagesize(vma);
418}
419#endif
420
84afd99b
AW
421/*
422 * Flags for MAP_PRIVATE reservations. These are stored in the bottom
423 * bits of the reservation map pointer, which are always clear due to
424 * alignment.
425 */
426#define HPAGE_RESV_OWNER (1UL << 0)
427#define HPAGE_RESV_UNMAPPED (1UL << 1)
04f2cbe3 428#define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
84afd99b 429
a1e78772
MG
430/*
431 * These helpers are used to track how many pages are reserved for
432 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
433 * is guaranteed to have their future faults succeed.
434 *
435 * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
436 * the reserve counters are updated with the hugetlb_lock held. It is safe
437 * to reset the VMA at fork() time as it is not in use yet and there is no
438 * chance of the global counters getting corrupted as a result of the values.
84afd99b
AW
439 *
440 * The private mapping reservation is represented in a subtly different
441 * manner to a shared mapping. A shared mapping has a region map associated
442 * with the underlying file, this region map represents the backing file
443 * pages which have ever had a reservation assigned which this persists even
444 * after the page is instantiated. A private mapping has a region map
445 * associated with the original mmap which is attached to all VMAs which
446 * reference it, this region map represents those offsets which have consumed
447 * reservation ie. where pages have been instantiated.
a1e78772 448 */
e7c4b0bf
AW
449static unsigned long get_vma_private_data(struct vm_area_struct *vma)
450{
451 return (unsigned long)vma->vm_private_data;
452}
453
454static void set_vma_private_data(struct vm_area_struct *vma,
455 unsigned long value)
456{
457 vma->vm_private_data = (void *)value;
458}
459
9119a41e 460struct resv_map *resv_map_alloc(void)
84afd99b
AW
461{
462 struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
463 if (!resv_map)
464 return NULL;
465
466 kref_init(&resv_map->refs);
7b24d861 467 spin_lock_init(&resv_map->lock);
84afd99b
AW
468 INIT_LIST_HEAD(&resv_map->regions);
469
470 return resv_map;
471}
472
9119a41e 473void resv_map_release(struct kref *ref)
84afd99b
AW
474{
475 struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
476
477 /* Clear out any active regions before we release the map. */
1406ec9b 478 region_truncate(resv_map, 0);
84afd99b
AW
479 kfree(resv_map);
480}
481
4e35f483
JK
482static inline struct resv_map *inode_resv_map(struct inode *inode)
483{
484 return inode->i_mapping->private_data;
485}
486
84afd99b 487static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
a1e78772 488{
81d1b09c 489 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
4e35f483
JK
490 if (vma->vm_flags & VM_MAYSHARE) {
491 struct address_space *mapping = vma->vm_file->f_mapping;
492 struct inode *inode = mapping->host;
493
494 return inode_resv_map(inode);
495
496 } else {
84afd99b
AW
497 return (struct resv_map *)(get_vma_private_data(vma) &
498 ~HPAGE_RESV_MASK);
4e35f483 499 }
a1e78772
MG
500}
501
84afd99b 502static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
a1e78772 503{
81d1b09c
SL
504 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
505 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
a1e78772 506
84afd99b
AW
507 set_vma_private_data(vma, (get_vma_private_data(vma) &
508 HPAGE_RESV_MASK) | (unsigned long)map);
04f2cbe3
MG
509}
510
511static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
512{
81d1b09c
SL
513 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
514 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
e7c4b0bf
AW
515
516 set_vma_private_data(vma, get_vma_private_data(vma) | flags);
04f2cbe3
MG
517}
518
519static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
520{
81d1b09c 521 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
e7c4b0bf
AW
522
523 return (get_vma_private_data(vma) & flag) != 0;
a1e78772
MG
524}
525
04f2cbe3 526/* Reset counters to 0 and clear all HPAGE_RESV_* flags */
a1e78772
MG
527void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
528{
81d1b09c 529 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
f83a275d 530 if (!(vma->vm_flags & VM_MAYSHARE))
a1e78772
MG
531 vma->vm_private_data = (void *)0;
532}
533
534/* Returns true if the VMA has associated reserve pages */
af0ed73e 535static int vma_has_reserves(struct vm_area_struct *vma, long chg)
a1e78772 536{
af0ed73e
JK
537 if (vma->vm_flags & VM_NORESERVE) {
538 /*
539 * This address is already reserved by other process(chg == 0),
540 * so, we should decrement reserved count. Without decrementing,
541 * reserve count remains after releasing inode, because this
542 * allocated page will go into page cache and is regarded as
543 * coming from reserved pool in releasing step. Currently, we
544 * don't have any other solution to deal with this situation
545 * properly, so add work-around here.
546 */
547 if (vma->vm_flags & VM_MAYSHARE && chg == 0)
548 return 1;
549 else
550 return 0;
551 }
a63884e9
JK
552
553 /* Shared mappings always use reserves */
f83a275d 554 if (vma->vm_flags & VM_MAYSHARE)
7f09ca51 555 return 1;
a63884e9
JK
556
557 /*
558 * Only the process that called mmap() has reserves for
559 * private mappings.
560 */
7f09ca51
MG
561 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER))
562 return 1;
a63884e9 563
7f09ca51 564 return 0;
a1e78772
MG
565}
566
a5516438 567static void enqueue_huge_page(struct hstate *h, struct page *page)
1da177e4
LT
568{
569 int nid = page_to_nid(page);
0edaecfa 570 list_move(&page->lru, &h->hugepage_freelists[nid]);
a5516438
AK
571 h->free_huge_pages++;
572 h->free_huge_pages_node[nid]++;
1da177e4
LT
573}
574
bf50bab2
NH
575static struct page *dequeue_huge_page_node(struct hstate *h, int nid)
576{
577 struct page *page;
578
c8721bbb
NH
579 list_for_each_entry(page, &h->hugepage_freelists[nid], lru)
580 if (!is_migrate_isolate_page(page))
581 break;
582 /*
583 * if 'non-isolated free hugepage' not found on the list,
584 * the allocation fails.
585 */
586 if (&h->hugepage_freelists[nid] == &page->lru)
bf50bab2 587 return NULL;
0edaecfa 588 list_move(&page->lru, &h->hugepage_activelist);
a9869b83 589 set_page_refcounted(page);
bf50bab2
NH
590 h->free_huge_pages--;
591 h->free_huge_pages_node[nid]--;
592 return page;
593}
594
86cdb465
NH
595/* Movability of hugepages depends on migration support. */
596static inline gfp_t htlb_alloc_mask(struct hstate *h)
597{
100873d7 598 if (hugepages_treat_as_movable || hugepage_migration_supported(h))
86cdb465
NH
599 return GFP_HIGHUSER_MOVABLE;
600 else
601 return GFP_HIGHUSER;
602}
603
a5516438
AK
604static struct page *dequeue_huge_page_vma(struct hstate *h,
605 struct vm_area_struct *vma,
af0ed73e
JK
606 unsigned long address, int avoid_reserve,
607 long chg)
1da177e4 608{
b1c12cbc 609 struct page *page = NULL;
480eccf9 610 struct mempolicy *mpol;
19770b32 611 nodemask_t *nodemask;
c0ff7453 612 struct zonelist *zonelist;
dd1a239f
MG
613 struct zone *zone;
614 struct zoneref *z;
cc9a6c87 615 unsigned int cpuset_mems_cookie;
1da177e4 616
a1e78772
MG
617 /*
618 * A child process with MAP_PRIVATE mappings created by their parent
619 * have no page reserves. This check ensures that reservations are
620 * not "stolen". The child may still get SIGKILLed
621 */
af0ed73e 622 if (!vma_has_reserves(vma, chg) &&
a5516438 623 h->free_huge_pages - h->resv_huge_pages == 0)
c0ff7453 624 goto err;
a1e78772 625
04f2cbe3 626 /* If reserves cannot be used, ensure enough pages are in the pool */
a5516438 627 if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
6eab04a8 628 goto err;
04f2cbe3 629
9966c4bb 630retry_cpuset:
d26914d1 631 cpuset_mems_cookie = read_mems_allowed_begin();
9966c4bb 632 zonelist = huge_zonelist(vma, address,
86cdb465 633 htlb_alloc_mask(h), &mpol, &nodemask);
9966c4bb 634
19770b32
MG
635 for_each_zone_zonelist_nodemask(zone, z, zonelist,
636 MAX_NR_ZONES - 1, nodemask) {
344736f2 637 if (cpuset_zone_allowed(zone, htlb_alloc_mask(h))) {
bf50bab2
NH
638 page = dequeue_huge_page_node(h, zone_to_nid(zone));
639 if (page) {
af0ed73e
JK
640 if (avoid_reserve)
641 break;
642 if (!vma_has_reserves(vma, chg))
643 break;
644
07443a85 645 SetPagePrivate(page);
af0ed73e 646 h->resv_huge_pages--;
bf50bab2
NH
647 break;
648 }
3abf7afd 649 }
1da177e4 650 }
cc9a6c87 651
52cd3b07 652 mpol_cond_put(mpol);
d26914d1 653 if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie)))
cc9a6c87 654 goto retry_cpuset;
1da177e4 655 return page;
cc9a6c87
MG
656
657err:
cc9a6c87 658 return NULL;
1da177e4
LT
659}
660
1cac6f2c
LC
661/*
662 * common helper functions for hstate_next_node_to_{alloc|free}.
663 * We may have allocated or freed a huge page based on a different
664 * nodes_allowed previously, so h->next_node_to_{alloc|free} might
665 * be outside of *nodes_allowed. Ensure that we use an allowed
666 * node for alloc or free.
667 */
668static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
669{
670 nid = next_node(nid, *nodes_allowed);
671 if (nid == MAX_NUMNODES)
672 nid = first_node(*nodes_allowed);
673 VM_BUG_ON(nid >= MAX_NUMNODES);
674
675 return nid;
676}
677
678static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
679{
680 if (!node_isset(nid, *nodes_allowed))
681 nid = next_node_allowed(nid, nodes_allowed);
682 return nid;
683}
684
685/*
686 * returns the previously saved node ["this node"] from which to
687 * allocate a persistent huge page for the pool and advance the
688 * next node from which to allocate, handling wrap at end of node
689 * mask.
690 */
691static int hstate_next_node_to_alloc(struct hstate *h,
692 nodemask_t *nodes_allowed)
693{
694 int nid;
695
696 VM_BUG_ON(!nodes_allowed);
697
698 nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
699 h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
700
701 return nid;
702}
703
704/*
705 * helper for free_pool_huge_page() - return the previously saved
706 * node ["this node"] from which to free a huge page. Advance the
707 * next node id whether or not we find a free huge page to free so
708 * that the next attempt to free addresses the next node.
709 */
710static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
711{
712 int nid;
713
714 VM_BUG_ON(!nodes_allowed);
715
716 nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
717 h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
718
719 return nid;
720}
721
722#define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask) \
723 for (nr_nodes = nodes_weight(*mask); \
724 nr_nodes > 0 && \
725 ((node = hstate_next_node_to_alloc(hs, mask)) || 1); \
726 nr_nodes--)
727
728#define for_each_node_mask_to_free(hs, nr_nodes, node, mask) \
729 for (nr_nodes = nodes_weight(*mask); \
730 nr_nodes > 0 && \
731 ((node = hstate_next_node_to_free(hs, mask)) || 1); \
732 nr_nodes--)
733
944d9fec
LC
734#if defined(CONFIG_CMA) && defined(CONFIG_X86_64)
735static void destroy_compound_gigantic_page(struct page *page,
736 unsigned long order)
737{
738 int i;
739 int nr_pages = 1 << order;
740 struct page *p = page + 1;
741
742 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
743 __ClearPageTail(p);
744 set_page_refcounted(p);
745 p->first_page = NULL;
746 }
747
748 set_compound_order(page, 0);
749 __ClearPageHead(page);
750}
751
752static void free_gigantic_page(struct page *page, unsigned order)
753{
754 free_contig_range(page_to_pfn(page), 1 << order);
755}
756
757static int __alloc_gigantic_page(unsigned long start_pfn,
758 unsigned long nr_pages)
759{
760 unsigned long end_pfn = start_pfn + nr_pages;
761 return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE);
762}
763
764static bool pfn_range_valid_gigantic(unsigned long start_pfn,
765 unsigned long nr_pages)
766{
767 unsigned long i, end_pfn = start_pfn + nr_pages;
768 struct page *page;
769
770 for (i = start_pfn; i < end_pfn; i++) {
771 if (!pfn_valid(i))
772 return false;
773
774 page = pfn_to_page(i);
775
776 if (PageReserved(page))
777 return false;
778
779 if (page_count(page) > 0)
780 return false;
781
782 if (PageHuge(page))
783 return false;
784 }
785
786 return true;
787}
788
789static bool zone_spans_last_pfn(const struct zone *zone,
790 unsigned long start_pfn, unsigned long nr_pages)
791{
792 unsigned long last_pfn = start_pfn + nr_pages - 1;
793 return zone_spans_pfn(zone, last_pfn);
794}
795
796static struct page *alloc_gigantic_page(int nid, unsigned order)
797{
798 unsigned long nr_pages = 1 << order;
799 unsigned long ret, pfn, flags;
800 struct zone *z;
801
802 z = NODE_DATA(nid)->node_zones;
803 for (; z - NODE_DATA(nid)->node_zones < MAX_NR_ZONES; z++) {
804 spin_lock_irqsave(&z->lock, flags);
805
806 pfn = ALIGN(z->zone_start_pfn, nr_pages);
807 while (zone_spans_last_pfn(z, pfn, nr_pages)) {
808 if (pfn_range_valid_gigantic(pfn, nr_pages)) {
809 /*
810 * We release the zone lock here because
811 * alloc_contig_range() will also lock the zone
812 * at some point. If there's an allocation
813 * spinning on this lock, it may win the race
814 * and cause alloc_contig_range() to fail...
815 */
816 spin_unlock_irqrestore(&z->lock, flags);
817 ret = __alloc_gigantic_page(pfn, nr_pages);
818 if (!ret)
819 return pfn_to_page(pfn);
820 spin_lock_irqsave(&z->lock, flags);
821 }
822 pfn += nr_pages;
823 }
824
825 spin_unlock_irqrestore(&z->lock, flags);
826 }
827
828 return NULL;
829}
830
831static void prep_new_huge_page(struct hstate *h, struct page *page, int nid);
832static void prep_compound_gigantic_page(struct page *page, unsigned long order);
833
834static struct page *alloc_fresh_gigantic_page_node(struct hstate *h, int nid)
835{
836 struct page *page;
837
838 page = alloc_gigantic_page(nid, huge_page_order(h));
839 if (page) {
840 prep_compound_gigantic_page(page, huge_page_order(h));
841 prep_new_huge_page(h, page, nid);
842 }
843
844 return page;
845}
846
847static int alloc_fresh_gigantic_page(struct hstate *h,
848 nodemask_t *nodes_allowed)
849{
850 struct page *page = NULL;
851 int nr_nodes, node;
852
853 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
854 page = alloc_fresh_gigantic_page_node(h, node);
855 if (page)
856 return 1;
857 }
858
859 return 0;
860}
861
862static inline bool gigantic_page_supported(void) { return true; }
863#else
864static inline bool gigantic_page_supported(void) { return false; }
865static inline void free_gigantic_page(struct page *page, unsigned order) { }
866static inline void destroy_compound_gigantic_page(struct page *page,
867 unsigned long order) { }
868static inline int alloc_fresh_gigantic_page(struct hstate *h,
869 nodemask_t *nodes_allowed) { return 0; }
870#endif
871
a5516438 872static void update_and_free_page(struct hstate *h, struct page *page)
6af2acb6
AL
873{
874 int i;
a5516438 875
944d9fec
LC
876 if (hstate_is_gigantic(h) && !gigantic_page_supported())
877 return;
18229df5 878
a5516438
AK
879 h->nr_huge_pages--;
880 h->nr_huge_pages_node[page_to_nid(page)]--;
881 for (i = 0; i < pages_per_huge_page(h); i++) {
32f84528
CF
882 page[i].flags &= ~(1 << PG_locked | 1 << PG_error |
883 1 << PG_referenced | 1 << PG_dirty |
a7407a27
LC
884 1 << PG_active | 1 << PG_private |
885 1 << PG_writeback);
6af2acb6 886 }
309381fe 887 VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page);
6af2acb6
AL
888 set_compound_page_dtor(page, NULL);
889 set_page_refcounted(page);
944d9fec
LC
890 if (hstate_is_gigantic(h)) {
891 destroy_compound_gigantic_page(page, huge_page_order(h));
892 free_gigantic_page(page, huge_page_order(h));
893 } else {
894 arch_release_hugepage(page);
895 __free_pages(page, huge_page_order(h));
896 }
6af2acb6
AL
897}
898
e5ff2159
AK
899struct hstate *size_to_hstate(unsigned long size)
900{
901 struct hstate *h;
902
903 for_each_hstate(h) {
904 if (huge_page_size(h) == size)
905 return h;
906 }
907 return NULL;
908}
909
8f1d26d0 910void free_huge_page(struct page *page)
27a85ef1 911{
a5516438
AK
912 /*
913 * Can't pass hstate in here because it is called from the
914 * compound page destructor.
915 */
e5ff2159 916 struct hstate *h = page_hstate(page);
7893d1d5 917 int nid = page_to_nid(page);
90481622
DG
918 struct hugepage_subpool *spool =
919 (struct hugepage_subpool *)page_private(page);
07443a85 920 bool restore_reserve;
27a85ef1 921
e5df70ab 922 set_page_private(page, 0);
23be7468 923 page->mapping = NULL;
7893d1d5 924 BUG_ON(page_count(page));
0fe6e20b 925 BUG_ON(page_mapcount(page));
07443a85 926 restore_reserve = PagePrivate(page);
16c794b4 927 ClearPagePrivate(page);
27a85ef1 928
1c5ecae3
MK
929 /*
930 * A return code of zero implies that the subpool will be under its
931 * minimum size if the reservation is not restored after page is free.
932 * Therefore, force restore_reserve operation.
933 */
934 if (hugepage_subpool_put_pages(spool, 1) == 0)
935 restore_reserve = true;
936
27a85ef1 937 spin_lock(&hugetlb_lock);
6d76dcf4
AK
938 hugetlb_cgroup_uncharge_page(hstate_index(h),
939 pages_per_huge_page(h), page);
07443a85
JK
940 if (restore_reserve)
941 h->resv_huge_pages++;
942
944d9fec 943 if (h->surplus_huge_pages_node[nid]) {
0edaecfa
AK
944 /* remove the page from active list */
945 list_del(&page->lru);
a5516438
AK
946 update_and_free_page(h, page);
947 h->surplus_huge_pages--;
948 h->surplus_huge_pages_node[nid]--;
7893d1d5 949 } else {
5d3a551c 950 arch_clear_hugepage_flags(page);
a5516438 951 enqueue_huge_page(h, page);
7893d1d5 952 }
27a85ef1
DG
953 spin_unlock(&hugetlb_lock);
954}
955
a5516438 956static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
b7ba30c6 957{
0edaecfa 958 INIT_LIST_HEAD(&page->lru);
b7ba30c6
AK
959 set_compound_page_dtor(page, free_huge_page);
960 spin_lock(&hugetlb_lock);
9dd540e2 961 set_hugetlb_cgroup(page, NULL);
a5516438
AK
962 h->nr_huge_pages++;
963 h->nr_huge_pages_node[nid]++;
b7ba30c6
AK
964 spin_unlock(&hugetlb_lock);
965 put_page(page); /* free it into the hugepage allocator */
966}
967
2906dd52 968static void prep_compound_gigantic_page(struct page *page, unsigned long order)
20a0307c
WF
969{
970 int i;
971 int nr_pages = 1 << order;
972 struct page *p = page + 1;
973
974 /* we rely on prep_new_huge_page to set the destructor */
975 set_compound_order(page, order);
976 __SetPageHead(page);
ef5a22be 977 __ClearPageReserved(page);
20a0307c 978 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
ef5a22be
AA
979 /*
980 * For gigantic hugepages allocated through bootmem at
981 * boot, it's safer to be consistent with the not-gigantic
982 * hugepages and clear the PG_reserved bit from all tail pages
983 * too. Otherwse drivers using get_user_pages() to access tail
984 * pages may get the reference counting wrong if they see
985 * PG_reserved set on a tail page (despite the head page not
986 * having PG_reserved set). Enforcing this consistency between
987 * head and tail pages allows drivers to optimize away a check
988 * on the head page when they need know if put_page() is needed
989 * after get_user_pages().
990 */
991 __ClearPageReserved(p);
58a84aa9 992 set_page_count(p, 0);
20a0307c 993 p->first_page = page;
44fc8057
DR
994 /* Make sure p->first_page is always valid for PageTail() */
995 smp_wmb();
996 __SetPageTail(p);
20a0307c
WF
997 }
998}
999
7795912c
AM
1000/*
1001 * PageHuge() only returns true for hugetlbfs pages, but not for normal or
1002 * transparent huge pages. See the PageTransHuge() documentation for more
1003 * details.
1004 */
20a0307c
WF
1005int PageHuge(struct page *page)
1006{
20a0307c
WF
1007 if (!PageCompound(page))
1008 return 0;
1009
1010 page = compound_head(page);
758f66a2 1011 return get_compound_page_dtor(page) == free_huge_page;
20a0307c 1012}
43131e14
NH
1013EXPORT_SYMBOL_GPL(PageHuge);
1014
27c73ae7
AA
1015/*
1016 * PageHeadHuge() only returns true for hugetlbfs head page, but not for
1017 * normal or transparent huge pages.
1018 */
1019int PageHeadHuge(struct page *page_head)
1020{
27c73ae7
AA
1021 if (!PageHead(page_head))
1022 return 0;
1023
758f66a2 1024 return get_compound_page_dtor(page_head) == free_huge_page;
27c73ae7 1025}
27c73ae7 1026
13d60f4b
ZY
1027pgoff_t __basepage_index(struct page *page)
1028{
1029 struct page *page_head = compound_head(page);
1030 pgoff_t index = page_index(page_head);
1031 unsigned long compound_idx;
1032
1033 if (!PageHuge(page_head))
1034 return page_index(page);
1035
1036 if (compound_order(page_head) >= MAX_ORDER)
1037 compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
1038 else
1039 compound_idx = page - page_head;
1040
1041 return (index << compound_order(page_head)) + compound_idx;
1042}
1043
a5516438 1044static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid)
1da177e4 1045{
1da177e4 1046 struct page *page;
f96efd58 1047
6484eb3e 1048 page = alloc_pages_exact_node(nid,
86cdb465 1049 htlb_alloc_mask(h)|__GFP_COMP|__GFP_THISNODE|
551883ae 1050 __GFP_REPEAT|__GFP_NOWARN,
a5516438 1051 huge_page_order(h));
1da177e4 1052 if (page) {
7f2e9525 1053 if (arch_prepare_hugepage(page)) {
caff3a2c 1054 __free_pages(page, huge_page_order(h));
7b8ee84d 1055 return NULL;
7f2e9525 1056 }
a5516438 1057 prep_new_huge_page(h, page, nid);
1da177e4 1058 }
63b4613c
NA
1059
1060 return page;
1061}
1062
b2261026
JK
1063static int alloc_fresh_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
1064{
1065 struct page *page;
1066 int nr_nodes, node;
1067 int ret = 0;
1068
1069 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1070 page = alloc_fresh_huge_page_node(h, node);
1071 if (page) {
1072 ret = 1;
1073 break;
1074 }
1075 }
1076
1077 if (ret)
1078 count_vm_event(HTLB_BUDDY_PGALLOC);
1079 else
1080 count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1081
1082 return ret;
1083}
1084
e8c5c824
LS
1085/*
1086 * Free huge page from pool from next node to free.
1087 * Attempt to keep persistent huge pages more or less
1088 * balanced over allowed nodes.
1089 * Called with hugetlb_lock locked.
1090 */
6ae11b27
LS
1091static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
1092 bool acct_surplus)
e8c5c824 1093{
b2261026 1094 int nr_nodes, node;
e8c5c824
LS
1095 int ret = 0;
1096
b2261026 1097 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
685f3457
LS
1098 /*
1099 * If we're returning unused surplus pages, only examine
1100 * nodes with surplus pages.
1101 */
b2261026
JK
1102 if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
1103 !list_empty(&h->hugepage_freelists[node])) {
e8c5c824 1104 struct page *page =
b2261026 1105 list_entry(h->hugepage_freelists[node].next,
e8c5c824
LS
1106 struct page, lru);
1107 list_del(&page->lru);
1108 h->free_huge_pages--;
b2261026 1109 h->free_huge_pages_node[node]--;
685f3457
LS
1110 if (acct_surplus) {
1111 h->surplus_huge_pages--;
b2261026 1112 h->surplus_huge_pages_node[node]--;
685f3457 1113 }
e8c5c824
LS
1114 update_and_free_page(h, page);
1115 ret = 1;
9a76db09 1116 break;
e8c5c824 1117 }
b2261026 1118 }
e8c5c824
LS
1119
1120 return ret;
1121}
1122
c8721bbb
NH
1123/*
1124 * Dissolve a given free hugepage into free buddy pages. This function does
1125 * nothing for in-use (including surplus) hugepages.
1126 */
1127static void dissolve_free_huge_page(struct page *page)
1128{
1129 spin_lock(&hugetlb_lock);
1130 if (PageHuge(page) && !page_count(page)) {
1131 struct hstate *h = page_hstate(page);
1132 int nid = page_to_nid(page);
1133 list_del(&page->lru);
1134 h->free_huge_pages--;
1135 h->free_huge_pages_node[nid]--;
1136 update_and_free_page(h, page);
1137 }
1138 spin_unlock(&hugetlb_lock);
1139}
1140
1141/*
1142 * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
1143 * make specified memory blocks removable from the system.
1144 * Note that start_pfn should aligned with (minimum) hugepage size.
1145 */
1146void dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
1147{
1148 unsigned int order = 8 * sizeof(void *);
1149 unsigned long pfn;
1150 struct hstate *h;
1151
d0177639
LZ
1152 if (!hugepages_supported())
1153 return;
1154
c8721bbb
NH
1155 /* Set scan step to minimum hugepage size */
1156 for_each_hstate(h)
1157 if (order > huge_page_order(h))
1158 order = huge_page_order(h);
1159 VM_BUG_ON(!IS_ALIGNED(start_pfn, 1 << order));
1160 for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << order)
1161 dissolve_free_huge_page(pfn_to_page(pfn));
1162}
1163
bf50bab2 1164static struct page *alloc_buddy_huge_page(struct hstate *h, int nid)
7893d1d5
AL
1165{
1166 struct page *page;
bf50bab2 1167 unsigned int r_nid;
7893d1d5 1168
bae7f4ae 1169 if (hstate_is_gigantic(h))
aa888a74
AK
1170 return NULL;
1171
d1c3fb1f
NA
1172 /*
1173 * Assume we will successfully allocate the surplus page to
1174 * prevent racing processes from causing the surplus to exceed
1175 * overcommit
1176 *
1177 * This however introduces a different race, where a process B
1178 * tries to grow the static hugepage pool while alloc_pages() is
1179 * called by process A. B will only examine the per-node
1180 * counters in determining if surplus huge pages can be
1181 * converted to normal huge pages in adjust_pool_surplus(). A
1182 * won't be able to increment the per-node counter, until the
1183 * lock is dropped by B, but B doesn't drop hugetlb_lock until
1184 * no more huge pages can be converted from surplus to normal
1185 * state (and doesn't try to convert again). Thus, we have a
1186 * case where a surplus huge page exists, the pool is grown, and
1187 * the surplus huge page still exists after, even though it
1188 * should just have been converted to a normal huge page. This
1189 * does not leak memory, though, as the hugepage will be freed
1190 * once it is out of use. It also does not allow the counters to
1191 * go out of whack in adjust_pool_surplus() as we don't modify
1192 * the node values until we've gotten the hugepage and only the
1193 * per-node value is checked there.
1194 */
1195 spin_lock(&hugetlb_lock);
a5516438 1196 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
d1c3fb1f
NA
1197 spin_unlock(&hugetlb_lock);
1198 return NULL;
1199 } else {
a5516438
AK
1200 h->nr_huge_pages++;
1201 h->surplus_huge_pages++;
d1c3fb1f
NA
1202 }
1203 spin_unlock(&hugetlb_lock);
1204
bf50bab2 1205 if (nid == NUMA_NO_NODE)
86cdb465 1206 page = alloc_pages(htlb_alloc_mask(h)|__GFP_COMP|
bf50bab2
NH
1207 __GFP_REPEAT|__GFP_NOWARN,
1208 huge_page_order(h));
1209 else
1210 page = alloc_pages_exact_node(nid,
86cdb465 1211 htlb_alloc_mask(h)|__GFP_COMP|__GFP_THISNODE|
bf50bab2 1212 __GFP_REPEAT|__GFP_NOWARN, huge_page_order(h));
d1c3fb1f 1213
caff3a2c
GS
1214 if (page && arch_prepare_hugepage(page)) {
1215 __free_pages(page, huge_page_order(h));
ea5768c7 1216 page = NULL;
caff3a2c
GS
1217 }
1218
d1c3fb1f 1219 spin_lock(&hugetlb_lock);
7893d1d5 1220 if (page) {
0edaecfa 1221 INIT_LIST_HEAD(&page->lru);
bf50bab2 1222 r_nid = page_to_nid(page);
7893d1d5 1223 set_compound_page_dtor(page, free_huge_page);
9dd540e2 1224 set_hugetlb_cgroup(page, NULL);
d1c3fb1f
NA
1225 /*
1226 * We incremented the global counters already
1227 */
bf50bab2
NH
1228 h->nr_huge_pages_node[r_nid]++;
1229 h->surplus_huge_pages_node[r_nid]++;
3b116300 1230 __count_vm_event(HTLB_BUDDY_PGALLOC);
d1c3fb1f 1231 } else {
a5516438
AK
1232 h->nr_huge_pages--;
1233 h->surplus_huge_pages--;
3b116300 1234 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
7893d1d5 1235 }
d1c3fb1f 1236 spin_unlock(&hugetlb_lock);
7893d1d5
AL
1237
1238 return page;
1239}
1240
bf50bab2
NH
1241/*
1242 * This allocation function is useful in the context where vma is irrelevant.
1243 * E.g. soft-offlining uses this function because it only cares physical
1244 * address of error page.
1245 */
1246struct page *alloc_huge_page_node(struct hstate *h, int nid)
1247{
4ef91848 1248 struct page *page = NULL;
bf50bab2
NH
1249
1250 spin_lock(&hugetlb_lock);
4ef91848
JK
1251 if (h->free_huge_pages - h->resv_huge_pages > 0)
1252 page = dequeue_huge_page_node(h, nid);
bf50bab2
NH
1253 spin_unlock(&hugetlb_lock);
1254
94ae8ba7 1255 if (!page)
bf50bab2
NH
1256 page = alloc_buddy_huge_page(h, nid);
1257
1258 return page;
1259}
1260
e4e574b7 1261/*
25985edc 1262 * Increase the hugetlb pool such that it can accommodate a reservation
e4e574b7
AL
1263 * of size 'delta'.
1264 */
a5516438 1265static int gather_surplus_pages(struct hstate *h, int delta)
e4e574b7
AL
1266{
1267 struct list_head surplus_list;
1268 struct page *page, *tmp;
1269 int ret, i;
1270 int needed, allocated;
28073b02 1271 bool alloc_ok = true;
e4e574b7 1272
a5516438 1273 needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
ac09b3a1 1274 if (needed <= 0) {
a5516438 1275 h->resv_huge_pages += delta;
e4e574b7 1276 return 0;
ac09b3a1 1277 }
e4e574b7
AL
1278
1279 allocated = 0;
1280 INIT_LIST_HEAD(&surplus_list);
1281
1282 ret = -ENOMEM;
1283retry:
1284 spin_unlock(&hugetlb_lock);
1285 for (i = 0; i < needed; i++) {
bf50bab2 1286 page = alloc_buddy_huge_page(h, NUMA_NO_NODE);
28073b02
HD
1287 if (!page) {
1288 alloc_ok = false;
1289 break;
1290 }
e4e574b7
AL
1291 list_add(&page->lru, &surplus_list);
1292 }
28073b02 1293 allocated += i;
e4e574b7
AL
1294
1295 /*
1296 * After retaking hugetlb_lock, we need to recalculate 'needed'
1297 * because either resv_huge_pages or free_huge_pages may have changed.
1298 */
1299 spin_lock(&hugetlb_lock);
a5516438
AK
1300 needed = (h->resv_huge_pages + delta) -
1301 (h->free_huge_pages + allocated);
28073b02
HD
1302 if (needed > 0) {
1303 if (alloc_ok)
1304 goto retry;
1305 /*
1306 * We were not able to allocate enough pages to
1307 * satisfy the entire reservation so we free what
1308 * we've allocated so far.
1309 */
1310 goto free;
1311 }
e4e574b7
AL
1312 /*
1313 * The surplus_list now contains _at_least_ the number of extra pages
25985edc 1314 * needed to accommodate the reservation. Add the appropriate number
e4e574b7 1315 * of pages to the hugetlb pool and free the extras back to the buddy
ac09b3a1
AL
1316 * allocator. Commit the entire reservation here to prevent another
1317 * process from stealing the pages as they are added to the pool but
1318 * before they are reserved.
e4e574b7
AL
1319 */
1320 needed += allocated;
a5516438 1321 h->resv_huge_pages += delta;
e4e574b7 1322 ret = 0;
a9869b83 1323
19fc3f0a 1324 /* Free the needed pages to the hugetlb pool */
e4e574b7 1325 list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
19fc3f0a
AL
1326 if ((--needed) < 0)
1327 break;
a9869b83
NH
1328 /*
1329 * This page is now managed by the hugetlb allocator and has
1330 * no users -- drop the buddy allocator's reference.
1331 */
1332 put_page_testzero(page);
309381fe 1333 VM_BUG_ON_PAGE(page_count(page), page);
a5516438 1334 enqueue_huge_page(h, page);
19fc3f0a 1335 }
28073b02 1336free:
b0365c8d 1337 spin_unlock(&hugetlb_lock);
19fc3f0a
AL
1338
1339 /* Free unnecessary surplus pages to the buddy allocator */
c0d934ba
JK
1340 list_for_each_entry_safe(page, tmp, &surplus_list, lru)
1341 put_page(page);
a9869b83 1342 spin_lock(&hugetlb_lock);
e4e574b7
AL
1343
1344 return ret;
1345}
1346
1347/*
1348 * When releasing a hugetlb pool reservation, any surplus pages that were
1349 * allocated to satisfy the reservation must be explicitly freed if they were
1350 * never used.
685f3457 1351 * Called with hugetlb_lock held.
e4e574b7 1352 */
a5516438
AK
1353static void return_unused_surplus_pages(struct hstate *h,
1354 unsigned long unused_resv_pages)
e4e574b7 1355{
e4e574b7
AL
1356 unsigned long nr_pages;
1357
ac09b3a1 1358 /* Uncommit the reservation */
a5516438 1359 h->resv_huge_pages -= unused_resv_pages;
ac09b3a1 1360
aa888a74 1361 /* Cannot return gigantic pages currently */
bae7f4ae 1362 if (hstate_is_gigantic(h))
aa888a74
AK
1363 return;
1364
a5516438 1365 nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
e4e574b7 1366
685f3457
LS
1367 /*
1368 * We want to release as many surplus pages as possible, spread
9b5e5d0f
LS
1369 * evenly across all nodes with memory. Iterate across these nodes
1370 * until we can no longer free unreserved surplus pages. This occurs
1371 * when the nodes with surplus pages have no free pages.
1372 * free_pool_huge_page() will balance the the freed pages across the
1373 * on-line nodes with memory and will handle the hstate accounting.
685f3457
LS
1374 */
1375 while (nr_pages--) {
8cebfcd0 1376 if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1))
685f3457 1377 break;
7848a4bf 1378 cond_resched_lock(&hugetlb_lock);
e4e574b7
AL
1379 }
1380}
1381
c37f9fb1
AW
1382/*
1383 * Determine if the huge page at addr within the vma has an associated
1384 * reservation. Where it does not we will need to logically increase
90481622
DG
1385 * reservation and actually increase subpool usage before an allocation
1386 * can occur. Where any new reservation would be required the
1387 * reservation change is prepared, but not committed. Once the page
1388 * has been allocated from the subpool and instantiated the change should
1389 * be committed via vma_commit_reservation. No action is required on
1390 * failure.
c37f9fb1 1391 */
e2f17d94 1392static long vma_needs_reservation(struct hstate *h,
a5516438 1393 struct vm_area_struct *vma, unsigned long addr)
c37f9fb1 1394{
4e35f483
JK
1395 struct resv_map *resv;
1396 pgoff_t idx;
1397 long chg;
c37f9fb1 1398
4e35f483
JK
1399 resv = vma_resv_map(vma);
1400 if (!resv)
84afd99b 1401 return 1;
c37f9fb1 1402
4e35f483
JK
1403 idx = vma_hugecache_offset(h, vma, addr);
1404 chg = region_chg(resv, idx, idx + 1);
84afd99b 1405
4e35f483
JK
1406 if (vma->vm_flags & VM_MAYSHARE)
1407 return chg;
1408 else
1409 return chg < 0 ? chg : 0;
c37f9fb1 1410}
a5516438
AK
1411static void vma_commit_reservation(struct hstate *h,
1412 struct vm_area_struct *vma, unsigned long addr)
c37f9fb1 1413{
4e35f483
JK
1414 struct resv_map *resv;
1415 pgoff_t idx;
84afd99b 1416
4e35f483
JK
1417 resv = vma_resv_map(vma);
1418 if (!resv)
1419 return;
84afd99b 1420
4e35f483
JK
1421 idx = vma_hugecache_offset(h, vma, addr);
1422 region_add(resv, idx, idx + 1);
c37f9fb1
AW
1423}
1424
a1e78772 1425static struct page *alloc_huge_page(struct vm_area_struct *vma,
04f2cbe3 1426 unsigned long addr, int avoid_reserve)
1da177e4 1427{
90481622 1428 struct hugepage_subpool *spool = subpool_vma(vma);
a5516438 1429 struct hstate *h = hstate_vma(vma);
348ea204 1430 struct page *page;
e2f17d94 1431 long chg;
6d76dcf4
AK
1432 int ret, idx;
1433 struct hugetlb_cgroup *h_cg;
a1e78772 1434
6d76dcf4 1435 idx = hstate_index(h);
a1e78772 1436 /*
90481622
DG
1437 * Processes that did not create the mapping will have no
1438 * reserves and will not have accounted against subpool
1439 * limit. Check that the subpool limit can be made before
1440 * satisfying the allocation MAP_NORESERVE mappings may also
1441 * need pages and subpool limit allocated allocated if no reserve
1442 * mapping overlaps.
a1e78772 1443 */
a5516438 1444 chg = vma_needs_reservation(h, vma, addr);
c37f9fb1 1445 if (chg < 0)
76dcee75 1446 return ERR_PTR(-ENOMEM);
8bb3f12e 1447 if (chg || avoid_reserve)
1c5ecae3 1448 if (hugepage_subpool_get_pages(spool, 1) < 0)
76dcee75 1449 return ERR_PTR(-ENOSPC);
1da177e4 1450
6d76dcf4 1451 ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
8f34af6f
JZ
1452 if (ret)
1453 goto out_subpool_put;
1454
1da177e4 1455 spin_lock(&hugetlb_lock);
af0ed73e 1456 page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, chg);
81a6fcae 1457 if (!page) {
94ae8ba7 1458 spin_unlock(&hugetlb_lock);
bf50bab2 1459 page = alloc_buddy_huge_page(h, NUMA_NO_NODE);
8f34af6f
JZ
1460 if (!page)
1461 goto out_uncharge_cgroup;
1462
79dbb236
AK
1463 spin_lock(&hugetlb_lock);
1464 list_move(&page->lru, &h->hugepage_activelist);
81a6fcae 1465 /* Fall through */
68842c9b 1466 }
81a6fcae
JK
1467 hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
1468 spin_unlock(&hugetlb_lock);
348ea204 1469
90481622 1470 set_page_private(page, (unsigned long)spool);
90d8b7e6 1471
a5516438 1472 vma_commit_reservation(h, vma, addr);
90d8b7e6 1473 return page;
8f34af6f
JZ
1474
1475out_uncharge_cgroup:
1476 hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
1477out_subpool_put:
1478 if (chg || avoid_reserve)
1479 hugepage_subpool_put_pages(spool, 1);
1480 return ERR_PTR(-ENOSPC);
b45b5bd6
DG
1481}
1482
74060e4d
NH
1483/*
1484 * alloc_huge_page()'s wrapper which simply returns the page if allocation
1485 * succeeds, otherwise NULL. This function is called from new_vma_page(),
1486 * where no ERR_VALUE is expected to be returned.
1487 */
1488struct page *alloc_huge_page_noerr(struct vm_area_struct *vma,
1489 unsigned long addr, int avoid_reserve)
1490{
1491 struct page *page = alloc_huge_page(vma, addr, avoid_reserve);
1492 if (IS_ERR(page))
1493 page = NULL;
1494 return page;
1495}
1496
91f47662 1497int __weak alloc_bootmem_huge_page(struct hstate *h)
aa888a74
AK
1498{
1499 struct huge_bootmem_page *m;
b2261026 1500 int nr_nodes, node;
aa888a74 1501
b2261026 1502 for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
aa888a74
AK
1503 void *addr;
1504
8b89a116
GS
1505 addr = memblock_virt_alloc_try_nid_nopanic(
1506 huge_page_size(h), huge_page_size(h),
1507 0, BOOTMEM_ALLOC_ACCESSIBLE, node);
aa888a74
AK
1508 if (addr) {
1509 /*
1510 * Use the beginning of the huge page to store the
1511 * huge_bootmem_page struct (until gather_bootmem
1512 * puts them into the mem_map).
1513 */
1514 m = addr;
91f47662 1515 goto found;
aa888a74 1516 }
aa888a74
AK
1517 }
1518 return 0;
1519
1520found:
df994ead 1521 BUG_ON(!IS_ALIGNED(virt_to_phys(m), huge_page_size(h)));
aa888a74
AK
1522 /* Put them into a private list first because mem_map is not up yet */
1523 list_add(&m->list, &huge_boot_pages);
1524 m->hstate = h;
1525 return 1;
1526}
1527
f412c97a 1528static void __init prep_compound_huge_page(struct page *page, int order)
18229df5
AW
1529{
1530 if (unlikely(order > (MAX_ORDER - 1)))
1531 prep_compound_gigantic_page(page, order);
1532 else
1533 prep_compound_page(page, order);
1534}
1535
aa888a74
AK
1536/* Put bootmem huge pages into the standard lists after mem_map is up */
1537static void __init gather_bootmem_prealloc(void)
1538{
1539 struct huge_bootmem_page *m;
1540
1541 list_for_each_entry(m, &huge_boot_pages, list) {
aa888a74 1542 struct hstate *h = m->hstate;
ee8f248d
BB
1543 struct page *page;
1544
1545#ifdef CONFIG_HIGHMEM
1546 page = pfn_to_page(m->phys >> PAGE_SHIFT);
8b89a116
GS
1547 memblock_free_late(__pa(m),
1548 sizeof(struct huge_bootmem_page));
ee8f248d
BB
1549#else
1550 page = virt_to_page(m);
1551#endif
aa888a74 1552 WARN_ON(page_count(page) != 1);
18229df5 1553 prep_compound_huge_page(page, h->order);
ef5a22be 1554 WARN_ON(PageReserved(page));
aa888a74 1555 prep_new_huge_page(h, page, page_to_nid(page));
b0320c7b
RA
1556 /*
1557 * If we had gigantic hugepages allocated at boot time, we need
1558 * to restore the 'stolen' pages to totalram_pages in order to
1559 * fix confusing memory reports from free(1) and another
1560 * side-effects, like CommitLimit going negative.
1561 */
bae7f4ae 1562 if (hstate_is_gigantic(h))
3dcc0571 1563 adjust_managed_page_count(page, 1 << h->order);
aa888a74
AK
1564 }
1565}
1566
8faa8b07 1567static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
1da177e4
LT
1568{
1569 unsigned long i;
a5516438 1570
e5ff2159 1571 for (i = 0; i < h->max_huge_pages; ++i) {
bae7f4ae 1572 if (hstate_is_gigantic(h)) {
aa888a74
AK
1573 if (!alloc_bootmem_huge_page(h))
1574 break;
9b5e5d0f 1575 } else if (!alloc_fresh_huge_page(h,
8cebfcd0 1576 &node_states[N_MEMORY]))
1da177e4 1577 break;
1da177e4 1578 }
8faa8b07 1579 h->max_huge_pages = i;
e5ff2159
AK
1580}
1581
1582static void __init hugetlb_init_hstates(void)
1583{
1584 struct hstate *h;
1585
1586 for_each_hstate(h) {
8faa8b07 1587 /* oversize hugepages were init'ed in early boot */
bae7f4ae 1588 if (!hstate_is_gigantic(h))
8faa8b07 1589 hugetlb_hstate_alloc_pages(h);
e5ff2159
AK
1590 }
1591}
1592
4abd32db
AK
1593static char * __init memfmt(char *buf, unsigned long n)
1594{
1595 if (n >= (1UL << 30))
1596 sprintf(buf, "%lu GB", n >> 30);
1597 else if (n >= (1UL << 20))
1598 sprintf(buf, "%lu MB", n >> 20);
1599 else
1600 sprintf(buf, "%lu KB", n >> 10);
1601 return buf;
1602}
1603
e5ff2159
AK
1604static void __init report_hugepages(void)
1605{
1606 struct hstate *h;
1607
1608 for_each_hstate(h) {
4abd32db 1609 char buf[32];
ffb22af5 1610 pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
4abd32db
AK
1611 memfmt(buf, huge_page_size(h)),
1612 h->free_huge_pages);
e5ff2159
AK
1613 }
1614}
1615
1da177e4 1616#ifdef CONFIG_HIGHMEM
6ae11b27
LS
1617static void try_to_free_low(struct hstate *h, unsigned long count,
1618 nodemask_t *nodes_allowed)
1da177e4 1619{
4415cc8d
CL
1620 int i;
1621
bae7f4ae 1622 if (hstate_is_gigantic(h))
aa888a74
AK
1623 return;
1624
6ae11b27 1625 for_each_node_mask(i, *nodes_allowed) {
1da177e4 1626 struct page *page, *next;
a5516438
AK
1627 struct list_head *freel = &h->hugepage_freelists[i];
1628 list_for_each_entry_safe(page, next, freel, lru) {
1629 if (count >= h->nr_huge_pages)
6b0c880d 1630 return;
1da177e4
LT
1631 if (PageHighMem(page))
1632 continue;
1633 list_del(&page->lru);
e5ff2159 1634 update_and_free_page(h, page);
a5516438
AK
1635 h->free_huge_pages--;
1636 h->free_huge_pages_node[page_to_nid(page)]--;
1da177e4
LT
1637 }
1638 }
1639}
1640#else
6ae11b27
LS
1641static inline void try_to_free_low(struct hstate *h, unsigned long count,
1642 nodemask_t *nodes_allowed)
1da177e4
LT
1643{
1644}
1645#endif
1646
20a0307c
WF
1647/*
1648 * Increment or decrement surplus_huge_pages. Keep node-specific counters
1649 * balanced by operating on them in a round-robin fashion.
1650 * Returns 1 if an adjustment was made.
1651 */
6ae11b27
LS
1652static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
1653 int delta)
20a0307c 1654{
b2261026 1655 int nr_nodes, node;
20a0307c
WF
1656
1657 VM_BUG_ON(delta != -1 && delta != 1);
20a0307c 1658
b2261026
JK
1659 if (delta < 0) {
1660 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1661 if (h->surplus_huge_pages_node[node])
1662 goto found;
e8c5c824 1663 }
b2261026
JK
1664 } else {
1665 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
1666 if (h->surplus_huge_pages_node[node] <
1667 h->nr_huge_pages_node[node])
1668 goto found;
e8c5c824 1669 }
b2261026
JK
1670 }
1671 return 0;
20a0307c 1672
b2261026
JK
1673found:
1674 h->surplus_huge_pages += delta;
1675 h->surplus_huge_pages_node[node] += delta;
1676 return 1;
20a0307c
WF
1677}
1678
a5516438 1679#define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
6ae11b27
LS
1680static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count,
1681 nodemask_t *nodes_allowed)
1da177e4 1682{
7893d1d5 1683 unsigned long min_count, ret;
1da177e4 1684
944d9fec 1685 if (hstate_is_gigantic(h) && !gigantic_page_supported())
aa888a74
AK
1686 return h->max_huge_pages;
1687
7893d1d5
AL
1688 /*
1689 * Increase the pool size
1690 * First take pages out of surplus state. Then make up the
1691 * remaining difference by allocating fresh huge pages.
d1c3fb1f
NA
1692 *
1693 * We might race with alloc_buddy_huge_page() here and be unable
1694 * to convert a surplus huge page to a normal huge page. That is
1695 * not critical, though, it just means the overall size of the
1696 * pool might be one hugepage larger than it needs to be, but
1697 * within all the constraints specified by the sysctls.
7893d1d5 1698 */
1da177e4 1699 spin_lock(&hugetlb_lock);
a5516438 1700 while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
6ae11b27 1701 if (!adjust_pool_surplus(h, nodes_allowed, -1))
7893d1d5
AL
1702 break;
1703 }
1704
a5516438 1705 while (count > persistent_huge_pages(h)) {
7893d1d5
AL
1706 /*
1707 * If this allocation races such that we no longer need the
1708 * page, free_huge_page will handle it by freeing the page
1709 * and reducing the surplus.
1710 */
1711 spin_unlock(&hugetlb_lock);
944d9fec
LC
1712 if (hstate_is_gigantic(h))
1713 ret = alloc_fresh_gigantic_page(h, nodes_allowed);
1714 else
1715 ret = alloc_fresh_huge_page(h, nodes_allowed);
7893d1d5
AL
1716 spin_lock(&hugetlb_lock);
1717 if (!ret)
1718 goto out;
1719
536240f2
MG
1720 /* Bail for signals. Probably ctrl-c from user */
1721 if (signal_pending(current))
1722 goto out;
7893d1d5 1723 }
7893d1d5
AL
1724
1725 /*
1726 * Decrease the pool size
1727 * First return free pages to the buddy allocator (being careful
1728 * to keep enough around to satisfy reservations). Then place
1729 * pages into surplus state as needed so the pool will shrink
1730 * to the desired size as pages become free.
d1c3fb1f
NA
1731 *
1732 * By placing pages into the surplus state independent of the
1733 * overcommit value, we are allowing the surplus pool size to
1734 * exceed overcommit. There are few sane options here. Since
1735 * alloc_buddy_huge_page() is checking the global counter,
1736 * though, we'll note that we're not allowed to exceed surplus
1737 * and won't grow the pool anywhere else. Not until one of the
1738 * sysctls are changed, or the surplus pages go out of use.
7893d1d5 1739 */
a5516438 1740 min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
6b0c880d 1741 min_count = max(count, min_count);
6ae11b27 1742 try_to_free_low(h, min_count, nodes_allowed);
a5516438 1743 while (min_count < persistent_huge_pages(h)) {
6ae11b27 1744 if (!free_pool_huge_page(h, nodes_allowed, 0))
1da177e4 1745 break;
55f67141 1746 cond_resched_lock(&hugetlb_lock);
1da177e4 1747 }
a5516438 1748 while (count < persistent_huge_pages(h)) {
6ae11b27 1749 if (!adjust_pool_surplus(h, nodes_allowed, 1))
7893d1d5
AL
1750 break;
1751 }
1752out:
a5516438 1753 ret = persistent_huge_pages(h);
1da177e4 1754 spin_unlock(&hugetlb_lock);
7893d1d5 1755 return ret;
1da177e4
LT
1756}
1757
a3437870
NA
1758#define HSTATE_ATTR_RO(_name) \
1759 static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
1760
1761#define HSTATE_ATTR(_name) \
1762 static struct kobj_attribute _name##_attr = \
1763 __ATTR(_name, 0644, _name##_show, _name##_store)
1764
1765static struct kobject *hugepages_kobj;
1766static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
1767
9a305230
LS
1768static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
1769
1770static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
a3437870
NA
1771{
1772 int i;
9a305230 1773
a3437870 1774 for (i = 0; i < HUGE_MAX_HSTATE; i++)
9a305230
LS
1775 if (hstate_kobjs[i] == kobj) {
1776 if (nidp)
1777 *nidp = NUMA_NO_NODE;
a3437870 1778 return &hstates[i];
9a305230
LS
1779 }
1780
1781 return kobj_to_node_hstate(kobj, nidp);
a3437870
NA
1782}
1783
06808b08 1784static ssize_t nr_hugepages_show_common(struct kobject *kobj,
a3437870
NA
1785 struct kobj_attribute *attr, char *buf)
1786{
9a305230
LS
1787 struct hstate *h;
1788 unsigned long nr_huge_pages;
1789 int nid;
1790
1791 h = kobj_to_hstate(kobj, &nid);
1792 if (nid == NUMA_NO_NODE)
1793 nr_huge_pages = h->nr_huge_pages;
1794 else
1795 nr_huge_pages = h->nr_huge_pages_node[nid];
1796
1797 return sprintf(buf, "%lu\n", nr_huge_pages);
a3437870 1798}
adbe8726 1799
238d3c13
DR
1800static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
1801 struct hstate *h, int nid,
1802 unsigned long count, size_t len)
a3437870
NA
1803{
1804 int err;
bad44b5b 1805 NODEMASK_ALLOC(nodemask_t, nodes_allowed, GFP_KERNEL | __GFP_NORETRY);
a3437870 1806
944d9fec 1807 if (hstate_is_gigantic(h) && !gigantic_page_supported()) {
adbe8726
EM
1808 err = -EINVAL;
1809 goto out;
1810 }
1811
9a305230
LS
1812 if (nid == NUMA_NO_NODE) {
1813 /*
1814 * global hstate attribute
1815 */
1816 if (!(obey_mempolicy &&
1817 init_nodemask_of_mempolicy(nodes_allowed))) {
1818 NODEMASK_FREE(nodes_allowed);
8cebfcd0 1819 nodes_allowed = &node_states[N_MEMORY];
9a305230
LS
1820 }
1821 } else if (nodes_allowed) {
1822 /*
1823 * per node hstate attribute: adjust count to global,
1824 * but restrict alloc/free to the specified node.
1825 */
1826 count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
1827 init_nodemask_of_node(nodes_allowed, nid);
1828 } else
8cebfcd0 1829 nodes_allowed = &node_states[N_MEMORY];
9a305230 1830
06808b08 1831 h->max_huge_pages = set_max_huge_pages(h, count, nodes_allowed);
a3437870 1832
8cebfcd0 1833 if (nodes_allowed != &node_states[N_MEMORY])
06808b08
LS
1834 NODEMASK_FREE(nodes_allowed);
1835
1836 return len;
adbe8726
EM
1837out:
1838 NODEMASK_FREE(nodes_allowed);
1839 return err;
06808b08
LS
1840}
1841
238d3c13
DR
1842static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
1843 struct kobject *kobj, const char *buf,
1844 size_t len)
1845{
1846 struct hstate *h;
1847 unsigned long count;
1848 int nid;
1849 int err;
1850
1851 err = kstrtoul(buf, 10, &count);
1852 if (err)
1853 return err;
1854
1855 h = kobj_to_hstate(kobj, &nid);
1856 return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
1857}
1858
06808b08
LS
1859static ssize_t nr_hugepages_show(struct kobject *kobj,
1860 struct kobj_attribute *attr, char *buf)
1861{
1862 return nr_hugepages_show_common(kobj, attr, buf);
1863}
1864
1865static ssize_t nr_hugepages_store(struct kobject *kobj,
1866 struct kobj_attribute *attr, const char *buf, size_t len)
1867{
238d3c13 1868 return nr_hugepages_store_common(false, kobj, buf, len);
a3437870
NA
1869}
1870HSTATE_ATTR(nr_hugepages);
1871
06808b08
LS
1872#ifdef CONFIG_NUMA
1873
1874/*
1875 * hstate attribute for optionally mempolicy-based constraint on persistent
1876 * huge page alloc/free.
1877 */
1878static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
1879 struct kobj_attribute *attr, char *buf)
1880{
1881 return nr_hugepages_show_common(kobj, attr, buf);
1882}
1883
1884static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
1885 struct kobj_attribute *attr, const char *buf, size_t len)
1886{
238d3c13 1887 return nr_hugepages_store_common(true, kobj, buf, len);
06808b08
LS
1888}
1889HSTATE_ATTR(nr_hugepages_mempolicy);
1890#endif
1891
1892
a3437870
NA
1893static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
1894 struct kobj_attribute *attr, char *buf)
1895{
9a305230 1896 struct hstate *h = kobj_to_hstate(kobj, NULL);
a3437870
NA
1897 return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
1898}
adbe8726 1899
a3437870
NA
1900static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
1901 struct kobj_attribute *attr, const char *buf, size_t count)
1902{
1903 int err;
1904 unsigned long input;
9a305230 1905 struct hstate *h = kobj_to_hstate(kobj, NULL);
a3437870 1906
bae7f4ae 1907 if (hstate_is_gigantic(h))
adbe8726
EM
1908 return -EINVAL;
1909
3dbb95f7 1910 err = kstrtoul(buf, 10, &input);
a3437870 1911 if (err)
73ae31e5 1912 return err;
a3437870
NA
1913
1914 spin_lock(&hugetlb_lock);
1915 h->nr_overcommit_huge_pages = input;
1916 spin_unlock(&hugetlb_lock);
1917
1918 return count;
1919}
1920HSTATE_ATTR(nr_overcommit_hugepages);
1921
1922static ssize_t free_hugepages_show(struct kobject *kobj,
1923 struct kobj_attribute *attr, char *buf)
1924{
9a305230
LS
1925 struct hstate *h;
1926 unsigned long free_huge_pages;
1927 int nid;
1928
1929 h = kobj_to_hstate(kobj, &nid);
1930 if (nid == NUMA_NO_NODE)
1931 free_huge_pages = h->free_huge_pages;
1932 else
1933 free_huge_pages = h->free_huge_pages_node[nid];
1934
1935 return sprintf(buf, "%lu\n", free_huge_pages);
a3437870
NA
1936}
1937HSTATE_ATTR_RO(free_hugepages);
1938
1939static ssize_t resv_hugepages_show(struct kobject *kobj,
1940 struct kobj_attribute *attr, char *buf)
1941{
9a305230 1942 struct hstate *h = kobj_to_hstate(kobj, NULL);
a3437870
NA
1943 return sprintf(buf, "%lu\n", h->resv_huge_pages);
1944}
1945HSTATE_ATTR_RO(resv_hugepages);
1946
1947static ssize_t surplus_hugepages_show(struct kobject *kobj,
1948 struct kobj_attribute *attr, char *buf)
1949{
9a305230
LS
1950 struct hstate *h;
1951 unsigned long surplus_huge_pages;
1952 int nid;
1953
1954 h = kobj_to_hstate(kobj, &nid);
1955 if (nid == NUMA_NO_NODE)
1956 surplus_huge_pages = h->surplus_huge_pages;
1957 else
1958 surplus_huge_pages = h->surplus_huge_pages_node[nid];
1959
1960 return sprintf(buf, "%lu\n", surplus_huge_pages);
a3437870
NA
1961}
1962HSTATE_ATTR_RO(surplus_hugepages);
1963
1964static struct attribute *hstate_attrs[] = {
1965 &nr_hugepages_attr.attr,
1966 &nr_overcommit_hugepages_attr.attr,
1967 &free_hugepages_attr.attr,
1968 &resv_hugepages_attr.attr,
1969 &surplus_hugepages_attr.attr,
06808b08
LS
1970#ifdef CONFIG_NUMA
1971 &nr_hugepages_mempolicy_attr.attr,
1972#endif
a3437870
NA
1973 NULL,
1974};
1975
1976static struct attribute_group hstate_attr_group = {
1977 .attrs = hstate_attrs,
1978};
1979
094e9539
JM
1980static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
1981 struct kobject **hstate_kobjs,
1982 struct attribute_group *hstate_attr_group)
a3437870
NA
1983{
1984 int retval;
972dc4de 1985 int hi = hstate_index(h);
a3437870 1986
9a305230
LS
1987 hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
1988 if (!hstate_kobjs[hi])
a3437870
NA
1989 return -ENOMEM;
1990
9a305230 1991 retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
a3437870 1992 if (retval)
9a305230 1993 kobject_put(hstate_kobjs[hi]);
a3437870
NA
1994
1995 return retval;
1996}
1997
1998static void __init hugetlb_sysfs_init(void)
1999{
2000 struct hstate *h;
2001 int err;
2002
2003 hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
2004 if (!hugepages_kobj)
2005 return;
2006
2007 for_each_hstate(h) {
9a305230
LS
2008 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
2009 hstate_kobjs, &hstate_attr_group);
a3437870 2010 if (err)
ffb22af5 2011 pr_err("Hugetlb: Unable to add hstate %s", h->name);
a3437870
NA
2012 }
2013}
2014
9a305230
LS
2015#ifdef CONFIG_NUMA
2016
2017/*
2018 * node_hstate/s - associate per node hstate attributes, via their kobjects,
10fbcf4c
KS
2019 * with node devices in node_devices[] using a parallel array. The array
2020 * index of a node device or _hstate == node id.
2021 * This is here to avoid any static dependency of the node device driver, in
9a305230
LS
2022 * the base kernel, on the hugetlb module.
2023 */
2024struct node_hstate {
2025 struct kobject *hugepages_kobj;
2026 struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
2027};
2028struct node_hstate node_hstates[MAX_NUMNODES];
2029
2030/*
10fbcf4c 2031 * A subset of global hstate attributes for node devices
9a305230
LS
2032 */
2033static struct attribute *per_node_hstate_attrs[] = {
2034 &nr_hugepages_attr.attr,
2035 &free_hugepages_attr.attr,
2036 &surplus_hugepages_attr.attr,
2037 NULL,
2038};
2039
2040static struct attribute_group per_node_hstate_attr_group = {
2041 .attrs = per_node_hstate_attrs,
2042};
2043
2044/*
10fbcf4c 2045 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
9a305230
LS
2046 * Returns node id via non-NULL nidp.
2047 */
2048static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
2049{
2050 int nid;
2051
2052 for (nid = 0; nid < nr_node_ids; nid++) {
2053 struct node_hstate *nhs = &node_hstates[nid];
2054 int i;
2055 for (i = 0; i < HUGE_MAX_HSTATE; i++)
2056 if (nhs->hstate_kobjs[i] == kobj) {
2057 if (nidp)
2058 *nidp = nid;
2059 return &hstates[i];
2060 }
2061 }
2062
2063 BUG();
2064 return NULL;
2065}
2066
2067/*
10fbcf4c 2068 * Unregister hstate attributes from a single node device.
9a305230
LS
2069 * No-op if no hstate attributes attached.
2070 */
3cd8b44f 2071static void hugetlb_unregister_node(struct node *node)
9a305230
LS
2072{
2073 struct hstate *h;
10fbcf4c 2074 struct node_hstate *nhs = &node_hstates[node->dev.id];
9a305230
LS
2075
2076 if (!nhs->hugepages_kobj)
9b5e5d0f 2077 return; /* no hstate attributes */
9a305230 2078
972dc4de
AK
2079 for_each_hstate(h) {
2080 int idx = hstate_index(h);
2081 if (nhs->hstate_kobjs[idx]) {
2082 kobject_put(nhs->hstate_kobjs[idx]);
2083 nhs->hstate_kobjs[idx] = NULL;
9a305230 2084 }
972dc4de 2085 }
9a305230
LS
2086
2087 kobject_put(nhs->hugepages_kobj);
2088 nhs->hugepages_kobj = NULL;
2089}
2090
2091/*
10fbcf4c 2092 * hugetlb module exit: unregister hstate attributes from node devices
9a305230
LS
2093 * that have them.
2094 */
2095static void hugetlb_unregister_all_nodes(void)
2096{
2097 int nid;
2098
2099 /*
10fbcf4c 2100 * disable node device registrations.
9a305230
LS
2101 */
2102 register_hugetlbfs_with_node(NULL, NULL);
2103
2104 /*
2105 * remove hstate attributes from any nodes that have them.
2106 */
2107 for (nid = 0; nid < nr_node_ids; nid++)
8732794b 2108 hugetlb_unregister_node(node_devices[nid]);
9a305230
LS
2109}
2110
2111/*
10fbcf4c 2112 * Register hstate attributes for a single node device.
9a305230
LS
2113 * No-op if attributes already registered.
2114 */
3cd8b44f 2115static void hugetlb_register_node(struct node *node)
9a305230
LS
2116{
2117 struct hstate *h;
10fbcf4c 2118 struct node_hstate *nhs = &node_hstates[node->dev.id];
9a305230
LS
2119 int err;
2120
2121 if (nhs->hugepages_kobj)
2122 return; /* already allocated */
2123
2124 nhs->hugepages_kobj = kobject_create_and_add("hugepages",
10fbcf4c 2125 &node->dev.kobj);
9a305230
LS
2126 if (!nhs->hugepages_kobj)
2127 return;
2128
2129 for_each_hstate(h) {
2130 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
2131 nhs->hstate_kobjs,
2132 &per_node_hstate_attr_group);
2133 if (err) {
ffb22af5
AM
2134 pr_err("Hugetlb: Unable to add hstate %s for node %d\n",
2135 h->name, node->dev.id);
9a305230
LS
2136 hugetlb_unregister_node(node);
2137 break;
2138 }
2139 }
2140}
2141
2142/*
9b5e5d0f 2143 * hugetlb init time: register hstate attributes for all registered node
10fbcf4c
KS
2144 * devices of nodes that have memory. All on-line nodes should have
2145 * registered their associated device by this time.
9a305230 2146 */
7d9ca000 2147static void __init hugetlb_register_all_nodes(void)
9a305230
LS
2148{
2149 int nid;
2150
8cebfcd0 2151 for_each_node_state(nid, N_MEMORY) {
8732794b 2152 struct node *node = node_devices[nid];
10fbcf4c 2153 if (node->dev.id == nid)
9a305230
LS
2154 hugetlb_register_node(node);
2155 }
2156
2157 /*
10fbcf4c 2158 * Let the node device driver know we're here so it can
9a305230
LS
2159 * [un]register hstate attributes on node hotplug.
2160 */
2161 register_hugetlbfs_with_node(hugetlb_register_node,
2162 hugetlb_unregister_node);
2163}
2164#else /* !CONFIG_NUMA */
2165
2166static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
2167{
2168 BUG();
2169 if (nidp)
2170 *nidp = -1;
2171 return NULL;
2172}
2173
2174static void hugetlb_unregister_all_nodes(void) { }
2175
2176static void hugetlb_register_all_nodes(void) { }
2177
2178#endif
2179
a3437870
NA
2180static void __exit hugetlb_exit(void)
2181{
2182 struct hstate *h;
2183
9a305230
LS
2184 hugetlb_unregister_all_nodes();
2185
a3437870 2186 for_each_hstate(h) {
972dc4de 2187 kobject_put(hstate_kobjs[hstate_index(h)]);
a3437870
NA
2188 }
2189
2190 kobject_put(hugepages_kobj);
8382d914 2191 kfree(htlb_fault_mutex_table);
a3437870
NA
2192}
2193module_exit(hugetlb_exit);
2194
2195static int __init hugetlb_init(void)
2196{
8382d914
DB
2197 int i;
2198
457c1b27 2199 if (!hugepages_supported())
0ef89d25 2200 return 0;
a3437870 2201
e11bfbfc
NP
2202 if (!size_to_hstate(default_hstate_size)) {
2203 default_hstate_size = HPAGE_SIZE;
2204 if (!size_to_hstate(default_hstate_size))
2205 hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
a3437870 2206 }
972dc4de 2207 default_hstate_idx = hstate_index(size_to_hstate(default_hstate_size));
e11bfbfc
NP
2208 if (default_hstate_max_huge_pages)
2209 default_hstate.max_huge_pages = default_hstate_max_huge_pages;
a3437870
NA
2210
2211 hugetlb_init_hstates();
aa888a74 2212 gather_bootmem_prealloc();
a3437870
NA
2213 report_hugepages();
2214
2215 hugetlb_sysfs_init();
9a305230 2216 hugetlb_register_all_nodes();
7179e7bf 2217 hugetlb_cgroup_file_init();
9a305230 2218
8382d914
DB
2219#ifdef CONFIG_SMP
2220 num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
2221#else
2222 num_fault_mutexes = 1;
2223#endif
2224 htlb_fault_mutex_table =
2225 kmalloc(sizeof(struct mutex) * num_fault_mutexes, GFP_KERNEL);
2226 BUG_ON(!htlb_fault_mutex_table);
2227
2228 for (i = 0; i < num_fault_mutexes; i++)
2229 mutex_init(&htlb_fault_mutex_table[i]);
a3437870
NA
2230 return 0;
2231}
2232module_init(hugetlb_init);
2233
2234/* Should be called on processing a hugepagesz=... option */
2235void __init hugetlb_add_hstate(unsigned order)
2236{
2237 struct hstate *h;
8faa8b07
AK
2238 unsigned long i;
2239
a3437870 2240 if (size_to_hstate(PAGE_SIZE << order)) {
ffb22af5 2241 pr_warning("hugepagesz= specified twice, ignoring\n");
a3437870
NA
2242 return;
2243 }
47d38344 2244 BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
a3437870 2245 BUG_ON(order == 0);
47d38344 2246 h = &hstates[hugetlb_max_hstate++];
a3437870
NA
2247 h->order = order;
2248 h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
8faa8b07
AK
2249 h->nr_huge_pages = 0;
2250 h->free_huge_pages = 0;
2251 for (i = 0; i < MAX_NUMNODES; ++i)
2252 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
0edaecfa 2253 INIT_LIST_HEAD(&h->hugepage_activelist);
8cebfcd0
LJ
2254 h->next_nid_to_alloc = first_node(node_states[N_MEMORY]);
2255 h->next_nid_to_free = first_node(node_states[N_MEMORY]);
a3437870
NA
2256 snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
2257 huge_page_size(h)/1024);
8faa8b07 2258
a3437870
NA
2259 parsed_hstate = h;
2260}
2261
e11bfbfc 2262static int __init hugetlb_nrpages_setup(char *s)
a3437870
NA
2263{
2264 unsigned long *mhp;
8faa8b07 2265 static unsigned long *last_mhp;
a3437870
NA
2266
2267 /*
47d38344 2268 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter yet,
a3437870
NA
2269 * so this hugepages= parameter goes to the "default hstate".
2270 */
47d38344 2271 if (!hugetlb_max_hstate)
a3437870
NA
2272 mhp = &default_hstate_max_huge_pages;
2273 else
2274 mhp = &parsed_hstate->max_huge_pages;
2275
8faa8b07 2276 if (mhp == last_mhp) {
ffb22af5
AM
2277 pr_warning("hugepages= specified twice without "
2278 "interleaving hugepagesz=, ignoring\n");
8faa8b07
AK
2279 return 1;
2280 }
2281
a3437870
NA
2282 if (sscanf(s, "%lu", mhp) <= 0)
2283 *mhp = 0;
2284
8faa8b07
AK
2285 /*
2286 * Global state is always initialized later in hugetlb_init.
2287 * But we need to allocate >= MAX_ORDER hstates here early to still
2288 * use the bootmem allocator.
2289 */
47d38344 2290 if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER)
8faa8b07
AK
2291 hugetlb_hstate_alloc_pages(parsed_hstate);
2292
2293 last_mhp = mhp;
2294
a3437870
NA
2295 return 1;
2296}
e11bfbfc
NP
2297__setup("hugepages=", hugetlb_nrpages_setup);
2298
2299static int __init hugetlb_default_setup(char *s)
2300{
2301 default_hstate_size = memparse(s, &s);
2302 return 1;
2303}
2304__setup("default_hugepagesz=", hugetlb_default_setup);
a3437870 2305
8a213460
NA
2306static unsigned int cpuset_mems_nr(unsigned int *array)
2307{
2308 int node;
2309 unsigned int nr = 0;
2310
2311 for_each_node_mask(node, cpuset_current_mems_allowed)
2312 nr += array[node];
2313
2314 return nr;
2315}
2316
2317#ifdef CONFIG_SYSCTL
06808b08
LS
2318static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
2319 struct ctl_table *table, int write,
2320 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 2321{
e5ff2159 2322 struct hstate *h = &default_hstate;
238d3c13 2323 unsigned long tmp = h->max_huge_pages;
08d4a246 2324 int ret;
e5ff2159 2325
457c1b27
NA
2326 if (!hugepages_supported())
2327 return -ENOTSUPP;
2328
e5ff2159
AK
2329 table->data = &tmp;
2330 table->maxlen = sizeof(unsigned long);
08d4a246
MH
2331 ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2332 if (ret)
2333 goto out;
e5ff2159 2334
238d3c13
DR
2335 if (write)
2336 ret = __nr_hugepages_store_common(obey_mempolicy, h,
2337 NUMA_NO_NODE, tmp, *length);
08d4a246
MH
2338out:
2339 return ret;
1da177e4 2340}
396faf03 2341
06808b08
LS
2342int hugetlb_sysctl_handler(struct ctl_table *table, int write,
2343 void __user *buffer, size_t *length, loff_t *ppos)
2344{
2345
2346 return hugetlb_sysctl_handler_common(false, table, write,
2347 buffer, length, ppos);
2348}
2349
2350#ifdef CONFIG_NUMA
2351int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
2352 void __user *buffer, size_t *length, loff_t *ppos)
2353{
2354 return hugetlb_sysctl_handler_common(true, table, write,
2355 buffer, length, ppos);
2356}
2357#endif /* CONFIG_NUMA */
2358
a3d0c6aa 2359int hugetlb_overcommit_handler(struct ctl_table *table, int write,
8d65af78 2360 void __user *buffer,
a3d0c6aa
NA
2361 size_t *length, loff_t *ppos)
2362{
a5516438 2363 struct hstate *h = &default_hstate;
e5ff2159 2364 unsigned long tmp;
08d4a246 2365 int ret;
e5ff2159 2366
457c1b27
NA
2367 if (!hugepages_supported())
2368 return -ENOTSUPP;
2369
c033a93c 2370 tmp = h->nr_overcommit_huge_pages;
e5ff2159 2371
bae7f4ae 2372 if (write && hstate_is_gigantic(h))
adbe8726
EM
2373 return -EINVAL;
2374
e5ff2159
AK
2375 table->data = &tmp;
2376 table->maxlen = sizeof(unsigned long);
08d4a246
MH
2377 ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2378 if (ret)
2379 goto out;
e5ff2159
AK
2380
2381 if (write) {
2382 spin_lock(&hugetlb_lock);
2383 h->nr_overcommit_huge_pages = tmp;
2384 spin_unlock(&hugetlb_lock);
2385 }
08d4a246
MH
2386out:
2387 return ret;
a3d0c6aa
NA
2388}
2389
1da177e4
LT
2390#endif /* CONFIG_SYSCTL */
2391
e1759c21 2392void hugetlb_report_meminfo(struct seq_file *m)
1da177e4 2393{
a5516438 2394 struct hstate *h = &default_hstate;
457c1b27
NA
2395 if (!hugepages_supported())
2396 return;
e1759c21 2397 seq_printf(m,
4f98a2fe
RR
2398 "HugePages_Total: %5lu\n"
2399 "HugePages_Free: %5lu\n"
2400 "HugePages_Rsvd: %5lu\n"
2401 "HugePages_Surp: %5lu\n"
2402 "Hugepagesize: %8lu kB\n",
a5516438
AK
2403 h->nr_huge_pages,
2404 h->free_huge_pages,
2405 h->resv_huge_pages,
2406 h->surplus_huge_pages,
2407 1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
1da177e4
LT
2408}
2409
2410int hugetlb_report_node_meminfo(int nid, char *buf)
2411{
a5516438 2412 struct hstate *h = &default_hstate;
457c1b27
NA
2413 if (!hugepages_supported())
2414 return 0;
1da177e4
LT
2415 return sprintf(buf,
2416 "Node %d HugePages_Total: %5u\n"
a1de0919
NA
2417 "Node %d HugePages_Free: %5u\n"
2418 "Node %d HugePages_Surp: %5u\n",
a5516438
AK
2419 nid, h->nr_huge_pages_node[nid],
2420 nid, h->free_huge_pages_node[nid],
2421 nid, h->surplus_huge_pages_node[nid]);
1da177e4
LT
2422}
2423
949f7ec5
DR
2424void hugetlb_show_meminfo(void)
2425{
2426 struct hstate *h;
2427 int nid;
2428
457c1b27
NA
2429 if (!hugepages_supported())
2430 return;
2431
949f7ec5
DR
2432 for_each_node_state(nid, N_MEMORY)
2433 for_each_hstate(h)
2434 pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
2435 nid,
2436 h->nr_huge_pages_node[nid],
2437 h->free_huge_pages_node[nid],
2438 h->surplus_huge_pages_node[nid],
2439 1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
2440}
2441
1da177e4
LT
2442/* Return the number pages of memory we physically have, in PAGE_SIZE units. */
2443unsigned long hugetlb_total_pages(void)
2444{
d0028588
WL
2445 struct hstate *h;
2446 unsigned long nr_total_pages = 0;
2447
2448 for_each_hstate(h)
2449 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
2450 return nr_total_pages;
1da177e4 2451}
1da177e4 2452
a5516438 2453static int hugetlb_acct_memory(struct hstate *h, long delta)
fc1b8a73
MG
2454{
2455 int ret = -ENOMEM;
2456
2457 spin_lock(&hugetlb_lock);
2458 /*
2459 * When cpuset is configured, it breaks the strict hugetlb page
2460 * reservation as the accounting is done on a global variable. Such
2461 * reservation is completely rubbish in the presence of cpuset because
2462 * the reservation is not checked against page availability for the
2463 * current cpuset. Application can still potentially OOM'ed by kernel
2464 * with lack of free htlb page in cpuset that the task is in.
2465 * Attempt to enforce strict accounting with cpuset is almost
2466 * impossible (or too ugly) because cpuset is too fluid that
2467 * task or memory node can be dynamically moved between cpusets.
2468 *
2469 * The change of semantics for shared hugetlb mapping with cpuset is
2470 * undesirable. However, in order to preserve some of the semantics,
2471 * we fall back to check against current free page availability as
2472 * a best attempt and hopefully to minimize the impact of changing
2473 * semantics that cpuset has.
2474 */
2475 if (delta > 0) {
a5516438 2476 if (gather_surplus_pages(h, delta) < 0)
fc1b8a73
MG
2477 goto out;
2478
a5516438
AK
2479 if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
2480 return_unused_surplus_pages(h, delta);
fc1b8a73
MG
2481 goto out;
2482 }
2483 }
2484
2485 ret = 0;
2486 if (delta < 0)
a5516438 2487 return_unused_surplus_pages(h, (unsigned long) -delta);
fc1b8a73
MG
2488
2489out:
2490 spin_unlock(&hugetlb_lock);
2491 return ret;
2492}
2493
84afd99b
AW
2494static void hugetlb_vm_op_open(struct vm_area_struct *vma)
2495{
f522c3ac 2496 struct resv_map *resv = vma_resv_map(vma);
84afd99b
AW
2497
2498 /*
2499 * This new VMA should share its siblings reservation map if present.
2500 * The VMA will only ever have a valid reservation map pointer where
2501 * it is being copied for another still existing VMA. As that VMA
25985edc 2502 * has a reference to the reservation map it cannot disappear until
84afd99b
AW
2503 * after this open call completes. It is therefore safe to take a
2504 * new reference here without additional locking.
2505 */
4e35f483 2506 if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
f522c3ac 2507 kref_get(&resv->refs);
84afd99b
AW
2508}
2509
a1e78772
MG
2510static void hugetlb_vm_op_close(struct vm_area_struct *vma)
2511{
a5516438 2512 struct hstate *h = hstate_vma(vma);
f522c3ac 2513 struct resv_map *resv = vma_resv_map(vma);
90481622 2514 struct hugepage_subpool *spool = subpool_vma(vma);
4e35f483 2515 unsigned long reserve, start, end;
1c5ecae3 2516 long gbl_reserve;
84afd99b 2517
4e35f483
JK
2518 if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
2519 return;
84afd99b 2520
4e35f483
JK
2521 start = vma_hugecache_offset(h, vma, vma->vm_start);
2522 end = vma_hugecache_offset(h, vma, vma->vm_end);
84afd99b 2523
4e35f483 2524 reserve = (end - start) - region_count(resv, start, end);
84afd99b 2525
4e35f483
JK
2526 kref_put(&resv->refs, resv_map_release);
2527
2528 if (reserve) {
1c5ecae3
MK
2529 /*
2530 * Decrement reserve counts. The global reserve count may be
2531 * adjusted if the subpool has a minimum size.
2532 */
2533 gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
2534 hugetlb_acct_memory(h, -gbl_reserve);
84afd99b 2535 }
a1e78772
MG
2536}
2537
1da177e4
LT
2538/*
2539 * We cannot handle pagefaults against hugetlb pages at all. They cause
2540 * handle_mm_fault() to try to instantiate regular-sized pages in the
2541 * hugegpage VMA. do_page_fault() is supposed to trap this, so BUG is we get
2542 * this far.
2543 */
d0217ac0 2544static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1da177e4
LT
2545{
2546 BUG();
d0217ac0 2547 return 0;
1da177e4
LT
2548}
2549
f0f37e2f 2550const struct vm_operations_struct hugetlb_vm_ops = {
d0217ac0 2551 .fault = hugetlb_vm_op_fault,
84afd99b 2552 .open = hugetlb_vm_op_open,
a1e78772 2553 .close = hugetlb_vm_op_close,
1da177e4
LT
2554};
2555
1e8f889b
DG
2556static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
2557 int writable)
63551ae0
DG
2558{
2559 pte_t entry;
2560
1e8f889b 2561 if (writable) {
106c992a
GS
2562 entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
2563 vma->vm_page_prot)));
63551ae0 2564 } else {
106c992a
GS
2565 entry = huge_pte_wrprotect(mk_huge_pte(page,
2566 vma->vm_page_prot));
63551ae0
DG
2567 }
2568 entry = pte_mkyoung(entry);
2569 entry = pte_mkhuge(entry);
d9ed9faa 2570 entry = arch_make_huge_pte(entry, vma, page, writable);
63551ae0
DG
2571
2572 return entry;
2573}
2574
1e8f889b
DG
2575static void set_huge_ptep_writable(struct vm_area_struct *vma,
2576 unsigned long address, pte_t *ptep)
2577{
2578 pte_t entry;
2579
106c992a 2580 entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
32f84528 2581 if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
4b3073e1 2582 update_mmu_cache(vma, address, ptep);
1e8f889b
DG
2583}
2584
4a705fef
NH
2585static int is_hugetlb_entry_migration(pte_t pte)
2586{
2587 swp_entry_t swp;
2588
2589 if (huge_pte_none(pte) || pte_present(pte))
2590 return 0;
2591 swp = pte_to_swp_entry(pte);
2592 if (non_swap_entry(swp) && is_migration_entry(swp))
2593 return 1;
2594 else
2595 return 0;
2596}
2597
2598static int is_hugetlb_entry_hwpoisoned(pte_t pte)
2599{
2600 swp_entry_t swp;
2601
2602 if (huge_pte_none(pte) || pte_present(pte))
2603 return 0;
2604 swp = pte_to_swp_entry(pte);
2605 if (non_swap_entry(swp) && is_hwpoison_entry(swp))
2606 return 1;
2607 else
2608 return 0;
2609}
1e8f889b 2610
63551ae0
DG
2611int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
2612 struct vm_area_struct *vma)
2613{
2614 pte_t *src_pte, *dst_pte, entry;
2615 struct page *ptepage;
1c59827d 2616 unsigned long addr;
1e8f889b 2617 int cow;
a5516438
AK
2618 struct hstate *h = hstate_vma(vma);
2619 unsigned long sz = huge_page_size(h);
e8569dd2
AS
2620 unsigned long mmun_start; /* For mmu_notifiers */
2621 unsigned long mmun_end; /* For mmu_notifiers */
2622 int ret = 0;
1e8f889b
DG
2623
2624 cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
63551ae0 2625
e8569dd2
AS
2626 mmun_start = vma->vm_start;
2627 mmun_end = vma->vm_end;
2628 if (cow)
2629 mmu_notifier_invalidate_range_start(src, mmun_start, mmun_end);
2630
a5516438 2631 for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
cb900f41 2632 spinlock_t *src_ptl, *dst_ptl;
c74df32c
HD
2633 src_pte = huge_pte_offset(src, addr);
2634 if (!src_pte)
2635 continue;
a5516438 2636 dst_pte = huge_pte_alloc(dst, addr, sz);
e8569dd2
AS
2637 if (!dst_pte) {
2638 ret = -ENOMEM;
2639 break;
2640 }
c5c99429
LW
2641
2642 /* If the pagetables are shared don't copy or take references */
2643 if (dst_pte == src_pte)
2644 continue;
2645
cb900f41
KS
2646 dst_ptl = huge_pte_lock(h, dst, dst_pte);
2647 src_ptl = huge_pte_lockptr(h, src, src_pte);
2648 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
4a705fef
NH
2649 entry = huge_ptep_get(src_pte);
2650 if (huge_pte_none(entry)) { /* skip none entry */
2651 ;
2652 } else if (unlikely(is_hugetlb_entry_migration(entry) ||
2653 is_hugetlb_entry_hwpoisoned(entry))) {
2654 swp_entry_t swp_entry = pte_to_swp_entry(entry);
2655
2656 if (is_write_migration_entry(swp_entry) && cow) {
2657 /*
2658 * COW mappings require pages in both
2659 * parent and child to be set to read.
2660 */
2661 make_migration_entry_read(&swp_entry);
2662 entry = swp_entry_to_pte(swp_entry);
2663 set_huge_pte_at(src, addr, src_pte, entry);
2664 }
2665 set_huge_pte_at(dst, addr, dst_pte, entry);
2666 } else {
34ee645e 2667 if (cow) {
7f2e9525 2668 huge_ptep_set_wrprotect(src, addr, src_pte);
34ee645e
JR
2669 mmu_notifier_invalidate_range(src, mmun_start,
2670 mmun_end);
2671 }
0253d634 2672 entry = huge_ptep_get(src_pte);
1c59827d
HD
2673 ptepage = pte_page(entry);
2674 get_page(ptepage);
0fe6e20b 2675 page_dup_rmap(ptepage);
1c59827d
HD
2676 set_huge_pte_at(dst, addr, dst_pte, entry);
2677 }
cb900f41
KS
2678 spin_unlock(src_ptl);
2679 spin_unlock(dst_ptl);
63551ae0 2680 }
63551ae0 2681
e8569dd2
AS
2682 if (cow)
2683 mmu_notifier_invalidate_range_end(src, mmun_start, mmun_end);
2684
2685 return ret;
63551ae0
DG
2686}
2687
24669e58
AK
2688void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
2689 unsigned long start, unsigned long end,
2690 struct page *ref_page)
63551ae0 2691{
24669e58 2692 int force_flush = 0;
63551ae0
DG
2693 struct mm_struct *mm = vma->vm_mm;
2694 unsigned long address;
c7546f8f 2695 pte_t *ptep;
63551ae0 2696 pte_t pte;
cb900f41 2697 spinlock_t *ptl;
63551ae0 2698 struct page *page;
a5516438
AK
2699 struct hstate *h = hstate_vma(vma);
2700 unsigned long sz = huge_page_size(h);
2ec74c3e
SG
2701 const unsigned long mmun_start = start; /* For mmu_notifiers */
2702 const unsigned long mmun_end = end; /* For mmu_notifiers */
a5516438 2703
63551ae0 2704 WARN_ON(!is_vm_hugetlb_page(vma));
a5516438
AK
2705 BUG_ON(start & ~huge_page_mask(h));
2706 BUG_ON(end & ~huge_page_mask(h));
63551ae0 2707
24669e58 2708 tlb_start_vma(tlb, vma);
2ec74c3e 2709 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
569f48b8 2710 address = start;
24669e58 2711again:
569f48b8 2712 for (; address < end; address += sz) {
c7546f8f 2713 ptep = huge_pte_offset(mm, address);
4c887265 2714 if (!ptep)
c7546f8f
DG
2715 continue;
2716
cb900f41 2717 ptl = huge_pte_lock(h, mm, ptep);
39dde65c 2718 if (huge_pmd_unshare(mm, &address, ptep))
cb900f41 2719 goto unlock;
39dde65c 2720
6629326b
HD
2721 pte = huge_ptep_get(ptep);
2722 if (huge_pte_none(pte))
cb900f41 2723 goto unlock;
6629326b
HD
2724
2725 /*
9fbc1f63
NH
2726 * Migrating hugepage or HWPoisoned hugepage is already
2727 * unmapped and its refcount is dropped, so just clear pte here.
6629326b 2728 */
9fbc1f63 2729 if (unlikely(!pte_present(pte))) {
106c992a 2730 huge_pte_clear(mm, address, ptep);
cb900f41 2731 goto unlock;
8c4894c6 2732 }
6629326b
HD
2733
2734 page = pte_page(pte);
04f2cbe3
MG
2735 /*
2736 * If a reference page is supplied, it is because a specific
2737 * page is being unmapped, not a range. Ensure the page we
2738 * are about to unmap is the actual page of interest.
2739 */
2740 if (ref_page) {
04f2cbe3 2741 if (page != ref_page)
cb900f41 2742 goto unlock;
04f2cbe3
MG
2743
2744 /*
2745 * Mark the VMA as having unmapped its page so that
2746 * future faults in this VMA will fail rather than
2747 * looking like data was lost
2748 */
2749 set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
2750 }
2751
c7546f8f 2752 pte = huge_ptep_get_and_clear(mm, address, ptep);
24669e58 2753 tlb_remove_tlb_entry(tlb, ptep, address);
106c992a 2754 if (huge_pte_dirty(pte))
6649a386 2755 set_page_dirty(page);
9e81130b 2756
24669e58
AK
2757 page_remove_rmap(page);
2758 force_flush = !__tlb_remove_page(tlb, page);
cb900f41 2759 if (force_flush) {
569f48b8 2760 address += sz;
cb900f41 2761 spin_unlock(ptl);
24669e58 2762 break;
cb900f41 2763 }
9e81130b 2764 /* Bail out after unmapping reference page if supplied */
cb900f41
KS
2765 if (ref_page) {
2766 spin_unlock(ptl);
9e81130b 2767 break;
cb900f41
KS
2768 }
2769unlock:
2770 spin_unlock(ptl);
63551ae0 2771 }
24669e58
AK
2772 /*
2773 * mmu_gather ran out of room to batch pages, we break out of
2774 * the PTE lock to avoid doing the potential expensive TLB invalidate
2775 * and page-free while holding it.
2776 */
2777 if (force_flush) {
2778 force_flush = 0;
2779 tlb_flush_mmu(tlb);
2780 if (address < end && !ref_page)
2781 goto again;
fe1668ae 2782 }
2ec74c3e 2783 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
24669e58 2784 tlb_end_vma(tlb, vma);
1da177e4 2785}
63551ae0 2786
d833352a
MG
2787void __unmap_hugepage_range_final(struct mmu_gather *tlb,
2788 struct vm_area_struct *vma, unsigned long start,
2789 unsigned long end, struct page *ref_page)
2790{
2791 __unmap_hugepage_range(tlb, vma, start, end, ref_page);
2792
2793 /*
2794 * Clear this flag so that x86's huge_pmd_share page_table_shareable
2795 * test will fail on a vma being torn down, and not grab a page table
2796 * on its way out. We're lucky that the flag has such an appropriate
2797 * name, and can in fact be safely cleared here. We could clear it
2798 * before the __unmap_hugepage_range above, but all that's necessary
c8c06efa 2799 * is to clear it before releasing the i_mmap_rwsem. This works
d833352a 2800 * because in the context this is called, the VMA is about to be
c8c06efa 2801 * destroyed and the i_mmap_rwsem is held.
d833352a
MG
2802 */
2803 vma->vm_flags &= ~VM_MAYSHARE;
2804}
2805
502717f4 2806void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
04f2cbe3 2807 unsigned long end, struct page *ref_page)
502717f4 2808{
24669e58
AK
2809 struct mm_struct *mm;
2810 struct mmu_gather tlb;
2811
2812 mm = vma->vm_mm;
2813
2b047252 2814 tlb_gather_mmu(&tlb, mm, start, end);
24669e58
AK
2815 __unmap_hugepage_range(&tlb, vma, start, end, ref_page);
2816 tlb_finish_mmu(&tlb, start, end);
502717f4
CK
2817}
2818
04f2cbe3
MG
2819/*
2820 * This is called when the original mapper is failing to COW a MAP_PRIVATE
2821 * mappping it owns the reserve page for. The intention is to unmap the page
2822 * from other VMAs and let the children be SIGKILLed if they are faulting the
2823 * same region.
2824 */
2f4612af
DB
2825static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
2826 struct page *page, unsigned long address)
04f2cbe3 2827{
7526674d 2828 struct hstate *h = hstate_vma(vma);
04f2cbe3
MG
2829 struct vm_area_struct *iter_vma;
2830 struct address_space *mapping;
04f2cbe3
MG
2831 pgoff_t pgoff;
2832
2833 /*
2834 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
2835 * from page cache lookup which is in HPAGE_SIZE units.
2836 */
7526674d 2837 address = address & huge_page_mask(h);
36e4f20a
MH
2838 pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
2839 vma->vm_pgoff;
496ad9aa 2840 mapping = file_inode(vma->vm_file)->i_mapping;
04f2cbe3 2841
4eb2b1dc
MG
2842 /*
2843 * Take the mapping lock for the duration of the table walk. As
2844 * this mapping should be shared between all the VMAs,
2845 * __unmap_hugepage_range() is called as the lock is already held
2846 */
83cde9e8 2847 i_mmap_lock_write(mapping);
6b2dbba8 2848 vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
04f2cbe3
MG
2849 /* Do not unmap the current VMA */
2850 if (iter_vma == vma)
2851 continue;
2852
2853 /*
2854 * Unmap the page from other VMAs without their own reserves.
2855 * They get marked to be SIGKILLed if they fault in these
2856 * areas. This is because a future no-page fault on this VMA
2857 * could insert a zeroed page instead of the data existing
2858 * from the time of fork. This would look like data corruption
2859 */
2860 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
24669e58
AK
2861 unmap_hugepage_range(iter_vma, address,
2862 address + huge_page_size(h), page);
04f2cbe3 2863 }
83cde9e8 2864 i_mmap_unlock_write(mapping);
04f2cbe3
MG
2865}
2866
0fe6e20b
NH
2867/*
2868 * Hugetlb_cow() should be called with page lock of the original hugepage held.
ef009b25
MH
2869 * Called with hugetlb_instantiation_mutex held and pte_page locked so we
2870 * cannot race with other handlers or page migration.
2871 * Keep the pte_same checks anyway to make transition from the mutex easier.
0fe6e20b 2872 */
1e8f889b 2873static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
04f2cbe3 2874 unsigned long address, pte_t *ptep, pte_t pte,
cb900f41 2875 struct page *pagecache_page, spinlock_t *ptl)
1e8f889b 2876{
a5516438 2877 struct hstate *h = hstate_vma(vma);
1e8f889b 2878 struct page *old_page, *new_page;
ad4404a2 2879 int ret = 0, outside_reserve = 0;
2ec74c3e
SG
2880 unsigned long mmun_start; /* For mmu_notifiers */
2881 unsigned long mmun_end; /* For mmu_notifiers */
1e8f889b
DG
2882
2883 old_page = pte_page(pte);
2884
04f2cbe3 2885retry_avoidcopy:
1e8f889b
DG
2886 /* If no-one else is actually using this page, avoid the copy
2887 * and just make the page writable */
37a2140d
JK
2888 if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
2889 page_move_anon_rmap(old_page, vma, address);
1e8f889b 2890 set_huge_ptep_writable(vma, address, ptep);
83c54070 2891 return 0;
1e8f889b
DG
2892 }
2893
04f2cbe3
MG
2894 /*
2895 * If the process that created a MAP_PRIVATE mapping is about to
2896 * perform a COW due to a shared page count, attempt to satisfy
2897 * the allocation without using the existing reserves. The pagecache
2898 * page is used to determine if the reserve at this address was
2899 * consumed or not. If reserves were used, a partial faulted mapping
2900 * at the time of fork() could consume its reserves on COW instead
2901 * of the full address range.
2902 */
5944d011 2903 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
04f2cbe3
MG
2904 old_page != pagecache_page)
2905 outside_reserve = 1;
2906
1e8f889b 2907 page_cache_get(old_page);
b76c8cfb 2908
ad4404a2
DB
2909 /*
2910 * Drop page table lock as buddy allocator may be called. It will
2911 * be acquired again before returning to the caller, as expected.
2912 */
cb900f41 2913 spin_unlock(ptl);
04f2cbe3 2914 new_page = alloc_huge_page(vma, address, outside_reserve);
1e8f889b 2915
2fc39cec 2916 if (IS_ERR(new_page)) {
04f2cbe3
MG
2917 /*
2918 * If a process owning a MAP_PRIVATE mapping fails to COW,
2919 * it is due to references held by a child and an insufficient
2920 * huge page pool. To guarantee the original mappers
2921 * reliability, unmap the page from child processes. The child
2922 * may get SIGKILLed if it later faults.
2923 */
2924 if (outside_reserve) {
ad4404a2 2925 page_cache_release(old_page);
04f2cbe3 2926 BUG_ON(huge_pte_none(pte));
2f4612af
DB
2927 unmap_ref_private(mm, vma, old_page, address);
2928 BUG_ON(huge_pte_none(pte));
2929 spin_lock(ptl);
2930 ptep = huge_pte_offset(mm, address & huge_page_mask(h));
2931 if (likely(ptep &&
2932 pte_same(huge_ptep_get(ptep), pte)))
2933 goto retry_avoidcopy;
2934 /*
2935 * race occurs while re-acquiring page table
2936 * lock, and our job is done.
2937 */
2938 return 0;
04f2cbe3
MG
2939 }
2940
ad4404a2
DB
2941 ret = (PTR_ERR(new_page) == -ENOMEM) ?
2942 VM_FAULT_OOM : VM_FAULT_SIGBUS;
2943 goto out_release_old;
1e8f889b
DG
2944 }
2945
0fe6e20b
NH
2946 /*
2947 * When the original hugepage is shared one, it does not have
2948 * anon_vma prepared.
2949 */
44e2aa93 2950 if (unlikely(anon_vma_prepare(vma))) {
ad4404a2
DB
2951 ret = VM_FAULT_OOM;
2952 goto out_release_all;
44e2aa93 2953 }
0fe6e20b 2954
47ad8475
AA
2955 copy_user_huge_page(new_page, old_page, address, vma,
2956 pages_per_huge_page(h));
0ed361de 2957 __SetPageUptodate(new_page);
1e8f889b 2958
2ec74c3e
SG
2959 mmun_start = address & huge_page_mask(h);
2960 mmun_end = mmun_start + huge_page_size(h);
2961 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
ad4404a2 2962
b76c8cfb 2963 /*
cb900f41 2964 * Retake the page table lock to check for racing updates
b76c8cfb
LW
2965 * before the page tables are altered
2966 */
cb900f41 2967 spin_lock(ptl);
a5516438 2968 ptep = huge_pte_offset(mm, address & huge_page_mask(h));
a9af0c5d 2969 if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
07443a85
JK
2970 ClearPagePrivate(new_page);
2971
1e8f889b 2972 /* Break COW */
8fe627ec 2973 huge_ptep_clear_flush(vma, address, ptep);
34ee645e 2974 mmu_notifier_invalidate_range(mm, mmun_start, mmun_end);
1e8f889b
DG
2975 set_huge_pte_at(mm, address, ptep,
2976 make_huge_pte(vma, new_page, 1));
0fe6e20b 2977 page_remove_rmap(old_page);
cd67f0d2 2978 hugepage_add_new_anon_rmap(new_page, vma, address);
1e8f889b
DG
2979 /* Make the old page be freed below */
2980 new_page = old_page;
2981 }
cb900f41 2982 spin_unlock(ptl);
2ec74c3e 2983 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
ad4404a2 2984out_release_all:
1e8f889b 2985 page_cache_release(new_page);
ad4404a2 2986out_release_old:
1e8f889b 2987 page_cache_release(old_page);
8312034f 2988
ad4404a2
DB
2989 spin_lock(ptl); /* Caller expects lock to be held */
2990 return ret;
1e8f889b
DG
2991}
2992
04f2cbe3 2993/* Return the pagecache page at a given address within a VMA */
a5516438
AK
2994static struct page *hugetlbfs_pagecache_page(struct hstate *h,
2995 struct vm_area_struct *vma, unsigned long address)
04f2cbe3
MG
2996{
2997 struct address_space *mapping;
e7c4b0bf 2998 pgoff_t idx;
04f2cbe3
MG
2999
3000 mapping = vma->vm_file->f_mapping;
a5516438 3001 idx = vma_hugecache_offset(h, vma, address);
04f2cbe3
MG
3002
3003 return find_lock_page(mapping, idx);
3004}
3005
3ae77f43
HD
3006/*
3007 * Return whether there is a pagecache page to back given address within VMA.
3008 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
3009 */
3010static bool hugetlbfs_pagecache_present(struct hstate *h,
2a15efc9
HD
3011 struct vm_area_struct *vma, unsigned long address)
3012{
3013 struct address_space *mapping;
3014 pgoff_t idx;
3015 struct page *page;
3016
3017 mapping = vma->vm_file->f_mapping;
3018 idx = vma_hugecache_offset(h, vma, address);
3019
3020 page = find_get_page(mapping, idx);
3021 if (page)
3022 put_page(page);
3023 return page != NULL;
3024}
3025
a1ed3dda 3026static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
8382d914
DB
3027 struct address_space *mapping, pgoff_t idx,
3028 unsigned long address, pte_t *ptep, unsigned int flags)
ac9b9c66 3029{
a5516438 3030 struct hstate *h = hstate_vma(vma);
ac9b9c66 3031 int ret = VM_FAULT_SIGBUS;
409eb8c2 3032 int anon_rmap = 0;
4c887265 3033 unsigned long size;
4c887265 3034 struct page *page;
1e8f889b 3035 pte_t new_pte;
cb900f41 3036 spinlock_t *ptl;
4c887265 3037
04f2cbe3
MG
3038 /*
3039 * Currently, we are forced to kill the process in the event the
3040 * original mapper has unmapped pages from the child due to a failed
25985edc 3041 * COW. Warn that such a situation has occurred as it may not be obvious
04f2cbe3
MG
3042 */
3043 if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
ffb22af5
AM
3044 pr_warning("PID %d killed due to inadequate hugepage pool\n",
3045 current->pid);
04f2cbe3
MG
3046 return ret;
3047 }
3048
4c887265
AL
3049 /*
3050 * Use page lock to guard against racing truncation
3051 * before we get page_table_lock.
3052 */
6bda666a
CL
3053retry:
3054 page = find_lock_page(mapping, idx);
3055 if (!page) {
a5516438 3056 size = i_size_read(mapping->host) >> huge_page_shift(h);
ebed4bfc
HD
3057 if (idx >= size)
3058 goto out;
04f2cbe3 3059 page = alloc_huge_page(vma, address, 0);
2fc39cec 3060 if (IS_ERR(page)) {
76dcee75
AK
3061 ret = PTR_ERR(page);
3062 if (ret == -ENOMEM)
3063 ret = VM_FAULT_OOM;
3064 else
3065 ret = VM_FAULT_SIGBUS;
6bda666a
CL
3066 goto out;
3067 }
47ad8475 3068 clear_huge_page(page, address, pages_per_huge_page(h));
0ed361de 3069 __SetPageUptodate(page);
ac9b9c66 3070
f83a275d 3071 if (vma->vm_flags & VM_MAYSHARE) {
6bda666a 3072 int err;
45c682a6 3073 struct inode *inode = mapping->host;
6bda666a
CL
3074
3075 err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
3076 if (err) {
3077 put_page(page);
6bda666a
CL
3078 if (err == -EEXIST)
3079 goto retry;
3080 goto out;
3081 }
07443a85 3082 ClearPagePrivate(page);
45c682a6
KC
3083
3084 spin_lock(&inode->i_lock);
a5516438 3085 inode->i_blocks += blocks_per_huge_page(h);
45c682a6 3086 spin_unlock(&inode->i_lock);
23be7468 3087 } else {
6bda666a 3088 lock_page(page);
0fe6e20b
NH
3089 if (unlikely(anon_vma_prepare(vma))) {
3090 ret = VM_FAULT_OOM;
3091 goto backout_unlocked;
3092 }
409eb8c2 3093 anon_rmap = 1;
23be7468 3094 }
0fe6e20b 3095 } else {
998b4382
NH
3096 /*
3097 * If memory error occurs between mmap() and fault, some process
3098 * don't have hwpoisoned swap entry for errored virtual address.
3099 * So we need to block hugepage fault by PG_hwpoison bit check.
3100 */
3101 if (unlikely(PageHWPoison(page))) {
32f84528 3102 ret = VM_FAULT_HWPOISON |
972dc4de 3103 VM_FAULT_SET_HINDEX(hstate_index(h));
998b4382
NH
3104 goto backout_unlocked;
3105 }
6bda666a 3106 }
1e8f889b 3107
57303d80
AW
3108 /*
3109 * If we are going to COW a private mapping later, we examine the
3110 * pending reservations for this page now. This will ensure that
3111 * any allocations necessary to record that reservation occur outside
3112 * the spinlock.
3113 */
788c7df4 3114 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED))
2b26736c
AW
3115 if (vma_needs_reservation(h, vma, address) < 0) {
3116 ret = VM_FAULT_OOM;
3117 goto backout_unlocked;
3118 }
57303d80 3119
cb900f41
KS
3120 ptl = huge_pte_lockptr(h, mm, ptep);
3121 spin_lock(ptl);
a5516438 3122 size = i_size_read(mapping->host) >> huge_page_shift(h);
4c887265
AL
3123 if (idx >= size)
3124 goto backout;
3125
83c54070 3126 ret = 0;
7f2e9525 3127 if (!huge_pte_none(huge_ptep_get(ptep)))
4c887265
AL
3128 goto backout;
3129
07443a85
JK
3130 if (anon_rmap) {
3131 ClearPagePrivate(page);
409eb8c2 3132 hugepage_add_new_anon_rmap(page, vma, address);
ac714904 3133 } else
409eb8c2 3134 page_dup_rmap(page);
1e8f889b
DG
3135 new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
3136 && (vma->vm_flags & VM_SHARED)));
3137 set_huge_pte_at(mm, address, ptep, new_pte);
3138
788c7df4 3139 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
1e8f889b 3140 /* Optimization, do the COW without a second fault */
cb900f41 3141 ret = hugetlb_cow(mm, vma, address, ptep, new_pte, page, ptl);
1e8f889b
DG
3142 }
3143
cb900f41 3144 spin_unlock(ptl);
4c887265
AL
3145 unlock_page(page);
3146out:
ac9b9c66 3147 return ret;
4c887265
AL
3148
3149backout:
cb900f41 3150 spin_unlock(ptl);
2b26736c 3151backout_unlocked:
4c887265
AL
3152 unlock_page(page);
3153 put_page(page);
3154 goto out;
ac9b9c66
HD
3155}
3156
8382d914
DB
3157#ifdef CONFIG_SMP
3158static u32 fault_mutex_hash(struct hstate *h, struct mm_struct *mm,
3159 struct vm_area_struct *vma,
3160 struct address_space *mapping,
3161 pgoff_t idx, unsigned long address)
3162{
3163 unsigned long key[2];
3164 u32 hash;
3165
3166 if (vma->vm_flags & VM_SHARED) {
3167 key[0] = (unsigned long) mapping;
3168 key[1] = idx;
3169 } else {
3170 key[0] = (unsigned long) mm;
3171 key[1] = address >> huge_page_shift(h);
3172 }
3173
3174 hash = jhash2((u32 *)&key, sizeof(key)/sizeof(u32), 0);
3175
3176 return hash & (num_fault_mutexes - 1);
3177}
3178#else
3179/*
3180 * For uniprocesor systems we always use a single mutex, so just
3181 * return 0 and avoid the hashing overhead.
3182 */
3183static u32 fault_mutex_hash(struct hstate *h, struct mm_struct *mm,
3184 struct vm_area_struct *vma,
3185 struct address_space *mapping,
3186 pgoff_t idx, unsigned long address)
3187{
3188 return 0;
3189}
3190#endif
3191
86e5216f 3192int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
788c7df4 3193 unsigned long address, unsigned int flags)
86e5216f 3194{
8382d914 3195 pte_t *ptep, entry;
cb900f41 3196 spinlock_t *ptl;
1e8f889b 3197 int ret;
8382d914
DB
3198 u32 hash;
3199 pgoff_t idx;
0fe6e20b 3200 struct page *page = NULL;
57303d80 3201 struct page *pagecache_page = NULL;
a5516438 3202 struct hstate *h = hstate_vma(vma);
8382d914 3203 struct address_space *mapping;
0f792cf9 3204 int need_wait_lock = 0;
86e5216f 3205
1e16a539
KH
3206 address &= huge_page_mask(h);
3207
fd6a03ed
NH
3208 ptep = huge_pte_offset(mm, address);
3209 if (ptep) {
3210 entry = huge_ptep_get(ptep);
290408d4 3211 if (unlikely(is_hugetlb_entry_migration(entry))) {
cb900f41 3212 migration_entry_wait_huge(vma, mm, ptep);
290408d4
NH
3213 return 0;
3214 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
32f84528 3215 return VM_FAULT_HWPOISON_LARGE |
972dc4de 3216 VM_FAULT_SET_HINDEX(hstate_index(h));
fd6a03ed
NH
3217 }
3218
a5516438 3219 ptep = huge_pte_alloc(mm, address, huge_page_size(h));
86e5216f
AL
3220 if (!ptep)
3221 return VM_FAULT_OOM;
3222
8382d914
DB
3223 mapping = vma->vm_file->f_mapping;
3224 idx = vma_hugecache_offset(h, vma, address);
3225
3935baa9
DG
3226 /*
3227 * Serialize hugepage allocation and instantiation, so that we don't
3228 * get spurious allocation failures if two CPUs race to instantiate
3229 * the same page in the page cache.
3230 */
8382d914
DB
3231 hash = fault_mutex_hash(h, mm, vma, mapping, idx, address);
3232 mutex_lock(&htlb_fault_mutex_table[hash]);
3233
7f2e9525
GS
3234 entry = huge_ptep_get(ptep);
3235 if (huge_pte_none(entry)) {
8382d914 3236 ret = hugetlb_no_page(mm, vma, mapping, idx, address, ptep, flags);
b4d1d99f 3237 goto out_mutex;
3935baa9 3238 }
86e5216f 3239
83c54070 3240 ret = 0;
1e8f889b 3241
0f792cf9
NH
3242 /*
3243 * entry could be a migration/hwpoison entry at this point, so this
3244 * check prevents the kernel from going below assuming that we have
3245 * a active hugepage in pagecache. This goto expects the 2nd page fault,
3246 * and is_hugetlb_entry_(migration|hwpoisoned) check will properly
3247 * handle it.
3248 */
3249 if (!pte_present(entry))
3250 goto out_mutex;
3251
57303d80
AW
3252 /*
3253 * If we are going to COW the mapping later, we examine the pending
3254 * reservations for this page now. This will ensure that any
3255 * allocations necessary to record that reservation occur outside the
3256 * spinlock. For private mappings, we also lookup the pagecache
3257 * page now as it is used to determine if a reservation has been
3258 * consumed.
3259 */
106c992a 3260 if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
2b26736c
AW
3261 if (vma_needs_reservation(h, vma, address) < 0) {
3262 ret = VM_FAULT_OOM;
b4d1d99f 3263 goto out_mutex;
2b26736c 3264 }
57303d80 3265
f83a275d 3266 if (!(vma->vm_flags & VM_MAYSHARE))
57303d80
AW
3267 pagecache_page = hugetlbfs_pagecache_page(h,
3268 vma, address);
3269 }
3270
0f792cf9
NH
3271 ptl = huge_pte_lock(h, mm, ptep);
3272
3273 /* Check for a racing update before calling hugetlb_cow */
3274 if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
3275 goto out_ptl;
3276
56c9cfb1
NH
3277 /*
3278 * hugetlb_cow() requires page locks of pte_page(entry) and
3279 * pagecache_page, so here we need take the former one
3280 * when page != pagecache_page or !pagecache_page.
56c9cfb1
NH
3281 */
3282 page = pte_page(entry);
3283 if (page != pagecache_page)
0f792cf9
NH
3284 if (!trylock_page(page)) {
3285 need_wait_lock = 1;
3286 goto out_ptl;
3287 }
b4d1d99f 3288
0f792cf9 3289 get_page(page);
b4d1d99f 3290
788c7df4 3291 if (flags & FAULT_FLAG_WRITE) {
106c992a 3292 if (!huge_pte_write(entry)) {
57303d80 3293 ret = hugetlb_cow(mm, vma, address, ptep, entry,
cb900f41 3294 pagecache_page, ptl);
0f792cf9 3295 goto out_put_page;
b4d1d99f 3296 }
106c992a 3297 entry = huge_pte_mkdirty(entry);
b4d1d99f
DG
3298 }
3299 entry = pte_mkyoung(entry);
788c7df4
HD
3300 if (huge_ptep_set_access_flags(vma, address, ptep, entry,
3301 flags & FAULT_FLAG_WRITE))
4b3073e1 3302 update_mmu_cache(vma, address, ptep);
0f792cf9
NH
3303out_put_page:
3304 if (page != pagecache_page)
3305 unlock_page(page);
3306 put_page(page);
cb900f41
KS
3307out_ptl:
3308 spin_unlock(ptl);
57303d80
AW
3309
3310 if (pagecache_page) {
3311 unlock_page(pagecache_page);
3312 put_page(pagecache_page);
3313 }
b4d1d99f 3314out_mutex:
8382d914 3315 mutex_unlock(&htlb_fault_mutex_table[hash]);
0f792cf9
NH
3316 /*
3317 * Generally it's safe to hold refcount during waiting page lock. But
3318 * here we just wait to defer the next page fault to avoid busy loop and
3319 * the page is not used after unlocked before returning from the current
3320 * page fault. So we are safe from accessing freed page, even if we wait
3321 * here without taking refcount.
3322 */
3323 if (need_wait_lock)
3324 wait_on_page_locked(page);
1e8f889b 3325 return ret;
86e5216f
AL
3326}
3327
28a35716
ML
3328long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
3329 struct page **pages, struct vm_area_struct **vmas,
3330 unsigned long *position, unsigned long *nr_pages,
3331 long i, unsigned int flags)
63551ae0 3332{
d5d4b0aa
CK
3333 unsigned long pfn_offset;
3334 unsigned long vaddr = *position;
28a35716 3335 unsigned long remainder = *nr_pages;
a5516438 3336 struct hstate *h = hstate_vma(vma);
63551ae0 3337
63551ae0 3338 while (vaddr < vma->vm_end && remainder) {
4c887265 3339 pte_t *pte;
cb900f41 3340 spinlock_t *ptl = NULL;
2a15efc9 3341 int absent;
4c887265 3342 struct page *page;
63551ae0 3343
02057967
DR
3344 /*
3345 * If we have a pending SIGKILL, don't keep faulting pages and
3346 * potentially allocating memory.
3347 */
3348 if (unlikely(fatal_signal_pending(current))) {
3349 remainder = 0;
3350 break;
3351 }
3352
4c887265
AL
3353 /*
3354 * Some archs (sparc64, sh*) have multiple pte_ts to
2a15efc9 3355 * each hugepage. We have to make sure we get the
4c887265 3356 * first, for the page indexing below to work.
cb900f41
KS
3357 *
3358 * Note that page table lock is not held when pte is null.
4c887265 3359 */
a5516438 3360 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h));
cb900f41
KS
3361 if (pte)
3362 ptl = huge_pte_lock(h, mm, pte);
2a15efc9
HD
3363 absent = !pte || huge_pte_none(huge_ptep_get(pte));
3364
3365 /*
3366 * When coredumping, it suits get_dump_page if we just return
3ae77f43
HD
3367 * an error where there's an empty slot with no huge pagecache
3368 * to back it. This way, we avoid allocating a hugepage, and
3369 * the sparse dumpfile avoids allocating disk blocks, but its
3370 * huge holes still show up with zeroes where they need to be.
2a15efc9 3371 */
3ae77f43
HD
3372 if (absent && (flags & FOLL_DUMP) &&
3373 !hugetlbfs_pagecache_present(h, vma, vaddr)) {
cb900f41
KS
3374 if (pte)
3375 spin_unlock(ptl);
2a15efc9
HD
3376 remainder = 0;
3377 break;
3378 }
63551ae0 3379
9cc3a5bd
NH
3380 /*
3381 * We need call hugetlb_fault for both hugepages under migration
3382 * (in which case hugetlb_fault waits for the migration,) and
3383 * hwpoisoned hugepages (in which case we need to prevent the
3384 * caller from accessing to them.) In order to do this, we use
3385 * here is_swap_pte instead of is_hugetlb_entry_migration and
3386 * is_hugetlb_entry_hwpoisoned. This is because it simply covers
3387 * both cases, and because we can't follow correct pages
3388 * directly from any kind of swap entries.
3389 */
3390 if (absent || is_swap_pte(huge_ptep_get(pte)) ||
106c992a
GS
3391 ((flags & FOLL_WRITE) &&
3392 !huge_pte_write(huge_ptep_get(pte)))) {
4c887265 3393 int ret;
63551ae0 3394
cb900f41
KS
3395 if (pte)
3396 spin_unlock(ptl);
2a15efc9
HD
3397 ret = hugetlb_fault(mm, vma, vaddr,
3398 (flags & FOLL_WRITE) ? FAULT_FLAG_WRITE : 0);
a89182c7 3399 if (!(ret & VM_FAULT_ERROR))
4c887265 3400 continue;
63551ae0 3401
4c887265 3402 remainder = 0;
4c887265
AL
3403 break;
3404 }
3405
a5516438 3406 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
7f2e9525 3407 page = pte_page(huge_ptep_get(pte));
d5d4b0aa 3408same_page:
d6692183 3409 if (pages) {
2a15efc9 3410 pages[i] = mem_map_offset(page, pfn_offset);
a0368d4e 3411 get_page_foll(pages[i]);
d6692183 3412 }
63551ae0
DG
3413
3414 if (vmas)
3415 vmas[i] = vma;
3416
3417 vaddr += PAGE_SIZE;
d5d4b0aa 3418 ++pfn_offset;
63551ae0
DG
3419 --remainder;
3420 ++i;
d5d4b0aa 3421 if (vaddr < vma->vm_end && remainder &&
a5516438 3422 pfn_offset < pages_per_huge_page(h)) {
d5d4b0aa
CK
3423 /*
3424 * We use pfn_offset to avoid touching the pageframes
3425 * of this compound page.
3426 */
3427 goto same_page;
3428 }
cb900f41 3429 spin_unlock(ptl);
63551ae0 3430 }
28a35716 3431 *nr_pages = remainder;
63551ae0
DG
3432 *position = vaddr;
3433
2a15efc9 3434 return i ? i : -EFAULT;
63551ae0 3435}
8f860591 3436
7da4d641 3437unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
8f860591
ZY
3438 unsigned long address, unsigned long end, pgprot_t newprot)
3439{
3440 struct mm_struct *mm = vma->vm_mm;
3441 unsigned long start = address;
3442 pte_t *ptep;
3443 pte_t pte;
a5516438 3444 struct hstate *h = hstate_vma(vma);
7da4d641 3445 unsigned long pages = 0;
8f860591
ZY
3446
3447 BUG_ON(address >= end);
3448 flush_cache_range(vma, address, end);
3449
a5338093 3450 mmu_notifier_invalidate_range_start(mm, start, end);
83cde9e8 3451 i_mmap_lock_write(vma->vm_file->f_mapping);
a5516438 3452 for (; address < end; address += huge_page_size(h)) {
cb900f41 3453 spinlock_t *ptl;
8f860591
ZY
3454 ptep = huge_pte_offset(mm, address);
3455 if (!ptep)
3456 continue;
cb900f41 3457 ptl = huge_pte_lock(h, mm, ptep);
7da4d641
PZ
3458 if (huge_pmd_unshare(mm, &address, ptep)) {
3459 pages++;
cb900f41 3460 spin_unlock(ptl);
39dde65c 3461 continue;
7da4d641 3462 }
a8bda28d
NH
3463 pte = huge_ptep_get(ptep);
3464 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
3465 spin_unlock(ptl);
3466 continue;
3467 }
3468 if (unlikely(is_hugetlb_entry_migration(pte))) {
3469 swp_entry_t entry = pte_to_swp_entry(pte);
3470
3471 if (is_write_migration_entry(entry)) {
3472 pte_t newpte;
3473
3474 make_migration_entry_read(&entry);
3475 newpte = swp_entry_to_pte(entry);
3476 set_huge_pte_at(mm, address, ptep, newpte);
3477 pages++;
3478 }
3479 spin_unlock(ptl);
3480 continue;
3481 }
3482 if (!huge_pte_none(pte)) {
8f860591 3483 pte = huge_ptep_get_and_clear(mm, address, ptep);
106c992a 3484 pte = pte_mkhuge(huge_pte_modify(pte, newprot));
be7517d6 3485 pte = arch_make_huge_pte(pte, vma, NULL, 0);
8f860591 3486 set_huge_pte_at(mm, address, ptep, pte);
7da4d641 3487 pages++;
8f860591 3488 }
cb900f41 3489 spin_unlock(ptl);
8f860591 3490 }
d833352a 3491 /*
c8c06efa 3492 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
d833352a 3493 * may have cleared our pud entry and done put_page on the page table:
c8c06efa 3494 * once we release i_mmap_rwsem, another task can do the final put_page
d833352a
MG
3495 * and that page table be reused and filled with junk.
3496 */
8f860591 3497 flush_tlb_range(vma, start, end);
34ee645e 3498 mmu_notifier_invalidate_range(mm, start, end);
83cde9e8 3499 i_mmap_unlock_write(vma->vm_file->f_mapping);
a5338093 3500 mmu_notifier_invalidate_range_end(mm, start, end);
7da4d641
PZ
3501
3502 return pages << h->order;
8f860591
ZY
3503}
3504
a1e78772
MG
3505int hugetlb_reserve_pages(struct inode *inode,
3506 long from, long to,
5a6fe125 3507 struct vm_area_struct *vma,
ca16d140 3508 vm_flags_t vm_flags)
e4e574b7 3509{
17c9d12e 3510 long ret, chg;
a5516438 3511 struct hstate *h = hstate_inode(inode);
90481622 3512 struct hugepage_subpool *spool = subpool_inode(inode);
9119a41e 3513 struct resv_map *resv_map;
1c5ecae3 3514 long gbl_reserve;
e4e574b7 3515
17c9d12e
MG
3516 /*
3517 * Only apply hugepage reservation if asked. At fault time, an
3518 * attempt will be made for VM_NORESERVE to allocate a page
90481622 3519 * without using reserves
17c9d12e 3520 */
ca16d140 3521 if (vm_flags & VM_NORESERVE)
17c9d12e
MG
3522 return 0;
3523
a1e78772
MG
3524 /*
3525 * Shared mappings base their reservation on the number of pages that
3526 * are already allocated on behalf of the file. Private mappings need
3527 * to reserve the full area even if read-only as mprotect() may be
3528 * called to make the mapping read-write. Assume !vma is a shm mapping
3529 */
9119a41e 3530 if (!vma || vma->vm_flags & VM_MAYSHARE) {
4e35f483 3531 resv_map = inode_resv_map(inode);
9119a41e 3532
1406ec9b 3533 chg = region_chg(resv_map, from, to);
9119a41e
JK
3534
3535 } else {
3536 resv_map = resv_map_alloc();
17c9d12e
MG
3537 if (!resv_map)
3538 return -ENOMEM;
3539
a1e78772 3540 chg = to - from;
84afd99b 3541
17c9d12e
MG
3542 set_vma_resv_map(vma, resv_map);
3543 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
3544 }
3545
c50ac050
DH
3546 if (chg < 0) {
3547 ret = chg;
3548 goto out_err;
3549 }
8a630112 3550
1c5ecae3
MK
3551 /*
3552 * There must be enough pages in the subpool for the mapping. If
3553 * the subpool has a minimum size, there may be some global
3554 * reservations already in place (gbl_reserve).
3555 */
3556 gbl_reserve = hugepage_subpool_get_pages(spool, chg);
3557 if (gbl_reserve < 0) {
c50ac050
DH
3558 ret = -ENOSPC;
3559 goto out_err;
3560 }
5a6fe125
MG
3561
3562 /*
17c9d12e 3563 * Check enough hugepages are available for the reservation.
90481622 3564 * Hand the pages back to the subpool if there are not
5a6fe125 3565 */
1c5ecae3 3566 ret = hugetlb_acct_memory(h, gbl_reserve);
68842c9b 3567 if (ret < 0) {
1c5ecae3
MK
3568 /* put back original number of pages, chg */
3569 (void)hugepage_subpool_put_pages(spool, chg);
c50ac050 3570 goto out_err;
68842c9b 3571 }
17c9d12e
MG
3572
3573 /*
3574 * Account for the reservations made. Shared mappings record regions
3575 * that have reservations as they are shared by multiple VMAs.
3576 * When the last VMA disappears, the region map says how much
3577 * the reservation was and the page cache tells how much of
3578 * the reservation was consumed. Private mappings are per-VMA and
3579 * only the consumed reservations are tracked. When the VMA
3580 * disappears, the original reservation is the VMA size and the
3581 * consumed reservations are stored in the map. Hence, nothing
3582 * else has to be done for private mappings here
3583 */
f83a275d 3584 if (!vma || vma->vm_flags & VM_MAYSHARE)
1406ec9b 3585 region_add(resv_map, from, to);
a43a8c39 3586 return 0;
c50ac050 3587out_err:
f031dd27
JK
3588 if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
3589 kref_put(&resv_map->refs, resv_map_release);
c50ac050 3590 return ret;
a43a8c39
CK
3591}
3592
3593void hugetlb_unreserve_pages(struct inode *inode, long offset, long freed)
3594{
a5516438 3595 struct hstate *h = hstate_inode(inode);
4e35f483 3596 struct resv_map *resv_map = inode_resv_map(inode);
9119a41e 3597 long chg = 0;
90481622 3598 struct hugepage_subpool *spool = subpool_inode(inode);
1c5ecae3 3599 long gbl_reserve;
45c682a6 3600
9119a41e 3601 if (resv_map)
1406ec9b 3602 chg = region_truncate(resv_map, offset);
45c682a6 3603 spin_lock(&inode->i_lock);
e4c6f8be 3604 inode->i_blocks -= (blocks_per_huge_page(h) * freed);
45c682a6
KC
3605 spin_unlock(&inode->i_lock);
3606
1c5ecae3
MK
3607 /*
3608 * If the subpool has a minimum size, the number of global
3609 * reservations to be released may be adjusted.
3610 */
3611 gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
3612 hugetlb_acct_memory(h, -gbl_reserve);
a43a8c39 3613}
93f70f90 3614
3212b535
SC
3615#ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
3616static unsigned long page_table_shareable(struct vm_area_struct *svma,
3617 struct vm_area_struct *vma,
3618 unsigned long addr, pgoff_t idx)
3619{
3620 unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
3621 svma->vm_start;
3622 unsigned long sbase = saddr & PUD_MASK;
3623 unsigned long s_end = sbase + PUD_SIZE;
3624
3625 /* Allow segments to share if only one is marked locked */
3626 unsigned long vm_flags = vma->vm_flags & ~VM_LOCKED;
3627 unsigned long svm_flags = svma->vm_flags & ~VM_LOCKED;
3628
3629 /*
3630 * match the virtual addresses, permission and the alignment of the
3631 * page table page.
3632 */
3633 if (pmd_index(addr) != pmd_index(saddr) ||
3634 vm_flags != svm_flags ||
3635 sbase < svma->vm_start || svma->vm_end < s_end)
3636 return 0;
3637
3638 return saddr;
3639}
3640
3641static int vma_shareable(struct vm_area_struct *vma, unsigned long addr)
3642{
3643 unsigned long base = addr & PUD_MASK;
3644 unsigned long end = base + PUD_SIZE;
3645
3646 /*
3647 * check on proper vm_flags and page table alignment
3648 */
3649 if (vma->vm_flags & VM_MAYSHARE &&
3650 vma->vm_start <= base && end <= vma->vm_end)
3651 return 1;
3652 return 0;
3653}
3654
3655/*
3656 * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
3657 * and returns the corresponding pte. While this is not necessary for the
3658 * !shared pmd case because we can allocate the pmd later as well, it makes the
3659 * code much cleaner. pmd allocation is essential for the shared case because
c8c06efa 3660 * pud has to be populated inside the same i_mmap_rwsem section - otherwise
3212b535
SC
3661 * racing tasks could either miss the sharing (see huge_pte_offset) or select a
3662 * bad pmd for sharing.
3663 */
3664pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
3665{
3666 struct vm_area_struct *vma = find_vma(mm, addr);
3667 struct address_space *mapping = vma->vm_file->f_mapping;
3668 pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
3669 vma->vm_pgoff;
3670 struct vm_area_struct *svma;
3671 unsigned long saddr;
3672 pte_t *spte = NULL;
3673 pte_t *pte;
cb900f41 3674 spinlock_t *ptl;
3212b535
SC
3675
3676 if (!vma_shareable(vma, addr))
3677 return (pte_t *)pmd_alloc(mm, pud, addr);
3678
83cde9e8 3679 i_mmap_lock_write(mapping);
3212b535
SC
3680 vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
3681 if (svma == vma)
3682 continue;
3683
3684 saddr = page_table_shareable(svma, vma, addr, idx);
3685 if (saddr) {
3686 spte = huge_pte_offset(svma->vm_mm, saddr);
3687 if (spte) {
dc6c9a35 3688 mm_inc_nr_pmds(mm);
3212b535
SC
3689 get_page(virt_to_page(spte));
3690 break;
3691 }
3692 }
3693 }
3694
3695 if (!spte)
3696 goto out;
3697
cb900f41
KS
3698 ptl = huge_pte_lockptr(hstate_vma(vma), mm, spte);
3699 spin_lock(ptl);
dc6c9a35 3700 if (pud_none(*pud)) {
3212b535
SC
3701 pud_populate(mm, pud,
3702 (pmd_t *)((unsigned long)spte & PAGE_MASK));
dc6c9a35 3703 } else {
3212b535 3704 put_page(virt_to_page(spte));
dc6c9a35
KS
3705 mm_inc_nr_pmds(mm);
3706 }
cb900f41 3707 spin_unlock(ptl);
3212b535
SC
3708out:
3709 pte = (pte_t *)pmd_alloc(mm, pud, addr);
83cde9e8 3710 i_mmap_unlock_write(mapping);
3212b535
SC
3711 return pte;
3712}
3713
3714/*
3715 * unmap huge page backed by shared pte.
3716 *
3717 * Hugetlb pte page is ref counted at the time of mapping. If pte is shared
3718 * indicated by page_count > 1, unmap is achieved by clearing pud and
3719 * decrementing the ref count. If count == 1, the pte page is not shared.
3720 *
cb900f41 3721 * called with page table lock held.
3212b535
SC
3722 *
3723 * returns: 1 successfully unmapped a shared pte page
3724 * 0 the underlying pte page is not shared, or it is the last user
3725 */
3726int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
3727{
3728 pgd_t *pgd = pgd_offset(mm, *addr);
3729 pud_t *pud = pud_offset(pgd, *addr);
3730
3731 BUG_ON(page_count(virt_to_page(ptep)) == 0);
3732 if (page_count(virt_to_page(ptep)) == 1)
3733 return 0;
3734
3735 pud_clear(pud);
3736 put_page(virt_to_page(ptep));
dc6c9a35 3737 mm_dec_nr_pmds(mm);
3212b535
SC
3738 *addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE;
3739 return 1;
3740}
9e5fc74c
SC
3741#define want_pmd_share() (1)
3742#else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
3743pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
3744{
3745 return NULL;
3746}
3747#define want_pmd_share() (0)
3212b535
SC
3748#endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
3749
9e5fc74c
SC
3750#ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
3751pte_t *huge_pte_alloc(struct mm_struct *mm,
3752 unsigned long addr, unsigned long sz)
3753{
3754 pgd_t *pgd;
3755 pud_t *pud;
3756 pte_t *pte = NULL;
3757
3758 pgd = pgd_offset(mm, addr);
3759 pud = pud_alloc(mm, pgd, addr);
3760 if (pud) {
3761 if (sz == PUD_SIZE) {
3762 pte = (pte_t *)pud;
3763 } else {
3764 BUG_ON(sz != PMD_SIZE);
3765 if (want_pmd_share() && pud_none(*pud))
3766 pte = huge_pmd_share(mm, addr, pud);
3767 else
3768 pte = (pte_t *)pmd_alloc(mm, pud, addr);
3769 }
3770 }
3771 BUG_ON(pte && !pte_none(*pte) && !pte_huge(*pte));
3772
3773 return pte;
3774}
3775
3776pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr)
3777{
3778 pgd_t *pgd;
3779 pud_t *pud;
3780 pmd_t *pmd = NULL;
3781
3782 pgd = pgd_offset(mm, addr);
3783 if (pgd_present(*pgd)) {
3784 pud = pud_offset(pgd, addr);
3785 if (pud_present(*pud)) {
3786 if (pud_huge(*pud))
3787 return (pte_t *)pud;
3788 pmd = pmd_offset(pud, addr);
3789 }
3790 }
3791 return (pte_t *) pmd;
3792}
3793
61f77eda
NH
3794#endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
3795
3796/*
3797 * These functions are overwritable if your architecture needs its own
3798 * behavior.
3799 */
3800struct page * __weak
3801follow_huge_addr(struct mm_struct *mm, unsigned long address,
3802 int write)
3803{
3804 return ERR_PTR(-EINVAL);
3805}
3806
3807struct page * __weak
9e5fc74c 3808follow_huge_pmd(struct mm_struct *mm, unsigned long address,
e66f17ff 3809 pmd_t *pmd, int flags)
9e5fc74c 3810{
e66f17ff
NH
3811 struct page *page = NULL;
3812 spinlock_t *ptl;
3813retry:
3814 ptl = pmd_lockptr(mm, pmd);
3815 spin_lock(ptl);
3816 /*
3817 * make sure that the address range covered by this pmd is not
3818 * unmapped from other threads.
3819 */
3820 if (!pmd_huge(*pmd))
3821 goto out;
3822 if (pmd_present(*pmd)) {
97534127 3823 page = pmd_page(*pmd) + ((address & ~PMD_MASK) >> PAGE_SHIFT);
e66f17ff
NH
3824 if (flags & FOLL_GET)
3825 get_page(page);
3826 } else {
3827 if (is_hugetlb_entry_migration(huge_ptep_get((pte_t *)pmd))) {
3828 spin_unlock(ptl);
3829 __migration_entry_wait(mm, (pte_t *)pmd, ptl);
3830 goto retry;
3831 }
3832 /*
3833 * hwpoisoned entry is treated as no_page_table in
3834 * follow_page_mask().
3835 */
3836 }
3837out:
3838 spin_unlock(ptl);
9e5fc74c
SC
3839 return page;
3840}
3841
61f77eda 3842struct page * __weak
9e5fc74c 3843follow_huge_pud(struct mm_struct *mm, unsigned long address,
e66f17ff 3844 pud_t *pud, int flags)
9e5fc74c 3845{
e66f17ff
NH
3846 if (flags & FOLL_GET)
3847 return NULL;
9e5fc74c 3848
e66f17ff 3849 return pte_page(*(pte_t *)pud) + ((address & ~PUD_MASK) >> PAGE_SHIFT);
9e5fc74c
SC
3850}
3851
d5bd9106
AK
3852#ifdef CONFIG_MEMORY_FAILURE
3853
6de2b1aa
NH
3854/* Should be called in hugetlb_lock */
3855static int is_hugepage_on_freelist(struct page *hpage)
3856{
3857 struct page *page;
3858 struct page *tmp;
3859 struct hstate *h = page_hstate(hpage);
3860 int nid = page_to_nid(hpage);
3861
3862 list_for_each_entry_safe(page, tmp, &h->hugepage_freelists[nid], lru)
3863 if (page == hpage)
3864 return 1;
3865 return 0;
3866}
3867
93f70f90
NH
3868/*
3869 * This function is called from memory failure code.
3870 * Assume the caller holds page lock of the head page.
3871 */
6de2b1aa 3872int dequeue_hwpoisoned_huge_page(struct page *hpage)
93f70f90
NH
3873{
3874 struct hstate *h = page_hstate(hpage);
3875 int nid = page_to_nid(hpage);
6de2b1aa 3876 int ret = -EBUSY;
93f70f90
NH
3877
3878 spin_lock(&hugetlb_lock);
6de2b1aa 3879 if (is_hugepage_on_freelist(hpage)) {
56f2fb14
NH
3880 /*
3881 * Hwpoisoned hugepage isn't linked to activelist or freelist,
3882 * but dangling hpage->lru can trigger list-debug warnings
3883 * (this happens when we call unpoison_memory() on it),
3884 * so let it point to itself with list_del_init().
3885 */
3886 list_del_init(&hpage->lru);
8c6c2ecb 3887 set_page_refcounted(hpage);
6de2b1aa
NH
3888 h->free_huge_pages--;
3889 h->free_huge_pages_node[nid]--;
3890 ret = 0;
3891 }
93f70f90 3892 spin_unlock(&hugetlb_lock);
6de2b1aa 3893 return ret;
93f70f90 3894}
6de2b1aa 3895#endif
31caf665
NH
3896
3897bool isolate_huge_page(struct page *page, struct list_head *list)
3898{
309381fe 3899 VM_BUG_ON_PAGE(!PageHead(page), page);
31caf665
NH
3900 if (!get_page_unless_zero(page))
3901 return false;
3902 spin_lock(&hugetlb_lock);
3903 list_move_tail(&page->lru, list);
3904 spin_unlock(&hugetlb_lock);
3905 return true;
3906}
3907
3908void putback_active_hugepage(struct page *page)
3909{
309381fe 3910 VM_BUG_ON_PAGE(!PageHead(page), page);
31caf665
NH
3911 spin_lock(&hugetlb_lock);
3912 list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
3913 spin_unlock(&hugetlb_lock);
3914 put_page(page);
3915}
c8721bbb
NH
3916
3917bool is_hugepage_active(struct page *page)
3918{
309381fe 3919 VM_BUG_ON_PAGE(!PageHuge(page), page);
c8721bbb
NH
3920 /*
3921 * This function can be called for a tail page because the caller,
3922 * scan_movable_pages, scans through a given pfn-range which typically
3923 * covers one memory block. In systems using gigantic hugepage (1GB
3924 * for x86_64,) a hugepage is larger than a memory block, and we don't
3925 * support migrating such large hugepages for now, so return false
3926 * when called for tail pages.
3927 */
3928 if (PageTail(page))
3929 return false;
3930 /*
3931 * Refcount of a hwpoisoned hugepages is 1, but they are not active,
3932 * so we should return false for them.
3933 */
3934 if (unlikely(PageHWPoison(page)))
3935 return false;
3936 return page_count(page) > 0;
3937}