mm/hugetlb: fix getting refcount 0 page in hugetlb_fault()
[linux-2.6-block.git] / mm / hugetlb.c
CommitLineData
1da177e4
LT
1/*
2 * Generic hugetlb support.
6d49e352 3 * (C) Nadia Yvette Chambers, April 2004
1da177e4 4 */
1da177e4
LT
5#include <linux/list.h>
6#include <linux/init.h>
7#include <linux/module.h>
8#include <linux/mm.h>
e1759c21 9#include <linux/seq_file.h>
1da177e4
LT
10#include <linux/sysctl.h>
11#include <linux/highmem.h>
cddb8a5c 12#include <linux/mmu_notifier.h>
1da177e4 13#include <linux/nodemask.h>
63551ae0 14#include <linux/pagemap.h>
5da7ca86 15#include <linux/mempolicy.h>
3b32123d 16#include <linux/compiler.h>
aea47ff3 17#include <linux/cpuset.h>
3935baa9 18#include <linux/mutex.h>
aa888a74 19#include <linux/bootmem.h>
a3437870 20#include <linux/sysfs.h>
5a0e3ad6 21#include <linux/slab.h>
0fe6e20b 22#include <linux/rmap.h>
fd6a03ed
NH
23#include <linux/swap.h>
24#include <linux/swapops.h>
c8721bbb 25#include <linux/page-isolation.h>
8382d914 26#include <linux/jhash.h>
d6606683 27
63551ae0
DG
28#include <asm/page.h>
29#include <asm/pgtable.h>
24669e58 30#include <asm/tlb.h>
63551ae0 31
24669e58 32#include <linux/io.h>
63551ae0 33#include <linux/hugetlb.h>
9dd540e2 34#include <linux/hugetlb_cgroup.h>
9a305230 35#include <linux/node.h>
7835e98b 36#include "internal.h"
1da177e4 37
753162cd 38int hugepages_treat_as_movable;
a5516438 39
c3f38a38 40int hugetlb_max_hstate __read_mostly;
e5ff2159
AK
41unsigned int default_hstate_idx;
42struct hstate hstates[HUGE_MAX_HSTATE];
43
53ba51d2
JT
44__initdata LIST_HEAD(huge_boot_pages);
45
e5ff2159
AK
46/* for command line parsing */
47static struct hstate * __initdata parsed_hstate;
48static unsigned long __initdata default_hstate_max_huge_pages;
e11bfbfc 49static unsigned long __initdata default_hstate_size;
e5ff2159 50
3935baa9 51/*
31caf665
NH
52 * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
53 * free_huge_pages, and surplus_huge_pages.
3935baa9 54 */
c3f38a38 55DEFINE_SPINLOCK(hugetlb_lock);
0bd0f9fb 56
8382d914
DB
57/*
58 * Serializes faults on the same logical page. This is used to
59 * prevent spurious OOMs when the hugepage pool is fully utilized.
60 */
61static int num_fault_mutexes;
62static struct mutex *htlb_fault_mutex_table ____cacheline_aligned_in_smp;
63
90481622
DG
64static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
65{
66 bool free = (spool->count == 0) && (spool->used_hpages == 0);
67
68 spin_unlock(&spool->lock);
69
70 /* If no pages are used, and no other handles to the subpool
71 * remain, free the subpool the subpool remain */
72 if (free)
73 kfree(spool);
74}
75
76struct hugepage_subpool *hugepage_new_subpool(long nr_blocks)
77{
78 struct hugepage_subpool *spool;
79
80 spool = kmalloc(sizeof(*spool), GFP_KERNEL);
81 if (!spool)
82 return NULL;
83
84 spin_lock_init(&spool->lock);
85 spool->count = 1;
86 spool->max_hpages = nr_blocks;
87 spool->used_hpages = 0;
88
89 return spool;
90}
91
92void hugepage_put_subpool(struct hugepage_subpool *spool)
93{
94 spin_lock(&spool->lock);
95 BUG_ON(!spool->count);
96 spool->count--;
97 unlock_or_release_subpool(spool);
98}
99
100static int hugepage_subpool_get_pages(struct hugepage_subpool *spool,
101 long delta)
102{
103 int ret = 0;
104
105 if (!spool)
106 return 0;
107
108 spin_lock(&spool->lock);
109 if ((spool->used_hpages + delta) <= spool->max_hpages) {
110 spool->used_hpages += delta;
111 } else {
112 ret = -ENOMEM;
113 }
114 spin_unlock(&spool->lock);
115
116 return ret;
117}
118
119static void hugepage_subpool_put_pages(struct hugepage_subpool *spool,
120 long delta)
121{
122 if (!spool)
123 return;
124
125 spin_lock(&spool->lock);
126 spool->used_hpages -= delta;
127 /* If hugetlbfs_put_super couldn't free spool due to
128 * an outstanding quota reference, free it now. */
129 unlock_or_release_subpool(spool);
130}
131
132static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
133{
134 return HUGETLBFS_SB(inode->i_sb)->spool;
135}
136
137static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
138{
496ad9aa 139 return subpool_inode(file_inode(vma->vm_file));
90481622
DG
140}
141
96822904
AW
142/*
143 * Region tracking -- allows tracking of reservations and instantiated pages
144 * across the pages in a mapping.
84afd99b 145 *
7b24d861
DB
146 * The region data structures are embedded into a resv_map and
147 * protected by a resv_map's lock
96822904
AW
148 */
149struct file_region {
150 struct list_head link;
151 long from;
152 long to;
153};
154
1406ec9b 155static long region_add(struct resv_map *resv, long f, long t)
96822904 156{
1406ec9b 157 struct list_head *head = &resv->regions;
96822904
AW
158 struct file_region *rg, *nrg, *trg;
159
7b24d861 160 spin_lock(&resv->lock);
96822904
AW
161 /* Locate the region we are either in or before. */
162 list_for_each_entry(rg, head, link)
163 if (f <= rg->to)
164 break;
165
166 /* Round our left edge to the current segment if it encloses us. */
167 if (f > rg->from)
168 f = rg->from;
169
170 /* Check for and consume any regions we now overlap with. */
171 nrg = rg;
172 list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
173 if (&rg->link == head)
174 break;
175 if (rg->from > t)
176 break;
177
178 /* If this area reaches higher then extend our area to
179 * include it completely. If this is not the first area
180 * which we intend to reuse, free it. */
181 if (rg->to > t)
182 t = rg->to;
183 if (rg != nrg) {
184 list_del(&rg->link);
185 kfree(rg);
186 }
187 }
188 nrg->from = f;
189 nrg->to = t;
7b24d861 190 spin_unlock(&resv->lock);
96822904
AW
191 return 0;
192}
193
1406ec9b 194static long region_chg(struct resv_map *resv, long f, long t)
96822904 195{
1406ec9b 196 struct list_head *head = &resv->regions;
7b24d861 197 struct file_region *rg, *nrg = NULL;
96822904
AW
198 long chg = 0;
199
7b24d861
DB
200retry:
201 spin_lock(&resv->lock);
96822904
AW
202 /* Locate the region we are before or in. */
203 list_for_each_entry(rg, head, link)
204 if (f <= rg->to)
205 break;
206
207 /* If we are below the current region then a new region is required.
208 * Subtle, allocate a new region at the position but make it zero
209 * size such that we can guarantee to record the reservation. */
210 if (&rg->link == head || t < rg->from) {
7b24d861
DB
211 if (!nrg) {
212 spin_unlock(&resv->lock);
213 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
214 if (!nrg)
215 return -ENOMEM;
216
217 nrg->from = f;
218 nrg->to = f;
219 INIT_LIST_HEAD(&nrg->link);
220 goto retry;
221 }
96822904 222
7b24d861
DB
223 list_add(&nrg->link, rg->link.prev);
224 chg = t - f;
225 goto out_nrg;
96822904
AW
226 }
227
228 /* Round our left edge to the current segment if it encloses us. */
229 if (f > rg->from)
230 f = rg->from;
231 chg = t - f;
232
233 /* Check for and consume any regions we now overlap with. */
234 list_for_each_entry(rg, rg->link.prev, link) {
235 if (&rg->link == head)
236 break;
237 if (rg->from > t)
7b24d861 238 goto out;
96822904 239
25985edc 240 /* We overlap with this area, if it extends further than
96822904
AW
241 * us then we must extend ourselves. Account for its
242 * existing reservation. */
243 if (rg->to > t) {
244 chg += rg->to - t;
245 t = rg->to;
246 }
247 chg -= rg->to - rg->from;
248 }
7b24d861
DB
249
250out:
251 spin_unlock(&resv->lock);
252 /* We already know we raced and no longer need the new region */
253 kfree(nrg);
254 return chg;
255out_nrg:
256 spin_unlock(&resv->lock);
96822904
AW
257 return chg;
258}
259
1406ec9b 260static long region_truncate(struct resv_map *resv, long end)
96822904 261{
1406ec9b 262 struct list_head *head = &resv->regions;
96822904
AW
263 struct file_region *rg, *trg;
264 long chg = 0;
265
7b24d861 266 spin_lock(&resv->lock);
96822904
AW
267 /* Locate the region we are either in or before. */
268 list_for_each_entry(rg, head, link)
269 if (end <= rg->to)
270 break;
271 if (&rg->link == head)
7b24d861 272 goto out;
96822904
AW
273
274 /* If we are in the middle of a region then adjust it. */
275 if (end > rg->from) {
276 chg = rg->to - end;
277 rg->to = end;
278 rg = list_entry(rg->link.next, typeof(*rg), link);
279 }
280
281 /* Drop any remaining regions. */
282 list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
283 if (&rg->link == head)
284 break;
285 chg += rg->to - rg->from;
286 list_del(&rg->link);
287 kfree(rg);
288 }
7b24d861
DB
289
290out:
291 spin_unlock(&resv->lock);
96822904
AW
292 return chg;
293}
294
1406ec9b 295static long region_count(struct resv_map *resv, long f, long t)
84afd99b 296{
1406ec9b 297 struct list_head *head = &resv->regions;
84afd99b
AW
298 struct file_region *rg;
299 long chg = 0;
300
7b24d861 301 spin_lock(&resv->lock);
84afd99b
AW
302 /* Locate each segment we overlap with, and count that overlap. */
303 list_for_each_entry(rg, head, link) {
f2135a4a
WSH
304 long seg_from;
305 long seg_to;
84afd99b
AW
306
307 if (rg->to <= f)
308 continue;
309 if (rg->from >= t)
310 break;
311
312 seg_from = max(rg->from, f);
313 seg_to = min(rg->to, t);
314
315 chg += seg_to - seg_from;
316 }
7b24d861 317 spin_unlock(&resv->lock);
84afd99b
AW
318
319 return chg;
320}
321
e7c4b0bf
AW
322/*
323 * Convert the address within this vma to the page offset within
324 * the mapping, in pagecache page units; huge pages here.
325 */
a5516438
AK
326static pgoff_t vma_hugecache_offset(struct hstate *h,
327 struct vm_area_struct *vma, unsigned long address)
e7c4b0bf 328{
a5516438
AK
329 return ((address - vma->vm_start) >> huge_page_shift(h)) +
330 (vma->vm_pgoff >> huge_page_order(h));
e7c4b0bf
AW
331}
332
0fe6e20b
NH
333pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
334 unsigned long address)
335{
336 return vma_hugecache_offset(hstate_vma(vma), vma, address);
337}
338
08fba699
MG
339/*
340 * Return the size of the pages allocated when backing a VMA. In the majority
341 * cases this will be same size as used by the page table entries.
342 */
343unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
344{
345 struct hstate *hstate;
346
347 if (!is_vm_hugetlb_page(vma))
348 return PAGE_SIZE;
349
350 hstate = hstate_vma(vma);
351
2415cf12 352 return 1UL << huge_page_shift(hstate);
08fba699 353}
f340ca0f 354EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
08fba699 355
3340289d
MG
356/*
357 * Return the page size being used by the MMU to back a VMA. In the majority
358 * of cases, the page size used by the kernel matches the MMU size. On
359 * architectures where it differs, an architecture-specific version of this
360 * function is required.
361 */
362#ifndef vma_mmu_pagesize
363unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
364{
365 return vma_kernel_pagesize(vma);
366}
367#endif
368
84afd99b
AW
369/*
370 * Flags for MAP_PRIVATE reservations. These are stored in the bottom
371 * bits of the reservation map pointer, which are always clear due to
372 * alignment.
373 */
374#define HPAGE_RESV_OWNER (1UL << 0)
375#define HPAGE_RESV_UNMAPPED (1UL << 1)
04f2cbe3 376#define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
84afd99b 377
a1e78772
MG
378/*
379 * These helpers are used to track how many pages are reserved for
380 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
381 * is guaranteed to have their future faults succeed.
382 *
383 * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
384 * the reserve counters are updated with the hugetlb_lock held. It is safe
385 * to reset the VMA at fork() time as it is not in use yet and there is no
386 * chance of the global counters getting corrupted as a result of the values.
84afd99b
AW
387 *
388 * The private mapping reservation is represented in a subtly different
389 * manner to a shared mapping. A shared mapping has a region map associated
390 * with the underlying file, this region map represents the backing file
391 * pages which have ever had a reservation assigned which this persists even
392 * after the page is instantiated. A private mapping has a region map
393 * associated with the original mmap which is attached to all VMAs which
394 * reference it, this region map represents those offsets which have consumed
395 * reservation ie. where pages have been instantiated.
a1e78772 396 */
e7c4b0bf
AW
397static unsigned long get_vma_private_data(struct vm_area_struct *vma)
398{
399 return (unsigned long)vma->vm_private_data;
400}
401
402static void set_vma_private_data(struct vm_area_struct *vma,
403 unsigned long value)
404{
405 vma->vm_private_data = (void *)value;
406}
407
9119a41e 408struct resv_map *resv_map_alloc(void)
84afd99b
AW
409{
410 struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
411 if (!resv_map)
412 return NULL;
413
414 kref_init(&resv_map->refs);
7b24d861 415 spin_lock_init(&resv_map->lock);
84afd99b
AW
416 INIT_LIST_HEAD(&resv_map->regions);
417
418 return resv_map;
419}
420
9119a41e 421void resv_map_release(struct kref *ref)
84afd99b
AW
422{
423 struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
424
425 /* Clear out any active regions before we release the map. */
1406ec9b 426 region_truncate(resv_map, 0);
84afd99b
AW
427 kfree(resv_map);
428}
429
4e35f483
JK
430static inline struct resv_map *inode_resv_map(struct inode *inode)
431{
432 return inode->i_mapping->private_data;
433}
434
84afd99b 435static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
a1e78772 436{
81d1b09c 437 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
4e35f483
JK
438 if (vma->vm_flags & VM_MAYSHARE) {
439 struct address_space *mapping = vma->vm_file->f_mapping;
440 struct inode *inode = mapping->host;
441
442 return inode_resv_map(inode);
443
444 } else {
84afd99b
AW
445 return (struct resv_map *)(get_vma_private_data(vma) &
446 ~HPAGE_RESV_MASK);
4e35f483 447 }
a1e78772
MG
448}
449
84afd99b 450static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
a1e78772 451{
81d1b09c
SL
452 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
453 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
a1e78772 454
84afd99b
AW
455 set_vma_private_data(vma, (get_vma_private_data(vma) &
456 HPAGE_RESV_MASK) | (unsigned long)map);
04f2cbe3
MG
457}
458
459static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
460{
81d1b09c
SL
461 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
462 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
e7c4b0bf
AW
463
464 set_vma_private_data(vma, get_vma_private_data(vma) | flags);
04f2cbe3
MG
465}
466
467static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
468{
81d1b09c 469 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
e7c4b0bf
AW
470
471 return (get_vma_private_data(vma) & flag) != 0;
a1e78772
MG
472}
473
04f2cbe3 474/* Reset counters to 0 and clear all HPAGE_RESV_* flags */
a1e78772
MG
475void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
476{
81d1b09c 477 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
f83a275d 478 if (!(vma->vm_flags & VM_MAYSHARE))
a1e78772
MG
479 vma->vm_private_data = (void *)0;
480}
481
482/* Returns true if the VMA has associated reserve pages */
af0ed73e 483static int vma_has_reserves(struct vm_area_struct *vma, long chg)
a1e78772 484{
af0ed73e
JK
485 if (vma->vm_flags & VM_NORESERVE) {
486 /*
487 * This address is already reserved by other process(chg == 0),
488 * so, we should decrement reserved count. Without decrementing,
489 * reserve count remains after releasing inode, because this
490 * allocated page will go into page cache and is regarded as
491 * coming from reserved pool in releasing step. Currently, we
492 * don't have any other solution to deal with this situation
493 * properly, so add work-around here.
494 */
495 if (vma->vm_flags & VM_MAYSHARE && chg == 0)
496 return 1;
497 else
498 return 0;
499 }
a63884e9
JK
500
501 /* Shared mappings always use reserves */
f83a275d 502 if (vma->vm_flags & VM_MAYSHARE)
7f09ca51 503 return 1;
a63884e9
JK
504
505 /*
506 * Only the process that called mmap() has reserves for
507 * private mappings.
508 */
7f09ca51
MG
509 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER))
510 return 1;
a63884e9 511
7f09ca51 512 return 0;
a1e78772
MG
513}
514
a5516438 515static void enqueue_huge_page(struct hstate *h, struct page *page)
1da177e4
LT
516{
517 int nid = page_to_nid(page);
0edaecfa 518 list_move(&page->lru, &h->hugepage_freelists[nid]);
a5516438
AK
519 h->free_huge_pages++;
520 h->free_huge_pages_node[nid]++;
1da177e4
LT
521}
522
bf50bab2
NH
523static struct page *dequeue_huge_page_node(struct hstate *h, int nid)
524{
525 struct page *page;
526
c8721bbb
NH
527 list_for_each_entry(page, &h->hugepage_freelists[nid], lru)
528 if (!is_migrate_isolate_page(page))
529 break;
530 /*
531 * if 'non-isolated free hugepage' not found on the list,
532 * the allocation fails.
533 */
534 if (&h->hugepage_freelists[nid] == &page->lru)
bf50bab2 535 return NULL;
0edaecfa 536 list_move(&page->lru, &h->hugepage_activelist);
a9869b83 537 set_page_refcounted(page);
bf50bab2
NH
538 h->free_huge_pages--;
539 h->free_huge_pages_node[nid]--;
540 return page;
541}
542
86cdb465
NH
543/* Movability of hugepages depends on migration support. */
544static inline gfp_t htlb_alloc_mask(struct hstate *h)
545{
100873d7 546 if (hugepages_treat_as_movable || hugepage_migration_supported(h))
86cdb465
NH
547 return GFP_HIGHUSER_MOVABLE;
548 else
549 return GFP_HIGHUSER;
550}
551
a5516438
AK
552static struct page *dequeue_huge_page_vma(struct hstate *h,
553 struct vm_area_struct *vma,
af0ed73e
JK
554 unsigned long address, int avoid_reserve,
555 long chg)
1da177e4 556{
b1c12cbc 557 struct page *page = NULL;
480eccf9 558 struct mempolicy *mpol;
19770b32 559 nodemask_t *nodemask;
c0ff7453 560 struct zonelist *zonelist;
dd1a239f
MG
561 struct zone *zone;
562 struct zoneref *z;
cc9a6c87 563 unsigned int cpuset_mems_cookie;
1da177e4 564
a1e78772
MG
565 /*
566 * A child process with MAP_PRIVATE mappings created by their parent
567 * have no page reserves. This check ensures that reservations are
568 * not "stolen". The child may still get SIGKILLed
569 */
af0ed73e 570 if (!vma_has_reserves(vma, chg) &&
a5516438 571 h->free_huge_pages - h->resv_huge_pages == 0)
c0ff7453 572 goto err;
a1e78772 573
04f2cbe3 574 /* If reserves cannot be used, ensure enough pages are in the pool */
a5516438 575 if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
6eab04a8 576 goto err;
04f2cbe3 577
9966c4bb 578retry_cpuset:
d26914d1 579 cpuset_mems_cookie = read_mems_allowed_begin();
9966c4bb 580 zonelist = huge_zonelist(vma, address,
86cdb465 581 htlb_alloc_mask(h), &mpol, &nodemask);
9966c4bb 582
19770b32
MG
583 for_each_zone_zonelist_nodemask(zone, z, zonelist,
584 MAX_NR_ZONES - 1, nodemask) {
344736f2 585 if (cpuset_zone_allowed(zone, htlb_alloc_mask(h))) {
bf50bab2
NH
586 page = dequeue_huge_page_node(h, zone_to_nid(zone));
587 if (page) {
af0ed73e
JK
588 if (avoid_reserve)
589 break;
590 if (!vma_has_reserves(vma, chg))
591 break;
592
07443a85 593 SetPagePrivate(page);
af0ed73e 594 h->resv_huge_pages--;
bf50bab2
NH
595 break;
596 }
3abf7afd 597 }
1da177e4 598 }
cc9a6c87 599
52cd3b07 600 mpol_cond_put(mpol);
d26914d1 601 if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie)))
cc9a6c87 602 goto retry_cpuset;
1da177e4 603 return page;
cc9a6c87
MG
604
605err:
cc9a6c87 606 return NULL;
1da177e4
LT
607}
608
1cac6f2c
LC
609/*
610 * common helper functions for hstate_next_node_to_{alloc|free}.
611 * We may have allocated or freed a huge page based on a different
612 * nodes_allowed previously, so h->next_node_to_{alloc|free} might
613 * be outside of *nodes_allowed. Ensure that we use an allowed
614 * node for alloc or free.
615 */
616static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
617{
618 nid = next_node(nid, *nodes_allowed);
619 if (nid == MAX_NUMNODES)
620 nid = first_node(*nodes_allowed);
621 VM_BUG_ON(nid >= MAX_NUMNODES);
622
623 return nid;
624}
625
626static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
627{
628 if (!node_isset(nid, *nodes_allowed))
629 nid = next_node_allowed(nid, nodes_allowed);
630 return nid;
631}
632
633/*
634 * returns the previously saved node ["this node"] from which to
635 * allocate a persistent huge page for the pool and advance the
636 * next node from which to allocate, handling wrap at end of node
637 * mask.
638 */
639static int hstate_next_node_to_alloc(struct hstate *h,
640 nodemask_t *nodes_allowed)
641{
642 int nid;
643
644 VM_BUG_ON(!nodes_allowed);
645
646 nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
647 h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
648
649 return nid;
650}
651
652/*
653 * helper for free_pool_huge_page() - return the previously saved
654 * node ["this node"] from which to free a huge page. Advance the
655 * next node id whether or not we find a free huge page to free so
656 * that the next attempt to free addresses the next node.
657 */
658static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
659{
660 int nid;
661
662 VM_BUG_ON(!nodes_allowed);
663
664 nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
665 h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
666
667 return nid;
668}
669
670#define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask) \
671 for (nr_nodes = nodes_weight(*mask); \
672 nr_nodes > 0 && \
673 ((node = hstate_next_node_to_alloc(hs, mask)) || 1); \
674 nr_nodes--)
675
676#define for_each_node_mask_to_free(hs, nr_nodes, node, mask) \
677 for (nr_nodes = nodes_weight(*mask); \
678 nr_nodes > 0 && \
679 ((node = hstate_next_node_to_free(hs, mask)) || 1); \
680 nr_nodes--)
681
944d9fec
LC
682#if defined(CONFIG_CMA) && defined(CONFIG_X86_64)
683static void destroy_compound_gigantic_page(struct page *page,
684 unsigned long order)
685{
686 int i;
687 int nr_pages = 1 << order;
688 struct page *p = page + 1;
689
690 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
691 __ClearPageTail(p);
692 set_page_refcounted(p);
693 p->first_page = NULL;
694 }
695
696 set_compound_order(page, 0);
697 __ClearPageHead(page);
698}
699
700static void free_gigantic_page(struct page *page, unsigned order)
701{
702 free_contig_range(page_to_pfn(page), 1 << order);
703}
704
705static int __alloc_gigantic_page(unsigned long start_pfn,
706 unsigned long nr_pages)
707{
708 unsigned long end_pfn = start_pfn + nr_pages;
709 return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE);
710}
711
712static bool pfn_range_valid_gigantic(unsigned long start_pfn,
713 unsigned long nr_pages)
714{
715 unsigned long i, end_pfn = start_pfn + nr_pages;
716 struct page *page;
717
718 for (i = start_pfn; i < end_pfn; i++) {
719 if (!pfn_valid(i))
720 return false;
721
722 page = pfn_to_page(i);
723
724 if (PageReserved(page))
725 return false;
726
727 if (page_count(page) > 0)
728 return false;
729
730 if (PageHuge(page))
731 return false;
732 }
733
734 return true;
735}
736
737static bool zone_spans_last_pfn(const struct zone *zone,
738 unsigned long start_pfn, unsigned long nr_pages)
739{
740 unsigned long last_pfn = start_pfn + nr_pages - 1;
741 return zone_spans_pfn(zone, last_pfn);
742}
743
744static struct page *alloc_gigantic_page(int nid, unsigned order)
745{
746 unsigned long nr_pages = 1 << order;
747 unsigned long ret, pfn, flags;
748 struct zone *z;
749
750 z = NODE_DATA(nid)->node_zones;
751 for (; z - NODE_DATA(nid)->node_zones < MAX_NR_ZONES; z++) {
752 spin_lock_irqsave(&z->lock, flags);
753
754 pfn = ALIGN(z->zone_start_pfn, nr_pages);
755 while (zone_spans_last_pfn(z, pfn, nr_pages)) {
756 if (pfn_range_valid_gigantic(pfn, nr_pages)) {
757 /*
758 * We release the zone lock here because
759 * alloc_contig_range() will also lock the zone
760 * at some point. If there's an allocation
761 * spinning on this lock, it may win the race
762 * and cause alloc_contig_range() to fail...
763 */
764 spin_unlock_irqrestore(&z->lock, flags);
765 ret = __alloc_gigantic_page(pfn, nr_pages);
766 if (!ret)
767 return pfn_to_page(pfn);
768 spin_lock_irqsave(&z->lock, flags);
769 }
770 pfn += nr_pages;
771 }
772
773 spin_unlock_irqrestore(&z->lock, flags);
774 }
775
776 return NULL;
777}
778
779static void prep_new_huge_page(struct hstate *h, struct page *page, int nid);
780static void prep_compound_gigantic_page(struct page *page, unsigned long order);
781
782static struct page *alloc_fresh_gigantic_page_node(struct hstate *h, int nid)
783{
784 struct page *page;
785
786 page = alloc_gigantic_page(nid, huge_page_order(h));
787 if (page) {
788 prep_compound_gigantic_page(page, huge_page_order(h));
789 prep_new_huge_page(h, page, nid);
790 }
791
792 return page;
793}
794
795static int alloc_fresh_gigantic_page(struct hstate *h,
796 nodemask_t *nodes_allowed)
797{
798 struct page *page = NULL;
799 int nr_nodes, node;
800
801 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
802 page = alloc_fresh_gigantic_page_node(h, node);
803 if (page)
804 return 1;
805 }
806
807 return 0;
808}
809
810static inline bool gigantic_page_supported(void) { return true; }
811#else
812static inline bool gigantic_page_supported(void) { return false; }
813static inline void free_gigantic_page(struct page *page, unsigned order) { }
814static inline void destroy_compound_gigantic_page(struct page *page,
815 unsigned long order) { }
816static inline int alloc_fresh_gigantic_page(struct hstate *h,
817 nodemask_t *nodes_allowed) { return 0; }
818#endif
819
a5516438 820static void update_and_free_page(struct hstate *h, struct page *page)
6af2acb6
AL
821{
822 int i;
a5516438 823
944d9fec
LC
824 if (hstate_is_gigantic(h) && !gigantic_page_supported())
825 return;
18229df5 826
a5516438
AK
827 h->nr_huge_pages--;
828 h->nr_huge_pages_node[page_to_nid(page)]--;
829 for (i = 0; i < pages_per_huge_page(h); i++) {
32f84528
CF
830 page[i].flags &= ~(1 << PG_locked | 1 << PG_error |
831 1 << PG_referenced | 1 << PG_dirty |
a7407a27
LC
832 1 << PG_active | 1 << PG_private |
833 1 << PG_writeback);
6af2acb6 834 }
309381fe 835 VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page);
6af2acb6
AL
836 set_compound_page_dtor(page, NULL);
837 set_page_refcounted(page);
944d9fec
LC
838 if (hstate_is_gigantic(h)) {
839 destroy_compound_gigantic_page(page, huge_page_order(h));
840 free_gigantic_page(page, huge_page_order(h));
841 } else {
842 arch_release_hugepage(page);
843 __free_pages(page, huge_page_order(h));
844 }
6af2acb6
AL
845}
846
e5ff2159
AK
847struct hstate *size_to_hstate(unsigned long size)
848{
849 struct hstate *h;
850
851 for_each_hstate(h) {
852 if (huge_page_size(h) == size)
853 return h;
854 }
855 return NULL;
856}
857
8f1d26d0 858void free_huge_page(struct page *page)
27a85ef1 859{
a5516438
AK
860 /*
861 * Can't pass hstate in here because it is called from the
862 * compound page destructor.
863 */
e5ff2159 864 struct hstate *h = page_hstate(page);
7893d1d5 865 int nid = page_to_nid(page);
90481622
DG
866 struct hugepage_subpool *spool =
867 (struct hugepage_subpool *)page_private(page);
07443a85 868 bool restore_reserve;
27a85ef1 869
e5df70ab 870 set_page_private(page, 0);
23be7468 871 page->mapping = NULL;
7893d1d5 872 BUG_ON(page_count(page));
0fe6e20b 873 BUG_ON(page_mapcount(page));
07443a85 874 restore_reserve = PagePrivate(page);
16c794b4 875 ClearPagePrivate(page);
27a85ef1
DG
876
877 spin_lock(&hugetlb_lock);
6d76dcf4
AK
878 hugetlb_cgroup_uncharge_page(hstate_index(h),
879 pages_per_huge_page(h), page);
07443a85
JK
880 if (restore_reserve)
881 h->resv_huge_pages++;
882
944d9fec 883 if (h->surplus_huge_pages_node[nid]) {
0edaecfa
AK
884 /* remove the page from active list */
885 list_del(&page->lru);
a5516438
AK
886 update_and_free_page(h, page);
887 h->surplus_huge_pages--;
888 h->surplus_huge_pages_node[nid]--;
7893d1d5 889 } else {
5d3a551c 890 arch_clear_hugepage_flags(page);
a5516438 891 enqueue_huge_page(h, page);
7893d1d5 892 }
27a85ef1 893 spin_unlock(&hugetlb_lock);
90481622 894 hugepage_subpool_put_pages(spool, 1);
27a85ef1
DG
895}
896
a5516438 897static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
b7ba30c6 898{
0edaecfa 899 INIT_LIST_HEAD(&page->lru);
b7ba30c6
AK
900 set_compound_page_dtor(page, free_huge_page);
901 spin_lock(&hugetlb_lock);
9dd540e2 902 set_hugetlb_cgroup(page, NULL);
a5516438
AK
903 h->nr_huge_pages++;
904 h->nr_huge_pages_node[nid]++;
b7ba30c6
AK
905 spin_unlock(&hugetlb_lock);
906 put_page(page); /* free it into the hugepage allocator */
907}
908
2906dd52 909static void prep_compound_gigantic_page(struct page *page, unsigned long order)
20a0307c
WF
910{
911 int i;
912 int nr_pages = 1 << order;
913 struct page *p = page + 1;
914
915 /* we rely on prep_new_huge_page to set the destructor */
916 set_compound_order(page, order);
917 __SetPageHead(page);
ef5a22be 918 __ClearPageReserved(page);
20a0307c
WF
919 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
920 __SetPageTail(p);
ef5a22be
AA
921 /*
922 * For gigantic hugepages allocated through bootmem at
923 * boot, it's safer to be consistent with the not-gigantic
924 * hugepages and clear the PG_reserved bit from all tail pages
925 * too. Otherwse drivers using get_user_pages() to access tail
926 * pages may get the reference counting wrong if they see
927 * PG_reserved set on a tail page (despite the head page not
928 * having PG_reserved set). Enforcing this consistency between
929 * head and tail pages allows drivers to optimize away a check
930 * on the head page when they need know if put_page() is needed
931 * after get_user_pages().
932 */
933 __ClearPageReserved(p);
58a84aa9 934 set_page_count(p, 0);
20a0307c
WF
935 p->first_page = page;
936 }
937}
938
7795912c
AM
939/*
940 * PageHuge() only returns true for hugetlbfs pages, but not for normal or
941 * transparent huge pages. See the PageTransHuge() documentation for more
942 * details.
943 */
20a0307c
WF
944int PageHuge(struct page *page)
945{
20a0307c
WF
946 if (!PageCompound(page))
947 return 0;
948
949 page = compound_head(page);
758f66a2 950 return get_compound_page_dtor(page) == free_huge_page;
20a0307c 951}
43131e14
NH
952EXPORT_SYMBOL_GPL(PageHuge);
953
27c73ae7
AA
954/*
955 * PageHeadHuge() only returns true for hugetlbfs head page, but not for
956 * normal or transparent huge pages.
957 */
958int PageHeadHuge(struct page *page_head)
959{
27c73ae7
AA
960 if (!PageHead(page_head))
961 return 0;
962
758f66a2 963 return get_compound_page_dtor(page_head) == free_huge_page;
27c73ae7 964}
27c73ae7 965
13d60f4b
ZY
966pgoff_t __basepage_index(struct page *page)
967{
968 struct page *page_head = compound_head(page);
969 pgoff_t index = page_index(page_head);
970 unsigned long compound_idx;
971
972 if (!PageHuge(page_head))
973 return page_index(page);
974
975 if (compound_order(page_head) >= MAX_ORDER)
976 compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
977 else
978 compound_idx = page - page_head;
979
980 return (index << compound_order(page_head)) + compound_idx;
981}
982
a5516438 983static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid)
1da177e4 984{
1da177e4 985 struct page *page;
f96efd58 986
6484eb3e 987 page = alloc_pages_exact_node(nid,
86cdb465 988 htlb_alloc_mask(h)|__GFP_COMP|__GFP_THISNODE|
551883ae 989 __GFP_REPEAT|__GFP_NOWARN,
a5516438 990 huge_page_order(h));
1da177e4 991 if (page) {
7f2e9525 992 if (arch_prepare_hugepage(page)) {
caff3a2c 993 __free_pages(page, huge_page_order(h));
7b8ee84d 994 return NULL;
7f2e9525 995 }
a5516438 996 prep_new_huge_page(h, page, nid);
1da177e4 997 }
63b4613c
NA
998
999 return page;
1000}
1001
b2261026
JK
1002static int alloc_fresh_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
1003{
1004 struct page *page;
1005 int nr_nodes, node;
1006 int ret = 0;
1007
1008 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1009 page = alloc_fresh_huge_page_node(h, node);
1010 if (page) {
1011 ret = 1;
1012 break;
1013 }
1014 }
1015
1016 if (ret)
1017 count_vm_event(HTLB_BUDDY_PGALLOC);
1018 else
1019 count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1020
1021 return ret;
1022}
1023
e8c5c824
LS
1024/*
1025 * Free huge page from pool from next node to free.
1026 * Attempt to keep persistent huge pages more or less
1027 * balanced over allowed nodes.
1028 * Called with hugetlb_lock locked.
1029 */
6ae11b27
LS
1030static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
1031 bool acct_surplus)
e8c5c824 1032{
b2261026 1033 int nr_nodes, node;
e8c5c824
LS
1034 int ret = 0;
1035
b2261026 1036 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
685f3457
LS
1037 /*
1038 * If we're returning unused surplus pages, only examine
1039 * nodes with surplus pages.
1040 */
b2261026
JK
1041 if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
1042 !list_empty(&h->hugepage_freelists[node])) {
e8c5c824 1043 struct page *page =
b2261026 1044 list_entry(h->hugepage_freelists[node].next,
e8c5c824
LS
1045 struct page, lru);
1046 list_del(&page->lru);
1047 h->free_huge_pages--;
b2261026 1048 h->free_huge_pages_node[node]--;
685f3457
LS
1049 if (acct_surplus) {
1050 h->surplus_huge_pages--;
b2261026 1051 h->surplus_huge_pages_node[node]--;
685f3457 1052 }
e8c5c824
LS
1053 update_and_free_page(h, page);
1054 ret = 1;
9a76db09 1055 break;
e8c5c824 1056 }
b2261026 1057 }
e8c5c824
LS
1058
1059 return ret;
1060}
1061
c8721bbb
NH
1062/*
1063 * Dissolve a given free hugepage into free buddy pages. This function does
1064 * nothing for in-use (including surplus) hugepages.
1065 */
1066static void dissolve_free_huge_page(struct page *page)
1067{
1068 spin_lock(&hugetlb_lock);
1069 if (PageHuge(page) && !page_count(page)) {
1070 struct hstate *h = page_hstate(page);
1071 int nid = page_to_nid(page);
1072 list_del(&page->lru);
1073 h->free_huge_pages--;
1074 h->free_huge_pages_node[nid]--;
1075 update_and_free_page(h, page);
1076 }
1077 spin_unlock(&hugetlb_lock);
1078}
1079
1080/*
1081 * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
1082 * make specified memory blocks removable from the system.
1083 * Note that start_pfn should aligned with (minimum) hugepage size.
1084 */
1085void dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
1086{
1087 unsigned int order = 8 * sizeof(void *);
1088 unsigned long pfn;
1089 struct hstate *h;
1090
d0177639
LZ
1091 if (!hugepages_supported())
1092 return;
1093
c8721bbb
NH
1094 /* Set scan step to minimum hugepage size */
1095 for_each_hstate(h)
1096 if (order > huge_page_order(h))
1097 order = huge_page_order(h);
1098 VM_BUG_ON(!IS_ALIGNED(start_pfn, 1 << order));
1099 for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << order)
1100 dissolve_free_huge_page(pfn_to_page(pfn));
1101}
1102
bf50bab2 1103static struct page *alloc_buddy_huge_page(struct hstate *h, int nid)
7893d1d5
AL
1104{
1105 struct page *page;
bf50bab2 1106 unsigned int r_nid;
7893d1d5 1107
bae7f4ae 1108 if (hstate_is_gigantic(h))
aa888a74
AK
1109 return NULL;
1110
d1c3fb1f
NA
1111 /*
1112 * Assume we will successfully allocate the surplus page to
1113 * prevent racing processes from causing the surplus to exceed
1114 * overcommit
1115 *
1116 * This however introduces a different race, where a process B
1117 * tries to grow the static hugepage pool while alloc_pages() is
1118 * called by process A. B will only examine the per-node
1119 * counters in determining if surplus huge pages can be
1120 * converted to normal huge pages in adjust_pool_surplus(). A
1121 * won't be able to increment the per-node counter, until the
1122 * lock is dropped by B, but B doesn't drop hugetlb_lock until
1123 * no more huge pages can be converted from surplus to normal
1124 * state (and doesn't try to convert again). Thus, we have a
1125 * case where a surplus huge page exists, the pool is grown, and
1126 * the surplus huge page still exists after, even though it
1127 * should just have been converted to a normal huge page. This
1128 * does not leak memory, though, as the hugepage will be freed
1129 * once it is out of use. It also does not allow the counters to
1130 * go out of whack in adjust_pool_surplus() as we don't modify
1131 * the node values until we've gotten the hugepage and only the
1132 * per-node value is checked there.
1133 */
1134 spin_lock(&hugetlb_lock);
a5516438 1135 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
d1c3fb1f
NA
1136 spin_unlock(&hugetlb_lock);
1137 return NULL;
1138 } else {
a5516438
AK
1139 h->nr_huge_pages++;
1140 h->surplus_huge_pages++;
d1c3fb1f
NA
1141 }
1142 spin_unlock(&hugetlb_lock);
1143
bf50bab2 1144 if (nid == NUMA_NO_NODE)
86cdb465 1145 page = alloc_pages(htlb_alloc_mask(h)|__GFP_COMP|
bf50bab2
NH
1146 __GFP_REPEAT|__GFP_NOWARN,
1147 huge_page_order(h));
1148 else
1149 page = alloc_pages_exact_node(nid,
86cdb465 1150 htlb_alloc_mask(h)|__GFP_COMP|__GFP_THISNODE|
bf50bab2 1151 __GFP_REPEAT|__GFP_NOWARN, huge_page_order(h));
d1c3fb1f 1152
caff3a2c
GS
1153 if (page && arch_prepare_hugepage(page)) {
1154 __free_pages(page, huge_page_order(h));
ea5768c7 1155 page = NULL;
caff3a2c
GS
1156 }
1157
d1c3fb1f 1158 spin_lock(&hugetlb_lock);
7893d1d5 1159 if (page) {
0edaecfa 1160 INIT_LIST_HEAD(&page->lru);
bf50bab2 1161 r_nid = page_to_nid(page);
7893d1d5 1162 set_compound_page_dtor(page, free_huge_page);
9dd540e2 1163 set_hugetlb_cgroup(page, NULL);
d1c3fb1f
NA
1164 /*
1165 * We incremented the global counters already
1166 */
bf50bab2
NH
1167 h->nr_huge_pages_node[r_nid]++;
1168 h->surplus_huge_pages_node[r_nid]++;
3b116300 1169 __count_vm_event(HTLB_BUDDY_PGALLOC);
d1c3fb1f 1170 } else {
a5516438
AK
1171 h->nr_huge_pages--;
1172 h->surplus_huge_pages--;
3b116300 1173 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
7893d1d5 1174 }
d1c3fb1f 1175 spin_unlock(&hugetlb_lock);
7893d1d5
AL
1176
1177 return page;
1178}
1179
bf50bab2
NH
1180/*
1181 * This allocation function is useful in the context where vma is irrelevant.
1182 * E.g. soft-offlining uses this function because it only cares physical
1183 * address of error page.
1184 */
1185struct page *alloc_huge_page_node(struct hstate *h, int nid)
1186{
4ef91848 1187 struct page *page = NULL;
bf50bab2
NH
1188
1189 spin_lock(&hugetlb_lock);
4ef91848
JK
1190 if (h->free_huge_pages - h->resv_huge_pages > 0)
1191 page = dequeue_huge_page_node(h, nid);
bf50bab2
NH
1192 spin_unlock(&hugetlb_lock);
1193
94ae8ba7 1194 if (!page)
bf50bab2
NH
1195 page = alloc_buddy_huge_page(h, nid);
1196
1197 return page;
1198}
1199
e4e574b7 1200/*
25985edc 1201 * Increase the hugetlb pool such that it can accommodate a reservation
e4e574b7
AL
1202 * of size 'delta'.
1203 */
a5516438 1204static int gather_surplus_pages(struct hstate *h, int delta)
e4e574b7
AL
1205{
1206 struct list_head surplus_list;
1207 struct page *page, *tmp;
1208 int ret, i;
1209 int needed, allocated;
28073b02 1210 bool alloc_ok = true;
e4e574b7 1211
a5516438 1212 needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
ac09b3a1 1213 if (needed <= 0) {
a5516438 1214 h->resv_huge_pages += delta;
e4e574b7 1215 return 0;
ac09b3a1 1216 }
e4e574b7
AL
1217
1218 allocated = 0;
1219 INIT_LIST_HEAD(&surplus_list);
1220
1221 ret = -ENOMEM;
1222retry:
1223 spin_unlock(&hugetlb_lock);
1224 for (i = 0; i < needed; i++) {
bf50bab2 1225 page = alloc_buddy_huge_page(h, NUMA_NO_NODE);
28073b02
HD
1226 if (!page) {
1227 alloc_ok = false;
1228 break;
1229 }
e4e574b7
AL
1230 list_add(&page->lru, &surplus_list);
1231 }
28073b02 1232 allocated += i;
e4e574b7
AL
1233
1234 /*
1235 * After retaking hugetlb_lock, we need to recalculate 'needed'
1236 * because either resv_huge_pages or free_huge_pages may have changed.
1237 */
1238 spin_lock(&hugetlb_lock);
a5516438
AK
1239 needed = (h->resv_huge_pages + delta) -
1240 (h->free_huge_pages + allocated);
28073b02
HD
1241 if (needed > 0) {
1242 if (alloc_ok)
1243 goto retry;
1244 /*
1245 * We were not able to allocate enough pages to
1246 * satisfy the entire reservation so we free what
1247 * we've allocated so far.
1248 */
1249 goto free;
1250 }
e4e574b7
AL
1251 /*
1252 * The surplus_list now contains _at_least_ the number of extra pages
25985edc 1253 * needed to accommodate the reservation. Add the appropriate number
e4e574b7 1254 * of pages to the hugetlb pool and free the extras back to the buddy
ac09b3a1
AL
1255 * allocator. Commit the entire reservation here to prevent another
1256 * process from stealing the pages as they are added to the pool but
1257 * before they are reserved.
e4e574b7
AL
1258 */
1259 needed += allocated;
a5516438 1260 h->resv_huge_pages += delta;
e4e574b7 1261 ret = 0;
a9869b83 1262
19fc3f0a 1263 /* Free the needed pages to the hugetlb pool */
e4e574b7 1264 list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
19fc3f0a
AL
1265 if ((--needed) < 0)
1266 break;
a9869b83
NH
1267 /*
1268 * This page is now managed by the hugetlb allocator and has
1269 * no users -- drop the buddy allocator's reference.
1270 */
1271 put_page_testzero(page);
309381fe 1272 VM_BUG_ON_PAGE(page_count(page), page);
a5516438 1273 enqueue_huge_page(h, page);
19fc3f0a 1274 }
28073b02 1275free:
b0365c8d 1276 spin_unlock(&hugetlb_lock);
19fc3f0a
AL
1277
1278 /* Free unnecessary surplus pages to the buddy allocator */
c0d934ba
JK
1279 list_for_each_entry_safe(page, tmp, &surplus_list, lru)
1280 put_page(page);
a9869b83 1281 spin_lock(&hugetlb_lock);
e4e574b7
AL
1282
1283 return ret;
1284}
1285
1286/*
1287 * When releasing a hugetlb pool reservation, any surplus pages that were
1288 * allocated to satisfy the reservation must be explicitly freed if they were
1289 * never used.
685f3457 1290 * Called with hugetlb_lock held.
e4e574b7 1291 */
a5516438
AK
1292static void return_unused_surplus_pages(struct hstate *h,
1293 unsigned long unused_resv_pages)
e4e574b7 1294{
e4e574b7
AL
1295 unsigned long nr_pages;
1296
ac09b3a1 1297 /* Uncommit the reservation */
a5516438 1298 h->resv_huge_pages -= unused_resv_pages;
ac09b3a1 1299
aa888a74 1300 /* Cannot return gigantic pages currently */
bae7f4ae 1301 if (hstate_is_gigantic(h))
aa888a74
AK
1302 return;
1303
a5516438 1304 nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
e4e574b7 1305
685f3457
LS
1306 /*
1307 * We want to release as many surplus pages as possible, spread
9b5e5d0f
LS
1308 * evenly across all nodes with memory. Iterate across these nodes
1309 * until we can no longer free unreserved surplus pages. This occurs
1310 * when the nodes with surplus pages have no free pages.
1311 * free_pool_huge_page() will balance the the freed pages across the
1312 * on-line nodes with memory and will handle the hstate accounting.
685f3457
LS
1313 */
1314 while (nr_pages--) {
8cebfcd0 1315 if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1))
685f3457 1316 break;
7848a4bf 1317 cond_resched_lock(&hugetlb_lock);
e4e574b7
AL
1318 }
1319}
1320
c37f9fb1
AW
1321/*
1322 * Determine if the huge page at addr within the vma has an associated
1323 * reservation. Where it does not we will need to logically increase
90481622
DG
1324 * reservation and actually increase subpool usage before an allocation
1325 * can occur. Where any new reservation would be required the
1326 * reservation change is prepared, but not committed. Once the page
1327 * has been allocated from the subpool and instantiated the change should
1328 * be committed via vma_commit_reservation. No action is required on
1329 * failure.
c37f9fb1 1330 */
e2f17d94 1331static long vma_needs_reservation(struct hstate *h,
a5516438 1332 struct vm_area_struct *vma, unsigned long addr)
c37f9fb1 1333{
4e35f483
JK
1334 struct resv_map *resv;
1335 pgoff_t idx;
1336 long chg;
c37f9fb1 1337
4e35f483
JK
1338 resv = vma_resv_map(vma);
1339 if (!resv)
84afd99b 1340 return 1;
c37f9fb1 1341
4e35f483
JK
1342 idx = vma_hugecache_offset(h, vma, addr);
1343 chg = region_chg(resv, idx, idx + 1);
84afd99b 1344
4e35f483
JK
1345 if (vma->vm_flags & VM_MAYSHARE)
1346 return chg;
1347 else
1348 return chg < 0 ? chg : 0;
c37f9fb1 1349}
a5516438
AK
1350static void vma_commit_reservation(struct hstate *h,
1351 struct vm_area_struct *vma, unsigned long addr)
c37f9fb1 1352{
4e35f483
JK
1353 struct resv_map *resv;
1354 pgoff_t idx;
84afd99b 1355
4e35f483
JK
1356 resv = vma_resv_map(vma);
1357 if (!resv)
1358 return;
84afd99b 1359
4e35f483
JK
1360 idx = vma_hugecache_offset(h, vma, addr);
1361 region_add(resv, idx, idx + 1);
c37f9fb1
AW
1362}
1363
a1e78772 1364static struct page *alloc_huge_page(struct vm_area_struct *vma,
04f2cbe3 1365 unsigned long addr, int avoid_reserve)
1da177e4 1366{
90481622 1367 struct hugepage_subpool *spool = subpool_vma(vma);
a5516438 1368 struct hstate *h = hstate_vma(vma);
348ea204 1369 struct page *page;
e2f17d94 1370 long chg;
6d76dcf4
AK
1371 int ret, idx;
1372 struct hugetlb_cgroup *h_cg;
a1e78772 1373
6d76dcf4 1374 idx = hstate_index(h);
a1e78772 1375 /*
90481622
DG
1376 * Processes that did not create the mapping will have no
1377 * reserves and will not have accounted against subpool
1378 * limit. Check that the subpool limit can be made before
1379 * satisfying the allocation MAP_NORESERVE mappings may also
1380 * need pages and subpool limit allocated allocated if no reserve
1381 * mapping overlaps.
a1e78772 1382 */
a5516438 1383 chg = vma_needs_reservation(h, vma, addr);
c37f9fb1 1384 if (chg < 0)
76dcee75 1385 return ERR_PTR(-ENOMEM);
8bb3f12e
JK
1386 if (chg || avoid_reserve)
1387 if (hugepage_subpool_get_pages(spool, 1))
76dcee75 1388 return ERR_PTR(-ENOSPC);
1da177e4 1389
6d76dcf4 1390 ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
8f34af6f
JZ
1391 if (ret)
1392 goto out_subpool_put;
1393
1da177e4 1394 spin_lock(&hugetlb_lock);
af0ed73e 1395 page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, chg);
81a6fcae 1396 if (!page) {
94ae8ba7 1397 spin_unlock(&hugetlb_lock);
bf50bab2 1398 page = alloc_buddy_huge_page(h, NUMA_NO_NODE);
8f34af6f
JZ
1399 if (!page)
1400 goto out_uncharge_cgroup;
1401
79dbb236
AK
1402 spin_lock(&hugetlb_lock);
1403 list_move(&page->lru, &h->hugepage_activelist);
81a6fcae 1404 /* Fall through */
68842c9b 1405 }
81a6fcae
JK
1406 hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
1407 spin_unlock(&hugetlb_lock);
348ea204 1408
90481622 1409 set_page_private(page, (unsigned long)spool);
90d8b7e6 1410
a5516438 1411 vma_commit_reservation(h, vma, addr);
90d8b7e6 1412 return page;
8f34af6f
JZ
1413
1414out_uncharge_cgroup:
1415 hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
1416out_subpool_put:
1417 if (chg || avoid_reserve)
1418 hugepage_subpool_put_pages(spool, 1);
1419 return ERR_PTR(-ENOSPC);
b45b5bd6
DG
1420}
1421
74060e4d
NH
1422/*
1423 * alloc_huge_page()'s wrapper which simply returns the page if allocation
1424 * succeeds, otherwise NULL. This function is called from new_vma_page(),
1425 * where no ERR_VALUE is expected to be returned.
1426 */
1427struct page *alloc_huge_page_noerr(struct vm_area_struct *vma,
1428 unsigned long addr, int avoid_reserve)
1429{
1430 struct page *page = alloc_huge_page(vma, addr, avoid_reserve);
1431 if (IS_ERR(page))
1432 page = NULL;
1433 return page;
1434}
1435
91f47662 1436int __weak alloc_bootmem_huge_page(struct hstate *h)
aa888a74
AK
1437{
1438 struct huge_bootmem_page *m;
b2261026 1439 int nr_nodes, node;
aa888a74 1440
b2261026 1441 for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
aa888a74
AK
1442 void *addr;
1443
8b89a116
GS
1444 addr = memblock_virt_alloc_try_nid_nopanic(
1445 huge_page_size(h), huge_page_size(h),
1446 0, BOOTMEM_ALLOC_ACCESSIBLE, node);
aa888a74
AK
1447 if (addr) {
1448 /*
1449 * Use the beginning of the huge page to store the
1450 * huge_bootmem_page struct (until gather_bootmem
1451 * puts them into the mem_map).
1452 */
1453 m = addr;
91f47662 1454 goto found;
aa888a74 1455 }
aa888a74
AK
1456 }
1457 return 0;
1458
1459found:
df994ead 1460 BUG_ON(!IS_ALIGNED(virt_to_phys(m), huge_page_size(h)));
aa888a74
AK
1461 /* Put them into a private list first because mem_map is not up yet */
1462 list_add(&m->list, &huge_boot_pages);
1463 m->hstate = h;
1464 return 1;
1465}
1466
f412c97a 1467static void __init prep_compound_huge_page(struct page *page, int order)
18229df5
AW
1468{
1469 if (unlikely(order > (MAX_ORDER - 1)))
1470 prep_compound_gigantic_page(page, order);
1471 else
1472 prep_compound_page(page, order);
1473}
1474
aa888a74
AK
1475/* Put bootmem huge pages into the standard lists after mem_map is up */
1476static void __init gather_bootmem_prealloc(void)
1477{
1478 struct huge_bootmem_page *m;
1479
1480 list_for_each_entry(m, &huge_boot_pages, list) {
aa888a74 1481 struct hstate *h = m->hstate;
ee8f248d
BB
1482 struct page *page;
1483
1484#ifdef CONFIG_HIGHMEM
1485 page = pfn_to_page(m->phys >> PAGE_SHIFT);
8b89a116
GS
1486 memblock_free_late(__pa(m),
1487 sizeof(struct huge_bootmem_page));
ee8f248d
BB
1488#else
1489 page = virt_to_page(m);
1490#endif
aa888a74 1491 WARN_ON(page_count(page) != 1);
18229df5 1492 prep_compound_huge_page(page, h->order);
ef5a22be 1493 WARN_ON(PageReserved(page));
aa888a74 1494 prep_new_huge_page(h, page, page_to_nid(page));
b0320c7b
RA
1495 /*
1496 * If we had gigantic hugepages allocated at boot time, we need
1497 * to restore the 'stolen' pages to totalram_pages in order to
1498 * fix confusing memory reports from free(1) and another
1499 * side-effects, like CommitLimit going negative.
1500 */
bae7f4ae 1501 if (hstate_is_gigantic(h))
3dcc0571 1502 adjust_managed_page_count(page, 1 << h->order);
aa888a74
AK
1503 }
1504}
1505
8faa8b07 1506static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
1da177e4
LT
1507{
1508 unsigned long i;
a5516438 1509
e5ff2159 1510 for (i = 0; i < h->max_huge_pages; ++i) {
bae7f4ae 1511 if (hstate_is_gigantic(h)) {
aa888a74
AK
1512 if (!alloc_bootmem_huge_page(h))
1513 break;
9b5e5d0f 1514 } else if (!alloc_fresh_huge_page(h,
8cebfcd0 1515 &node_states[N_MEMORY]))
1da177e4 1516 break;
1da177e4 1517 }
8faa8b07 1518 h->max_huge_pages = i;
e5ff2159
AK
1519}
1520
1521static void __init hugetlb_init_hstates(void)
1522{
1523 struct hstate *h;
1524
1525 for_each_hstate(h) {
8faa8b07 1526 /* oversize hugepages were init'ed in early boot */
bae7f4ae 1527 if (!hstate_is_gigantic(h))
8faa8b07 1528 hugetlb_hstate_alloc_pages(h);
e5ff2159
AK
1529 }
1530}
1531
4abd32db
AK
1532static char * __init memfmt(char *buf, unsigned long n)
1533{
1534 if (n >= (1UL << 30))
1535 sprintf(buf, "%lu GB", n >> 30);
1536 else if (n >= (1UL << 20))
1537 sprintf(buf, "%lu MB", n >> 20);
1538 else
1539 sprintf(buf, "%lu KB", n >> 10);
1540 return buf;
1541}
1542
e5ff2159
AK
1543static void __init report_hugepages(void)
1544{
1545 struct hstate *h;
1546
1547 for_each_hstate(h) {
4abd32db 1548 char buf[32];
ffb22af5 1549 pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
4abd32db
AK
1550 memfmt(buf, huge_page_size(h)),
1551 h->free_huge_pages);
e5ff2159
AK
1552 }
1553}
1554
1da177e4 1555#ifdef CONFIG_HIGHMEM
6ae11b27
LS
1556static void try_to_free_low(struct hstate *h, unsigned long count,
1557 nodemask_t *nodes_allowed)
1da177e4 1558{
4415cc8d
CL
1559 int i;
1560
bae7f4ae 1561 if (hstate_is_gigantic(h))
aa888a74
AK
1562 return;
1563
6ae11b27 1564 for_each_node_mask(i, *nodes_allowed) {
1da177e4 1565 struct page *page, *next;
a5516438
AK
1566 struct list_head *freel = &h->hugepage_freelists[i];
1567 list_for_each_entry_safe(page, next, freel, lru) {
1568 if (count >= h->nr_huge_pages)
6b0c880d 1569 return;
1da177e4
LT
1570 if (PageHighMem(page))
1571 continue;
1572 list_del(&page->lru);
e5ff2159 1573 update_and_free_page(h, page);
a5516438
AK
1574 h->free_huge_pages--;
1575 h->free_huge_pages_node[page_to_nid(page)]--;
1da177e4
LT
1576 }
1577 }
1578}
1579#else
6ae11b27
LS
1580static inline void try_to_free_low(struct hstate *h, unsigned long count,
1581 nodemask_t *nodes_allowed)
1da177e4
LT
1582{
1583}
1584#endif
1585
20a0307c
WF
1586/*
1587 * Increment or decrement surplus_huge_pages. Keep node-specific counters
1588 * balanced by operating on them in a round-robin fashion.
1589 * Returns 1 if an adjustment was made.
1590 */
6ae11b27
LS
1591static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
1592 int delta)
20a0307c 1593{
b2261026 1594 int nr_nodes, node;
20a0307c
WF
1595
1596 VM_BUG_ON(delta != -1 && delta != 1);
20a0307c 1597
b2261026
JK
1598 if (delta < 0) {
1599 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1600 if (h->surplus_huge_pages_node[node])
1601 goto found;
e8c5c824 1602 }
b2261026
JK
1603 } else {
1604 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
1605 if (h->surplus_huge_pages_node[node] <
1606 h->nr_huge_pages_node[node])
1607 goto found;
e8c5c824 1608 }
b2261026
JK
1609 }
1610 return 0;
20a0307c 1611
b2261026
JK
1612found:
1613 h->surplus_huge_pages += delta;
1614 h->surplus_huge_pages_node[node] += delta;
1615 return 1;
20a0307c
WF
1616}
1617
a5516438 1618#define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
6ae11b27
LS
1619static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count,
1620 nodemask_t *nodes_allowed)
1da177e4 1621{
7893d1d5 1622 unsigned long min_count, ret;
1da177e4 1623
944d9fec 1624 if (hstate_is_gigantic(h) && !gigantic_page_supported())
aa888a74
AK
1625 return h->max_huge_pages;
1626
7893d1d5
AL
1627 /*
1628 * Increase the pool size
1629 * First take pages out of surplus state. Then make up the
1630 * remaining difference by allocating fresh huge pages.
d1c3fb1f
NA
1631 *
1632 * We might race with alloc_buddy_huge_page() here and be unable
1633 * to convert a surplus huge page to a normal huge page. That is
1634 * not critical, though, it just means the overall size of the
1635 * pool might be one hugepage larger than it needs to be, but
1636 * within all the constraints specified by the sysctls.
7893d1d5 1637 */
1da177e4 1638 spin_lock(&hugetlb_lock);
a5516438 1639 while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
6ae11b27 1640 if (!adjust_pool_surplus(h, nodes_allowed, -1))
7893d1d5
AL
1641 break;
1642 }
1643
a5516438 1644 while (count > persistent_huge_pages(h)) {
7893d1d5
AL
1645 /*
1646 * If this allocation races such that we no longer need the
1647 * page, free_huge_page will handle it by freeing the page
1648 * and reducing the surplus.
1649 */
1650 spin_unlock(&hugetlb_lock);
944d9fec
LC
1651 if (hstate_is_gigantic(h))
1652 ret = alloc_fresh_gigantic_page(h, nodes_allowed);
1653 else
1654 ret = alloc_fresh_huge_page(h, nodes_allowed);
7893d1d5
AL
1655 spin_lock(&hugetlb_lock);
1656 if (!ret)
1657 goto out;
1658
536240f2
MG
1659 /* Bail for signals. Probably ctrl-c from user */
1660 if (signal_pending(current))
1661 goto out;
7893d1d5 1662 }
7893d1d5
AL
1663
1664 /*
1665 * Decrease the pool size
1666 * First return free pages to the buddy allocator (being careful
1667 * to keep enough around to satisfy reservations). Then place
1668 * pages into surplus state as needed so the pool will shrink
1669 * to the desired size as pages become free.
d1c3fb1f
NA
1670 *
1671 * By placing pages into the surplus state independent of the
1672 * overcommit value, we are allowing the surplus pool size to
1673 * exceed overcommit. There are few sane options here. Since
1674 * alloc_buddy_huge_page() is checking the global counter,
1675 * though, we'll note that we're not allowed to exceed surplus
1676 * and won't grow the pool anywhere else. Not until one of the
1677 * sysctls are changed, or the surplus pages go out of use.
7893d1d5 1678 */
a5516438 1679 min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
6b0c880d 1680 min_count = max(count, min_count);
6ae11b27 1681 try_to_free_low(h, min_count, nodes_allowed);
a5516438 1682 while (min_count < persistent_huge_pages(h)) {
6ae11b27 1683 if (!free_pool_huge_page(h, nodes_allowed, 0))
1da177e4 1684 break;
55f67141 1685 cond_resched_lock(&hugetlb_lock);
1da177e4 1686 }
a5516438 1687 while (count < persistent_huge_pages(h)) {
6ae11b27 1688 if (!adjust_pool_surplus(h, nodes_allowed, 1))
7893d1d5
AL
1689 break;
1690 }
1691out:
a5516438 1692 ret = persistent_huge_pages(h);
1da177e4 1693 spin_unlock(&hugetlb_lock);
7893d1d5 1694 return ret;
1da177e4
LT
1695}
1696
a3437870
NA
1697#define HSTATE_ATTR_RO(_name) \
1698 static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
1699
1700#define HSTATE_ATTR(_name) \
1701 static struct kobj_attribute _name##_attr = \
1702 __ATTR(_name, 0644, _name##_show, _name##_store)
1703
1704static struct kobject *hugepages_kobj;
1705static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
1706
9a305230
LS
1707static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
1708
1709static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
a3437870
NA
1710{
1711 int i;
9a305230 1712
a3437870 1713 for (i = 0; i < HUGE_MAX_HSTATE; i++)
9a305230
LS
1714 if (hstate_kobjs[i] == kobj) {
1715 if (nidp)
1716 *nidp = NUMA_NO_NODE;
a3437870 1717 return &hstates[i];
9a305230
LS
1718 }
1719
1720 return kobj_to_node_hstate(kobj, nidp);
a3437870
NA
1721}
1722
06808b08 1723static ssize_t nr_hugepages_show_common(struct kobject *kobj,
a3437870
NA
1724 struct kobj_attribute *attr, char *buf)
1725{
9a305230
LS
1726 struct hstate *h;
1727 unsigned long nr_huge_pages;
1728 int nid;
1729
1730 h = kobj_to_hstate(kobj, &nid);
1731 if (nid == NUMA_NO_NODE)
1732 nr_huge_pages = h->nr_huge_pages;
1733 else
1734 nr_huge_pages = h->nr_huge_pages_node[nid];
1735
1736 return sprintf(buf, "%lu\n", nr_huge_pages);
a3437870 1737}
adbe8726 1738
238d3c13
DR
1739static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
1740 struct hstate *h, int nid,
1741 unsigned long count, size_t len)
a3437870
NA
1742{
1743 int err;
bad44b5b 1744 NODEMASK_ALLOC(nodemask_t, nodes_allowed, GFP_KERNEL | __GFP_NORETRY);
a3437870 1745
944d9fec 1746 if (hstate_is_gigantic(h) && !gigantic_page_supported()) {
adbe8726
EM
1747 err = -EINVAL;
1748 goto out;
1749 }
1750
9a305230
LS
1751 if (nid == NUMA_NO_NODE) {
1752 /*
1753 * global hstate attribute
1754 */
1755 if (!(obey_mempolicy &&
1756 init_nodemask_of_mempolicy(nodes_allowed))) {
1757 NODEMASK_FREE(nodes_allowed);
8cebfcd0 1758 nodes_allowed = &node_states[N_MEMORY];
9a305230
LS
1759 }
1760 } else if (nodes_allowed) {
1761 /*
1762 * per node hstate attribute: adjust count to global,
1763 * but restrict alloc/free to the specified node.
1764 */
1765 count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
1766 init_nodemask_of_node(nodes_allowed, nid);
1767 } else
8cebfcd0 1768 nodes_allowed = &node_states[N_MEMORY];
9a305230 1769
06808b08 1770 h->max_huge_pages = set_max_huge_pages(h, count, nodes_allowed);
a3437870 1771
8cebfcd0 1772 if (nodes_allowed != &node_states[N_MEMORY])
06808b08
LS
1773 NODEMASK_FREE(nodes_allowed);
1774
1775 return len;
adbe8726
EM
1776out:
1777 NODEMASK_FREE(nodes_allowed);
1778 return err;
06808b08
LS
1779}
1780
238d3c13
DR
1781static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
1782 struct kobject *kobj, const char *buf,
1783 size_t len)
1784{
1785 struct hstate *h;
1786 unsigned long count;
1787 int nid;
1788 int err;
1789
1790 err = kstrtoul(buf, 10, &count);
1791 if (err)
1792 return err;
1793
1794 h = kobj_to_hstate(kobj, &nid);
1795 return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
1796}
1797
06808b08
LS
1798static ssize_t nr_hugepages_show(struct kobject *kobj,
1799 struct kobj_attribute *attr, char *buf)
1800{
1801 return nr_hugepages_show_common(kobj, attr, buf);
1802}
1803
1804static ssize_t nr_hugepages_store(struct kobject *kobj,
1805 struct kobj_attribute *attr, const char *buf, size_t len)
1806{
238d3c13 1807 return nr_hugepages_store_common(false, kobj, buf, len);
a3437870
NA
1808}
1809HSTATE_ATTR(nr_hugepages);
1810
06808b08
LS
1811#ifdef CONFIG_NUMA
1812
1813/*
1814 * hstate attribute for optionally mempolicy-based constraint on persistent
1815 * huge page alloc/free.
1816 */
1817static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
1818 struct kobj_attribute *attr, char *buf)
1819{
1820 return nr_hugepages_show_common(kobj, attr, buf);
1821}
1822
1823static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
1824 struct kobj_attribute *attr, const char *buf, size_t len)
1825{
238d3c13 1826 return nr_hugepages_store_common(true, kobj, buf, len);
06808b08
LS
1827}
1828HSTATE_ATTR(nr_hugepages_mempolicy);
1829#endif
1830
1831
a3437870
NA
1832static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
1833 struct kobj_attribute *attr, char *buf)
1834{
9a305230 1835 struct hstate *h = kobj_to_hstate(kobj, NULL);
a3437870
NA
1836 return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
1837}
adbe8726 1838
a3437870
NA
1839static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
1840 struct kobj_attribute *attr, const char *buf, size_t count)
1841{
1842 int err;
1843 unsigned long input;
9a305230 1844 struct hstate *h = kobj_to_hstate(kobj, NULL);
a3437870 1845
bae7f4ae 1846 if (hstate_is_gigantic(h))
adbe8726
EM
1847 return -EINVAL;
1848
3dbb95f7 1849 err = kstrtoul(buf, 10, &input);
a3437870 1850 if (err)
73ae31e5 1851 return err;
a3437870
NA
1852
1853 spin_lock(&hugetlb_lock);
1854 h->nr_overcommit_huge_pages = input;
1855 spin_unlock(&hugetlb_lock);
1856
1857 return count;
1858}
1859HSTATE_ATTR(nr_overcommit_hugepages);
1860
1861static ssize_t free_hugepages_show(struct kobject *kobj,
1862 struct kobj_attribute *attr, char *buf)
1863{
9a305230
LS
1864 struct hstate *h;
1865 unsigned long free_huge_pages;
1866 int nid;
1867
1868 h = kobj_to_hstate(kobj, &nid);
1869 if (nid == NUMA_NO_NODE)
1870 free_huge_pages = h->free_huge_pages;
1871 else
1872 free_huge_pages = h->free_huge_pages_node[nid];
1873
1874 return sprintf(buf, "%lu\n", free_huge_pages);
a3437870
NA
1875}
1876HSTATE_ATTR_RO(free_hugepages);
1877
1878static ssize_t resv_hugepages_show(struct kobject *kobj,
1879 struct kobj_attribute *attr, char *buf)
1880{
9a305230 1881 struct hstate *h = kobj_to_hstate(kobj, NULL);
a3437870
NA
1882 return sprintf(buf, "%lu\n", h->resv_huge_pages);
1883}
1884HSTATE_ATTR_RO(resv_hugepages);
1885
1886static ssize_t surplus_hugepages_show(struct kobject *kobj,
1887 struct kobj_attribute *attr, char *buf)
1888{
9a305230
LS
1889 struct hstate *h;
1890 unsigned long surplus_huge_pages;
1891 int nid;
1892
1893 h = kobj_to_hstate(kobj, &nid);
1894 if (nid == NUMA_NO_NODE)
1895 surplus_huge_pages = h->surplus_huge_pages;
1896 else
1897 surplus_huge_pages = h->surplus_huge_pages_node[nid];
1898
1899 return sprintf(buf, "%lu\n", surplus_huge_pages);
a3437870
NA
1900}
1901HSTATE_ATTR_RO(surplus_hugepages);
1902
1903static struct attribute *hstate_attrs[] = {
1904 &nr_hugepages_attr.attr,
1905 &nr_overcommit_hugepages_attr.attr,
1906 &free_hugepages_attr.attr,
1907 &resv_hugepages_attr.attr,
1908 &surplus_hugepages_attr.attr,
06808b08
LS
1909#ifdef CONFIG_NUMA
1910 &nr_hugepages_mempolicy_attr.attr,
1911#endif
a3437870
NA
1912 NULL,
1913};
1914
1915static struct attribute_group hstate_attr_group = {
1916 .attrs = hstate_attrs,
1917};
1918
094e9539
JM
1919static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
1920 struct kobject **hstate_kobjs,
1921 struct attribute_group *hstate_attr_group)
a3437870
NA
1922{
1923 int retval;
972dc4de 1924 int hi = hstate_index(h);
a3437870 1925
9a305230
LS
1926 hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
1927 if (!hstate_kobjs[hi])
a3437870
NA
1928 return -ENOMEM;
1929
9a305230 1930 retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
a3437870 1931 if (retval)
9a305230 1932 kobject_put(hstate_kobjs[hi]);
a3437870
NA
1933
1934 return retval;
1935}
1936
1937static void __init hugetlb_sysfs_init(void)
1938{
1939 struct hstate *h;
1940 int err;
1941
1942 hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
1943 if (!hugepages_kobj)
1944 return;
1945
1946 for_each_hstate(h) {
9a305230
LS
1947 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
1948 hstate_kobjs, &hstate_attr_group);
a3437870 1949 if (err)
ffb22af5 1950 pr_err("Hugetlb: Unable to add hstate %s", h->name);
a3437870
NA
1951 }
1952}
1953
9a305230
LS
1954#ifdef CONFIG_NUMA
1955
1956/*
1957 * node_hstate/s - associate per node hstate attributes, via their kobjects,
10fbcf4c
KS
1958 * with node devices in node_devices[] using a parallel array. The array
1959 * index of a node device or _hstate == node id.
1960 * This is here to avoid any static dependency of the node device driver, in
9a305230
LS
1961 * the base kernel, on the hugetlb module.
1962 */
1963struct node_hstate {
1964 struct kobject *hugepages_kobj;
1965 struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
1966};
1967struct node_hstate node_hstates[MAX_NUMNODES];
1968
1969/*
10fbcf4c 1970 * A subset of global hstate attributes for node devices
9a305230
LS
1971 */
1972static struct attribute *per_node_hstate_attrs[] = {
1973 &nr_hugepages_attr.attr,
1974 &free_hugepages_attr.attr,
1975 &surplus_hugepages_attr.attr,
1976 NULL,
1977};
1978
1979static struct attribute_group per_node_hstate_attr_group = {
1980 .attrs = per_node_hstate_attrs,
1981};
1982
1983/*
10fbcf4c 1984 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
9a305230
LS
1985 * Returns node id via non-NULL nidp.
1986 */
1987static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
1988{
1989 int nid;
1990
1991 for (nid = 0; nid < nr_node_ids; nid++) {
1992 struct node_hstate *nhs = &node_hstates[nid];
1993 int i;
1994 for (i = 0; i < HUGE_MAX_HSTATE; i++)
1995 if (nhs->hstate_kobjs[i] == kobj) {
1996 if (nidp)
1997 *nidp = nid;
1998 return &hstates[i];
1999 }
2000 }
2001
2002 BUG();
2003 return NULL;
2004}
2005
2006/*
10fbcf4c 2007 * Unregister hstate attributes from a single node device.
9a305230
LS
2008 * No-op if no hstate attributes attached.
2009 */
3cd8b44f 2010static void hugetlb_unregister_node(struct node *node)
9a305230
LS
2011{
2012 struct hstate *h;
10fbcf4c 2013 struct node_hstate *nhs = &node_hstates[node->dev.id];
9a305230
LS
2014
2015 if (!nhs->hugepages_kobj)
9b5e5d0f 2016 return; /* no hstate attributes */
9a305230 2017
972dc4de
AK
2018 for_each_hstate(h) {
2019 int idx = hstate_index(h);
2020 if (nhs->hstate_kobjs[idx]) {
2021 kobject_put(nhs->hstate_kobjs[idx]);
2022 nhs->hstate_kobjs[idx] = NULL;
9a305230 2023 }
972dc4de 2024 }
9a305230
LS
2025
2026 kobject_put(nhs->hugepages_kobj);
2027 nhs->hugepages_kobj = NULL;
2028}
2029
2030/*
10fbcf4c 2031 * hugetlb module exit: unregister hstate attributes from node devices
9a305230
LS
2032 * that have them.
2033 */
2034static void hugetlb_unregister_all_nodes(void)
2035{
2036 int nid;
2037
2038 /*
10fbcf4c 2039 * disable node device registrations.
9a305230
LS
2040 */
2041 register_hugetlbfs_with_node(NULL, NULL);
2042
2043 /*
2044 * remove hstate attributes from any nodes that have them.
2045 */
2046 for (nid = 0; nid < nr_node_ids; nid++)
8732794b 2047 hugetlb_unregister_node(node_devices[nid]);
9a305230
LS
2048}
2049
2050/*
10fbcf4c 2051 * Register hstate attributes for a single node device.
9a305230
LS
2052 * No-op if attributes already registered.
2053 */
3cd8b44f 2054static void hugetlb_register_node(struct node *node)
9a305230
LS
2055{
2056 struct hstate *h;
10fbcf4c 2057 struct node_hstate *nhs = &node_hstates[node->dev.id];
9a305230
LS
2058 int err;
2059
2060 if (nhs->hugepages_kobj)
2061 return; /* already allocated */
2062
2063 nhs->hugepages_kobj = kobject_create_and_add("hugepages",
10fbcf4c 2064 &node->dev.kobj);
9a305230
LS
2065 if (!nhs->hugepages_kobj)
2066 return;
2067
2068 for_each_hstate(h) {
2069 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
2070 nhs->hstate_kobjs,
2071 &per_node_hstate_attr_group);
2072 if (err) {
ffb22af5
AM
2073 pr_err("Hugetlb: Unable to add hstate %s for node %d\n",
2074 h->name, node->dev.id);
9a305230
LS
2075 hugetlb_unregister_node(node);
2076 break;
2077 }
2078 }
2079}
2080
2081/*
9b5e5d0f 2082 * hugetlb init time: register hstate attributes for all registered node
10fbcf4c
KS
2083 * devices of nodes that have memory. All on-line nodes should have
2084 * registered their associated device by this time.
9a305230 2085 */
7d9ca000 2086static void __init hugetlb_register_all_nodes(void)
9a305230
LS
2087{
2088 int nid;
2089
8cebfcd0 2090 for_each_node_state(nid, N_MEMORY) {
8732794b 2091 struct node *node = node_devices[nid];
10fbcf4c 2092 if (node->dev.id == nid)
9a305230
LS
2093 hugetlb_register_node(node);
2094 }
2095
2096 /*
10fbcf4c 2097 * Let the node device driver know we're here so it can
9a305230
LS
2098 * [un]register hstate attributes on node hotplug.
2099 */
2100 register_hugetlbfs_with_node(hugetlb_register_node,
2101 hugetlb_unregister_node);
2102}
2103#else /* !CONFIG_NUMA */
2104
2105static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
2106{
2107 BUG();
2108 if (nidp)
2109 *nidp = -1;
2110 return NULL;
2111}
2112
2113static void hugetlb_unregister_all_nodes(void) { }
2114
2115static void hugetlb_register_all_nodes(void) { }
2116
2117#endif
2118
a3437870
NA
2119static void __exit hugetlb_exit(void)
2120{
2121 struct hstate *h;
2122
9a305230
LS
2123 hugetlb_unregister_all_nodes();
2124
a3437870 2125 for_each_hstate(h) {
972dc4de 2126 kobject_put(hstate_kobjs[hstate_index(h)]);
a3437870
NA
2127 }
2128
2129 kobject_put(hugepages_kobj);
8382d914 2130 kfree(htlb_fault_mutex_table);
a3437870
NA
2131}
2132module_exit(hugetlb_exit);
2133
2134static int __init hugetlb_init(void)
2135{
8382d914
DB
2136 int i;
2137
457c1b27 2138 if (!hugepages_supported())
0ef89d25 2139 return 0;
a3437870 2140
e11bfbfc
NP
2141 if (!size_to_hstate(default_hstate_size)) {
2142 default_hstate_size = HPAGE_SIZE;
2143 if (!size_to_hstate(default_hstate_size))
2144 hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
a3437870 2145 }
972dc4de 2146 default_hstate_idx = hstate_index(size_to_hstate(default_hstate_size));
e11bfbfc
NP
2147 if (default_hstate_max_huge_pages)
2148 default_hstate.max_huge_pages = default_hstate_max_huge_pages;
a3437870
NA
2149
2150 hugetlb_init_hstates();
aa888a74 2151 gather_bootmem_prealloc();
a3437870
NA
2152 report_hugepages();
2153
2154 hugetlb_sysfs_init();
9a305230 2155 hugetlb_register_all_nodes();
7179e7bf 2156 hugetlb_cgroup_file_init();
9a305230 2157
8382d914
DB
2158#ifdef CONFIG_SMP
2159 num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
2160#else
2161 num_fault_mutexes = 1;
2162#endif
2163 htlb_fault_mutex_table =
2164 kmalloc(sizeof(struct mutex) * num_fault_mutexes, GFP_KERNEL);
2165 BUG_ON(!htlb_fault_mutex_table);
2166
2167 for (i = 0; i < num_fault_mutexes; i++)
2168 mutex_init(&htlb_fault_mutex_table[i]);
a3437870
NA
2169 return 0;
2170}
2171module_init(hugetlb_init);
2172
2173/* Should be called on processing a hugepagesz=... option */
2174void __init hugetlb_add_hstate(unsigned order)
2175{
2176 struct hstate *h;
8faa8b07
AK
2177 unsigned long i;
2178
a3437870 2179 if (size_to_hstate(PAGE_SIZE << order)) {
ffb22af5 2180 pr_warning("hugepagesz= specified twice, ignoring\n");
a3437870
NA
2181 return;
2182 }
47d38344 2183 BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
a3437870 2184 BUG_ON(order == 0);
47d38344 2185 h = &hstates[hugetlb_max_hstate++];
a3437870
NA
2186 h->order = order;
2187 h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
8faa8b07
AK
2188 h->nr_huge_pages = 0;
2189 h->free_huge_pages = 0;
2190 for (i = 0; i < MAX_NUMNODES; ++i)
2191 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
0edaecfa 2192 INIT_LIST_HEAD(&h->hugepage_activelist);
8cebfcd0
LJ
2193 h->next_nid_to_alloc = first_node(node_states[N_MEMORY]);
2194 h->next_nid_to_free = first_node(node_states[N_MEMORY]);
a3437870
NA
2195 snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
2196 huge_page_size(h)/1024);
8faa8b07 2197
a3437870
NA
2198 parsed_hstate = h;
2199}
2200
e11bfbfc 2201static int __init hugetlb_nrpages_setup(char *s)
a3437870
NA
2202{
2203 unsigned long *mhp;
8faa8b07 2204 static unsigned long *last_mhp;
a3437870
NA
2205
2206 /*
47d38344 2207 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter yet,
a3437870
NA
2208 * so this hugepages= parameter goes to the "default hstate".
2209 */
47d38344 2210 if (!hugetlb_max_hstate)
a3437870
NA
2211 mhp = &default_hstate_max_huge_pages;
2212 else
2213 mhp = &parsed_hstate->max_huge_pages;
2214
8faa8b07 2215 if (mhp == last_mhp) {
ffb22af5
AM
2216 pr_warning("hugepages= specified twice without "
2217 "interleaving hugepagesz=, ignoring\n");
8faa8b07
AK
2218 return 1;
2219 }
2220
a3437870
NA
2221 if (sscanf(s, "%lu", mhp) <= 0)
2222 *mhp = 0;
2223
8faa8b07
AK
2224 /*
2225 * Global state is always initialized later in hugetlb_init.
2226 * But we need to allocate >= MAX_ORDER hstates here early to still
2227 * use the bootmem allocator.
2228 */
47d38344 2229 if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER)
8faa8b07
AK
2230 hugetlb_hstate_alloc_pages(parsed_hstate);
2231
2232 last_mhp = mhp;
2233
a3437870
NA
2234 return 1;
2235}
e11bfbfc
NP
2236__setup("hugepages=", hugetlb_nrpages_setup);
2237
2238static int __init hugetlb_default_setup(char *s)
2239{
2240 default_hstate_size = memparse(s, &s);
2241 return 1;
2242}
2243__setup("default_hugepagesz=", hugetlb_default_setup);
a3437870 2244
8a213460
NA
2245static unsigned int cpuset_mems_nr(unsigned int *array)
2246{
2247 int node;
2248 unsigned int nr = 0;
2249
2250 for_each_node_mask(node, cpuset_current_mems_allowed)
2251 nr += array[node];
2252
2253 return nr;
2254}
2255
2256#ifdef CONFIG_SYSCTL
06808b08
LS
2257static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
2258 struct ctl_table *table, int write,
2259 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 2260{
e5ff2159 2261 struct hstate *h = &default_hstate;
238d3c13 2262 unsigned long tmp = h->max_huge_pages;
08d4a246 2263 int ret;
e5ff2159 2264
457c1b27
NA
2265 if (!hugepages_supported())
2266 return -ENOTSUPP;
2267
e5ff2159
AK
2268 table->data = &tmp;
2269 table->maxlen = sizeof(unsigned long);
08d4a246
MH
2270 ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2271 if (ret)
2272 goto out;
e5ff2159 2273
238d3c13
DR
2274 if (write)
2275 ret = __nr_hugepages_store_common(obey_mempolicy, h,
2276 NUMA_NO_NODE, tmp, *length);
08d4a246
MH
2277out:
2278 return ret;
1da177e4 2279}
396faf03 2280
06808b08
LS
2281int hugetlb_sysctl_handler(struct ctl_table *table, int write,
2282 void __user *buffer, size_t *length, loff_t *ppos)
2283{
2284
2285 return hugetlb_sysctl_handler_common(false, table, write,
2286 buffer, length, ppos);
2287}
2288
2289#ifdef CONFIG_NUMA
2290int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
2291 void __user *buffer, size_t *length, loff_t *ppos)
2292{
2293 return hugetlb_sysctl_handler_common(true, table, write,
2294 buffer, length, ppos);
2295}
2296#endif /* CONFIG_NUMA */
2297
a3d0c6aa 2298int hugetlb_overcommit_handler(struct ctl_table *table, int write,
8d65af78 2299 void __user *buffer,
a3d0c6aa
NA
2300 size_t *length, loff_t *ppos)
2301{
a5516438 2302 struct hstate *h = &default_hstate;
e5ff2159 2303 unsigned long tmp;
08d4a246 2304 int ret;
e5ff2159 2305
457c1b27
NA
2306 if (!hugepages_supported())
2307 return -ENOTSUPP;
2308
c033a93c 2309 tmp = h->nr_overcommit_huge_pages;
e5ff2159 2310
bae7f4ae 2311 if (write && hstate_is_gigantic(h))
adbe8726
EM
2312 return -EINVAL;
2313
e5ff2159
AK
2314 table->data = &tmp;
2315 table->maxlen = sizeof(unsigned long);
08d4a246
MH
2316 ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2317 if (ret)
2318 goto out;
e5ff2159
AK
2319
2320 if (write) {
2321 spin_lock(&hugetlb_lock);
2322 h->nr_overcommit_huge_pages = tmp;
2323 spin_unlock(&hugetlb_lock);
2324 }
08d4a246
MH
2325out:
2326 return ret;
a3d0c6aa
NA
2327}
2328
1da177e4
LT
2329#endif /* CONFIG_SYSCTL */
2330
e1759c21 2331void hugetlb_report_meminfo(struct seq_file *m)
1da177e4 2332{
a5516438 2333 struct hstate *h = &default_hstate;
457c1b27
NA
2334 if (!hugepages_supported())
2335 return;
e1759c21 2336 seq_printf(m,
4f98a2fe
RR
2337 "HugePages_Total: %5lu\n"
2338 "HugePages_Free: %5lu\n"
2339 "HugePages_Rsvd: %5lu\n"
2340 "HugePages_Surp: %5lu\n"
2341 "Hugepagesize: %8lu kB\n",
a5516438
AK
2342 h->nr_huge_pages,
2343 h->free_huge_pages,
2344 h->resv_huge_pages,
2345 h->surplus_huge_pages,
2346 1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
1da177e4
LT
2347}
2348
2349int hugetlb_report_node_meminfo(int nid, char *buf)
2350{
a5516438 2351 struct hstate *h = &default_hstate;
457c1b27
NA
2352 if (!hugepages_supported())
2353 return 0;
1da177e4
LT
2354 return sprintf(buf,
2355 "Node %d HugePages_Total: %5u\n"
a1de0919
NA
2356 "Node %d HugePages_Free: %5u\n"
2357 "Node %d HugePages_Surp: %5u\n",
a5516438
AK
2358 nid, h->nr_huge_pages_node[nid],
2359 nid, h->free_huge_pages_node[nid],
2360 nid, h->surplus_huge_pages_node[nid]);
1da177e4
LT
2361}
2362
949f7ec5
DR
2363void hugetlb_show_meminfo(void)
2364{
2365 struct hstate *h;
2366 int nid;
2367
457c1b27
NA
2368 if (!hugepages_supported())
2369 return;
2370
949f7ec5
DR
2371 for_each_node_state(nid, N_MEMORY)
2372 for_each_hstate(h)
2373 pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
2374 nid,
2375 h->nr_huge_pages_node[nid],
2376 h->free_huge_pages_node[nid],
2377 h->surplus_huge_pages_node[nid],
2378 1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
2379}
2380
1da177e4
LT
2381/* Return the number pages of memory we physically have, in PAGE_SIZE units. */
2382unsigned long hugetlb_total_pages(void)
2383{
d0028588
WL
2384 struct hstate *h;
2385 unsigned long nr_total_pages = 0;
2386
2387 for_each_hstate(h)
2388 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
2389 return nr_total_pages;
1da177e4 2390}
1da177e4 2391
a5516438 2392static int hugetlb_acct_memory(struct hstate *h, long delta)
fc1b8a73
MG
2393{
2394 int ret = -ENOMEM;
2395
2396 spin_lock(&hugetlb_lock);
2397 /*
2398 * When cpuset is configured, it breaks the strict hugetlb page
2399 * reservation as the accounting is done on a global variable. Such
2400 * reservation is completely rubbish in the presence of cpuset because
2401 * the reservation is not checked against page availability for the
2402 * current cpuset. Application can still potentially OOM'ed by kernel
2403 * with lack of free htlb page in cpuset that the task is in.
2404 * Attempt to enforce strict accounting with cpuset is almost
2405 * impossible (or too ugly) because cpuset is too fluid that
2406 * task or memory node can be dynamically moved between cpusets.
2407 *
2408 * The change of semantics for shared hugetlb mapping with cpuset is
2409 * undesirable. However, in order to preserve some of the semantics,
2410 * we fall back to check against current free page availability as
2411 * a best attempt and hopefully to minimize the impact of changing
2412 * semantics that cpuset has.
2413 */
2414 if (delta > 0) {
a5516438 2415 if (gather_surplus_pages(h, delta) < 0)
fc1b8a73
MG
2416 goto out;
2417
a5516438
AK
2418 if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
2419 return_unused_surplus_pages(h, delta);
fc1b8a73
MG
2420 goto out;
2421 }
2422 }
2423
2424 ret = 0;
2425 if (delta < 0)
a5516438 2426 return_unused_surplus_pages(h, (unsigned long) -delta);
fc1b8a73
MG
2427
2428out:
2429 spin_unlock(&hugetlb_lock);
2430 return ret;
2431}
2432
84afd99b
AW
2433static void hugetlb_vm_op_open(struct vm_area_struct *vma)
2434{
f522c3ac 2435 struct resv_map *resv = vma_resv_map(vma);
84afd99b
AW
2436
2437 /*
2438 * This new VMA should share its siblings reservation map if present.
2439 * The VMA will only ever have a valid reservation map pointer where
2440 * it is being copied for another still existing VMA. As that VMA
25985edc 2441 * has a reference to the reservation map it cannot disappear until
84afd99b
AW
2442 * after this open call completes. It is therefore safe to take a
2443 * new reference here without additional locking.
2444 */
4e35f483 2445 if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
f522c3ac 2446 kref_get(&resv->refs);
84afd99b
AW
2447}
2448
a1e78772
MG
2449static void hugetlb_vm_op_close(struct vm_area_struct *vma)
2450{
a5516438 2451 struct hstate *h = hstate_vma(vma);
f522c3ac 2452 struct resv_map *resv = vma_resv_map(vma);
90481622 2453 struct hugepage_subpool *spool = subpool_vma(vma);
4e35f483 2454 unsigned long reserve, start, end;
84afd99b 2455
4e35f483
JK
2456 if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
2457 return;
84afd99b 2458
4e35f483
JK
2459 start = vma_hugecache_offset(h, vma, vma->vm_start);
2460 end = vma_hugecache_offset(h, vma, vma->vm_end);
84afd99b 2461
4e35f483 2462 reserve = (end - start) - region_count(resv, start, end);
84afd99b 2463
4e35f483
JK
2464 kref_put(&resv->refs, resv_map_release);
2465
2466 if (reserve) {
2467 hugetlb_acct_memory(h, -reserve);
2468 hugepage_subpool_put_pages(spool, reserve);
84afd99b 2469 }
a1e78772
MG
2470}
2471
1da177e4
LT
2472/*
2473 * We cannot handle pagefaults against hugetlb pages at all. They cause
2474 * handle_mm_fault() to try to instantiate regular-sized pages in the
2475 * hugegpage VMA. do_page_fault() is supposed to trap this, so BUG is we get
2476 * this far.
2477 */
d0217ac0 2478static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1da177e4
LT
2479{
2480 BUG();
d0217ac0 2481 return 0;
1da177e4
LT
2482}
2483
f0f37e2f 2484const struct vm_operations_struct hugetlb_vm_ops = {
d0217ac0 2485 .fault = hugetlb_vm_op_fault,
84afd99b 2486 .open = hugetlb_vm_op_open,
a1e78772 2487 .close = hugetlb_vm_op_close,
1da177e4
LT
2488};
2489
1e8f889b
DG
2490static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
2491 int writable)
63551ae0
DG
2492{
2493 pte_t entry;
2494
1e8f889b 2495 if (writable) {
106c992a
GS
2496 entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
2497 vma->vm_page_prot)));
63551ae0 2498 } else {
106c992a
GS
2499 entry = huge_pte_wrprotect(mk_huge_pte(page,
2500 vma->vm_page_prot));
63551ae0
DG
2501 }
2502 entry = pte_mkyoung(entry);
2503 entry = pte_mkhuge(entry);
d9ed9faa 2504 entry = arch_make_huge_pte(entry, vma, page, writable);
63551ae0
DG
2505
2506 return entry;
2507}
2508
1e8f889b
DG
2509static void set_huge_ptep_writable(struct vm_area_struct *vma,
2510 unsigned long address, pte_t *ptep)
2511{
2512 pte_t entry;
2513
106c992a 2514 entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
32f84528 2515 if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
4b3073e1 2516 update_mmu_cache(vma, address, ptep);
1e8f889b
DG
2517}
2518
4a705fef
NH
2519static int is_hugetlb_entry_migration(pte_t pte)
2520{
2521 swp_entry_t swp;
2522
2523 if (huge_pte_none(pte) || pte_present(pte))
2524 return 0;
2525 swp = pte_to_swp_entry(pte);
2526 if (non_swap_entry(swp) && is_migration_entry(swp))
2527 return 1;
2528 else
2529 return 0;
2530}
2531
2532static int is_hugetlb_entry_hwpoisoned(pte_t pte)
2533{
2534 swp_entry_t swp;
2535
2536 if (huge_pte_none(pte) || pte_present(pte))
2537 return 0;
2538 swp = pte_to_swp_entry(pte);
2539 if (non_swap_entry(swp) && is_hwpoison_entry(swp))
2540 return 1;
2541 else
2542 return 0;
2543}
1e8f889b 2544
63551ae0
DG
2545int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
2546 struct vm_area_struct *vma)
2547{
2548 pte_t *src_pte, *dst_pte, entry;
2549 struct page *ptepage;
1c59827d 2550 unsigned long addr;
1e8f889b 2551 int cow;
a5516438
AK
2552 struct hstate *h = hstate_vma(vma);
2553 unsigned long sz = huge_page_size(h);
e8569dd2
AS
2554 unsigned long mmun_start; /* For mmu_notifiers */
2555 unsigned long mmun_end; /* For mmu_notifiers */
2556 int ret = 0;
1e8f889b
DG
2557
2558 cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
63551ae0 2559
e8569dd2
AS
2560 mmun_start = vma->vm_start;
2561 mmun_end = vma->vm_end;
2562 if (cow)
2563 mmu_notifier_invalidate_range_start(src, mmun_start, mmun_end);
2564
a5516438 2565 for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
cb900f41 2566 spinlock_t *src_ptl, *dst_ptl;
c74df32c
HD
2567 src_pte = huge_pte_offset(src, addr);
2568 if (!src_pte)
2569 continue;
a5516438 2570 dst_pte = huge_pte_alloc(dst, addr, sz);
e8569dd2
AS
2571 if (!dst_pte) {
2572 ret = -ENOMEM;
2573 break;
2574 }
c5c99429
LW
2575
2576 /* If the pagetables are shared don't copy or take references */
2577 if (dst_pte == src_pte)
2578 continue;
2579
cb900f41
KS
2580 dst_ptl = huge_pte_lock(h, dst, dst_pte);
2581 src_ptl = huge_pte_lockptr(h, src, src_pte);
2582 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
4a705fef
NH
2583 entry = huge_ptep_get(src_pte);
2584 if (huge_pte_none(entry)) { /* skip none entry */
2585 ;
2586 } else if (unlikely(is_hugetlb_entry_migration(entry) ||
2587 is_hugetlb_entry_hwpoisoned(entry))) {
2588 swp_entry_t swp_entry = pte_to_swp_entry(entry);
2589
2590 if (is_write_migration_entry(swp_entry) && cow) {
2591 /*
2592 * COW mappings require pages in both
2593 * parent and child to be set to read.
2594 */
2595 make_migration_entry_read(&swp_entry);
2596 entry = swp_entry_to_pte(swp_entry);
2597 set_huge_pte_at(src, addr, src_pte, entry);
2598 }
2599 set_huge_pte_at(dst, addr, dst_pte, entry);
2600 } else {
34ee645e 2601 if (cow) {
7f2e9525 2602 huge_ptep_set_wrprotect(src, addr, src_pte);
34ee645e
JR
2603 mmu_notifier_invalidate_range(src, mmun_start,
2604 mmun_end);
2605 }
0253d634 2606 entry = huge_ptep_get(src_pte);
1c59827d
HD
2607 ptepage = pte_page(entry);
2608 get_page(ptepage);
0fe6e20b 2609 page_dup_rmap(ptepage);
1c59827d
HD
2610 set_huge_pte_at(dst, addr, dst_pte, entry);
2611 }
cb900f41
KS
2612 spin_unlock(src_ptl);
2613 spin_unlock(dst_ptl);
63551ae0 2614 }
63551ae0 2615
e8569dd2
AS
2616 if (cow)
2617 mmu_notifier_invalidate_range_end(src, mmun_start, mmun_end);
2618
2619 return ret;
63551ae0
DG
2620}
2621
24669e58
AK
2622void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
2623 unsigned long start, unsigned long end,
2624 struct page *ref_page)
63551ae0 2625{
24669e58 2626 int force_flush = 0;
63551ae0
DG
2627 struct mm_struct *mm = vma->vm_mm;
2628 unsigned long address;
c7546f8f 2629 pte_t *ptep;
63551ae0 2630 pte_t pte;
cb900f41 2631 spinlock_t *ptl;
63551ae0 2632 struct page *page;
a5516438
AK
2633 struct hstate *h = hstate_vma(vma);
2634 unsigned long sz = huge_page_size(h);
2ec74c3e
SG
2635 const unsigned long mmun_start = start; /* For mmu_notifiers */
2636 const unsigned long mmun_end = end; /* For mmu_notifiers */
a5516438 2637
63551ae0 2638 WARN_ON(!is_vm_hugetlb_page(vma));
a5516438
AK
2639 BUG_ON(start & ~huge_page_mask(h));
2640 BUG_ON(end & ~huge_page_mask(h));
63551ae0 2641
24669e58 2642 tlb_start_vma(tlb, vma);
2ec74c3e 2643 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
569f48b8 2644 address = start;
24669e58 2645again:
569f48b8 2646 for (; address < end; address += sz) {
c7546f8f 2647 ptep = huge_pte_offset(mm, address);
4c887265 2648 if (!ptep)
c7546f8f
DG
2649 continue;
2650
cb900f41 2651 ptl = huge_pte_lock(h, mm, ptep);
39dde65c 2652 if (huge_pmd_unshare(mm, &address, ptep))
cb900f41 2653 goto unlock;
39dde65c 2654
6629326b
HD
2655 pte = huge_ptep_get(ptep);
2656 if (huge_pte_none(pte))
cb900f41 2657 goto unlock;
6629326b
HD
2658
2659 /*
2660 * HWPoisoned hugepage is already unmapped and dropped reference
2661 */
8c4894c6 2662 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
106c992a 2663 huge_pte_clear(mm, address, ptep);
cb900f41 2664 goto unlock;
8c4894c6 2665 }
6629326b
HD
2666
2667 page = pte_page(pte);
04f2cbe3
MG
2668 /*
2669 * If a reference page is supplied, it is because a specific
2670 * page is being unmapped, not a range. Ensure the page we
2671 * are about to unmap is the actual page of interest.
2672 */
2673 if (ref_page) {
04f2cbe3 2674 if (page != ref_page)
cb900f41 2675 goto unlock;
04f2cbe3
MG
2676
2677 /*
2678 * Mark the VMA as having unmapped its page so that
2679 * future faults in this VMA will fail rather than
2680 * looking like data was lost
2681 */
2682 set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
2683 }
2684
c7546f8f 2685 pte = huge_ptep_get_and_clear(mm, address, ptep);
24669e58 2686 tlb_remove_tlb_entry(tlb, ptep, address);
106c992a 2687 if (huge_pte_dirty(pte))
6649a386 2688 set_page_dirty(page);
9e81130b 2689
24669e58
AK
2690 page_remove_rmap(page);
2691 force_flush = !__tlb_remove_page(tlb, page);
cb900f41 2692 if (force_flush) {
569f48b8 2693 address += sz;
cb900f41 2694 spin_unlock(ptl);
24669e58 2695 break;
cb900f41 2696 }
9e81130b 2697 /* Bail out after unmapping reference page if supplied */
cb900f41
KS
2698 if (ref_page) {
2699 spin_unlock(ptl);
9e81130b 2700 break;
cb900f41
KS
2701 }
2702unlock:
2703 spin_unlock(ptl);
63551ae0 2704 }
24669e58
AK
2705 /*
2706 * mmu_gather ran out of room to batch pages, we break out of
2707 * the PTE lock to avoid doing the potential expensive TLB invalidate
2708 * and page-free while holding it.
2709 */
2710 if (force_flush) {
2711 force_flush = 0;
2712 tlb_flush_mmu(tlb);
2713 if (address < end && !ref_page)
2714 goto again;
fe1668ae 2715 }
2ec74c3e 2716 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
24669e58 2717 tlb_end_vma(tlb, vma);
1da177e4 2718}
63551ae0 2719
d833352a
MG
2720void __unmap_hugepage_range_final(struct mmu_gather *tlb,
2721 struct vm_area_struct *vma, unsigned long start,
2722 unsigned long end, struct page *ref_page)
2723{
2724 __unmap_hugepage_range(tlb, vma, start, end, ref_page);
2725
2726 /*
2727 * Clear this flag so that x86's huge_pmd_share page_table_shareable
2728 * test will fail on a vma being torn down, and not grab a page table
2729 * on its way out. We're lucky that the flag has such an appropriate
2730 * name, and can in fact be safely cleared here. We could clear it
2731 * before the __unmap_hugepage_range above, but all that's necessary
c8c06efa 2732 * is to clear it before releasing the i_mmap_rwsem. This works
d833352a 2733 * because in the context this is called, the VMA is about to be
c8c06efa 2734 * destroyed and the i_mmap_rwsem is held.
d833352a
MG
2735 */
2736 vma->vm_flags &= ~VM_MAYSHARE;
2737}
2738
502717f4 2739void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
04f2cbe3 2740 unsigned long end, struct page *ref_page)
502717f4 2741{
24669e58
AK
2742 struct mm_struct *mm;
2743 struct mmu_gather tlb;
2744
2745 mm = vma->vm_mm;
2746
2b047252 2747 tlb_gather_mmu(&tlb, mm, start, end);
24669e58
AK
2748 __unmap_hugepage_range(&tlb, vma, start, end, ref_page);
2749 tlb_finish_mmu(&tlb, start, end);
502717f4
CK
2750}
2751
04f2cbe3
MG
2752/*
2753 * This is called when the original mapper is failing to COW a MAP_PRIVATE
2754 * mappping it owns the reserve page for. The intention is to unmap the page
2755 * from other VMAs and let the children be SIGKILLed if they are faulting the
2756 * same region.
2757 */
2f4612af
DB
2758static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
2759 struct page *page, unsigned long address)
04f2cbe3 2760{
7526674d 2761 struct hstate *h = hstate_vma(vma);
04f2cbe3
MG
2762 struct vm_area_struct *iter_vma;
2763 struct address_space *mapping;
04f2cbe3
MG
2764 pgoff_t pgoff;
2765
2766 /*
2767 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
2768 * from page cache lookup which is in HPAGE_SIZE units.
2769 */
7526674d 2770 address = address & huge_page_mask(h);
36e4f20a
MH
2771 pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
2772 vma->vm_pgoff;
496ad9aa 2773 mapping = file_inode(vma->vm_file)->i_mapping;
04f2cbe3 2774
4eb2b1dc
MG
2775 /*
2776 * Take the mapping lock for the duration of the table walk. As
2777 * this mapping should be shared between all the VMAs,
2778 * __unmap_hugepage_range() is called as the lock is already held
2779 */
83cde9e8 2780 i_mmap_lock_write(mapping);
6b2dbba8 2781 vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
04f2cbe3
MG
2782 /* Do not unmap the current VMA */
2783 if (iter_vma == vma)
2784 continue;
2785
2786 /*
2787 * Unmap the page from other VMAs without their own reserves.
2788 * They get marked to be SIGKILLed if they fault in these
2789 * areas. This is because a future no-page fault on this VMA
2790 * could insert a zeroed page instead of the data existing
2791 * from the time of fork. This would look like data corruption
2792 */
2793 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
24669e58
AK
2794 unmap_hugepage_range(iter_vma, address,
2795 address + huge_page_size(h), page);
04f2cbe3 2796 }
83cde9e8 2797 i_mmap_unlock_write(mapping);
04f2cbe3
MG
2798}
2799
0fe6e20b
NH
2800/*
2801 * Hugetlb_cow() should be called with page lock of the original hugepage held.
ef009b25
MH
2802 * Called with hugetlb_instantiation_mutex held and pte_page locked so we
2803 * cannot race with other handlers or page migration.
2804 * Keep the pte_same checks anyway to make transition from the mutex easier.
0fe6e20b 2805 */
1e8f889b 2806static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
04f2cbe3 2807 unsigned long address, pte_t *ptep, pte_t pte,
cb900f41 2808 struct page *pagecache_page, spinlock_t *ptl)
1e8f889b 2809{
a5516438 2810 struct hstate *h = hstate_vma(vma);
1e8f889b 2811 struct page *old_page, *new_page;
ad4404a2 2812 int ret = 0, outside_reserve = 0;
2ec74c3e
SG
2813 unsigned long mmun_start; /* For mmu_notifiers */
2814 unsigned long mmun_end; /* For mmu_notifiers */
1e8f889b
DG
2815
2816 old_page = pte_page(pte);
2817
04f2cbe3 2818retry_avoidcopy:
1e8f889b
DG
2819 /* If no-one else is actually using this page, avoid the copy
2820 * and just make the page writable */
37a2140d
JK
2821 if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
2822 page_move_anon_rmap(old_page, vma, address);
1e8f889b 2823 set_huge_ptep_writable(vma, address, ptep);
83c54070 2824 return 0;
1e8f889b
DG
2825 }
2826
04f2cbe3
MG
2827 /*
2828 * If the process that created a MAP_PRIVATE mapping is about to
2829 * perform a COW due to a shared page count, attempt to satisfy
2830 * the allocation without using the existing reserves. The pagecache
2831 * page is used to determine if the reserve at this address was
2832 * consumed or not. If reserves were used, a partial faulted mapping
2833 * at the time of fork() could consume its reserves on COW instead
2834 * of the full address range.
2835 */
5944d011 2836 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
04f2cbe3
MG
2837 old_page != pagecache_page)
2838 outside_reserve = 1;
2839
1e8f889b 2840 page_cache_get(old_page);
b76c8cfb 2841
ad4404a2
DB
2842 /*
2843 * Drop page table lock as buddy allocator may be called. It will
2844 * be acquired again before returning to the caller, as expected.
2845 */
cb900f41 2846 spin_unlock(ptl);
04f2cbe3 2847 new_page = alloc_huge_page(vma, address, outside_reserve);
1e8f889b 2848
2fc39cec 2849 if (IS_ERR(new_page)) {
04f2cbe3
MG
2850 /*
2851 * If a process owning a MAP_PRIVATE mapping fails to COW,
2852 * it is due to references held by a child and an insufficient
2853 * huge page pool. To guarantee the original mappers
2854 * reliability, unmap the page from child processes. The child
2855 * may get SIGKILLed if it later faults.
2856 */
2857 if (outside_reserve) {
ad4404a2 2858 page_cache_release(old_page);
04f2cbe3 2859 BUG_ON(huge_pte_none(pte));
2f4612af
DB
2860 unmap_ref_private(mm, vma, old_page, address);
2861 BUG_ON(huge_pte_none(pte));
2862 spin_lock(ptl);
2863 ptep = huge_pte_offset(mm, address & huge_page_mask(h));
2864 if (likely(ptep &&
2865 pte_same(huge_ptep_get(ptep), pte)))
2866 goto retry_avoidcopy;
2867 /*
2868 * race occurs while re-acquiring page table
2869 * lock, and our job is done.
2870 */
2871 return 0;
04f2cbe3
MG
2872 }
2873
ad4404a2
DB
2874 ret = (PTR_ERR(new_page) == -ENOMEM) ?
2875 VM_FAULT_OOM : VM_FAULT_SIGBUS;
2876 goto out_release_old;
1e8f889b
DG
2877 }
2878
0fe6e20b
NH
2879 /*
2880 * When the original hugepage is shared one, it does not have
2881 * anon_vma prepared.
2882 */
44e2aa93 2883 if (unlikely(anon_vma_prepare(vma))) {
ad4404a2
DB
2884 ret = VM_FAULT_OOM;
2885 goto out_release_all;
44e2aa93 2886 }
0fe6e20b 2887
47ad8475
AA
2888 copy_user_huge_page(new_page, old_page, address, vma,
2889 pages_per_huge_page(h));
0ed361de 2890 __SetPageUptodate(new_page);
1e8f889b 2891
2ec74c3e
SG
2892 mmun_start = address & huge_page_mask(h);
2893 mmun_end = mmun_start + huge_page_size(h);
2894 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
ad4404a2 2895
b76c8cfb 2896 /*
cb900f41 2897 * Retake the page table lock to check for racing updates
b76c8cfb
LW
2898 * before the page tables are altered
2899 */
cb900f41 2900 spin_lock(ptl);
a5516438 2901 ptep = huge_pte_offset(mm, address & huge_page_mask(h));
a9af0c5d 2902 if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
07443a85
JK
2903 ClearPagePrivate(new_page);
2904
1e8f889b 2905 /* Break COW */
8fe627ec 2906 huge_ptep_clear_flush(vma, address, ptep);
34ee645e 2907 mmu_notifier_invalidate_range(mm, mmun_start, mmun_end);
1e8f889b
DG
2908 set_huge_pte_at(mm, address, ptep,
2909 make_huge_pte(vma, new_page, 1));
0fe6e20b 2910 page_remove_rmap(old_page);
cd67f0d2 2911 hugepage_add_new_anon_rmap(new_page, vma, address);
1e8f889b
DG
2912 /* Make the old page be freed below */
2913 new_page = old_page;
2914 }
cb900f41 2915 spin_unlock(ptl);
2ec74c3e 2916 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
ad4404a2 2917out_release_all:
1e8f889b 2918 page_cache_release(new_page);
ad4404a2 2919out_release_old:
1e8f889b 2920 page_cache_release(old_page);
8312034f 2921
ad4404a2
DB
2922 spin_lock(ptl); /* Caller expects lock to be held */
2923 return ret;
1e8f889b
DG
2924}
2925
04f2cbe3 2926/* Return the pagecache page at a given address within a VMA */
a5516438
AK
2927static struct page *hugetlbfs_pagecache_page(struct hstate *h,
2928 struct vm_area_struct *vma, unsigned long address)
04f2cbe3
MG
2929{
2930 struct address_space *mapping;
e7c4b0bf 2931 pgoff_t idx;
04f2cbe3
MG
2932
2933 mapping = vma->vm_file->f_mapping;
a5516438 2934 idx = vma_hugecache_offset(h, vma, address);
04f2cbe3
MG
2935
2936 return find_lock_page(mapping, idx);
2937}
2938
3ae77f43
HD
2939/*
2940 * Return whether there is a pagecache page to back given address within VMA.
2941 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
2942 */
2943static bool hugetlbfs_pagecache_present(struct hstate *h,
2a15efc9
HD
2944 struct vm_area_struct *vma, unsigned long address)
2945{
2946 struct address_space *mapping;
2947 pgoff_t idx;
2948 struct page *page;
2949
2950 mapping = vma->vm_file->f_mapping;
2951 idx = vma_hugecache_offset(h, vma, address);
2952
2953 page = find_get_page(mapping, idx);
2954 if (page)
2955 put_page(page);
2956 return page != NULL;
2957}
2958
a1ed3dda 2959static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
8382d914
DB
2960 struct address_space *mapping, pgoff_t idx,
2961 unsigned long address, pte_t *ptep, unsigned int flags)
ac9b9c66 2962{
a5516438 2963 struct hstate *h = hstate_vma(vma);
ac9b9c66 2964 int ret = VM_FAULT_SIGBUS;
409eb8c2 2965 int anon_rmap = 0;
4c887265 2966 unsigned long size;
4c887265 2967 struct page *page;
1e8f889b 2968 pte_t new_pte;
cb900f41 2969 spinlock_t *ptl;
4c887265 2970
04f2cbe3
MG
2971 /*
2972 * Currently, we are forced to kill the process in the event the
2973 * original mapper has unmapped pages from the child due to a failed
25985edc 2974 * COW. Warn that such a situation has occurred as it may not be obvious
04f2cbe3
MG
2975 */
2976 if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
ffb22af5
AM
2977 pr_warning("PID %d killed due to inadequate hugepage pool\n",
2978 current->pid);
04f2cbe3
MG
2979 return ret;
2980 }
2981
4c887265
AL
2982 /*
2983 * Use page lock to guard against racing truncation
2984 * before we get page_table_lock.
2985 */
6bda666a
CL
2986retry:
2987 page = find_lock_page(mapping, idx);
2988 if (!page) {
a5516438 2989 size = i_size_read(mapping->host) >> huge_page_shift(h);
ebed4bfc
HD
2990 if (idx >= size)
2991 goto out;
04f2cbe3 2992 page = alloc_huge_page(vma, address, 0);
2fc39cec 2993 if (IS_ERR(page)) {
76dcee75
AK
2994 ret = PTR_ERR(page);
2995 if (ret == -ENOMEM)
2996 ret = VM_FAULT_OOM;
2997 else
2998 ret = VM_FAULT_SIGBUS;
6bda666a
CL
2999 goto out;
3000 }
47ad8475 3001 clear_huge_page(page, address, pages_per_huge_page(h));
0ed361de 3002 __SetPageUptodate(page);
ac9b9c66 3003
f83a275d 3004 if (vma->vm_flags & VM_MAYSHARE) {
6bda666a 3005 int err;
45c682a6 3006 struct inode *inode = mapping->host;
6bda666a
CL
3007
3008 err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
3009 if (err) {
3010 put_page(page);
6bda666a
CL
3011 if (err == -EEXIST)
3012 goto retry;
3013 goto out;
3014 }
07443a85 3015 ClearPagePrivate(page);
45c682a6
KC
3016
3017 spin_lock(&inode->i_lock);
a5516438 3018 inode->i_blocks += blocks_per_huge_page(h);
45c682a6 3019 spin_unlock(&inode->i_lock);
23be7468 3020 } else {
6bda666a 3021 lock_page(page);
0fe6e20b
NH
3022 if (unlikely(anon_vma_prepare(vma))) {
3023 ret = VM_FAULT_OOM;
3024 goto backout_unlocked;
3025 }
409eb8c2 3026 anon_rmap = 1;
23be7468 3027 }
0fe6e20b 3028 } else {
998b4382
NH
3029 /*
3030 * If memory error occurs between mmap() and fault, some process
3031 * don't have hwpoisoned swap entry for errored virtual address.
3032 * So we need to block hugepage fault by PG_hwpoison bit check.
3033 */
3034 if (unlikely(PageHWPoison(page))) {
32f84528 3035 ret = VM_FAULT_HWPOISON |
972dc4de 3036 VM_FAULT_SET_HINDEX(hstate_index(h));
998b4382
NH
3037 goto backout_unlocked;
3038 }
6bda666a 3039 }
1e8f889b 3040
57303d80
AW
3041 /*
3042 * If we are going to COW a private mapping later, we examine the
3043 * pending reservations for this page now. This will ensure that
3044 * any allocations necessary to record that reservation occur outside
3045 * the spinlock.
3046 */
788c7df4 3047 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED))
2b26736c
AW
3048 if (vma_needs_reservation(h, vma, address) < 0) {
3049 ret = VM_FAULT_OOM;
3050 goto backout_unlocked;
3051 }
57303d80 3052
cb900f41
KS
3053 ptl = huge_pte_lockptr(h, mm, ptep);
3054 spin_lock(ptl);
a5516438 3055 size = i_size_read(mapping->host) >> huge_page_shift(h);
4c887265
AL
3056 if (idx >= size)
3057 goto backout;
3058
83c54070 3059 ret = 0;
7f2e9525 3060 if (!huge_pte_none(huge_ptep_get(ptep)))
4c887265
AL
3061 goto backout;
3062
07443a85
JK
3063 if (anon_rmap) {
3064 ClearPagePrivate(page);
409eb8c2 3065 hugepage_add_new_anon_rmap(page, vma, address);
ac714904 3066 } else
409eb8c2 3067 page_dup_rmap(page);
1e8f889b
DG
3068 new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
3069 && (vma->vm_flags & VM_SHARED)));
3070 set_huge_pte_at(mm, address, ptep, new_pte);
3071
788c7df4 3072 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
1e8f889b 3073 /* Optimization, do the COW without a second fault */
cb900f41 3074 ret = hugetlb_cow(mm, vma, address, ptep, new_pte, page, ptl);
1e8f889b
DG
3075 }
3076
cb900f41 3077 spin_unlock(ptl);
4c887265
AL
3078 unlock_page(page);
3079out:
ac9b9c66 3080 return ret;
4c887265
AL
3081
3082backout:
cb900f41 3083 spin_unlock(ptl);
2b26736c 3084backout_unlocked:
4c887265
AL
3085 unlock_page(page);
3086 put_page(page);
3087 goto out;
ac9b9c66
HD
3088}
3089
8382d914
DB
3090#ifdef CONFIG_SMP
3091static u32 fault_mutex_hash(struct hstate *h, struct mm_struct *mm,
3092 struct vm_area_struct *vma,
3093 struct address_space *mapping,
3094 pgoff_t idx, unsigned long address)
3095{
3096 unsigned long key[2];
3097 u32 hash;
3098
3099 if (vma->vm_flags & VM_SHARED) {
3100 key[0] = (unsigned long) mapping;
3101 key[1] = idx;
3102 } else {
3103 key[0] = (unsigned long) mm;
3104 key[1] = address >> huge_page_shift(h);
3105 }
3106
3107 hash = jhash2((u32 *)&key, sizeof(key)/sizeof(u32), 0);
3108
3109 return hash & (num_fault_mutexes - 1);
3110}
3111#else
3112/*
3113 * For uniprocesor systems we always use a single mutex, so just
3114 * return 0 and avoid the hashing overhead.
3115 */
3116static u32 fault_mutex_hash(struct hstate *h, struct mm_struct *mm,
3117 struct vm_area_struct *vma,
3118 struct address_space *mapping,
3119 pgoff_t idx, unsigned long address)
3120{
3121 return 0;
3122}
3123#endif
3124
86e5216f 3125int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
788c7df4 3126 unsigned long address, unsigned int flags)
86e5216f 3127{
8382d914 3128 pte_t *ptep, entry;
cb900f41 3129 spinlock_t *ptl;
1e8f889b 3130 int ret;
8382d914
DB
3131 u32 hash;
3132 pgoff_t idx;
0fe6e20b 3133 struct page *page = NULL;
57303d80 3134 struct page *pagecache_page = NULL;
a5516438 3135 struct hstate *h = hstate_vma(vma);
8382d914 3136 struct address_space *mapping;
0f792cf9 3137 int need_wait_lock = 0;
86e5216f 3138
1e16a539
KH
3139 address &= huge_page_mask(h);
3140
fd6a03ed
NH
3141 ptep = huge_pte_offset(mm, address);
3142 if (ptep) {
3143 entry = huge_ptep_get(ptep);
290408d4 3144 if (unlikely(is_hugetlb_entry_migration(entry))) {
cb900f41 3145 migration_entry_wait_huge(vma, mm, ptep);
290408d4
NH
3146 return 0;
3147 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
32f84528 3148 return VM_FAULT_HWPOISON_LARGE |
972dc4de 3149 VM_FAULT_SET_HINDEX(hstate_index(h));
fd6a03ed
NH
3150 }
3151
a5516438 3152 ptep = huge_pte_alloc(mm, address, huge_page_size(h));
86e5216f
AL
3153 if (!ptep)
3154 return VM_FAULT_OOM;
3155
8382d914
DB
3156 mapping = vma->vm_file->f_mapping;
3157 idx = vma_hugecache_offset(h, vma, address);
3158
3935baa9
DG
3159 /*
3160 * Serialize hugepage allocation and instantiation, so that we don't
3161 * get spurious allocation failures if two CPUs race to instantiate
3162 * the same page in the page cache.
3163 */
8382d914
DB
3164 hash = fault_mutex_hash(h, mm, vma, mapping, idx, address);
3165 mutex_lock(&htlb_fault_mutex_table[hash]);
3166
7f2e9525
GS
3167 entry = huge_ptep_get(ptep);
3168 if (huge_pte_none(entry)) {
8382d914 3169 ret = hugetlb_no_page(mm, vma, mapping, idx, address, ptep, flags);
b4d1d99f 3170 goto out_mutex;
3935baa9 3171 }
86e5216f 3172
83c54070 3173 ret = 0;
1e8f889b 3174
0f792cf9
NH
3175 /*
3176 * entry could be a migration/hwpoison entry at this point, so this
3177 * check prevents the kernel from going below assuming that we have
3178 * a active hugepage in pagecache. This goto expects the 2nd page fault,
3179 * and is_hugetlb_entry_(migration|hwpoisoned) check will properly
3180 * handle it.
3181 */
3182 if (!pte_present(entry))
3183 goto out_mutex;
3184
57303d80
AW
3185 /*
3186 * If we are going to COW the mapping later, we examine the pending
3187 * reservations for this page now. This will ensure that any
3188 * allocations necessary to record that reservation occur outside the
3189 * spinlock. For private mappings, we also lookup the pagecache
3190 * page now as it is used to determine if a reservation has been
3191 * consumed.
3192 */
106c992a 3193 if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
2b26736c
AW
3194 if (vma_needs_reservation(h, vma, address) < 0) {
3195 ret = VM_FAULT_OOM;
b4d1d99f 3196 goto out_mutex;
2b26736c 3197 }
57303d80 3198
f83a275d 3199 if (!(vma->vm_flags & VM_MAYSHARE))
57303d80
AW
3200 pagecache_page = hugetlbfs_pagecache_page(h,
3201 vma, address);
3202 }
3203
0f792cf9
NH
3204 ptl = huge_pte_lock(h, mm, ptep);
3205
3206 /* Check for a racing update before calling hugetlb_cow */
3207 if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
3208 goto out_ptl;
3209
56c9cfb1
NH
3210 /*
3211 * hugetlb_cow() requires page locks of pte_page(entry) and
3212 * pagecache_page, so here we need take the former one
3213 * when page != pagecache_page or !pagecache_page.
56c9cfb1
NH
3214 */
3215 page = pte_page(entry);
3216 if (page != pagecache_page)
0f792cf9
NH
3217 if (!trylock_page(page)) {
3218 need_wait_lock = 1;
3219 goto out_ptl;
3220 }
b4d1d99f 3221
0f792cf9 3222 get_page(page);
b4d1d99f 3223
788c7df4 3224 if (flags & FAULT_FLAG_WRITE) {
106c992a 3225 if (!huge_pte_write(entry)) {
57303d80 3226 ret = hugetlb_cow(mm, vma, address, ptep, entry,
cb900f41 3227 pagecache_page, ptl);
0f792cf9 3228 goto out_put_page;
b4d1d99f 3229 }
106c992a 3230 entry = huge_pte_mkdirty(entry);
b4d1d99f
DG
3231 }
3232 entry = pte_mkyoung(entry);
788c7df4
HD
3233 if (huge_ptep_set_access_flags(vma, address, ptep, entry,
3234 flags & FAULT_FLAG_WRITE))
4b3073e1 3235 update_mmu_cache(vma, address, ptep);
0f792cf9
NH
3236out_put_page:
3237 if (page != pagecache_page)
3238 unlock_page(page);
3239 put_page(page);
cb900f41
KS
3240out_ptl:
3241 spin_unlock(ptl);
57303d80
AW
3242
3243 if (pagecache_page) {
3244 unlock_page(pagecache_page);
3245 put_page(pagecache_page);
3246 }
b4d1d99f 3247out_mutex:
8382d914 3248 mutex_unlock(&htlb_fault_mutex_table[hash]);
0f792cf9
NH
3249 /*
3250 * Generally it's safe to hold refcount during waiting page lock. But
3251 * here we just wait to defer the next page fault to avoid busy loop and
3252 * the page is not used after unlocked before returning from the current
3253 * page fault. So we are safe from accessing freed page, even if we wait
3254 * here without taking refcount.
3255 */
3256 if (need_wait_lock)
3257 wait_on_page_locked(page);
1e8f889b 3258 return ret;
86e5216f
AL
3259}
3260
28a35716
ML
3261long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
3262 struct page **pages, struct vm_area_struct **vmas,
3263 unsigned long *position, unsigned long *nr_pages,
3264 long i, unsigned int flags)
63551ae0 3265{
d5d4b0aa
CK
3266 unsigned long pfn_offset;
3267 unsigned long vaddr = *position;
28a35716 3268 unsigned long remainder = *nr_pages;
a5516438 3269 struct hstate *h = hstate_vma(vma);
63551ae0 3270
63551ae0 3271 while (vaddr < vma->vm_end && remainder) {
4c887265 3272 pte_t *pte;
cb900f41 3273 spinlock_t *ptl = NULL;
2a15efc9 3274 int absent;
4c887265 3275 struct page *page;
63551ae0 3276
4c887265
AL
3277 /*
3278 * Some archs (sparc64, sh*) have multiple pte_ts to
2a15efc9 3279 * each hugepage. We have to make sure we get the
4c887265 3280 * first, for the page indexing below to work.
cb900f41
KS
3281 *
3282 * Note that page table lock is not held when pte is null.
4c887265 3283 */
a5516438 3284 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h));
cb900f41
KS
3285 if (pte)
3286 ptl = huge_pte_lock(h, mm, pte);
2a15efc9
HD
3287 absent = !pte || huge_pte_none(huge_ptep_get(pte));
3288
3289 /*
3290 * When coredumping, it suits get_dump_page if we just return
3ae77f43
HD
3291 * an error where there's an empty slot with no huge pagecache
3292 * to back it. This way, we avoid allocating a hugepage, and
3293 * the sparse dumpfile avoids allocating disk blocks, but its
3294 * huge holes still show up with zeroes where they need to be.
2a15efc9 3295 */
3ae77f43
HD
3296 if (absent && (flags & FOLL_DUMP) &&
3297 !hugetlbfs_pagecache_present(h, vma, vaddr)) {
cb900f41
KS
3298 if (pte)
3299 spin_unlock(ptl);
2a15efc9
HD
3300 remainder = 0;
3301 break;
3302 }
63551ae0 3303
9cc3a5bd
NH
3304 /*
3305 * We need call hugetlb_fault for both hugepages under migration
3306 * (in which case hugetlb_fault waits for the migration,) and
3307 * hwpoisoned hugepages (in which case we need to prevent the
3308 * caller from accessing to them.) In order to do this, we use
3309 * here is_swap_pte instead of is_hugetlb_entry_migration and
3310 * is_hugetlb_entry_hwpoisoned. This is because it simply covers
3311 * both cases, and because we can't follow correct pages
3312 * directly from any kind of swap entries.
3313 */
3314 if (absent || is_swap_pte(huge_ptep_get(pte)) ||
106c992a
GS
3315 ((flags & FOLL_WRITE) &&
3316 !huge_pte_write(huge_ptep_get(pte)))) {
4c887265 3317 int ret;
63551ae0 3318
cb900f41
KS
3319 if (pte)
3320 spin_unlock(ptl);
2a15efc9
HD
3321 ret = hugetlb_fault(mm, vma, vaddr,
3322 (flags & FOLL_WRITE) ? FAULT_FLAG_WRITE : 0);
a89182c7 3323 if (!(ret & VM_FAULT_ERROR))
4c887265 3324 continue;
63551ae0 3325
4c887265 3326 remainder = 0;
4c887265
AL
3327 break;
3328 }
3329
a5516438 3330 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
7f2e9525 3331 page = pte_page(huge_ptep_get(pte));
d5d4b0aa 3332same_page:
d6692183 3333 if (pages) {
2a15efc9 3334 pages[i] = mem_map_offset(page, pfn_offset);
a0368d4e 3335 get_page_foll(pages[i]);
d6692183 3336 }
63551ae0
DG
3337
3338 if (vmas)
3339 vmas[i] = vma;
3340
3341 vaddr += PAGE_SIZE;
d5d4b0aa 3342 ++pfn_offset;
63551ae0
DG
3343 --remainder;
3344 ++i;
d5d4b0aa 3345 if (vaddr < vma->vm_end && remainder &&
a5516438 3346 pfn_offset < pages_per_huge_page(h)) {
d5d4b0aa
CK
3347 /*
3348 * We use pfn_offset to avoid touching the pageframes
3349 * of this compound page.
3350 */
3351 goto same_page;
3352 }
cb900f41 3353 spin_unlock(ptl);
63551ae0 3354 }
28a35716 3355 *nr_pages = remainder;
63551ae0
DG
3356 *position = vaddr;
3357
2a15efc9 3358 return i ? i : -EFAULT;
63551ae0 3359}
8f860591 3360
7da4d641 3361unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
8f860591
ZY
3362 unsigned long address, unsigned long end, pgprot_t newprot)
3363{
3364 struct mm_struct *mm = vma->vm_mm;
3365 unsigned long start = address;
3366 pte_t *ptep;
3367 pte_t pte;
a5516438 3368 struct hstate *h = hstate_vma(vma);
7da4d641 3369 unsigned long pages = 0;
8f860591
ZY
3370
3371 BUG_ON(address >= end);
3372 flush_cache_range(vma, address, end);
3373
a5338093 3374 mmu_notifier_invalidate_range_start(mm, start, end);
83cde9e8 3375 i_mmap_lock_write(vma->vm_file->f_mapping);
a5516438 3376 for (; address < end; address += huge_page_size(h)) {
cb900f41 3377 spinlock_t *ptl;
8f860591
ZY
3378 ptep = huge_pte_offset(mm, address);
3379 if (!ptep)
3380 continue;
cb900f41 3381 ptl = huge_pte_lock(h, mm, ptep);
7da4d641
PZ
3382 if (huge_pmd_unshare(mm, &address, ptep)) {
3383 pages++;
cb900f41 3384 spin_unlock(ptl);
39dde65c 3385 continue;
7da4d641 3386 }
7f2e9525 3387 if (!huge_pte_none(huge_ptep_get(ptep))) {
8f860591 3388 pte = huge_ptep_get_and_clear(mm, address, ptep);
106c992a 3389 pte = pte_mkhuge(huge_pte_modify(pte, newprot));
be7517d6 3390 pte = arch_make_huge_pte(pte, vma, NULL, 0);
8f860591 3391 set_huge_pte_at(mm, address, ptep, pte);
7da4d641 3392 pages++;
8f860591 3393 }
cb900f41 3394 spin_unlock(ptl);
8f860591 3395 }
d833352a 3396 /*
c8c06efa 3397 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
d833352a 3398 * may have cleared our pud entry and done put_page on the page table:
c8c06efa 3399 * once we release i_mmap_rwsem, another task can do the final put_page
d833352a
MG
3400 * and that page table be reused and filled with junk.
3401 */
8f860591 3402 flush_tlb_range(vma, start, end);
34ee645e 3403 mmu_notifier_invalidate_range(mm, start, end);
83cde9e8 3404 i_mmap_unlock_write(vma->vm_file->f_mapping);
a5338093 3405 mmu_notifier_invalidate_range_end(mm, start, end);
7da4d641
PZ
3406
3407 return pages << h->order;
8f860591
ZY
3408}
3409
a1e78772
MG
3410int hugetlb_reserve_pages(struct inode *inode,
3411 long from, long to,
5a6fe125 3412 struct vm_area_struct *vma,
ca16d140 3413 vm_flags_t vm_flags)
e4e574b7 3414{
17c9d12e 3415 long ret, chg;
a5516438 3416 struct hstate *h = hstate_inode(inode);
90481622 3417 struct hugepage_subpool *spool = subpool_inode(inode);
9119a41e 3418 struct resv_map *resv_map;
e4e574b7 3419
17c9d12e
MG
3420 /*
3421 * Only apply hugepage reservation if asked. At fault time, an
3422 * attempt will be made for VM_NORESERVE to allocate a page
90481622 3423 * without using reserves
17c9d12e 3424 */
ca16d140 3425 if (vm_flags & VM_NORESERVE)
17c9d12e
MG
3426 return 0;
3427
a1e78772
MG
3428 /*
3429 * Shared mappings base their reservation on the number of pages that
3430 * are already allocated on behalf of the file. Private mappings need
3431 * to reserve the full area even if read-only as mprotect() may be
3432 * called to make the mapping read-write. Assume !vma is a shm mapping
3433 */
9119a41e 3434 if (!vma || vma->vm_flags & VM_MAYSHARE) {
4e35f483 3435 resv_map = inode_resv_map(inode);
9119a41e 3436
1406ec9b 3437 chg = region_chg(resv_map, from, to);
9119a41e
JK
3438
3439 } else {
3440 resv_map = resv_map_alloc();
17c9d12e
MG
3441 if (!resv_map)
3442 return -ENOMEM;
3443
a1e78772 3444 chg = to - from;
84afd99b 3445
17c9d12e
MG
3446 set_vma_resv_map(vma, resv_map);
3447 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
3448 }
3449
c50ac050
DH
3450 if (chg < 0) {
3451 ret = chg;
3452 goto out_err;
3453 }
8a630112 3454
90481622 3455 /* There must be enough pages in the subpool for the mapping */
c50ac050
DH
3456 if (hugepage_subpool_get_pages(spool, chg)) {
3457 ret = -ENOSPC;
3458 goto out_err;
3459 }
5a6fe125
MG
3460
3461 /*
17c9d12e 3462 * Check enough hugepages are available for the reservation.
90481622 3463 * Hand the pages back to the subpool if there are not
5a6fe125 3464 */
a5516438 3465 ret = hugetlb_acct_memory(h, chg);
68842c9b 3466 if (ret < 0) {
90481622 3467 hugepage_subpool_put_pages(spool, chg);
c50ac050 3468 goto out_err;
68842c9b 3469 }
17c9d12e
MG
3470
3471 /*
3472 * Account for the reservations made. Shared mappings record regions
3473 * that have reservations as they are shared by multiple VMAs.
3474 * When the last VMA disappears, the region map says how much
3475 * the reservation was and the page cache tells how much of
3476 * the reservation was consumed. Private mappings are per-VMA and
3477 * only the consumed reservations are tracked. When the VMA
3478 * disappears, the original reservation is the VMA size and the
3479 * consumed reservations are stored in the map. Hence, nothing
3480 * else has to be done for private mappings here
3481 */
f83a275d 3482 if (!vma || vma->vm_flags & VM_MAYSHARE)
1406ec9b 3483 region_add(resv_map, from, to);
a43a8c39 3484 return 0;
c50ac050 3485out_err:
f031dd27
JK
3486 if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
3487 kref_put(&resv_map->refs, resv_map_release);
c50ac050 3488 return ret;
a43a8c39
CK
3489}
3490
3491void hugetlb_unreserve_pages(struct inode *inode, long offset, long freed)
3492{
a5516438 3493 struct hstate *h = hstate_inode(inode);
4e35f483 3494 struct resv_map *resv_map = inode_resv_map(inode);
9119a41e 3495 long chg = 0;
90481622 3496 struct hugepage_subpool *spool = subpool_inode(inode);
45c682a6 3497
9119a41e 3498 if (resv_map)
1406ec9b 3499 chg = region_truncate(resv_map, offset);
45c682a6 3500 spin_lock(&inode->i_lock);
e4c6f8be 3501 inode->i_blocks -= (blocks_per_huge_page(h) * freed);
45c682a6
KC
3502 spin_unlock(&inode->i_lock);
3503
90481622 3504 hugepage_subpool_put_pages(spool, (chg - freed));
a5516438 3505 hugetlb_acct_memory(h, -(chg - freed));
a43a8c39 3506}
93f70f90 3507
3212b535
SC
3508#ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
3509static unsigned long page_table_shareable(struct vm_area_struct *svma,
3510 struct vm_area_struct *vma,
3511 unsigned long addr, pgoff_t idx)
3512{
3513 unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
3514 svma->vm_start;
3515 unsigned long sbase = saddr & PUD_MASK;
3516 unsigned long s_end = sbase + PUD_SIZE;
3517
3518 /* Allow segments to share if only one is marked locked */
3519 unsigned long vm_flags = vma->vm_flags & ~VM_LOCKED;
3520 unsigned long svm_flags = svma->vm_flags & ~VM_LOCKED;
3521
3522 /*
3523 * match the virtual addresses, permission and the alignment of the
3524 * page table page.
3525 */
3526 if (pmd_index(addr) != pmd_index(saddr) ||
3527 vm_flags != svm_flags ||
3528 sbase < svma->vm_start || svma->vm_end < s_end)
3529 return 0;
3530
3531 return saddr;
3532}
3533
3534static int vma_shareable(struct vm_area_struct *vma, unsigned long addr)
3535{
3536 unsigned long base = addr & PUD_MASK;
3537 unsigned long end = base + PUD_SIZE;
3538
3539 /*
3540 * check on proper vm_flags and page table alignment
3541 */
3542 if (vma->vm_flags & VM_MAYSHARE &&
3543 vma->vm_start <= base && end <= vma->vm_end)
3544 return 1;
3545 return 0;
3546}
3547
3548/*
3549 * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
3550 * and returns the corresponding pte. While this is not necessary for the
3551 * !shared pmd case because we can allocate the pmd later as well, it makes the
3552 * code much cleaner. pmd allocation is essential for the shared case because
c8c06efa 3553 * pud has to be populated inside the same i_mmap_rwsem section - otherwise
3212b535
SC
3554 * racing tasks could either miss the sharing (see huge_pte_offset) or select a
3555 * bad pmd for sharing.
3556 */
3557pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
3558{
3559 struct vm_area_struct *vma = find_vma(mm, addr);
3560 struct address_space *mapping = vma->vm_file->f_mapping;
3561 pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
3562 vma->vm_pgoff;
3563 struct vm_area_struct *svma;
3564 unsigned long saddr;
3565 pte_t *spte = NULL;
3566 pte_t *pte;
cb900f41 3567 spinlock_t *ptl;
3212b535
SC
3568
3569 if (!vma_shareable(vma, addr))
3570 return (pte_t *)pmd_alloc(mm, pud, addr);
3571
83cde9e8 3572 i_mmap_lock_write(mapping);
3212b535
SC
3573 vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
3574 if (svma == vma)
3575 continue;
3576
3577 saddr = page_table_shareable(svma, vma, addr, idx);
3578 if (saddr) {
3579 spte = huge_pte_offset(svma->vm_mm, saddr);
3580 if (spte) {
3581 get_page(virt_to_page(spte));
3582 break;
3583 }
3584 }
3585 }
3586
3587 if (!spte)
3588 goto out;
3589
cb900f41
KS
3590 ptl = huge_pte_lockptr(hstate_vma(vma), mm, spte);
3591 spin_lock(ptl);
3212b535
SC
3592 if (pud_none(*pud))
3593 pud_populate(mm, pud,
3594 (pmd_t *)((unsigned long)spte & PAGE_MASK));
3595 else
3596 put_page(virt_to_page(spte));
cb900f41 3597 spin_unlock(ptl);
3212b535
SC
3598out:
3599 pte = (pte_t *)pmd_alloc(mm, pud, addr);
83cde9e8 3600 i_mmap_unlock_write(mapping);
3212b535
SC
3601 return pte;
3602}
3603
3604/*
3605 * unmap huge page backed by shared pte.
3606 *
3607 * Hugetlb pte page is ref counted at the time of mapping. If pte is shared
3608 * indicated by page_count > 1, unmap is achieved by clearing pud and
3609 * decrementing the ref count. If count == 1, the pte page is not shared.
3610 *
cb900f41 3611 * called with page table lock held.
3212b535
SC
3612 *
3613 * returns: 1 successfully unmapped a shared pte page
3614 * 0 the underlying pte page is not shared, or it is the last user
3615 */
3616int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
3617{
3618 pgd_t *pgd = pgd_offset(mm, *addr);
3619 pud_t *pud = pud_offset(pgd, *addr);
3620
3621 BUG_ON(page_count(virt_to_page(ptep)) == 0);
3622 if (page_count(virt_to_page(ptep)) == 1)
3623 return 0;
3624
3625 pud_clear(pud);
3626 put_page(virt_to_page(ptep));
3627 *addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE;
3628 return 1;
3629}
9e5fc74c
SC
3630#define want_pmd_share() (1)
3631#else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
3632pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
3633{
3634 return NULL;
3635}
3636#define want_pmd_share() (0)
3212b535
SC
3637#endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
3638
9e5fc74c
SC
3639#ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
3640pte_t *huge_pte_alloc(struct mm_struct *mm,
3641 unsigned long addr, unsigned long sz)
3642{
3643 pgd_t *pgd;
3644 pud_t *pud;
3645 pte_t *pte = NULL;
3646
3647 pgd = pgd_offset(mm, addr);
3648 pud = pud_alloc(mm, pgd, addr);
3649 if (pud) {
3650 if (sz == PUD_SIZE) {
3651 pte = (pte_t *)pud;
3652 } else {
3653 BUG_ON(sz != PMD_SIZE);
3654 if (want_pmd_share() && pud_none(*pud))
3655 pte = huge_pmd_share(mm, addr, pud);
3656 else
3657 pte = (pte_t *)pmd_alloc(mm, pud, addr);
3658 }
3659 }
3660 BUG_ON(pte && !pte_none(*pte) && !pte_huge(*pte));
3661
3662 return pte;
3663}
3664
3665pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr)
3666{
3667 pgd_t *pgd;
3668 pud_t *pud;
3669 pmd_t *pmd = NULL;
3670
3671 pgd = pgd_offset(mm, addr);
3672 if (pgd_present(*pgd)) {
3673 pud = pud_offset(pgd, addr);
3674 if (pud_present(*pud)) {
3675 if (pud_huge(*pud))
3676 return (pte_t *)pud;
3677 pmd = pmd_offset(pud, addr);
3678 }
3679 }
3680 return (pte_t *) pmd;
3681}
3682
61f77eda
NH
3683#endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
3684
3685/*
3686 * These functions are overwritable if your architecture needs its own
3687 * behavior.
3688 */
3689struct page * __weak
3690follow_huge_addr(struct mm_struct *mm, unsigned long address,
3691 int write)
3692{
3693 return ERR_PTR(-EINVAL);
3694}
3695
3696struct page * __weak
9e5fc74c 3697follow_huge_pmd(struct mm_struct *mm, unsigned long address,
e66f17ff 3698 pmd_t *pmd, int flags)
9e5fc74c 3699{
e66f17ff
NH
3700 struct page *page = NULL;
3701 spinlock_t *ptl;
3702retry:
3703 ptl = pmd_lockptr(mm, pmd);
3704 spin_lock(ptl);
3705 /*
3706 * make sure that the address range covered by this pmd is not
3707 * unmapped from other threads.
3708 */
3709 if (!pmd_huge(*pmd))
3710 goto out;
3711 if (pmd_present(*pmd)) {
3712 page = pte_page(*(pte_t *)pmd) +
3713 ((address & ~PMD_MASK) >> PAGE_SHIFT);
3714 if (flags & FOLL_GET)
3715 get_page(page);
3716 } else {
3717 if (is_hugetlb_entry_migration(huge_ptep_get((pte_t *)pmd))) {
3718 spin_unlock(ptl);
3719 __migration_entry_wait(mm, (pte_t *)pmd, ptl);
3720 goto retry;
3721 }
3722 /*
3723 * hwpoisoned entry is treated as no_page_table in
3724 * follow_page_mask().
3725 */
3726 }
3727out:
3728 spin_unlock(ptl);
9e5fc74c
SC
3729 return page;
3730}
3731
61f77eda 3732struct page * __weak
9e5fc74c 3733follow_huge_pud(struct mm_struct *mm, unsigned long address,
e66f17ff 3734 pud_t *pud, int flags)
9e5fc74c 3735{
e66f17ff
NH
3736 if (flags & FOLL_GET)
3737 return NULL;
9e5fc74c 3738
e66f17ff 3739 return pte_page(*(pte_t *)pud) + ((address & ~PUD_MASK) >> PAGE_SHIFT);
9e5fc74c
SC
3740}
3741
d5bd9106
AK
3742#ifdef CONFIG_MEMORY_FAILURE
3743
6de2b1aa
NH
3744/* Should be called in hugetlb_lock */
3745static int is_hugepage_on_freelist(struct page *hpage)
3746{
3747 struct page *page;
3748 struct page *tmp;
3749 struct hstate *h = page_hstate(hpage);
3750 int nid = page_to_nid(hpage);
3751
3752 list_for_each_entry_safe(page, tmp, &h->hugepage_freelists[nid], lru)
3753 if (page == hpage)
3754 return 1;
3755 return 0;
3756}
3757
93f70f90
NH
3758/*
3759 * This function is called from memory failure code.
3760 * Assume the caller holds page lock of the head page.
3761 */
6de2b1aa 3762int dequeue_hwpoisoned_huge_page(struct page *hpage)
93f70f90
NH
3763{
3764 struct hstate *h = page_hstate(hpage);
3765 int nid = page_to_nid(hpage);
6de2b1aa 3766 int ret = -EBUSY;
93f70f90
NH
3767
3768 spin_lock(&hugetlb_lock);
6de2b1aa 3769 if (is_hugepage_on_freelist(hpage)) {
56f2fb14
NH
3770 /*
3771 * Hwpoisoned hugepage isn't linked to activelist or freelist,
3772 * but dangling hpage->lru can trigger list-debug warnings
3773 * (this happens when we call unpoison_memory() on it),
3774 * so let it point to itself with list_del_init().
3775 */
3776 list_del_init(&hpage->lru);
8c6c2ecb 3777 set_page_refcounted(hpage);
6de2b1aa
NH
3778 h->free_huge_pages--;
3779 h->free_huge_pages_node[nid]--;
3780 ret = 0;
3781 }
93f70f90 3782 spin_unlock(&hugetlb_lock);
6de2b1aa 3783 return ret;
93f70f90 3784}
6de2b1aa 3785#endif
31caf665
NH
3786
3787bool isolate_huge_page(struct page *page, struct list_head *list)
3788{
309381fe 3789 VM_BUG_ON_PAGE(!PageHead(page), page);
31caf665
NH
3790 if (!get_page_unless_zero(page))
3791 return false;
3792 spin_lock(&hugetlb_lock);
3793 list_move_tail(&page->lru, list);
3794 spin_unlock(&hugetlb_lock);
3795 return true;
3796}
3797
3798void putback_active_hugepage(struct page *page)
3799{
309381fe 3800 VM_BUG_ON_PAGE(!PageHead(page), page);
31caf665
NH
3801 spin_lock(&hugetlb_lock);
3802 list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
3803 spin_unlock(&hugetlb_lock);
3804 put_page(page);
3805}
c8721bbb
NH
3806
3807bool is_hugepage_active(struct page *page)
3808{
309381fe 3809 VM_BUG_ON_PAGE(!PageHuge(page), page);
c8721bbb
NH
3810 /*
3811 * This function can be called for a tail page because the caller,
3812 * scan_movable_pages, scans through a given pfn-range which typically
3813 * covers one memory block. In systems using gigantic hugepage (1GB
3814 * for x86_64,) a hugepage is larger than a memory block, and we don't
3815 * support migrating such large hugepages for now, so return false
3816 * when called for tail pages.
3817 */
3818 if (PageTail(page))
3819 return false;
3820 /*
3821 * Refcount of a hwpoisoned hugepages is 1, but they are not active,
3822 * so we should return false for them.
3823 */
3824 if (unlikely(PageHWPoison(page)))
3825 return false;
3826 return page_count(page) > 0;
3827}