mm, hugetlb: improve, cleanup resv_map parameters
[linux-2.6-block.git] / mm / hugetlb.c
CommitLineData
1da177e4
LT
1/*
2 * Generic hugetlb support.
6d49e352 3 * (C) Nadia Yvette Chambers, April 2004
1da177e4 4 */
1da177e4
LT
5#include <linux/list.h>
6#include <linux/init.h>
7#include <linux/module.h>
8#include <linux/mm.h>
e1759c21 9#include <linux/seq_file.h>
1da177e4
LT
10#include <linux/sysctl.h>
11#include <linux/highmem.h>
cddb8a5c 12#include <linux/mmu_notifier.h>
1da177e4 13#include <linux/nodemask.h>
63551ae0 14#include <linux/pagemap.h>
5da7ca86 15#include <linux/mempolicy.h>
aea47ff3 16#include <linux/cpuset.h>
3935baa9 17#include <linux/mutex.h>
aa888a74 18#include <linux/bootmem.h>
a3437870 19#include <linux/sysfs.h>
5a0e3ad6 20#include <linux/slab.h>
0fe6e20b 21#include <linux/rmap.h>
fd6a03ed
NH
22#include <linux/swap.h>
23#include <linux/swapops.h>
c8721bbb 24#include <linux/page-isolation.h>
d6606683 25
63551ae0
DG
26#include <asm/page.h>
27#include <asm/pgtable.h>
24669e58 28#include <asm/tlb.h>
63551ae0 29
24669e58 30#include <linux/io.h>
63551ae0 31#include <linux/hugetlb.h>
9dd540e2 32#include <linux/hugetlb_cgroup.h>
9a305230 33#include <linux/node.h>
7835e98b 34#include "internal.h"
1da177e4
LT
35
36const unsigned long hugetlb_zero = 0, hugetlb_infinity = ~0UL;
396faf03 37unsigned long hugepages_treat_as_movable;
a5516438 38
c3f38a38 39int hugetlb_max_hstate __read_mostly;
e5ff2159
AK
40unsigned int default_hstate_idx;
41struct hstate hstates[HUGE_MAX_HSTATE];
42
53ba51d2
JT
43__initdata LIST_HEAD(huge_boot_pages);
44
e5ff2159
AK
45/* for command line parsing */
46static struct hstate * __initdata parsed_hstate;
47static unsigned long __initdata default_hstate_max_huge_pages;
e11bfbfc 48static unsigned long __initdata default_hstate_size;
e5ff2159 49
3935baa9 50/*
31caf665
NH
51 * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
52 * free_huge_pages, and surplus_huge_pages.
3935baa9 53 */
c3f38a38 54DEFINE_SPINLOCK(hugetlb_lock);
0bd0f9fb 55
90481622
DG
56static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
57{
58 bool free = (spool->count == 0) && (spool->used_hpages == 0);
59
60 spin_unlock(&spool->lock);
61
62 /* If no pages are used, and no other handles to the subpool
63 * remain, free the subpool the subpool remain */
64 if (free)
65 kfree(spool);
66}
67
68struct hugepage_subpool *hugepage_new_subpool(long nr_blocks)
69{
70 struct hugepage_subpool *spool;
71
72 spool = kmalloc(sizeof(*spool), GFP_KERNEL);
73 if (!spool)
74 return NULL;
75
76 spin_lock_init(&spool->lock);
77 spool->count = 1;
78 spool->max_hpages = nr_blocks;
79 spool->used_hpages = 0;
80
81 return spool;
82}
83
84void hugepage_put_subpool(struct hugepage_subpool *spool)
85{
86 spin_lock(&spool->lock);
87 BUG_ON(!spool->count);
88 spool->count--;
89 unlock_or_release_subpool(spool);
90}
91
92static int hugepage_subpool_get_pages(struct hugepage_subpool *spool,
93 long delta)
94{
95 int ret = 0;
96
97 if (!spool)
98 return 0;
99
100 spin_lock(&spool->lock);
101 if ((spool->used_hpages + delta) <= spool->max_hpages) {
102 spool->used_hpages += delta;
103 } else {
104 ret = -ENOMEM;
105 }
106 spin_unlock(&spool->lock);
107
108 return ret;
109}
110
111static void hugepage_subpool_put_pages(struct hugepage_subpool *spool,
112 long delta)
113{
114 if (!spool)
115 return;
116
117 spin_lock(&spool->lock);
118 spool->used_hpages -= delta;
119 /* If hugetlbfs_put_super couldn't free spool due to
120 * an outstanding quota reference, free it now. */
121 unlock_or_release_subpool(spool);
122}
123
124static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
125{
126 return HUGETLBFS_SB(inode->i_sb)->spool;
127}
128
129static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
130{
496ad9aa 131 return subpool_inode(file_inode(vma->vm_file));
90481622
DG
132}
133
96822904
AW
134/*
135 * Region tracking -- allows tracking of reservations and instantiated pages
136 * across the pages in a mapping.
84afd99b
AW
137 *
138 * The region data structures are protected by a combination of the mmap_sem
c748c262 139 * and the hugetlb_instantiation_mutex. To access or modify a region the caller
84afd99b 140 * must either hold the mmap_sem for write, or the mmap_sem for read and
c748c262 141 * the hugetlb_instantiation_mutex:
84afd99b 142 *
32f84528 143 * down_write(&mm->mmap_sem);
84afd99b 144 * or
32f84528
CF
145 * down_read(&mm->mmap_sem);
146 * mutex_lock(&hugetlb_instantiation_mutex);
96822904
AW
147 */
148struct file_region {
149 struct list_head link;
150 long from;
151 long to;
152};
153
1406ec9b 154static long region_add(struct resv_map *resv, long f, long t)
96822904 155{
1406ec9b 156 struct list_head *head = &resv->regions;
96822904
AW
157 struct file_region *rg, *nrg, *trg;
158
159 /* Locate the region we are either in or before. */
160 list_for_each_entry(rg, head, link)
161 if (f <= rg->to)
162 break;
163
164 /* Round our left edge to the current segment if it encloses us. */
165 if (f > rg->from)
166 f = rg->from;
167
168 /* Check for and consume any regions we now overlap with. */
169 nrg = rg;
170 list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
171 if (&rg->link == head)
172 break;
173 if (rg->from > t)
174 break;
175
176 /* If this area reaches higher then extend our area to
177 * include it completely. If this is not the first area
178 * which we intend to reuse, free it. */
179 if (rg->to > t)
180 t = rg->to;
181 if (rg != nrg) {
182 list_del(&rg->link);
183 kfree(rg);
184 }
185 }
186 nrg->from = f;
187 nrg->to = t;
188 return 0;
189}
190
1406ec9b 191static long region_chg(struct resv_map *resv, long f, long t)
96822904 192{
1406ec9b 193 struct list_head *head = &resv->regions;
96822904
AW
194 struct file_region *rg, *nrg;
195 long chg = 0;
196
197 /* Locate the region we are before or in. */
198 list_for_each_entry(rg, head, link)
199 if (f <= rg->to)
200 break;
201
202 /* If we are below the current region then a new region is required.
203 * Subtle, allocate a new region at the position but make it zero
204 * size such that we can guarantee to record the reservation. */
205 if (&rg->link == head || t < rg->from) {
206 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
207 if (!nrg)
208 return -ENOMEM;
209 nrg->from = f;
210 nrg->to = f;
211 INIT_LIST_HEAD(&nrg->link);
212 list_add(&nrg->link, rg->link.prev);
213
214 return t - f;
215 }
216
217 /* Round our left edge to the current segment if it encloses us. */
218 if (f > rg->from)
219 f = rg->from;
220 chg = t - f;
221
222 /* Check for and consume any regions we now overlap with. */
223 list_for_each_entry(rg, rg->link.prev, link) {
224 if (&rg->link == head)
225 break;
226 if (rg->from > t)
227 return chg;
228
25985edc 229 /* We overlap with this area, if it extends further than
96822904
AW
230 * us then we must extend ourselves. Account for its
231 * existing reservation. */
232 if (rg->to > t) {
233 chg += rg->to - t;
234 t = rg->to;
235 }
236 chg -= rg->to - rg->from;
237 }
238 return chg;
239}
240
1406ec9b 241static long region_truncate(struct resv_map *resv, long end)
96822904 242{
1406ec9b 243 struct list_head *head = &resv->regions;
96822904
AW
244 struct file_region *rg, *trg;
245 long chg = 0;
246
247 /* Locate the region we are either in or before. */
248 list_for_each_entry(rg, head, link)
249 if (end <= rg->to)
250 break;
251 if (&rg->link == head)
252 return 0;
253
254 /* If we are in the middle of a region then adjust it. */
255 if (end > rg->from) {
256 chg = rg->to - end;
257 rg->to = end;
258 rg = list_entry(rg->link.next, typeof(*rg), link);
259 }
260
261 /* Drop any remaining regions. */
262 list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
263 if (&rg->link == head)
264 break;
265 chg += rg->to - rg->from;
266 list_del(&rg->link);
267 kfree(rg);
268 }
269 return chg;
270}
271
1406ec9b 272static long region_count(struct resv_map *resv, long f, long t)
84afd99b 273{
1406ec9b 274 struct list_head *head = &resv->regions;
84afd99b
AW
275 struct file_region *rg;
276 long chg = 0;
277
278 /* Locate each segment we overlap with, and count that overlap. */
279 list_for_each_entry(rg, head, link) {
f2135a4a
WSH
280 long seg_from;
281 long seg_to;
84afd99b
AW
282
283 if (rg->to <= f)
284 continue;
285 if (rg->from >= t)
286 break;
287
288 seg_from = max(rg->from, f);
289 seg_to = min(rg->to, t);
290
291 chg += seg_to - seg_from;
292 }
293
294 return chg;
295}
296
e7c4b0bf
AW
297/*
298 * Convert the address within this vma to the page offset within
299 * the mapping, in pagecache page units; huge pages here.
300 */
a5516438
AK
301static pgoff_t vma_hugecache_offset(struct hstate *h,
302 struct vm_area_struct *vma, unsigned long address)
e7c4b0bf 303{
a5516438
AK
304 return ((address - vma->vm_start) >> huge_page_shift(h)) +
305 (vma->vm_pgoff >> huge_page_order(h));
e7c4b0bf
AW
306}
307
0fe6e20b
NH
308pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
309 unsigned long address)
310{
311 return vma_hugecache_offset(hstate_vma(vma), vma, address);
312}
313
08fba699
MG
314/*
315 * Return the size of the pages allocated when backing a VMA. In the majority
316 * cases this will be same size as used by the page table entries.
317 */
318unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
319{
320 struct hstate *hstate;
321
322 if (!is_vm_hugetlb_page(vma))
323 return PAGE_SIZE;
324
325 hstate = hstate_vma(vma);
326
2415cf12 327 return 1UL << huge_page_shift(hstate);
08fba699 328}
f340ca0f 329EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
08fba699 330
3340289d
MG
331/*
332 * Return the page size being used by the MMU to back a VMA. In the majority
333 * of cases, the page size used by the kernel matches the MMU size. On
334 * architectures where it differs, an architecture-specific version of this
335 * function is required.
336 */
337#ifndef vma_mmu_pagesize
338unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
339{
340 return vma_kernel_pagesize(vma);
341}
342#endif
343
84afd99b
AW
344/*
345 * Flags for MAP_PRIVATE reservations. These are stored in the bottom
346 * bits of the reservation map pointer, which are always clear due to
347 * alignment.
348 */
349#define HPAGE_RESV_OWNER (1UL << 0)
350#define HPAGE_RESV_UNMAPPED (1UL << 1)
04f2cbe3 351#define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
84afd99b 352
a1e78772
MG
353/*
354 * These helpers are used to track how many pages are reserved for
355 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
356 * is guaranteed to have their future faults succeed.
357 *
358 * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
359 * the reserve counters are updated with the hugetlb_lock held. It is safe
360 * to reset the VMA at fork() time as it is not in use yet and there is no
361 * chance of the global counters getting corrupted as a result of the values.
84afd99b
AW
362 *
363 * The private mapping reservation is represented in a subtly different
364 * manner to a shared mapping. A shared mapping has a region map associated
365 * with the underlying file, this region map represents the backing file
366 * pages which have ever had a reservation assigned which this persists even
367 * after the page is instantiated. A private mapping has a region map
368 * associated with the original mmap which is attached to all VMAs which
369 * reference it, this region map represents those offsets which have consumed
370 * reservation ie. where pages have been instantiated.
a1e78772 371 */
e7c4b0bf
AW
372static unsigned long get_vma_private_data(struct vm_area_struct *vma)
373{
374 return (unsigned long)vma->vm_private_data;
375}
376
377static void set_vma_private_data(struct vm_area_struct *vma,
378 unsigned long value)
379{
380 vma->vm_private_data = (void *)value;
381}
382
9119a41e 383struct resv_map *resv_map_alloc(void)
84afd99b
AW
384{
385 struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
386 if (!resv_map)
387 return NULL;
388
389 kref_init(&resv_map->refs);
390 INIT_LIST_HEAD(&resv_map->regions);
391
392 return resv_map;
393}
394
9119a41e 395void resv_map_release(struct kref *ref)
84afd99b
AW
396{
397 struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
398
399 /* Clear out any active regions before we release the map. */
1406ec9b 400 region_truncate(resv_map, 0);
84afd99b
AW
401 kfree(resv_map);
402}
403
404static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
a1e78772
MG
405{
406 VM_BUG_ON(!is_vm_hugetlb_page(vma));
f83a275d 407 if (!(vma->vm_flags & VM_MAYSHARE))
84afd99b
AW
408 return (struct resv_map *)(get_vma_private_data(vma) &
409 ~HPAGE_RESV_MASK);
2a4b3ded 410 return NULL;
a1e78772
MG
411}
412
84afd99b 413static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
a1e78772
MG
414{
415 VM_BUG_ON(!is_vm_hugetlb_page(vma));
f83a275d 416 VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
a1e78772 417
84afd99b
AW
418 set_vma_private_data(vma, (get_vma_private_data(vma) &
419 HPAGE_RESV_MASK) | (unsigned long)map);
04f2cbe3
MG
420}
421
422static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
423{
04f2cbe3 424 VM_BUG_ON(!is_vm_hugetlb_page(vma));
f83a275d 425 VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
e7c4b0bf
AW
426
427 set_vma_private_data(vma, get_vma_private_data(vma) | flags);
04f2cbe3
MG
428}
429
430static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
431{
432 VM_BUG_ON(!is_vm_hugetlb_page(vma));
e7c4b0bf
AW
433
434 return (get_vma_private_data(vma) & flag) != 0;
a1e78772
MG
435}
436
04f2cbe3 437/* Reset counters to 0 and clear all HPAGE_RESV_* flags */
a1e78772
MG
438void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
439{
440 VM_BUG_ON(!is_vm_hugetlb_page(vma));
f83a275d 441 if (!(vma->vm_flags & VM_MAYSHARE))
a1e78772
MG
442 vma->vm_private_data = (void *)0;
443}
444
445/* Returns true if the VMA has associated reserve pages */
af0ed73e 446static int vma_has_reserves(struct vm_area_struct *vma, long chg)
a1e78772 447{
af0ed73e
JK
448 if (vma->vm_flags & VM_NORESERVE) {
449 /*
450 * This address is already reserved by other process(chg == 0),
451 * so, we should decrement reserved count. Without decrementing,
452 * reserve count remains after releasing inode, because this
453 * allocated page will go into page cache and is regarded as
454 * coming from reserved pool in releasing step. Currently, we
455 * don't have any other solution to deal with this situation
456 * properly, so add work-around here.
457 */
458 if (vma->vm_flags & VM_MAYSHARE && chg == 0)
459 return 1;
460 else
461 return 0;
462 }
a63884e9
JK
463
464 /* Shared mappings always use reserves */
f83a275d 465 if (vma->vm_flags & VM_MAYSHARE)
7f09ca51 466 return 1;
a63884e9
JK
467
468 /*
469 * Only the process that called mmap() has reserves for
470 * private mappings.
471 */
7f09ca51
MG
472 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER))
473 return 1;
a63884e9 474
7f09ca51 475 return 0;
a1e78772
MG
476}
477
a5516438 478static void enqueue_huge_page(struct hstate *h, struct page *page)
1da177e4
LT
479{
480 int nid = page_to_nid(page);
0edaecfa 481 list_move(&page->lru, &h->hugepage_freelists[nid]);
a5516438
AK
482 h->free_huge_pages++;
483 h->free_huge_pages_node[nid]++;
1da177e4
LT
484}
485
bf50bab2
NH
486static struct page *dequeue_huge_page_node(struct hstate *h, int nid)
487{
488 struct page *page;
489
c8721bbb
NH
490 list_for_each_entry(page, &h->hugepage_freelists[nid], lru)
491 if (!is_migrate_isolate_page(page))
492 break;
493 /*
494 * if 'non-isolated free hugepage' not found on the list,
495 * the allocation fails.
496 */
497 if (&h->hugepage_freelists[nid] == &page->lru)
bf50bab2 498 return NULL;
0edaecfa 499 list_move(&page->lru, &h->hugepage_activelist);
a9869b83 500 set_page_refcounted(page);
bf50bab2
NH
501 h->free_huge_pages--;
502 h->free_huge_pages_node[nid]--;
503 return page;
504}
505
86cdb465
NH
506/* Movability of hugepages depends on migration support. */
507static inline gfp_t htlb_alloc_mask(struct hstate *h)
508{
509 if (hugepages_treat_as_movable || hugepage_migration_support(h))
510 return GFP_HIGHUSER_MOVABLE;
511 else
512 return GFP_HIGHUSER;
513}
514
a5516438
AK
515static struct page *dequeue_huge_page_vma(struct hstate *h,
516 struct vm_area_struct *vma,
af0ed73e
JK
517 unsigned long address, int avoid_reserve,
518 long chg)
1da177e4 519{
b1c12cbc 520 struct page *page = NULL;
480eccf9 521 struct mempolicy *mpol;
19770b32 522 nodemask_t *nodemask;
c0ff7453 523 struct zonelist *zonelist;
dd1a239f
MG
524 struct zone *zone;
525 struct zoneref *z;
cc9a6c87 526 unsigned int cpuset_mems_cookie;
1da177e4 527
a1e78772
MG
528 /*
529 * A child process with MAP_PRIVATE mappings created by their parent
530 * have no page reserves. This check ensures that reservations are
531 * not "stolen". The child may still get SIGKILLed
532 */
af0ed73e 533 if (!vma_has_reserves(vma, chg) &&
a5516438 534 h->free_huge_pages - h->resv_huge_pages == 0)
c0ff7453 535 goto err;
a1e78772 536
04f2cbe3 537 /* If reserves cannot be used, ensure enough pages are in the pool */
a5516438 538 if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
6eab04a8 539 goto err;
04f2cbe3 540
9966c4bb 541retry_cpuset:
d26914d1 542 cpuset_mems_cookie = read_mems_allowed_begin();
9966c4bb 543 zonelist = huge_zonelist(vma, address,
86cdb465 544 htlb_alloc_mask(h), &mpol, &nodemask);
9966c4bb 545
19770b32
MG
546 for_each_zone_zonelist_nodemask(zone, z, zonelist,
547 MAX_NR_ZONES - 1, nodemask) {
86cdb465 548 if (cpuset_zone_allowed_softwall(zone, htlb_alloc_mask(h))) {
bf50bab2
NH
549 page = dequeue_huge_page_node(h, zone_to_nid(zone));
550 if (page) {
af0ed73e
JK
551 if (avoid_reserve)
552 break;
553 if (!vma_has_reserves(vma, chg))
554 break;
555
07443a85 556 SetPagePrivate(page);
af0ed73e 557 h->resv_huge_pages--;
bf50bab2
NH
558 break;
559 }
3abf7afd 560 }
1da177e4 561 }
cc9a6c87 562
52cd3b07 563 mpol_cond_put(mpol);
d26914d1 564 if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie)))
cc9a6c87 565 goto retry_cpuset;
1da177e4 566 return page;
cc9a6c87
MG
567
568err:
cc9a6c87 569 return NULL;
1da177e4
LT
570}
571
a5516438 572static void update_and_free_page(struct hstate *h, struct page *page)
6af2acb6
AL
573{
574 int i;
a5516438 575
18229df5
AW
576 VM_BUG_ON(h->order >= MAX_ORDER);
577
a5516438
AK
578 h->nr_huge_pages--;
579 h->nr_huge_pages_node[page_to_nid(page)]--;
580 for (i = 0; i < pages_per_huge_page(h); i++) {
32f84528
CF
581 page[i].flags &= ~(1 << PG_locked | 1 << PG_error |
582 1 << PG_referenced | 1 << PG_dirty |
583 1 << PG_active | 1 << PG_reserved |
584 1 << PG_private | 1 << PG_writeback);
6af2acb6 585 }
309381fe 586 VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page);
6af2acb6
AL
587 set_compound_page_dtor(page, NULL);
588 set_page_refcounted(page);
7f2e9525 589 arch_release_hugepage(page);
a5516438 590 __free_pages(page, huge_page_order(h));
6af2acb6
AL
591}
592
e5ff2159
AK
593struct hstate *size_to_hstate(unsigned long size)
594{
595 struct hstate *h;
596
597 for_each_hstate(h) {
598 if (huge_page_size(h) == size)
599 return h;
600 }
601 return NULL;
602}
603
27a85ef1
DG
604static void free_huge_page(struct page *page)
605{
a5516438
AK
606 /*
607 * Can't pass hstate in here because it is called from the
608 * compound page destructor.
609 */
e5ff2159 610 struct hstate *h = page_hstate(page);
7893d1d5 611 int nid = page_to_nid(page);
90481622
DG
612 struct hugepage_subpool *spool =
613 (struct hugepage_subpool *)page_private(page);
07443a85 614 bool restore_reserve;
27a85ef1 615
e5df70ab 616 set_page_private(page, 0);
23be7468 617 page->mapping = NULL;
7893d1d5 618 BUG_ON(page_count(page));
0fe6e20b 619 BUG_ON(page_mapcount(page));
07443a85 620 restore_reserve = PagePrivate(page);
16c794b4 621 ClearPagePrivate(page);
27a85ef1
DG
622
623 spin_lock(&hugetlb_lock);
6d76dcf4
AK
624 hugetlb_cgroup_uncharge_page(hstate_index(h),
625 pages_per_huge_page(h), page);
07443a85
JK
626 if (restore_reserve)
627 h->resv_huge_pages++;
628
aa888a74 629 if (h->surplus_huge_pages_node[nid] && huge_page_order(h) < MAX_ORDER) {
0edaecfa
AK
630 /* remove the page from active list */
631 list_del(&page->lru);
a5516438
AK
632 update_and_free_page(h, page);
633 h->surplus_huge_pages--;
634 h->surplus_huge_pages_node[nid]--;
7893d1d5 635 } else {
5d3a551c 636 arch_clear_hugepage_flags(page);
a5516438 637 enqueue_huge_page(h, page);
7893d1d5 638 }
27a85ef1 639 spin_unlock(&hugetlb_lock);
90481622 640 hugepage_subpool_put_pages(spool, 1);
27a85ef1
DG
641}
642
a5516438 643static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
b7ba30c6 644{
0edaecfa 645 INIT_LIST_HEAD(&page->lru);
b7ba30c6
AK
646 set_compound_page_dtor(page, free_huge_page);
647 spin_lock(&hugetlb_lock);
9dd540e2 648 set_hugetlb_cgroup(page, NULL);
a5516438
AK
649 h->nr_huge_pages++;
650 h->nr_huge_pages_node[nid]++;
b7ba30c6
AK
651 spin_unlock(&hugetlb_lock);
652 put_page(page); /* free it into the hugepage allocator */
653}
654
20a0307c
WF
655static void prep_compound_gigantic_page(struct page *page, unsigned long order)
656{
657 int i;
658 int nr_pages = 1 << order;
659 struct page *p = page + 1;
660
661 /* we rely on prep_new_huge_page to set the destructor */
662 set_compound_order(page, order);
663 __SetPageHead(page);
ef5a22be 664 __ClearPageReserved(page);
20a0307c
WF
665 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
666 __SetPageTail(p);
ef5a22be
AA
667 /*
668 * For gigantic hugepages allocated through bootmem at
669 * boot, it's safer to be consistent with the not-gigantic
670 * hugepages and clear the PG_reserved bit from all tail pages
671 * too. Otherwse drivers using get_user_pages() to access tail
672 * pages may get the reference counting wrong if they see
673 * PG_reserved set on a tail page (despite the head page not
674 * having PG_reserved set). Enforcing this consistency between
675 * head and tail pages allows drivers to optimize away a check
676 * on the head page when they need know if put_page() is needed
677 * after get_user_pages().
678 */
679 __ClearPageReserved(p);
58a84aa9 680 set_page_count(p, 0);
20a0307c
WF
681 p->first_page = page;
682 }
683}
684
7795912c
AM
685/*
686 * PageHuge() only returns true for hugetlbfs pages, but not for normal or
687 * transparent huge pages. See the PageTransHuge() documentation for more
688 * details.
689 */
20a0307c
WF
690int PageHuge(struct page *page)
691{
20a0307c
WF
692 if (!PageCompound(page))
693 return 0;
694
695 page = compound_head(page);
758f66a2 696 return get_compound_page_dtor(page) == free_huge_page;
20a0307c 697}
43131e14
NH
698EXPORT_SYMBOL_GPL(PageHuge);
699
27c73ae7
AA
700/*
701 * PageHeadHuge() only returns true for hugetlbfs head page, but not for
702 * normal or transparent huge pages.
703 */
704int PageHeadHuge(struct page *page_head)
705{
27c73ae7
AA
706 if (!PageHead(page_head))
707 return 0;
708
758f66a2 709 return get_compound_page_dtor(page_head) == free_huge_page;
27c73ae7 710}
27c73ae7 711
13d60f4b
ZY
712pgoff_t __basepage_index(struct page *page)
713{
714 struct page *page_head = compound_head(page);
715 pgoff_t index = page_index(page_head);
716 unsigned long compound_idx;
717
718 if (!PageHuge(page_head))
719 return page_index(page);
720
721 if (compound_order(page_head) >= MAX_ORDER)
722 compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
723 else
724 compound_idx = page - page_head;
725
726 return (index << compound_order(page_head)) + compound_idx;
727}
728
a5516438 729static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid)
1da177e4 730{
1da177e4 731 struct page *page;
f96efd58 732
aa888a74
AK
733 if (h->order >= MAX_ORDER)
734 return NULL;
735
6484eb3e 736 page = alloc_pages_exact_node(nid,
86cdb465 737 htlb_alloc_mask(h)|__GFP_COMP|__GFP_THISNODE|
551883ae 738 __GFP_REPEAT|__GFP_NOWARN,
a5516438 739 huge_page_order(h));
1da177e4 740 if (page) {
7f2e9525 741 if (arch_prepare_hugepage(page)) {
caff3a2c 742 __free_pages(page, huge_page_order(h));
7b8ee84d 743 return NULL;
7f2e9525 744 }
a5516438 745 prep_new_huge_page(h, page, nid);
1da177e4 746 }
63b4613c
NA
747
748 return page;
749}
750
9a76db09 751/*
6ae11b27
LS
752 * common helper functions for hstate_next_node_to_{alloc|free}.
753 * We may have allocated or freed a huge page based on a different
754 * nodes_allowed previously, so h->next_node_to_{alloc|free} might
755 * be outside of *nodes_allowed. Ensure that we use an allowed
756 * node for alloc or free.
9a76db09 757 */
6ae11b27 758static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
9a76db09 759{
6ae11b27 760 nid = next_node(nid, *nodes_allowed);
9a76db09 761 if (nid == MAX_NUMNODES)
6ae11b27 762 nid = first_node(*nodes_allowed);
9a76db09
LS
763 VM_BUG_ON(nid >= MAX_NUMNODES);
764
765 return nid;
766}
767
6ae11b27
LS
768static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
769{
770 if (!node_isset(nid, *nodes_allowed))
771 nid = next_node_allowed(nid, nodes_allowed);
772 return nid;
773}
774
5ced66c9 775/*
6ae11b27
LS
776 * returns the previously saved node ["this node"] from which to
777 * allocate a persistent huge page for the pool and advance the
778 * next node from which to allocate, handling wrap at end of node
779 * mask.
5ced66c9 780 */
6ae11b27
LS
781static int hstate_next_node_to_alloc(struct hstate *h,
782 nodemask_t *nodes_allowed)
5ced66c9 783{
6ae11b27
LS
784 int nid;
785
786 VM_BUG_ON(!nodes_allowed);
787
788 nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
789 h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
9a76db09 790
9a76db09 791 return nid;
5ced66c9
AK
792}
793
e8c5c824 794/*
6ae11b27
LS
795 * helper for free_pool_huge_page() - return the previously saved
796 * node ["this node"] from which to free a huge page. Advance the
797 * next node id whether or not we find a free huge page to free so
798 * that the next attempt to free addresses the next node.
e8c5c824 799 */
6ae11b27 800static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
e8c5c824 801{
6ae11b27
LS
802 int nid;
803
804 VM_BUG_ON(!nodes_allowed);
805
806 nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
807 h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
9a76db09 808
9a76db09 809 return nid;
e8c5c824
LS
810}
811
b2261026
JK
812#define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask) \
813 for (nr_nodes = nodes_weight(*mask); \
814 nr_nodes > 0 && \
815 ((node = hstate_next_node_to_alloc(hs, mask)) || 1); \
816 nr_nodes--)
817
818#define for_each_node_mask_to_free(hs, nr_nodes, node, mask) \
819 for (nr_nodes = nodes_weight(*mask); \
820 nr_nodes > 0 && \
821 ((node = hstate_next_node_to_free(hs, mask)) || 1); \
822 nr_nodes--)
823
824static int alloc_fresh_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
825{
826 struct page *page;
827 int nr_nodes, node;
828 int ret = 0;
829
830 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
831 page = alloc_fresh_huge_page_node(h, node);
832 if (page) {
833 ret = 1;
834 break;
835 }
836 }
837
838 if (ret)
839 count_vm_event(HTLB_BUDDY_PGALLOC);
840 else
841 count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
842
843 return ret;
844}
845
e8c5c824
LS
846/*
847 * Free huge page from pool from next node to free.
848 * Attempt to keep persistent huge pages more or less
849 * balanced over allowed nodes.
850 * Called with hugetlb_lock locked.
851 */
6ae11b27
LS
852static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
853 bool acct_surplus)
e8c5c824 854{
b2261026 855 int nr_nodes, node;
e8c5c824
LS
856 int ret = 0;
857
b2261026 858 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
685f3457
LS
859 /*
860 * If we're returning unused surplus pages, only examine
861 * nodes with surplus pages.
862 */
b2261026
JK
863 if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
864 !list_empty(&h->hugepage_freelists[node])) {
e8c5c824 865 struct page *page =
b2261026 866 list_entry(h->hugepage_freelists[node].next,
e8c5c824
LS
867 struct page, lru);
868 list_del(&page->lru);
869 h->free_huge_pages--;
b2261026 870 h->free_huge_pages_node[node]--;
685f3457
LS
871 if (acct_surplus) {
872 h->surplus_huge_pages--;
b2261026 873 h->surplus_huge_pages_node[node]--;
685f3457 874 }
e8c5c824
LS
875 update_and_free_page(h, page);
876 ret = 1;
9a76db09 877 break;
e8c5c824 878 }
b2261026 879 }
e8c5c824
LS
880
881 return ret;
882}
883
c8721bbb
NH
884/*
885 * Dissolve a given free hugepage into free buddy pages. This function does
886 * nothing for in-use (including surplus) hugepages.
887 */
888static void dissolve_free_huge_page(struct page *page)
889{
890 spin_lock(&hugetlb_lock);
891 if (PageHuge(page) && !page_count(page)) {
892 struct hstate *h = page_hstate(page);
893 int nid = page_to_nid(page);
894 list_del(&page->lru);
895 h->free_huge_pages--;
896 h->free_huge_pages_node[nid]--;
897 update_and_free_page(h, page);
898 }
899 spin_unlock(&hugetlb_lock);
900}
901
902/*
903 * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
904 * make specified memory blocks removable from the system.
905 * Note that start_pfn should aligned with (minimum) hugepage size.
906 */
907void dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
908{
909 unsigned int order = 8 * sizeof(void *);
910 unsigned long pfn;
911 struct hstate *h;
912
913 /* Set scan step to minimum hugepage size */
914 for_each_hstate(h)
915 if (order > huge_page_order(h))
916 order = huge_page_order(h);
917 VM_BUG_ON(!IS_ALIGNED(start_pfn, 1 << order));
918 for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << order)
919 dissolve_free_huge_page(pfn_to_page(pfn));
920}
921
bf50bab2 922static struct page *alloc_buddy_huge_page(struct hstate *h, int nid)
7893d1d5
AL
923{
924 struct page *page;
bf50bab2 925 unsigned int r_nid;
7893d1d5 926
aa888a74
AK
927 if (h->order >= MAX_ORDER)
928 return NULL;
929
d1c3fb1f
NA
930 /*
931 * Assume we will successfully allocate the surplus page to
932 * prevent racing processes from causing the surplus to exceed
933 * overcommit
934 *
935 * This however introduces a different race, where a process B
936 * tries to grow the static hugepage pool while alloc_pages() is
937 * called by process A. B will only examine the per-node
938 * counters in determining if surplus huge pages can be
939 * converted to normal huge pages in adjust_pool_surplus(). A
940 * won't be able to increment the per-node counter, until the
941 * lock is dropped by B, but B doesn't drop hugetlb_lock until
942 * no more huge pages can be converted from surplus to normal
943 * state (and doesn't try to convert again). Thus, we have a
944 * case where a surplus huge page exists, the pool is grown, and
945 * the surplus huge page still exists after, even though it
946 * should just have been converted to a normal huge page. This
947 * does not leak memory, though, as the hugepage will be freed
948 * once it is out of use. It also does not allow the counters to
949 * go out of whack in adjust_pool_surplus() as we don't modify
950 * the node values until we've gotten the hugepage and only the
951 * per-node value is checked there.
952 */
953 spin_lock(&hugetlb_lock);
a5516438 954 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
d1c3fb1f
NA
955 spin_unlock(&hugetlb_lock);
956 return NULL;
957 } else {
a5516438
AK
958 h->nr_huge_pages++;
959 h->surplus_huge_pages++;
d1c3fb1f
NA
960 }
961 spin_unlock(&hugetlb_lock);
962
bf50bab2 963 if (nid == NUMA_NO_NODE)
86cdb465 964 page = alloc_pages(htlb_alloc_mask(h)|__GFP_COMP|
bf50bab2
NH
965 __GFP_REPEAT|__GFP_NOWARN,
966 huge_page_order(h));
967 else
968 page = alloc_pages_exact_node(nid,
86cdb465 969 htlb_alloc_mask(h)|__GFP_COMP|__GFP_THISNODE|
bf50bab2 970 __GFP_REPEAT|__GFP_NOWARN, huge_page_order(h));
d1c3fb1f 971
caff3a2c
GS
972 if (page && arch_prepare_hugepage(page)) {
973 __free_pages(page, huge_page_order(h));
ea5768c7 974 page = NULL;
caff3a2c
GS
975 }
976
d1c3fb1f 977 spin_lock(&hugetlb_lock);
7893d1d5 978 if (page) {
0edaecfa 979 INIT_LIST_HEAD(&page->lru);
bf50bab2 980 r_nid = page_to_nid(page);
7893d1d5 981 set_compound_page_dtor(page, free_huge_page);
9dd540e2 982 set_hugetlb_cgroup(page, NULL);
d1c3fb1f
NA
983 /*
984 * We incremented the global counters already
985 */
bf50bab2
NH
986 h->nr_huge_pages_node[r_nid]++;
987 h->surplus_huge_pages_node[r_nid]++;
3b116300 988 __count_vm_event(HTLB_BUDDY_PGALLOC);
d1c3fb1f 989 } else {
a5516438
AK
990 h->nr_huge_pages--;
991 h->surplus_huge_pages--;
3b116300 992 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
7893d1d5 993 }
d1c3fb1f 994 spin_unlock(&hugetlb_lock);
7893d1d5
AL
995
996 return page;
997}
998
bf50bab2
NH
999/*
1000 * This allocation function is useful in the context where vma is irrelevant.
1001 * E.g. soft-offlining uses this function because it only cares physical
1002 * address of error page.
1003 */
1004struct page *alloc_huge_page_node(struct hstate *h, int nid)
1005{
4ef91848 1006 struct page *page = NULL;
bf50bab2
NH
1007
1008 spin_lock(&hugetlb_lock);
4ef91848
JK
1009 if (h->free_huge_pages - h->resv_huge_pages > 0)
1010 page = dequeue_huge_page_node(h, nid);
bf50bab2
NH
1011 spin_unlock(&hugetlb_lock);
1012
94ae8ba7 1013 if (!page)
bf50bab2
NH
1014 page = alloc_buddy_huge_page(h, nid);
1015
1016 return page;
1017}
1018
e4e574b7 1019/*
25985edc 1020 * Increase the hugetlb pool such that it can accommodate a reservation
e4e574b7
AL
1021 * of size 'delta'.
1022 */
a5516438 1023static int gather_surplus_pages(struct hstate *h, int delta)
e4e574b7
AL
1024{
1025 struct list_head surplus_list;
1026 struct page *page, *tmp;
1027 int ret, i;
1028 int needed, allocated;
28073b02 1029 bool alloc_ok = true;
e4e574b7 1030
a5516438 1031 needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
ac09b3a1 1032 if (needed <= 0) {
a5516438 1033 h->resv_huge_pages += delta;
e4e574b7 1034 return 0;
ac09b3a1 1035 }
e4e574b7
AL
1036
1037 allocated = 0;
1038 INIT_LIST_HEAD(&surplus_list);
1039
1040 ret = -ENOMEM;
1041retry:
1042 spin_unlock(&hugetlb_lock);
1043 for (i = 0; i < needed; i++) {
bf50bab2 1044 page = alloc_buddy_huge_page(h, NUMA_NO_NODE);
28073b02
HD
1045 if (!page) {
1046 alloc_ok = false;
1047 break;
1048 }
e4e574b7
AL
1049 list_add(&page->lru, &surplus_list);
1050 }
28073b02 1051 allocated += i;
e4e574b7
AL
1052
1053 /*
1054 * After retaking hugetlb_lock, we need to recalculate 'needed'
1055 * because either resv_huge_pages or free_huge_pages may have changed.
1056 */
1057 spin_lock(&hugetlb_lock);
a5516438
AK
1058 needed = (h->resv_huge_pages + delta) -
1059 (h->free_huge_pages + allocated);
28073b02
HD
1060 if (needed > 0) {
1061 if (alloc_ok)
1062 goto retry;
1063 /*
1064 * We were not able to allocate enough pages to
1065 * satisfy the entire reservation so we free what
1066 * we've allocated so far.
1067 */
1068 goto free;
1069 }
e4e574b7
AL
1070 /*
1071 * The surplus_list now contains _at_least_ the number of extra pages
25985edc 1072 * needed to accommodate the reservation. Add the appropriate number
e4e574b7 1073 * of pages to the hugetlb pool and free the extras back to the buddy
ac09b3a1
AL
1074 * allocator. Commit the entire reservation here to prevent another
1075 * process from stealing the pages as they are added to the pool but
1076 * before they are reserved.
e4e574b7
AL
1077 */
1078 needed += allocated;
a5516438 1079 h->resv_huge_pages += delta;
e4e574b7 1080 ret = 0;
a9869b83 1081
19fc3f0a 1082 /* Free the needed pages to the hugetlb pool */
e4e574b7 1083 list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
19fc3f0a
AL
1084 if ((--needed) < 0)
1085 break;
a9869b83
NH
1086 /*
1087 * This page is now managed by the hugetlb allocator and has
1088 * no users -- drop the buddy allocator's reference.
1089 */
1090 put_page_testzero(page);
309381fe 1091 VM_BUG_ON_PAGE(page_count(page), page);
a5516438 1092 enqueue_huge_page(h, page);
19fc3f0a 1093 }
28073b02 1094free:
b0365c8d 1095 spin_unlock(&hugetlb_lock);
19fc3f0a
AL
1096
1097 /* Free unnecessary surplus pages to the buddy allocator */
c0d934ba
JK
1098 list_for_each_entry_safe(page, tmp, &surplus_list, lru)
1099 put_page(page);
a9869b83 1100 spin_lock(&hugetlb_lock);
e4e574b7
AL
1101
1102 return ret;
1103}
1104
1105/*
1106 * When releasing a hugetlb pool reservation, any surplus pages that were
1107 * allocated to satisfy the reservation must be explicitly freed if they were
1108 * never used.
685f3457 1109 * Called with hugetlb_lock held.
e4e574b7 1110 */
a5516438
AK
1111static void return_unused_surplus_pages(struct hstate *h,
1112 unsigned long unused_resv_pages)
e4e574b7 1113{
e4e574b7
AL
1114 unsigned long nr_pages;
1115
ac09b3a1 1116 /* Uncommit the reservation */
a5516438 1117 h->resv_huge_pages -= unused_resv_pages;
ac09b3a1 1118
aa888a74
AK
1119 /* Cannot return gigantic pages currently */
1120 if (h->order >= MAX_ORDER)
1121 return;
1122
a5516438 1123 nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
e4e574b7 1124
685f3457
LS
1125 /*
1126 * We want to release as many surplus pages as possible, spread
9b5e5d0f
LS
1127 * evenly across all nodes with memory. Iterate across these nodes
1128 * until we can no longer free unreserved surplus pages. This occurs
1129 * when the nodes with surplus pages have no free pages.
1130 * free_pool_huge_page() will balance the the freed pages across the
1131 * on-line nodes with memory and will handle the hstate accounting.
685f3457
LS
1132 */
1133 while (nr_pages--) {
8cebfcd0 1134 if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1))
685f3457 1135 break;
e4e574b7
AL
1136 }
1137}
1138
c37f9fb1
AW
1139/*
1140 * Determine if the huge page at addr within the vma has an associated
1141 * reservation. Where it does not we will need to logically increase
90481622
DG
1142 * reservation and actually increase subpool usage before an allocation
1143 * can occur. Where any new reservation would be required the
1144 * reservation change is prepared, but not committed. Once the page
1145 * has been allocated from the subpool and instantiated the change should
1146 * be committed via vma_commit_reservation. No action is required on
1147 * failure.
c37f9fb1 1148 */
e2f17d94 1149static long vma_needs_reservation(struct hstate *h,
a5516438 1150 struct vm_area_struct *vma, unsigned long addr)
c37f9fb1
AW
1151{
1152 struct address_space *mapping = vma->vm_file->f_mapping;
1153 struct inode *inode = mapping->host;
1154
f83a275d 1155 if (vma->vm_flags & VM_MAYSHARE) {
a5516438 1156 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
9119a41e
JK
1157 struct resv_map *resv = inode->i_mapping->private_data;
1158
1406ec9b 1159 return region_chg(resv, idx, idx + 1);
c37f9fb1 1160
84afd99b
AW
1161 } else if (!is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1162 return 1;
c37f9fb1 1163
84afd99b 1164 } else {
e2f17d94 1165 long err;
a5516438 1166 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
f522c3ac 1167 struct resv_map *resv = vma_resv_map(vma);
84afd99b 1168
1406ec9b 1169 err = region_chg(resv, idx, idx + 1);
84afd99b
AW
1170 if (err < 0)
1171 return err;
1172 return 0;
1173 }
c37f9fb1 1174}
a5516438
AK
1175static void vma_commit_reservation(struct hstate *h,
1176 struct vm_area_struct *vma, unsigned long addr)
c37f9fb1
AW
1177{
1178 struct address_space *mapping = vma->vm_file->f_mapping;
1179 struct inode *inode = mapping->host;
1180
f83a275d 1181 if (vma->vm_flags & VM_MAYSHARE) {
a5516438 1182 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
9119a41e
JK
1183 struct resv_map *resv = inode->i_mapping->private_data;
1184
1406ec9b 1185 region_add(resv, idx, idx + 1);
84afd99b
AW
1186
1187 } else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
a5516438 1188 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
f522c3ac 1189 struct resv_map *resv = vma_resv_map(vma);
84afd99b
AW
1190
1191 /* Mark this page used in the map. */
1406ec9b 1192 region_add(resv, idx, idx + 1);
c37f9fb1
AW
1193 }
1194}
1195
a1e78772 1196static struct page *alloc_huge_page(struct vm_area_struct *vma,
04f2cbe3 1197 unsigned long addr, int avoid_reserve)
1da177e4 1198{
90481622 1199 struct hugepage_subpool *spool = subpool_vma(vma);
a5516438 1200 struct hstate *h = hstate_vma(vma);
348ea204 1201 struct page *page;
e2f17d94 1202 long chg;
6d76dcf4
AK
1203 int ret, idx;
1204 struct hugetlb_cgroup *h_cg;
a1e78772 1205
6d76dcf4 1206 idx = hstate_index(h);
a1e78772 1207 /*
90481622
DG
1208 * Processes that did not create the mapping will have no
1209 * reserves and will not have accounted against subpool
1210 * limit. Check that the subpool limit can be made before
1211 * satisfying the allocation MAP_NORESERVE mappings may also
1212 * need pages and subpool limit allocated allocated if no reserve
1213 * mapping overlaps.
a1e78772 1214 */
a5516438 1215 chg = vma_needs_reservation(h, vma, addr);
c37f9fb1 1216 if (chg < 0)
76dcee75 1217 return ERR_PTR(-ENOMEM);
8bb3f12e
JK
1218 if (chg || avoid_reserve)
1219 if (hugepage_subpool_get_pages(spool, 1))
76dcee75 1220 return ERR_PTR(-ENOSPC);
1da177e4 1221
6d76dcf4
AK
1222 ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
1223 if (ret) {
8bb3f12e
JK
1224 if (chg || avoid_reserve)
1225 hugepage_subpool_put_pages(spool, 1);
6d76dcf4
AK
1226 return ERR_PTR(-ENOSPC);
1227 }
1da177e4 1228 spin_lock(&hugetlb_lock);
af0ed73e 1229 page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, chg);
81a6fcae 1230 if (!page) {
94ae8ba7 1231 spin_unlock(&hugetlb_lock);
bf50bab2 1232 page = alloc_buddy_huge_page(h, NUMA_NO_NODE);
68842c9b 1233 if (!page) {
6d76dcf4
AK
1234 hugetlb_cgroup_uncharge_cgroup(idx,
1235 pages_per_huge_page(h),
1236 h_cg);
8bb3f12e
JK
1237 if (chg || avoid_reserve)
1238 hugepage_subpool_put_pages(spool, 1);
76dcee75 1239 return ERR_PTR(-ENOSPC);
68842c9b 1240 }
79dbb236
AK
1241 spin_lock(&hugetlb_lock);
1242 list_move(&page->lru, &h->hugepage_activelist);
81a6fcae 1243 /* Fall through */
68842c9b 1244 }
81a6fcae
JK
1245 hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
1246 spin_unlock(&hugetlb_lock);
348ea204 1247
90481622 1248 set_page_private(page, (unsigned long)spool);
90d8b7e6 1249
a5516438 1250 vma_commit_reservation(h, vma, addr);
90d8b7e6 1251 return page;
b45b5bd6
DG
1252}
1253
74060e4d
NH
1254/*
1255 * alloc_huge_page()'s wrapper which simply returns the page if allocation
1256 * succeeds, otherwise NULL. This function is called from new_vma_page(),
1257 * where no ERR_VALUE is expected to be returned.
1258 */
1259struct page *alloc_huge_page_noerr(struct vm_area_struct *vma,
1260 unsigned long addr, int avoid_reserve)
1261{
1262 struct page *page = alloc_huge_page(vma, addr, avoid_reserve);
1263 if (IS_ERR(page))
1264 page = NULL;
1265 return page;
1266}
1267
91f47662 1268int __weak alloc_bootmem_huge_page(struct hstate *h)
aa888a74
AK
1269{
1270 struct huge_bootmem_page *m;
b2261026 1271 int nr_nodes, node;
aa888a74 1272
b2261026 1273 for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
aa888a74
AK
1274 void *addr;
1275
8b89a116
GS
1276 addr = memblock_virt_alloc_try_nid_nopanic(
1277 huge_page_size(h), huge_page_size(h),
1278 0, BOOTMEM_ALLOC_ACCESSIBLE, node);
aa888a74
AK
1279 if (addr) {
1280 /*
1281 * Use the beginning of the huge page to store the
1282 * huge_bootmem_page struct (until gather_bootmem
1283 * puts them into the mem_map).
1284 */
1285 m = addr;
91f47662 1286 goto found;
aa888a74 1287 }
aa888a74
AK
1288 }
1289 return 0;
1290
1291found:
1292 BUG_ON((unsigned long)virt_to_phys(m) & (huge_page_size(h) - 1));
1293 /* Put them into a private list first because mem_map is not up yet */
1294 list_add(&m->list, &huge_boot_pages);
1295 m->hstate = h;
1296 return 1;
1297}
1298
18229df5
AW
1299static void prep_compound_huge_page(struct page *page, int order)
1300{
1301 if (unlikely(order > (MAX_ORDER - 1)))
1302 prep_compound_gigantic_page(page, order);
1303 else
1304 prep_compound_page(page, order);
1305}
1306
aa888a74
AK
1307/* Put bootmem huge pages into the standard lists after mem_map is up */
1308static void __init gather_bootmem_prealloc(void)
1309{
1310 struct huge_bootmem_page *m;
1311
1312 list_for_each_entry(m, &huge_boot_pages, list) {
aa888a74 1313 struct hstate *h = m->hstate;
ee8f248d
BB
1314 struct page *page;
1315
1316#ifdef CONFIG_HIGHMEM
1317 page = pfn_to_page(m->phys >> PAGE_SHIFT);
8b89a116
GS
1318 memblock_free_late(__pa(m),
1319 sizeof(struct huge_bootmem_page));
ee8f248d
BB
1320#else
1321 page = virt_to_page(m);
1322#endif
aa888a74 1323 WARN_ON(page_count(page) != 1);
18229df5 1324 prep_compound_huge_page(page, h->order);
ef5a22be 1325 WARN_ON(PageReserved(page));
aa888a74 1326 prep_new_huge_page(h, page, page_to_nid(page));
b0320c7b
RA
1327 /*
1328 * If we had gigantic hugepages allocated at boot time, we need
1329 * to restore the 'stolen' pages to totalram_pages in order to
1330 * fix confusing memory reports from free(1) and another
1331 * side-effects, like CommitLimit going negative.
1332 */
1333 if (h->order > (MAX_ORDER - 1))
3dcc0571 1334 adjust_managed_page_count(page, 1 << h->order);
aa888a74
AK
1335 }
1336}
1337
8faa8b07 1338static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
1da177e4
LT
1339{
1340 unsigned long i;
a5516438 1341
e5ff2159 1342 for (i = 0; i < h->max_huge_pages; ++i) {
aa888a74
AK
1343 if (h->order >= MAX_ORDER) {
1344 if (!alloc_bootmem_huge_page(h))
1345 break;
9b5e5d0f 1346 } else if (!alloc_fresh_huge_page(h,
8cebfcd0 1347 &node_states[N_MEMORY]))
1da177e4 1348 break;
1da177e4 1349 }
8faa8b07 1350 h->max_huge_pages = i;
e5ff2159
AK
1351}
1352
1353static void __init hugetlb_init_hstates(void)
1354{
1355 struct hstate *h;
1356
1357 for_each_hstate(h) {
8faa8b07
AK
1358 /* oversize hugepages were init'ed in early boot */
1359 if (h->order < MAX_ORDER)
1360 hugetlb_hstate_alloc_pages(h);
e5ff2159
AK
1361 }
1362}
1363
4abd32db
AK
1364static char * __init memfmt(char *buf, unsigned long n)
1365{
1366 if (n >= (1UL << 30))
1367 sprintf(buf, "%lu GB", n >> 30);
1368 else if (n >= (1UL << 20))
1369 sprintf(buf, "%lu MB", n >> 20);
1370 else
1371 sprintf(buf, "%lu KB", n >> 10);
1372 return buf;
1373}
1374
e5ff2159
AK
1375static void __init report_hugepages(void)
1376{
1377 struct hstate *h;
1378
1379 for_each_hstate(h) {
4abd32db 1380 char buf[32];
ffb22af5 1381 pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
4abd32db
AK
1382 memfmt(buf, huge_page_size(h)),
1383 h->free_huge_pages);
e5ff2159
AK
1384 }
1385}
1386
1da177e4 1387#ifdef CONFIG_HIGHMEM
6ae11b27
LS
1388static void try_to_free_low(struct hstate *h, unsigned long count,
1389 nodemask_t *nodes_allowed)
1da177e4 1390{
4415cc8d
CL
1391 int i;
1392
aa888a74
AK
1393 if (h->order >= MAX_ORDER)
1394 return;
1395
6ae11b27 1396 for_each_node_mask(i, *nodes_allowed) {
1da177e4 1397 struct page *page, *next;
a5516438
AK
1398 struct list_head *freel = &h->hugepage_freelists[i];
1399 list_for_each_entry_safe(page, next, freel, lru) {
1400 if (count >= h->nr_huge_pages)
6b0c880d 1401 return;
1da177e4
LT
1402 if (PageHighMem(page))
1403 continue;
1404 list_del(&page->lru);
e5ff2159 1405 update_and_free_page(h, page);
a5516438
AK
1406 h->free_huge_pages--;
1407 h->free_huge_pages_node[page_to_nid(page)]--;
1da177e4
LT
1408 }
1409 }
1410}
1411#else
6ae11b27
LS
1412static inline void try_to_free_low(struct hstate *h, unsigned long count,
1413 nodemask_t *nodes_allowed)
1da177e4
LT
1414{
1415}
1416#endif
1417
20a0307c
WF
1418/*
1419 * Increment or decrement surplus_huge_pages. Keep node-specific counters
1420 * balanced by operating on them in a round-robin fashion.
1421 * Returns 1 if an adjustment was made.
1422 */
6ae11b27
LS
1423static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
1424 int delta)
20a0307c 1425{
b2261026 1426 int nr_nodes, node;
20a0307c
WF
1427
1428 VM_BUG_ON(delta != -1 && delta != 1);
20a0307c 1429
b2261026
JK
1430 if (delta < 0) {
1431 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1432 if (h->surplus_huge_pages_node[node])
1433 goto found;
e8c5c824 1434 }
b2261026
JK
1435 } else {
1436 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
1437 if (h->surplus_huge_pages_node[node] <
1438 h->nr_huge_pages_node[node])
1439 goto found;
e8c5c824 1440 }
b2261026
JK
1441 }
1442 return 0;
20a0307c 1443
b2261026
JK
1444found:
1445 h->surplus_huge_pages += delta;
1446 h->surplus_huge_pages_node[node] += delta;
1447 return 1;
20a0307c
WF
1448}
1449
a5516438 1450#define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
6ae11b27
LS
1451static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count,
1452 nodemask_t *nodes_allowed)
1da177e4 1453{
7893d1d5 1454 unsigned long min_count, ret;
1da177e4 1455
aa888a74
AK
1456 if (h->order >= MAX_ORDER)
1457 return h->max_huge_pages;
1458
7893d1d5
AL
1459 /*
1460 * Increase the pool size
1461 * First take pages out of surplus state. Then make up the
1462 * remaining difference by allocating fresh huge pages.
d1c3fb1f
NA
1463 *
1464 * We might race with alloc_buddy_huge_page() here and be unable
1465 * to convert a surplus huge page to a normal huge page. That is
1466 * not critical, though, it just means the overall size of the
1467 * pool might be one hugepage larger than it needs to be, but
1468 * within all the constraints specified by the sysctls.
7893d1d5 1469 */
1da177e4 1470 spin_lock(&hugetlb_lock);
a5516438 1471 while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
6ae11b27 1472 if (!adjust_pool_surplus(h, nodes_allowed, -1))
7893d1d5
AL
1473 break;
1474 }
1475
a5516438 1476 while (count > persistent_huge_pages(h)) {
7893d1d5
AL
1477 /*
1478 * If this allocation races such that we no longer need the
1479 * page, free_huge_page will handle it by freeing the page
1480 * and reducing the surplus.
1481 */
1482 spin_unlock(&hugetlb_lock);
6ae11b27 1483 ret = alloc_fresh_huge_page(h, nodes_allowed);
7893d1d5
AL
1484 spin_lock(&hugetlb_lock);
1485 if (!ret)
1486 goto out;
1487
536240f2
MG
1488 /* Bail for signals. Probably ctrl-c from user */
1489 if (signal_pending(current))
1490 goto out;
7893d1d5 1491 }
7893d1d5
AL
1492
1493 /*
1494 * Decrease the pool size
1495 * First return free pages to the buddy allocator (being careful
1496 * to keep enough around to satisfy reservations). Then place
1497 * pages into surplus state as needed so the pool will shrink
1498 * to the desired size as pages become free.
d1c3fb1f
NA
1499 *
1500 * By placing pages into the surplus state independent of the
1501 * overcommit value, we are allowing the surplus pool size to
1502 * exceed overcommit. There are few sane options here. Since
1503 * alloc_buddy_huge_page() is checking the global counter,
1504 * though, we'll note that we're not allowed to exceed surplus
1505 * and won't grow the pool anywhere else. Not until one of the
1506 * sysctls are changed, or the surplus pages go out of use.
7893d1d5 1507 */
a5516438 1508 min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
6b0c880d 1509 min_count = max(count, min_count);
6ae11b27 1510 try_to_free_low(h, min_count, nodes_allowed);
a5516438 1511 while (min_count < persistent_huge_pages(h)) {
6ae11b27 1512 if (!free_pool_huge_page(h, nodes_allowed, 0))
1da177e4 1513 break;
1da177e4 1514 }
a5516438 1515 while (count < persistent_huge_pages(h)) {
6ae11b27 1516 if (!adjust_pool_surplus(h, nodes_allowed, 1))
7893d1d5
AL
1517 break;
1518 }
1519out:
a5516438 1520 ret = persistent_huge_pages(h);
1da177e4 1521 spin_unlock(&hugetlb_lock);
7893d1d5 1522 return ret;
1da177e4
LT
1523}
1524
a3437870
NA
1525#define HSTATE_ATTR_RO(_name) \
1526 static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
1527
1528#define HSTATE_ATTR(_name) \
1529 static struct kobj_attribute _name##_attr = \
1530 __ATTR(_name, 0644, _name##_show, _name##_store)
1531
1532static struct kobject *hugepages_kobj;
1533static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
1534
9a305230
LS
1535static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
1536
1537static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
a3437870
NA
1538{
1539 int i;
9a305230 1540
a3437870 1541 for (i = 0; i < HUGE_MAX_HSTATE; i++)
9a305230
LS
1542 if (hstate_kobjs[i] == kobj) {
1543 if (nidp)
1544 *nidp = NUMA_NO_NODE;
a3437870 1545 return &hstates[i];
9a305230
LS
1546 }
1547
1548 return kobj_to_node_hstate(kobj, nidp);
a3437870
NA
1549}
1550
06808b08 1551static ssize_t nr_hugepages_show_common(struct kobject *kobj,
a3437870
NA
1552 struct kobj_attribute *attr, char *buf)
1553{
9a305230
LS
1554 struct hstate *h;
1555 unsigned long nr_huge_pages;
1556 int nid;
1557
1558 h = kobj_to_hstate(kobj, &nid);
1559 if (nid == NUMA_NO_NODE)
1560 nr_huge_pages = h->nr_huge_pages;
1561 else
1562 nr_huge_pages = h->nr_huge_pages_node[nid];
1563
1564 return sprintf(buf, "%lu\n", nr_huge_pages);
a3437870 1565}
adbe8726 1566
06808b08
LS
1567static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
1568 struct kobject *kobj, struct kobj_attribute *attr,
1569 const char *buf, size_t len)
a3437870
NA
1570{
1571 int err;
9a305230 1572 int nid;
06808b08 1573 unsigned long count;
9a305230 1574 struct hstate *h;
bad44b5b 1575 NODEMASK_ALLOC(nodemask_t, nodes_allowed, GFP_KERNEL | __GFP_NORETRY);
a3437870 1576
3dbb95f7 1577 err = kstrtoul(buf, 10, &count);
73ae31e5 1578 if (err)
adbe8726 1579 goto out;
a3437870 1580
9a305230 1581 h = kobj_to_hstate(kobj, &nid);
adbe8726
EM
1582 if (h->order >= MAX_ORDER) {
1583 err = -EINVAL;
1584 goto out;
1585 }
1586
9a305230
LS
1587 if (nid == NUMA_NO_NODE) {
1588 /*
1589 * global hstate attribute
1590 */
1591 if (!(obey_mempolicy &&
1592 init_nodemask_of_mempolicy(nodes_allowed))) {
1593 NODEMASK_FREE(nodes_allowed);
8cebfcd0 1594 nodes_allowed = &node_states[N_MEMORY];
9a305230
LS
1595 }
1596 } else if (nodes_allowed) {
1597 /*
1598 * per node hstate attribute: adjust count to global,
1599 * but restrict alloc/free to the specified node.
1600 */
1601 count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
1602 init_nodemask_of_node(nodes_allowed, nid);
1603 } else
8cebfcd0 1604 nodes_allowed = &node_states[N_MEMORY];
9a305230 1605
06808b08 1606 h->max_huge_pages = set_max_huge_pages(h, count, nodes_allowed);
a3437870 1607
8cebfcd0 1608 if (nodes_allowed != &node_states[N_MEMORY])
06808b08
LS
1609 NODEMASK_FREE(nodes_allowed);
1610
1611 return len;
adbe8726
EM
1612out:
1613 NODEMASK_FREE(nodes_allowed);
1614 return err;
06808b08
LS
1615}
1616
1617static ssize_t nr_hugepages_show(struct kobject *kobj,
1618 struct kobj_attribute *attr, char *buf)
1619{
1620 return nr_hugepages_show_common(kobj, attr, buf);
1621}
1622
1623static ssize_t nr_hugepages_store(struct kobject *kobj,
1624 struct kobj_attribute *attr, const char *buf, size_t len)
1625{
1626 return nr_hugepages_store_common(false, kobj, attr, buf, len);
a3437870
NA
1627}
1628HSTATE_ATTR(nr_hugepages);
1629
06808b08
LS
1630#ifdef CONFIG_NUMA
1631
1632/*
1633 * hstate attribute for optionally mempolicy-based constraint on persistent
1634 * huge page alloc/free.
1635 */
1636static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
1637 struct kobj_attribute *attr, char *buf)
1638{
1639 return nr_hugepages_show_common(kobj, attr, buf);
1640}
1641
1642static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
1643 struct kobj_attribute *attr, const char *buf, size_t len)
1644{
1645 return nr_hugepages_store_common(true, kobj, attr, buf, len);
1646}
1647HSTATE_ATTR(nr_hugepages_mempolicy);
1648#endif
1649
1650
a3437870
NA
1651static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
1652 struct kobj_attribute *attr, char *buf)
1653{
9a305230 1654 struct hstate *h = kobj_to_hstate(kobj, NULL);
a3437870
NA
1655 return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
1656}
adbe8726 1657
a3437870
NA
1658static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
1659 struct kobj_attribute *attr, const char *buf, size_t count)
1660{
1661 int err;
1662 unsigned long input;
9a305230 1663 struct hstate *h = kobj_to_hstate(kobj, NULL);
a3437870 1664
adbe8726
EM
1665 if (h->order >= MAX_ORDER)
1666 return -EINVAL;
1667
3dbb95f7 1668 err = kstrtoul(buf, 10, &input);
a3437870 1669 if (err)
73ae31e5 1670 return err;
a3437870
NA
1671
1672 spin_lock(&hugetlb_lock);
1673 h->nr_overcommit_huge_pages = input;
1674 spin_unlock(&hugetlb_lock);
1675
1676 return count;
1677}
1678HSTATE_ATTR(nr_overcommit_hugepages);
1679
1680static ssize_t free_hugepages_show(struct kobject *kobj,
1681 struct kobj_attribute *attr, char *buf)
1682{
9a305230
LS
1683 struct hstate *h;
1684 unsigned long free_huge_pages;
1685 int nid;
1686
1687 h = kobj_to_hstate(kobj, &nid);
1688 if (nid == NUMA_NO_NODE)
1689 free_huge_pages = h->free_huge_pages;
1690 else
1691 free_huge_pages = h->free_huge_pages_node[nid];
1692
1693 return sprintf(buf, "%lu\n", free_huge_pages);
a3437870
NA
1694}
1695HSTATE_ATTR_RO(free_hugepages);
1696
1697static ssize_t resv_hugepages_show(struct kobject *kobj,
1698 struct kobj_attribute *attr, char *buf)
1699{
9a305230 1700 struct hstate *h = kobj_to_hstate(kobj, NULL);
a3437870
NA
1701 return sprintf(buf, "%lu\n", h->resv_huge_pages);
1702}
1703HSTATE_ATTR_RO(resv_hugepages);
1704
1705static ssize_t surplus_hugepages_show(struct kobject *kobj,
1706 struct kobj_attribute *attr, char *buf)
1707{
9a305230
LS
1708 struct hstate *h;
1709 unsigned long surplus_huge_pages;
1710 int nid;
1711
1712 h = kobj_to_hstate(kobj, &nid);
1713 if (nid == NUMA_NO_NODE)
1714 surplus_huge_pages = h->surplus_huge_pages;
1715 else
1716 surplus_huge_pages = h->surplus_huge_pages_node[nid];
1717
1718 return sprintf(buf, "%lu\n", surplus_huge_pages);
a3437870
NA
1719}
1720HSTATE_ATTR_RO(surplus_hugepages);
1721
1722static struct attribute *hstate_attrs[] = {
1723 &nr_hugepages_attr.attr,
1724 &nr_overcommit_hugepages_attr.attr,
1725 &free_hugepages_attr.attr,
1726 &resv_hugepages_attr.attr,
1727 &surplus_hugepages_attr.attr,
06808b08
LS
1728#ifdef CONFIG_NUMA
1729 &nr_hugepages_mempolicy_attr.attr,
1730#endif
a3437870
NA
1731 NULL,
1732};
1733
1734static struct attribute_group hstate_attr_group = {
1735 .attrs = hstate_attrs,
1736};
1737
094e9539
JM
1738static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
1739 struct kobject **hstate_kobjs,
1740 struct attribute_group *hstate_attr_group)
a3437870
NA
1741{
1742 int retval;
972dc4de 1743 int hi = hstate_index(h);
a3437870 1744
9a305230
LS
1745 hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
1746 if (!hstate_kobjs[hi])
a3437870
NA
1747 return -ENOMEM;
1748
9a305230 1749 retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
a3437870 1750 if (retval)
9a305230 1751 kobject_put(hstate_kobjs[hi]);
a3437870
NA
1752
1753 return retval;
1754}
1755
1756static void __init hugetlb_sysfs_init(void)
1757{
1758 struct hstate *h;
1759 int err;
1760
1761 hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
1762 if (!hugepages_kobj)
1763 return;
1764
1765 for_each_hstate(h) {
9a305230
LS
1766 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
1767 hstate_kobjs, &hstate_attr_group);
a3437870 1768 if (err)
ffb22af5 1769 pr_err("Hugetlb: Unable to add hstate %s", h->name);
a3437870
NA
1770 }
1771}
1772
9a305230
LS
1773#ifdef CONFIG_NUMA
1774
1775/*
1776 * node_hstate/s - associate per node hstate attributes, via their kobjects,
10fbcf4c
KS
1777 * with node devices in node_devices[] using a parallel array. The array
1778 * index of a node device or _hstate == node id.
1779 * This is here to avoid any static dependency of the node device driver, in
9a305230
LS
1780 * the base kernel, on the hugetlb module.
1781 */
1782struct node_hstate {
1783 struct kobject *hugepages_kobj;
1784 struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
1785};
1786struct node_hstate node_hstates[MAX_NUMNODES];
1787
1788/*
10fbcf4c 1789 * A subset of global hstate attributes for node devices
9a305230
LS
1790 */
1791static struct attribute *per_node_hstate_attrs[] = {
1792 &nr_hugepages_attr.attr,
1793 &free_hugepages_attr.attr,
1794 &surplus_hugepages_attr.attr,
1795 NULL,
1796};
1797
1798static struct attribute_group per_node_hstate_attr_group = {
1799 .attrs = per_node_hstate_attrs,
1800};
1801
1802/*
10fbcf4c 1803 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
9a305230
LS
1804 * Returns node id via non-NULL nidp.
1805 */
1806static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
1807{
1808 int nid;
1809
1810 for (nid = 0; nid < nr_node_ids; nid++) {
1811 struct node_hstate *nhs = &node_hstates[nid];
1812 int i;
1813 for (i = 0; i < HUGE_MAX_HSTATE; i++)
1814 if (nhs->hstate_kobjs[i] == kobj) {
1815 if (nidp)
1816 *nidp = nid;
1817 return &hstates[i];
1818 }
1819 }
1820
1821 BUG();
1822 return NULL;
1823}
1824
1825/*
10fbcf4c 1826 * Unregister hstate attributes from a single node device.
9a305230
LS
1827 * No-op if no hstate attributes attached.
1828 */
3cd8b44f 1829static void hugetlb_unregister_node(struct node *node)
9a305230
LS
1830{
1831 struct hstate *h;
10fbcf4c 1832 struct node_hstate *nhs = &node_hstates[node->dev.id];
9a305230
LS
1833
1834 if (!nhs->hugepages_kobj)
9b5e5d0f 1835 return; /* no hstate attributes */
9a305230 1836
972dc4de
AK
1837 for_each_hstate(h) {
1838 int idx = hstate_index(h);
1839 if (nhs->hstate_kobjs[idx]) {
1840 kobject_put(nhs->hstate_kobjs[idx]);
1841 nhs->hstate_kobjs[idx] = NULL;
9a305230 1842 }
972dc4de 1843 }
9a305230
LS
1844
1845 kobject_put(nhs->hugepages_kobj);
1846 nhs->hugepages_kobj = NULL;
1847}
1848
1849/*
10fbcf4c 1850 * hugetlb module exit: unregister hstate attributes from node devices
9a305230
LS
1851 * that have them.
1852 */
1853static void hugetlb_unregister_all_nodes(void)
1854{
1855 int nid;
1856
1857 /*
10fbcf4c 1858 * disable node device registrations.
9a305230
LS
1859 */
1860 register_hugetlbfs_with_node(NULL, NULL);
1861
1862 /*
1863 * remove hstate attributes from any nodes that have them.
1864 */
1865 for (nid = 0; nid < nr_node_ids; nid++)
8732794b 1866 hugetlb_unregister_node(node_devices[nid]);
9a305230
LS
1867}
1868
1869/*
10fbcf4c 1870 * Register hstate attributes for a single node device.
9a305230
LS
1871 * No-op if attributes already registered.
1872 */
3cd8b44f 1873static void hugetlb_register_node(struct node *node)
9a305230
LS
1874{
1875 struct hstate *h;
10fbcf4c 1876 struct node_hstate *nhs = &node_hstates[node->dev.id];
9a305230
LS
1877 int err;
1878
1879 if (nhs->hugepages_kobj)
1880 return; /* already allocated */
1881
1882 nhs->hugepages_kobj = kobject_create_and_add("hugepages",
10fbcf4c 1883 &node->dev.kobj);
9a305230
LS
1884 if (!nhs->hugepages_kobj)
1885 return;
1886
1887 for_each_hstate(h) {
1888 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
1889 nhs->hstate_kobjs,
1890 &per_node_hstate_attr_group);
1891 if (err) {
ffb22af5
AM
1892 pr_err("Hugetlb: Unable to add hstate %s for node %d\n",
1893 h->name, node->dev.id);
9a305230
LS
1894 hugetlb_unregister_node(node);
1895 break;
1896 }
1897 }
1898}
1899
1900/*
9b5e5d0f 1901 * hugetlb init time: register hstate attributes for all registered node
10fbcf4c
KS
1902 * devices of nodes that have memory. All on-line nodes should have
1903 * registered their associated device by this time.
9a305230
LS
1904 */
1905static void hugetlb_register_all_nodes(void)
1906{
1907 int nid;
1908
8cebfcd0 1909 for_each_node_state(nid, N_MEMORY) {
8732794b 1910 struct node *node = node_devices[nid];
10fbcf4c 1911 if (node->dev.id == nid)
9a305230
LS
1912 hugetlb_register_node(node);
1913 }
1914
1915 /*
10fbcf4c 1916 * Let the node device driver know we're here so it can
9a305230
LS
1917 * [un]register hstate attributes on node hotplug.
1918 */
1919 register_hugetlbfs_with_node(hugetlb_register_node,
1920 hugetlb_unregister_node);
1921}
1922#else /* !CONFIG_NUMA */
1923
1924static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
1925{
1926 BUG();
1927 if (nidp)
1928 *nidp = -1;
1929 return NULL;
1930}
1931
1932static void hugetlb_unregister_all_nodes(void) { }
1933
1934static void hugetlb_register_all_nodes(void) { }
1935
1936#endif
1937
a3437870
NA
1938static void __exit hugetlb_exit(void)
1939{
1940 struct hstate *h;
1941
9a305230
LS
1942 hugetlb_unregister_all_nodes();
1943
a3437870 1944 for_each_hstate(h) {
972dc4de 1945 kobject_put(hstate_kobjs[hstate_index(h)]);
a3437870
NA
1946 }
1947
1948 kobject_put(hugepages_kobj);
1949}
1950module_exit(hugetlb_exit);
1951
1952static int __init hugetlb_init(void)
1953{
0ef89d25
BH
1954 /* Some platform decide whether they support huge pages at boot
1955 * time. On these, such as powerpc, HPAGE_SHIFT is set to 0 when
1956 * there is no such support
1957 */
1958 if (HPAGE_SHIFT == 0)
1959 return 0;
a3437870 1960
e11bfbfc
NP
1961 if (!size_to_hstate(default_hstate_size)) {
1962 default_hstate_size = HPAGE_SIZE;
1963 if (!size_to_hstate(default_hstate_size))
1964 hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
a3437870 1965 }
972dc4de 1966 default_hstate_idx = hstate_index(size_to_hstate(default_hstate_size));
e11bfbfc
NP
1967 if (default_hstate_max_huge_pages)
1968 default_hstate.max_huge_pages = default_hstate_max_huge_pages;
a3437870
NA
1969
1970 hugetlb_init_hstates();
aa888a74 1971 gather_bootmem_prealloc();
a3437870
NA
1972 report_hugepages();
1973
1974 hugetlb_sysfs_init();
9a305230 1975 hugetlb_register_all_nodes();
7179e7bf 1976 hugetlb_cgroup_file_init();
9a305230 1977
a3437870
NA
1978 return 0;
1979}
1980module_init(hugetlb_init);
1981
1982/* Should be called on processing a hugepagesz=... option */
1983void __init hugetlb_add_hstate(unsigned order)
1984{
1985 struct hstate *h;
8faa8b07
AK
1986 unsigned long i;
1987
a3437870 1988 if (size_to_hstate(PAGE_SIZE << order)) {
ffb22af5 1989 pr_warning("hugepagesz= specified twice, ignoring\n");
a3437870
NA
1990 return;
1991 }
47d38344 1992 BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
a3437870 1993 BUG_ON(order == 0);
47d38344 1994 h = &hstates[hugetlb_max_hstate++];
a3437870
NA
1995 h->order = order;
1996 h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
8faa8b07
AK
1997 h->nr_huge_pages = 0;
1998 h->free_huge_pages = 0;
1999 for (i = 0; i < MAX_NUMNODES; ++i)
2000 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
0edaecfa 2001 INIT_LIST_HEAD(&h->hugepage_activelist);
8cebfcd0
LJ
2002 h->next_nid_to_alloc = first_node(node_states[N_MEMORY]);
2003 h->next_nid_to_free = first_node(node_states[N_MEMORY]);
a3437870
NA
2004 snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
2005 huge_page_size(h)/1024);
8faa8b07 2006
a3437870
NA
2007 parsed_hstate = h;
2008}
2009
e11bfbfc 2010static int __init hugetlb_nrpages_setup(char *s)
a3437870
NA
2011{
2012 unsigned long *mhp;
8faa8b07 2013 static unsigned long *last_mhp;
a3437870
NA
2014
2015 /*
47d38344 2016 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter yet,
a3437870
NA
2017 * so this hugepages= parameter goes to the "default hstate".
2018 */
47d38344 2019 if (!hugetlb_max_hstate)
a3437870
NA
2020 mhp = &default_hstate_max_huge_pages;
2021 else
2022 mhp = &parsed_hstate->max_huge_pages;
2023
8faa8b07 2024 if (mhp == last_mhp) {
ffb22af5
AM
2025 pr_warning("hugepages= specified twice without "
2026 "interleaving hugepagesz=, ignoring\n");
8faa8b07
AK
2027 return 1;
2028 }
2029
a3437870
NA
2030 if (sscanf(s, "%lu", mhp) <= 0)
2031 *mhp = 0;
2032
8faa8b07
AK
2033 /*
2034 * Global state is always initialized later in hugetlb_init.
2035 * But we need to allocate >= MAX_ORDER hstates here early to still
2036 * use the bootmem allocator.
2037 */
47d38344 2038 if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER)
8faa8b07
AK
2039 hugetlb_hstate_alloc_pages(parsed_hstate);
2040
2041 last_mhp = mhp;
2042
a3437870
NA
2043 return 1;
2044}
e11bfbfc
NP
2045__setup("hugepages=", hugetlb_nrpages_setup);
2046
2047static int __init hugetlb_default_setup(char *s)
2048{
2049 default_hstate_size = memparse(s, &s);
2050 return 1;
2051}
2052__setup("default_hugepagesz=", hugetlb_default_setup);
a3437870 2053
8a213460
NA
2054static unsigned int cpuset_mems_nr(unsigned int *array)
2055{
2056 int node;
2057 unsigned int nr = 0;
2058
2059 for_each_node_mask(node, cpuset_current_mems_allowed)
2060 nr += array[node];
2061
2062 return nr;
2063}
2064
2065#ifdef CONFIG_SYSCTL
06808b08
LS
2066static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
2067 struct ctl_table *table, int write,
2068 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 2069{
e5ff2159
AK
2070 struct hstate *h = &default_hstate;
2071 unsigned long tmp;
08d4a246 2072 int ret;
e5ff2159 2073
c033a93c 2074 tmp = h->max_huge_pages;
e5ff2159 2075
adbe8726
EM
2076 if (write && h->order >= MAX_ORDER)
2077 return -EINVAL;
2078
e5ff2159
AK
2079 table->data = &tmp;
2080 table->maxlen = sizeof(unsigned long);
08d4a246
MH
2081 ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2082 if (ret)
2083 goto out;
e5ff2159 2084
06808b08 2085 if (write) {
bad44b5b
DR
2086 NODEMASK_ALLOC(nodemask_t, nodes_allowed,
2087 GFP_KERNEL | __GFP_NORETRY);
06808b08
LS
2088 if (!(obey_mempolicy &&
2089 init_nodemask_of_mempolicy(nodes_allowed))) {
2090 NODEMASK_FREE(nodes_allowed);
8cebfcd0 2091 nodes_allowed = &node_states[N_MEMORY];
06808b08
LS
2092 }
2093 h->max_huge_pages = set_max_huge_pages(h, tmp, nodes_allowed);
2094
8cebfcd0 2095 if (nodes_allowed != &node_states[N_MEMORY])
06808b08
LS
2096 NODEMASK_FREE(nodes_allowed);
2097 }
08d4a246
MH
2098out:
2099 return ret;
1da177e4 2100}
396faf03 2101
06808b08
LS
2102int hugetlb_sysctl_handler(struct ctl_table *table, int write,
2103 void __user *buffer, size_t *length, loff_t *ppos)
2104{
2105
2106 return hugetlb_sysctl_handler_common(false, table, write,
2107 buffer, length, ppos);
2108}
2109
2110#ifdef CONFIG_NUMA
2111int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
2112 void __user *buffer, size_t *length, loff_t *ppos)
2113{
2114 return hugetlb_sysctl_handler_common(true, table, write,
2115 buffer, length, ppos);
2116}
2117#endif /* CONFIG_NUMA */
2118
a3d0c6aa 2119int hugetlb_overcommit_handler(struct ctl_table *table, int write,
8d65af78 2120 void __user *buffer,
a3d0c6aa
NA
2121 size_t *length, loff_t *ppos)
2122{
a5516438 2123 struct hstate *h = &default_hstate;
e5ff2159 2124 unsigned long tmp;
08d4a246 2125 int ret;
e5ff2159 2126
c033a93c 2127 tmp = h->nr_overcommit_huge_pages;
e5ff2159 2128
adbe8726
EM
2129 if (write && h->order >= MAX_ORDER)
2130 return -EINVAL;
2131
e5ff2159
AK
2132 table->data = &tmp;
2133 table->maxlen = sizeof(unsigned long);
08d4a246
MH
2134 ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2135 if (ret)
2136 goto out;
e5ff2159
AK
2137
2138 if (write) {
2139 spin_lock(&hugetlb_lock);
2140 h->nr_overcommit_huge_pages = tmp;
2141 spin_unlock(&hugetlb_lock);
2142 }
08d4a246
MH
2143out:
2144 return ret;
a3d0c6aa
NA
2145}
2146
1da177e4
LT
2147#endif /* CONFIG_SYSCTL */
2148
e1759c21 2149void hugetlb_report_meminfo(struct seq_file *m)
1da177e4 2150{
a5516438 2151 struct hstate *h = &default_hstate;
e1759c21 2152 seq_printf(m,
4f98a2fe
RR
2153 "HugePages_Total: %5lu\n"
2154 "HugePages_Free: %5lu\n"
2155 "HugePages_Rsvd: %5lu\n"
2156 "HugePages_Surp: %5lu\n"
2157 "Hugepagesize: %8lu kB\n",
a5516438
AK
2158 h->nr_huge_pages,
2159 h->free_huge_pages,
2160 h->resv_huge_pages,
2161 h->surplus_huge_pages,
2162 1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
1da177e4
LT
2163}
2164
2165int hugetlb_report_node_meminfo(int nid, char *buf)
2166{
a5516438 2167 struct hstate *h = &default_hstate;
1da177e4
LT
2168 return sprintf(buf,
2169 "Node %d HugePages_Total: %5u\n"
a1de0919
NA
2170 "Node %d HugePages_Free: %5u\n"
2171 "Node %d HugePages_Surp: %5u\n",
a5516438
AK
2172 nid, h->nr_huge_pages_node[nid],
2173 nid, h->free_huge_pages_node[nid],
2174 nid, h->surplus_huge_pages_node[nid]);
1da177e4
LT
2175}
2176
949f7ec5
DR
2177void hugetlb_show_meminfo(void)
2178{
2179 struct hstate *h;
2180 int nid;
2181
2182 for_each_node_state(nid, N_MEMORY)
2183 for_each_hstate(h)
2184 pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
2185 nid,
2186 h->nr_huge_pages_node[nid],
2187 h->free_huge_pages_node[nid],
2188 h->surplus_huge_pages_node[nid],
2189 1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
2190}
2191
1da177e4
LT
2192/* Return the number pages of memory we physically have, in PAGE_SIZE units. */
2193unsigned long hugetlb_total_pages(void)
2194{
d0028588
WL
2195 struct hstate *h;
2196 unsigned long nr_total_pages = 0;
2197
2198 for_each_hstate(h)
2199 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
2200 return nr_total_pages;
1da177e4 2201}
1da177e4 2202
a5516438 2203static int hugetlb_acct_memory(struct hstate *h, long delta)
fc1b8a73
MG
2204{
2205 int ret = -ENOMEM;
2206
2207 spin_lock(&hugetlb_lock);
2208 /*
2209 * When cpuset is configured, it breaks the strict hugetlb page
2210 * reservation as the accounting is done on a global variable. Such
2211 * reservation is completely rubbish in the presence of cpuset because
2212 * the reservation is not checked against page availability for the
2213 * current cpuset. Application can still potentially OOM'ed by kernel
2214 * with lack of free htlb page in cpuset that the task is in.
2215 * Attempt to enforce strict accounting with cpuset is almost
2216 * impossible (or too ugly) because cpuset is too fluid that
2217 * task or memory node can be dynamically moved between cpusets.
2218 *
2219 * The change of semantics for shared hugetlb mapping with cpuset is
2220 * undesirable. However, in order to preserve some of the semantics,
2221 * we fall back to check against current free page availability as
2222 * a best attempt and hopefully to minimize the impact of changing
2223 * semantics that cpuset has.
2224 */
2225 if (delta > 0) {
a5516438 2226 if (gather_surplus_pages(h, delta) < 0)
fc1b8a73
MG
2227 goto out;
2228
a5516438
AK
2229 if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
2230 return_unused_surplus_pages(h, delta);
fc1b8a73
MG
2231 goto out;
2232 }
2233 }
2234
2235 ret = 0;
2236 if (delta < 0)
a5516438 2237 return_unused_surplus_pages(h, (unsigned long) -delta);
fc1b8a73
MG
2238
2239out:
2240 spin_unlock(&hugetlb_lock);
2241 return ret;
2242}
2243
84afd99b
AW
2244static void hugetlb_vm_op_open(struct vm_area_struct *vma)
2245{
f522c3ac 2246 struct resv_map *resv = vma_resv_map(vma);
84afd99b
AW
2247
2248 /*
2249 * This new VMA should share its siblings reservation map if present.
2250 * The VMA will only ever have a valid reservation map pointer where
2251 * it is being copied for another still existing VMA. As that VMA
25985edc 2252 * has a reference to the reservation map it cannot disappear until
84afd99b
AW
2253 * after this open call completes. It is therefore safe to take a
2254 * new reference here without additional locking.
2255 */
f522c3ac
JK
2256 if (resv)
2257 kref_get(&resv->refs);
84afd99b
AW
2258}
2259
c50ac050
DH
2260static void resv_map_put(struct vm_area_struct *vma)
2261{
f522c3ac 2262 struct resv_map *resv = vma_resv_map(vma);
c50ac050 2263
f522c3ac 2264 if (!resv)
c50ac050 2265 return;
f522c3ac 2266 kref_put(&resv->refs, resv_map_release);
c50ac050
DH
2267}
2268
a1e78772
MG
2269static void hugetlb_vm_op_close(struct vm_area_struct *vma)
2270{
a5516438 2271 struct hstate *h = hstate_vma(vma);
f522c3ac 2272 struct resv_map *resv = vma_resv_map(vma);
90481622 2273 struct hugepage_subpool *spool = subpool_vma(vma);
84afd99b
AW
2274 unsigned long reserve;
2275 unsigned long start;
2276 unsigned long end;
2277
f522c3ac 2278 if (resv) {
a5516438
AK
2279 start = vma_hugecache_offset(h, vma, vma->vm_start);
2280 end = vma_hugecache_offset(h, vma, vma->vm_end);
84afd99b
AW
2281
2282 reserve = (end - start) -
1406ec9b 2283 region_count(resv, start, end);
84afd99b 2284
c50ac050 2285 resv_map_put(vma);
84afd99b 2286
7251ff78 2287 if (reserve) {
a5516438 2288 hugetlb_acct_memory(h, -reserve);
90481622 2289 hugepage_subpool_put_pages(spool, reserve);
7251ff78 2290 }
84afd99b 2291 }
a1e78772
MG
2292}
2293
1da177e4
LT
2294/*
2295 * We cannot handle pagefaults against hugetlb pages at all. They cause
2296 * handle_mm_fault() to try to instantiate regular-sized pages in the
2297 * hugegpage VMA. do_page_fault() is supposed to trap this, so BUG is we get
2298 * this far.
2299 */
d0217ac0 2300static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1da177e4
LT
2301{
2302 BUG();
d0217ac0 2303 return 0;
1da177e4
LT
2304}
2305
f0f37e2f 2306const struct vm_operations_struct hugetlb_vm_ops = {
d0217ac0 2307 .fault = hugetlb_vm_op_fault,
84afd99b 2308 .open = hugetlb_vm_op_open,
a1e78772 2309 .close = hugetlb_vm_op_close,
1da177e4
LT
2310};
2311
1e8f889b
DG
2312static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
2313 int writable)
63551ae0
DG
2314{
2315 pte_t entry;
2316
1e8f889b 2317 if (writable) {
106c992a
GS
2318 entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
2319 vma->vm_page_prot)));
63551ae0 2320 } else {
106c992a
GS
2321 entry = huge_pte_wrprotect(mk_huge_pte(page,
2322 vma->vm_page_prot));
63551ae0
DG
2323 }
2324 entry = pte_mkyoung(entry);
2325 entry = pte_mkhuge(entry);
d9ed9faa 2326 entry = arch_make_huge_pte(entry, vma, page, writable);
63551ae0
DG
2327
2328 return entry;
2329}
2330
1e8f889b
DG
2331static void set_huge_ptep_writable(struct vm_area_struct *vma,
2332 unsigned long address, pte_t *ptep)
2333{
2334 pte_t entry;
2335
106c992a 2336 entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
32f84528 2337 if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
4b3073e1 2338 update_mmu_cache(vma, address, ptep);
1e8f889b
DG
2339}
2340
2341
63551ae0
DG
2342int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
2343 struct vm_area_struct *vma)
2344{
2345 pte_t *src_pte, *dst_pte, entry;
2346 struct page *ptepage;
1c59827d 2347 unsigned long addr;
1e8f889b 2348 int cow;
a5516438
AK
2349 struct hstate *h = hstate_vma(vma);
2350 unsigned long sz = huge_page_size(h);
e8569dd2
AS
2351 unsigned long mmun_start; /* For mmu_notifiers */
2352 unsigned long mmun_end; /* For mmu_notifiers */
2353 int ret = 0;
1e8f889b
DG
2354
2355 cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
63551ae0 2356
e8569dd2
AS
2357 mmun_start = vma->vm_start;
2358 mmun_end = vma->vm_end;
2359 if (cow)
2360 mmu_notifier_invalidate_range_start(src, mmun_start, mmun_end);
2361
a5516438 2362 for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
cb900f41 2363 spinlock_t *src_ptl, *dst_ptl;
c74df32c
HD
2364 src_pte = huge_pte_offset(src, addr);
2365 if (!src_pte)
2366 continue;
a5516438 2367 dst_pte = huge_pte_alloc(dst, addr, sz);
e8569dd2
AS
2368 if (!dst_pte) {
2369 ret = -ENOMEM;
2370 break;
2371 }
c5c99429
LW
2372
2373 /* If the pagetables are shared don't copy or take references */
2374 if (dst_pte == src_pte)
2375 continue;
2376
cb900f41
KS
2377 dst_ptl = huge_pte_lock(h, dst, dst_pte);
2378 src_ptl = huge_pte_lockptr(h, src, src_pte);
2379 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
7f2e9525 2380 if (!huge_pte_none(huge_ptep_get(src_pte))) {
1e8f889b 2381 if (cow)
7f2e9525
GS
2382 huge_ptep_set_wrprotect(src, addr, src_pte);
2383 entry = huge_ptep_get(src_pte);
1c59827d
HD
2384 ptepage = pte_page(entry);
2385 get_page(ptepage);
0fe6e20b 2386 page_dup_rmap(ptepage);
1c59827d
HD
2387 set_huge_pte_at(dst, addr, dst_pte, entry);
2388 }
cb900f41
KS
2389 spin_unlock(src_ptl);
2390 spin_unlock(dst_ptl);
63551ae0 2391 }
63551ae0 2392
e8569dd2
AS
2393 if (cow)
2394 mmu_notifier_invalidate_range_end(src, mmun_start, mmun_end);
2395
2396 return ret;
63551ae0
DG
2397}
2398
290408d4
NH
2399static int is_hugetlb_entry_migration(pte_t pte)
2400{
2401 swp_entry_t swp;
2402
2403 if (huge_pte_none(pte) || pte_present(pte))
2404 return 0;
2405 swp = pte_to_swp_entry(pte);
32f84528 2406 if (non_swap_entry(swp) && is_migration_entry(swp))
290408d4 2407 return 1;
32f84528 2408 else
290408d4
NH
2409 return 0;
2410}
2411
fd6a03ed
NH
2412static int is_hugetlb_entry_hwpoisoned(pte_t pte)
2413{
2414 swp_entry_t swp;
2415
2416 if (huge_pte_none(pte) || pte_present(pte))
2417 return 0;
2418 swp = pte_to_swp_entry(pte);
32f84528 2419 if (non_swap_entry(swp) && is_hwpoison_entry(swp))
fd6a03ed 2420 return 1;
32f84528 2421 else
fd6a03ed
NH
2422 return 0;
2423}
2424
24669e58
AK
2425void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
2426 unsigned long start, unsigned long end,
2427 struct page *ref_page)
63551ae0 2428{
24669e58 2429 int force_flush = 0;
63551ae0
DG
2430 struct mm_struct *mm = vma->vm_mm;
2431 unsigned long address;
c7546f8f 2432 pte_t *ptep;
63551ae0 2433 pte_t pte;
cb900f41 2434 spinlock_t *ptl;
63551ae0 2435 struct page *page;
a5516438
AK
2436 struct hstate *h = hstate_vma(vma);
2437 unsigned long sz = huge_page_size(h);
2ec74c3e
SG
2438 const unsigned long mmun_start = start; /* For mmu_notifiers */
2439 const unsigned long mmun_end = end; /* For mmu_notifiers */
a5516438 2440
63551ae0 2441 WARN_ON(!is_vm_hugetlb_page(vma));
a5516438
AK
2442 BUG_ON(start & ~huge_page_mask(h));
2443 BUG_ON(end & ~huge_page_mask(h));
63551ae0 2444
24669e58 2445 tlb_start_vma(tlb, vma);
2ec74c3e 2446 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
24669e58 2447again:
a5516438 2448 for (address = start; address < end; address += sz) {
c7546f8f 2449 ptep = huge_pte_offset(mm, address);
4c887265 2450 if (!ptep)
c7546f8f
DG
2451 continue;
2452
cb900f41 2453 ptl = huge_pte_lock(h, mm, ptep);
39dde65c 2454 if (huge_pmd_unshare(mm, &address, ptep))
cb900f41 2455 goto unlock;
39dde65c 2456
6629326b
HD
2457 pte = huge_ptep_get(ptep);
2458 if (huge_pte_none(pte))
cb900f41 2459 goto unlock;
6629326b
HD
2460
2461 /*
2462 * HWPoisoned hugepage is already unmapped and dropped reference
2463 */
8c4894c6 2464 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
106c992a 2465 huge_pte_clear(mm, address, ptep);
cb900f41 2466 goto unlock;
8c4894c6 2467 }
6629326b
HD
2468
2469 page = pte_page(pte);
04f2cbe3
MG
2470 /*
2471 * If a reference page is supplied, it is because a specific
2472 * page is being unmapped, not a range. Ensure the page we
2473 * are about to unmap is the actual page of interest.
2474 */
2475 if (ref_page) {
04f2cbe3 2476 if (page != ref_page)
cb900f41 2477 goto unlock;
04f2cbe3
MG
2478
2479 /*
2480 * Mark the VMA as having unmapped its page so that
2481 * future faults in this VMA will fail rather than
2482 * looking like data was lost
2483 */
2484 set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
2485 }
2486
c7546f8f 2487 pte = huge_ptep_get_and_clear(mm, address, ptep);
24669e58 2488 tlb_remove_tlb_entry(tlb, ptep, address);
106c992a 2489 if (huge_pte_dirty(pte))
6649a386 2490 set_page_dirty(page);
9e81130b 2491
24669e58
AK
2492 page_remove_rmap(page);
2493 force_flush = !__tlb_remove_page(tlb, page);
cb900f41
KS
2494 if (force_flush) {
2495 spin_unlock(ptl);
24669e58 2496 break;
cb900f41 2497 }
9e81130b 2498 /* Bail out after unmapping reference page if supplied */
cb900f41
KS
2499 if (ref_page) {
2500 spin_unlock(ptl);
9e81130b 2501 break;
cb900f41
KS
2502 }
2503unlock:
2504 spin_unlock(ptl);
63551ae0 2505 }
24669e58
AK
2506 /*
2507 * mmu_gather ran out of room to batch pages, we break out of
2508 * the PTE lock to avoid doing the potential expensive TLB invalidate
2509 * and page-free while holding it.
2510 */
2511 if (force_flush) {
2512 force_flush = 0;
2513 tlb_flush_mmu(tlb);
2514 if (address < end && !ref_page)
2515 goto again;
fe1668ae 2516 }
2ec74c3e 2517 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
24669e58 2518 tlb_end_vma(tlb, vma);
1da177e4 2519}
63551ae0 2520
d833352a
MG
2521void __unmap_hugepage_range_final(struct mmu_gather *tlb,
2522 struct vm_area_struct *vma, unsigned long start,
2523 unsigned long end, struct page *ref_page)
2524{
2525 __unmap_hugepage_range(tlb, vma, start, end, ref_page);
2526
2527 /*
2528 * Clear this flag so that x86's huge_pmd_share page_table_shareable
2529 * test will fail on a vma being torn down, and not grab a page table
2530 * on its way out. We're lucky that the flag has such an appropriate
2531 * name, and can in fact be safely cleared here. We could clear it
2532 * before the __unmap_hugepage_range above, but all that's necessary
2533 * is to clear it before releasing the i_mmap_mutex. This works
2534 * because in the context this is called, the VMA is about to be
2535 * destroyed and the i_mmap_mutex is held.
2536 */
2537 vma->vm_flags &= ~VM_MAYSHARE;
2538}
2539
502717f4 2540void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
04f2cbe3 2541 unsigned long end, struct page *ref_page)
502717f4 2542{
24669e58
AK
2543 struct mm_struct *mm;
2544 struct mmu_gather tlb;
2545
2546 mm = vma->vm_mm;
2547
2b047252 2548 tlb_gather_mmu(&tlb, mm, start, end);
24669e58
AK
2549 __unmap_hugepage_range(&tlb, vma, start, end, ref_page);
2550 tlb_finish_mmu(&tlb, start, end);
502717f4
CK
2551}
2552
04f2cbe3
MG
2553/*
2554 * This is called when the original mapper is failing to COW a MAP_PRIVATE
2555 * mappping it owns the reserve page for. The intention is to unmap the page
2556 * from other VMAs and let the children be SIGKILLed if they are faulting the
2557 * same region.
2558 */
2a4b3ded
HH
2559static int unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
2560 struct page *page, unsigned long address)
04f2cbe3 2561{
7526674d 2562 struct hstate *h = hstate_vma(vma);
04f2cbe3
MG
2563 struct vm_area_struct *iter_vma;
2564 struct address_space *mapping;
04f2cbe3
MG
2565 pgoff_t pgoff;
2566
2567 /*
2568 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
2569 * from page cache lookup which is in HPAGE_SIZE units.
2570 */
7526674d 2571 address = address & huge_page_mask(h);
36e4f20a
MH
2572 pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
2573 vma->vm_pgoff;
496ad9aa 2574 mapping = file_inode(vma->vm_file)->i_mapping;
04f2cbe3 2575
4eb2b1dc
MG
2576 /*
2577 * Take the mapping lock for the duration of the table walk. As
2578 * this mapping should be shared between all the VMAs,
2579 * __unmap_hugepage_range() is called as the lock is already held
2580 */
3d48ae45 2581 mutex_lock(&mapping->i_mmap_mutex);
6b2dbba8 2582 vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
04f2cbe3
MG
2583 /* Do not unmap the current VMA */
2584 if (iter_vma == vma)
2585 continue;
2586
2587 /*
2588 * Unmap the page from other VMAs without their own reserves.
2589 * They get marked to be SIGKILLed if they fault in these
2590 * areas. This is because a future no-page fault on this VMA
2591 * could insert a zeroed page instead of the data existing
2592 * from the time of fork. This would look like data corruption
2593 */
2594 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
24669e58
AK
2595 unmap_hugepage_range(iter_vma, address,
2596 address + huge_page_size(h), page);
04f2cbe3 2597 }
3d48ae45 2598 mutex_unlock(&mapping->i_mmap_mutex);
04f2cbe3
MG
2599
2600 return 1;
2601}
2602
0fe6e20b
NH
2603/*
2604 * Hugetlb_cow() should be called with page lock of the original hugepage held.
ef009b25
MH
2605 * Called with hugetlb_instantiation_mutex held and pte_page locked so we
2606 * cannot race with other handlers or page migration.
2607 * Keep the pte_same checks anyway to make transition from the mutex easier.
0fe6e20b 2608 */
1e8f889b 2609static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
04f2cbe3 2610 unsigned long address, pte_t *ptep, pte_t pte,
cb900f41 2611 struct page *pagecache_page, spinlock_t *ptl)
1e8f889b 2612{
a5516438 2613 struct hstate *h = hstate_vma(vma);
1e8f889b 2614 struct page *old_page, *new_page;
04f2cbe3 2615 int outside_reserve = 0;
2ec74c3e
SG
2616 unsigned long mmun_start; /* For mmu_notifiers */
2617 unsigned long mmun_end; /* For mmu_notifiers */
1e8f889b
DG
2618
2619 old_page = pte_page(pte);
2620
04f2cbe3 2621retry_avoidcopy:
1e8f889b
DG
2622 /* If no-one else is actually using this page, avoid the copy
2623 * and just make the page writable */
37a2140d
JK
2624 if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
2625 page_move_anon_rmap(old_page, vma, address);
1e8f889b 2626 set_huge_ptep_writable(vma, address, ptep);
83c54070 2627 return 0;
1e8f889b
DG
2628 }
2629
04f2cbe3
MG
2630 /*
2631 * If the process that created a MAP_PRIVATE mapping is about to
2632 * perform a COW due to a shared page count, attempt to satisfy
2633 * the allocation without using the existing reserves. The pagecache
2634 * page is used to determine if the reserve at this address was
2635 * consumed or not. If reserves were used, a partial faulted mapping
2636 * at the time of fork() could consume its reserves on COW instead
2637 * of the full address range.
2638 */
5944d011 2639 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
04f2cbe3
MG
2640 old_page != pagecache_page)
2641 outside_reserve = 1;
2642
1e8f889b 2643 page_cache_get(old_page);
b76c8cfb 2644
cb900f41
KS
2645 /* Drop page table lock as buddy allocator may be called */
2646 spin_unlock(ptl);
04f2cbe3 2647 new_page = alloc_huge_page(vma, address, outside_reserve);
1e8f889b 2648
2fc39cec 2649 if (IS_ERR(new_page)) {
76dcee75 2650 long err = PTR_ERR(new_page);
1e8f889b 2651 page_cache_release(old_page);
04f2cbe3
MG
2652
2653 /*
2654 * If a process owning a MAP_PRIVATE mapping fails to COW,
2655 * it is due to references held by a child and an insufficient
2656 * huge page pool. To guarantee the original mappers
2657 * reliability, unmap the page from child processes. The child
2658 * may get SIGKILLed if it later faults.
2659 */
2660 if (outside_reserve) {
2661 BUG_ON(huge_pte_none(pte));
2662 if (unmap_ref_private(mm, vma, old_page, address)) {
04f2cbe3 2663 BUG_ON(huge_pte_none(pte));
cb900f41 2664 spin_lock(ptl);
a734bcc8
HD
2665 ptep = huge_pte_offset(mm, address & huge_page_mask(h));
2666 if (likely(pte_same(huge_ptep_get(ptep), pte)))
2667 goto retry_avoidcopy;
2668 /*
cb900f41
KS
2669 * race occurs while re-acquiring page table
2670 * lock, and our job is done.
a734bcc8
HD
2671 */
2672 return 0;
04f2cbe3
MG
2673 }
2674 WARN_ON_ONCE(1);
2675 }
2676
b76c8cfb 2677 /* Caller expects lock to be held */
cb900f41 2678 spin_lock(ptl);
76dcee75
AK
2679 if (err == -ENOMEM)
2680 return VM_FAULT_OOM;
2681 else
2682 return VM_FAULT_SIGBUS;
1e8f889b
DG
2683 }
2684
0fe6e20b
NH
2685 /*
2686 * When the original hugepage is shared one, it does not have
2687 * anon_vma prepared.
2688 */
44e2aa93 2689 if (unlikely(anon_vma_prepare(vma))) {
ea4039a3
HD
2690 page_cache_release(new_page);
2691 page_cache_release(old_page);
44e2aa93 2692 /* Caller expects lock to be held */
cb900f41 2693 spin_lock(ptl);
0fe6e20b 2694 return VM_FAULT_OOM;
44e2aa93 2695 }
0fe6e20b 2696
47ad8475
AA
2697 copy_user_huge_page(new_page, old_page, address, vma,
2698 pages_per_huge_page(h));
0ed361de 2699 __SetPageUptodate(new_page);
1e8f889b 2700
2ec74c3e
SG
2701 mmun_start = address & huge_page_mask(h);
2702 mmun_end = mmun_start + huge_page_size(h);
2703 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
b76c8cfb 2704 /*
cb900f41 2705 * Retake the page table lock to check for racing updates
b76c8cfb
LW
2706 * before the page tables are altered
2707 */
cb900f41 2708 spin_lock(ptl);
a5516438 2709 ptep = huge_pte_offset(mm, address & huge_page_mask(h));
7f2e9525 2710 if (likely(pte_same(huge_ptep_get(ptep), pte))) {
07443a85
JK
2711 ClearPagePrivate(new_page);
2712
1e8f889b 2713 /* Break COW */
8fe627ec 2714 huge_ptep_clear_flush(vma, address, ptep);
1e8f889b
DG
2715 set_huge_pte_at(mm, address, ptep,
2716 make_huge_pte(vma, new_page, 1));
0fe6e20b 2717 page_remove_rmap(old_page);
cd67f0d2 2718 hugepage_add_new_anon_rmap(new_page, vma, address);
1e8f889b
DG
2719 /* Make the old page be freed below */
2720 new_page = old_page;
2721 }
cb900f41 2722 spin_unlock(ptl);
2ec74c3e 2723 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1e8f889b
DG
2724 page_cache_release(new_page);
2725 page_cache_release(old_page);
8312034f
JK
2726
2727 /* Caller expects lock to be held */
cb900f41 2728 spin_lock(ptl);
83c54070 2729 return 0;
1e8f889b
DG
2730}
2731
04f2cbe3 2732/* Return the pagecache page at a given address within a VMA */
a5516438
AK
2733static struct page *hugetlbfs_pagecache_page(struct hstate *h,
2734 struct vm_area_struct *vma, unsigned long address)
04f2cbe3
MG
2735{
2736 struct address_space *mapping;
e7c4b0bf 2737 pgoff_t idx;
04f2cbe3
MG
2738
2739 mapping = vma->vm_file->f_mapping;
a5516438 2740 idx = vma_hugecache_offset(h, vma, address);
04f2cbe3
MG
2741
2742 return find_lock_page(mapping, idx);
2743}
2744
3ae77f43
HD
2745/*
2746 * Return whether there is a pagecache page to back given address within VMA.
2747 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
2748 */
2749static bool hugetlbfs_pagecache_present(struct hstate *h,
2a15efc9
HD
2750 struct vm_area_struct *vma, unsigned long address)
2751{
2752 struct address_space *mapping;
2753 pgoff_t idx;
2754 struct page *page;
2755
2756 mapping = vma->vm_file->f_mapping;
2757 idx = vma_hugecache_offset(h, vma, address);
2758
2759 page = find_get_page(mapping, idx);
2760 if (page)
2761 put_page(page);
2762 return page != NULL;
2763}
2764
a1ed3dda 2765static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
788c7df4 2766 unsigned long address, pte_t *ptep, unsigned int flags)
ac9b9c66 2767{
a5516438 2768 struct hstate *h = hstate_vma(vma);
ac9b9c66 2769 int ret = VM_FAULT_SIGBUS;
409eb8c2 2770 int anon_rmap = 0;
e7c4b0bf 2771 pgoff_t idx;
4c887265 2772 unsigned long size;
4c887265
AL
2773 struct page *page;
2774 struct address_space *mapping;
1e8f889b 2775 pte_t new_pte;
cb900f41 2776 spinlock_t *ptl;
4c887265 2777
04f2cbe3
MG
2778 /*
2779 * Currently, we are forced to kill the process in the event the
2780 * original mapper has unmapped pages from the child due to a failed
25985edc 2781 * COW. Warn that such a situation has occurred as it may not be obvious
04f2cbe3
MG
2782 */
2783 if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
ffb22af5
AM
2784 pr_warning("PID %d killed due to inadequate hugepage pool\n",
2785 current->pid);
04f2cbe3
MG
2786 return ret;
2787 }
2788
4c887265 2789 mapping = vma->vm_file->f_mapping;
a5516438 2790 idx = vma_hugecache_offset(h, vma, address);
4c887265
AL
2791
2792 /*
2793 * Use page lock to guard against racing truncation
2794 * before we get page_table_lock.
2795 */
6bda666a
CL
2796retry:
2797 page = find_lock_page(mapping, idx);
2798 if (!page) {
a5516438 2799 size = i_size_read(mapping->host) >> huge_page_shift(h);
ebed4bfc
HD
2800 if (idx >= size)
2801 goto out;
04f2cbe3 2802 page = alloc_huge_page(vma, address, 0);
2fc39cec 2803 if (IS_ERR(page)) {
76dcee75
AK
2804 ret = PTR_ERR(page);
2805 if (ret == -ENOMEM)
2806 ret = VM_FAULT_OOM;
2807 else
2808 ret = VM_FAULT_SIGBUS;
6bda666a
CL
2809 goto out;
2810 }
47ad8475 2811 clear_huge_page(page, address, pages_per_huge_page(h));
0ed361de 2812 __SetPageUptodate(page);
ac9b9c66 2813
f83a275d 2814 if (vma->vm_flags & VM_MAYSHARE) {
6bda666a 2815 int err;
45c682a6 2816 struct inode *inode = mapping->host;
6bda666a
CL
2817
2818 err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
2819 if (err) {
2820 put_page(page);
6bda666a
CL
2821 if (err == -EEXIST)
2822 goto retry;
2823 goto out;
2824 }
07443a85 2825 ClearPagePrivate(page);
45c682a6
KC
2826
2827 spin_lock(&inode->i_lock);
a5516438 2828 inode->i_blocks += blocks_per_huge_page(h);
45c682a6 2829 spin_unlock(&inode->i_lock);
23be7468 2830 } else {
6bda666a 2831 lock_page(page);
0fe6e20b
NH
2832 if (unlikely(anon_vma_prepare(vma))) {
2833 ret = VM_FAULT_OOM;
2834 goto backout_unlocked;
2835 }
409eb8c2 2836 anon_rmap = 1;
23be7468 2837 }
0fe6e20b 2838 } else {
998b4382
NH
2839 /*
2840 * If memory error occurs between mmap() and fault, some process
2841 * don't have hwpoisoned swap entry for errored virtual address.
2842 * So we need to block hugepage fault by PG_hwpoison bit check.
2843 */
2844 if (unlikely(PageHWPoison(page))) {
32f84528 2845 ret = VM_FAULT_HWPOISON |
972dc4de 2846 VM_FAULT_SET_HINDEX(hstate_index(h));
998b4382
NH
2847 goto backout_unlocked;
2848 }
6bda666a 2849 }
1e8f889b 2850
57303d80
AW
2851 /*
2852 * If we are going to COW a private mapping later, we examine the
2853 * pending reservations for this page now. This will ensure that
2854 * any allocations necessary to record that reservation occur outside
2855 * the spinlock.
2856 */
788c7df4 2857 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED))
2b26736c
AW
2858 if (vma_needs_reservation(h, vma, address) < 0) {
2859 ret = VM_FAULT_OOM;
2860 goto backout_unlocked;
2861 }
57303d80 2862
cb900f41
KS
2863 ptl = huge_pte_lockptr(h, mm, ptep);
2864 spin_lock(ptl);
a5516438 2865 size = i_size_read(mapping->host) >> huge_page_shift(h);
4c887265
AL
2866 if (idx >= size)
2867 goto backout;
2868
83c54070 2869 ret = 0;
7f2e9525 2870 if (!huge_pte_none(huge_ptep_get(ptep)))
4c887265
AL
2871 goto backout;
2872
07443a85
JK
2873 if (anon_rmap) {
2874 ClearPagePrivate(page);
409eb8c2 2875 hugepage_add_new_anon_rmap(page, vma, address);
07443a85 2876 }
409eb8c2
HD
2877 else
2878 page_dup_rmap(page);
1e8f889b
DG
2879 new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
2880 && (vma->vm_flags & VM_SHARED)));
2881 set_huge_pte_at(mm, address, ptep, new_pte);
2882
788c7df4 2883 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
1e8f889b 2884 /* Optimization, do the COW without a second fault */
cb900f41 2885 ret = hugetlb_cow(mm, vma, address, ptep, new_pte, page, ptl);
1e8f889b
DG
2886 }
2887
cb900f41 2888 spin_unlock(ptl);
4c887265
AL
2889 unlock_page(page);
2890out:
ac9b9c66 2891 return ret;
4c887265
AL
2892
2893backout:
cb900f41 2894 spin_unlock(ptl);
2b26736c 2895backout_unlocked:
4c887265
AL
2896 unlock_page(page);
2897 put_page(page);
2898 goto out;
ac9b9c66
HD
2899}
2900
86e5216f 2901int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
788c7df4 2902 unsigned long address, unsigned int flags)
86e5216f
AL
2903{
2904 pte_t *ptep;
2905 pte_t entry;
cb900f41 2906 spinlock_t *ptl;
1e8f889b 2907 int ret;
0fe6e20b 2908 struct page *page = NULL;
57303d80 2909 struct page *pagecache_page = NULL;
3935baa9 2910 static DEFINE_MUTEX(hugetlb_instantiation_mutex);
a5516438 2911 struct hstate *h = hstate_vma(vma);
86e5216f 2912
1e16a539
KH
2913 address &= huge_page_mask(h);
2914
fd6a03ed
NH
2915 ptep = huge_pte_offset(mm, address);
2916 if (ptep) {
2917 entry = huge_ptep_get(ptep);
290408d4 2918 if (unlikely(is_hugetlb_entry_migration(entry))) {
cb900f41 2919 migration_entry_wait_huge(vma, mm, ptep);
290408d4
NH
2920 return 0;
2921 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
32f84528 2922 return VM_FAULT_HWPOISON_LARGE |
972dc4de 2923 VM_FAULT_SET_HINDEX(hstate_index(h));
fd6a03ed
NH
2924 }
2925
a5516438 2926 ptep = huge_pte_alloc(mm, address, huge_page_size(h));
86e5216f
AL
2927 if (!ptep)
2928 return VM_FAULT_OOM;
2929
3935baa9
DG
2930 /*
2931 * Serialize hugepage allocation and instantiation, so that we don't
2932 * get spurious allocation failures if two CPUs race to instantiate
2933 * the same page in the page cache.
2934 */
2935 mutex_lock(&hugetlb_instantiation_mutex);
7f2e9525
GS
2936 entry = huge_ptep_get(ptep);
2937 if (huge_pte_none(entry)) {
788c7df4 2938 ret = hugetlb_no_page(mm, vma, address, ptep, flags);
b4d1d99f 2939 goto out_mutex;
3935baa9 2940 }
86e5216f 2941
83c54070 2942 ret = 0;
1e8f889b 2943
57303d80
AW
2944 /*
2945 * If we are going to COW the mapping later, we examine the pending
2946 * reservations for this page now. This will ensure that any
2947 * allocations necessary to record that reservation occur outside the
2948 * spinlock. For private mappings, we also lookup the pagecache
2949 * page now as it is used to determine if a reservation has been
2950 * consumed.
2951 */
106c992a 2952 if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
2b26736c
AW
2953 if (vma_needs_reservation(h, vma, address) < 0) {
2954 ret = VM_FAULT_OOM;
b4d1d99f 2955 goto out_mutex;
2b26736c 2956 }
57303d80 2957
f83a275d 2958 if (!(vma->vm_flags & VM_MAYSHARE))
57303d80
AW
2959 pagecache_page = hugetlbfs_pagecache_page(h,
2960 vma, address);
2961 }
2962
56c9cfb1
NH
2963 /*
2964 * hugetlb_cow() requires page locks of pte_page(entry) and
2965 * pagecache_page, so here we need take the former one
2966 * when page != pagecache_page or !pagecache_page.
2967 * Note that locking order is always pagecache_page -> page,
2968 * so no worry about deadlock.
2969 */
2970 page = pte_page(entry);
66aebce7 2971 get_page(page);
56c9cfb1 2972 if (page != pagecache_page)
0fe6e20b 2973 lock_page(page);
0fe6e20b 2974
cb900f41
KS
2975 ptl = huge_pte_lockptr(h, mm, ptep);
2976 spin_lock(ptl);
1e8f889b 2977 /* Check for a racing update before calling hugetlb_cow */
b4d1d99f 2978 if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
cb900f41 2979 goto out_ptl;
b4d1d99f
DG
2980
2981
788c7df4 2982 if (flags & FAULT_FLAG_WRITE) {
106c992a 2983 if (!huge_pte_write(entry)) {
57303d80 2984 ret = hugetlb_cow(mm, vma, address, ptep, entry,
cb900f41
KS
2985 pagecache_page, ptl);
2986 goto out_ptl;
b4d1d99f 2987 }
106c992a 2988 entry = huge_pte_mkdirty(entry);
b4d1d99f
DG
2989 }
2990 entry = pte_mkyoung(entry);
788c7df4
HD
2991 if (huge_ptep_set_access_flags(vma, address, ptep, entry,
2992 flags & FAULT_FLAG_WRITE))
4b3073e1 2993 update_mmu_cache(vma, address, ptep);
b4d1d99f 2994
cb900f41
KS
2995out_ptl:
2996 spin_unlock(ptl);
57303d80
AW
2997
2998 if (pagecache_page) {
2999 unlock_page(pagecache_page);
3000 put_page(pagecache_page);
3001 }
1f64d69c
DN
3002 if (page != pagecache_page)
3003 unlock_page(page);
66aebce7 3004 put_page(page);
57303d80 3005
b4d1d99f 3006out_mutex:
3935baa9 3007 mutex_unlock(&hugetlb_instantiation_mutex);
1e8f889b
DG
3008
3009 return ret;
86e5216f
AL
3010}
3011
28a35716
ML
3012long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
3013 struct page **pages, struct vm_area_struct **vmas,
3014 unsigned long *position, unsigned long *nr_pages,
3015 long i, unsigned int flags)
63551ae0 3016{
d5d4b0aa
CK
3017 unsigned long pfn_offset;
3018 unsigned long vaddr = *position;
28a35716 3019 unsigned long remainder = *nr_pages;
a5516438 3020 struct hstate *h = hstate_vma(vma);
63551ae0 3021
63551ae0 3022 while (vaddr < vma->vm_end && remainder) {
4c887265 3023 pte_t *pte;
cb900f41 3024 spinlock_t *ptl = NULL;
2a15efc9 3025 int absent;
4c887265 3026 struct page *page;
63551ae0 3027
4c887265
AL
3028 /*
3029 * Some archs (sparc64, sh*) have multiple pte_ts to
2a15efc9 3030 * each hugepage. We have to make sure we get the
4c887265 3031 * first, for the page indexing below to work.
cb900f41
KS
3032 *
3033 * Note that page table lock is not held when pte is null.
4c887265 3034 */
a5516438 3035 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h));
cb900f41
KS
3036 if (pte)
3037 ptl = huge_pte_lock(h, mm, pte);
2a15efc9
HD
3038 absent = !pte || huge_pte_none(huge_ptep_get(pte));
3039
3040 /*
3041 * When coredumping, it suits get_dump_page if we just return
3ae77f43
HD
3042 * an error where there's an empty slot with no huge pagecache
3043 * to back it. This way, we avoid allocating a hugepage, and
3044 * the sparse dumpfile avoids allocating disk blocks, but its
3045 * huge holes still show up with zeroes where they need to be.
2a15efc9 3046 */
3ae77f43
HD
3047 if (absent && (flags & FOLL_DUMP) &&
3048 !hugetlbfs_pagecache_present(h, vma, vaddr)) {
cb900f41
KS
3049 if (pte)
3050 spin_unlock(ptl);
2a15efc9
HD
3051 remainder = 0;
3052 break;
3053 }
63551ae0 3054
9cc3a5bd
NH
3055 /*
3056 * We need call hugetlb_fault for both hugepages under migration
3057 * (in which case hugetlb_fault waits for the migration,) and
3058 * hwpoisoned hugepages (in which case we need to prevent the
3059 * caller from accessing to them.) In order to do this, we use
3060 * here is_swap_pte instead of is_hugetlb_entry_migration and
3061 * is_hugetlb_entry_hwpoisoned. This is because it simply covers
3062 * both cases, and because we can't follow correct pages
3063 * directly from any kind of swap entries.
3064 */
3065 if (absent || is_swap_pte(huge_ptep_get(pte)) ||
106c992a
GS
3066 ((flags & FOLL_WRITE) &&
3067 !huge_pte_write(huge_ptep_get(pte)))) {
4c887265 3068 int ret;
63551ae0 3069
cb900f41
KS
3070 if (pte)
3071 spin_unlock(ptl);
2a15efc9
HD
3072 ret = hugetlb_fault(mm, vma, vaddr,
3073 (flags & FOLL_WRITE) ? FAULT_FLAG_WRITE : 0);
a89182c7 3074 if (!(ret & VM_FAULT_ERROR))
4c887265 3075 continue;
63551ae0 3076
4c887265 3077 remainder = 0;
4c887265
AL
3078 break;
3079 }
3080
a5516438 3081 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
7f2e9525 3082 page = pte_page(huge_ptep_get(pte));
d5d4b0aa 3083same_page:
d6692183 3084 if (pages) {
2a15efc9 3085 pages[i] = mem_map_offset(page, pfn_offset);
a0368d4e 3086 get_page_foll(pages[i]);
d6692183 3087 }
63551ae0
DG
3088
3089 if (vmas)
3090 vmas[i] = vma;
3091
3092 vaddr += PAGE_SIZE;
d5d4b0aa 3093 ++pfn_offset;
63551ae0
DG
3094 --remainder;
3095 ++i;
d5d4b0aa 3096 if (vaddr < vma->vm_end && remainder &&
a5516438 3097 pfn_offset < pages_per_huge_page(h)) {
d5d4b0aa
CK
3098 /*
3099 * We use pfn_offset to avoid touching the pageframes
3100 * of this compound page.
3101 */
3102 goto same_page;
3103 }
cb900f41 3104 spin_unlock(ptl);
63551ae0 3105 }
28a35716 3106 *nr_pages = remainder;
63551ae0
DG
3107 *position = vaddr;
3108
2a15efc9 3109 return i ? i : -EFAULT;
63551ae0 3110}
8f860591 3111
7da4d641 3112unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
8f860591
ZY
3113 unsigned long address, unsigned long end, pgprot_t newprot)
3114{
3115 struct mm_struct *mm = vma->vm_mm;
3116 unsigned long start = address;
3117 pte_t *ptep;
3118 pte_t pte;
a5516438 3119 struct hstate *h = hstate_vma(vma);
7da4d641 3120 unsigned long pages = 0;
8f860591
ZY
3121
3122 BUG_ON(address >= end);
3123 flush_cache_range(vma, address, end);
3124
3d48ae45 3125 mutex_lock(&vma->vm_file->f_mapping->i_mmap_mutex);
a5516438 3126 for (; address < end; address += huge_page_size(h)) {
cb900f41 3127 spinlock_t *ptl;
8f860591
ZY
3128 ptep = huge_pte_offset(mm, address);
3129 if (!ptep)
3130 continue;
cb900f41 3131 ptl = huge_pte_lock(h, mm, ptep);
7da4d641
PZ
3132 if (huge_pmd_unshare(mm, &address, ptep)) {
3133 pages++;
cb900f41 3134 spin_unlock(ptl);
39dde65c 3135 continue;
7da4d641 3136 }
7f2e9525 3137 if (!huge_pte_none(huge_ptep_get(ptep))) {
8f860591 3138 pte = huge_ptep_get_and_clear(mm, address, ptep);
106c992a 3139 pte = pte_mkhuge(huge_pte_modify(pte, newprot));
be7517d6 3140 pte = arch_make_huge_pte(pte, vma, NULL, 0);
8f860591 3141 set_huge_pte_at(mm, address, ptep, pte);
7da4d641 3142 pages++;
8f860591 3143 }
cb900f41 3144 spin_unlock(ptl);
8f860591 3145 }
d833352a
MG
3146 /*
3147 * Must flush TLB before releasing i_mmap_mutex: x86's huge_pmd_unshare
3148 * may have cleared our pud entry and done put_page on the page table:
3149 * once we release i_mmap_mutex, another task can do the final put_page
3150 * and that page table be reused and filled with junk.
3151 */
8f860591 3152 flush_tlb_range(vma, start, end);
d833352a 3153 mutex_unlock(&vma->vm_file->f_mapping->i_mmap_mutex);
7da4d641
PZ
3154
3155 return pages << h->order;
8f860591
ZY
3156}
3157
a1e78772
MG
3158int hugetlb_reserve_pages(struct inode *inode,
3159 long from, long to,
5a6fe125 3160 struct vm_area_struct *vma,
ca16d140 3161 vm_flags_t vm_flags)
e4e574b7 3162{
17c9d12e 3163 long ret, chg;
a5516438 3164 struct hstate *h = hstate_inode(inode);
90481622 3165 struct hugepage_subpool *spool = subpool_inode(inode);
9119a41e 3166 struct resv_map *resv_map;
e4e574b7 3167
17c9d12e
MG
3168 /*
3169 * Only apply hugepage reservation if asked. At fault time, an
3170 * attempt will be made for VM_NORESERVE to allocate a page
90481622 3171 * without using reserves
17c9d12e 3172 */
ca16d140 3173 if (vm_flags & VM_NORESERVE)
17c9d12e
MG
3174 return 0;
3175
a1e78772
MG
3176 /*
3177 * Shared mappings base their reservation on the number of pages that
3178 * are already allocated on behalf of the file. Private mappings need
3179 * to reserve the full area even if read-only as mprotect() may be
3180 * called to make the mapping read-write. Assume !vma is a shm mapping
3181 */
9119a41e
JK
3182 if (!vma || vma->vm_flags & VM_MAYSHARE) {
3183 resv_map = inode->i_mapping->private_data;
3184
1406ec9b 3185 chg = region_chg(resv_map, from, to);
9119a41e
JK
3186
3187 } else {
3188 resv_map = resv_map_alloc();
17c9d12e
MG
3189 if (!resv_map)
3190 return -ENOMEM;
3191
a1e78772 3192 chg = to - from;
84afd99b 3193
17c9d12e
MG
3194 set_vma_resv_map(vma, resv_map);
3195 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
3196 }
3197
c50ac050
DH
3198 if (chg < 0) {
3199 ret = chg;
3200 goto out_err;
3201 }
8a630112 3202
90481622 3203 /* There must be enough pages in the subpool for the mapping */
c50ac050
DH
3204 if (hugepage_subpool_get_pages(spool, chg)) {
3205 ret = -ENOSPC;
3206 goto out_err;
3207 }
5a6fe125
MG
3208
3209 /*
17c9d12e 3210 * Check enough hugepages are available for the reservation.
90481622 3211 * Hand the pages back to the subpool if there are not
5a6fe125 3212 */
a5516438 3213 ret = hugetlb_acct_memory(h, chg);
68842c9b 3214 if (ret < 0) {
90481622 3215 hugepage_subpool_put_pages(spool, chg);
c50ac050 3216 goto out_err;
68842c9b 3217 }
17c9d12e
MG
3218
3219 /*
3220 * Account for the reservations made. Shared mappings record regions
3221 * that have reservations as they are shared by multiple VMAs.
3222 * When the last VMA disappears, the region map says how much
3223 * the reservation was and the page cache tells how much of
3224 * the reservation was consumed. Private mappings are per-VMA and
3225 * only the consumed reservations are tracked. When the VMA
3226 * disappears, the original reservation is the VMA size and the
3227 * consumed reservations are stored in the map. Hence, nothing
3228 * else has to be done for private mappings here
3229 */
f83a275d 3230 if (!vma || vma->vm_flags & VM_MAYSHARE)
1406ec9b 3231 region_add(resv_map, from, to);
a43a8c39 3232 return 0;
c50ac050 3233out_err:
4523e145
DH
3234 if (vma)
3235 resv_map_put(vma);
c50ac050 3236 return ret;
a43a8c39
CK
3237}
3238
3239void hugetlb_unreserve_pages(struct inode *inode, long offset, long freed)
3240{
a5516438 3241 struct hstate *h = hstate_inode(inode);
9119a41e
JK
3242 struct resv_map *resv_map = inode->i_mapping->private_data;
3243 long chg = 0;
90481622 3244 struct hugepage_subpool *spool = subpool_inode(inode);
45c682a6 3245
9119a41e 3246 if (resv_map)
1406ec9b 3247 chg = region_truncate(resv_map, offset);
45c682a6 3248 spin_lock(&inode->i_lock);
e4c6f8be 3249 inode->i_blocks -= (blocks_per_huge_page(h) * freed);
45c682a6
KC
3250 spin_unlock(&inode->i_lock);
3251
90481622 3252 hugepage_subpool_put_pages(spool, (chg - freed));
a5516438 3253 hugetlb_acct_memory(h, -(chg - freed));
a43a8c39 3254}
93f70f90 3255
3212b535
SC
3256#ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
3257static unsigned long page_table_shareable(struct vm_area_struct *svma,
3258 struct vm_area_struct *vma,
3259 unsigned long addr, pgoff_t idx)
3260{
3261 unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
3262 svma->vm_start;
3263 unsigned long sbase = saddr & PUD_MASK;
3264 unsigned long s_end = sbase + PUD_SIZE;
3265
3266 /* Allow segments to share if only one is marked locked */
3267 unsigned long vm_flags = vma->vm_flags & ~VM_LOCKED;
3268 unsigned long svm_flags = svma->vm_flags & ~VM_LOCKED;
3269
3270 /*
3271 * match the virtual addresses, permission and the alignment of the
3272 * page table page.
3273 */
3274 if (pmd_index(addr) != pmd_index(saddr) ||
3275 vm_flags != svm_flags ||
3276 sbase < svma->vm_start || svma->vm_end < s_end)
3277 return 0;
3278
3279 return saddr;
3280}
3281
3282static int vma_shareable(struct vm_area_struct *vma, unsigned long addr)
3283{
3284 unsigned long base = addr & PUD_MASK;
3285 unsigned long end = base + PUD_SIZE;
3286
3287 /*
3288 * check on proper vm_flags and page table alignment
3289 */
3290 if (vma->vm_flags & VM_MAYSHARE &&
3291 vma->vm_start <= base && end <= vma->vm_end)
3292 return 1;
3293 return 0;
3294}
3295
3296/*
3297 * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
3298 * and returns the corresponding pte. While this is not necessary for the
3299 * !shared pmd case because we can allocate the pmd later as well, it makes the
3300 * code much cleaner. pmd allocation is essential for the shared case because
3301 * pud has to be populated inside the same i_mmap_mutex section - otherwise
3302 * racing tasks could either miss the sharing (see huge_pte_offset) or select a
3303 * bad pmd for sharing.
3304 */
3305pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
3306{
3307 struct vm_area_struct *vma = find_vma(mm, addr);
3308 struct address_space *mapping = vma->vm_file->f_mapping;
3309 pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
3310 vma->vm_pgoff;
3311 struct vm_area_struct *svma;
3312 unsigned long saddr;
3313 pte_t *spte = NULL;
3314 pte_t *pte;
cb900f41 3315 spinlock_t *ptl;
3212b535
SC
3316
3317 if (!vma_shareable(vma, addr))
3318 return (pte_t *)pmd_alloc(mm, pud, addr);
3319
3320 mutex_lock(&mapping->i_mmap_mutex);
3321 vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
3322 if (svma == vma)
3323 continue;
3324
3325 saddr = page_table_shareable(svma, vma, addr, idx);
3326 if (saddr) {
3327 spte = huge_pte_offset(svma->vm_mm, saddr);
3328 if (spte) {
3329 get_page(virt_to_page(spte));
3330 break;
3331 }
3332 }
3333 }
3334
3335 if (!spte)
3336 goto out;
3337
cb900f41
KS
3338 ptl = huge_pte_lockptr(hstate_vma(vma), mm, spte);
3339 spin_lock(ptl);
3212b535
SC
3340 if (pud_none(*pud))
3341 pud_populate(mm, pud,
3342 (pmd_t *)((unsigned long)spte & PAGE_MASK));
3343 else
3344 put_page(virt_to_page(spte));
cb900f41 3345 spin_unlock(ptl);
3212b535
SC
3346out:
3347 pte = (pte_t *)pmd_alloc(mm, pud, addr);
3348 mutex_unlock(&mapping->i_mmap_mutex);
3349 return pte;
3350}
3351
3352/*
3353 * unmap huge page backed by shared pte.
3354 *
3355 * Hugetlb pte page is ref counted at the time of mapping. If pte is shared
3356 * indicated by page_count > 1, unmap is achieved by clearing pud and
3357 * decrementing the ref count. If count == 1, the pte page is not shared.
3358 *
cb900f41 3359 * called with page table lock held.
3212b535
SC
3360 *
3361 * returns: 1 successfully unmapped a shared pte page
3362 * 0 the underlying pte page is not shared, or it is the last user
3363 */
3364int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
3365{
3366 pgd_t *pgd = pgd_offset(mm, *addr);
3367 pud_t *pud = pud_offset(pgd, *addr);
3368
3369 BUG_ON(page_count(virt_to_page(ptep)) == 0);
3370 if (page_count(virt_to_page(ptep)) == 1)
3371 return 0;
3372
3373 pud_clear(pud);
3374 put_page(virt_to_page(ptep));
3375 *addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE;
3376 return 1;
3377}
9e5fc74c
SC
3378#define want_pmd_share() (1)
3379#else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
3380pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
3381{
3382 return NULL;
3383}
3384#define want_pmd_share() (0)
3212b535
SC
3385#endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
3386
9e5fc74c
SC
3387#ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
3388pte_t *huge_pte_alloc(struct mm_struct *mm,
3389 unsigned long addr, unsigned long sz)
3390{
3391 pgd_t *pgd;
3392 pud_t *pud;
3393 pte_t *pte = NULL;
3394
3395 pgd = pgd_offset(mm, addr);
3396 pud = pud_alloc(mm, pgd, addr);
3397 if (pud) {
3398 if (sz == PUD_SIZE) {
3399 pte = (pte_t *)pud;
3400 } else {
3401 BUG_ON(sz != PMD_SIZE);
3402 if (want_pmd_share() && pud_none(*pud))
3403 pte = huge_pmd_share(mm, addr, pud);
3404 else
3405 pte = (pte_t *)pmd_alloc(mm, pud, addr);
3406 }
3407 }
3408 BUG_ON(pte && !pte_none(*pte) && !pte_huge(*pte));
3409
3410 return pte;
3411}
3412
3413pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr)
3414{
3415 pgd_t *pgd;
3416 pud_t *pud;
3417 pmd_t *pmd = NULL;
3418
3419 pgd = pgd_offset(mm, addr);
3420 if (pgd_present(*pgd)) {
3421 pud = pud_offset(pgd, addr);
3422 if (pud_present(*pud)) {
3423 if (pud_huge(*pud))
3424 return (pte_t *)pud;
3425 pmd = pmd_offset(pud, addr);
3426 }
3427 }
3428 return (pte_t *) pmd;
3429}
3430
3431struct page *
3432follow_huge_pmd(struct mm_struct *mm, unsigned long address,
3433 pmd_t *pmd, int write)
3434{
3435 struct page *page;
3436
3437 page = pte_page(*(pte_t *)pmd);
3438 if (page)
3439 page += ((address & ~PMD_MASK) >> PAGE_SHIFT);
3440 return page;
3441}
3442
3443struct page *
3444follow_huge_pud(struct mm_struct *mm, unsigned long address,
3445 pud_t *pud, int write)
3446{
3447 struct page *page;
3448
3449 page = pte_page(*(pte_t *)pud);
3450 if (page)
3451 page += ((address & ~PUD_MASK) >> PAGE_SHIFT);
3452 return page;
3453}
3454
3455#else /* !CONFIG_ARCH_WANT_GENERAL_HUGETLB */
3456
3457/* Can be overriden by architectures */
3458__attribute__((weak)) struct page *
3459follow_huge_pud(struct mm_struct *mm, unsigned long address,
3460 pud_t *pud, int write)
3461{
3462 BUG();
3463 return NULL;
3464}
3465
3466#endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
3467
d5bd9106
AK
3468#ifdef CONFIG_MEMORY_FAILURE
3469
6de2b1aa
NH
3470/* Should be called in hugetlb_lock */
3471static int is_hugepage_on_freelist(struct page *hpage)
3472{
3473 struct page *page;
3474 struct page *tmp;
3475 struct hstate *h = page_hstate(hpage);
3476 int nid = page_to_nid(hpage);
3477
3478 list_for_each_entry_safe(page, tmp, &h->hugepage_freelists[nid], lru)
3479 if (page == hpage)
3480 return 1;
3481 return 0;
3482}
3483
93f70f90
NH
3484/*
3485 * This function is called from memory failure code.
3486 * Assume the caller holds page lock of the head page.
3487 */
6de2b1aa 3488int dequeue_hwpoisoned_huge_page(struct page *hpage)
93f70f90
NH
3489{
3490 struct hstate *h = page_hstate(hpage);
3491 int nid = page_to_nid(hpage);
6de2b1aa 3492 int ret = -EBUSY;
93f70f90
NH
3493
3494 spin_lock(&hugetlb_lock);
6de2b1aa 3495 if (is_hugepage_on_freelist(hpage)) {
56f2fb14
NH
3496 /*
3497 * Hwpoisoned hugepage isn't linked to activelist or freelist,
3498 * but dangling hpage->lru can trigger list-debug warnings
3499 * (this happens when we call unpoison_memory() on it),
3500 * so let it point to itself with list_del_init().
3501 */
3502 list_del_init(&hpage->lru);
8c6c2ecb 3503 set_page_refcounted(hpage);
6de2b1aa
NH
3504 h->free_huge_pages--;
3505 h->free_huge_pages_node[nid]--;
3506 ret = 0;
3507 }
93f70f90 3508 spin_unlock(&hugetlb_lock);
6de2b1aa 3509 return ret;
93f70f90 3510}
6de2b1aa 3511#endif
31caf665
NH
3512
3513bool isolate_huge_page(struct page *page, struct list_head *list)
3514{
309381fe 3515 VM_BUG_ON_PAGE(!PageHead(page), page);
31caf665
NH
3516 if (!get_page_unless_zero(page))
3517 return false;
3518 spin_lock(&hugetlb_lock);
3519 list_move_tail(&page->lru, list);
3520 spin_unlock(&hugetlb_lock);
3521 return true;
3522}
3523
3524void putback_active_hugepage(struct page *page)
3525{
309381fe 3526 VM_BUG_ON_PAGE(!PageHead(page), page);
31caf665
NH
3527 spin_lock(&hugetlb_lock);
3528 list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
3529 spin_unlock(&hugetlb_lock);
3530 put_page(page);
3531}
c8721bbb
NH
3532
3533bool is_hugepage_active(struct page *page)
3534{
309381fe 3535 VM_BUG_ON_PAGE(!PageHuge(page), page);
c8721bbb
NH
3536 /*
3537 * This function can be called for a tail page because the caller,
3538 * scan_movable_pages, scans through a given pfn-range which typically
3539 * covers one memory block. In systems using gigantic hugepage (1GB
3540 * for x86_64,) a hugepage is larger than a memory block, and we don't
3541 * support migrating such large hugepages for now, so return false
3542 * when called for tail pages.
3543 */
3544 if (PageTail(page))
3545 return false;
3546 /*
3547 * Refcount of a hwpoisoned hugepages is 1, but they are not active,
3548 * so we should return false for them.
3549 */
3550 if (unlikely(PageHWPoison(page)))
3551 return false;
3552 return page_count(page) > 0;
3553}