tmpfs: ZERO_RANGE and COLLAPSE_RANGE not currently supported
[linux-2.6-block.git] / mm / hugetlb.c
CommitLineData
1da177e4
LT
1/*
2 * Generic hugetlb support.
6d49e352 3 * (C) Nadia Yvette Chambers, April 2004
1da177e4 4 */
1da177e4
LT
5#include <linux/list.h>
6#include <linux/init.h>
7#include <linux/module.h>
8#include <linux/mm.h>
e1759c21 9#include <linux/seq_file.h>
1da177e4
LT
10#include <linux/sysctl.h>
11#include <linux/highmem.h>
cddb8a5c 12#include <linux/mmu_notifier.h>
1da177e4 13#include <linux/nodemask.h>
63551ae0 14#include <linux/pagemap.h>
5da7ca86 15#include <linux/mempolicy.h>
3b32123d 16#include <linux/compiler.h>
aea47ff3 17#include <linux/cpuset.h>
3935baa9 18#include <linux/mutex.h>
aa888a74 19#include <linux/bootmem.h>
a3437870 20#include <linux/sysfs.h>
5a0e3ad6 21#include <linux/slab.h>
0fe6e20b 22#include <linux/rmap.h>
fd6a03ed
NH
23#include <linux/swap.h>
24#include <linux/swapops.h>
c8721bbb 25#include <linux/page-isolation.h>
8382d914 26#include <linux/jhash.h>
d6606683 27
63551ae0
DG
28#include <asm/page.h>
29#include <asm/pgtable.h>
24669e58 30#include <asm/tlb.h>
63551ae0 31
24669e58 32#include <linux/io.h>
63551ae0 33#include <linux/hugetlb.h>
9dd540e2 34#include <linux/hugetlb_cgroup.h>
9a305230 35#include <linux/node.h>
7835e98b 36#include "internal.h"
1da177e4
LT
37
38const unsigned long hugetlb_zero = 0, hugetlb_infinity = ~0UL;
396faf03 39unsigned long hugepages_treat_as_movable;
a5516438 40
c3f38a38 41int hugetlb_max_hstate __read_mostly;
e5ff2159
AK
42unsigned int default_hstate_idx;
43struct hstate hstates[HUGE_MAX_HSTATE];
44
53ba51d2
JT
45__initdata LIST_HEAD(huge_boot_pages);
46
e5ff2159
AK
47/* for command line parsing */
48static struct hstate * __initdata parsed_hstate;
49static unsigned long __initdata default_hstate_max_huge_pages;
e11bfbfc 50static unsigned long __initdata default_hstate_size;
e5ff2159 51
3935baa9 52/*
31caf665
NH
53 * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
54 * free_huge_pages, and surplus_huge_pages.
3935baa9 55 */
c3f38a38 56DEFINE_SPINLOCK(hugetlb_lock);
0bd0f9fb 57
8382d914
DB
58/*
59 * Serializes faults on the same logical page. This is used to
60 * prevent spurious OOMs when the hugepage pool is fully utilized.
61 */
62static int num_fault_mutexes;
63static struct mutex *htlb_fault_mutex_table ____cacheline_aligned_in_smp;
64
90481622
DG
65static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
66{
67 bool free = (spool->count == 0) && (spool->used_hpages == 0);
68
69 spin_unlock(&spool->lock);
70
71 /* If no pages are used, and no other handles to the subpool
72 * remain, free the subpool the subpool remain */
73 if (free)
74 kfree(spool);
75}
76
77struct hugepage_subpool *hugepage_new_subpool(long nr_blocks)
78{
79 struct hugepage_subpool *spool;
80
81 spool = kmalloc(sizeof(*spool), GFP_KERNEL);
82 if (!spool)
83 return NULL;
84
85 spin_lock_init(&spool->lock);
86 spool->count = 1;
87 spool->max_hpages = nr_blocks;
88 spool->used_hpages = 0;
89
90 return spool;
91}
92
93void hugepage_put_subpool(struct hugepage_subpool *spool)
94{
95 spin_lock(&spool->lock);
96 BUG_ON(!spool->count);
97 spool->count--;
98 unlock_or_release_subpool(spool);
99}
100
101static int hugepage_subpool_get_pages(struct hugepage_subpool *spool,
102 long delta)
103{
104 int ret = 0;
105
106 if (!spool)
107 return 0;
108
109 spin_lock(&spool->lock);
110 if ((spool->used_hpages + delta) <= spool->max_hpages) {
111 spool->used_hpages += delta;
112 } else {
113 ret = -ENOMEM;
114 }
115 spin_unlock(&spool->lock);
116
117 return ret;
118}
119
120static void hugepage_subpool_put_pages(struct hugepage_subpool *spool,
121 long delta)
122{
123 if (!spool)
124 return;
125
126 spin_lock(&spool->lock);
127 spool->used_hpages -= delta;
128 /* If hugetlbfs_put_super couldn't free spool due to
129 * an outstanding quota reference, free it now. */
130 unlock_or_release_subpool(spool);
131}
132
133static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
134{
135 return HUGETLBFS_SB(inode->i_sb)->spool;
136}
137
138static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
139{
496ad9aa 140 return subpool_inode(file_inode(vma->vm_file));
90481622
DG
141}
142
96822904
AW
143/*
144 * Region tracking -- allows tracking of reservations and instantiated pages
145 * across the pages in a mapping.
84afd99b 146 *
7b24d861
DB
147 * The region data structures are embedded into a resv_map and
148 * protected by a resv_map's lock
96822904
AW
149 */
150struct file_region {
151 struct list_head link;
152 long from;
153 long to;
154};
155
1406ec9b 156static long region_add(struct resv_map *resv, long f, long t)
96822904 157{
1406ec9b 158 struct list_head *head = &resv->regions;
96822904
AW
159 struct file_region *rg, *nrg, *trg;
160
7b24d861 161 spin_lock(&resv->lock);
96822904
AW
162 /* Locate the region we are either in or before. */
163 list_for_each_entry(rg, head, link)
164 if (f <= rg->to)
165 break;
166
167 /* Round our left edge to the current segment if it encloses us. */
168 if (f > rg->from)
169 f = rg->from;
170
171 /* Check for and consume any regions we now overlap with. */
172 nrg = rg;
173 list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
174 if (&rg->link == head)
175 break;
176 if (rg->from > t)
177 break;
178
179 /* If this area reaches higher then extend our area to
180 * include it completely. If this is not the first area
181 * which we intend to reuse, free it. */
182 if (rg->to > t)
183 t = rg->to;
184 if (rg != nrg) {
185 list_del(&rg->link);
186 kfree(rg);
187 }
188 }
189 nrg->from = f;
190 nrg->to = t;
7b24d861 191 spin_unlock(&resv->lock);
96822904
AW
192 return 0;
193}
194
1406ec9b 195static long region_chg(struct resv_map *resv, long f, long t)
96822904 196{
1406ec9b 197 struct list_head *head = &resv->regions;
7b24d861 198 struct file_region *rg, *nrg = NULL;
96822904
AW
199 long chg = 0;
200
7b24d861
DB
201retry:
202 spin_lock(&resv->lock);
96822904
AW
203 /* Locate the region we are before or in. */
204 list_for_each_entry(rg, head, link)
205 if (f <= rg->to)
206 break;
207
208 /* If we are below the current region then a new region is required.
209 * Subtle, allocate a new region at the position but make it zero
210 * size such that we can guarantee to record the reservation. */
211 if (&rg->link == head || t < rg->from) {
7b24d861
DB
212 if (!nrg) {
213 spin_unlock(&resv->lock);
214 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
215 if (!nrg)
216 return -ENOMEM;
217
218 nrg->from = f;
219 nrg->to = f;
220 INIT_LIST_HEAD(&nrg->link);
221 goto retry;
222 }
96822904 223
7b24d861
DB
224 list_add(&nrg->link, rg->link.prev);
225 chg = t - f;
226 goto out_nrg;
96822904
AW
227 }
228
229 /* Round our left edge to the current segment if it encloses us. */
230 if (f > rg->from)
231 f = rg->from;
232 chg = t - f;
233
234 /* Check for and consume any regions we now overlap with. */
235 list_for_each_entry(rg, rg->link.prev, link) {
236 if (&rg->link == head)
237 break;
238 if (rg->from > t)
7b24d861 239 goto out;
96822904 240
25985edc 241 /* We overlap with this area, if it extends further than
96822904
AW
242 * us then we must extend ourselves. Account for its
243 * existing reservation. */
244 if (rg->to > t) {
245 chg += rg->to - t;
246 t = rg->to;
247 }
248 chg -= rg->to - rg->from;
249 }
7b24d861
DB
250
251out:
252 spin_unlock(&resv->lock);
253 /* We already know we raced and no longer need the new region */
254 kfree(nrg);
255 return chg;
256out_nrg:
257 spin_unlock(&resv->lock);
96822904
AW
258 return chg;
259}
260
1406ec9b 261static long region_truncate(struct resv_map *resv, long end)
96822904 262{
1406ec9b 263 struct list_head *head = &resv->regions;
96822904
AW
264 struct file_region *rg, *trg;
265 long chg = 0;
266
7b24d861 267 spin_lock(&resv->lock);
96822904
AW
268 /* Locate the region we are either in or before. */
269 list_for_each_entry(rg, head, link)
270 if (end <= rg->to)
271 break;
272 if (&rg->link == head)
7b24d861 273 goto out;
96822904
AW
274
275 /* If we are in the middle of a region then adjust it. */
276 if (end > rg->from) {
277 chg = rg->to - end;
278 rg->to = end;
279 rg = list_entry(rg->link.next, typeof(*rg), link);
280 }
281
282 /* Drop any remaining regions. */
283 list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
284 if (&rg->link == head)
285 break;
286 chg += rg->to - rg->from;
287 list_del(&rg->link);
288 kfree(rg);
289 }
7b24d861
DB
290
291out:
292 spin_unlock(&resv->lock);
96822904
AW
293 return chg;
294}
295
1406ec9b 296static long region_count(struct resv_map *resv, long f, long t)
84afd99b 297{
1406ec9b 298 struct list_head *head = &resv->regions;
84afd99b
AW
299 struct file_region *rg;
300 long chg = 0;
301
7b24d861 302 spin_lock(&resv->lock);
84afd99b
AW
303 /* Locate each segment we overlap with, and count that overlap. */
304 list_for_each_entry(rg, head, link) {
f2135a4a
WSH
305 long seg_from;
306 long seg_to;
84afd99b
AW
307
308 if (rg->to <= f)
309 continue;
310 if (rg->from >= t)
311 break;
312
313 seg_from = max(rg->from, f);
314 seg_to = min(rg->to, t);
315
316 chg += seg_to - seg_from;
317 }
7b24d861 318 spin_unlock(&resv->lock);
84afd99b
AW
319
320 return chg;
321}
322
e7c4b0bf
AW
323/*
324 * Convert the address within this vma to the page offset within
325 * the mapping, in pagecache page units; huge pages here.
326 */
a5516438
AK
327static pgoff_t vma_hugecache_offset(struct hstate *h,
328 struct vm_area_struct *vma, unsigned long address)
e7c4b0bf 329{
a5516438
AK
330 return ((address - vma->vm_start) >> huge_page_shift(h)) +
331 (vma->vm_pgoff >> huge_page_order(h));
e7c4b0bf
AW
332}
333
0fe6e20b
NH
334pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
335 unsigned long address)
336{
337 return vma_hugecache_offset(hstate_vma(vma), vma, address);
338}
339
08fba699
MG
340/*
341 * Return the size of the pages allocated when backing a VMA. In the majority
342 * cases this will be same size as used by the page table entries.
343 */
344unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
345{
346 struct hstate *hstate;
347
348 if (!is_vm_hugetlb_page(vma))
349 return PAGE_SIZE;
350
351 hstate = hstate_vma(vma);
352
2415cf12 353 return 1UL << huge_page_shift(hstate);
08fba699 354}
f340ca0f 355EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
08fba699 356
3340289d
MG
357/*
358 * Return the page size being used by the MMU to back a VMA. In the majority
359 * of cases, the page size used by the kernel matches the MMU size. On
360 * architectures where it differs, an architecture-specific version of this
361 * function is required.
362 */
363#ifndef vma_mmu_pagesize
364unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
365{
366 return vma_kernel_pagesize(vma);
367}
368#endif
369
84afd99b
AW
370/*
371 * Flags for MAP_PRIVATE reservations. These are stored in the bottom
372 * bits of the reservation map pointer, which are always clear due to
373 * alignment.
374 */
375#define HPAGE_RESV_OWNER (1UL << 0)
376#define HPAGE_RESV_UNMAPPED (1UL << 1)
04f2cbe3 377#define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
84afd99b 378
a1e78772
MG
379/*
380 * These helpers are used to track how many pages are reserved for
381 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
382 * is guaranteed to have their future faults succeed.
383 *
384 * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
385 * the reserve counters are updated with the hugetlb_lock held. It is safe
386 * to reset the VMA at fork() time as it is not in use yet and there is no
387 * chance of the global counters getting corrupted as a result of the values.
84afd99b
AW
388 *
389 * The private mapping reservation is represented in a subtly different
390 * manner to a shared mapping. A shared mapping has a region map associated
391 * with the underlying file, this region map represents the backing file
392 * pages which have ever had a reservation assigned which this persists even
393 * after the page is instantiated. A private mapping has a region map
394 * associated with the original mmap which is attached to all VMAs which
395 * reference it, this region map represents those offsets which have consumed
396 * reservation ie. where pages have been instantiated.
a1e78772 397 */
e7c4b0bf
AW
398static unsigned long get_vma_private_data(struct vm_area_struct *vma)
399{
400 return (unsigned long)vma->vm_private_data;
401}
402
403static void set_vma_private_data(struct vm_area_struct *vma,
404 unsigned long value)
405{
406 vma->vm_private_data = (void *)value;
407}
408
9119a41e 409struct resv_map *resv_map_alloc(void)
84afd99b
AW
410{
411 struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
412 if (!resv_map)
413 return NULL;
414
415 kref_init(&resv_map->refs);
7b24d861 416 spin_lock_init(&resv_map->lock);
84afd99b
AW
417 INIT_LIST_HEAD(&resv_map->regions);
418
419 return resv_map;
420}
421
9119a41e 422void resv_map_release(struct kref *ref)
84afd99b
AW
423{
424 struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
425
426 /* Clear out any active regions before we release the map. */
1406ec9b 427 region_truncate(resv_map, 0);
84afd99b
AW
428 kfree(resv_map);
429}
430
4e35f483
JK
431static inline struct resv_map *inode_resv_map(struct inode *inode)
432{
433 return inode->i_mapping->private_data;
434}
435
84afd99b 436static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
a1e78772
MG
437{
438 VM_BUG_ON(!is_vm_hugetlb_page(vma));
4e35f483
JK
439 if (vma->vm_flags & VM_MAYSHARE) {
440 struct address_space *mapping = vma->vm_file->f_mapping;
441 struct inode *inode = mapping->host;
442
443 return inode_resv_map(inode);
444
445 } else {
84afd99b
AW
446 return (struct resv_map *)(get_vma_private_data(vma) &
447 ~HPAGE_RESV_MASK);
4e35f483 448 }
a1e78772
MG
449}
450
84afd99b 451static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
a1e78772
MG
452{
453 VM_BUG_ON(!is_vm_hugetlb_page(vma));
f83a275d 454 VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
a1e78772 455
84afd99b
AW
456 set_vma_private_data(vma, (get_vma_private_data(vma) &
457 HPAGE_RESV_MASK) | (unsigned long)map);
04f2cbe3
MG
458}
459
460static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
461{
04f2cbe3 462 VM_BUG_ON(!is_vm_hugetlb_page(vma));
f83a275d 463 VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
e7c4b0bf
AW
464
465 set_vma_private_data(vma, get_vma_private_data(vma) | flags);
04f2cbe3
MG
466}
467
468static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
469{
470 VM_BUG_ON(!is_vm_hugetlb_page(vma));
e7c4b0bf
AW
471
472 return (get_vma_private_data(vma) & flag) != 0;
a1e78772
MG
473}
474
04f2cbe3 475/* Reset counters to 0 and clear all HPAGE_RESV_* flags */
a1e78772
MG
476void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
477{
478 VM_BUG_ON(!is_vm_hugetlb_page(vma));
f83a275d 479 if (!(vma->vm_flags & VM_MAYSHARE))
a1e78772
MG
480 vma->vm_private_data = (void *)0;
481}
482
483/* Returns true if the VMA has associated reserve pages */
af0ed73e 484static int vma_has_reserves(struct vm_area_struct *vma, long chg)
a1e78772 485{
af0ed73e
JK
486 if (vma->vm_flags & VM_NORESERVE) {
487 /*
488 * This address is already reserved by other process(chg == 0),
489 * so, we should decrement reserved count. Without decrementing,
490 * reserve count remains after releasing inode, because this
491 * allocated page will go into page cache and is regarded as
492 * coming from reserved pool in releasing step. Currently, we
493 * don't have any other solution to deal with this situation
494 * properly, so add work-around here.
495 */
496 if (vma->vm_flags & VM_MAYSHARE && chg == 0)
497 return 1;
498 else
499 return 0;
500 }
a63884e9
JK
501
502 /* Shared mappings always use reserves */
f83a275d 503 if (vma->vm_flags & VM_MAYSHARE)
7f09ca51 504 return 1;
a63884e9
JK
505
506 /*
507 * Only the process that called mmap() has reserves for
508 * private mappings.
509 */
7f09ca51
MG
510 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER))
511 return 1;
a63884e9 512
7f09ca51 513 return 0;
a1e78772
MG
514}
515
a5516438 516static void enqueue_huge_page(struct hstate *h, struct page *page)
1da177e4
LT
517{
518 int nid = page_to_nid(page);
0edaecfa 519 list_move(&page->lru, &h->hugepage_freelists[nid]);
a5516438
AK
520 h->free_huge_pages++;
521 h->free_huge_pages_node[nid]++;
1da177e4
LT
522}
523
bf50bab2
NH
524static struct page *dequeue_huge_page_node(struct hstate *h, int nid)
525{
526 struct page *page;
527
c8721bbb
NH
528 list_for_each_entry(page, &h->hugepage_freelists[nid], lru)
529 if (!is_migrate_isolate_page(page))
530 break;
531 /*
532 * if 'non-isolated free hugepage' not found on the list,
533 * the allocation fails.
534 */
535 if (&h->hugepage_freelists[nid] == &page->lru)
bf50bab2 536 return NULL;
0edaecfa 537 list_move(&page->lru, &h->hugepage_activelist);
a9869b83 538 set_page_refcounted(page);
bf50bab2
NH
539 h->free_huge_pages--;
540 h->free_huge_pages_node[nid]--;
541 return page;
542}
543
86cdb465
NH
544/* Movability of hugepages depends on migration support. */
545static inline gfp_t htlb_alloc_mask(struct hstate *h)
546{
100873d7 547 if (hugepages_treat_as_movable || hugepage_migration_supported(h))
86cdb465
NH
548 return GFP_HIGHUSER_MOVABLE;
549 else
550 return GFP_HIGHUSER;
551}
552
a5516438
AK
553static struct page *dequeue_huge_page_vma(struct hstate *h,
554 struct vm_area_struct *vma,
af0ed73e
JK
555 unsigned long address, int avoid_reserve,
556 long chg)
1da177e4 557{
b1c12cbc 558 struct page *page = NULL;
480eccf9 559 struct mempolicy *mpol;
19770b32 560 nodemask_t *nodemask;
c0ff7453 561 struct zonelist *zonelist;
dd1a239f
MG
562 struct zone *zone;
563 struct zoneref *z;
cc9a6c87 564 unsigned int cpuset_mems_cookie;
1da177e4 565
a1e78772
MG
566 /*
567 * A child process with MAP_PRIVATE mappings created by their parent
568 * have no page reserves. This check ensures that reservations are
569 * not "stolen". The child may still get SIGKILLed
570 */
af0ed73e 571 if (!vma_has_reserves(vma, chg) &&
a5516438 572 h->free_huge_pages - h->resv_huge_pages == 0)
c0ff7453 573 goto err;
a1e78772 574
04f2cbe3 575 /* If reserves cannot be used, ensure enough pages are in the pool */
a5516438 576 if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
6eab04a8 577 goto err;
04f2cbe3 578
9966c4bb 579retry_cpuset:
d26914d1 580 cpuset_mems_cookie = read_mems_allowed_begin();
9966c4bb 581 zonelist = huge_zonelist(vma, address,
86cdb465 582 htlb_alloc_mask(h), &mpol, &nodemask);
9966c4bb 583
19770b32
MG
584 for_each_zone_zonelist_nodemask(zone, z, zonelist,
585 MAX_NR_ZONES - 1, nodemask) {
86cdb465 586 if (cpuset_zone_allowed_softwall(zone, htlb_alloc_mask(h))) {
bf50bab2
NH
587 page = dequeue_huge_page_node(h, zone_to_nid(zone));
588 if (page) {
af0ed73e
JK
589 if (avoid_reserve)
590 break;
591 if (!vma_has_reserves(vma, chg))
592 break;
593
07443a85 594 SetPagePrivate(page);
af0ed73e 595 h->resv_huge_pages--;
bf50bab2
NH
596 break;
597 }
3abf7afd 598 }
1da177e4 599 }
cc9a6c87 600
52cd3b07 601 mpol_cond_put(mpol);
d26914d1 602 if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie)))
cc9a6c87 603 goto retry_cpuset;
1da177e4 604 return page;
cc9a6c87
MG
605
606err:
cc9a6c87 607 return NULL;
1da177e4
LT
608}
609
1cac6f2c
LC
610/*
611 * common helper functions for hstate_next_node_to_{alloc|free}.
612 * We may have allocated or freed a huge page based on a different
613 * nodes_allowed previously, so h->next_node_to_{alloc|free} might
614 * be outside of *nodes_allowed. Ensure that we use an allowed
615 * node for alloc or free.
616 */
617static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
618{
619 nid = next_node(nid, *nodes_allowed);
620 if (nid == MAX_NUMNODES)
621 nid = first_node(*nodes_allowed);
622 VM_BUG_ON(nid >= MAX_NUMNODES);
623
624 return nid;
625}
626
627static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
628{
629 if (!node_isset(nid, *nodes_allowed))
630 nid = next_node_allowed(nid, nodes_allowed);
631 return nid;
632}
633
634/*
635 * returns the previously saved node ["this node"] from which to
636 * allocate a persistent huge page for the pool and advance the
637 * next node from which to allocate, handling wrap at end of node
638 * mask.
639 */
640static int hstate_next_node_to_alloc(struct hstate *h,
641 nodemask_t *nodes_allowed)
642{
643 int nid;
644
645 VM_BUG_ON(!nodes_allowed);
646
647 nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
648 h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
649
650 return nid;
651}
652
653/*
654 * helper for free_pool_huge_page() - return the previously saved
655 * node ["this node"] from which to free a huge page. Advance the
656 * next node id whether or not we find a free huge page to free so
657 * that the next attempt to free addresses the next node.
658 */
659static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
660{
661 int nid;
662
663 VM_BUG_ON(!nodes_allowed);
664
665 nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
666 h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
667
668 return nid;
669}
670
671#define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask) \
672 for (nr_nodes = nodes_weight(*mask); \
673 nr_nodes > 0 && \
674 ((node = hstate_next_node_to_alloc(hs, mask)) || 1); \
675 nr_nodes--)
676
677#define for_each_node_mask_to_free(hs, nr_nodes, node, mask) \
678 for (nr_nodes = nodes_weight(*mask); \
679 nr_nodes > 0 && \
680 ((node = hstate_next_node_to_free(hs, mask)) || 1); \
681 nr_nodes--)
682
944d9fec
LC
683#if defined(CONFIG_CMA) && defined(CONFIG_X86_64)
684static void destroy_compound_gigantic_page(struct page *page,
685 unsigned long order)
686{
687 int i;
688 int nr_pages = 1 << order;
689 struct page *p = page + 1;
690
691 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
692 __ClearPageTail(p);
693 set_page_refcounted(p);
694 p->first_page = NULL;
695 }
696
697 set_compound_order(page, 0);
698 __ClearPageHead(page);
699}
700
701static void free_gigantic_page(struct page *page, unsigned order)
702{
703 free_contig_range(page_to_pfn(page), 1 << order);
704}
705
706static int __alloc_gigantic_page(unsigned long start_pfn,
707 unsigned long nr_pages)
708{
709 unsigned long end_pfn = start_pfn + nr_pages;
710 return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE);
711}
712
713static bool pfn_range_valid_gigantic(unsigned long start_pfn,
714 unsigned long nr_pages)
715{
716 unsigned long i, end_pfn = start_pfn + nr_pages;
717 struct page *page;
718
719 for (i = start_pfn; i < end_pfn; i++) {
720 if (!pfn_valid(i))
721 return false;
722
723 page = pfn_to_page(i);
724
725 if (PageReserved(page))
726 return false;
727
728 if (page_count(page) > 0)
729 return false;
730
731 if (PageHuge(page))
732 return false;
733 }
734
735 return true;
736}
737
738static bool zone_spans_last_pfn(const struct zone *zone,
739 unsigned long start_pfn, unsigned long nr_pages)
740{
741 unsigned long last_pfn = start_pfn + nr_pages - 1;
742 return zone_spans_pfn(zone, last_pfn);
743}
744
745static struct page *alloc_gigantic_page(int nid, unsigned order)
746{
747 unsigned long nr_pages = 1 << order;
748 unsigned long ret, pfn, flags;
749 struct zone *z;
750
751 z = NODE_DATA(nid)->node_zones;
752 for (; z - NODE_DATA(nid)->node_zones < MAX_NR_ZONES; z++) {
753 spin_lock_irqsave(&z->lock, flags);
754
755 pfn = ALIGN(z->zone_start_pfn, nr_pages);
756 while (zone_spans_last_pfn(z, pfn, nr_pages)) {
757 if (pfn_range_valid_gigantic(pfn, nr_pages)) {
758 /*
759 * We release the zone lock here because
760 * alloc_contig_range() will also lock the zone
761 * at some point. If there's an allocation
762 * spinning on this lock, it may win the race
763 * and cause alloc_contig_range() to fail...
764 */
765 spin_unlock_irqrestore(&z->lock, flags);
766 ret = __alloc_gigantic_page(pfn, nr_pages);
767 if (!ret)
768 return pfn_to_page(pfn);
769 spin_lock_irqsave(&z->lock, flags);
770 }
771 pfn += nr_pages;
772 }
773
774 spin_unlock_irqrestore(&z->lock, flags);
775 }
776
777 return NULL;
778}
779
780static void prep_new_huge_page(struct hstate *h, struct page *page, int nid);
781static void prep_compound_gigantic_page(struct page *page, unsigned long order);
782
783static struct page *alloc_fresh_gigantic_page_node(struct hstate *h, int nid)
784{
785 struct page *page;
786
787 page = alloc_gigantic_page(nid, huge_page_order(h));
788 if (page) {
789 prep_compound_gigantic_page(page, huge_page_order(h));
790 prep_new_huge_page(h, page, nid);
791 }
792
793 return page;
794}
795
796static int alloc_fresh_gigantic_page(struct hstate *h,
797 nodemask_t *nodes_allowed)
798{
799 struct page *page = NULL;
800 int nr_nodes, node;
801
802 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
803 page = alloc_fresh_gigantic_page_node(h, node);
804 if (page)
805 return 1;
806 }
807
808 return 0;
809}
810
811static inline bool gigantic_page_supported(void) { return true; }
812#else
813static inline bool gigantic_page_supported(void) { return false; }
814static inline void free_gigantic_page(struct page *page, unsigned order) { }
815static inline void destroy_compound_gigantic_page(struct page *page,
816 unsigned long order) { }
817static inline int alloc_fresh_gigantic_page(struct hstate *h,
818 nodemask_t *nodes_allowed) { return 0; }
819#endif
820
a5516438 821static void update_and_free_page(struct hstate *h, struct page *page)
6af2acb6
AL
822{
823 int i;
a5516438 824
944d9fec
LC
825 if (hstate_is_gigantic(h) && !gigantic_page_supported())
826 return;
18229df5 827
a5516438
AK
828 h->nr_huge_pages--;
829 h->nr_huge_pages_node[page_to_nid(page)]--;
830 for (i = 0; i < pages_per_huge_page(h); i++) {
32f84528
CF
831 page[i].flags &= ~(1 << PG_locked | 1 << PG_error |
832 1 << PG_referenced | 1 << PG_dirty |
a7407a27
LC
833 1 << PG_active | 1 << PG_private |
834 1 << PG_writeback);
6af2acb6 835 }
309381fe 836 VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page);
6af2acb6
AL
837 set_compound_page_dtor(page, NULL);
838 set_page_refcounted(page);
944d9fec
LC
839 if (hstate_is_gigantic(h)) {
840 destroy_compound_gigantic_page(page, huge_page_order(h));
841 free_gigantic_page(page, huge_page_order(h));
842 } else {
843 arch_release_hugepage(page);
844 __free_pages(page, huge_page_order(h));
845 }
6af2acb6
AL
846}
847
e5ff2159
AK
848struct hstate *size_to_hstate(unsigned long size)
849{
850 struct hstate *h;
851
852 for_each_hstate(h) {
853 if (huge_page_size(h) == size)
854 return h;
855 }
856 return NULL;
857}
858
27a85ef1
DG
859static void free_huge_page(struct page *page)
860{
a5516438
AK
861 /*
862 * Can't pass hstate in here because it is called from the
863 * compound page destructor.
864 */
e5ff2159 865 struct hstate *h = page_hstate(page);
7893d1d5 866 int nid = page_to_nid(page);
90481622
DG
867 struct hugepage_subpool *spool =
868 (struct hugepage_subpool *)page_private(page);
07443a85 869 bool restore_reserve;
27a85ef1 870
e5df70ab 871 set_page_private(page, 0);
23be7468 872 page->mapping = NULL;
7893d1d5 873 BUG_ON(page_count(page));
0fe6e20b 874 BUG_ON(page_mapcount(page));
07443a85 875 restore_reserve = PagePrivate(page);
16c794b4 876 ClearPagePrivate(page);
27a85ef1
DG
877
878 spin_lock(&hugetlb_lock);
6d76dcf4
AK
879 hugetlb_cgroup_uncharge_page(hstate_index(h),
880 pages_per_huge_page(h), page);
07443a85
JK
881 if (restore_reserve)
882 h->resv_huge_pages++;
883
944d9fec 884 if (h->surplus_huge_pages_node[nid]) {
0edaecfa
AK
885 /* remove the page from active list */
886 list_del(&page->lru);
a5516438
AK
887 update_and_free_page(h, page);
888 h->surplus_huge_pages--;
889 h->surplus_huge_pages_node[nid]--;
7893d1d5 890 } else {
5d3a551c 891 arch_clear_hugepage_flags(page);
a5516438 892 enqueue_huge_page(h, page);
7893d1d5 893 }
27a85ef1 894 spin_unlock(&hugetlb_lock);
90481622 895 hugepage_subpool_put_pages(spool, 1);
27a85ef1
DG
896}
897
a5516438 898static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
b7ba30c6 899{
0edaecfa 900 INIT_LIST_HEAD(&page->lru);
b7ba30c6
AK
901 set_compound_page_dtor(page, free_huge_page);
902 spin_lock(&hugetlb_lock);
9dd540e2 903 set_hugetlb_cgroup(page, NULL);
a5516438
AK
904 h->nr_huge_pages++;
905 h->nr_huge_pages_node[nid]++;
b7ba30c6
AK
906 spin_unlock(&hugetlb_lock);
907 put_page(page); /* free it into the hugepage allocator */
908}
909
2906dd52 910static void prep_compound_gigantic_page(struct page *page, unsigned long order)
20a0307c
WF
911{
912 int i;
913 int nr_pages = 1 << order;
914 struct page *p = page + 1;
915
916 /* we rely on prep_new_huge_page to set the destructor */
917 set_compound_order(page, order);
918 __SetPageHead(page);
ef5a22be 919 __ClearPageReserved(page);
20a0307c
WF
920 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
921 __SetPageTail(p);
ef5a22be
AA
922 /*
923 * For gigantic hugepages allocated through bootmem at
924 * boot, it's safer to be consistent with the not-gigantic
925 * hugepages and clear the PG_reserved bit from all tail pages
926 * too. Otherwse drivers using get_user_pages() to access tail
927 * pages may get the reference counting wrong if they see
928 * PG_reserved set on a tail page (despite the head page not
929 * having PG_reserved set). Enforcing this consistency between
930 * head and tail pages allows drivers to optimize away a check
931 * on the head page when they need know if put_page() is needed
932 * after get_user_pages().
933 */
934 __ClearPageReserved(p);
58a84aa9 935 set_page_count(p, 0);
20a0307c
WF
936 p->first_page = page;
937 }
938}
939
7795912c
AM
940/*
941 * PageHuge() only returns true for hugetlbfs pages, but not for normal or
942 * transparent huge pages. See the PageTransHuge() documentation for more
943 * details.
944 */
20a0307c
WF
945int PageHuge(struct page *page)
946{
20a0307c
WF
947 if (!PageCompound(page))
948 return 0;
949
950 page = compound_head(page);
758f66a2 951 return get_compound_page_dtor(page) == free_huge_page;
20a0307c 952}
43131e14
NH
953EXPORT_SYMBOL_GPL(PageHuge);
954
27c73ae7
AA
955/*
956 * PageHeadHuge() only returns true for hugetlbfs head page, but not for
957 * normal or transparent huge pages.
958 */
959int PageHeadHuge(struct page *page_head)
960{
27c73ae7
AA
961 if (!PageHead(page_head))
962 return 0;
963
758f66a2 964 return get_compound_page_dtor(page_head) == free_huge_page;
27c73ae7 965}
27c73ae7 966
13d60f4b
ZY
967pgoff_t __basepage_index(struct page *page)
968{
969 struct page *page_head = compound_head(page);
970 pgoff_t index = page_index(page_head);
971 unsigned long compound_idx;
972
973 if (!PageHuge(page_head))
974 return page_index(page);
975
976 if (compound_order(page_head) >= MAX_ORDER)
977 compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
978 else
979 compound_idx = page - page_head;
980
981 return (index << compound_order(page_head)) + compound_idx;
982}
983
a5516438 984static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid)
1da177e4 985{
1da177e4 986 struct page *page;
f96efd58 987
6484eb3e 988 page = alloc_pages_exact_node(nid,
86cdb465 989 htlb_alloc_mask(h)|__GFP_COMP|__GFP_THISNODE|
551883ae 990 __GFP_REPEAT|__GFP_NOWARN,
a5516438 991 huge_page_order(h));
1da177e4 992 if (page) {
7f2e9525 993 if (arch_prepare_hugepage(page)) {
caff3a2c 994 __free_pages(page, huge_page_order(h));
7b8ee84d 995 return NULL;
7f2e9525 996 }
a5516438 997 prep_new_huge_page(h, page, nid);
1da177e4 998 }
63b4613c
NA
999
1000 return page;
1001}
1002
b2261026
JK
1003static int alloc_fresh_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
1004{
1005 struct page *page;
1006 int nr_nodes, node;
1007 int ret = 0;
1008
1009 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1010 page = alloc_fresh_huge_page_node(h, node);
1011 if (page) {
1012 ret = 1;
1013 break;
1014 }
1015 }
1016
1017 if (ret)
1018 count_vm_event(HTLB_BUDDY_PGALLOC);
1019 else
1020 count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1021
1022 return ret;
1023}
1024
e8c5c824
LS
1025/*
1026 * Free huge page from pool from next node to free.
1027 * Attempt to keep persistent huge pages more or less
1028 * balanced over allowed nodes.
1029 * Called with hugetlb_lock locked.
1030 */
6ae11b27
LS
1031static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
1032 bool acct_surplus)
e8c5c824 1033{
b2261026 1034 int nr_nodes, node;
e8c5c824
LS
1035 int ret = 0;
1036
b2261026 1037 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
685f3457
LS
1038 /*
1039 * If we're returning unused surplus pages, only examine
1040 * nodes with surplus pages.
1041 */
b2261026
JK
1042 if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
1043 !list_empty(&h->hugepage_freelists[node])) {
e8c5c824 1044 struct page *page =
b2261026 1045 list_entry(h->hugepage_freelists[node].next,
e8c5c824
LS
1046 struct page, lru);
1047 list_del(&page->lru);
1048 h->free_huge_pages--;
b2261026 1049 h->free_huge_pages_node[node]--;
685f3457
LS
1050 if (acct_surplus) {
1051 h->surplus_huge_pages--;
b2261026 1052 h->surplus_huge_pages_node[node]--;
685f3457 1053 }
e8c5c824
LS
1054 update_and_free_page(h, page);
1055 ret = 1;
9a76db09 1056 break;
e8c5c824 1057 }
b2261026 1058 }
e8c5c824
LS
1059
1060 return ret;
1061}
1062
c8721bbb
NH
1063/*
1064 * Dissolve a given free hugepage into free buddy pages. This function does
1065 * nothing for in-use (including surplus) hugepages.
1066 */
1067static void dissolve_free_huge_page(struct page *page)
1068{
1069 spin_lock(&hugetlb_lock);
1070 if (PageHuge(page) && !page_count(page)) {
1071 struct hstate *h = page_hstate(page);
1072 int nid = page_to_nid(page);
1073 list_del(&page->lru);
1074 h->free_huge_pages--;
1075 h->free_huge_pages_node[nid]--;
1076 update_and_free_page(h, page);
1077 }
1078 spin_unlock(&hugetlb_lock);
1079}
1080
1081/*
1082 * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
1083 * make specified memory blocks removable from the system.
1084 * Note that start_pfn should aligned with (minimum) hugepage size.
1085 */
1086void dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
1087{
1088 unsigned int order = 8 * sizeof(void *);
1089 unsigned long pfn;
1090 struct hstate *h;
1091
1092 /* Set scan step to minimum hugepage size */
1093 for_each_hstate(h)
1094 if (order > huge_page_order(h))
1095 order = huge_page_order(h);
1096 VM_BUG_ON(!IS_ALIGNED(start_pfn, 1 << order));
1097 for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << order)
1098 dissolve_free_huge_page(pfn_to_page(pfn));
1099}
1100
bf50bab2 1101static struct page *alloc_buddy_huge_page(struct hstate *h, int nid)
7893d1d5
AL
1102{
1103 struct page *page;
bf50bab2 1104 unsigned int r_nid;
7893d1d5 1105
bae7f4ae 1106 if (hstate_is_gigantic(h))
aa888a74
AK
1107 return NULL;
1108
d1c3fb1f
NA
1109 /*
1110 * Assume we will successfully allocate the surplus page to
1111 * prevent racing processes from causing the surplus to exceed
1112 * overcommit
1113 *
1114 * This however introduces a different race, where a process B
1115 * tries to grow the static hugepage pool while alloc_pages() is
1116 * called by process A. B will only examine the per-node
1117 * counters in determining if surplus huge pages can be
1118 * converted to normal huge pages in adjust_pool_surplus(). A
1119 * won't be able to increment the per-node counter, until the
1120 * lock is dropped by B, but B doesn't drop hugetlb_lock until
1121 * no more huge pages can be converted from surplus to normal
1122 * state (and doesn't try to convert again). Thus, we have a
1123 * case where a surplus huge page exists, the pool is grown, and
1124 * the surplus huge page still exists after, even though it
1125 * should just have been converted to a normal huge page. This
1126 * does not leak memory, though, as the hugepage will be freed
1127 * once it is out of use. It also does not allow the counters to
1128 * go out of whack in adjust_pool_surplus() as we don't modify
1129 * the node values until we've gotten the hugepage and only the
1130 * per-node value is checked there.
1131 */
1132 spin_lock(&hugetlb_lock);
a5516438 1133 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
d1c3fb1f
NA
1134 spin_unlock(&hugetlb_lock);
1135 return NULL;
1136 } else {
a5516438
AK
1137 h->nr_huge_pages++;
1138 h->surplus_huge_pages++;
d1c3fb1f
NA
1139 }
1140 spin_unlock(&hugetlb_lock);
1141
bf50bab2 1142 if (nid == NUMA_NO_NODE)
86cdb465 1143 page = alloc_pages(htlb_alloc_mask(h)|__GFP_COMP|
bf50bab2
NH
1144 __GFP_REPEAT|__GFP_NOWARN,
1145 huge_page_order(h));
1146 else
1147 page = alloc_pages_exact_node(nid,
86cdb465 1148 htlb_alloc_mask(h)|__GFP_COMP|__GFP_THISNODE|
bf50bab2 1149 __GFP_REPEAT|__GFP_NOWARN, huge_page_order(h));
d1c3fb1f 1150
caff3a2c
GS
1151 if (page && arch_prepare_hugepage(page)) {
1152 __free_pages(page, huge_page_order(h));
ea5768c7 1153 page = NULL;
caff3a2c
GS
1154 }
1155
d1c3fb1f 1156 spin_lock(&hugetlb_lock);
7893d1d5 1157 if (page) {
0edaecfa 1158 INIT_LIST_HEAD(&page->lru);
bf50bab2 1159 r_nid = page_to_nid(page);
7893d1d5 1160 set_compound_page_dtor(page, free_huge_page);
9dd540e2 1161 set_hugetlb_cgroup(page, NULL);
d1c3fb1f
NA
1162 /*
1163 * We incremented the global counters already
1164 */
bf50bab2
NH
1165 h->nr_huge_pages_node[r_nid]++;
1166 h->surplus_huge_pages_node[r_nid]++;
3b116300 1167 __count_vm_event(HTLB_BUDDY_PGALLOC);
d1c3fb1f 1168 } else {
a5516438
AK
1169 h->nr_huge_pages--;
1170 h->surplus_huge_pages--;
3b116300 1171 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
7893d1d5 1172 }
d1c3fb1f 1173 spin_unlock(&hugetlb_lock);
7893d1d5
AL
1174
1175 return page;
1176}
1177
bf50bab2
NH
1178/*
1179 * This allocation function is useful in the context where vma is irrelevant.
1180 * E.g. soft-offlining uses this function because it only cares physical
1181 * address of error page.
1182 */
1183struct page *alloc_huge_page_node(struct hstate *h, int nid)
1184{
4ef91848 1185 struct page *page = NULL;
bf50bab2
NH
1186
1187 spin_lock(&hugetlb_lock);
4ef91848
JK
1188 if (h->free_huge_pages - h->resv_huge_pages > 0)
1189 page = dequeue_huge_page_node(h, nid);
bf50bab2
NH
1190 spin_unlock(&hugetlb_lock);
1191
94ae8ba7 1192 if (!page)
bf50bab2
NH
1193 page = alloc_buddy_huge_page(h, nid);
1194
1195 return page;
1196}
1197
e4e574b7 1198/*
25985edc 1199 * Increase the hugetlb pool such that it can accommodate a reservation
e4e574b7
AL
1200 * of size 'delta'.
1201 */
a5516438 1202static int gather_surplus_pages(struct hstate *h, int delta)
e4e574b7
AL
1203{
1204 struct list_head surplus_list;
1205 struct page *page, *tmp;
1206 int ret, i;
1207 int needed, allocated;
28073b02 1208 bool alloc_ok = true;
e4e574b7 1209
a5516438 1210 needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
ac09b3a1 1211 if (needed <= 0) {
a5516438 1212 h->resv_huge_pages += delta;
e4e574b7 1213 return 0;
ac09b3a1 1214 }
e4e574b7
AL
1215
1216 allocated = 0;
1217 INIT_LIST_HEAD(&surplus_list);
1218
1219 ret = -ENOMEM;
1220retry:
1221 spin_unlock(&hugetlb_lock);
1222 for (i = 0; i < needed; i++) {
bf50bab2 1223 page = alloc_buddy_huge_page(h, NUMA_NO_NODE);
28073b02
HD
1224 if (!page) {
1225 alloc_ok = false;
1226 break;
1227 }
e4e574b7
AL
1228 list_add(&page->lru, &surplus_list);
1229 }
28073b02 1230 allocated += i;
e4e574b7
AL
1231
1232 /*
1233 * After retaking hugetlb_lock, we need to recalculate 'needed'
1234 * because either resv_huge_pages or free_huge_pages may have changed.
1235 */
1236 spin_lock(&hugetlb_lock);
a5516438
AK
1237 needed = (h->resv_huge_pages + delta) -
1238 (h->free_huge_pages + allocated);
28073b02
HD
1239 if (needed > 0) {
1240 if (alloc_ok)
1241 goto retry;
1242 /*
1243 * We were not able to allocate enough pages to
1244 * satisfy the entire reservation so we free what
1245 * we've allocated so far.
1246 */
1247 goto free;
1248 }
e4e574b7
AL
1249 /*
1250 * The surplus_list now contains _at_least_ the number of extra pages
25985edc 1251 * needed to accommodate the reservation. Add the appropriate number
e4e574b7 1252 * of pages to the hugetlb pool and free the extras back to the buddy
ac09b3a1
AL
1253 * allocator. Commit the entire reservation here to prevent another
1254 * process from stealing the pages as they are added to the pool but
1255 * before they are reserved.
e4e574b7
AL
1256 */
1257 needed += allocated;
a5516438 1258 h->resv_huge_pages += delta;
e4e574b7 1259 ret = 0;
a9869b83 1260
19fc3f0a 1261 /* Free the needed pages to the hugetlb pool */
e4e574b7 1262 list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
19fc3f0a
AL
1263 if ((--needed) < 0)
1264 break;
a9869b83
NH
1265 /*
1266 * This page is now managed by the hugetlb allocator and has
1267 * no users -- drop the buddy allocator's reference.
1268 */
1269 put_page_testzero(page);
309381fe 1270 VM_BUG_ON_PAGE(page_count(page), page);
a5516438 1271 enqueue_huge_page(h, page);
19fc3f0a 1272 }
28073b02 1273free:
b0365c8d 1274 spin_unlock(&hugetlb_lock);
19fc3f0a
AL
1275
1276 /* Free unnecessary surplus pages to the buddy allocator */
c0d934ba
JK
1277 list_for_each_entry_safe(page, tmp, &surplus_list, lru)
1278 put_page(page);
a9869b83 1279 spin_lock(&hugetlb_lock);
e4e574b7
AL
1280
1281 return ret;
1282}
1283
1284/*
1285 * When releasing a hugetlb pool reservation, any surplus pages that were
1286 * allocated to satisfy the reservation must be explicitly freed if they were
1287 * never used.
685f3457 1288 * Called with hugetlb_lock held.
e4e574b7 1289 */
a5516438
AK
1290static void return_unused_surplus_pages(struct hstate *h,
1291 unsigned long unused_resv_pages)
e4e574b7 1292{
e4e574b7
AL
1293 unsigned long nr_pages;
1294
ac09b3a1 1295 /* Uncommit the reservation */
a5516438 1296 h->resv_huge_pages -= unused_resv_pages;
ac09b3a1 1297
aa888a74 1298 /* Cannot return gigantic pages currently */
bae7f4ae 1299 if (hstate_is_gigantic(h))
aa888a74
AK
1300 return;
1301
a5516438 1302 nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
e4e574b7 1303
685f3457
LS
1304 /*
1305 * We want to release as many surplus pages as possible, spread
9b5e5d0f
LS
1306 * evenly across all nodes with memory. Iterate across these nodes
1307 * until we can no longer free unreserved surplus pages. This occurs
1308 * when the nodes with surplus pages have no free pages.
1309 * free_pool_huge_page() will balance the the freed pages across the
1310 * on-line nodes with memory and will handle the hstate accounting.
685f3457
LS
1311 */
1312 while (nr_pages--) {
8cebfcd0 1313 if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1))
685f3457 1314 break;
7848a4bf 1315 cond_resched_lock(&hugetlb_lock);
e4e574b7
AL
1316 }
1317}
1318
c37f9fb1
AW
1319/*
1320 * Determine if the huge page at addr within the vma has an associated
1321 * reservation. Where it does not we will need to logically increase
90481622
DG
1322 * reservation and actually increase subpool usage before an allocation
1323 * can occur. Where any new reservation would be required the
1324 * reservation change is prepared, but not committed. Once the page
1325 * has been allocated from the subpool and instantiated the change should
1326 * be committed via vma_commit_reservation. No action is required on
1327 * failure.
c37f9fb1 1328 */
e2f17d94 1329static long vma_needs_reservation(struct hstate *h,
a5516438 1330 struct vm_area_struct *vma, unsigned long addr)
c37f9fb1 1331{
4e35f483
JK
1332 struct resv_map *resv;
1333 pgoff_t idx;
1334 long chg;
c37f9fb1 1335
4e35f483
JK
1336 resv = vma_resv_map(vma);
1337 if (!resv)
84afd99b 1338 return 1;
c37f9fb1 1339
4e35f483
JK
1340 idx = vma_hugecache_offset(h, vma, addr);
1341 chg = region_chg(resv, idx, idx + 1);
84afd99b 1342
4e35f483
JK
1343 if (vma->vm_flags & VM_MAYSHARE)
1344 return chg;
1345 else
1346 return chg < 0 ? chg : 0;
c37f9fb1 1347}
a5516438
AK
1348static void vma_commit_reservation(struct hstate *h,
1349 struct vm_area_struct *vma, unsigned long addr)
c37f9fb1 1350{
4e35f483
JK
1351 struct resv_map *resv;
1352 pgoff_t idx;
84afd99b 1353
4e35f483
JK
1354 resv = vma_resv_map(vma);
1355 if (!resv)
1356 return;
84afd99b 1357
4e35f483
JK
1358 idx = vma_hugecache_offset(h, vma, addr);
1359 region_add(resv, idx, idx + 1);
c37f9fb1
AW
1360}
1361
a1e78772 1362static struct page *alloc_huge_page(struct vm_area_struct *vma,
04f2cbe3 1363 unsigned long addr, int avoid_reserve)
1da177e4 1364{
90481622 1365 struct hugepage_subpool *spool = subpool_vma(vma);
a5516438 1366 struct hstate *h = hstate_vma(vma);
348ea204 1367 struct page *page;
e2f17d94 1368 long chg;
6d76dcf4
AK
1369 int ret, idx;
1370 struct hugetlb_cgroup *h_cg;
a1e78772 1371
6d76dcf4 1372 idx = hstate_index(h);
a1e78772 1373 /*
90481622
DG
1374 * Processes that did not create the mapping will have no
1375 * reserves and will not have accounted against subpool
1376 * limit. Check that the subpool limit can be made before
1377 * satisfying the allocation MAP_NORESERVE mappings may also
1378 * need pages and subpool limit allocated allocated if no reserve
1379 * mapping overlaps.
a1e78772 1380 */
a5516438 1381 chg = vma_needs_reservation(h, vma, addr);
c37f9fb1 1382 if (chg < 0)
76dcee75 1383 return ERR_PTR(-ENOMEM);
8bb3f12e
JK
1384 if (chg || avoid_reserve)
1385 if (hugepage_subpool_get_pages(spool, 1))
76dcee75 1386 return ERR_PTR(-ENOSPC);
1da177e4 1387
6d76dcf4 1388 ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
8f34af6f
JZ
1389 if (ret)
1390 goto out_subpool_put;
1391
1da177e4 1392 spin_lock(&hugetlb_lock);
af0ed73e 1393 page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, chg);
81a6fcae 1394 if (!page) {
94ae8ba7 1395 spin_unlock(&hugetlb_lock);
bf50bab2 1396 page = alloc_buddy_huge_page(h, NUMA_NO_NODE);
8f34af6f
JZ
1397 if (!page)
1398 goto out_uncharge_cgroup;
1399
79dbb236
AK
1400 spin_lock(&hugetlb_lock);
1401 list_move(&page->lru, &h->hugepage_activelist);
81a6fcae 1402 /* Fall through */
68842c9b 1403 }
81a6fcae
JK
1404 hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
1405 spin_unlock(&hugetlb_lock);
348ea204 1406
90481622 1407 set_page_private(page, (unsigned long)spool);
90d8b7e6 1408
a5516438 1409 vma_commit_reservation(h, vma, addr);
90d8b7e6 1410 return page;
8f34af6f
JZ
1411
1412out_uncharge_cgroup:
1413 hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
1414out_subpool_put:
1415 if (chg || avoid_reserve)
1416 hugepage_subpool_put_pages(spool, 1);
1417 return ERR_PTR(-ENOSPC);
b45b5bd6
DG
1418}
1419
74060e4d
NH
1420/*
1421 * alloc_huge_page()'s wrapper which simply returns the page if allocation
1422 * succeeds, otherwise NULL. This function is called from new_vma_page(),
1423 * where no ERR_VALUE is expected to be returned.
1424 */
1425struct page *alloc_huge_page_noerr(struct vm_area_struct *vma,
1426 unsigned long addr, int avoid_reserve)
1427{
1428 struct page *page = alloc_huge_page(vma, addr, avoid_reserve);
1429 if (IS_ERR(page))
1430 page = NULL;
1431 return page;
1432}
1433
91f47662 1434int __weak alloc_bootmem_huge_page(struct hstate *h)
aa888a74
AK
1435{
1436 struct huge_bootmem_page *m;
b2261026 1437 int nr_nodes, node;
aa888a74 1438
b2261026 1439 for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
aa888a74
AK
1440 void *addr;
1441
8b89a116
GS
1442 addr = memblock_virt_alloc_try_nid_nopanic(
1443 huge_page_size(h), huge_page_size(h),
1444 0, BOOTMEM_ALLOC_ACCESSIBLE, node);
aa888a74
AK
1445 if (addr) {
1446 /*
1447 * Use the beginning of the huge page to store the
1448 * huge_bootmem_page struct (until gather_bootmem
1449 * puts them into the mem_map).
1450 */
1451 m = addr;
91f47662 1452 goto found;
aa888a74 1453 }
aa888a74
AK
1454 }
1455 return 0;
1456
1457found:
1458 BUG_ON((unsigned long)virt_to_phys(m) & (huge_page_size(h) - 1));
1459 /* Put them into a private list first because mem_map is not up yet */
1460 list_add(&m->list, &huge_boot_pages);
1461 m->hstate = h;
1462 return 1;
1463}
1464
f412c97a 1465static void __init prep_compound_huge_page(struct page *page, int order)
18229df5
AW
1466{
1467 if (unlikely(order > (MAX_ORDER - 1)))
1468 prep_compound_gigantic_page(page, order);
1469 else
1470 prep_compound_page(page, order);
1471}
1472
aa888a74
AK
1473/* Put bootmem huge pages into the standard lists after mem_map is up */
1474static void __init gather_bootmem_prealloc(void)
1475{
1476 struct huge_bootmem_page *m;
1477
1478 list_for_each_entry(m, &huge_boot_pages, list) {
aa888a74 1479 struct hstate *h = m->hstate;
ee8f248d
BB
1480 struct page *page;
1481
1482#ifdef CONFIG_HIGHMEM
1483 page = pfn_to_page(m->phys >> PAGE_SHIFT);
8b89a116
GS
1484 memblock_free_late(__pa(m),
1485 sizeof(struct huge_bootmem_page));
ee8f248d
BB
1486#else
1487 page = virt_to_page(m);
1488#endif
aa888a74 1489 WARN_ON(page_count(page) != 1);
18229df5 1490 prep_compound_huge_page(page, h->order);
ef5a22be 1491 WARN_ON(PageReserved(page));
aa888a74 1492 prep_new_huge_page(h, page, page_to_nid(page));
b0320c7b
RA
1493 /*
1494 * If we had gigantic hugepages allocated at boot time, we need
1495 * to restore the 'stolen' pages to totalram_pages in order to
1496 * fix confusing memory reports from free(1) and another
1497 * side-effects, like CommitLimit going negative.
1498 */
bae7f4ae 1499 if (hstate_is_gigantic(h))
3dcc0571 1500 adjust_managed_page_count(page, 1 << h->order);
aa888a74
AK
1501 }
1502}
1503
8faa8b07 1504static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
1da177e4
LT
1505{
1506 unsigned long i;
a5516438 1507
e5ff2159 1508 for (i = 0; i < h->max_huge_pages; ++i) {
bae7f4ae 1509 if (hstate_is_gigantic(h)) {
aa888a74
AK
1510 if (!alloc_bootmem_huge_page(h))
1511 break;
9b5e5d0f 1512 } else if (!alloc_fresh_huge_page(h,
8cebfcd0 1513 &node_states[N_MEMORY]))
1da177e4 1514 break;
1da177e4 1515 }
8faa8b07 1516 h->max_huge_pages = i;
e5ff2159
AK
1517}
1518
1519static void __init hugetlb_init_hstates(void)
1520{
1521 struct hstate *h;
1522
1523 for_each_hstate(h) {
8faa8b07 1524 /* oversize hugepages were init'ed in early boot */
bae7f4ae 1525 if (!hstate_is_gigantic(h))
8faa8b07 1526 hugetlb_hstate_alloc_pages(h);
e5ff2159
AK
1527 }
1528}
1529
4abd32db
AK
1530static char * __init memfmt(char *buf, unsigned long n)
1531{
1532 if (n >= (1UL << 30))
1533 sprintf(buf, "%lu GB", n >> 30);
1534 else if (n >= (1UL << 20))
1535 sprintf(buf, "%lu MB", n >> 20);
1536 else
1537 sprintf(buf, "%lu KB", n >> 10);
1538 return buf;
1539}
1540
e5ff2159
AK
1541static void __init report_hugepages(void)
1542{
1543 struct hstate *h;
1544
1545 for_each_hstate(h) {
4abd32db 1546 char buf[32];
ffb22af5 1547 pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
4abd32db
AK
1548 memfmt(buf, huge_page_size(h)),
1549 h->free_huge_pages);
e5ff2159
AK
1550 }
1551}
1552
1da177e4 1553#ifdef CONFIG_HIGHMEM
6ae11b27
LS
1554static void try_to_free_low(struct hstate *h, unsigned long count,
1555 nodemask_t *nodes_allowed)
1da177e4 1556{
4415cc8d
CL
1557 int i;
1558
bae7f4ae 1559 if (hstate_is_gigantic(h))
aa888a74
AK
1560 return;
1561
6ae11b27 1562 for_each_node_mask(i, *nodes_allowed) {
1da177e4 1563 struct page *page, *next;
a5516438
AK
1564 struct list_head *freel = &h->hugepage_freelists[i];
1565 list_for_each_entry_safe(page, next, freel, lru) {
1566 if (count >= h->nr_huge_pages)
6b0c880d 1567 return;
1da177e4
LT
1568 if (PageHighMem(page))
1569 continue;
1570 list_del(&page->lru);
e5ff2159 1571 update_and_free_page(h, page);
a5516438
AK
1572 h->free_huge_pages--;
1573 h->free_huge_pages_node[page_to_nid(page)]--;
1da177e4
LT
1574 }
1575 }
1576}
1577#else
6ae11b27
LS
1578static inline void try_to_free_low(struct hstate *h, unsigned long count,
1579 nodemask_t *nodes_allowed)
1da177e4
LT
1580{
1581}
1582#endif
1583
20a0307c
WF
1584/*
1585 * Increment or decrement surplus_huge_pages. Keep node-specific counters
1586 * balanced by operating on them in a round-robin fashion.
1587 * Returns 1 if an adjustment was made.
1588 */
6ae11b27
LS
1589static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
1590 int delta)
20a0307c 1591{
b2261026 1592 int nr_nodes, node;
20a0307c
WF
1593
1594 VM_BUG_ON(delta != -1 && delta != 1);
20a0307c 1595
b2261026
JK
1596 if (delta < 0) {
1597 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1598 if (h->surplus_huge_pages_node[node])
1599 goto found;
e8c5c824 1600 }
b2261026
JK
1601 } else {
1602 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
1603 if (h->surplus_huge_pages_node[node] <
1604 h->nr_huge_pages_node[node])
1605 goto found;
e8c5c824 1606 }
b2261026
JK
1607 }
1608 return 0;
20a0307c 1609
b2261026
JK
1610found:
1611 h->surplus_huge_pages += delta;
1612 h->surplus_huge_pages_node[node] += delta;
1613 return 1;
20a0307c
WF
1614}
1615
a5516438 1616#define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
6ae11b27
LS
1617static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count,
1618 nodemask_t *nodes_allowed)
1da177e4 1619{
7893d1d5 1620 unsigned long min_count, ret;
1da177e4 1621
944d9fec 1622 if (hstate_is_gigantic(h) && !gigantic_page_supported())
aa888a74
AK
1623 return h->max_huge_pages;
1624
7893d1d5
AL
1625 /*
1626 * Increase the pool size
1627 * First take pages out of surplus state. Then make up the
1628 * remaining difference by allocating fresh huge pages.
d1c3fb1f
NA
1629 *
1630 * We might race with alloc_buddy_huge_page() here and be unable
1631 * to convert a surplus huge page to a normal huge page. That is
1632 * not critical, though, it just means the overall size of the
1633 * pool might be one hugepage larger than it needs to be, but
1634 * within all the constraints specified by the sysctls.
7893d1d5 1635 */
1da177e4 1636 spin_lock(&hugetlb_lock);
a5516438 1637 while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
6ae11b27 1638 if (!adjust_pool_surplus(h, nodes_allowed, -1))
7893d1d5
AL
1639 break;
1640 }
1641
a5516438 1642 while (count > persistent_huge_pages(h)) {
7893d1d5
AL
1643 /*
1644 * If this allocation races such that we no longer need the
1645 * page, free_huge_page will handle it by freeing the page
1646 * and reducing the surplus.
1647 */
1648 spin_unlock(&hugetlb_lock);
944d9fec
LC
1649 if (hstate_is_gigantic(h))
1650 ret = alloc_fresh_gigantic_page(h, nodes_allowed);
1651 else
1652 ret = alloc_fresh_huge_page(h, nodes_allowed);
7893d1d5
AL
1653 spin_lock(&hugetlb_lock);
1654 if (!ret)
1655 goto out;
1656
536240f2
MG
1657 /* Bail for signals. Probably ctrl-c from user */
1658 if (signal_pending(current))
1659 goto out;
7893d1d5 1660 }
7893d1d5
AL
1661
1662 /*
1663 * Decrease the pool size
1664 * First return free pages to the buddy allocator (being careful
1665 * to keep enough around to satisfy reservations). Then place
1666 * pages into surplus state as needed so the pool will shrink
1667 * to the desired size as pages become free.
d1c3fb1f
NA
1668 *
1669 * By placing pages into the surplus state independent of the
1670 * overcommit value, we are allowing the surplus pool size to
1671 * exceed overcommit. There are few sane options here. Since
1672 * alloc_buddy_huge_page() is checking the global counter,
1673 * though, we'll note that we're not allowed to exceed surplus
1674 * and won't grow the pool anywhere else. Not until one of the
1675 * sysctls are changed, or the surplus pages go out of use.
7893d1d5 1676 */
a5516438 1677 min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
6b0c880d 1678 min_count = max(count, min_count);
6ae11b27 1679 try_to_free_low(h, min_count, nodes_allowed);
a5516438 1680 while (min_count < persistent_huge_pages(h)) {
6ae11b27 1681 if (!free_pool_huge_page(h, nodes_allowed, 0))
1da177e4 1682 break;
55f67141 1683 cond_resched_lock(&hugetlb_lock);
1da177e4 1684 }
a5516438 1685 while (count < persistent_huge_pages(h)) {
6ae11b27 1686 if (!adjust_pool_surplus(h, nodes_allowed, 1))
7893d1d5
AL
1687 break;
1688 }
1689out:
a5516438 1690 ret = persistent_huge_pages(h);
1da177e4 1691 spin_unlock(&hugetlb_lock);
7893d1d5 1692 return ret;
1da177e4
LT
1693}
1694
a3437870
NA
1695#define HSTATE_ATTR_RO(_name) \
1696 static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
1697
1698#define HSTATE_ATTR(_name) \
1699 static struct kobj_attribute _name##_attr = \
1700 __ATTR(_name, 0644, _name##_show, _name##_store)
1701
1702static struct kobject *hugepages_kobj;
1703static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
1704
9a305230
LS
1705static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
1706
1707static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
a3437870
NA
1708{
1709 int i;
9a305230 1710
a3437870 1711 for (i = 0; i < HUGE_MAX_HSTATE; i++)
9a305230
LS
1712 if (hstate_kobjs[i] == kobj) {
1713 if (nidp)
1714 *nidp = NUMA_NO_NODE;
a3437870 1715 return &hstates[i];
9a305230
LS
1716 }
1717
1718 return kobj_to_node_hstate(kobj, nidp);
a3437870
NA
1719}
1720
06808b08 1721static ssize_t nr_hugepages_show_common(struct kobject *kobj,
a3437870
NA
1722 struct kobj_attribute *attr, char *buf)
1723{
9a305230
LS
1724 struct hstate *h;
1725 unsigned long nr_huge_pages;
1726 int nid;
1727
1728 h = kobj_to_hstate(kobj, &nid);
1729 if (nid == NUMA_NO_NODE)
1730 nr_huge_pages = h->nr_huge_pages;
1731 else
1732 nr_huge_pages = h->nr_huge_pages_node[nid];
1733
1734 return sprintf(buf, "%lu\n", nr_huge_pages);
a3437870 1735}
adbe8726 1736
06808b08
LS
1737static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
1738 struct kobject *kobj, struct kobj_attribute *attr,
1739 const char *buf, size_t len)
a3437870
NA
1740{
1741 int err;
9a305230 1742 int nid;
06808b08 1743 unsigned long count;
9a305230 1744 struct hstate *h;
bad44b5b 1745 NODEMASK_ALLOC(nodemask_t, nodes_allowed, GFP_KERNEL | __GFP_NORETRY);
a3437870 1746
3dbb95f7 1747 err = kstrtoul(buf, 10, &count);
73ae31e5 1748 if (err)
adbe8726 1749 goto out;
a3437870 1750
9a305230 1751 h = kobj_to_hstate(kobj, &nid);
944d9fec 1752 if (hstate_is_gigantic(h) && !gigantic_page_supported()) {
adbe8726
EM
1753 err = -EINVAL;
1754 goto out;
1755 }
1756
9a305230
LS
1757 if (nid == NUMA_NO_NODE) {
1758 /*
1759 * global hstate attribute
1760 */
1761 if (!(obey_mempolicy &&
1762 init_nodemask_of_mempolicy(nodes_allowed))) {
1763 NODEMASK_FREE(nodes_allowed);
8cebfcd0 1764 nodes_allowed = &node_states[N_MEMORY];
9a305230
LS
1765 }
1766 } else if (nodes_allowed) {
1767 /*
1768 * per node hstate attribute: adjust count to global,
1769 * but restrict alloc/free to the specified node.
1770 */
1771 count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
1772 init_nodemask_of_node(nodes_allowed, nid);
1773 } else
8cebfcd0 1774 nodes_allowed = &node_states[N_MEMORY];
9a305230 1775
06808b08 1776 h->max_huge_pages = set_max_huge_pages(h, count, nodes_allowed);
a3437870 1777
8cebfcd0 1778 if (nodes_allowed != &node_states[N_MEMORY])
06808b08
LS
1779 NODEMASK_FREE(nodes_allowed);
1780
1781 return len;
adbe8726
EM
1782out:
1783 NODEMASK_FREE(nodes_allowed);
1784 return err;
06808b08
LS
1785}
1786
1787static ssize_t nr_hugepages_show(struct kobject *kobj,
1788 struct kobj_attribute *attr, char *buf)
1789{
1790 return nr_hugepages_show_common(kobj, attr, buf);
1791}
1792
1793static ssize_t nr_hugepages_store(struct kobject *kobj,
1794 struct kobj_attribute *attr, const char *buf, size_t len)
1795{
1796 return nr_hugepages_store_common(false, kobj, attr, buf, len);
a3437870
NA
1797}
1798HSTATE_ATTR(nr_hugepages);
1799
06808b08
LS
1800#ifdef CONFIG_NUMA
1801
1802/*
1803 * hstate attribute for optionally mempolicy-based constraint on persistent
1804 * huge page alloc/free.
1805 */
1806static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
1807 struct kobj_attribute *attr, char *buf)
1808{
1809 return nr_hugepages_show_common(kobj, attr, buf);
1810}
1811
1812static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
1813 struct kobj_attribute *attr, const char *buf, size_t len)
1814{
1815 return nr_hugepages_store_common(true, kobj, attr, buf, len);
1816}
1817HSTATE_ATTR(nr_hugepages_mempolicy);
1818#endif
1819
1820
a3437870
NA
1821static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
1822 struct kobj_attribute *attr, char *buf)
1823{
9a305230 1824 struct hstate *h = kobj_to_hstate(kobj, NULL);
a3437870
NA
1825 return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
1826}
adbe8726 1827
a3437870
NA
1828static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
1829 struct kobj_attribute *attr, const char *buf, size_t count)
1830{
1831 int err;
1832 unsigned long input;
9a305230 1833 struct hstate *h = kobj_to_hstate(kobj, NULL);
a3437870 1834
bae7f4ae 1835 if (hstate_is_gigantic(h))
adbe8726
EM
1836 return -EINVAL;
1837
3dbb95f7 1838 err = kstrtoul(buf, 10, &input);
a3437870 1839 if (err)
73ae31e5 1840 return err;
a3437870
NA
1841
1842 spin_lock(&hugetlb_lock);
1843 h->nr_overcommit_huge_pages = input;
1844 spin_unlock(&hugetlb_lock);
1845
1846 return count;
1847}
1848HSTATE_ATTR(nr_overcommit_hugepages);
1849
1850static ssize_t free_hugepages_show(struct kobject *kobj,
1851 struct kobj_attribute *attr, char *buf)
1852{
9a305230
LS
1853 struct hstate *h;
1854 unsigned long free_huge_pages;
1855 int nid;
1856
1857 h = kobj_to_hstate(kobj, &nid);
1858 if (nid == NUMA_NO_NODE)
1859 free_huge_pages = h->free_huge_pages;
1860 else
1861 free_huge_pages = h->free_huge_pages_node[nid];
1862
1863 return sprintf(buf, "%lu\n", free_huge_pages);
a3437870
NA
1864}
1865HSTATE_ATTR_RO(free_hugepages);
1866
1867static ssize_t resv_hugepages_show(struct kobject *kobj,
1868 struct kobj_attribute *attr, char *buf)
1869{
9a305230 1870 struct hstate *h = kobj_to_hstate(kobj, NULL);
a3437870
NA
1871 return sprintf(buf, "%lu\n", h->resv_huge_pages);
1872}
1873HSTATE_ATTR_RO(resv_hugepages);
1874
1875static ssize_t surplus_hugepages_show(struct kobject *kobj,
1876 struct kobj_attribute *attr, char *buf)
1877{
9a305230
LS
1878 struct hstate *h;
1879 unsigned long surplus_huge_pages;
1880 int nid;
1881
1882 h = kobj_to_hstate(kobj, &nid);
1883 if (nid == NUMA_NO_NODE)
1884 surplus_huge_pages = h->surplus_huge_pages;
1885 else
1886 surplus_huge_pages = h->surplus_huge_pages_node[nid];
1887
1888 return sprintf(buf, "%lu\n", surplus_huge_pages);
a3437870
NA
1889}
1890HSTATE_ATTR_RO(surplus_hugepages);
1891
1892static struct attribute *hstate_attrs[] = {
1893 &nr_hugepages_attr.attr,
1894 &nr_overcommit_hugepages_attr.attr,
1895 &free_hugepages_attr.attr,
1896 &resv_hugepages_attr.attr,
1897 &surplus_hugepages_attr.attr,
06808b08
LS
1898#ifdef CONFIG_NUMA
1899 &nr_hugepages_mempolicy_attr.attr,
1900#endif
a3437870
NA
1901 NULL,
1902};
1903
1904static struct attribute_group hstate_attr_group = {
1905 .attrs = hstate_attrs,
1906};
1907
094e9539
JM
1908static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
1909 struct kobject **hstate_kobjs,
1910 struct attribute_group *hstate_attr_group)
a3437870
NA
1911{
1912 int retval;
972dc4de 1913 int hi = hstate_index(h);
a3437870 1914
9a305230
LS
1915 hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
1916 if (!hstate_kobjs[hi])
a3437870
NA
1917 return -ENOMEM;
1918
9a305230 1919 retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
a3437870 1920 if (retval)
9a305230 1921 kobject_put(hstate_kobjs[hi]);
a3437870
NA
1922
1923 return retval;
1924}
1925
1926static void __init hugetlb_sysfs_init(void)
1927{
1928 struct hstate *h;
1929 int err;
1930
1931 hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
1932 if (!hugepages_kobj)
1933 return;
1934
1935 for_each_hstate(h) {
9a305230
LS
1936 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
1937 hstate_kobjs, &hstate_attr_group);
a3437870 1938 if (err)
ffb22af5 1939 pr_err("Hugetlb: Unable to add hstate %s", h->name);
a3437870
NA
1940 }
1941}
1942
9a305230
LS
1943#ifdef CONFIG_NUMA
1944
1945/*
1946 * node_hstate/s - associate per node hstate attributes, via their kobjects,
10fbcf4c
KS
1947 * with node devices in node_devices[] using a parallel array. The array
1948 * index of a node device or _hstate == node id.
1949 * This is here to avoid any static dependency of the node device driver, in
9a305230
LS
1950 * the base kernel, on the hugetlb module.
1951 */
1952struct node_hstate {
1953 struct kobject *hugepages_kobj;
1954 struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
1955};
1956struct node_hstate node_hstates[MAX_NUMNODES];
1957
1958/*
10fbcf4c 1959 * A subset of global hstate attributes for node devices
9a305230
LS
1960 */
1961static struct attribute *per_node_hstate_attrs[] = {
1962 &nr_hugepages_attr.attr,
1963 &free_hugepages_attr.attr,
1964 &surplus_hugepages_attr.attr,
1965 NULL,
1966};
1967
1968static struct attribute_group per_node_hstate_attr_group = {
1969 .attrs = per_node_hstate_attrs,
1970};
1971
1972/*
10fbcf4c 1973 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
9a305230
LS
1974 * Returns node id via non-NULL nidp.
1975 */
1976static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
1977{
1978 int nid;
1979
1980 for (nid = 0; nid < nr_node_ids; nid++) {
1981 struct node_hstate *nhs = &node_hstates[nid];
1982 int i;
1983 for (i = 0; i < HUGE_MAX_HSTATE; i++)
1984 if (nhs->hstate_kobjs[i] == kobj) {
1985 if (nidp)
1986 *nidp = nid;
1987 return &hstates[i];
1988 }
1989 }
1990
1991 BUG();
1992 return NULL;
1993}
1994
1995/*
10fbcf4c 1996 * Unregister hstate attributes from a single node device.
9a305230
LS
1997 * No-op if no hstate attributes attached.
1998 */
3cd8b44f 1999static void hugetlb_unregister_node(struct node *node)
9a305230
LS
2000{
2001 struct hstate *h;
10fbcf4c 2002 struct node_hstate *nhs = &node_hstates[node->dev.id];
9a305230
LS
2003
2004 if (!nhs->hugepages_kobj)
9b5e5d0f 2005 return; /* no hstate attributes */
9a305230 2006
972dc4de
AK
2007 for_each_hstate(h) {
2008 int idx = hstate_index(h);
2009 if (nhs->hstate_kobjs[idx]) {
2010 kobject_put(nhs->hstate_kobjs[idx]);
2011 nhs->hstate_kobjs[idx] = NULL;
9a305230 2012 }
972dc4de 2013 }
9a305230
LS
2014
2015 kobject_put(nhs->hugepages_kobj);
2016 nhs->hugepages_kobj = NULL;
2017}
2018
2019/*
10fbcf4c 2020 * hugetlb module exit: unregister hstate attributes from node devices
9a305230
LS
2021 * that have them.
2022 */
2023static void hugetlb_unregister_all_nodes(void)
2024{
2025 int nid;
2026
2027 /*
10fbcf4c 2028 * disable node device registrations.
9a305230
LS
2029 */
2030 register_hugetlbfs_with_node(NULL, NULL);
2031
2032 /*
2033 * remove hstate attributes from any nodes that have them.
2034 */
2035 for (nid = 0; nid < nr_node_ids; nid++)
8732794b 2036 hugetlb_unregister_node(node_devices[nid]);
9a305230
LS
2037}
2038
2039/*
10fbcf4c 2040 * Register hstate attributes for a single node device.
9a305230
LS
2041 * No-op if attributes already registered.
2042 */
3cd8b44f 2043static void hugetlb_register_node(struct node *node)
9a305230
LS
2044{
2045 struct hstate *h;
10fbcf4c 2046 struct node_hstate *nhs = &node_hstates[node->dev.id];
9a305230
LS
2047 int err;
2048
2049 if (nhs->hugepages_kobj)
2050 return; /* already allocated */
2051
2052 nhs->hugepages_kobj = kobject_create_and_add("hugepages",
10fbcf4c 2053 &node->dev.kobj);
9a305230
LS
2054 if (!nhs->hugepages_kobj)
2055 return;
2056
2057 for_each_hstate(h) {
2058 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
2059 nhs->hstate_kobjs,
2060 &per_node_hstate_attr_group);
2061 if (err) {
ffb22af5
AM
2062 pr_err("Hugetlb: Unable to add hstate %s for node %d\n",
2063 h->name, node->dev.id);
9a305230
LS
2064 hugetlb_unregister_node(node);
2065 break;
2066 }
2067 }
2068}
2069
2070/*
9b5e5d0f 2071 * hugetlb init time: register hstate attributes for all registered node
10fbcf4c
KS
2072 * devices of nodes that have memory. All on-line nodes should have
2073 * registered their associated device by this time.
9a305230
LS
2074 */
2075static void hugetlb_register_all_nodes(void)
2076{
2077 int nid;
2078
8cebfcd0 2079 for_each_node_state(nid, N_MEMORY) {
8732794b 2080 struct node *node = node_devices[nid];
10fbcf4c 2081 if (node->dev.id == nid)
9a305230
LS
2082 hugetlb_register_node(node);
2083 }
2084
2085 /*
10fbcf4c 2086 * Let the node device driver know we're here so it can
9a305230
LS
2087 * [un]register hstate attributes on node hotplug.
2088 */
2089 register_hugetlbfs_with_node(hugetlb_register_node,
2090 hugetlb_unregister_node);
2091}
2092#else /* !CONFIG_NUMA */
2093
2094static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
2095{
2096 BUG();
2097 if (nidp)
2098 *nidp = -1;
2099 return NULL;
2100}
2101
2102static void hugetlb_unregister_all_nodes(void) { }
2103
2104static void hugetlb_register_all_nodes(void) { }
2105
2106#endif
2107
a3437870
NA
2108static void __exit hugetlb_exit(void)
2109{
2110 struct hstate *h;
2111
9a305230
LS
2112 hugetlb_unregister_all_nodes();
2113
a3437870 2114 for_each_hstate(h) {
972dc4de 2115 kobject_put(hstate_kobjs[hstate_index(h)]);
a3437870
NA
2116 }
2117
2118 kobject_put(hugepages_kobj);
8382d914 2119 kfree(htlb_fault_mutex_table);
a3437870
NA
2120}
2121module_exit(hugetlb_exit);
2122
2123static int __init hugetlb_init(void)
2124{
8382d914
DB
2125 int i;
2126
457c1b27 2127 if (!hugepages_supported())
0ef89d25 2128 return 0;
a3437870 2129
e11bfbfc
NP
2130 if (!size_to_hstate(default_hstate_size)) {
2131 default_hstate_size = HPAGE_SIZE;
2132 if (!size_to_hstate(default_hstate_size))
2133 hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
a3437870 2134 }
972dc4de 2135 default_hstate_idx = hstate_index(size_to_hstate(default_hstate_size));
e11bfbfc
NP
2136 if (default_hstate_max_huge_pages)
2137 default_hstate.max_huge_pages = default_hstate_max_huge_pages;
a3437870
NA
2138
2139 hugetlb_init_hstates();
aa888a74 2140 gather_bootmem_prealloc();
a3437870
NA
2141 report_hugepages();
2142
2143 hugetlb_sysfs_init();
9a305230 2144 hugetlb_register_all_nodes();
7179e7bf 2145 hugetlb_cgroup_file_init();
9a305230 2146
8382d914
DB
2147#ifdef CONFIG_SMP
2148 num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
2149#else
2150 num_fault_mutexes = 1;
2151#endif
2152 htlb_fault_mutex_table =
2153 kmalloc(sizeof(struct mutex) * num_fault_mutexes, GFP_KERNEL);
2154 BUG_ON(!htlb_fault_mutex_table);
2155
2156 for (i = 0; i < num_fault_mutexes; i++)
2157 mutex_init(&htlb_fault_mutex_table[i]);
a3437870
NA
2158 return 0;
2159}
2160module_init(hugetlb_init);
2161
2162/* Should be called on processing a hugepagesz=... option */
2163void __init hugetlb_add_hstate(unsigned order)
2164{
2165 struct hstate *h;
8faa8b07
AK
2166 unsigned long i;
2167
a3437870 2168 if (size_to_hstate(PAGE_SIZE << order)) {
ffb22af5 2169 pr_warning("hugepagesz= specified twice, ignoring\n");
a3437870
NA
2170 return;
2171 }
47d38344 2172 BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
a3437870 2173 BUG_ON(order == 0);
47d38344 2174 h = &hstates[hugetlb_max_hstate++];
a3437870
NA
2175 h->order = order;
2176 h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
8faa8b07
AK
2177 h->nr_huge_pages = 0;
2178 h->free_huge_pages = 0;
2179 for (i = 0; i < MAX_NUMNODES; ++i)
2180 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
0edaecfa 2181 INIT_LIST_HEAD(&h->hugepage_activelist);
8cebfcd0
LJ
2182 h->next_nid_to_alloc = first_node(node_states[N_MEMORY]);
2183 h->next_nid_to_free = first_node(node_states[N_MEMORY]);
a3437870
NA
2184 snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
2185 huge_page_size(h)/1024);
8faa8b07 2186
a3437870
NA
2187 parsed_hstate = h;
2188}
2189
e11bfbfc 2190static int __init hugetlb_nrpages_setup(char *s)
a3437870
NA
2191{
2192 unsigned long *mhp;
8faa8b07 2193 static unsigned long *last_mhp;
a3437870
NA
2194
2195 /*
47d38344 2196 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter yet,
a3437870
NA
2197 * so this hugepages= parameter goes to the "default hstate".
2198 */
47d38344 2199 if (!hugetlb_max_hstate)
a3437870
NA
2200 mhp = &default_hstate_max_huge_pages;
2201 else
2202 mhp = &parsed_hstate->max_huge_pages;
2203
8faa8b07 2204 if (mhp == last_mhp) {
ffb22af5
AM
2205 pr_warning("hugepages= specified twice without "
2206 "interleaving hugepagesz=, ignoring\n");
8faa8b07
AK
2207 return 1;
2208 }
2209
a3437870
NA
2210 if (sscanf(s, "%lu", mhp) <= 0)
2211 *mhp = 0;
2212
8faa8b07
AK
2213 /*
2214 * Global state is always initialized later in hugetlb_init.
2215 * But we need to allocate >= MAX_ORDER hstates here early to still
2216 * use the bootmem allocator.
2217 */
47d38344 2218 if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER)
8faa8b07
AK
2219 hugetlb_hstate_alloc_pages(parsed_hstate);
2220
2221 last_mhp = mhp;
2222
a3437870
NA
2223 return 1;
2224}
e11bfbfc
NP
2225__setup("hugepages=", hugetlb_nrpages_setup);
2226
2227static int __init hugetlb_default_setup(char *s)
2228{
2229 default_hstate_size = memparse(s, &s);
2230 return 1;
2231}
2232__setup("default_hugepagesz=", hugetlb_default_setup);
a3437870 2233
8a213460
NA
2234static unsigned int cpuset_mems_nr(unsigned int *array)
2235{
2236 int node;
2237 unsigned int nr = 0;
2238
2239 for_each_node_mask(node, cpuset_current_mems_allowed)
2240 nr += array[node];
2241
2242 return nr;
2243}
2244
2245#ifdef CONFIG_SYSCTL
06808b08
LS
2246static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
2247 struct ctl_table *table, int write,
2248 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 2249{
e5ff2159
AK
2250 struct hstate *h = &default_hstate;
2251 unsigned long tmp;
08d4a246 2252 int ret;
e5ff2159 2253
457c1b27
NA
2254 if (!hugepages_supported())
2255 return -ENOTSUPP;
2256
c033a93c 2257 tmp = h->max_huge_pages;
e5ff2159 2258
944d9fec 2259 if (write && hstate_is_gigantic(h) && !gigantic_page_supported())
adbe8726
EM
2260 return -EINVAL;
2261
e5ff2159
AK
2262 table->data = &tmp;
2263 table->maxlen = sizeof(unsigned long);
08d4a246
MH
2264 ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2265 if (ret)
2266 goto out;
e5ff2159 2267
06808b08 2268 if (write) {
bad44b5b
DR
2269 NODEMASK_ALLOC(nodemask_t, nodes_allowed,
2270 GFP_KERNEL | __GFP_NORETRY);
06808b08
LS
2271 if (!(obey_mempolicy &&
2272 init_nodemask_of_mempolicy(nodes_allowed))) {
2273 NODEMASK_FREE(nodes_allowed);
8cebfcd0 2274 nodes_allowed = &node_states[N_MEMORY];
06808b08
LS
2275 }
2276 h->max_huge_pages = set_max_huge_pages(h, tmp, nodes_allowed);
2277
8cebfcd0 2278 if (nodes_allowed != &node_states[N_MEMORY])
06808b08
LS
2279 NODEMASK_FREE(nodes_allowed);
2280 }
08d4a246
MH
2281out:
2282 return ret;
1da177e4 2283}
396faf03 2284
06808b08
LS
2285int hugetlb_sysctl_handler(struct ctl_table *table, int write,
2286 void __user *buffer, size_t *length, loff_t *ppos)
2287{
2288
2289 return hugetlb_sysctl_handler_common(false, table, write,
2290 buffer, length, ppos);
2291}
2292
2293#ifdef CONFIG_NUMA
2294int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
2295 void __user *buffer, size_t *length, loff_t *ppos)
2296{
2297 return hugetlb_sysctl_handler_common(true, table, write,
2298 buffer, length, ppos);
2299}
2300#endif /* CONFIG_NUMA */
2301
a3d0c6aa 2302int hugetlb_overcommit_handler(struct ctl_table *table, int write,
8d65af78 2303 void __user *buffer,
a3d0c6aa
NA
2304 size_t *length, loff_t *ppos)
2305{
a5516438 2306 struct hstate *h = &default_hstate;
e5ff2159 2307 unsigned long tmp;
08d4a246 2308 int ret;
e5ff2159 2309
457c1b27
NA
2310 if (!hugepages_supported())
2311 return -ENOTSUPP;
2312
c033a93c 2313 tmp = h->nr_overcommit_huge_pages;
e5ff2159 2314
bae7f4ae 2315 if (write && hstate_is_gigantic(h))
adbe8726
EM
2316 return -EINVAL;
2317
e5ff2159
AK
2318 table->data = &tmp;
2319 table->maxlen = sizeof(unsigned long);
08d4a246
MH
2320 ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2321 if (ret)
2322 goto out;
e5ff2159
AK
2323
2324 if (write) {
2325 spin_lock(&hugetlb_lock);
2326 h->nr_overcommit_huge_pages = tmp;
2327 spin_unlock(&hugetlb_lock);
2328 }
08d4a246
MH
2329out:
2330 return ret;
a3d0c6aa
NA
2331}
2332
1da177e4
LT
2333#endif /* CONFIG_SYSCTL */
2334
e1759c21 2335void hugetlb_report_meminfo(struct seq_file *m)
1da177e4 2336{
a5516438 2337 struct hstate *h = &default_hstate;
457c1b27
NA
2338 if (!hugepages_supported())
2339 return;
e1759c21 2340 seq_printf(m,
4f98a2fe
RR
2341 "HugePages_Total: %5lu\n"
2342 "HugePages_Free: %5lu\n"
2343 "HugePages_Rsvd: %5lu\n"
2344 "HugePages_Surp: %5lu\n"
2345 "Hugepagesize: %8lu kB\n",
a5516438
AK
2346 h->nr_huge_pages,
2347 h->free_huge_pages,
2348 h->resv_huge_pages,
2349 h->surplus_huge_pages,
2350 1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
1da177e4
LT
2351}
2352
2353int hugetlb_report_node_meminfo(int nid, char *buf)
2354{
a5516438 2355 struct hstate *h = &default_hstate;
457c1b27
NA
2356 if (!hugepages_supported())
2357 return 0;
1da177e4
LT
2358 return sprintf(buf,
2359 "Node %d HugePages_Total: %5u\n"
a1de0919
NA
2360 "Node %d HugePages_Free: %5u\n"
2361 "Node %d HugePages_Surp: %5u\n",
a5516438
AK
2362 nid, h->nr_huge_pages_node[nid],
2363 nid, h->free_huge_pages_node[nid],
2364 nid, h->surplus_huge_pages_node[nid]);
1da177e4
LT
2365}
2366
949f7ec5
DR
2367void hugetlb_show_meminfo(void)
2368{
2369 struct hstate *h;
2370 int nid;
2371
457c1b27
NA
2372 if (!hugepages_supported())
2373 return;
2374
949f7ec5
DR
2375 for_each_node_state(nid, N_MEMORY)
2376 for_each_hstate(h)
2377 pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
2378 nid,
2379 h->nr_huge_pages_node[nid],
2380 h->free_huge_pages_node[nid],
2381 h->surplus_huge_pages_node[nid],
2382 1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
2383}
2384
1da177e4
LT
2385/* Return the number pages of memory we physically have, in PAGE_SIZE units. */
2386unsigned long hugetlb_total_pages(void)
2387{
d0028588
WL
2388 struct hstate *h;
2389 unsigned long nr_total_pages = 0;
2390
2391 for_each_hstate(h)
2392 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
2393 return nr_total_pages;
1da177e4 2394}
1da177e4 2395
a5516438 2396static int hugetlb_acct_memory(struct hstate *h, long delta)
fc1b8a73
MG
2397{
2398 int ret = -ENOMEM;
2399
2400 spin_lock(&hugetlb_lock);
2401 /*
2402 * When cpuset is configured, it breaks the strict hugetlb page
2403 * reservation as the accounting is done on a global variable. Such
2404 * reservation is completely rubbish in the presence of cpuset because
2405 * the reservation is not checked against page availability for the
2406 * current cpuset. Application can still potentially OOM'ed by kernel
2407 * with lack of free htlb page in cpuset that the task is in.
2408 * Attempt to enforce strict accounting with cpuset is almost
2409 * impossible (or too ugly) because cpuset is too fluid that
2410 * task or memory node can be dynamically moved between cpusets.
2411 *
2412 * The change of semantics for shared hugetlb mapping with cpuset is
2413 * undesirable. However, in order to preserve some of the semantics,
2414 * we fall back to check against current free page availability as
2415 * a best attempt and hopefully to minimize the impact of changing
2416 * semantics that cpuset has.
2417 */
2418 if (delta > 0) {
a5516438 2419 if (gather_surplus_pages(h, delta) < 0)
fc1b8a73
MG
2420 goto out;
2421
a5516438
AK
2422 if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
2423 return_unused_surplus_pages(h, delta);
fc1b8a73
MG
2424 goto out;
2425 }
2426 }
2427
2428 ret = 0;
2429 if (delta < 0)
a5516438 2430 return_unused_surplus_pages(h, (unsigned long) -delta);
fc1b8a73
MG
2431
2432out:
2433 spin_unlock(&hugetlb_lock);
2434 return ret;
2435}
2436
84afd99b
AW
2437static void hugetlb_vm_op_open(struct vm_area_struct *vma)
2438{
f522c3ac 2439 struct resv_map *resv = vma_resv_map(vma);
84afd99b
AW
2440
2441 /*
2442 * This new VMA should share its siblings reservation map if present.
2443 * The VMA will only ever have a valid reservation map pointer where
2444 * it is being copied for another still existing VMA. As that VMA
25985edc 2445 * has a reference to the reservation map it cannot disappear until
84afd99b
AW
2446 * after this open call completes. It is therefore safe to take a
2447 * new reference here without additional locking.
2448 */
4e35f483 2449 if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
f522c3ac 2450 kref_get(&resv->refs);
84afd99b
AW
2451}
2452
a1e78772
MG
2453static void hugetlb_vm_op_close(struct vm_area_struct *vma)
2454{
a5516438 2455 struct hstate *h = hstate_vma(vma);
f522c3ac 2456 struct resv_map *resv = vma_resv_map(vma);
90481622 2457 struct hugepage_subpool *spool = subpool_vma(vma);
4e35f483 2458 unsigned long reserve, start, end;
84afd99b 2459
4e35f483
JK
2460 if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
2461 return;
84afd99b 2462
4e35f483
JK
2463 start = vma_hugecache_offset(h, vma, vma->vm_start);
2464 end = vma_hugecache_offset(h, vma, vma->vm_end);
84afd99b 2465
4e35f483 2466 reserve = (end - start) - region_count(resv, start, end);
84afd99b 2467
4e35f483
JK
2468 kref_put(&resv->refs, resv_map_release);
2469
2470 if (reserve) {
2471 hugetlb_acct_memory(h, -reserve);
2472 hugepage_subpool_put_pages(spool, reserve);
84afd99b 2473 }
a1e78772
MG
2474}
2475
1da177e4
LT
2476/*
2477 * We cannot handle pagefaults against hugetlb pages at all. They cause
2478 * handle_mm_fault() to try to instantiate regular-sized pages in the
2479 * hugegpage VMA. do_page_fault() is supposed to trap this, so BUG is we get
2480 * this far.
2481 */
d0217ac0 2482static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1da177e4
LT
2483{
2484 BUG();
d0217ac0 2485 return 0;
1da177e4
LT
2486}
2487
f0f37e2f 2488const struct vm_operations_struct hugetlb_vm_ops = {
d0217ac0 2489 .fault = hugetlb_vm_op_fault,
84afd99b 2490 .open = hugetlb_vm_op_open,
a1e78772 2491 .close = hugetlb_vm_op_close,
1da177e4
LT
2492};
2493
1e8f889b
DG
2494static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
2495 int writable)
63551ae0
DG
2496{
2497 pte_t entry;
2498
1e8f889b 2499 if (writable) {
106c992a
GS
2500 entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
2501 vma->vm_page_prot)));
63551ae0 2502 } else {
106c992a
GS
2503 entry = huge_pte_wrprotect(mk_huge_pte(page,
2504 vma->vm_page_prot));
63551ae0
DG
2505 }
2506 entry = pte_mkyoung(entry);
2507 entry = pte_mkhuge(entry);
d9ed9faa 2508 entry = arch_make_huge_pte(entry, vma, page, writable);
63551ae0
DG
2509
2510 return entry;
2511}
2512
1e8f889b
DG
2513static void set_huge_ptep_writable(struct vm_area_struct *vma,
2514 unsigned long address, pte_t *ptep)
2515{
2516 pte_t entry;
2517
106c992a 2518 entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
32f84528 2519 if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
4b3073e1 2520 update_mmu_cache(vma, address, ptep);
1e8f889b
DG
2521}
2522
2523
63551ae0
DG
2524int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
2525 struct vm_area_struct *vma)
2526{
2527 pte_t *src_pte, *dst_pte, entry;
2528 struct page *ptepage;
1c59827d 2529 unsigned long addr;
1e8f889b 2530 int cow;
a5516438
AK
2531 struct hstate *h = hstate_vma(vma);
2532 unsigned long sz = huge_page_size(h);
e8569dd2
AS
2533 unsigned long mmun_start; /* For mmu_notifiers */
2534 unsigned long mmun_end; /* For mmu_notifiers */
2535 int ret = 0;
1e8f889b
DG
2536
2537 cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
63551ae0 2538
e8569dd2
AS
2539 mmun_start = vma->vm_start;
2540 mmun_end = vma->vm_end;
2541 if (cow)
2542 mmu_notifier_invalidate_range_start(src, mmun_start, mmun_end);
2543
a5516438 2544 for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
cb900f41 2545 spinlock_t *src_ptl, *dst_ptl;
c74df32c
HD
2546 src_pte = huge_pte_offset(src, addr);
2547 if (!src_pte)
2548 continue;
a5516438 2549 dst_pte = huge_pte_alloc(dst, addr, sz);
e8569dd2
AS
2550 if (!dst_pte) {
2551 ret = -ENOMEM;
2552 break;
2553 }
c5c99429
LW
2554
2555 /* If the pagetables are shared don't copy or take references */
2556 if (dst_pte == src_pte)
2557 continue;
2558
cb900f41
KS
2559 dst_ptl = huge_pte_lock(h, dst, dst_pte);
2560 src_ptl = huge_pte_lockptr(h, src, src_pte);
2561 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
7f2e9525 2562 if (!huge_pte_none(huge_ptep_get(src_pte))) {
1e8f889b 2563 if (cow)
7f2e9525
GS
2564 huge_ptep_set_wrprotect(src, addr, src_pte);
2565 entry = huge_ptep_get(src_pte);
1c59827d
HD
2566 ptepage = pte_page(entry);
2567 get_page(ptepage);
0fe6e20b 2568 page_dup_rmap(ptepage);
1c59827d
HD
2569 set_huge_pte_at(dst, addr, dst_pte, entry);
2570 }
cb900f41
KS
2571 spin_unlock(src_ptl);
2572 spin_unlock(dst_ptl);
63551ae0 2573 }
63551ae0 2574
e8569dd2
AS
2575 if (cow)
2576 mmu_notifier_invalidate_range_end(src, mmun_start, mmun_end);
2577
2578 return ret;
63551ae0
DG
2579}
2580
290408d4
NH
2581static int is_hugetlb_entry_migration(pte_t pte)
2582{
2583 swp_entry_t swp;
2584
2585 if (huge_pte_none(pte) || pte_present(pte))
2586 return 0;
2587 swp = pte_to_swp_entry(pte);
32f84528 2588 if (non_swap_entry(swp) && is_migration_entry(swp))
290408d4 2589 return 1;
32f84528 2590 else
290408d4
NH
2591 return 0;
2592}
2593
fd6a03ed
NH
2594static int is_hugetlb_entry_hwpoisoned(pte_t pte)
2595{
2596 swp_entry_t swp;
2597
2598 if (huge_pte_none(pte) || pte_present(pte))
2599 return 0;
2600 swp = pte_to_swp_entry(pte);
32f84528 2601 if (non_swap_entry(swp) && is_hwpoison_entry(swp))
fd6a03ed 2602 return 1;
32f84528 2603 else
fd6a03ed
NH
2604 return 0;
2605}
2606
24669e58
AK
2607void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
2608 unsigned long start, unsigned long end,
2609 struct page *ref_page)
63551ae0 2610{
24669e58 2611 int force_flush = 0;
63551ae0
DG
2612 struct mm_struct *mm = vma->vm_mm;
2613 unsigned long address;
c7546f8f 2614 pte_t *ptep;
63551ae0 2615 pte_t pte;
cb900f41 2616 spinlock_t *ptl;
63551ae0 2617 struct page *page;
a5516438
AK
2618 struct hstate *h = hstate_vma(vma);
2619 unsigned long sz = huge_page_size(h);
2ec74c3e
SG
2620 const unsigned long mmun_start = start; /* For mmu_notifiers */
2621 const unsigned long mmun_end = end; /* For mmu_notifiers */
a5516438 2622
63551ae0 2623 WARN_ON(!is_vm_hugetlb_page(vma));
a5516438
AK
2624 BUG_ON(start & ~huge_page_mask(h));
2625 BUG_ON(end & ~huge_page_mask(h));
63551ae0 2626
24669e58 2627 tlb_start_vma(tlb, vma);
2ec74c3e 2628 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
24669e58 2629again:
a5516438 2630 for (address = start; address < end; address += sz) {
c7546f8f 2631 ptep = huge_pte_offset(mm, address);
4c887265 2632 if (!ptep)
c7546f8f
DG
2633 continue;
2634
cb900f41 2635 ptl = huge_pte_lock(h, mm, ptep);
39dde65c 2636 if (huge_pmd_unshare(mm, &address, ptep))
cb900f41 2637 goto unlock;
39dde65c 2638
6629326b
HD
2639 pte = huge_ptep_get(ptep);
2640 if (huge_pte_none(pte))
cb900f41 2641 goto unlock;
6629326b
HD
2642
2643 /*
2644 * HWPoisoned hugepage is already unmapped and dropped reference
2645 */
8c4894c6 2646 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
106c992a 2647 huge_pte_clear(mm, address, ptep);
cb900f41 2648 goto unlock;
8c4894c6 2649 }
6629326b
HD
2650
2651 page = pte_page(pte);
04f2cbe3
MG
2652 /*
2653 * If a reference page is supplied, it is because a specific
2654 * page is being unmapped, not a range. Ensure the page we
2655 * are about to unmap is the actual page of interest.
2656 */
2657 if (ref_page) {
04f2cbe3 2658 if (page != ref_page)
cb900f41 2659 goto unlock;
04f2cbe3
MG
2660
2661 /*
2662 * Mark the VMA as having unmapped its page so that
2663 * future faults in this VMA will fail rather than
2664 * looking like data was lost
2665 */
2666 set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
2667 }
2668
c7546f8f 2669 pte = huge_ptep_get_and_clear(mm, address, ptep);
24669e58 2670 tlb_remove_tlb_entry(tlb, ptep, address);
106c992a 2671 if (huge_pte_dirty(pte))
6649a386 2672 set_page_dirty(page);
9e81130b 2673
24669e58
AK
2674 page_remove_rmap(page);
2675 force_flush = !__tlb_remove_page(tlb, page);
cb900f41
KS
2676 if (force_flush) {
2677 spin_unlock(ptl);
24669e58 2678 break;
cb900f41 2679 }
9e81130b 2680 /* Bail out after unmapping reference page if supplied */
cb900f41
KS
2681 if (ref_page) {
2682 spin_unlock(ptl);
9e81130b 2683 break;
cb900f41
KS
2684 }
2685unlock:
2686 spin_unlock(ptl);
63551ae0 2687 }
24669e58
AK
2688 /*
2689 * mmu_gather ran out of room to batch pages, we break out of
2690 * the PTE lock to avoid doing the potential expensive TLB invalidate
2691 * and page-free while holding it.
2692 */
2693 if (force_flush) {
2694 force_flush = 0;
2695 tlb_flush_mmu(tlb);
2696 if (address < end && !ref_page)
2697 goto again;
fe1668ae 2698 }
2ec74c3e 2699 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
24669e58 2700 tlb_end_vma(tlb, vma);
1da177e4 2701}
63551ae0 2702
d833352a
MG
2703void __unmap_hugepage_range_final(struct mmu_gather *tlb,
2704 struct vm_area_struct *vma, unsigned long start,
2705 unsigned long end, struct page *ref_page)
2706{
2707 __unmap_hugepage_range(tlb, vma, start, end, ref_page);
2708
2709 /*
2710 * Clear this flag so that x86's huge_pmd_share page_table_shareable
2711 * test will fail on a vma being torn down, and not grab a page table
2712 * on its way out. We're lucky that the flag has such an appropriate
2713 * name, and can in fact be safely cleared here. We could clear it
2714 * before the __unmap_hugepage_range above, but all that's necessary
2715 * is to clear it before releasing the i_mmap_mutex. This works
2716 * because in the context this is called, the VMA is about to be
2717 * destroyed and the i_mmap_mutex is held.
2718 */
2719 vma->vm_flags &= ~VM_MAYSHARE;
2720}
2721
502717f4 2722void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
04f2cbe3 2723 unsigned long end, struct page *ref_page)
502717f4 2724{
24669e58
AK
2725 struct mm_struct *mm;
2726 struct mmu_gather tlb;
2727
2728 mm = vma->vm_mm;
2729
2b047252 2730 tlb_gather_mmu(&tlb, mm, start, end);
24669e58
AK
2731 __unmap_hugepage_range(&tlb, vma, start, end, ref_page);
2732 tlb_finish_mmu(&tlb, start, end);
502717f4
CK
2733}
2734
04f2cbe3
MG
2735/*
2736 * This is called when the original mapper is failing to COW a MAP_PRIVATE
2737 * mappping it owns the reserve page for. The intention is to unmap the page
2738 * from other VMAs and let the children be SIGKILLed if they are faulting the
2739 * same region.
2740 */
2a4b3ded
HH
2741static int unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
2742 struct page *page, unsigned long address)
04f2cbe3 2743{
7526674d 2744 struct hstate *h = hstate_vma(vma);
04f2cbe3
MG
2745 struct vm_area_struct *iter_vma;
2746 struct address_space *mapping;
04f2cbe3
MG
2747 pgoff_t pgoff;
2748
2749 /*
2750 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
2751 * from page cache lookup which is in HPAGE_SIZE units.
2752 */
7526674d 2753 address = address & huge_page_mask(h);
36e4f20a
MH
2754 pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
2755 vma->vm_pgoff;
496ad9aa 2756 mapping = file_inode(vma->vm_file)->i_mapping;
04f2cbe3 2757
4eb2b1dc
MG
2758 /*
2759 * Take the mapping lock for the duration of the table walk. As
2760 * this mapping should be shared between all the VMAs,
2761 * __unmap_hugepage_range() is called as the lock is already held
2762 */
3d48ae45 2763 mutex_lock(&mapping->i_mmap_mutex);
6b2dbba8 2764 vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
04f2cbe3
MG
2765 /* Do not unmap the current VMA */
2766 if (iter_vma == vma)
2767 continue;
2768
2769 /*
2770 * Unmap the page from other VMAs without their own reserves.
2771 * They get marked to be SIGKILLed if they fault in these
2772 * areas. This is because a future no-page fault on this VMA
2773 * could insert a zeroed page instead of the data existing
2774 * from the time of fork. This would look like data corruption
2775 */
2776 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
24669e58
AK
2777 unmap_hugepage_range(iter_vma, address,
2778 address + huge_page_size(h), page);
04f2cbe3 2779 }
3d48ae45 2780 mutex_unlock(&mapping->i_mmap_mutex);
04f2cbe3
MG
2781
2782 return 1;
2783}
2784
0fe6e20b
NH
2785/*
2786 * Hugetlb_cow() should be called with page lock of the original hugepage held.
ef009b25
MH
2787 * Called with hugetlb_instantiation_mutex held and pte_page locked so we
2788 * cannot race with other handlers or page migration.
2789 * Keep the pte_same checks anyway to make transition from the mutex easier.
0fe6e20b 2790 */
1e8f889b 2791static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
04f2cbe3 2792 unsigned long address, pte_t *ptep, pte_t pte,
cb900f41 2793 struct page *pagecache_page, spinlock_t *ptl)
1e8f889b 2794{
a5516438 2795 struct hstate *h = hstate_vma(vma);
1e8f889b 2796 struct page *old_page, *new_page;
04f2cbe3 2797 int outside_reserve = 0;
2ec74c3e
SG
2798 unsigned long mmun_start; /* For mmu_notifiers */
2799 unsigned long mmun_end; /* For mmu_notifiers */
1e8f889b
DG
2800
2801 old_page = pte_page(pte);
2802
04f2cbe3 2803retry_avoidcopy:
1e8f889b
DG
2804 /* If no-one else is actually using this page, avoid the copy
2805 * and just make the page writable */
37a2140d
JK
2806 if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
2807 page_move_anon_rmap(old_page, vma, address);
1e8f889b 2808 set_huge_ptep_writable(vma, address, ptep);
83c54070 2809 return 0;
1e8f889b
DG
2810 }
2811
04f2cbe3
MG
2812 /*
2813 * If the process that created a MAP_PRIVATE mapping is about to
2814 * perform a COW due to a shared page count, attempt to satisfy
2815 * the allocation without using the existing reserves. The pagecache
2816 * page is used to determine if the reserve at this address was
2817 * consumed or not. If reserves were used, a partial faulted mapping
2818 * at the time of fork() could consume its reserves on COW instead
2819 * of the full address range.
2820 */
5944d011 2821 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
04f2cbe3
MG
2822 old_page != pagecache_page)
2823 outside_reserve = 1;
2824
1e8f889b 2825 page_cache_get(old_page);
b76c8cfb 2826
cb900f41
KS
2827 /* Drop page table lock as buddy allocator may be called */
2828 spin_unlock(ptl);
04f2cbe3 2829 new_page = alloc_huge_page(vma, address, outside_reserve);
1e8f889b 2830
2fc39cec 2831 if (IS_ERR(new_page)) {
76dcee75 2832 long err = PTR_ERR(new_page);
1e8f889b 2833 page_cache_release(old_page);
04f2cbe3
MG
2834
2835 /*
2836 * If a process owning a MAP_PRIVATE mapping fails to COW,
2837 * it is due to references held by a child and an insufficient
2838 * huge page pool. To guarantee the original mappers
2839 * reliability, unmap the page from child processes. The child
2840 * may get SIGKILLed if it later faults.
2841 */
2842 if (outside_reserve) {
2843 BUG_ON(huge_pte_none(pte));
2844 if (unmap_ref_private(mm, vma, old_page, address)) {
04f2cbe3 2845 BUG_ON(huge_pte_none(pte));
cb900f41 2846 spin_lock(ptl);
a734bcc8 2847 ptep = huge_pte_offset(mm, address & huge_page_mask(h));
a9af0c5d
NH
2848 if (likely(ptep &&
2849 pte_same(huge_ptep_get(ptep), pte)))
a734bcc8
HD
2850 goto retry_avoidcopy;
2851 /*
cb900f41
KS
2852 * race occurs while re-acquiring page table
2853 * lock, and our job is done.
a734bcc8
HD
2854 */
2855 return 0;
04f2cbe3
MG
2856 }
2857 WARN_ON_ONCE(1);
2858 }
2859
b76c8cfb 2860 /* Caller expects lock to be held */
cb900f41 2861 spin_lock(ptl);
76dcee75
AK
2862 if (err == -ENOMEM)
2863 return VM_FAULT_OOM;
2864 else
2865 return VM_FAULT_SIGBUS;
1e8f889b
DG
2866 }
2867
0fe6e20b
NH
2868 /*
2869 * When the original hugepage is shared one, it does not have
2870 * anon_vma prepared.
2871 */
44e2aa93 2872 if (unlikely(anon_vma_prepare(vma))) {
ea4039a3
HD
2873 page_cache_release(new_page);
2874 page_cache_release(old_page);
44e2aa93 2875 /* Caller expects lock to be held */
cb900f41 2876 spin_lock(ptl);
0fe6e20b 2877 return VM_FAULT_OOM;
44e2aa93 2878 }
0fe6e20b 2879
47ad8475
AA
2880 copy_user_huge_page(new_page, old_page, address, vma,
2881 pages_per_huge_page(h));
0ed361de 2882 __SetPageUptodate(new_page);
1e8f889b 2883
2ec74c3e
SG
2884 mmun_start = address & huge_page_mask(h);
2885 mmun_end = mmun_start + huge_page_size(h);
2886 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
b76c8cfb 2887 /*
cb900f41 2888 * Retake the page table lock to check for racing updates
b76c8cfb
LW
2889 * before the page tables are altered
2890 */
cb900f41 2891 spin_lock(ptl);
a5516438 2892 ptep = huge_pte_offset(mm, address & huge_page_mask(h));
a9af0c5d 2893 if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
07443a85
JK
2894 ClearPagePrivate(new_page);
2895
1e8f889b 2896 /* Break COW */
8fe627ec 2897 huge_ptep_clear_flush(vma, address, ptep);
1e8f889b
DG
2898 set_huge_pte_at(mm, address, ptep,
2899 make_huge_pte(vma, new_page, 1));
0fe6e20b 2900 page_remove_rmap(old_page);
cd67f0d2 2901 hugepage_add_new_anon_rmap(new_page, vma, address);
1e8f889b
DG
2902 /* Make the old page be freed below */
2903 new_page = old_page;
2904 }
cb900f41 2905 spin_unlock(ptl);
2ec74c3e 2906 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1e8f889b
DG
2907 page_cache_release(new_page);
2908 page_cache_release(old_page);
8312034f
JK
2909
2910 /* Caller expects lock to be held */
cb900f41 2911 spin_lock(ptl);
83c54070 2912 return 0;
1e8f889b
DG
2913}
2914
04f2cbe3 2915/* Return the pagecache page at a given address within a VMA */
a5516438
AK
2916static struct page *hugetlbfs_pagecache_page(struct hstate *h,
2917 struct vm_area_struct *vma, unsigned long address)
04f2cbe3
MG
2918{
2919 struct address_space *mapping;
e7c4b0bf 2920 pgoff_t idx;
04f2cbe3
MG
2921
2922 mapping = vma->vm_file->f_mapping;
a5516438 2923 idx = vma_hugecache_offset(h, vma, address);
04f2cbe3
MG
2924
2925 return find_lock_page(mapping, idx);
2926}
2927
3ae77f43
HD
2928/*
2929 * Return whether there is a pagecache page to back given address within VMA.
2930 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
2931 */
2932static bool hugetlbfs_pagecache_present(struct hstate *h,
2a15efc9
HD
2933 struct vm_area_struct *vma, unsigned long address)
2934{
2935 struct address_space *mapping;
2936 pgoff_t idx;
2937 struct page *page;
2938
2939 mapping = vma->vm_file->f_mapping;
2940 idx = vma_hugecache_offset(h, vma, address);
2941
2942 page = find_get_page(mapping, idx);
2943 if (page)
2944 put_page(page);
2945 return page != NULL;
2946}
2947
a1ed3dda 2948static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
8382d914
DB
2949 struct address_space *mapping, pgoff_t idx,
2950 unsigned long address, pte_t *ptep, unsigned int flags)
ac9b9c66 2951{
a5516438 2952 struct hstate *h = hstate_vma(vma);
ac9b9c66 2953 int ret = VM_FAULT_SIGBUS;
409eb8c2 2954 int anon_rmap = 0;
4c887265 2955 unsigned long size;
4c887265 2956 struct page *page;
1e8f889b 2957 pte_t new_pte;
cb900f41 2958 spinlock_t *ptl;
4c887265 2959
04f2cbe3
MG
2960 /*
2961 * Currently, we are forced to kill the process in the event the
2962 * original mapper has unmapped pages from the child due to a failed
25985edc 2963 * COW. Warn that such a situation has occurred as it may not be obvious
04f2cbe3
MG
2964 */
2965 if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
ffb22af5
AM
2966 pr_warning("PID %d killed due to inadequate hugepage pool\n",
2967 current->pid);
04f2cbe3
MG
2968 return ret;
2969 }
2970
4c887265
AL
2971 /*
2972 * Use page lock to guard against racing truncation
2973 * before we get page_table_lock.
2974 */
6bda666a
CL
2975retry:
2976 page = find_lock_page(mapping, idx);
2977 if (!page) {
a5516438 2978 size = i_size_read(mapping->host) >> huge_page_shift(h);
ebed4bfc
HD
2979 if (idx >= size)
2980 goto out;
04f2cbe3 2981 page = alloc_huge_page(vma, address, 0);
2fc39cec 2982 if (IS_ERR(page)) {
76dcee75
AK
2983 ret = PTR_ERR(page);
2984 if (ret == -ENOMEM)
2985 ret = VM_FAULT_OOM;
2986 else
2987 ret = VM_FAULT_SIGBUS;
6bda666a
CL
2988 goto out;
2989 }
47ad8475 2990 clear_huge_page(page, address, pages_per_huge_page(h));
0ed361de 2991 __SetPageUptodate(page);
ac9b9c66 2992
f83a275d 2993 if (vma->vm_flags & VM_MAYSHARE) {
6bda666a 2994 int err;
45c682a6 2995 struct inode *inode = mapping->host;
6bda666a
CL
2996
2997 err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
2998 if (err) {
2999 put_page(page);
6bda666a
CL
3000 if (err == -EEXIST)
3001 goto retry;
3002 goto out;
3003 }
07443a85 3004 ClearPagePrivate(page);
45c682a6
KC
3005
3006 spin_lock(&inode->i_lock);
a5516438 3007 inode->i_blocks += blocks_per_huge_page(h);
45c682a6 3008 spin_unlock(&inode->i_lock);
23be7468 3009 } else {
6bda666a 3010 lock_page(page);
0fe6e20b
NH
3011 if (unlikely(anon_vma_prepare(vma))) {
3012 ret = VM_FAULT_OOM;
3013 goto backout_unlocked;
3014 }
409eb8c2 3015 anon_rmap = 1;
23be7468 3016 }
0fe6e20b 3017 } else {
998b4382
NH
3018 /*
3019 * If memory error occurs between mmap() and fault, some process
3020 * don't have hwpoisoned swap entry for errored virtual address.
3021 * So we need to block hugepage fault by PG_hwpoison bit check.
3022 */
3023 if (unlikely(PageHWPoison(page))) {
32f84528 3024 ret = VM_FAULT_HWPOISON |
972dc4de 3025 VM_FAULT_SET_HINDEX(hstate_index(h));
998b4382
NH
3026 goto backout_unlocked;
3027 }
6bda666a 3028 }
1e8f889b 3029
57303d80
AW
3030 /*
3031 * If we are going to COW a private mapping later, we examine the
3032 * pending reservations for this page now. This will ensure that
3033 * any allocations necessary to record that reservation occur outside
3034 * the spinlock.
3035 */
788c7df4 3036 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED))
2b26736c
AW
3037 if (vma_needs_reservation(h, vma, address) < 0) {
3038 ret = VM_FAULT_OOM;
3039 goto backout_unlocked;
3040 }
57303d80 3041
cb900f41
KS
3042 ptl = huge_pte_lockptr(h, mm, ptep);
3043 spin_lock(ptl);
a5516438 3044 size = i_size_read(mapping->host) >> huge_page_shift(h);
4c887265
AL
3045 if (idx >= size)
3046 goto backout;
3047
83c54070 3048 ret = 0;
7f2e9525 3049 if (!huge_pte_none(huge_ptep_get(ptep)))
4c887265
AL
3050 goto backout;
3051
07443a85
JK
3052 if (anon_rmap) {
3053 ClearPagePrivate(page);
409eb8c2 3054 hugepage_add_new_anon_rmap(page, vma, address);
ac714904 3055 } else
409eb8c2 3056 page_dup_rmap(page);
1e8f889b
DG
3057 new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
3058 && (vma->vm_flags & VM_SHARED)));
3059 set_huge_pte_at(mm, address, ptep, new_pte);
3060
788c7df4 3061 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
1e8f889b 3062 /* Optimization, do the COW without a second fault */
cb900f41 3063 ret = hugetlb_cow(mm, vma, address, ptep, new_pte, page, ptl);
1e8f889b
DG
3064 }
3065
cb900f41 3066 spin_unlock(ptl);
4c887265
AL
3067 unlock_page(page);
3068out:
ac9b9c66 3069 return ret;
4c887265
AL
3070
3071backout:
cb900f41 3072 spin_unlock(ptl);
2b26736c 3073backout_unlocked:
4c887265
AL
3074 unlock_page(page);
3075 put_page(page);
3076 goto out;
ac9b9c66
HD
3077}
3078
8382d914
DB
3079#ifdef CONFIG_SMP
3080static u32 fault_mutex_hash(struct hstate *h, struct mm_struct *mm,
3081 struct vm_area_struct *vma,
3082 struct address_space *mapping,
3083 pgoff_t idx, unsigned long address)
3084{
3085 unsigned long key[2];
3086 u32 hash;
3087
3088 if (vma->vm_flags & VM_SHARED) {
3089 key[0] = (unsigned long) mapping;
3090 key[1] = idx;
3091 } else {
3092 key[0] = (unsigned long) mm;
3093 key[1] = address >> huge_page_shift(h);
3094 }
3095
3096 hash = jhash2((u32 *)&key, sizeof(key)/sizeof(u32), 0);
3097
3098 return hash & (num_fault_mutexes - 1);
3099}
3100#else
3101/*
3102 * For uniprocesor systems we always use a single mutex, so just
3103 * return 0 and avoid the hashing overhead.
3104 */
3105static u32 fault_mutex_hash(struct hstate *h, struct mm_struct *mm,
3106 struct vm_area_struct *vma,
3107 struct address_space *mapping,
3108 pgoff_t idx, unsigned long address)
3109{
3110 return 0;
3111}
3112#endif
3113
86e5216f 3114int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
788c7df4 3115 unsigned long address, unsigned int flags)
86e5216f 3116{
8382d914 3117 pte_t *ptep, entry;
cb900f41 3118 spinlock_t *ptl;
1e8f889b 3119 int ret;
8382d914
DB
3120 u32 hash;
3121 pgoff_t idx;
0fe6e20b 3122 struct page *page = NULL;
57303d80 3123 struct page *pagecache_page = NULL;
a5516438 3124 struct hstate *h = hstate_vma(vma);
8382d914 3125 struct address_space *mapping;
86e5216f 3126
1e16a539
KH
3127 address &= huge_page_mask(h);
3128
fd6a03ed
NH
3129 ptep = huge_pte_offset(mm, address);
3130 if (ptep) {
3131 entry = huge_ptep_get(ptep);
290408d4 3132 if (unlikely(is_hugetlb_entry_migration(entry))) {
cb900f41 3133 migration_entry_wait_huge(vma, mm, ptep);
290408d4
NH
3134 return 0;
3135 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
32f84528 3136 return VM_FAULT_HWPOISON_LARGE |
972dc4de 3137 VM_FAULT_SET_HINDEX(hstate_index(h));
fd6a03ed
NH
3138 }
3139
a5516438 3140 ptep = huge_pte_alloc(mm, address, huge_page_size(h));
86e5216f
AL
3141 if (!ptep)
3142 return VM_FAULT_OOM;
3143
8382d914
DB
3144 mapping = vma->vm_file->f_mapping;
3145 idx = vma_hugecache_offset(h, vma, address);
3146
3935baa9
DG
3147 /*
3148 * Serialize hugepage allocation and instantiation, so that we don't
3149 * get spurious allocation failures if two CPUs race to instantiate
3150 * the same page in the page cache.
3151 */
8382d914
DB
3152 hash = fault_mutex_hash(h, mm, vma, mapping, idx, address);
3153 mutex_lock(&htlb_fault_mutex_table[hash]);
3154
7f2e9525
GS
3155 entry = huge_ptep_get(ptep);
3156 if (huge_pte_none(entry)) {
8382d914 3157 ret = hugetlb_no_page(mm, vma, mapping, idx, address, ptep, flags);
b4d1d99f 3158 goto out_mutex;
3935baa9 3159 }
86e5216f 3160
83c54070 3161 ret = 0;
1e8f889b 3162
57303d80
AW
3163 /*
3164 * If we are going to COW the mapping later, we examine the pending
3165 * reservations for this page now. This will ensure that any
3166 * allocations necessary to record that reservation occur outside the
3167 * spinlock. For private mappings, we also lookup the pagecache
3168 * page now as it is used to determine if a reservation has been
3169 * consumed.
3170 */
106c992a 3171 if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
2b26736c
AW
3172 if (vma_needs_reservation(h, vma, address) < 0) {
3173 ret = VM_FAULT_OOM;
b4d1d99f 3174 goto out_mutex;
2b26736c 3175 }
57303d80 3176
f83a275d 3177 if (!(vma->vm_flags & VM_MAYSHARE))
57303d80
AW
3178 pagecache_page = hugetlbfs_pagecache_page(h,
3179 vma, address);
3180 }
3181
56c9cfb1
NH
3182 /*
3183 * hugetlb_cow() requires page locks of pte_page(entry) and
3184 * pagecache_page, so here we need take the former one
3185 * when page != pagecache_page or !pagecache_page.
3186 * Note that locking order is always pagecache_page -> page,
3187 * so no worry about deadlock.
3188 */
3189 page = pte_page(entry);
66aebce7 3190 get_page(page);
56c9cfb1 3191 if (page != pagecache_page)
0fe6e20b 3192 lock_page(page);
0fe6e20b 3193
cb900f41
KS
3194 ptl = huge_pte_lockptr(h, mm, ptep);
3195 spin_lock(ptl);
1e8f889b 3196 /* Check for a racing update before calling hugetlb_cow */
b4d1d99f 3197 if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
cb900f41 3198 goto out_ptl;
b4d1d99f
DG
3199
3200
788c7df4 3201 if (flags & FAULT_FLAG_WRITE) {
106c992a 3202 if (!huge_pte_write(entry)) {
57303d80 3203 ret = hugetlb_cow(mm, vma, address, ptep, entry,
cb900f41
KS
3204 pagecache_page, ptl);
3205 goto out_ptl;
b4d1d99f 3206 }
106c992a 3207 entry = huge_pte_mkdirty(entry);
b4d1d99f
DG
3208 }
3209 entry = pte_mkyoung(entry);
788c7df4
HD
3210 if (huge_ptep_set_access_flags(vma, address, ptep, entry,
3211 flags & FAULT_FLAG_WRITE))
4b3073e1 3212 update_mmu_cache(vma, address, ptep);
b4d1d99f 3213
cb900f41
KS
3214out_ptl:
3215 spin_unlock(ptl);
57303d80
AW
3216
3217 if (pagecache_page) {
3218 unlock_page(pagecache_page);
3219 put_page(pagecache_page);
3220 }
1f64d69c
DN
3221 if (page != pagecache_page)
3222 unlock_page(page);
66aebce7 3223 put_page(page);
57303d80 3224
b4d1d99f 3225out_mutex:
8382d914 3226 mutex_unlock(&htlb_fault_mutex_table[hash]);
1e8f889b 3227 return ret;
86e5216f
AL
3228}
3229
28a35716
ML
3230long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
3231 struct page **pages, struct vm_area_struct **vmas,
3232 unsigned long *position, unsigned long *nr_pages,
3233 long i, unsigned int flags)
63551ae0 3234{
d5d4b0aa
CK
3235 unsigned long pfn_offset;
3236 unsigned long vaddr = *position;
28a35716 3237 unsigned long remainder = *nr_pages;
a5516438 3238 struct hstate *h = hstate_vma(vma);
63551ae0 3239
63551ae0 3240 while (vaddr < vma->vm_end && remainder) {
4c887265 3241 pte_t *pte;
cb900f41 3242 spinlock_t *ptl = NULL;
2a15efc9 3243 int absent;
4c887265 3244 struct page *page;
63551ae0 3245
4c887265
AL
3246 /*
3247 * Some archs (sparc64, sh*) have multiple pte_ts to
2a15efc9 3248 * each hugepage. We have to make sure we get the
4c887265 3249 * first, for the page indexing below to work.
cb900f41
KS
3250 *
3251 * Note that page table lock is not held when pte is null.
4c887265 3252 */
a5516438 3253 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h));
cb900f41
KS
3254 if (pte)
3255 ptl = huge_pte_lock(h, mm, pte);
2a15efc9
HD
3256 absent = !pte || huge_pte_none(huge_ptep_get(pte));
3257
3258 /*
3259 * When coredumping, it suits get_dump_page if we just return
3ae77f43
HD
3260 * an error where there's an empty slot with no huge pagecache
3261 * to back it. This way, we avoid allocating a hugepage, and
3262 * the sparse dumpfile avoids allocating disk blocks, but its
3263 * huge holes still show up with zeroes where they need to be.
2a15efc9 3264 */
3ae77f43
HD
3265 if (absent && (flags & FOLL_DUMP) &&
3266 !hugetlbfs_pagecache_present(h, vma, vaddr)) {
cb900f41
KS
3267 if (pte)
3268 spin_unlock(ptl);
2a15efc9
HD
3269 remainder = 0;
3270 break;
3271 }
63551ae0 3272
9cc3a5bd
NH
3273 /*
3274 * We need call hugetlb_fault for both hugepages under migration
3275 * (in which case hugetlb_fault waits for the migration,) and
3276 * hwpoisoned hugepages (in which case we need to prevent the
3277 * caller from accessing to them.) In order to do this, we use
3278 * here is_swap_pte instead of is_hugetlb_entry_migration and
3279 * is_hugetlb_entry_hwpoisoned. This is because it simply covers
3280 * both cases, and because we can't follow correct pages
3281 * directly from any kind of swap entries.
3282 */
3283 if (absent || is_swap_pte(huge_ptep_get(pte)) ||
106c992a
GS
3284 ((flags & FOLL_WRITE) &&
3285 !huge_pte_write(huge_ptep_get(pte)))) {
4c887265 3286 int ret;
63551ae0 3287
cb900f41
KS
3288 if (pte)
3289 spin_unlock(ptl);
2a15efc9
HD
3290 ret = hugetlb_fault(mm, vma, vaddr,
3291 (flags & FOLL_WRITE) ? FAULT_FLAG_WRITE : 0);
a89182c7 3292 if (!(ret & VM_FAULT_ERROR))
4c887265 3293 continue;
63551ae0 3294
4c887265 3295 remainder = 0;
4c887265
AL
3296 break;
3297 }
3298
a5516438 3299 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
7f2e9525 3300 page = pte_page(huge_ptep_get(pte));
d5d4b0aa 3301same_page:
d6692183 3302 if (pages) {
2a15efc9 3303 pages[i] = mem_map_offset(page, pfn_offset);
a0368d4e 3304 get_page_foll(pages[i]);
d6692183 3305 }
63551ae0
DG
3306
3307 if (vmas)
3308 vmas[i] = vma;
3309
3310 vaddr += PAGE_SIZE;
d5d4b0aa 3311 ++pfn_offset;
63551ae0
DG
3312 --remainder;
3313 ++i;
d5d4b0aa 3314 if (vaddr < vma->vm_end && remainder &&
a5516438 3315 pfn_offset < pages_per_huge_page(h)) {
d5d4b0aa
CK
3316 /*
3317 * We use pfn_offset to avoid touching the pageframes
3318 * of this compound page.
3319 */
3320 goto same_page;
3321 }
cb900f41 3322 spin_unlock(ptl);
63551ae0 3323 }
28a35716 3324 *nr_pages = remainder;
63551ae0
DG
3325 *position = vaddr;
3326
2a15efc9 3327 return i ? i : -EFAULT;
63551ae0 3328}
8f860591 3329
7da4d641 3330unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
8f860591
ZY
3331 unsigned long address, unsigned long end, pgprot_t newprot)
3332{
3333 struct mm_struct *mm = vma->vm_mm;
3334 unsigned long start = address;
3335 pte_t *ptep;
3336 pte_t pte;
a5516438 3337 struct hstate *h = hstate_vma(vma);
7da4d641 3338 unsigned long pages = 0;
8f860591
ZY
3339
3340 BUG_ON(address >= end);
3341 flush_cache_range(vma, address, end);
3342
a5338093 3343 mmu_notifier_invalidate_range_start(mm, start, end);
3d48ae45 3344 mutex_lock(&vma->vm_file->f_mapping->i_mmap_mutex);
a5516438 3345 for (; address < end; address += huge_page_size(h)) {
cb900f41 3346 spinlock_t *ptl;
8f860591
ZY
3347 ptep = huge_pte_offset(mm, address);
3348 if (!ptep)
3349 continue;
cb900f41 3350 ptl = huge_pte_lock(h, mm, ptep);
7da4d641
PZ
3351 if (huge_pmd_unshare(mm, &address, ptep)) {
3352 pages++;
cb900f41 3353 spin_unlock(ptl);
39dde65c 3354 continue;
7da4d641 3355 }
7f2e9525 3356 if (!huge_pte_none(huge_ptep_get(ptep))) {
8f860591 3357 pte = huge_ptep_get_and_clear(mm, address, ptep);
106c992a 3358 pte = pte_mkhuge(huge_pte_modify(pte, newprot));
be7517d6 3359 pte = arch_make_huge_pte(pte, vma, NULL, 0);
8f860591 3360 set_huge_pte_at(mm, address, ptep, pte);
7da4d641 3361 pages++;
8f860591 3362 }
cb900f41 3363 spin_unlock(ptl);
8f860591 3364 }
d833352a
MG
3365 /*
3366 * Must flush TLB before releasing i_mmap_mutex: x86's huge_pmd_unshare
3367 * may have cleared our pud entry and done put_page on the page table:
3368 * once we release i_mmap_mutex, another task can do the final put_page
3369 * and that page table be reused and filled with junk.
3370 */
8f860591 3371 flush_tlb_range(vma, start, end);
d833352a 3372 mutex_unlock(&vma->vm_file->f_mapping->i_mmap_mutex);
a5338093 3373 mmu_notifier_invalidate_range_end(mm, start, end);
7da4d641
PZ
3374
3375 return pages << h->order;
8f860591
ZY
3376}
3377
a1e78772
MG
3378int hugetlb_reserve_pages(struct inode *inode,
3379 long from, long to,
5a6fe125 3380 struct vm_area_struct *vma,
ca16d140 3381 vm_flags_t vm_flags)
e4e574b7 3382{
17c9d12e 3383 long ret, chg;
a5516438 3384 struct hstate *h = hstate_inode(inode);
90481622 3385 struct hugepage_subpool *spool = subpool_inode(inode);
9119a41e 3386 struct resv_map *resv_map;
e4e574b7 3387
17c9d12e
MG
3388 /*
3389 * Only apply hugepage reservation if asked. At fault time, an
3390 * attempt will be made for VM_NORESERVE to allocate a page
90481622 3391 * without using reserves
17c9d12e 3392 */
ca16d140 3393 if (vm_flags & VM_NORESERVE)
17c9d12e
MG
3394 return 0;
3395
a1e78772
MG
3396 /*
3397 * Shared mappings base their reservation on the number of pages that
3398 * are already allocated on behalf of the file. Private mappings need
3399 * to reserve the full area even if read-only as mprotect() may be
3400 * called to make the mapping read-write. Assume !vma is a shm mapping
3401 */
9119a41e 3402 if (!vma || vma->vm_flags & VM_MAYSHARE) {
4e35f483 3403 resv_map = inode_resv_map(inode);
9119a41e 3404
1406ec9b 3405 chg = region_chg(resv_map, from, to);
9119a41e
JK
3406
3407 } else {
3408 resv_map = resv_map_alloc();
17c9d12e
MG
3409 if (!resv_map)
3410 return -ENOMEM;
3411
a1e78772 3412 chg = to - from;
84afd99b 3413
17c9d12e
MG
3414 set_vma_resv_map(vma, resv_map);
3415 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
3416 }
3417
c50ac050
DH
3418 if (chg < 0) {
3419 ret = chg;
3420 goto out_err;
3421 }
8a630112 3422
90481622 3423 /* There must be enough pages in the subpool for the mapping */
c50ac050
DH
3424 if (hugepage_subpool_get_pages(spool, chg)) {
3425 ret = -ENOSPC;
3426 goto out_err;
3427 }
5a6fe125
MG
3428
3429 /*
17c9d12e 3430 * Check enough hugepages are available for the reservation.
90481622 3431 * Hand the pages back to the subpool if there are not
5a6fe125 3432 */
a5516438 3433 ret = hugetlb_acct_memory(h, chg);
68842c9b 3434 if (ret < 0) {
90481622 3435 hugepage_subpool_put_pages(spool, chg);
c50ac050 3436 goto out_err;
68842c9b 3437 }
17c9d12e
MG
3438
3439 /*
3440 * Account for the reservations made. Shared mappings record regions
3441 * that have reservations as they are shared by multiple VMAs.
3442 * When the last VMA disappears, the region map says how much
3443 * the reservation was and the page cache tells how much of
3444 * the reservation was consumed. Private mappings are per-VMA and
3445 * only the consumed reservations are tracked. When the VMA
3446 * disappears, the original reservation is the VMA size and the
3447 * consumed reservations are stored in the map. Hence, nothing
3448 * else has to be done for private mappings here
3449 */
f83a275d 3450 if (!vma || vma->vm_flags & VM_MAYSHARE)
1406ec9b 3451 region_add(resv_map, from, to);
a43a8c39 3452 return 0;
c50ac050 3453out_err:
f031dd27
JK
3454 if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
3455 kref_put(&resv_map->refs, resv_map_release);
c50ac050 3456 return ret;
a43a8c39
CK
3457}
3458
3459void hugetlb_unreserve_pages(struct inode *inode, long offset, long freed)
3460{
a5516438 3461 struct hstate *h = hstate_inode(inode);
4e35f483 3462 struct resv_map *resv_map = inode_resv_map(inode);
9119a41e 3463 long chg = 0;
90481622 3464 struct hugepage_subpool *spool = subpool_inode(inode);
45c682a6 3465
9119a41e 3466 if (resv_map)
1406ec9b 3467 chg = region_truncate(resv_map, offset);
45c682a6 3468 spin_lock(&inode->i_lock);
e4c6f8be 3469 inode->i_blocks -= (blocks_per_huge_page(h) * freed);
45c682a6
KC
3470 spin_unlock(&inode->i_lock);
3471
90481622 3472 hugepage_subpool_put_pages(spool, (chg - freed));
a5516438 3473 hugetlb_acct_memory(h, -(chg - freed));
a43a8c39 3474}
93f70f90 3475
3212b535
SC
3476#ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
3477static unsigned long page_table_shareable(struct vm_area_struct *svma,
3478 struct vm_area_struct *vma,
3479 unsigned long addr, pgoff_t idx)
3480{
3481 unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
3482 svma->vm_start;
3483 unsigned long sbase = saddr & PUD_MASK;
3484 unsigned long s_end = sbase + PUD_SIZE;
3485
3486 /* Allow segments to share if only one is marked locked */
3487 unsigned long vm_flags = vma->vm_flags & ~VM_LOCKED;
3488 unsigned long svm_flags = svma->vm_flags & ~VM_LOCKED;
3489
3490 /*
3491 * match the virtual addresses, permission and the alignment of the
3492 * page table page.
3493 */
3494 if (pmd_index(addr) != pmd_index(saddr) ||
3495 vm_flags != svm_flags ||
3496 sbase < svma->vm_start || svma->vm_end < s_end)
3497 return 0;
3498
3499 return saddr;
3500}
3501
3502static int vma_shareable(struct vm_area_struct *vma, unsigned long addr)
3503{
3504 unsigned long base = addr & PUD_MASK;
3505 unsigned long end = base + PUD_SIZE;
3506
3507 /*
3508 * check on proper vm_flags and page table alignment
3509 */
3510 if (vma->vm_flags & VM_MAYSHARE &&
3511 vma->vm_start <= base && end <= vma->vm_end)
3512 return 1;
3513 return 0;
3514}
3515
3516/*
3517 * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
3518 * and returns the corresponding pte. While this is not necessary for the
3519 * !shared pmd case because we can allocate the pmd later as well, it makes the
3520 * code much cleaner. pmd allocation is essential for the shared case because
3521 * pud has to be populated inside the same i_mmap_mutex section - otherwise
3522 * racing tasks could either miss the sharing (see huge_pte_offset) or select a
3523 * bad pmd for sharing.
3524 */
3525pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
3526{
3527 struct vm_area_struct *vma = find_vma(mm, addr);
3528 struct address_space *mapping = vma->vm_file->f_mapping;
3529 pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
3530 vma->vm_pgoff;
3531 struct vm_area_struct *svma;
3532 unsigned long saddr;
3533 pte_t *spte = NULL;
3534 pte_t *pte;
cb900f41 3535 spinlock_t *ptl;
3212b535
SC
3536
3537 if (!vma_shareable(vma, addr))
3538 return (pte_t *)pmd_alloc(mm, pud, addr);
3539
3540 mutex_lock(&mapping->i_mmap_mutex);
3541 vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
3542 if (svma == vma)
3543 continue;
3544
3545 saddr = page_table_shareable(svma, vma, addr, idx);
3546 if (saddr) {
3547 spte = huge_pte_offset(svma->vm_mm, saddr);
3548 if (spte) {
3549 get_page(virt_to_page(spte));
3550 break;
3551 }
3552 }
3553 }
3554
3555 if (!spte)
3556 goto out;
3557
cb900f41
KS
3558 ptl = huge_pte_lockptr(hstate_vma(vma), mm, spte);
3559 spin_lock(ptl);
3212b535
SC
3560 if (pud_none(*pud))
3561 pud_populate(mm, pud,
3562 (pmd_t *)((unsigned long)spte & PAGE_MASK));
3563 else
3564 put_page(virt_to_page(spte));
cb900f41 3565 spin_unlock(ptl);
3212b535
SC
3566out:
3567 pte = (pte_t *)pmd_alloc(mm, pud, addr);
3568 mutex_unlock(&mapping->i_mmap_mutex);
3569 return pte;
3570}
3571
3572/*
3573 * unmap huge page backed by shared pte.
3574 *
3575 * Hugetlb pte page is ref counted at the time of mapping. If pte is shared
3576 * indicated by page_count > 1, unmap is achieved by clearing pud and
3577 * decrementing the ref count. If count == 1, the pte page is not shared.
3578 *
cb900f41 3579 * called with page table lock held.
3212b535
SC
3580 *
3581 * returns: 1 successfully unmapped a shared pte page
3582 * 0 the underlying pte page is not shared, or it is the last user
3583 */
3584int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
3585{
3586 pgd_t *pgd = pgd_offset(mm, *addr);
3587 pud_t *pud = pud_offset(pgd, *addr);
3588
3589 BUG_ON(page_count(virt_to_page(ptep)) == 0);
3590 if (page_count(virt_to_page(ptep)) == 1)
3591 return 0;
3592
3593 pud_clear(pud);
3594 put_page(virt_to_page(ptep));
3595 *addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE;
3596 return 1;
3597}
9e5fc74c
SC
3598#define want_pmd_share() (1)
3599#else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
3600pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
3601{
3602 return NULL;
3603}
3604#define want_pmd_share() (0)
3212b535
SC
3605#endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
3606
9e5fc74c
SC
3607#ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
3608pte_t *huge_pte_alloc(struct mm_struct *mm,
3609 unsigned long addr, unsigned long sz)
3610{
3611 pgd_t *pgd;
3612 pud_t *pud;
3613 pte_t *pte = NULL;
3614
3615 pgd = pgd_offset(mm, addr);
3616 pud = pud_alloc(mm, pgd, addr);
3617 if (pud) {
3618 if (sz == PUD_SIZE) {
3619 pte = (pte_t *)pud;
3620 } else {
3621 BUG_ON(sz != PMD_SIZE);
3622 if (want_pmd_share() && pud_none(*pud))
3623 pte = huge_pmd_share(mm, addr, pud);
3624 else
3625 pte = (pte_t *)pmd_alloc(mm, pud, addr);
3626 }
3627 }
3628 BUG_ON(pte && !pte_none(*pte) && !pte_huge(*pte));
3629
3630 return pte;
3631}
3632
3633pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr)
3634{
3635 pgd_t *pgd;
3636 pud_t *pud;
3637 pmd_t *pmd = NULL;
3638
3639 pgd = pgd_offset(mm, addr);
3640 if (pgd_present(*pgd)) {
3641 pud = pud_offset(pgd, addr);
3642 if (pud_present(*pud)) {
3643 if (pud_huge(*pud))
3644 return (pte_t *)pud;
3645 pmd = pmd_offset(pud, addr);
3646 }
3647 }
3648 return (pte_t *) pmd;
3649}
3650
3651struct page *
3652follow_huge_pmd(struct mm_struct *mm, unsigned long address,
3653 pmd_t *pmd, int write)
3654{
3655 struct page *page;
3656
3657 page = pte_page(*(pte_t *)pmd);
3658 if (page)
3659 page += ((address & ~PMD_MASK) >> PAGE_SHIFT);
3660 return page;
3661}
3662
3663struct page *
3664follow_huge_pud(struct mm_struct *mm, unsigned long address,
3665 pud_t *pud, int write)
3666{
3667 struct page *page;
3668
3669 page = pte_page(*(pte_t *)pud);
3670 if (page)
3671 page += ((address & ~PUD_MASK) >> PAGE_SHIFT);
3672 return page;
3673}
3674
3675#else /* !CONFIG_ARCH_WANT_GENERAL_HUGETLB */
3676
3677/* Can be overriden by architectures */
3b32123d 3678struct page * __weak
9e5fc74c
SC
3679follow_huge_pud(struct mm_struct *mm, unsigned long address,
3680 pud_t *pud, int write)
3681{
3682 BUG();
3683 return NULL;
3684}
3685
3686#endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
3687
d5bd9106
AK
3688#ifdef CONFIG_MEMORY_FAILURE
3689
6de2b1aa
NH
3690/* Should be called in hugetlb_lock */
3691static int is_hugepage_on_freelist(struct page *hpage)
3692{
3693 struct page *page;
3694 struct page *tmp;
3695 struct hstate *h = page_hstate(hpage);
3696 int nid = page_to_nid(hpage);
3697
3698 list_for_each_entry_safe(page, tmp, &h->hugepage_freelists[nid], lru)
3699 if (page == hpage)
3700 return 1;
3701 return 0;
3702}
3703
93f70f90
NH
3704/*
3705 * This function is called from memory failure code.
3706 * Assume the caller holds page lock of the head page.
3707 */
6de2b1aa 3708int dequeue_hwpoisoned_huge_page(struct page *hpage)
93f70f90
NH
3709{
3710 struct hstate *h = page_hstate(hpage);
3711 int nid = page_to_nid(hpage);
6de2b1aa 3712 int ret = -EBUSY;
93f70f90
NH
3713
3714 spin_lock(&hugetlb_lock);
6de2b1aa 3715 if (is_hugepage_on_freelist(hpage)) {
56f2fb14
NH
3716 /*
3717 * Hwpoisoned hugepage isn't linked to activelist or freelist,
3718 * but dangling hpage->lru can trigger list-debug warnings
3719 * (this happens when we call unpoison_memory() on it),
3720 * so let it point to itself with list_del_init().
3721 */
3722 list_del_init(&hpage->lru);
8c6c2ecb 3723 set_page_refcounted(hpage);
6de2b1aa
NH
3724 h->free_huge_pages--;
3725 h->free_huge_pages_node[nid]--;
3726 ret = 0;
3727 }
93f70f90 3728 spin_unlock(&hugetlb_lock);
6de2b1aa 3729 return ret;
93f70f90 3730}
6de2b1aa 3731#endif
31caf665
NH
3732
3733bool isolate_huge_page(struct page *page, struct list_head *list)
3734{
309381fe 3735 VM_BUG_ON_PAGE(!PageHead(page), page);
31caf665
NH
3736 if (!get_page_unless_zero(page))
3737 return false;
3738 spin_lock(&hugetlb_lock);
3739 list_move_tail(&page->lru, list);
3740 spin_unlock(&hugetlb_lock);
3741 return true;
3742}
3743
3744void putback_active_hugepage(struct page *page)
3745{
309381fe 3746 VM_BUG_ON_PAGE(!PageHead(page), page);
31caf665
NH
3747 spin_lock(&hugetlb_lock);
3748 list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
3749 spin_unlock(&hugetlb_lock);
3750 put_page(page);
3751}
c8721bbb
NH
3752
3753bool is_hugepage_active(struct page *page)
3754{
309381fe 3755 VM_BUG_ON_PAGE(!PageHuge(page), page);
c8721bbb
NH
3756 /*
3757 * This function can be called for a tail page because the caller,
3758 * scan_movable_pages, scans through a given pfn-range which typically
3759 * covers one memory block. In systems using gigantic hugepage (1GB
3760 * for x86_64,) a hugepage is larger than a memory block, and we don't
3761 * support migrating such large hugepages for now, so return false
3762 * when called for tail pages.
3763 */
3764 if (PageTail(page))
3765 return false;
3766 /*
3767 * Refcount of a hwpoisoned hugepages is 1, but they are not active,
3768 * so we should return false for them.
3769 */
3770 if (unlikely(PageHWPoison(page)))
3771 return false;
3772 return page_count(page) > 0;
3773}