mm: merging memory blocks resets mempolicy
[linux-2.6-block.git] / mm / hugetlb.c
CommitLineData
1da177e4
LT
1/*
2 * Generic hugetlb support.
6d49e352 3 * (C) Nadia Yvette Chambers, April 2004
1da177e4 4 */
1da177e4
LT
5#include <linux/list.h>
6#include <linux/init.h>
7#include <linux/module.h>
8#include <linux/mm.h>
e1759c21 9#include <linux/seq_file.h>
1da177e4
LT
10#include <linux/sysctl.h>
11#include <linux/highmem.h>
cddb8a5c 12#include <linux/mmu_notifier.h>
1da177e4 13#include <linux/nodemask.h>
63551ae0 14#include <linux/pagemap.h>
5da7ca86 15#include <linux/mempolicy.h>
aea47ff3 16#include <linux/cpuset.h>
3935baa9 17#include <linux/mutex.h>
aa888a74 18#include <linux/bootmem.h>
a3437870 19#include <linux/sysfs.h>
5a0e3ad6 20#include <linux/slab.h>
0fe6e20b 21#include <linux/rmap.h>
fd6a03ed
NH
22#include <linux/swap.h>
23#include <linux/swapops.h>
d6606683 24
63551ae0
DG
25#include <asm/page.h>
26#include <asm/pgtable.h>
24669e58 27#include <asm/tlb.h>
63551ae0 28
24669e58 29#include <linux/io.h>
63551ae0 30#include <linux/hugetlb.h>
9dd540e2 31#include <linux/hugetlb_cgroup.h>
9a305230 32#include <linux/node.h>
7835e98b 33#include "internal.h"
1da177e4
LT
34
35const unsigned long hugetlb_zero = 0, hugetlb_infinity = ~0UL;
396faf03
MG
36static gfp_t htlb_alloc_mask = GFP_HIGHUSER;
37unsigned long hugepages_treat_as_movable;
a5516438 38
c3f38a38 39int hugetlb_max_hstate __read_mostly;
e5ff2159
AK
40unsigned int default_hstate_idx;
41struct hstate hstates[HUGE_MAX_HSTATE];
42
53ba51d2
JT
43__initdata LIST_HEAD(huge_boot_pages);
44
e5ff2159
AK
45/* for command line parsing */
46static struct hstate * __initdata parsed_hstate;
47static unsigned long __initdata default_hstate_max_huge_pages;
e11bfbfc 48static unsigned long __initdata default_hstate_size;
e5ff2159 49
3935baa9
DG
50/*
51 * Protects updates to hugepage_freelists, nr_huge_pages, and free_huge_pages
52 */
c3f38a38 53DEFINE_SPINLOCK(hugetlb_lock);
0bd0f9fb 54
90481622
DG
55static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
56{
57 bool free = (spool->count == 0) && (spool->used_hpages == 0);
58
59 spin_unlock(&spool->lock);
60
61 /* If no pages are used, and no other handles to the subpool
62 * remain, free the subpool the subpool remain */
63 if (free)
64 kfree(spool);
65}
66
67struct hugepage_subpool *hugepage_new_subpool(long nr_blocks)
68{
69 struct hugepage_subpool *spool;
70
71 spool = kmalloc(sizeof(*spool), GFP_KERNEL);
72 if (!spool)
73 return NULL;
74
75 spin_lock_init(&spool->lock);
76 spool->count = 1;
77 spool->max_hpages = nr_blocks;
78 spool->used_hpages = 0;
79
80 return spool;
81}
82
83void hugepage_put_subpool(struct hugepage_subpool *spool)
84{
85 spin_lock(&spool->lock);
86 BUG_ON(!spool->count);
87 spool->count--;
88 unlock_or_release_subpool(spool);
89}
90
91static int hugepage_subpool_get_pages(struct hugepage_subpool *spool,
92 long delta)
93{
94 int ret = 0;
95
96 if (!spool)
97 return 0;
98
99 spin_lock(&spool->lock);
100 if ((spool->used_hpages + delta) <= spool->max_hpages) {
101 spool->used_hpages += delta;
102 } else {
103 ret = -ENOMEM;
104 }
105 spin_unlock(&spool->lock);
106
107 return ret;
108}
109
110static void hugepage_subpool_put_pages(struct hugepage_subpool *spool,
111 long delta)
112{
113 if (!spool)
114 return;
115
116 spin_lock(&spool->lock);
117 spool->used_hpages -= delta;
118 /* If hugetlbfs_put_super couldn't free spool due to
119 * an outstanding quota reference, free it now. */
120 unlock_or_release_subpool(spool);
121}
122
123static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
124{
125 return HUGETLBFS_SB(inode->i_sb)->spool;
126}
127
128static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
129{
496ad9aa 130 return subpool_inode(file_inode(vma->vm_file));
90481622
DG
131}
132
96822904
AW
133/*
134 * Region tracking -- allows tracking of reservations and instantiated pages
135 * across the pages in a mapping.
84afd99b
AW
136 *
137 * The region data structures are protected by a combination of the mmap_sem
138 * and the hugetlb_instantion_mutex. To access or modify a region the caller
139 * must either hold the mmap_sem for write, or the mmap_sem for read and
140 * the hugetlb_instantiation mutex:
141 *
32f84528 142 * down_write(&mm->mmap_sem);
84afd99b 143 * or
32f84528
CF
144 * down_read(&mm->mmap_sem);
145 * mutex_lock(&hugetlb_instantiation_mutex);
96822904
AW
146 */
147struct file_region {
148 struct list_head link;
149 long from;
150 long to;
151};
152
153static long region_add(struct list_head *head, long f, long t)
154{
155 struct file_region *rg, *nrg, *trg;
156
157 /* Locate the region we are either in or before. */
158 list_for_each_entry(rg, head, link)
159 if (f <= rg->to)
160 break;
161
162 /* Round our left edge to the current segment if it encloses us. */
163 if (f > rg->from)
164 f = rg->from;
165
166 /* Check for and consume any regions we now overlap with. */
167 nrg = rg;
168 list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
169 if (&rg->link == head)
170 break;
171 if (rg->from > t)
172 break;
173
174 /* If this area reaches higher then extend our area to
175 * include it completely. If this is not the first area
176 * which we intend to reuse, free it. */
177 if (rg->to > t)
178 t = rg->to;
179 if (rg != nrg) {
180 list_del(&rg->link);
181 kfree(rg);
182 }
183 }
184 nrg->from = f;
185 nrg->to = t;
186 return 0;
187}
188
189static long region_chg(struct list_head *head, long f, long t)
190{
191 struct file_region *rg, *nrg;
192 long chg = 0;
193
194 /* Locate the region we are before or in. */
195 list_for_each_entry(rg, head, link)
196 if (f <= rg->to)
197 break;
198
199 /* If we are below the current region then a new region is required.
200 * Subtle, allocate a new region at the position but make it zero
201 * size such that we can guarantee to record the reservation. */
202 if (&rg->link == head || t < rg->from) {
203 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
204 if (!nrg)
205 return -ENOMEM;
206 nrg->from = f;
207 nrg->to = f;
208 INIT_LIST_HEAD(&nrg->link);
209 list_add(&nrg->link, rg->link.prev);
210
211 return t - f;
212 }
213
214 /* Round our left edge to the current segment if it encloses us. */
215 if (f > rg->from)
216 f = rg->from;
217 chg = t - f;
218
219 /* Check for and consume any regions we now overlap with. */
220 list_for_each_entry(rg, rg->link.prev, link) {
221 if (&rg->link == head)
222 break;
223 if (rg->from > t)
224 return chg;
225
25985edc 226 /* We overlap with this area, if it extends further than
96822904
AW
227 * us then we must extend ourselves. Account for its
228 * existing reservation. */
229 if (rg->to > t) {
230 chg += rg->to - t;
231 t = rg->to;
232 }
233 chg -= rg->to - rg->from;
234 }
235 return chg;
236}
237
238static long region_truncate(struct list_head *head, long end)
239{
240 struct file_region *rg, *trg;
241 long chg = 0;
242
243 /* Locate the region we are either in or before. */
244 list_for_each_entry(rg, head, link)
245 if (end <= rg->to)
246 break;
247 if (&rg->link == head)
248 return 0;
249
250 /* If we are in the middle of a region then adjust it. */
251 if (end > rg->from) {
252 chg = rg->to - end;
253 rg->to = end;
254 rg = list_entry(rg->link.next, typeof(*rg), link);
255 }
256
257 /* Drop any remaining regions. */
258 list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
259 if (&rg->link == head)
260 break;
261 chg += rg->to - rg->from;
262 list_del(&rg->link);
263 kfree(rg);
264 }
265 return chg;
266}
267
84afd99b
AW
268static long region_count(struct list_head *head, long f, long t)
269{
270 struct file_region *rg;
271 long chg = 0;
272
273 /* Locate each segment we overlap with, and count that overlap. */
274 list_for_each_entry(rg, head, link) {
f2135a4a
WSH
275 long seg_from;
276 long seg_to;
84afd99b
AW
277
278 if (rg->to <= f)
279 continue;
280 if (rg->from >= t)
281 break;
282
283 seg_from = max(rg->from, f);
284 seg_to = min(rg->to, t);
285
286 chg += seg_to - seg_from;
287 }
288
289 return chg;
290}
291
e7c4b0bf
AW
292/*
293 * Convert the address within this vma to the page offset within
294 * the mapping, in pagecache page units; huge pages here.
295 */
a5516438
AK
296static pgoff_t vma_hugecache_offset(struct hstate *h,
297 struct vm_area_struct *vma, unsigned long address)
e7c4b0bf 298{
a5516438
AK
299 return ((address - vma->vm_start) >> huge_page_shift(h)) +
300 (vma->vm_pgoff >> huge_page_order(h));
e7c4b0bf
AW
301}
302
0fe6e20b
NH
303pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
304 unsigned long address)
305{
306 return vma_hugecache_offset(hstate_vma(vma), vma, address);
307}
308
08fba699
MG
309/*
310 * Return the size of the pages allocated when backing a VMA. In the majority
311 * cases this will be same size as used by the page table entries.
312 */
313unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
314{
315 struct hstate *hstate;
316
317 if (!is_vm_hugetlb_page(vma))
318 return PAGE_SIZE;
319
320 hstate = hstate_vma(vma);
321
322 return 1UL << (hstate->order + PAGE_SHIFT);
323}
f340ca0f 324EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
08fba699 325
3340289d
MG
326/*
327 * Return the page size being used by the MMU to back a VMA. In the majority
328 * of cases, the page size used by the kernel matches the MMU size. On
329 * architectures where it differs, an architecture-specific version of this
330 * function is required.
331 */
332#ifndef vma_mmu_pagesize
333unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
334{
335 return vma_kernel_pagesize(vma);
336}
337#endif
338
84afd99b
AW
339/*
340 * Flags for MAP_PRIVATE reservations. These are stored in the bottom
341 * bits of the reservation map pointer, which are always clear due to
342 * alignment.
343 */
344#define HPAGE_RESV_OWNER (1UL << 0)
345#define HPAGE_RESV_UNMAPPED (1UL << 1)
04f2cbe3 346#define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
84afd99b 347
a1e78772
MG
348/*
349 * These helpers are used to track how many pages are reserved for
350 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
351 * is guaranteed to have their future faults succeed.
352 *
353 * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
354 * the reserve counters are updated with the hugetlb_lock held. It is safe
355 * to reset the VMA at fork() time as it is not in use yet and there is no
356 * chance of the global counters getting corrupted as a result of the values.
84afd99b
AW
357 *
358 * The private mapping reservation is represented in a subtly different
359 * manner to a shared mapping. A shared mapping has a region map associated
360 * with the underlying file, this region map represents the backing file
361 * pages which have ever had a reservation assigned which this persists even
362 * after the page is instantiated. A private mapping has a region map
363 * associated with the original mmap which is attached to all VMAs which
364 * reference it, this region map represents those offsets which have consumed
365 * reservation ie. where pages have been instantiated.
a1e78772 366 */
e7c4b0bf
AW
367static unsigned long get_vma_private_data(struct vm_area_struct *vma)
368{
369 return (unsigned long)vma->vm_private_data;
370}
371
372static void set_vma_private_data(struct vm_area_struct *vma,
373 unsigned long value)
374{
375 vma->vm_private_data = (void *)value;
376}
377
84afd99b
AW
378struct resv_map {
379 struct kref refs;
380 struct list_head regions;
381};
382
2a4b3ded 383static struct resv_map *resv_map_alloc(void)
84afd99b
AW
384{
385 struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
386 if (!resv_map)
387 return NULL;
388
389 kref_init(&resv_map->refs);
390 INIT_LIST_HEAD(&resv_map->regions);
391
392 return resv_map;
393}
394
2a4b3ded 395static void resv_map_release(struct kref *ref)
84afd99b
AW
396{
397 struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
398
399 /* Clear out any active regions before we release the map. */
400 region_truncate(&resv_map->regions, 0);
401 kfree(resv_map);
402}
403
404static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
a1e78772
MG
405{
406 VM_BUG_ON(!is_vm_hugetlb_page(vma));
f83a275d 407 if (!(vma->vm_flags & VM_MAYSHARE))
84afd99b
AW
408 return (struct resv_map *)(get_vma_private_data(vma) &
409 ~HPAGE_RESV_MASK);
2a4b3ded 410 return NULL;
a1e78772
MG
411}
412
84afd99b 413static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
a1e78772
MG
414{
415 VM_BUG_ON(!is_vm_hugetlb_page(vma));
f83a275d 416 VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
a1e78772 417
84afd99b
AW
418 set_vma_private_data(vma, (get_vma_private_data(vma) &
419 HPAGE_RESV_MASK) | (unsigned long)map);
04f2cbe3
MG
420}
421
422static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
423{
04f2cbe3 424 VM_BUG_ON(!is_vm_hugetlb_page(vma));
f83a275d 425 VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
e7c4b0bf
AW
426
427 set_vma_private_data(vma, get_vma_private_data(vma) | flags);
04f2cbe3
MG
428}
429
430static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
431{
432 VM_BUG_ON(!is_vm_hugetlb_page(vma));
e7c4b0bf
AW
433
434 return (get_vma_private_data(vma) & flag) != 0;
a1e78772
MG
435}
436
437/* Decrement the reserved pages in the hugepage pool by one */
a5516438
AK
438static void decrement_hugepage_resv_vma(struct hstate *h,
439 struct vm_area_struct *vma)
a1e78772 440{
c37f9fb1
AW
441 if (vma->vm_flags & VM_NORESERVE)
442 return;
443
f83a275d 444 if (vma->vm_flags & VM_MAYSHARE) {
a1e78772 445 /* Shared mappings always use reserves */
a5516438 446 h->resv_huge_pages--;
84afd99b 447 } else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
a1e78772
MG
448 /*
449 * Only the process that called mmap() has reserves for
450 * private mappings.
451 */
a5516438 452 h->resv_huge_pages--;
a1e78772
MG
453 }
454}
455
04f2cbe3 456/* Reset counters to 0 and clear all HPAGE_RESV_* flags */
a1e78772
MG
457void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
458{
459 VM_BUG_ON(!is_vm_hugetlb_page(vma));
f83a275d 460 if (!(vma->vm_flags & VM_MAYSHARE))
a1e78772
MG
461 vma->vm_private_data = (void *)0;
462}
463
464/* Returns true if the VMA has associated reserve pages */
7f09ca51 465static int vma_has_reserves(struct vm_area_struct *vma)
a1e78772 466{
f83a275d 467 if (vma->vm_flags & VM_MAYSHARE)
7f09ca51
MG
468 return 1;
469 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER))
470 return 1;
471 return 0;
a1e78772
MG
472}
473
0ebabb41
NH
474static void copy_gigantic_page(struct page *dst, struct page *src)
475{
476 int i;
477 struct hstate *h = page_hstate(src);
478 struct page *dst_base = dst;
479 struct page *src_base = src;
480
481 for (i = 0; i < pages_per_huge_page(h); ) {
482 cond_resched();
483 copy_highpage(dst, src);
484
485 i++;
486 dst = mem_map_next(dst, dst_base, i);
487 src = mem_map_next(src, src_base, i);
488 }
489}
490
491void copy_huge_page(struct page *dst, struct page *src)
492{
493 int i;
494 struct hstate *h = page_hstate(src);
495
496 if (unlikely(pages_per_huge_page(h) > MAX_ORDER_NR_PAGES)) {
497 copy_gigantic_page(dst, src);
498 return;
499 }
500
501 might_sleep();
502 for (i = 0; i < pages_per_huge_page(h); i++) {
503 cond_resched();
504 copy_highpage(dst + i, src + i);
505 }
506}
507
a5516438 508static void enqueue_huge_page(struct hstate *h, struct page *page)
1da177e4
LT
509{
510 int nid = page_to_nid(page);
0edaecfa 511 list_move(&page->lru, &h->hugepage_freelists[nid]);
a5516438
AK
512 h->free_huge_pages++;
513 h->free_huge_pages_node[nid]++;
1da177e4
LT
514}
515
bf50bab2
NH
516static struct page *dequeue_huge_page_node(struct hstate *h, int nid)
517{
518 struct page *page;
519
520 if (list_empty(&h->hugepage_freelists[nid]))
521 return NULL;
522 page = list_entry(h->hugepage_freelists[nid].next, struct page, lru);
0edaecfa 523 list_move(&page->lru, &h->hugepage_activelist);
a9869b83 524 set_page_refcounted(page);
bf50bab2
NH
525 h->free_huge_pages--;
526 h->free_huge_pages_node[nid]--;
527 return page;
528}
529
a5516438
AK
530static struct page *dequeue_huge_page_vma(struct hstate *h,
531 struct vm_area_struct *vma,
04f2cbe3 532 unsigned long address, int avoid_reserve)
1da177e4 533{
b1c12cbc 534 struct page *page = NULL;
480eccf9 535 struct mempolicy *mpol;
19770b32 536 nodemask_t *nodemask;
c0ff7453 537 struct zonelist *zonelist;
dd1a239f
MG
538 struct zone *zone;
539 struct zoneref *z;
cc9a6c87 540 unsigned int cpuset_mems_cookie;
1da177e4 541
cc9a6c87
MG
542retry_cpuset:
543 cpuset_mems_cookie = get_mems_allowed();
c0ff7453
MX
544 zonelist = huge_zonelist(vma, address,
545 htlb_alloc_mask, &mpol, &nodemask);
a1e78772
MG
546 /*
547 * A child process with MAP_PRIVATE mappings created by their parent
548 * have no page reserves. This check ensures that reservations are
549 * not "stolen". The child may still get SIGKILLed
550 */
7f09ca51 551 if (!vma_has_reserves(vma) &&
a5516438 552 h->free_huge_pages - h->resv_huge_pages == 0)
c0ff7453 553 goto err;
a1e78772 554
04f2cbe3 555 /* If reserves cannot be used, ensure enough pages are in the pool */
a5516438 556 if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
6eab04a8 557 goto err;
04f2cbe3 558
19770b32
MG
559 for_each_zone_zonelist_nodemask(zone, z, zonelist,
560 MAX_NR_ZONES - 1, nodemask) {
bf50bab2
NH
561 if (cpuset_zone_allowed_softwall(zone, htlb_alloc_mask)) {
562 page = dequeue_huge_page_node(h, zone_to_nid(zone));
563 if (page) {
564 if (!avoid_reserve)
565 decrement_hugepage_resv_vma(h, vma);
566 break;
567 }
3abf7afd 568 }
1da177e4 569 }
cc9a6c87 570
52cd3b07 571 mpol_cond_put(mpol);
cc9a6c87
MG
572 if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !page))
573 goto retry_cpuset;
1da177e4 574 return page;
cc9a6c87
MG
575
576err:
577 mpol_cond_put(mpol);
578 return NULL;
1da177e4
LT
579}
580
a5516438 581static void update_and_free_page(struct hstate *h, struct page *page)
6af2acb6
AL
582{
583 int i;
a5516438 584
18229df5
AW
585 VM_BUG_ON(h->order >= MAX_ORDER);
586
a5516438
AK
587 h->nr_huge_pages--;
588 h->nr_huge_pages_node[page_to_nid(page)]--;
589 for (i = 0; i < pages_per_huge_page(h); i++) {
32f84528
CF
590 page[i].flags &= ~(1 << PG_locked | 1 << PG_error |
591 1 << PG_referenced | 1 << PG_dirty |
592 1 << PG_active | 1 << PG_reserved |
593 1 << PG_private | 1 << PG_writeback);
6af2acb6 594 }
9dd540e2 595 VM_BUG_ON(hugetlb_cgroup_from_page(page));
6af2acb6
AL
596 set_compound_page_dtor(page, NULL);
597 set_page_refcounted(page);
7f2e9525 598 arch_release_hugepage(page);
a5516438 599 __free_pages(page, huge_page_order(h));
6af2acb6
AL
600}
601
e5ff2159
AK
602struct hstate *size_to_hstate(unsigned long size)
603{
604 struct hstate *h;
605
606 for_each_hstate(h) {
607 if (huge_page_size(h) == size)
608 return h;
609 }
610 return NULL;
611}
612
27a85ef1
DG
613static void free_huge_page(struct page *page)
614{
a5516438
AK
615 /*
616 * Can't pass hstate in here because it is called from the
617 * compound page destructor.
618 */
e5ff2159 619 struct hstate *h = page_hstate(page);
7893d1d5 620 int nid = page_to_nid(page);
90481622
DG
621 struct hugepage_subpool *spool =
622 (struct hugepage_subpool *)page_private(page);
27a85ef1 623
e5df70ab 624 set_page_private(page, 0);
23be7468 625 page->mapping = NULL;
7893d1d5 626 BUG_ON(page_count(page));
0fe6e20b 627 BUG_ON(page_mapcount(page));
27a85ef1
DG
628
629 spin_lock(&hugetlb_lock);
6d76dcf4
AK
630 hugetlb_cgroup_uncharge_page(hstate_index(h),
631 pages_per_huge_page(h), page);
aa888a74 632 if (h->surplus_huge_pages_node[nid] && huge_page_order(h) < MAX_ORDER) {
0edaecfa
AK
633 /* remove the page from active list */
634 list_del(&page->lru);
a5516438
AK
635 update_and_free_page(h, page);
636 h->surplus_huge_pages--;
637 h->surplus_huge_pages_node[nid]--;
7893d1d5 638 } else {
5d3a551c 639 arch_clear_hugepage_flags(page);
a5516438 640 enqueue_huge_page(h, page);
7893d1d5 641 }
27a85ef1 642 spin_unlock(&hugetlb_lock);
90481622 643 hugepage_subpool_put_pages(spool, 1);
27a85ef1
DG
644}
645
a5516438 646static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
b7ba30c6 647{
0edaecfa 648 INIT_LIST_HEAD(&page->lru);
b7ba30c6
AK
649 set_compound_page_dtor(page, free_huge_page);
650 spin_lock(&hugetlb_lock);
9dd540e2 651 set_hugetlb_cgroup(page, NULL);
a5516438
AK
652 h->nr_huge_pages++;
653 h->nr_huge_pages_node[nid]++;
b7ba30c6
AK
654 spin_unlock(&hugetlb_lock);
655 put_page(page); /* free it into the hugepage allocator */
656}
657
20a0307c
WF
658static void prep_compound_gigantic_page(struct page *page, unsigned long order)
659{
660 int i;
661 int nr_pages = 1 << order;
662 struct page *p = page + 1;
663
664 /* we rely on prep_new_huge_page to set the destructor */
665 set_compound_order(page, order);
666 __SetPageHead(page);
667 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
668 __SetPageTail(p);
58a84aa9 669 set_page_count(p, 0);
20a0307c
WF
670 p->first_page = page;
671 }
672}
673
7795912c
AM
674/*
675 * PageHuge() only returns true for hugetlbfs pages, but not for normal or
676 * transparent huge pages. See the PageTransHuge() documentation for more
677 * details.
678 */
20a0307c
WF
679int PageHuge(struct page *page)
680{
681 compound_page_dtor *dtor;
682
683 if (!PageCompound(page))
684 return 0;
685
686 page = compound_head(page);
687 dtor = get_compound_page_dtor(page);
688
689 return dtor == free_huge_page;
690}
43131e14
NH
691EXPORT_SYMBOL_GPL(PageHuge);
692
a5516438 693static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid)
1da177e4 694{
1da177e4 695 struct page *page;
f96efd58 696
aa888a74
AK
697 if (h->order >= MAX_ORDER)
698 return NULL;
699
6484eb3e 700 page = alloc_pages_exact_node(nid,
551883ae
NA
701 htlb_alloc_mask|__GFP_COMP|__GFP_THISNODE|
702 __GFP_REPEAT|__GFP_NOWARN,
a5516438 703 huge_page_order(h));
1da177e4 704 if (page) {
7f2e9525 705 if (arch_prepare_hugepage(page)) {
caff3a2c 706 __free_pages(page, huge_page_order(h));
7b8ee84d 707 return NULL;
7f2e9525 708 }
a5516438 709 prep_new_huge_page(h, page, nid);
1da177e4 710 }
63b4613c
NA
711
712 return page;
713}
714
9a76db09 715/*
6ae11b27
LS
716 * common helper functions for hstate_next_node_to_{alloc|free}.
717 * We may have allocated or freed a huge page based on a different
718 * nodes_allowed previously, so h->next_node_to_{alloc|free} might
719 * be outside of *nodes_allowed. Ensure that we use an allowed
720 * node for alloc or free.
9a76db09 721 */
6ae11b27 722static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
9a76db09 723{
6ae11b27 724 nid = next_node(nid, *nodes_allowed);
9a76db09 725 if (nid == MAX_NUMNODES)
6ae11b27 726 nid = first_node(*nodes_allowed);
9a76db09
LS
727 VM_BUG_ON(nid >= MAX_NUMNODES);
728
729 return nid;
730}
731
6ae11b27
LS
732static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
733{
734 if (!node_isset(nid, *nodes_allowed))
735 nid = next_node_allowed(nid, nodes_allowed);
736 return nid;
737}
738
5ced66c9 739/*
6ae11b27
LS
740 * returns the previously saved node ["this node"] from which to
741 * allocate a persistent huge page for the pool and advance the
742 * next node from which to allocate, handling wrap at end of node
743 * mask.
5ced66c9 744 */
6ae11b27
LS
745static int hstate_next_node_to_alloc(struct hstate *h,
746 nodemask_t *nodes_allowed)
5ced66c9 747{
6ae11b27
LS
748 int nid;
749
750 VM_BUG_ON(!nodes_allowed);
751
752 nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
753 h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
9a76db09 754
9a76db09 755 return nid;
5ced66c9
AK
756}
757
6ae11b27 758static int alloc_fresh_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
63b4613c
NA
759{
760 struct page *page;
761 int start_nid;
762 int next_nid;
763 int ret = 0;
764
6ae11b27 765 start_nid = hstate_next_node_to_alloc(h, nodes_allowed);
e8c5c824 766 next_nid = start_nid;
63b4613c
NA
767
768 do {
e8c5c824 769 page = alloc_fresh_huge_page_node(h, next_nid);
9a76db09 770 if (page) {
63b4613c 771 ret = 1;
9a76db09
LS
772 break;
773 }
6ae11b27 774 next_nid = hstate_next_node_to_alloc(h, nodes_allowed);
9a76db09 775 } while (next_nid != start_nid);
63b4613c 776
3b116300
AL
777 if (ret)
778 count_vm_event(HTLB_BUDDY_PGALLOC);
779 else
780 count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
781
63b4613c 782 return ret;
1da177e4
LT
783}
784
e8c5c824 785/*
6ae11b27
LS
786 * helper for free_pool_huge_page() - return the previously saved
787 * node ["this node"] from which to free a huge page. Advance the
788 * next node id whether or not we find a free huge page to free so
789 * that the next attempt to free addresses the next node.
e8c5c824 790 */
6ae11b27 791static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
e8c5c824 792{
6ae11b27
LS
793 int nid;
794
795 VM_BUG_ON(!nodes_allowed);
796
797 nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
798 h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
9a76db09 799
9a76db09 800 return nid;
e8c5c824
LS
801}
802
803/*
804 * Free huge page from pool from next node to free.
805 * Attempt to keep persistent huge pages more or less
806 * balanced over allowed nodes.
807 * Called with hugetlb_lock locked.
808 */
6ae11b27
LS
809static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
810 bool acct_surplus)
e8c5c824
LS
811{
812 int start_nid;
813 int next_nid;
814 int ret = 0;
815
6ae11b27 816 start_nid = hstate_next_node_to_free(h, nodes_allowed);
e8c5c824
LS
817 next_nid = start_nid;
818
819 do {
685f3457
LS
820 /*
821 * If we're returning unused surplus pages, only examine
822 * nodes with surplus pages.
823 */
824 if ((!acct_surplus || h->surplus_huge_pages_node[next_nid]) &&
825 !list_empty(&h->hugepage_freelists[next_nid])) {
e8c5c824
LS
826 struct page *page =
827 list_entry(h->hugepage_freelists[next_nid].next,
828 struct page, lru);
829 list_del(&page->lru);
830 h->free_huge_pages--;
831 h->free_huge_pages_node[next_nid]--;
685f3457
LS
832 if (acct_surplus) {
833 h->surplus_huge_pages--;
834 h->surplus_huge_pages_node[next_nid]--;
835 }
e8c5c824
LS
836 update_and_free_page(h, page);
837 ret = 1;
9a76db09 838 break;
e8c5c824 839 }
6ae11b27 840 next_nid = hstate_next_node_to_free(h, nodes_allowed);
9a76db09 841 } while (next_nid != start_nid);
e8c5c824
LS
842
843 return ret;
844}
845
bf50bab2 846static struct page *alloc_buddy_huge_page(struct hstate *h, int nid)
7893d1d5
AL
847{
848 struct page *page;
bf50bab2 849 unsigned int r_nid;
7893d1d5 850
aa888a74
AK
851 if (h->order >= MAX_ORDER)
852 return NULL;
853
d1c3fb1f
NA
854 /*
855 * Assume we will successfully allocate the surplus page to
856 * prevent racing processes from causing the surplus to exceed
857 * overcommit
858 *
859 * This however introduces a different race, where a process B
860 * tries to grow the static hugepage pool while alloc_pages() is
861 * called by process A. B will only examine the per-node
862 * counters in determining if surplus huge pages can be
863 * converted to normal huge pages in adjust_pool_surplus(). A
864 * won't be able to increment the per-node counter, until the
865 * lock is dropped by B, but B doesn't drop hugetlb_lock until
866 * no more huge pages can be converted from surplus to normal
867 * state (and doesn't try to convert again). Thus, we have a
868 * case where a surplus huge page exists, the pool is grown, and
869 * the surplus huge page still exists after, even though it
870 * should just have been converted to a normal huge page. This
871 * does not leak memory, though, as the hugepage will be freed
872 * once it is out of use. It also does not allow the counters to
873 * go out of whack in adjust_pool_surplus() as we don't modify
874 * the node values until we've gotten the hugepage and only the
875 * per-node value is checked there.
876 */
877 spin_lock(&hugetlb_lock);
a5516438 878 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
d1c3fb1f
NA
879 spin_unlock(&hugetlb_lock);
880 return NULL;
881 } else {
a5516438
AK
882 h->nr_huge_pages++;
883 h->surplus_huge_pages++;
d1c3fb1f
NA
884 }
885 spin_unlock(&hugetlb_lock);
886
bf50bab2
NH
887 if (nid == NUMA_NO_NODE)
888 page = alloc_pages(htlb_alloc_mask|__GFP_COMP|
889 __GFP_REPEAT|__GFP_NOWARN,
890 huge_page_order(h));
891 else
892 page = alloc_pages_exact_node(nid,
893 htlb_alloc_mask|__GFP_COMP|__GFP_THISNODE|
894 __GFP_REPEAT|__GFP_NOWARN, huge_page_order(h));
d1c3fb1f 895
caff3a2c
GS
896 if (page && arch_prepare_hugepage(page)) {
897 __free_pages(page, huge_page_order(h));
ea5768c7 898 page = NULL;
caff3a2c
GS
899 }
900
d1c3fb1f 901 spin_lock(&hugetlb_lock);
7893d1d5 902 if (page) {
0edaecfa 903 INIT_LIST_HEAD(&page->lru);
bf50bab2 904 r_nid = page_to_nid(page);
7893d1d5 905 set_compound_page_dtor(page, free_huge_page);
9dd540e2 906 set_hugetlb_cgroup(page, NULL);
d1c3fb1f
NA
907 /*
908 * We incremented the global counters already
909 */
bf50bab2
NH
910 h->nr_huge_pages_node[r_nid]++;
911 h->surplus_huge_pages_node[r_nid]++;
3b116300 912 __count_vm_event(HTLB_BUDDY_PGALLOC);
d1c3fb1f 913 } else {
a5516438
AK
914 h->nr_huge_pages--;
915 h->surplus_huge_pages--;
3b116300 916 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
7893d1d5 917 }
d1c3fb1f 918 spin_unlock(&hugetlb_lock);
7893d1d5
AL
919
920 return page;
921}
922
bf50bab2
NH
923/*
924 * This allocation function is useful in the context where vma is irrelevant.
925 * E.g. soft-offlining uses this function because it only cares physical
926 * address of error page.
927 */
928struct page *alloc_huge_page_node(struct hstate *h, int nid)
929{
930 struct page *page;
931
932 spin_lock(&hugetlb_lock);
933 page = dequeue_huge_page_node(h, nid);
934 spin_unlock(&hugetlb_lock);
935
94ae8ba7 936 if (!page)
bf50bab2
NH
937 page = alloc_buddy_huge_page(h, nid);
938
939 return page;
940}
941
e4e574b7 942/*
25985edc 943 * Increase the hugetlb pool such that it can accommodate a reservation
e4e574b7
AL
944 * of size 'delta'.
945 */
a5516438 946static int gather_surplus_pages(struct hstate *h, int delta)
e4e574b7
AL
947{
948 struct list_head surplus_list;
949 struct page *page, *tmp;
950 int ret, i;
951 int needed, allocated;
28073b02 952 bool alloc_ok = true;
e4e574b7 953
a5516438 954 needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
ac09b3a1 955 if (needed <= 0) {
a5516438 956 h->resv_huge_pages += delta;
e4e574b7 957 return 0;
ac09b3a1 958 }
e4e574b7
AL
959
960 allocated = 0;
961 INIT_LIST_HEAD(&surplus_list);
962
963 ret = -ENOMEM;
964retry:
965 spin_unlock(&hugetlb_lock);
966 for (i = 0; i < needed; i++) {
bf50bab2 967 page = alloc_buddy_huge_page(h, NUMA_NO_NODE);
28073b02
HD
968 if (!page) {
969 alloc_ok = false;
970 break;
971 }
e4e574b7
AL
972 list_add(&page->lru, &surplus_list);
973 }
28073b02 974 allocated += i;
e4e574b7
AL
975
976 /*
977 * After retaking hugetlb_lock, we need to recalculate 'needed'
978 * because either resv_huge_pages or free_huge_pages may have changed.
979 */
980 spin_lock(&hugetlb_lock);
a5516438
AK
981 needed = (h->resv_huge_pages + delta) -
982 (h->free_huge_pages + allocated);
28073b02
HD
983 if (needed > 0) {
984 if (alloc_ok)
985 goto retry;
986 /*
987 * We were not able to allocate enough pages to
988 * satisfy the entire reservation so we free what
989 * we've allocated so far.
990 */
991 goto free;
992 }
e4e574b7
AL
993 /*
994 * The surplus_list now contains _at_least_ the number of extra pages
25985edc 995 * needed to accommodate the reservation. Add the appropriate number
e4e574b7 996 * of pages to the hugetlb pool and free the extras back to the buddy
ac09b3a1
AL
997 * allocator. Commit the entire reservation here to prevent another
998 * process from stealing the pages as they are added to the pool but
999 * before they are reserved.
e4e574b7
AL
1000 */
1001 needed += allocated;
a5516438 1002 h->resv_huge_pages += delta;
e4e574b7 1003 ret = 0;
a9869b83 1004
19fc3f0a 1005 /* Free the needed pages to the hugetlb pool */
e4e574b7 1006 list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
19fc3f0a
AL
1007 if ((--needed) < 0)
1008 break;
a9869b83
NH
1009 /*
1010 * This page is now managed by the hugetlb allocator and has
1011 * no users -- drop the buddy allocator's reference.
1012 */
1013 put_page_testzero(page);
1014 VM_BUG_ON(page_count(page));
a5516438 1015 enqueue_huge_page(h, page);
19fc3f0a 1016 }
28073b02 1017free:
b0365c8d 1018 spin_unlock(&hugetlb_lock);
19fc3f0a
AL
1019
1020 /* Free unnecessary surplus pages to the buddy allocator */
1021 if (!list_empty(&surplus_list)) {
19fc3f0a 1022 list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
a9869b83 1023 put_page(page);
af767cbd 1024 }
e4e574b7 1025 }
a9869b83 1026 spin_lock(&hugetlb_lock);
e4e574b7
AL
1027
1028 return ret;
1029}
1030
1031/*
1032 * When releasing a hugetlb pool reservation, any surplus pages that were
1033 * allocated to satisfy the reservation must be explicitly freed if they were
1034 * never used.
685f3457 1035 * Called with hugetlb_lock held.
e4e574b7 1036 */
a5516438
AK
1037static void return_unused_surplus_pages(struct hstate *h,
1038 unsigned long unused_resv_pages)
e4e574b7 1039{
e4e574b7
AL
1040 unsigned long nr_pages;
1041
ac09b3a1 1042 /* Uncommit the reservation */
a5516438 1043 h->resv_huge_pages -= unused_resv_pages;
ac09b3a1 1044
aa888a74
AK
1045 /* Cannot return gigantic pages currently */
1046 if (h->order >= MAX_ORDER)
1047 return;
1048
a5516438 1049 nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
e4e574b7 1050
685f3457
LS
1051 /*
1052 * We want to release as many surplus pages as possible, spread
9b5e5d0f
LS
1053 * evenly across all nodes with memory. Iterate across these nodes
1054 * until we can no longer free unreserved surplus pages. This occurs
1055 * when the nodes with surplus pages have no free pages.
1056 * free_pool_huge_page() will balance the the freed pages across the
1057 * on-line nodes with memory and will handle the hstate accounting.
685f3457
LS
1058 */
1059 while (nr_pages--) {
8cebfcd0 1060 if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1))
685f3457 1061 break;
e4e574b7
AL
1062 }
1063}
1064
c37f9fb1
AW
1065/*
1066 * Determine if the huge page at addr within the vma has an associated
1067 * reservation. Where it does not we will need to logically increase
90481622
DG
1068 * reservation and actually increase subpool usage before an allocation
1069 * can occur. Where any new reservation would be required the
1070 * reservation change is prepared, but not committed. Once the page
1071 * has been allocated from the subpool and instantiated the change should
1072 * be committed via vma_commit_reservation. No action is required on
1073 * failure.
c37f9fb1 1074 */
e2f17d94 1075static long vma_needs_reservation(struct hstate *h,
a5516438 1076 struct vm_area_struct *vma, unsigned long addr)
c37f9fb1
AW
1077{
1078 struct address_space *mapping = vma->vm_file->f_mapping;
1079 struct inode *inode = mapping->host;
1080
f83a275d 1081 if (vma->vm_flags & VM_MAYSHARE) {
a5516438 1082 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
c37f9fb1
AW
1083 return region_chg(&inode->i_mapping->private_list,
1084 idx, idx + 1);
1085
84afd99b
AW
1086 } else if (!is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1087 return 1;
c37f9fb1 1088
84afd99b 1089 } else {
e2f17d94 1090 long err;
a5516438 1091 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
84afd99b
AW
1092 struct resv_map *reservations = vma_resv_map(vma);
1093
1094 err = region_chg(&reservations->regions, idx, idx + 1);
1095 if (err < 0)
1096 return err;
1097 return 0;
1098 }
c37f9fb1 1099}
a5516438
AK
1100static void vma_commit_reservation(struct hstate *h,
1101 struct vm_area_struct *vma, unsigned long addr)
c37f9fb1
AW
1102{
1103 struct address_space *mapping = vma->vm_file->f_mapping;
1104 struct inode *inode = mapping->host;
1105
f83a275d 1106 if (vma->vm_flags & VM_MAYSHARE) {
a5516438 1107 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
c37f9fb1 1108 region_add(&inode->i_mapping->private_list, idx, idx + 1);
84afd99b
AW
1109
1110 } else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
a5516438 1111 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
84afd99b
AW
1112 struct resv_map *reservations = vma_resv_map(vma);
1113
1114 /* Mark this page used in the map. */
1115 region_add(&reservations->regions, idx, idx + 1);
c37f9fb1
AW
1116 }
1117}
1118
a1e78772 1119static struct page *alloc_huge_page(struct vm_area_struct *vma,
04f2cbe3 1120 unsigned long addr, int avoid_reserve)
1da177e4 1121{
90481622 1122 struct hugepage_subpool *spool = subpool_vma(vma);
a5516438 1123 struct hstate *h = hstate_vma(vma);
348ea204 1124 struct page *page;
e2f17d94 1125 long chg;
6d76dcf4
AK
1126 int ret, idx;
1127 struct hugetlb_cgroup *h_cg;
a1e78772 1128
6d76dcf4 1129 idx = hstate_index(h);
a1e78772 1130 /*
90481622
DG
1131 * Processes that did not create the mapping will have no
1132 * reserves and will not have accounted against subpool
1133 * limit. Check that the subpool limit can be made before
1134 * satisfying the allocation MAP_NORESERVE mappings may also
1135 * need pages and subpool limit allocated allocated if no reserve
1136 * mapping overlaps.
a1e78772 1137 */
a5516438 1138 chg = vma_needs_reservation(h, vma, addr);
c37f9fb1 1139 if (chg < 0)
76dcee75 1140 return ERR_PTR(-ENOMEM);
c37f9fb1 1141 if (chg)
90481622 1142 if (hugepage_subpool_get_pages(spool, chg))
76dcee75 1143 return ERR_PTR(-ENOSPC);
1da177e4 1144
6d76dcf4
AK
1145 ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
1146 if (ret) {
1147 hugepage_subpool_put_pages(spool, chg);
1148 return ERR_PTR(-ENOSPC);
1149 }
1da177e4 1150 spin_lock(&hugetlb_lock);
a5516438 1151 page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve);
94ae8ba7
AK
1152 if (page) {
1153 /* update page cgroup details */
1154 hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h),
1155 h_cg, page);
1156 spin_unlock(&hugetlb_lock);
1157 } else {
1158 spin_unlock(&hugetlb_lock);
bf50bab2 1159 page = alloc_buddy_huge_page(h, NUMA_NO_NODE);
68842c9b 1160 if (!page) {
6d76dcf4
AK
1161 hugetlb_cgroup_uncharge_cgroup(idx,
1162 pages_per_huge_page(h),
1163 h_cg);
90481622 1164 hugepage_subpool_put_pages(spool, chg);
76dcee75 1165 return ERR_PTR(-ENOSPC);
68842c9b 1166 }
79dbb236 1167 spin_lock(&hugetlb_lock);
94ae8ba7
AK
1168 hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h),
1169 h_cg, page);
79dbb236
AK
1170 list_move(&page->lru, &h->hugepage_activelist);
1171 spin_unlock(&hugetlb_lock);
68842c9b 1172 }
348ea204 1173
90481622 1174 set_page_private(page, (unsigned long)spool);
90d8b7e6 1175
a5516438 1176 vma_commit_reservation(h, vma, addr);
90d8b7e6 1177 return page;
b45b5bd6
DG
1178}
1179
91f47662 1180int __weak alloc_bootmem_huge_page(struct hstate *h)
aa888a74
AK
1181{
1182 struct huge_bootmem_page *m;
8cebfcd0 1183 int nr_nodes = nodes_weight(node_states[N_MEMORY]);
aa888a74
AK
1184
1185 while (nr_nodes) {
1186 void *addr;
1187
1188 addr = __alloc_bootmem_node_nopanic(
6ae11b27 1189 NODE_DATA(hstate_next_node_to_alloc(h,
8cebfcd0 1190 &node_states[N_MEMORY])),
aa888a74
AK
1191 huge_page_size(h), huge_page_size(h), 0);
1192
1193 if (addr) {
1194 /*
1195 * Use the beginning of the huge page to store the
1196 * huge_bootmem_page struct (until gather_bootmem
1197 * puts them into the mem_map).
1198 */
1199 m = addr;
91f47662 1200 goto found;
aa888a74 1201 }
aa888a74
AK
1202 nr_nodes--;
1203 }
1204 return 0;
1205
1206found:
1207 BUG_ON((unsigned long)virt_to_phys(m) & (huge_page_size(h) - 1));
1208 /* Put them into a private list first because mem_map is not up yet */
1209 list_add(&m->list, &huge_boot_pages);
1210 m->hstate = h;
1211 return 1;
1212}
1213
18229df5
AW
1214static void prep_compound_huge_page(struct page *page, int order)
1215{
1216 if (unlikely(order > (MAX_ORDER - 1)))
1217 prep_compound_gigantic_page(page, order);
1218 else
1219 prep_compound_page(page, order);
1220}
1221
aa888a74
AK
1222/* Put bootmem huge pages into the standard lists after mem_map is up */
1223static void __init gather_bootmem_prealloc(void)
1224{
1225 struct huge_bootmem_page *m;
1226
1227 list_for_each_entry(m, &huge_boot_pages, list) {
aa888a74 1228 struct hstate *h = m->hstate;
ee8f248d
BB
1229 struct page *page;
1230
1231#ifdef CONFIG_HIGHMEM
1232 page = pfn_to_page(m->phys >> PAGE_SHIFT);
1233 free_bootmem_late((unsigned long)m,
1234 sizeof(struct huge_bootmem_page));
1235#else
1236 page = virt_to_page(m);
1237#endif
aa888a74
AK
1238 __ClearPageReserved(page);
1239 WARN_ON(page_count(page) != 1);
18229df5 1240 prep_compound_huge_page(page, h->order);
aa888a74 1241 prep_new_huge_page(h, page, page_to_nid(page));
b0320c7b
RA
1242 /*
1243 * If we had gigantic hugepages allocated at boot time, we need
1244 * to restore the 'stolen' pages to totalram_pages in order to
1245 * fix confusing memory reports from free(1) and another
1246 * side-effects, like CommitLimit going negative.
1247 */
1248 if (h->order > (MAX_ORDER - 1))
1249 totalram_pages += 1 << h->order;
aa888a74
AK
1250 }
1251}
1252
8faa8b07 1253static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
1da177e4
LT
1254{
1255 unsigned long i;
a5516438 1256
e5ff2159 1257 for (i = 0; i < h->max_huge_pages; ++i) {
aa888a74
AK
1258 if (h->order >= MAX_ORDER) {
1259 if (!alloc_bootmem_huge_page(h))
1260 break;
9b5e5d0f 1261 } else if (!alloc_fresh_huge_page(h,
8cebfcd0 1262 &node_states[N_MEMORY]))
1da177e4 1263 break;
1da177e4 1264 }
8faa8b07 1265 h->max_huge_pages = i;
e5ff2159
AK
1266}
1267
1268static void __init hugetlb_init_hstates(void)
1269{
1270 struct hstate *h;
1271
1272 for_each_hstate(h) {
8faa8b07
AK
1273 /* oversize hugepages were init'ed in early boot */
1274 if (h->order < MAX_ORDER)
1275 hugetlb_hstate_alloc_pages(h);
e5ff2159
AK
1276 }
1277}
1278
4abd32db
AK
1279static char * __init memfmt(char *buf, unsigned long n)
1280{
1281 if (n >= (1UL << 30))
1282 sprintf(buf, "%lu GB", n >> 30);
1283 else if (n >= (1UL << 20))
1284 sprintf(buf, "%lu MB", n >> 20);
1285 else
1286 sprintf(buf, "%lu KB", n >> 10);
1287 return buf;
1288}
1289
e5ff2159
AK
1290static void __init report_hugepages(void)
1291{
1292 struct hstate *h;
1293
1294 for_each_hstate(h) {
4abd32db 1295 char buf[32];
ffb22af5 1296 pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
4abd32db
AK
1297 memfmt(buf, huge_page_size(h)),
1298 h->free_huge_pages);
e5ff2159
AK
1299 }
1300}
1301
1da177e4 1302#ifdef CONFIG_HIGHMEM
6ae11b27
LS
1303static void try_to_free_low(struct hstate *h, unsigned long count,
1304 nodemask_t *nodes_allowed)
1da177e4 1305{
4415cc8d
CL
1306 int i;
1307
aa888a74
AK
1308 if (h->order >= MAX_ORDER)
1309 return;
1310
6ae11b27 1311 for_each_node_mask(i, *nodes_allowed) {
1da177e4 1312 struct page *page, *next;
a5516438
AK
1313 struct list_head *freel = &h->hugepage_freelists[i];
1314 list_for_each_entry_safe(page, next, freel, lru) {
1315 if (count >= h->nr_huge_pages)
6b0c880d 1316 return;
1da177e4
LT
1317 if (PageHighMem(page))
1318 continue;
1319 list_del(&page->lru);
e5ff2159 1320 update_and_free_page(h, page);
a5516438
AK
1321 h->free_huge_pages--;
1322 h->free_huge_pages_node[page_to_nid(page)]--;
1da177e4
LT
1323 }
1324 }
1325}
1326#else
6ae11b27
LS
1327static inline void try_to_free_low(struct hstate *h, unsigned long count,
1328 nodemask_t *nodes_allowed)
1da177e4
LT
1329{
1330}
1331#endif
1332
20a0307c
WF
1333/*
1334 * Increment or decrement surplus_huge_pages. Keep node-specific counters
1335 * balanced by operating on them in a round-robin fashion.
1336 * Returns 1 if an adjustment was made.
1337 */
6ae11b27
LS
1338static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
1339 int delta)
20a0307c 1340{
e8c5c824 1341 int start_nid, next_nid;
20a0307c
WF
1342 int ret = 0;
1343
1344 VM_BUG_ON(delta != -1 && delta != 1);
20a0307c 1345
e8c5c824 1346 if (delta < 0)
6ae11b27 1347 start_nid = hstate_next_node_to_alloc(h, nodes_allowed);
e8c5c824 1348 else
6ae11b27 1349 start_nid = hstate_next_node_to_free(h, nodes_allowed);
e8c5c824
LS
1350 next_nid = start_nid;
1351
1352 do {
1353 int nid = next_nid;
1354 if (delta < 0) {
e8c5c824
LS
1355 /*
1356 * To shrink on this node, there must be a surplus page
1357 */
9a76db09 1358 if (!h->surplus_huge_pages_node[nid]) {
6ae11b27
LS
1359 next_nid = hstate_next_node_to_alloc(h,
1360 nodes_allowed);
e8c5c824 1361 continue;
9a76db09 1362 }
e8c5c824
LS
1363 }
1364 if (delta > 0) {
e8c5c824
LS
1365 /*
1366 * Surplus cannot exceed the total number of pages
1367 */
1368 if (h->surplus_huge_pages_node[nid] >=
9a76db09 1369 h->nr_huge_pages_node[nid]) {
6ae11b27
LS
1370 next_nid = hstate_next_node_to_free(h,
1371 nodes_allowed);
e8c5c824 1372 continue;
9a76db09 1373 }
e8c5c824 1374 }
20a0307c
WF
1375
1376 h->surplus_huge_pages += delta;
1377 h->surplus_huge_pages_node[nid] += delta;
1378 ret = 1;
1379 break;
e8c5c824 1380 } while (next_nid != start_nid);
20a0307c 1381
20a0307c
WF
1382 return ret;
1383}
1384
a5516438 1385#define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
6ae11b27
LS
1386static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count,
1387 nodemask_t *nodes_allowed)
1da177e4 1388{
7893d1d5 1389 unsigned long min_count, ret;
1da177e4 1390
aa888a74
AK
1391 if (h->order >= MAX_ORDER)
1392 return h->max_huge_pages;
1393
7893d1d5
AL
1394 /*
1395 * Increase the pool size
1396 * First take pages out of surplus state. Then make up the
1397 * remaining difference by allocating fresh huge pages.
d1c3fb1f
NA
1398 *
1399 * We might race with alloc_buddy_huge_page() here and be unable
1400 * to convert a surplus huge page to a normal huge page. That is
1401 * not critical, though, it just means the overall size of the
1402 * pool might be one hugepage larger than it needs to be, but
1403 * within all the constraints specified by the sysctls.
7893d1d5 1404 */
1da177e4 1405 spin_lock(&hugetlb_lock);
a5516438 1406 while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
6ae11b27 1407 if (!adjust_pool_surplus(h, nodes_allowed, -1))
7893d1d5
AL
1408 break;
1409 }
1410
a5516438 1411 while (count > persistent_huge_pages(h)) {
7893d1d5
AL
1412 /*
1413 * If this allocation races such that we no longer need the
1414 * page, free_huge_page will handle it by freeing the page
1415 * and reducing the surplus.
1416 */
1417 spin_unlock(&hugetlb_lock);
6ae11b27 1418 ret = alloc_fresh_huge_page(h, nodes_allowed);
7893d1d5
AL
1419 spin_lock(&hugetlb_lock);
1420 if (!ret)
1421 goto out;
1422
536240f2
MG
1423 /* Bail for signals. Probably ctrl-c from user */
1424 if (signal_pending(current))
1425 goto out;
7893d1d5 1426 }
7893d1d5
AL
1427
1428 /*
1429 * Decrease the pool size
1430 * First return free pages to the buddy allocator (being careful
1431 * to keep enough around to satisfy reservations). Then place
1432 * pages into surplus state as needed so the pool will shrink
1433 * to the desired size as pages become free.
d1c3fb1f
NA
1434 *
1435 * By placing pages into the surplus state independent of the
1436 * overcommit value, we are allowing the surplus pool size to
1437 * exceed overcommit. There are few sane options here. Since
1438 * alloc_buddy_huge_page() is checking the global counter,
1439 * though, we'll note that we're not allowed to exceed surplus
1440 * and won't grow the pool anywhere else. Not until one of the
1441 * sysctls are changed, or the surplus pages go out of use.
7893d1d5 1442 */
a5516438 1443 min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
6b0c880d 1444 min_count = max(count, min_count);
6ae11b27 1445 try_to_free_low(h, min_count, nodes_allowed);
a5516438 1446 while (min_count < persistent_huge_pages(h)) {
6ae11b27 1447 if (!free_pool_huge_page(h, nodes_allowed, 0))
1da177e4 1448 break;
1da177e4 1449 }
a5516438 1450 while (count < persistent_huge_pages(h)) {
6ae11b27 1451 if (!adjust_pool_surplus(h, nodes_allowed, 1))
7893d1d5
AL
1452 break;
1453 }
1454out:
a5516438 1455 ret = persistent_huge_pages(h);
1da177e4 1456 spin_unlock(&hugetlb_lock);
7893d1d5 1457 return ret;
1da177e4
LT
1458}
1459
a3437870
NA
1460#define HSTATE_ATTR_RO(_name) \
1461 static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
1462
1463#define HSTATE_ATTR(_name) \
1464 static struct kobj_attribute _name##_attr = \
1465 __ATTR(_name, 0644, _name##_show, _name##_store)
1466
1467static struct kobject *hugepages_kobj;
1468static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
1469
9a305230
LS
1470static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
1471
1472static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
a3437870
NA
1473{
1474 int i;
9a305230 1475
a3437870 1476 for (i = 0; i < HUGE_MAX_HSTATE; i++)
9a305230
LS
1477 if (hstate_kobjs[i] == kobj) {
1478 if (nidp)
1479 *nidp = NUMA_NO_NODE;
a3437870 1480 return &hstates[i];
9a305230
LS
1481 }
1482
1483 return kobj_to_node_hstate(kobj, nidp);
a3437870
NA
1484}
1485
06808b08 1486static ssize_t nr_hugepages_show_common(struct kobject *kobj,
a3437870
NA
1487 struct kobj_attribute *attr, char *buf)
1488{
9a305230
LS
1489 struct hstate *h;
1490 unsigned long nr_huge_pages;
1491 int nid;
1492
1493 h = kobj_to_hstate(kobj, &nid);
1494 if (nid == NUMA_NO_NODE)
1495 nr_huge_pages = h->nr_huge_pages;
1496 else
1497 nr_huge_pages = h->nr_huge_pages_node[nid];
1498
1499 return sprintf(buf, "%lu\n", nr_huge_pages);
a3437870 1500}
adbe8726 1501
06808b08
LS
1502static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
1503 struct kobject *kobj, struct kobj_attribute *attr,
1504 const char *buf, size_t len)
a3437870
NA
1505{
1506 int err;
9a305230 1507 int nid;
06808b08 1508 unsigned long count;
9a305230 1509 struct hstate *h;
bad44b5b 1510 NODEMASK_ALLOC(nodemask_t, nodes_allowed, GFP_KERNEL | __GFP_NORETRY);
a3437870 1511
06808b08 1512 err = strict_strtoul(buf, 10, &count);
73ae31e5 1513 if (err)
adbe8726 1514 goto out;
a3437870 1515
9a305230 1516 h = kobj_to_hstate(kobj, &nid);
adbe8726
EM
1517 if (h->order >= MAX_ORDER) {
1518 err = -EINVAL;
1519 goto out;
1520 }
1521
9a305230
LS
1522 if (nid == NUMA_NO_NODE) {
1523 /*
1524 * global hstate attribute
1525 */
1526 if (!(obey_mempolicy &&
1527 init_nodemask_of_mempolicy(nodes_allowed))) {
1528 NODEMASK_FREE(nodes_allowed);
8cebfcd0 1529 nodes_allowed = &node_states[N_MEMORY];
9a305230
LS
1530 }
1531 } else if (nodes_allowed) {
1532 /*
1533 * per node hstate attribute: adjust count to global,
1534 * but restrict alloc/free to the specified node.
1535 */
1536 count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
1537 init_nodemask_of_node(nodes_allowed, nid);
1538 } else
8cebfcd0 1539 nodes_allowed = &node_states[N_MEMORY];
9a305230 1540
06808b08 1541 h->max_huge_pages = set_max_huge_pages(h, count, nodes_allowed);
a3437870 1542
8cebfcd0 1543 if (nodes_allowed != &node_states[N_MEMORY])
06808b08
LS
1544 NODEMASK_FREE(nodes_allowed);
1545
1546 return len;
adbe8726
EM
1547out:
1548 NODEMASK_FREE(nodes_allowed);
1549 return err;
06808b08
LS
1550}
1551
1552static ssize_t nr_hugepages_show(struct kobject *kobj,
1553 struct kobj_attribute *attr, char *buf)
1554{
1555 return nr_hugepages_show_common(kobj, attr, buf);
1556}
1557
1558static ssize_t nr_hugepages_store(struct kobject *kobj,
1559 struct kobj_attribute *attr, const char *buf, size_t len)
1560{
1561 return nr_hugepages_store_common(false, kobj, attr, buf, len);
a3437870
NA
1562}
1563HSTATE_ATTR(nr_hugepages);
1564
06808b08
LS
1565#ifdef CONFIG_NUMA
1566
1567/*
1568 * hstate attribute for optionally mempolicy-based constraint on persistent
1569 * huge page alloc/free.
1570 */
1571static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
1572 struct kobj_attribute *attr, char *buf)
1573{
1574 return nr_hugepages_show_common(kobj, attr, buf);
1575}
1576
1577static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
1578 struct kobj_attribute *attr, const char *buf, size_t len)
1579{
1580 return nr_hugepages_store_common(true, kobj, attr, buf, len);
1581}
1582HSTATE_ATTR(nr_hugepages_mempolicy);
1583#endif
1584
1585
a3437870
NA
1586static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
1587 struct kobj_attribute *attr, char *buf)
1588{
9a305230 1589 struct hstate *h = kobj_to_hstate(kobj, NULL);
a3437870
NA
1590 return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
1591}
adbe8726 1592
a3437870
NA
1593static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
1594 struct kobj_attribute *attr, const char *buf, size_t count)
1595{
1596 int err;
1597 unsigned long input;
9a305230 1598 struct hstate *h = kobj_to_hstate(kobj, NULL);
a3437870 1599
adbe8726
EM
1600 if (h->order >= MAX_ORDER)
1601 return -EINVAL;
1602
a3437870
NA
1603 err = strict_strtoul(buf, 10, &input);
1604 if (err)
73ae31e5 1605 return err;
a3437870
NA
1606
1607 spin_lock(&hugetlb_lock);
1608 h->nr_overcommit_huge_pages = input;
1609 spin_unlock(&hugetlb_lock);
1610
1611 return count;
1612}
1613HSTATE_ATTR(nr_overcommit_hugepages);
1614
1615static ssize_t free_hugepages_show(struct kobject *kobj,
1616 struct kobj_attribute *attr, char *buf)
1617{
9a305230
LS
1618 struct hstate *h;
1619 unsigned long free_huge_pages;
1620 int nid;
1621
1622 h = kobj_to_hstate(kobj, &nid);
1623 if (nid == NUMA_NO_NODE)
1624 free_huge_pages = h->free_huge_pages;
1625 else
1626 free_huge_pages = h->free_huge_pages_node[nid];
1627
1628 return sprintf(buf, "%lu\n", free_huge_pages);
a3437870
NA
1629}
1630HSTATE_ATTR_RO(free_hugepages);
1631
1632static ssize_t resv_hugepages_show(struct kobject *kobj,
1633 struct kobj_attribute *attr, char *buf)
1634{
9a305230 1635 struct hstate *h = kobj_to_hstate(kobj, NULL);
a3437870
NA
1636 return sprintf(buf, "%lu\n", h->resv_huge_pages);
1637}
1638HSTATE_ATTR_RO(resv_hugepages);
1639
1640static ssize_t surplus_hugepages_show(struct kobject *kobj,
1641 struct kobj_attribute *attr, char *buf)
1642{
9a305230
LS
1643 struct hstate *h;
1644 unsigned long surplus_huge_pages;
1645 int nid;
1646
1647 h = kobj_to_hstate(kobj, &nid);
1648 if (nid == NUMA_NO_NODE)
1649 surplus_huge_pages = h->surplus_huge_pages;
1650 else
1651 surplus_huge_pages = h->surplus_huge_pages_node[nid];
1652
1653 return sprintf(buf, "%lu\n", surplus_huge_pages);
a3437870
NA
1654}
1655HSTATE_ATTR_RO(surplus_hugepages);
1656
1657static struct attribute *hstate_attrs[] = {
1658 &nr_hugepages_attr.attr,
1659 &nr_overcommit_hugepages_attr.attr,
1660 &free_hugepages_attr.attr,
1661 &resv_hugepages_attr.attr,
1662 &surplus_hugepages_attr.attr,
06808b08
LS
1663#ifdef CONFIG_NUMA
1664 &nr_hugepages_mempolicy_attr.attr,
1665#endif
a3437870
NA
1666 NULL,
1667};
1668
1669static struct attribute_group hstate_attr_group = {
1670 .attrs = hstate_attrs,
1671};
1672
094e9539
JM
1673static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
1674 struct kobject **hstate_kobjs,
1675 struct attribute_group *hstate_attr_group)
a3437870
NA
1676{
1677 int retval;
972dc4de 1678 int hi = hstate_index(h);
a3437870 1679
9a305230
LS
1680 hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
1681 if (!hstate_kobjs[hi])
a3437870
NA
1682 return -ENOMEM;
1683
9a305230 1684 retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
a3437870 1685 if (retval)
9a305230 1686 kobject_put(hstate_kobjs[hi]);
a3437870
NA
1687
1688 return retval;
1689}
1690
1691static void __init hugetlb_sysfs_init(void)
1692{
1693 struct hstate *h;
1694 int err;
1695
1696 hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
1697 if (!hugepages_kobj)
1698 return;
1699
1700 for_each_hstate(h) {
9a305230
LS
1701 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
1702 hstate_kobjs, &hstate_attr_group);
a3437870 1703 if (err)
ffb22af5 1704 pr_err("Hugetlb: Unable to add hstate %s", h->name);
a3437870
NA
1705 }
1706}
1707
9a305230
LS
1708#ifdef CONFIG_NUMA
1709
1710/*
1711 * node_hstate/s - associate per node hstate attributes, via their kobjects,
10fbcf4c
KS
1712 * with node devices in node_devices[] using a parallel array. The array
1713 * index of a node device or _hstate == node id.
1714 * This is here to avoid any static dependency of the node device driver, in
9a305230
LS
1715 * the base kernel, on the hugetlb module.
1716 */
1717struct node_hstate {
1718 struct kobject *hugepages_kobj;
1719 struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
1720};
1721struct node_hstate node_hstates[MAX_NUMNODES];
1722
1723/*
10fbcf4c 1724 * A subset of global hstate attributes for node devices
9a305230
LS
1725 */
1726static struct attribute *per_node_hstate_attrs[] = {
1727 &nr_hugepages_attr.attr,
1728 &free_hugepages_attr.attr,
1729 &surplus_hugepages_attr.attr,
1730 NULL,
1731};
1732
1733static struct attribute_group per_node_hstate_attr_group = {
1734 .attrs = per_node_hstate_attrs,
1735};
1736
1737/*
10fbcf4c 1738 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
9a305230
LS
1739 * Returns node id via non-NULL nidp.
1740 */
1741static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
1742{
1743 int nid;
1744
1745 for (nid = 0; nid < nr_node_ids; nid++) {
1746 struct node_hstate *nhs = &node_hstates[nid];
1747 int i;
1748 for (i = 0; i < HUGE_MAX_HSTATE; i++)
1749 if (nhs->hstate_kobjs[i] == kobj) {
1750 if (nidp)
1751 *nidp = nid;
1752 return &hstates[i];
1753 }
1754 }
1755
1756 BUG();
1757 return NULL;
1758}
1759
1760/*
10fbcf4c 1761 * Unregister hstate attributes from a single node device.
9a305230
LS
1762 * No-op if no hstate attributes attached.
1763 */
1764void hugetlb_unregister_node(struct node *node)
1765{
1766 struct hstate *h;
10fbcf4c 1767 struct node_hstate *nhs = &node_hstates[node->dev.id];
9a305230
LS
1768
1769 if (!nhs->hugepages_kobj)
9b5e5d0f 1770 return; /* no hstate attributes */
9a305230 1771
972dc4de
AK
1772 for_each_hstate(h) {
1773 int idx = hstate_index(h);
1774 if (nhs->hstate_kobjs[idx]) {
1775 kobject_put(nhs->hstate_kobjs[idx]);
1776 nhs->hstate_kobjs[idx] = NULL;
9a305230 1777 }
972dc4de 1778 }
9a305230
LS
1779
1780 kobject_put(nhs->hugepages_kobj);
1781 nhs->hugepages_kobj = NULL;
1782}
1783
1784/*
10fbcf4c 1785 * hugetlb module exit: unregister hstate attributes from node devices
9a305230
LS
1786 * that have them.
1787 */
1788static void hugetlb_unregister_all_nodes(void)
1789{
1790 int nid;
1791
1792 /*
10fbcf4c 1793 * disable node device registrations.
9a305230
LS
1794 */
1795 register_hugetlbfs_with_node(NULL, NULL);
1796
1797 /*
1798 * remove hstate attributes from any nodes that have them.
1799 */
1800 for (nid = 0; nid < nr_node_ids; nid++)
8732794b 1801 hugetlb_unregister_node(node_devices[nid]);
9a305230
LS
1802}
1803
1804/*
10fbcf4c 1805 * Register hstate attributes for a single node device.
9a305230
LS
1806 * No-op if attributes already registered.
1807 */
1808void hugetlb_register_node(struct node *node)
1809{
1810 struct hstate *h;
10fbcf4c 1811 struct node_hstate *nhs = &node_hstates[node->dev.id];
9a305230
LS
1812 int err;
1813
1814 if (nhs->hugepages_kobj)
1815 return; /* already allocated */
1816
1817 nhs->hugepages_kobj = kobject_create_and_add("hugepages",
10fbcf4c 1818 &node->dev.kobj);
9a305230
LS
1819 if (!nhs->hugepages_kobj)
1820 return;
1821
1822 for_each_hstate(h) {
1823 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
1824 nhs->hstate_kobjs,
1825 &per_node_hstate_attr_group);
1826 if (err) {
ffb22af5
AM
1827 pr_err("Hugetlb: Unable to add hstate %s for node %d\n",
1828 h->name, node->dev.id);
9a305230
LS
1829 hugetlb_unregister_node(node);
1830 break;
1831 }
1832 }
1833}
1834
1835/*
9b5e5d0f 1836 * hugetlb init time: register hstate attributes for all registered node
10fbcf4c
KS
1837 * devices of nodes that have memory. All on-line nodes should have
1838 * registered their associated device by this time.
9a305230
LS
1839 */
1840static void hugetlb_register_all_nodes(void)
1841{
1842 int nid;
1843
8cebfcd0 1844 for_each_node_state(nid, N_MEMORY) {
8732794b 1845 struct node *node = node_devices[nid];
10fbcf4c 1846 if (node->dev.id == nid)
9a305230
LS
1847 hugetlb_register_node(node);
1848 }
1849
1850 /*
10fbcf4c 1851 * Let the node device driver know we're here so it can
9a305230
LS
1852 * [un]register hstate attributes on node hotplug.
1853 */
1854 register_hugetlbfs_with_node(hugetlb_register_node,
1855 hugetlb_unregister_node);
1856}
1857#else /* !CONFIG_NUMA */
1858
1859static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
1860{
1861 BUG();
1862 if (nidp)
1863 *nidp = -1;
1864 return NULL;
1865}
1866
1867static void hugetlb_unregister_all_nodes(void) { }
1868
1869static void hugetlb_register_all_nodes(void) { }
1870
1871#endif
1872
a3437870
NA
1873static void __exit hugetlb_exit(void)
1874{
1875 struct hstate *h;
1876
9a305230
LS
1877 hugetlb_unregister_all_nodes();
1878
a3437870 1879 for_each_hstate(h) {
972dc4de 1880 kobject_put(hstate_kobjs[hstate_index(h)]);
a3437870
NA
1881 }
1882
1883 kobject_put(hugepages_kobj);
1884}
1885module_exit(hugetlb_exit);
1886
1887static int __init hugetlb_init(void)
1888{
0ef89d25
BH
1889 /* Some platform decide whether they support huge pages at boot
1890 * time. On these, such as powerpc, HPAGE_SHIFT is set to 0 when
1891 * there is no such support
1892 */
1893 if (HPAGE_SHIFT == 0)
1894 return 0;
a3437870 1895
e11bfbfc
NP
1896 if (!size_to_hstate(default_hstate_size)) {
1897 default_hstate_size = HPAGE_SIZE;
1898 if (!size_to_hstate(default_hstate_size))
1899 hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
a3437870 1900 }
972dc4de 1901 default_hstate_idx = hstate_index(size_to_hstate(default_hstate_size));
e11bfbfc
NP
1902 if (default_hstate_max_huge_pages)
1903 default_hstate.max_huge_pages = default_hstate_max_huge_pages;
a3437870
NA
1904
1905 hugetlb_init_hstates();
aa888a74 1906 gather_bootmem_prealloc();
a3437870
NA
1907 report_hugepages();
1908
1909 hugetlb_sysfs_init();
9a305230 1910 hugetlb_register_all_nodes();
7179e7bf 1911 hugetlb_cgroup_file_init();
9a305230 1912
a3437870
NA
1913 return 0;
1914}
1915module_init(hugetlb_init);
1916
1917/* Should be called on processing a hugepagesz=... option */
1918void __init hugetlb_add_hstate(unsigned order)
1919{
1920 struct hstate *h;
8faa8b07
AK
1921 unsigned long i;
1922
a3437870 1923 if (size_to_hstate(PAGE_SIZE << order)) {
ffb22af5 1924 pr_warning("hugepagesz= specified twice, ignoring\n");
a3437870
NA
1925 return;
1926 }
47d38344 1927 BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
a3437870 1928 BUG_ON(order == 0);
47d38344 1929 h = &hstates[hugetlb_max_hstate++];
a3437870
NA
1930 h->order = order;
1931 h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
8faa8b07
AK
1932 h->nr_huge_pages = 0;
1933 h->free_huge_pages = 0;
1934 for (i = 0; i < MAX_NUMNODES; ++i)
1935 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
0edaecfa 1936 INIT_LIST_HEAD(&h->hugepage_activelist);
8cebfcd0
LJ
1937 h->next_nid_to_alloc = first_node(node_states[N_MEMORY]);
1938 h->next_nid_to_free = first_node(node_states[N_MEMORY]);
a3437870
NA
1939 snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
1940 huge_page_size(h)/1024);
8faa8b07 1941
a3437870
NA
1942 parsed_hstate = h;
1943}
1944
e11bfbfc 1945static int __init hugetlb_nrpages_setup(char *s)
a3437870
NA
1946{
1947 unsigned long *mhp;
8faa8b07 1948 static unsigned long *last_mhp;
a3437870
NA
1949
1950 /*
47d38344 1951 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter yet,
a3437870
NA
1952 * so this hugepages= parameter goes to the "default hstate".
1953 */
47d38344 1954 if (!hugetlb_max_hstate)
a3437870
NA
1955 mhp = &default_hstate_max_huge_pages;
1956 else
1957 mhp = &parsed_hstate->max_huge_pages;
1958
8faa8b07 1959 if (mhp == last_mhp) {
ffb22af5
AM
1960 pr_warning("hugepages= specified twice without "
1961 "interleaving hugepagesz=, ignoring\n");
8faa8b07
AK
1962 return 1;
1963 }
1964
a3437870
NA
1965 if (sscanf(s, "%lu", mhp) <= 0)
1966 *mhp = 0;
1967
8faa8b07
AK
1968 /*
1969 * Global state is always initialized later in hugetlb_init.
1970 * But we need to allocate >= MAX_ORDER hstates here early to still
1971 * use the bootmem allocator.
1972 */
47d38344 1973 if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER)
8faa8b07
AK
1974 hugetlb_hstate_alloc_pages(parsed_hstate);
1975
1976 last_mhp = mhp;
1977
a3437870
NA
1978 return 1;
1979}
e11bfbfc
NP
1980__setup("hugepages=", hugetlb_nrpages_setup);
1981
1982static int __init hugetlb_default_setup(char *s)
1983{
1984 default_hstate_size = memparse(s, &s);
1985 return 1;
1986}
1987__setup("default_hugepagesz=", hugetlb_default_setup);
a3437870 1988
8a213460
NA
1989static unsigned int cpuset_mems_nr(unsigned int *array)
1990{
1991 int node;
1992 unsigned int nr = 0;
1993
1994 for_each_node_mask(node, cpuset_current_mems_allowed)
1995 nr += array[node];
1996
1997 return nr;
1998}
1999
2000#ifdef CONFIG_SYSCTL
06808b08
LS
2001static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
2002 struct ctl_table *table, int write,
2003 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 2004{
e5ff2159
AK
2005 struct hstate *h = &default_hstate;
2006 unsigned long tmp;
08d4a246 2007 int ret;
e5ff2159 2008
c033a93c 2009 tmp = h->max_huge_pages;
e5ff2159 2010
adbe8726
EM
2011 if (write && h->order >= MAX_ORDER)
2012 return -EINVAL;
2013
e5ff2159
AK
2014 table->data = &tmp;
2015 table->maxlen = sizeof(unsigned long);
08d4a246
MH
2016 ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2017 if (ret)
2018 goto out;
e5ff2159 2019
06808b08 2020 if (write) {
bad44b5b
DR
2021 NODEMASK_ALLOC(nodemask_t, nodes_allowed,
2022 GFP_KERNEL | __GFP_NORETRY);
06808b08
LS
2023 if (!(obey_mempolicy &&
2024 init_nodemask_of_mempolicy(nodes_allowed))) {
2025 NODEMASK_FREE(nodes_allowed);
8cebfcd0 2026 nodes_allowed = &node_states[N_MEMORY];
06808b08
LS
2027 }
2028 h->max_huge_pages = set_max_huge_pages(h, tmp, nodes_allowed);
2029
8cebfcd0 2030 if (nodes_allowed != &node_states[N_MEMORY])
06808b08
LS
2031 NODEMASK_FREE(nodes_allowed);
2032 }
08d4a246
MH
2033out:
2034 return ret;
1da177e4 2035}
396faf03 2036
06808b08
LS
2037int hugetlb_sysctl_handler(struct ctl_table *table, int write,
2038 void __user *buffer, size_t *length, loff_t *ppos)
2039{
2040
2041 return hugetlb_sysctl_handler_common(false, table, write,
2042 buffer, length, ppos);
2043}
2044
2045#ifdef CONFIG_NUMA
2046int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
2047 void __user *buffer, size_t *length, loff_t *ppos)
2048{
2049 return hugetlb_sysctl_handler_common(true, table, write,
2050 buffer, length, ppos);
2051}
2052#endif /* CONFIG_NUMA */
2053
396faf03 2054int hugetlb_treat_movable_handler(struct ctl_table *table, int write,
8d65af78 2055 void __user *buffer,
396faf03
MG
2056 size_t *length, loff_t *ppos)
2057{
8d65af78 2058 proc_dointvec(table, write, buffer, length, ppos);
396faf03
MG
2059 if (hugepages_treat_as_movable)
2060 htlb_alloc_mask = GFP_HIGHUSER_MOVABLE;
2061 else
2062 htlb_alloc_mask = GFP_HIGHUSER;
2063 return 0;
2064}
2065
a3d0c6aa 2066int hugetlb_overcommit_handler(struct ctl_table *table, int write,
8d65af78 2067 void __user *buffer,
a3d0c6aa
NA
2068 size_t *length, loff_t *ppos)
2069{
a5516438 2070 struct hstate *h = &default_hstate;
e5ff2159 2071 unsigned long tmp;
08d4a246 2072 int ret;
e5ff2159 2073
c033a93c 2074 tmp = h->nr_overcommit_huge_pages;
e5ff2159 2075
adbe8726
EM
2076 if (write && h->order >= MAX_ORDER)
2077 return -EINVAL;
2078
e5ff2159
AK
2079 table->data = &tmp;
2080 table->maxlen = sizeof(unsigned long);
08d4a246
MH
2081 ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2082 if (ret)
2083 goto out;
e5ff2159
AK
2084
2085 if (write) {
2086 spin_lock(&hugetlb_lock);
2087 h->nr_overcommit_huge_pages = tmp;
2088 spin_unlock(&hugetlb_lock);
2089 }
08d4a246
MH
2090out:
2091 return ret;
a3d0c6aa
NA
2092}
2093
1da177e4
LT
2094#endif /* CONFIG_SYSCTL */
2095
e1759c21 2096void hugetlb_report_meminfo(struct seq_file *m)
1da177e4 2097{
a5516438 2098 struct hstate *h = &default_hstate;
e1759c21 2099 seq_printf(m,
4f98a2fe
RR
2100 "HugePages_Total: %5lu\n"
2101 "HugePages_Free: %5lu\n"
2102 "HugePages_Rsvd: %5lu\n"
2103 "HugePages_Surp: %5lu\n"
2104 "Hugepagesize: %8lu kB\n",
a5516438
AK
2105 h->nr_huge_pages,
2106 h->free_huge_pages,
2107 h->resv_huge_pages,
2108 h->surplus_huge_pages,
2109 1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
1da177e4
LT
2110}
2111
2112int hugetlb_report_node_meminfo(int nid, char *buf)
2113{
a5516438 2114 struct hstate *h = &default_hstate;
1da177e4
LT
2115 return sprintf(buf,
2116 "Node %d HugePages_Total: %5u\n"
a1de0919
NA
2117 "Node %d HugePages_Free: %5u\n"
2118 "Node %d HugePages_Surp: %5u\n",
a5516438
AK
2119 nid, h->nr_huge_pages_node[nid],
2120 nid, h->free_huge_pages_node[nid],
2121 nid, h->surplus_huge_pages_node[nid]);
1da177e4
LT
2122}
2123
1da177e4
LT
2124/* Return the number pages of memory we physically have, in PAGE_SIZE units. */
2125unsigned long hugetlb_total_pages(void)
2126{
d0028588
WL
2127 struct hstate *h;
2128 unsigned long nr_total_pages = 0;
2129
2130 for_each_hstate(h)
2131 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
2132 return nr_total_pages;
1da177e4 2133}
1da177e4 2134
a5516438 2135static int hugetlb_acct_memory(struct hstate *h, long delta)
fc1b8a73
MG
2136{
2137 int ret = -ENOMEM;
2138
2139 spin_lock(&hugetlb_lock);
2140 /*
2141 * When cpuset is configured, it breaks the strict hugetlb page
2142 * reservation as the accounting is done on a global variable. Such
2143 * reservation is completely rubbish in the presence of cpuset because
2144 * the reservation is not checked against page availability for the
2145 * current cpuset. Application can still potentially OOM'ed by kernel
2146 * with lack of free htlb page in cpuset that the task is in.
2147 * Attempt to enforce strict accounting with cpuset is almost
2148 * impossible (or too ugly) because cpuset is too fluid that
2149 * task or memory node can be dynamically moved between cpusets.
2150 *
2151 * The change of semantics for shared hugetlb mapping with cpuset is
2152 * undesirable. However, in order to preserve some of the semantics,
2153 * we fall back to check against current free page availability as
2154 * a best attempt and hopefully to minimize the impact of changing
2155 * semantics that cpuset has.
2156 */
2157 if (delta > 0) {
a5516438 2158 if (gather_surplus_pages(h, delta) < 0)
fc1b8a73
MG
2159 goto out;
2160
a5516438
AK
2161 if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
2162 return_unused_surplus_pages(h, delta);
fc1b8a73
MG
2163 goto out;
2164 }
2165 }
2166
2167 ret = 0;
2168 if (delta < 0)
a5516438 2169 return_unused_surplus_pages(h, (unsigned long) -delta);
fc1b8a73
MG
2170
2171out:
2172 spin_unlock(&hugetlb_lock);
2173 return ret;
2174}
2175
84afd99b
AW
2176static void hugetlb_vm_op_open(struct vm_area_struct *vma)
2177{
2178 struct resv_map *reservations = vma_resv_map(vma);
2179
2180 /*
2181 * This new VMA should share its siblings reservation map if present.
2182 * The VMA will only ever have a valid reservation map pointer where
2183 * it is being copied for another still existing VMA. As that VMA
25985edc 2184 * has a reference to the reservation map it cannot disappear until
84afd99b
AW
2185 * after this open call completes. It is therefore safe to take a
2186 * new reference here without additional locking.
2187 */
2188 if (reservations)
2189 kref_get(&reservations->refs);
2190}
2191
c50ac050
DH
2192static void resv_map_put(struct vm_area_struct *vma)
2193{
2194 struct resv_map *reservations = vma_resv_map(vma);
2195
2196 if (!reservations)
2197 return;
2198 kref_put(&reservations->refs, resv_map_release);
2199}
2200
a1e78772
MG
2201static void hugetlb_vm_op_close(struct vm_area_struct *vma)
2202{
a5516438 2203 struct hstate *h = hstate_vma(vma);
84afd99b 2204 struct resv_map *reservations = vma_resv_map(vma);
90481622 2205 struct hugepage_subpool *spool = subpool_vma(vma);
84afd99b
AW
2206 unsigned long reserve;
2207 unsigned long start;
2208 unsigned long end;
2209
2210 if (reservations) {
a5516438
AK
2211 start = vma_hugecache_offset(h, vma, vma->vm_start);
2212 end = vma_hugecache_offset(h, vma, vma->vm_end);
84afd99b
AW
2213
2214 reserve = (end - start) -
2215 region_count(&reservations->regions, start, end);
2216
c50ac050 2217 resv_map_put(vma);
84afd99b 2218
7251ff78 2219 if (reserve) {
a5516438 2220 hugetlb_acct_memory(h, -reserve);
90481622 2221 hugepage_subpool_put_pages(spool, reserve);
7251ff78 2222 }
84afd99b 2223 }
a1e78772
MG
2224}
2225
1da177e4
LT
2226/*
2227 * We cannot handle pagefaults against hugetlb pages at all. They cause
2228 * handle_mm_fault() to try to instantiate regular-sized pages in the
2229 * hugegpage VMA. do_page_fault() is supposed to trap this, so BUG is we get
2230 * this far.
2231 */
d0217ac0 2232static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1da177e4
LT
2233{
2234 BUG();
d0217ac0 2235 return 0;
1da177e4
LT
2236}
2237
f0f37e2f 2238const struct vm_operations_struct hugetlb_vm_ops = {
d0217ac0 2239 .fault = hugetlb_vm_op_fault,
84afd99b 2240 .open = hugetlb_vm_op_open,
a1e78772 2241 .close = hugetlb_vm_op_close,
1da177e4
LT
2242};
2243
1e8f889b
DG
2244static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
2245 int writable)
63551ae0
DG
2246{
2247 pte_t entry;
2248
1e8f889b 2249 if (writable) {
106c992a
GS
2250 entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
2251 vma->vm_page_prot)));
63551ae0 2252 } else {
106c992a
GS
2253 entry = huge_pte_wrprotect(mk_huge_pte(page,
2254 vma->vm_page_prot));
63551ae0
DG
2255 }
2256 entry = pte_mkyoung(entry);
2257 entry = pte_mkhuge(entry);
d9ed9faa 2258 entry = arch_make_huge_pte(entry, vma, page, writable);
63551ae0
DG
2259
2260 return entry;
2261}
2262
1e8f889b
DG
2263static void set_huge_ptep_writable(struct vm_area_struct *vma,
2264 unsigned long address, pte_t *ptep)
2265{
2266 pte_t entry;
2267
106c992a 2268 entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
32f84528 2269 if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
4b3073e1 2270 update_mmu_cache(vma, address, ptep);
1e8f889b
DG
2271}
2272
2273
63551ae0
DG
2274int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
2275 struct vm_area_struct *vma)
2276{
2277 pte_t *src_pte, *dst_pte, entry;
2278 struct page *ptepage;
1c59827d 2279 unsigned long addr;
1e8f889b 2280 int cow;
a5516438
AK
2281 struct hstate *h = hstate_vma(vma);
2282 unsigned long sz = huge_page_size(h);
1e8f889b
DG
2283
2284 cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
63551ae0 2285
a5516438 2286 for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
c74df32c
HD
2287 src_pte = huge_pte_offset(src, addr);
2288 if (!src_pte)
2289 continue;
a5516438 2290 dst_pte = huge_pte_alloc(dst, addr, sz);
63551ae0
DG
2291 if (!dst_pte)
2292 goto nomem;
c5c99429
LW
2293
2294 /* If the pagetables are shared don't copy or take references */
2295 if (dst_pte == src_pte)
2296 continue;
2297
c74df32c 2298 spin_lock(&dst->page_table_lock);
46478758 2299 spin_lock_nested(&src->page_table_lock, SINGLE_DEPTH_NESTING);
7f2e9525 2300 if (!huge_pte_none(huge_ptep_get(src_pte))) {
1e8f889b 2301 if (cow)
7f2e9525
GS
2302 huge_ptep_set_wrprotect(src, addr, src_pte);
2303 entry = huge_ptep_get(src_pte);
1c59827d
HD
2304 ptepage = pte_page(entry);
2305 get_page(ptepage);
0fe6e20b 2306 page_dup_rmap(ptepage);
1c59827d
HD
2307 set_huge_pte_at(dst, addr, dst_pte, entry);
2308 }
2309 spin_unlock(&src->page_table_lock);
c74df32c 2310 spin_unlock(&dst->page_table_lock);
63551ae0
DG
2311 }
2312 return 0;
2313
2314nomem:
2315 return -ENOMEM;
2316}
2317
290408d4
NH
2318static int is_hugetlb_entry_migration(pte_t pte)
2319{
2320 swp_entry_t swp;
2321
2322 if (huge_pte_none(pte) || pte_present(pte))
2323 return 0;
2324 swp = pte_to_swp_entry(pte);
32f84528 2325 if (non_swap_entry(swp) && is_migration_entry(swp))
290408d4 2326 return 1;
32f84528 2327 else
290408d4
NH
2328 return 0;
2329}
2330
fd6a03ed
NH
2331static int is_hugetlb_entry_hwpoisoned(pte_t pte)
2332{
2333 swp_entry_t swp;
2334
2335 if (huge_pte_none(pte) || pte_present(pte))
2336 return 0;
2337 swp = pte_to_swp_entry(pte);
32f84528 2338 if (non_swap_entry(swp) && is_hwpoison_entry(swp))
fd6a03ed 2339 return 1;
32f84528 2340 else
fd6a03ed
NH
2341 return 0;
2342}
2343
24669e58
AK
2344void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
2345 unsigned long start, unsigned long end,
2346 struct page *ref_page)
63551ae0 2347{
24669e58 2348 int force_flush = 0;
63551ae0
DG
2349 struct mm_struct *mm = vma->vm_mm;
2350 unsigned long address;
c7546f8f 2351 pte_t *ptep;
63551ae0
DG
2352 pte_t pte;
2353 struct page *page;
a5516438
AK
2354 struct hstate *h = hstate_vma(vma);
2355 unsigned long sz = huge_page_size(h);
2ec74c3e
SG
2356 const unsigned long mmun_start = start; /* For mmu_notifiers */
2357 const unsigned long mmun_end = end; /* For mmu_notifiers */
a5516438 2358
63551ae0 2359 WARN_ON(!is_vm_hugetlb_page(vma));
a5516438
AK
2360 BUG_ON(start & ~huge_page_mask(h));
2361 BUG_ON(end & ~huge_page_mask(h));
63551ae0 2362
24669e58 2363 tlb_start_vma(tlb, vma);
2ec74c3e 2364 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
24669e58 2365again:
508034a3 2366 spin_lock(&mm->page_table_lock);
a5516438 2367 for (address = start; address < end; address += sz) {
c7546f8f 2368 ptep = huge_pte_offset(mm, address);
4c887265 2369 if (!ptep)
c7546f8f
DG
2370 continue;
2371
39dde65c
CK
2372 if (huge_pmd_unshare(mm, &address, ptep))
2373 continue;
2374
6629326b
HD
2375 pte = huge_ptep_get(ptep);
2376 if (huge_pte_none(pte))
2377 continue;
2378
2379 /*
2380 * HWPoisoned hugepage is already unmapped and dropped reference
2381 */
8c4894c6 2382 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
106c992a 2383 huge_pte_clear(mm, address, ptep);
6629326b 2384 continue;
8c4894c6 2385 }
6629326b
HD
2386
2387 page = pte_page(pte);
04f2cbe3
MG
2388 /*
2389 * If a reference page is supplied, it is because a specific
2390 * page is being unmapped, not a range. Ensure the page we
2391 * are about to unmap is the actual page of interest.
2392 */
2393 if (ref_page) {
04f2cbe3
MG
2394 if (page != ref_page)
2395 continue;
2396
2397 /*
2398 * Mark the VMA as having unmapped its page so that
2399 * future faults in this VMA will fail rather than
2400 * looking like data was lost
2401 */
2402 set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
2403 }
2404
c7546f8f 2405 pte = huge_ptep_get_and_clear(mm, address, ptep);
24669e58 2406 tlb_remove_tlb_entry(tlb, ptep, address);
106c992a 2407 if (huge_pte_dirty(pte))
6649a386 2408 set_page_dirty(page);
9e81130b 2409
24669e58
AK
2410 page_remove_rmap(page);
2411 force_flush = !__tlb_remove_page(tlb, page);
2412 if (force_flush)
2413 break;
9e81130b
HD
2414 /* Bail out after unmapping reference page if supplied */
2415 if (ref_page)
2416 break;
63551ae0 2417 }
cd2934a3 2418 spin_unlock(&mm->page_table_lock);
24669e58
AK
2419 /*
2420 * mmu_gather ran out of room to batch pages, we break out of
2421 * the PTE lock to avoid doing the potential expensive TLB invalidate
2422 * and page-free while holding it.
2423 */
2424 if (force_flush) {
2425 force_flush = 0;
2426 tlb_flush_mmu(tlb);
2427 if (address < end && !ref_page)
2428 goto again;
fe1668ae 2429 }
2ec74c3e 2430 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
24669e58 2431 tlb_end_vma(tlb, vma);
1da177e4 2432}
63551ae0 2433
d833352a
MG
2434void __unmap_hugepage_range_final(struct mmu_gather *tlb,
2435 struct vm_area_struct *vma, unsigned long start,
2436 unsigned long end, struct page *ref_page)
2437{
2438 __unmap_hugepage_range(tlb, vma, start, end, ref_page);
2439
2440 /*
2441 * Clear this flag so that x86's huge_pmd_share page_table_shareable
2442 * test will fail on a vma being torn down, and not grab a page table
2443 * on its way out. We're lucky that the flag has such an appropriate
2444 * name, and can in fact be safely cleared here. We could clear it
2445 * before the __unmap_hugepage_range above, but all that's necessary
2446 * is to clear it before releasing the i_mmap_mutex. This works
2447 * because in the context this is called, the VMA is about to be
2448 * destroyed and the i_mmap_mutex is held.
2449 */
2450 vma->vm_flags &= ~VM_MAYSHARE;
2451}
2452
502717f4 2453void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
04f2cbe3 2454 unsigned long end, struct page *ref_page)
502717f4 2455{
24669e58
AK
2456 struct mm_struct *mm;
2457 struct mmu_gather tlb;
2458
2459 mm = vma->vm_mm;
2460
2461 tlb_gather_mmu(&tlb, mm, 0);
2462 __unmap_hugepage_range(&tlb, vma, start, end, ref_page);
2463 tlb_finish_mmu(&tlb, start, end);
502717f4
CK
2464}
2465
04f2cbe3
MG
2466/*
2467 * This is called when the original mapper is failing to COW a MAP_PRIVATE
2468 * mappping it owns the reserve page for. The intention is to unmap the page
2469 * from other VMAs and let the children be SIGKILLed if they are faulting the
2470 * same region.
2471 */
2a4b3ded
HH
2472static int unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
2473 struct page *page, unsigned long address)
04f2cbe3 2474{
7526674d 2475 struct hstate *h = hstate_vma(vma);
04f2cbe3
MG
2476 struct vm_area_struct *iter_vma;
2477 struct address_space *mapping;
04f2cbe3
MG
2478 pgoff_t pgoff;
2479
2480 /*
2481 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
2482 * from page cache lookup which is in HPAGE_SIZE units.
2483 */
7526674d 2484 address = address & huge_page_mask(h);
36e4f20a
MH
2485 pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
2486 vma->vm_pgoff;
496ad9aa 2487 mapping = file_inode(vma->vm_file)->i_mapping;
04f2cbe3 2488
4eb2b1dc
MG
2489 /*
2490 * Take the mapping lock for the duration of the table walk. As
2491 * this mapping should be shared between all the VMAs,
2492 * __unmap_hugepage_range() is called as the lock is already held
2493 */
3d48ae45 2494 mutex_lock(&mapping->i_mmap_mutex);
6b2dbba8 2495 vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
04f2cbe3
MG
2496 /* Do not unmap the current VMA */
2497 if (iter_vma == vma)
2498 continue;
2499
2500 /*
2501 * Unmap the page from other VMAs without their own reserves.
2502 * They get marked to be SIGKILLed if they fault in these
2503 * areas. This is because a future no-page fault on this VMA
2504 * could insert a zeroed page instead of the data existing
2505 * from the time of fork. This would look like data corruption
2506 */
2507 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
24669e58
AK
2508 unmap_hugepage_range(iter_vma, address,
2509 address + huge_page_size(h), page);
04f2cbe3 2510 }
3d48ae45 2511 mutex_unlock(&mapping->i_mmap_mutex);
04f2cbe3
MG
2512
2513 return 1;
2514}
2515
0fe6e20b
NH
2516/*
2517 * Hugetlb_cow() should be called with page lock of the original hugepage held.
ef009b25
MH
2518 * Called with hugetlb_instantiation_mutex held and pte_page locked so we
2519 * cannot race with other handlers or page migration.
2520 * Keep the pte_same checks anyway to make transition from the mutex easier.
0fe6e20b 2521 */
1e8f889b 2522static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
04f2cbe3
MG
2523 unsigned long address, pte_t *ptep, pte_t pte,
2524 struct page *pagecache_page)
1e8f889b 2525{
a5516438 2526 struct hstate *h = hstate_vma(vma);
1e8f889b 2527 struct page *old_page, *new_page;
79ac6ba4 2528 int avoidcopy;
04f2cbe3 2529 int outside_reserve = 0;
2ec74c3e
SG
2530 unsigned long mmun_start; /* For mmu_notifiers */
2531 unsigned long mmun_end; /* For mmu_notifiers */
1e8f889b
DG
2532
2533 old_page = pte_page(pte);
2534
04f2cbe3 2535retry_avoidcopy:
1e8f889b
DG
2536 /* If no-one else is actually using this page, avoid the copy
2537 * and just make the page writable */
0fe6e20b 2538 avoidcopy = (page_mapcount(old_page) == 1);
1e8f889b 2539 if (avoidcopy) {
56c9cfb1
NH
2540 if (PageAnon(old_page))
2541 page_move_anon_rmap(old_page, vma, address);
1e8f889b 2542 set_huge_ptep_writable(vma, address, ptep);
83c54070 2543 return 0;
1e8f889b
DG
2544 }
2545
04f2cbe3
MG
2546 /*
2547 * If the process that created a MAP_PRIVATE mapping is about to
2548 * perform a COW due to a shared page count, attempt to satisfy
2549 * the allocation without using the existing reserves. The pagecache
2550 * page is used to determine if the reserve at this address was
2551 * consumed or not. If reserves were used, a partial faulted mapping
2552 * at the time of fork() could consume its reserves on COW instead
2553 * of the full address range.
2554 */
f83a275d 2555 if (!(vma->vm_flags & VM_MAYSHARE) &&
04f2cbe3
MG
2556 is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
2557 old_page != pagecache_page)
2558 outside_reserve = 1;
2559
1e8f889b 2560 page_cache_get(old_page);
b76c8cfb
LW
2561
2562 /* Drop page_table_lock as buddy allocator may be called */
2563 spin_unlock(&mm->page_table_lock);
04f2cbe3 2564 new_page = alloc_huge_page(vma, address, outside_reserve);
1e8f889b 2565
2fc39cec 2566 if (IS_ERR(new_page)) {
76dcee75 2567 long err = PTR_ERR(new_page);
1e8f889b 2568 page_cache_release(old_page);
04f2cbe3
MG
2569
2570 /*
2571 * If a process owning a MAP_PRIVATE mapping fails to COW,
2572 * it is due to references held by a child and an insufficient
2573 * huge page pool. To guarantee the original mappers
2574 * reliability, unmap the page from child processes. The child
2575 * may get SIGKILLed if it later faults.
2576 */
2577 if (outside_reserve) {
2578 BUG_ON(huge_pte_none(pte));
2579 if (unmap_ref_private(mm, vma, old_page, address)) {
04f2cbe3 2580 BUG_ON(huge_pte_none(pte));
b76c8cfb 2581 spin_lock(&mm->page_table_lock);
a734bcc8
HD
2582 ptep = huge_pte_offset(mm, address & huge_page_mask(h));
2583 if (likely(pte_same(huge_ptep_get(ptep), pte)))
2584 goto retry_avoidcopy;
2585 /*
2586 * race occurs while re-acquiring page_table_lock, and
2587 * our job is done.
2588 */
2589 return 0;
04f2cbe3
MG
2590 }
2591 WARN_ON_ONCE(1);
2592 }
2593
b76c8cfb
LW
2594 /* Caller expects lock to be held */
2595 spin_lock(&mm->page_table_lock);
76dcee75
AK
2596 if (err == -ENOMEM)
2597 return VM_FAULT_OOM;
2598 else
2599 return VM_FAULT_SIGBUS;
1e8f889b
DG
2600 }
2601
0fe6e20b
NH
2602 /*
2603 * When the original hugepage is shared one, it does not have
2604 * anon_vma prepared.
2605 */
44e2aa93 2606 if (unlikely(anon_vma_prepare(vma))) {
ea4039a3
HD
2607 page_cache_release(new_page);
2608 page_cache_release(old_page);
44e2aa93
DN
2609 /* Caller expects lock to be held */
2610 spin_lock(&mm->page_table_lock);
0fe6e20b 2611 return VM_FAULT_OOM;
44e2aa93 2612 }
0fe6e20b 2613
47ad8475
AA
2614 copy_user_huge_page(new_page, old_page, address, vma,
2615 pages_per_huge_page(h));
0ed361de 2616 __SetPageUptodate(new_page);
1e8f889b 2617
2ec74c3e
SG
2618 mmun_start = address & huge_page_mask(h);
2619 mmun_end = mmun_start + huge_page_size(h);
2620 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
b76c8cfb
LW
2621 /*
2622 * Retake the page_table_lock to check for racing updates
2623 * before the page tables are altered
2624 */
2625 spin_lock(&mm->page_table_lock);
a5516438 2626 ptep = huge_pte_offset(mm, address & huge_page_mask(h));
7f2e9525 2627 if (likely(pte_same(huge_ptep_get(ptep), pte))) {
1e8f889b 2628 /* Break COW */
8fe627ec 2629 huge_ptep_clear_flush(vma, address, ptep);
1e8f889b
DG
2630 set_huge_pte_at(mm, address, ptep,
2631 make_huge_pte(vma, new_page, 1));
0fe6e20b 2632 page_remove_rmap(old_page);
cd67f0d2 2633 hugepage_add_new_anon_rmap(new_page, vma, address);
1e8f889b
DG
2634 /* Make the old page be freed below */
2635 new_page = old_page;
2636 }
2ec74c3e
SG
2637 spin_unlock(&mm->page_table_lock);
2638 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2639 /* Caller expects lock to be held */
2640 spin_lock(&mm->page_table_lock);
1e8f889b
DG
2641 page_cache_release(new_page);
2642 page_cache_release(old_page);
83c54070 2643 return 0;
1e8f889b
DG
2644}
2645
04f2cbe3 2646/* Return the pagecache page at a given address within a VMA */
a5516438
AK
2647static struct page *hugetlbfs_pagecache_page(struct hstate *h,
2648 struct vm_area_struct *vma, unsigned long address)
04f2cbe3
MG
2649{
2650 struct address_space *mapping;
e7c4b0bf 2651 pgoff_t idx;
04f2cbe3
MG
2652
2653 mapping = vma->vm_file->f_mapping;
a5516438 2654 idx = vma_hugecache_offset(h, vma, address);
04f2cbe3
MG
2655
2656 return find_lock_page(mapping, idx);
2657}
2658
3ae77f43
HD
2659/*
2660 * Return whether there is a pagecache page to back given address within VMA.
2661 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
2662 */
2663static bool hugetlbfs_pagecache_present(struct hstate *h,
2a15efc9
HD
2664 struct vm_area_struct *vma, unsigned long address)
2665{
2666 struct address_space *mapping;
2667 pgoff_t idx;
2668 struct page *page;
2669
2670 mapping = vma->vm_file->f_mapping;
2671 idx = vma_hugecache_offset(h, vma, address);
2672
2673 page = find_get_page(mapping, idx);
2674 if (page)
2675 put_page(page);
2676 return page != NULL;
2677}
2678
a1ed3dda 2679static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
788c7df4 2680 unsigned long address, pte_t *ptep, unsigned int flags)
ac9b9c66 2681{
a5516438 2682 struct hstate *h = hstate_vma(vma);
ac9b9c66 2683 int ret = VM_FAULT_SIGBUS;
409eb8c2 2684 int anon_rmap = 0;
e7c4b0bf 2685 pgoff_t idx;
4c887265 2686 unsigned long size;
4c887265
AL
2687 struct page *page;
2688 struct address_space *mapping;
1e8f889b 2689 pte_t new_pte;
4c887265 2690
04f2cbe3
MG
2691 /*
2692 * Currently, we are forced to kill the process in the event the
2693 * original mapper has unmapped pages from the child due to a failed
25985edc 2694 * COW. Warn that such a situation has occurred as it may not be obvious
04f2cbe3
MG
2695 */
2696 if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
ffb22af5
AM
2697 pr_warning("PID %d killed due to inadequate hugepage pool\n",
2698 current->pid);
04f2cbe3
MG
2699 return ret;
2700 }
2701
4c887265 2702 mapping = vma->vm_file->f_mapping;
a5516438 2703 idx = vma_hugecache_offset(h, vma, address);
4c887265
AL
2704
2705 /*
2706 * Use page lock to guard against racing truncation
2707 * before we get page_table_lock.
2708 */
6bda666a
CL
2709retry:
2710 page = find_lock_page(mapping, idx);
2711 if (!page) {
a5516438 2712 size = i_size_read(mapping->host) >> huge_page_shift(h);
ebed4bfc
HD
2713 if (idx >= size)
2714 goto out;
04f2cbe3 2715 page = alloc_huge_page(vma, address, 0);
2fc39cec 2716 if (IS_ERR(page)) {
76dcee75
AK
2717 ret = PTR_ERR(page);
2718 if (ret == -ENOMEM)
2719 ret = VM_FAULT_OOM;
2720 else
2721 ret = VM_FAULT_SIGBUS;
6bda666a
CL
2722 goto out;
2723 }
47ad8475 2724 clear_huge_page(page, address, pages_per_huge_page(h));
0ed361de 2725 __SetPageUptodate(page);
ac9b9c66 2726
f83a275d 2727 if (vma->vm_flags & VM_MAYSHARE) {
6bda666a 2728 int err;
45c682a6 2729 struct inode *inode = mapping->host;
6bda666a
CL
2730
2731 err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
2732 if (err) {
2733 put_page(page);
6bda666a
CL
2734 if (err == -EEXIST)
2735 goto retry;
2736 goto out;
2737 }
45c682a6
KC
2738
2739 spin_lock(&inode->i_lock);
a5516438 2740 inode->i_blocks += blocks_per_huge_page(h);
45c682a6 2741 spin_unlock(&inode->i_lock);
23be7468 2742 } else {
6bda666a 2743 lock_page(page);
0fe6e20b
NH
2744 if (unlikely(anon_vma_prepare(vma))) {
2745 ret = VM_FAULT_OOM;
2746 goto backout_unlocked;
2747 }
409eb8c2 2748 anon_rmap = 1;
23be7468 2749 }
0fe6e20b 2750 } else {
998b4382
NH
2751 /*
2752 * If memory error occurs between mmap() and fault, some process
2753 * don't have hwpoisoned swap entry for errored virtual address.
2754 * So we need to block hugepage fault by PG_hwpoison bit check.
2755 */
2756 if (unlikely(PageHWPoison(page))) {
32f84528 2757 ret = VM_FAULT_HWPOISON |
972dc4de 2758 VM_FAULT_SET_HINDEX(hstate_index(h));
998b4382
NH
2759 goto backout_unlocked;
2760 }
6bda666a 2761 }
1e8f889b 2762
57303d80
AW
2763 /*
2764 * If we are going to COW a private mapping later, we examine the
2765 * pending reservations for this page now. This will ensure that
2766 * any allocations necessary to record that reservation occur outside
2767 * the spinlock.
2768 */
788c7df4 2769 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED))
2b26736c
AW
2770 if (vma_needs_reservation(h, vma, address) < 0) {
2771 ret = VM_FAULT_OOM;
2772 goto backout_unlocked;
2773 }
57303d80 2774
ac9b9c66 2775 spin_lock(&mm->page_table_lock);
a5516438 2776 size = i_size_read(mapping->host) >> huge_page_shift(h);
4c887265
AL
2777 if (idx >= size)
2778 goto backout;
2779
83c54070 2780 ret = 0;
7f2e9525 2781 if (!huge_pte_none(huge_ptep_get(ptep)))
4c887265
AL
2782 goto backout;
2783
409eb8c2
HD
2784 if (anon_rmap)
2785 hugepage_add_new_anon_rmap(page, vma, address);
2786 else
2787 page_dup_rmap(page);
1e8f889b
DG
2788 new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
2789 && (vma->vm_flags & VM_SHARED)));
2790 set_huge_pte_at(mm, address, ptep, new_pte);
2791
788c7df4 2792 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
1e8f889b 2793 /* Optimization, do the COW without a second fault */
04f2cbe3 2794 ret = hugetlb_cow(mm, vma, address, ptep, new_pte, page);
1e8f889b
DG
2795 }
2796
ac9b9c66 2797 spin_unlock(&mm->page_table_lock);
4c887265
AL
2798 unlock_page(page);
2799out:
ac9b9c66 2800 return ret;
4c887265
AL
2801
2802backout:
2803 spin_unlock(&mm->page_table_lock);
2b26736c 2804backout_unlocked:
4c887265
AL
2805 unlock_page(page);
2806 put_page(page);
2807 goto out;
ac9b9c66
HD
2808}
2809
86e5216f 2810int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
788c7df4 2811 unsigned long address, unsigned int flags)
86e5216f
AL
2812{
2813 pte_t *ptep;
2814 pte_t entry;
1e8f889b 2815 int ret;
0fe6e20b 2816 struct page *page = NULL;
57303d80 2817 struct page *pagecache_page = NULL;
3935baa9 2818 static DEFINE_MUTEX(hugetlb_instantiation_mutex);
a5516438 2819 struct hstate *h = hstate_vma(vma);
86e5216f 2820
1e16a539
KH
2821 address &= huge_page_mask(h);
2822
fd6a03ed
NH
2823 ptep = huge_pte_offset(mm, address);
2824 if (ptep) {
2825 entry = huge_ptep_get(ptep);
290408d4
NH
2826 if (unlikely(is_hugetlb_entry_migration(entry))) {
2827 migration_entry_wait(mm, (pmd_t *)ptep, address);
2828 return 0;
2829 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
32f84528 2830 return VM_FAULT_HWPOISON_LARGE |
972dc4de 2831 VM_FAULT_SET_HINDEX(hstate_index(h));
fd6a03ed
NH
2832 }
2833
a5516438 2834 ptep = huge_pte_alloc(mm, address, huge_page_size(h));
86e5216f
AL
2835 if (!ptep)
2836 return VM_FAULT_OOM;
2837
3935baa9
DG
2838 /*
2839 * Serialize hugepage allocation and instantiation, so that we don't
2840 * get spurious allocation failures if two CPUs race to instantiate
2841 * the same page in the page cache.
2842 */
2843 mutex_lock(&hugetlb_instantiation_mutex);
7f2e9525
GS
2844 entry = huge_ptep_get(ptep);
2845 if (huge_pte_none(entry)) {
788c7df4 2846 ret = hugetlb_no_page(mm, vma, address, ptep, flags);
b4d1d99f 2847 goto out_mutex;
3935baa9 2848 }
86e5216f 2849
83c54070 2850 ret = 0;
1e8f889b 2851
57303d80
AW
2852 /*
2853 * If we are going to COW the mapping later, we examine the pending
2854 * reservations for this page now. This will ensure that any
2855 * allocations necessary to record that reservation occur outside the
2856 * spinlock. For private mappings, we also lookup the pagecache
2857 * page now as it is used to determine if a reservation has been
2858 * consumed.
2859 */
106c992a 2860 if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
2b26736c
AW
2861 if (vma_needs_reservation(h, vma, address) < 0) {
2862 ret = VM_FAULT_OOM;
b4d1d99f 2863 goto out_mutex;
2b26736c 2864 }
57303d80 2865
f83a275d 2866 if (!(vma->vm_flags & VM_MAYSHARE))
57303d80
AW
2867 pagecache_page = hugetlbfs_pagecache_page(h,
2868 vma, address);
2869 }
2870
56c9cfb1
NH
2871 /*
2872 * hugetlb_cow() requires page locks of pte_page(entry) and
2873 * pagecache_page, so here we need take the former one
2874 * when page != pagecache_page or !pagecache_page.
2875 * Note that locking order is always pagecache_page -> page,
2876 * so no worry about deadlock.
2877 */
2878 page = pte_page(entry);
66aebce7 2879 get_page(page);
56c9cfb1 2880 if (page != pagecache_page)
0fe6e20b 2881 lock_page(page);
0fe6e20b 2882
1e8f889b
DG
2883 spin_lock(&mm->page_table_lock);
2884 /* Check for a racing update before calling hugetlb_cow */
b4d1d99f
DG
2885 if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
2886 goto out_page_table_lock;
2887
2888
788c7df4 2889 if (flags & FAULT_FLAG_WRITE) {
106c992a 2890 if (!huge_pte_write(entry)) {
57303d80
AW
2891 ret = hugetlb_cow(mm, vma, address, ptep, entry,
2892 pagecache_page);
b4d1d99f
DG
2893 goto out_page_table_lock;
2894 }
106c992a 2895 entry = huge_pte_mkdirty(entry);
b4d1d99f
DG
2896 }
2897 entry = pte_mkyoung(entry);
788c7df4
HD
2898 if (huge_ptep_set_access_flags(vma, address, ptep, entry,
2899 flags & FAULT_FLAG_WRITE))
4b3073e1 2900 update_mmu_cache(vma, address, ptep);
b4d1d99f
DG
2901
2902out_page_table_lock:
1e8f889b 2903 spin_unlock(&mm->page_table_lock);
57303d80
AW
2904
2905 if (pagecache_page) {
2906 unlock_page(pagecache_page);
2907 put_page(pagecache_page);
2908 }
1f64d69c
DN
2909 if (page != pagecache_page)
2910 unlock_page(page);
66aebce7 2911 put_page(page);
57303d80 2912
b4d1d99f 2913out_mutex:
3935baa9 2914 mutex_unlock(&hugetlb_instantiation_mutex);
1e8f889b
DG
2915
2916 return ret;
86e5216f
AL
2917}
2918
ceb86879
AK
2919/* Can be overriden by architectures */
2920__attribute__((weak)) struct page *
2921follow_huge_pud(struct mm_struct *mm, unsigned long address,
2922 pud_t *pud, int write)
2923{
2924 BUG();
2925 return NULL;
2926}
2927
28a35716
ML
2928long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
2929 struct page **pages, struct vm_area_struct **vmas,
2930 unsigned long *position, unsigned long *nr_pages,
2931 long i, unsigned int flags)
63551ae0 2932{
d5d4b0aa
CK
2933 unsigned long pfn_offset;
2934 unsigned long vaddr = *position;
28a35716 2935 unsigned long remainder = *nr_pages;
a5516438 2936 struct hstate *h = hstate_vma(vma);
63551ae0 2937
1c59827d 2938 spin_lock(&mm->page_table_lock);
63551ae0 2939 while (vaddr < vma->vm_end && remainder) {
4c887265 2940 pte_t *pte;
2a15efc9 2941 int absent;
4c887265 2942 struct page *page;
63551ae0 2943
4c887265
AL
2944 /*
2945 * Some archs (sparc64, sh*) have multiple pte_ts to
2a15efc9 2946 * each hugepage. We have to make sure we get the
4c887265
AL
2947 * first, for the page indexing below to work.
2948 */
a5516438 2949 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h));
2a15efc9
HD
2950 absent = !pte || huge_pte_none(huge_ptep_get(pte));
2951
2952 /*
2953 * When coredumping, it suits get_dump_page if we just return
3ae77f43
HD
2954 * an error where there's an empty slot with no huge pagecache
2955 * to back it. This way, we avoid allocating a hugepage, and
2956 * the sparse dumpfile avoids allocating disk blocks, but its
2957 * huge holes still show up with zeroes where they need to be.
2a15efc9 2958 */
3ae77f43
HD
2959 if (absent && (flags & FOLL_DUMP) &&
2960 !hugetlbfs_pagecache_present(h, vma, vaddr)) {
2a15efc9
HD
2961 remainder = 0;
2962 break;
2963 }
63551ae0 2964
9cc3a5bd
NH
2965 /*
2966 * We need call hugetlb_fault for both hugepages under migration
2967 * (in which case hugetlb_fault waits for the migration,) and
2968 * hwpoisoned hugepages (in which case we need to prevent the
2969 * caller from accessing to them.) In order to do this, we use
2970 * here is_swap_pte instead of is_hugetlb_entry_migration and
2971 * is_hugetlb_entry_hwpoisoned. This is because it simply covers
2972 * both cases, and because we can't follow correct pages
2973 * directly from any kind of swap entries.
2974 */
2975 if (absent || is_swap_pte(huge_ptep_get(pte)) ||
106c992a
GS
2976 ((flags & FOLL_WRITE) &&
2977 !huge_pte_write(huge_ptep_get(pte)))) {
4c887265 2978 int ret;
63551ae0 2979
4c887265 2980 spin_unlock(&mm->page_table_lock);
2a15efc9
HD
2981 ret = hugetlb_fault(mm, vma, vaddr,
2982 (flags & FOLL_WRITE) ? FAULT_FLAG_WRITE : 0);
4c887265 2983 spin_lock(&mm->page_table_lock);
a89182c7 2984 if (!(ret & VM_FAULT_ERROR))
4c887265 2985 continue;
63551ae0 2986
4c887265 2987 remainder = 0;
4c887265
AL
2988 break;
2989 }
2990
a5516438 2991 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
7f2e9525 2992 page = pte_page(huge_ptep_get(pte));
d5d4b0aa 2993same_page:
d6692183 2994 if (pages) {
2a15efc9 2995 pages[i] = mem_map_offset(page, pfn_offset);
4b2e38ad 2996 get_page(pages[i]);
d6692183 2997 }
63551ae0
DG
2998
2999 if (vmas)
3000 vmas[i] = vma;
3001
3002 vaddr += PAGE_SIZE;
d5d4b0aa 3003 ++pfn_offset;
63551ae0
DG
3004 --remainder;
3005 ++i;
d5d4b0aa 3006 if (vaddr < vma->vm_end && remainder &&
a5516438 3007 pfn_offset < pages_per_huge_page(h)) {
d5d4b0aa
CK
3008 /*
3009 * We use pfn_offset to avoid touching the pageframes
3010 * of this compound page.
3011 */
3012 goto same_page;
3013 }
63551ae0 3014 }
1c59827d 3015 spin_unlock(&mm->page_table_lock);
28a35716 3016 *nr_pages = remainder;
63551ae0
DG
3017 *position = vaddr;
3018
2a15efc9 3019 return i ? i : -EFAULT;
63551ae0 3020}
8f860591 3021
7da4d641 3022unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
8f860591
ZY
3023 unsigned long address, unsigned long end, pgprot_t newprot)
3024{
3025 struct mm_struct *mm = vma->vm_mm;
3026 unsigned long start = address;
3027 pte_t *ptep;
3028 pte_t pte;
a5516438 3029 struct hstate *h = hstate_vma(vma);
7da4d641 3030 unsigned long pages = 0;
8f860591
ZY
3031
3032 BUG_ON(address >= end);
3033 flush_cache_range(vma, address, end);
3034
3d48ae45 3035 mutex_lock(&vma->vm_file->f_mapping->i_mmap_mutex);
8f860591 3036 spin_lock(&mm->page_table_lock);
a5516438 3037 for (; address < end; address += huge_page_size(h)) {
8f860591
ZY
3038 ptep = huge_pte_offset(mm, address);
3039 if (!ptep)
3040 continue;
7da4d641
PZ
3041 if (huge_pmd_unshare(mm, &address, ptep)) {
3042 pages++;
39dde65c 3043 continue;
7da4d641 3044 }
7f2e9525 3045 if (!huge_pte_none(huge_ptep_get(ptep))) {
8f860591 3046 pte = huge_ptep_get_and_clear(mm, address, ptep);
106c992a 3047 pte = pte_mkhuge(huge_pte_modify(pte, newprot));
be7517d6 3048 pte = arch_make_huge_pte(pte, vma, NULL, 0);
8f860591 3049 set_huge_pte_at(mm, address, ptep, pte);
7da4d641 3050 pages++;
8f860591
ZY
3051 }
3052 }
3053 spin_unlock(&mm->page_table_lock);
d833352a
MG
3054 /*
3055 * Must flush TLB before releasing i_mmap_mutex: x86's huge_pmd_unshare
3056 * may have cleared our pud entry and done put_page on the page table:
3057 * once we release i_mmap_mutex, another task can do the final put_page
3058 * and that page table be reused and filled with junk.
3059 */
8f860591 3060 flush_tlb_range(vma, start, end);
d833352a 3061 mutex_unlock(&vma->vm_file->f_mapping->i_mmap_mutex);
7da4d641
PZ
3062
3063 return pages << h->order;
8f860591
ZY
3064}
3065
a1e78772
MG
3066int hugetlb_reserve_pages(struct inode *inode,
3067 long from, long to,
5a6fe125 3068 struct vm_area_struct *vma,
ca16d140 3069 vm_flags_t vm_flags)
e4e574b7 3070{
17c9d12e 3071 long ret, chg;
a5516438 3072 struct hstate *h = hstate_inode(inode);
90481622 3073 struct hugepage_subpool *spool = subpool_inode(inode);
e4e574b7 3074
17c9d12e
MG
3075 /*
3076 * Only apply hugepage reservation if asked. At fault time, an
3077 * attempt will be made for VM_NORESERVE to allocate a page
90481622 3078 * without using reserves
17c9d12e 3079 */
ca16d140 3080 if (vm_flags & VM_NORESERVE)
17c9d12e
MG
3081 return 0;
3082
a1e78772
MG
3083 /*
3084 * Shared mappings base their reservation on the number of pages that
3085 * are already allocated on behalf of the file. Private mappings need
3086 * to reserve the full area even if read-only as mprotect() may be
3087 * called to make the mapping read-write. Assume !vma is a shm mapping
3088 */
f83a275d 3089 if (!vma || vma->vm_flags & VM_MAYSHARE)
a1e78772 3090 chg = region_chg(&inode->i_mapping->private_list, from, to);
17c9d12e
MG
3091 else {
3092 struct resv_map *resv_map = resv_map_alloc();
3093 if (!resv_map)
3094 return -ENOMEM;
3095
a1e78772 3096 chg = to - from;
84afd99b 3097
17c9d12e
MG
3098 set_vma_resv_map(vma, resv_map);
3099 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
3100 }
3101
c50ac050
DH
3102 if (chg < 0) {
3103 ret = chg;
3104 goto out_err;
3105 }
8a630112 3106
90481622 3107 /* There must be enough pages in the subpool for the mapping */
c50ac050
DH
3108 if (hugepage_subpool_get_pages(spool, chg)) {
3109 ret = -ENOSPC;
3110 goto out_err;
3111 }
5a6fe125
MG
3112
3113 /*
17c9d12e 3114 * Check enough hugepages are available for the reservation.
90481622 3115 * Hand the pages back to the subpool if there are not
5a6fe125 3116 */
a5516438 3117 ret = hugetlb_acct_memory(h, chg);
68842c9b 3118 if (ret < 0) {
90481622 3119 hugepage_subpool_put_pages(spool, chg);
c50ac050 3120 goto out_err;
68842c9b 3121 }
17c9d12e
MG
3122
3123 /*
3124 * Account for the reservations made. Shared mappings record regions
3125 * that have reservations as they are shared by multiple VMAs.
3126 * When the last VMA disappears, the region map says how much
3127 * the reservation was and the page cache tells how much of
3128 * the reservation was consumed. Private mappings are per-VMA and
3129 * only the consumed reservations are tracked. When the VMA
3130 * disappears, the original reservation is the VMA size and the
3131 * consumed reservations are stored in the map. Hence, nothing
3132 * else has to be done for private mappings here
3133 */
f83a275d 3134 if (!vma || vma->vm_flags & VM_MAYSHARE)
a1e78772 3135 region_add(&inode->i_mapping->private_list, from, to);
a43a8c39 3136 return 0;
c50ac050 3137out_err:
4523e145
DH
3138 if (vma)
3139 resv_map_put(vma);
c50ac050 3140 return ret;
a43a8c39
CK
3141}
3142
3143void hugetlb_unreserve_pages(struct inode *inode, long offset, long freed)
3144{
a5516438 3145 struct hstate *h = hstate_inode(inode);
a43a8c39 3146 long chg = region_truncate(&inode->i_mapping->private_list, offset);
90481622 3147 struct hugepage_subpool *spool = subpool_inode(inode);
45c682a6
KC
3148
3149 spin_lock(&inode->i_lock);
e4c6f8be 3150 inode->i_blocks -= (blocks_per_huge_page(h) * freed);
45c682a6
KC
3151 spin_unlock(&inode->i_lock);
3152
90481622 3153 hugepage_subpool_put_pages(spool, (chg - freed));
a5516438 3154 hugetlb_acct_memory(h, -(chg - freed));
a43a8c39 3155}
93f70f90 3156
d5bd9106
AK
3157#ifdef CONFIG_MEMORY_FAILURE
3158
6de2b1aa
NH
3159/* Should be called in hugetlb_lock */
3160static int is_hugepage_on_freelist(struct page *hpage)
3161{
3162 struct page *page;
3163 struct page *tmp;
3164 struct hstate *h = page_hstate(hpage);
3165 int nid = page_to_nid(hpage);
3166
3167 list_for_each_entry_safe(page, tmp, &h->hugepage_freelists[nid], lru)
3168 if (page == hpage)
3169 return 1;
3170 return 0;
3171}
3172
93f70f90
NH
3173/*
3174 * This function is called from memory failure code.
3175 * Assume the caller holds page lock of the head page.
3176 */
6de2b1aa 3177int dequeue_hwpoisoned_huge_page(struct page *hpage)
93f70f90
NH
3178{
3179 struct hstate *h = page_hstate(hpage);
3180 int nid = page_to_nid(hpage);
6de2b1aa 3181 int ret = -EBUSY;
93f70f90
NH
3182
3183 spin_lock(&hugetlb_lock);
6de2b1aa 3184 if (is_hugepage_on_freelist(hpage)) {
56f2fb14
NH
3185 /*
3186 * Hwpoisoned hugepage isn't linked to activelist or freelist,
3187 * but dangling hpage->lru can trigger list-debug warnings
3188 * (this happens when we call unpoison_memory() on it),
3189 * so let it point to itself with list_del_init().
3190 */
3191 list_del_init(&hpage->lru);
8c6c2ecb 3192 set_page_refcounted(hpage);
6de2b1aa
NH
3193 h->free_huge_pages--;
3194 h->free_huge_pages_node[nid]--;
3195 ret = 0;
3196 }
93f70f90 3197 spin_unlock(&hugetlb_lock);
6de2b1aa 3198 return ret;
93f70f90 3199}
6de2b1aa 3200#endif