mm, hugetlb: return a reserved page to a reserved pool if failed
[linux-2.6-block.git] / mm / hugetlb.c
CommitLineData
1da177e4
LT
1/*
2 * Generic hugetlb support.
6d49e352 3 * (C) Nadia Yvette Chambers, April 2004
1da177e4 4 */
1da177e4
LT
5#include <linux/list.h>
6#include <linux/init.h>
7#include <linux/module.h>
8#include <linux/mm.h>
e1759c21 9#include <linux/seq_file.h>
1da177e4
LT
10#include <linux/sysctl.h>
11#include <linux/highmem.h>
cddb8a5c 12#include <linux/mmu_notifier.h>
1da177e4 13#include <linux/nodemask.h>
63551ae0 14#include <linux/pagemap.h>
5da7ca86 15#include <linux/mempolicy.h>
aea47ff3 16#include <linux/cpuset.h>
3935baa9 17#include <linux/mutex.h>
aa888a74 18#include <linux/bootmem.h>
a3437870 19#include <linux/sysfs.h>
5a0e3ad6 20#include <linux/slab.h>
0fe6e20b 21#include <linux/rmap.h>
fd6a03ed
NH
22#include <linux/swap.h>
23#include <linux/swapops.h>
d6606683 24
63551ae0
DG
25#include <asm/page.h>
26#include <asm/pgtable.h>
24669e58 27#include <asm/tlb.h>
63551ae0 28
24669e58 29#include <linux/io.h>
63551ae0 30#include <linux/hugetlb.h>
9dd540e2 31#include <linux/hugetlb_cgroup.h>
9a305230 32#include <linux/node.h>
7835e98b 33#include "internal.h"
1da177e4
LT
34
35const unsigned long hugetlb_zero = 0, hugetlb_infinity = ~0UL;
396faf03
MG
36static gfp_t htlb_alloc_mask = GFP_HIGHUSER;
37unsigned long hugepages_treat_as_movable;
a5516438 38
c3f38a38 39int hugetlb_max_hstate __read_mostly;
e5ff2159
AK
40unsigned int default_hstate_idx;
41struct hstate hstates[HUGE_MAX_HSTATE];
42
53ba51d2
JT
43__initdata LIST_HEAD(huge_boot_pages);
44
e5ff2159
AK
45/* for command line parsing */
46static struct hstate * __initdata parsed_hstate;
47static unsigned long __initdata default_hstate_max_huge_pages;
e11bfbfc 48static unsigned long __initdata default_hstate_size;
e5ff2159 49
3935baa9
DG
50/*
51 * Protects updates to hugepage_freelists, nr_huge_pages, and free_huge_pages
52 */
c3f38a38 53DEFINE_SPINLOCK(hugetlb_lock);
0bd0f9fb 54
90481622
DG
55static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
56{
57 bool free = (spool->count == 0) && (spool->used_hpages == 0);
58
59 spin_unlock(&spool->lock);
60
61 /* If no pages are used, and no other handles to the subpool
62 * remain, free the subpool the subpool remain */
63 if (free)
64 kfree(spool);
65}
66
67struct hugepage_subpool *hugepage_new_subpool(long nr_blocks)
68{
69 struct hugepage_subpool *spool;
70
71 spool = kmalloc(sizeof(*spool), GFP_KERNEL);
72 if (!spool)
73 return NULL;
74
75 spin_lock_init(&spool->lock);
76 spool->count = 1;
77 spool->max_hpages = nr_blocks;
78 spool->used_hpages = 0;
79
80 return spool;
81}
82
83void hugepage_put_subpool(struct hugepage_subpool *spool)
84{
85 spin_lock(&spool->lock);
86 BUG_ON(!spool->count);
87 spool->count--;
88 unlock_or_release_subpool(spool);
89}
90
91static int hugepage_subpool_get_pages(struct hugepage_subpool *spool,
92 long delta)
93{
94 int ret = 0;
95
96 if (!spool)
97 return 0;
98
99 spin_lock(&spool->lock);
100 if ((spool->used_hpages + delta) <= spool->max_hpages) {
101 spool->used_hpages += delta;
102 } else {
103 ret = -ENOMEM;
104 }
105 spin_unlock(&spool->lock);
106
107 return ret;
108}
109
110static void hugepage_subpool_put_pages(struct hugepage_subpool *spool,
111 long delta)
112{
113 if (!spool)
114 return;
115
116 spin_lock(&spool->lock);
117 spool->used_hpages -= delta;
118 /* If hugetlbfs_put_super couldn't free spool due to
119 * an outstanding quota reference, free it now. */
120 unlock_or_release_subpool(spool);
121}
122
123static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
124{
125 return HUGETLBFS_SB(inode->i_sb)->spool;
126}
127
128static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
129{
496ad9aa 130 return subpool_inode(file_inode(vma->vm_file));
90481622
DG
131}
132
96822904
AW
133/*
134 * Region tracking -- allows tracking of reservations and instantiated pages
135 * across the pages in a mapping.
84afd99b
AW
136 *
137 * The region data structures are protected by a combination of the mmap_sem
c748c262 138 * and the hugetlb_instantiation_mutex. To access or modify a region the caller
84afd99b 139 * must either hold the mmap_sem for write, or the mmap_sem for read and
c748c262 140 * the hugetlb_instantiation_mutex:
84afd99b 141 *
32f84528 142 * down_write(&mm->mmap_sem);
84afd99b 143 * or
32f84528
CF
144 * down_read(&mm->mmap_sem);
145 * mutex_lock(&hugetlb_instantiation_mutex);
96822904
AW
146 */
147struct file_region {
148 struct list_head link;
149 long from;
150 long to;
151};
152
153static long region_add(struct list_head *head, long f, long t)
154{
155 struct file_region *rg, *nrg, *trg;
156
157 /* Locate the region we are either in or before. */
158 list_for_each_entry(rg, head, link)
159 if (f <= rg->to)
160 break;
161
162 /* Round our left edge to the current segment if it encloses us. */
163 if (f > rg->from)
164 f = rg->from;
165
166 /* Check for and consume any regions we now overlap with. */
167 nrg = rg;
168 list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
169 if (&rg->link == head)
170 break;
171 if (rg->from > t)
172 break;
173
174 /* If this area reaches higher then extend our area to
175 * include it completely. If this is not the first area
176 * which we intend to reuse, free it. */
177 if (rg->to > t)
178 t = rg->to;
179 if (rg != nrg) {
180 list_del(&rg->link);
181 kfree(rg);
182 }
183 }
184 nrg->from = f;
185 nrg->to = t;
186 return 0;
187}
188
189static long region_chg(struct list_head *head, long f, long t)
190{
191 struct file_region *rg, *nrg;
192 long chg = 0;
193
194 /* Locate the region we are before or in. */
195 list_for_each_entry(rg, head, link)
196 if (f <= rg->to)
197 break;
198
199 /* If we are below the current region then a new region is required.
200 * Subtle, allocate a new region at the position but make it zero
201 * size such that we can guarantee to record the reservation. */
202 if (&rg->link == head || t < rg->from) {
203 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
204 if (!nrg)
205 return -ENOMEM;
206 nrg->from = f;
207 nrg->to = f;
208 INIT_LIST_HEAD(&nrg->link);
209 list_add(&nrg->link, rg->link.prev);
210
211 return t - f;
212 }
213
214 /* Round our left edge to the current segment if it encloses us. */
215 if (f > rg->from)
216 f = rg->from;
217 chg = t - f;
218
219 /* Check for and consume any regions we now overlap with. */
220 list_for_each_entry(rg, rg->link.prev, link) {
221 if (&rg->link == head)
222 break;
223 if (rg->from > t)
224 return chg;
225
25985edc 226 /* We overlap with this area, if it extends further than
96822904
AW
227 * us then we must extend ourselves. Account for its
228 * existing reservation. */
229 if (rg->to > t) {
230 chg += rg->to - t;
231 t = rg->to;
232 }
233 chg -= rg->to - rg->from;
234 }
235 return chg;
236}
237
238static long region_truncate(struct list_head *head, long end)
239{
240 struct file_region *rg, *trg;
241 long chg = 0;
242
243 /* Locate the region we are either in or before. */
244 list_for_each_entry(rg, head, link)
245 if (end <= rg->to)
246 break;
247 if (&rg->link == head)
248 return 0;
249
250 /* If we are in the middle of a region then adjust it. */
251 if (end > rg->from) {
252 chg = rg->to - end;
253 rg->to = end;
254 rg = list_entry(rg->link.next, typeof(*rg), link);
255 }
256
257 /* Drop any remaining regions. */
258 list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
259 if (&rg->link == head)
260 break;
261 chg += rg->to - rg->from;
262 list_del(&rg->link);
263 kfree(rg);
264 }
265 return chg;
266}
267
84afd99b
AW
268static long region_count(struct list_head *head, long f, long t)
269{
270 struct file_region *rg;
271 long chg = 0;
272
273 /* Locate each segment we overlap with, and count that overlap. */
274 list_for_each_entry(rg, head, link) {
f2135a4a
WSH
275 long seg_from;
276 long seg_to;
84afd99b
AW
277
278 if (rg->to <= f)
279 continue;
280 if (rg->from >= t)
281 break;
282
283 seg_from = max(rg->from, f);
284 seg_to = min(rg->to, t);
285
286 chg += seg_to - seg_from;
287 }
288
289 return chg;
290}
291
e7c4b0bf
AW
292/*
293 * Convert the address within this vma to the page offset within
294 * the mapping, in pagecache page units; huge pages here.
295 */
a5516438
AK
296static pgoff_t vma_hugecache_offset(struct hstate *h,
297 struct vm_area_struct *vma, unsigned long address)
e7c4b0bf 298{
a5516438
AK
299 return ((address - vma->vm_start) >> huge_page_shift(h)) +
300 (vma->vm_pgoff >> huge_page_order(h));
e7c4b0bf
AW
301}
302
0fe6e20b
NH
303pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
304 unsigned long address)
305{
306 return vma_hugecache_offset(hstate_vma(vma), vma, address);
307}
308
08fba699
MG
309/*
310 * Return the size of the pages allocated when backing a VMA. In the majority
311 * cases this will be same size as used by the page table entries.
312 */
313unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
314{
315 struct hstate *hstate;
316
317 if (!is_vm_hugetlb_page(vma))
318 return PAGE_SIZE;
319
320 hstate = hstate_vma(vma);
321
2415cf12 322 return 1UL << huge_page_shift(hstate);
08fba699 323}
f340ca0f 324EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
08fba699 325
3340289d
MG
326/*
327 * Return the page size being used by the MMU to back a VMA. In the majority
328 * of cases, the page size used by the kernel matches the MMU size. On
329 * architectures where it differs, an architecture-specific version of this
330 * function is required.
331 */
332#ifndef vma_mmu_pagesize
333unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
334{
335 return vma_kernel_pagesize(vma);
336}
337#endif
338
84afd99b
AW
339/*
340 * Flags for MAP_PRIVATE reservations. These are stored in the bottom
341 * bits of the reservation map pointer, which are always clear due to
342 * alignment.
343 */
344#define HPAGE_RESV_OWNER (1UL << 0)
345#define HPAGE_RESV_UNMAPPED (1UL << 1)
04f2cbe3 346#define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
84afd99b 347
a1e78772
MG
348/*
349 * These helpers are used to track how many pages are reserved for
350 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
351 * is guaranteed to have their future faults succeed.
352 *
353 * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
354 * the reserve counters are updated with the hugetlb_lock held. It is safe
355 * to reset the VMA at fork() time as it is not in use yet and there is no
356 * chance of the global counters getting corrupted as a result of the values.
84afd99b
AW
357 *
358 * The private mapping reservation is represented in a subtly different
359 * manner to a shared mapping. A shared mapping has a region map associated
360 * with the underlying file, this region map represents the backing file
361 * pages which have ever had a reservation assigned which this persists even
362 * after the page is instantiated. A private mapping has a region map
363 * associated with the original mmap which is attached to all VMAs which
364 * reference it, this region map represents those offsets which have consumed
365 * reservation ie. where pages have been instantiated.
a1e78772 366 */
e7c4b0bf
AW
367static unsigned long get_vma_private_data(struct vm_area_struct *vma)
368{
369 return (unsigned long)vma->vm_private_data;
370}
371
372static void set_vma_private_data(struct vm_area_struct *vma,
373 unsigned long value)
374{
375 vma->vm_private_data = (void *)value;
376}
377
84afd99b
AW
378struct resv_map {
379 struct kref refs;
380 struct list_head regions;
381};
382
2a4b3ded 383static struct resv_map *resv_map_alloc(void)
84afd99b
AW
384{
385 struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
386 if (!resv_map)
387 return NULL;
388
389 kref_init(&resv_map->refs);
390 INIT_LIST_HEAD(&resv_map->regions);
391
392 return resv_map;
393}
394
2a4b3ded 395static void resv_map_release(struct kref *ref)
84afd99b
AW
396{
397 struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
398
399 /* Clear out any active regions before we release the map. */
400 region_truncate(&resv_map->regions, 0);
401 kfree(resv_map);
402}
403
404static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
a1e78772
MG
405{
406 VM_BUG_ON(!is_vm_hugetlb_page(vma));
f83a275d 407 if (!(vma->vm_flags & VM_MAYSHARE))
84afd99b
AW
408 return (struct resv_map *)(get_vma_private_data(vma) &
409 ~HPAGE_RESV_MASK);
2a4b3ded 410 return NULL;
a1e78772
MG
411}
412
84afd99b 413static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
a1e78772
MG
414{
415 VM_BUG_ON(!is_vm_hugetlb_page(vma));
f83a275d 416 VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
a1e78772 417
84afd99b
AW
418 set_vma_private_data(vma, (get_vma_private_data(vma) &
419 HPAGE_RESV_MASK) | (unsigned long)map);
04f2cbe3
MG
420}
421
422static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
423{
04f2cbe3 424 VM_BUG_ON(!is_vm_hugetlb_page(vma));
f83a275d 425 VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
e7c4b0bf
AW
426
427 set_vma_private_data(vma, get_vma_private_data(vma) | flags);
04f2cbe3
MG
428}
429
430static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
431{
432 VM_BUG_ON(!is_vm_hugetlb_page(vma));
e7c4b0bf
AW
433
434 return (get_vma_private_data(vma) & flag) != 0;
a1e78772
MG
435}
436
04f2cbe3 437/* Reset counters to 0 and clear all HPAGE_RESV_* flags */
a1e78772
MG
438void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
439{
440 VM_BUG_ON(!is_vm_hugetlb_page(vma));
f83a275d 441 if (!(vma->vm_flags & VM_MAYSHARE))
a1e78772
MG
442 vma->vm_private_data = (void *)0;
443}
444
445/* Returns true if the VMA has associated reserve pages */
af0ed73e 446static int vma_has_reserves(struct vm_area_struct *vma, long chg)
a1e78772 447{
af0ed73e
JK
448 if (vma->vm_flags & VM_NORESERVE) {
449 /*
450 * This address is already reserved by other process(chg == 0),
451 * so, we should decrement reserved count. Without decrementing,
452 * reserve count remains after releasing inode, because this
453 * allocated page will go into page cache and is regarded as
454 * coming from reserved pool in releasing step. Currently, we
455 * don't have any other solution to deal with this situation
456 * properly, so add work-around here.
457 */
458 if (vma->vm_flags & VM_MAYSHARE && chg == 0)
459 return 1;
460 else
461 return 0;
462 }
a63884e9
JK
463
464 /* Shared mappings always use reserves */
f83a275d 465 if (vma->vm_flags & VM_MAYSHARE)
7f09ca51 466 return 1;
a63884e9
JK
467
468 /*
469 * Only the process that called mmap() has reserves for
470 * private mappings.
471 */
7f09ca51
MG
472 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER))
473 return 1;
a63884e9 474
7f09ca51 475 return 0;
a1e78772
MG
476}
477
0ebabb41
NH
478static void copy_gigantic_page(struct page *dst, struct page *src)
479{
480 int i;
481 struct hstate *h = page_hstate(src);
482 struct page *dst_base = dst;
483 struct page *src_base = src;
484
485 for (i = 0; i < pages_per_huge_page(h); ) {
486 cond_resched();
487 copy_highpage(dst, src);
488
489 i++;
490 dst = mem_map_next(dst, dst_base, i);
491 src = mem_map_next(src, src_base, i);
492 }
493}
494
495void copy_huge_page(struct page *dst, struct page *src)
496{
497 int i;
498 struct hstate *h = page_hstate(src);
499
500 if (unlikely(pages_per_huge_page(h) > MAX_ORDER_NR_PAGES)) {
501 copy_gigantic_page(dst, src);
502 return;
503 }
504
505 might_sleep();
506 for (i = 0; i < pages_per_huge_page(h); i++) {
507 cond_resched();
508 copy_highpage(dst + i, src + i);
509 }
510}
511
a5516438 512static void enqueue_huge_page(struct hstate *h, struct page *page)
1da177e4
LT
513{
514 int nid = page_to_nid(page);
0edaecfa 515 list_move(&page->lru, &h->hugepage_freelists[nid]);
a5516438
AK
516 h->free_huge_pages++;
517 h->free_huge_pages_node[nid]++;
1da177e4
LT
518}
519
bf50bab2
NH
520static struct page *dequeue_huge_page_node(struct hstate *h, int nid)
521{
522 struct page *page;
523
524 if (list_empty(&h->hugepage_freelists[nid]))
525 return NULL;
526 page = list_entry(h->hugepage_freelists[nid].next, struct page, lru);
0edaecfa 527 list_move(&page->lru, &h->hugepage_activelist);
a9869b83 528 set_page_refcounted(page);
bf50bab2
NH
529 h->free_huge_pages--;
530 h->free_huge_pages_node[nid]--;
531 return page;
532}
533
a5516438
AK
534static struct page *dequeue_huge_page_vma(struct hstate *h,
535 struct vm_area_struct *vma,
af0ed73e
JK
536 unsigned long address, int avoid_reserve,
537 long chg)
1da177e4 538{
b1c12cbc 539 struct page *page = NULL;
480eccf9 540 struct mempolicy *mpol;
19770b32 541 nodemask_t *nodemask;
c0ff7453 542 struct zonelist *zonelist;
dd1a239f
MG
543 struct zone *zone;
544 struct zoneref *z;
cc9a6c87 545 unsigned int cpuset_mems_cookie;
1da177e4 546
a1e78772
MG
547 /*
548 * A child process with MAP_PRIVATE mappings created by their parent
549 * have no page reserves. This check ensures that reservations are
550 * not "stolen". The child may still get SIGKILLed
551 */
af0ed73e 552 if (!vma_has_reserves(vma, chg) &&
a5516438 553 h->free_huge_pages - h->resv_huge_pages == 0)
c0ff7453 554 goto err;
a1e78772 555
04f2cbe3 556 /* If reserves cannot be used, ensure enough pages are in the pool */
a5516438 557 if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
6eab04a8 558 goto err;
04f2cbe3 559
9966c4bb
JK
560retry_cpuset:
561 cpuset_mems_cookie = get_mems_allowed();
562 zonelist = huge_zonelist(vma, address,
563 htlb_alloc_mask, &mpol, &nodemask);
564
19770b32
MG
565 for_each_zone_zonelist_nodemask(zone, z, zonelist,
566 MAX_NR_ZONES - 1, nodemask) {
bf50bab2
NH
567 if (cpuset_zone_allowed_softwall(zone, htlb_alloc_mask)) {
568 page = dequeue_huge_page_node(h, zone_to_nid(zone));
569 if (page) {
af0ed73e
JK
570 if (avoid_reserve)
571 break;
572 if (!vma_has_reserves(vma, chg))
573 break;
574
07443a85 575 SetPagePrivate(page);
af0ed73e 576 h->resv_huge_pages--;
bf50bab2
NH
577 break;
578 }
3abf7afd 579 }
1da177e4 580 }
cc9a6c87 581
52cd3b07 582 mpol_cond_put(mpol);
cc9a6c87
MG
583 if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !page))
584 goto retry_cpuset;
1da177e4 585 return page;
cc9a6c87
MG
586
587err:
cc9a6c87 588 return NULL;
1da177e4
LT
589}
590
a5516438 591static void update_and_free_page(struct hstate *h, struct page *page)
6af2acb6
AL
592{
593 int i;
a5516438 594
18229df5
AW
595 VM_BUG_ON(h->order >= MAX_ORDER);
596
a5516438
AK
597 h->nr_huge_pages--;
598 h->nr_huge_pages_node[page_to_nid(page)]--;
599 for (i = 0; i < pages_per_huge_page(h); i++) {
32f84528
CF
600 page[i].flags &= ~(1 << PG_locked | 1 << PG_error |
601 1 << PG_referenced | 1 << PG_dirty |
602 1 << PG_active | 1 << PG_reserved |
603 1 << PG_private | 1 << PG_writeback);
6af2acb6 604 }
9dd540e2 605 VM_BUG_ON(hugetlb_cgroup_from_page(page));
6af2acb6
AL
606 set_compound_page_dtor(page, NULL);
607 set_page_refcounted(page);
7f2e9525 608 arch_release_hugepage(page);
a5516438 609 __free_pages(page, huge_page_order(h));
6af2acb6
AL
610}
611
e5ff2159
AK
612struct hstate *size_to_hstate(unsigned long size)
613{
614 struct hstate *h;
615
616 for_each_hstate(h) {
617 if (huge_page_size(h) == size)
618 return h;
619 }
620 return NULL;
621}
622
27a85ef1
DG
623static void free_huge_page(struct page *page)
624{
a5516438
AK
625 /*
626 * Can't pass hstate in here because it is called from the
627 * compound page destructor.
628 */
e5ff2159 629 struct hstate *h = page_hstate(page);
7893d1d5 630 int nid = page_to_nid(page);
90481622
DG
631 struct hugepage_subpool *spool =
632 (struct hugepage_subpool *)page_private(page);
07443a85 633 bool restore_reserve;
27a85ef1 634
e5df70ab 635 set_page_private(page, 0);
23be7468 636 page->mapping = NULL;
7893d1d5 637 BUG_ON(page_count(page));
0fe6e20b 638 BUG_ON(page_mapcount(page));
07443a85 639 restore_reserve = PagePrivate(page);
27a85ef1
DG
640
641 spin_lock(&hugetlb_lock);
6d76dcf4
AK
642 hugetlb_cgroup_uncharge_page(hstate_index(h),
643 pages_per_huge_page(h), page);
07443a85
JK
644 if (restore_reserve)
645 h->resv_huge_pages++;
646
aa888a74 647 if (h->surplus_huge_pages_node[nid] && huge_page_order(h) < MAX_ORDER) {
0edaecfa
AK
648 /* remove the page from active list */
649 list_del(&page->lru);
a5516438
AK
650 update_and_free_page(h, page);
651 h->surplus_huge_pages--;
652 h->surplus_huge_pages_node[nid]--;
7893d1d5 653 } else {
5d3a551c 654 arch_clear_hugepage_flags(page);
a5516438 655 enqueue_huge_page(h, page);
7893d1d5 656 }
27a85ef1 657 spin_unlock(&hugetlb_lock);
90481622 658 hugepage_subpool_put_pages(spool, 1);
27a85ef1
DG
659}
660
a5516438 661static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
b7ba30c6 662{
0edaecfa 663 INIT_LIST_HEAD(&page->lru);
b7ba30c6
AK
664 set_compound_page_dtor(page, free_huge_page);
665 spin_lock(&hugetlb_lock);
9dd540e2 666 set_hugetlb_cgroup(page, NULL);
a5516438
AK
667 h->nr_huge_pages++;
668 h->nr_huge_pages_node[nid]++;
b7ba30c6
AK
669 spin_unlock(&hugetlb_lock);
670 put_page(page); /* free it into the hugepage allocator */
671}
672
20a0307c
WF
673static void prep_compound_gigantic_page(struct page *page, unsigned long order)
674{
675 int i;
676 int nr_pages = 1 << order;
677 struct page *p = page + 1;
678
679 /* we rely on prep_new_huge_page to set the destructor */
680 set_compound_order(page, order);
681 __SetPageHead(page);
682 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
683 __SetPageTail(p);
58a84aa9 684 set_page_count(p, 0);
20a0307c
WF
685 p->first_page = page;
686 }
687}
688
7795912c
AM
689/*
690 * PageHuge() only returns true for hugetlbfs pages, but not for normal or
691 * transparent huge pages. See the PageTransHuge() documentation for more
692 * details.
693 */
20a0307c
WF
694int PageHuge(struct page *page)
695{
696 compound_page_dtor *dtor;
697
698 if (!PageCompound(page))
699 return 0;
700
701 page = compound_head(page);
702 dtor = get_compound_page_dtor(page);
703
704 return dtor == free_huge_page;
705}
43131e14
NH
706EXPORT_SYMBOL_GPL(PageHuge);
707
13d60f4b
ZY
708pgoff_t __basepage_index(struct page *page)
709{
710 struct page *page_head = compound_head(page);
711 pgoff_t index = page_index(page_head);
712 unsigned long compound_idx;
713
714 if (!PageHuge(page_head))
715 return page_index(page);
716
717 if (compound_order(page_head) >= MAX_ORDER)
718 compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
719 else
720 compound_idx = page - page_head;
721
722 return (index << compound_order(page_head)) + compound_idx;
723}
724
a5516438 725static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid)
1da177e4 726{
1da177e4 727 struct page *page;
f96efd58 728
aa888a74
AK
729 if (h->order >= MAX_ORDER)
730 return NULL;
731
6484eb3e 732 page = alloc_pages_exact_node(nid,
551883ae
NA
733 htlb_alloc_mask|__GFP_COMP|__GFP_THISNODE|
734 __GFP_REPEAT|__GFP_NOWARN,
a5516438 735 huge_page_order(h));
1da177e4 736 if (page) {
7f2e9525 737 if (arch_prepare_hugepage(page)) {
caff3a2c 738 __free_pages(page, huge_page_order(h));
7b8ee84d 739 return NULL;
7f2e9525 740 }
a5516438 741 prep_new_huge_page(h, page, nid);
1da177e4 742 }
63b4613c
NA
743
744 return page;
745}
746
9a76db09 747/*
6ae11b27
LS
748 * common helper functions for hstate_next_node_to_{alloc|free}.
749 * We may have allocated or freed a huge page based on a different
750 * nodes_allowed previously, so h->next_node_to_{alloc|free} might
751 * be outside of *nodes_allowed. Ensure that we use an allowed
752 * node for alloc or free.
9a76db09 753 */
6ae11b27 754static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
9a76db09 755{
6ae11b27 756 nid = next_node(nid, *nodes_allowed);
9a76db09 757 if (nid == MAX_NUMNODES)
6ae11b27 758 nid = first_node(*nodes_allowed);
9a76db09
LS
759 VM_BUG_ON(nid >= MAX_NUMNODES);
760
761 return nid;
762}
763
6ae11b27
LS
764static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
765{
766 if (!node_isset(nid, *nodes_allowed))
767 nid = next_node_allowed(nid, nodes_allowed);
768 return nid;
769}
770
5ced66c9 771/*
6ae11b27
LS
772 * returns the previously saved node ["this node"] from which to
773 * allocate a persistent huge page for the pool and advance the
774 * next node from which to allocate, handling wrap at end of node
775 * mask.
5ced66c9 776 */
6ae11b27
LS
777static int hstate_next_node_to_alloc(struct hstate *h,
778 nodemask_t *nodes_allowed)
5ced66c9 779{
6ae11b27
LS
780 int nid;
781
782 VM_BUG_ON(!nodes_allowed);
783
784 nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
785 h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
9a76db09 786
9a76db09 787 return nid;
5ced66c9
AK
788}
789
e8c5c824 790/*
6ae11b27
LS
791 * helper for free_pool_huge_page() - return the previously saved
792 * node ["this node"] from which to free a huge page. Advance the
793 * next node id whether or not we find a free huge page to free so
794 * that the next attempt to free addresses the next node.
e8c5c824 795 */
6ae11b27 796static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
e8c5c824 797{
6ae11b27
LS
798 int nid;
799
800 VM_BUG_ON(!nodes_allowed);
801
802 nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
803 h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
9a76db09 804
9a76db09 805 return nid;
e8c5c824
LS
806}
807
b2261026
JK
808#define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask) \
809 for (nr_nodes = nodes_weight(*mask); \
810 nr_nodes > 0 && \
811 ((node = hstate_next_node_to_alloc(hs, mask)) || 1); \
812 nr_nodes--)
813
814#define for_each_node_mask_to_free(hs, nr_nodes, node, mask) \
815 for (nr_nodes = nodes_weight(*mask); \
816 nr_nodes > 0 && \
817 ((node = hstate_next_node_to_free(hs, mask)) || 1); \
818 nr_nodes--)
819
820static int alloc_fresh_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
821{
822 struct page *page;
823 int nr_nodes, node;
824 int ret = 0;
825
826 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
827 page = alloc_fresh_huge_page_node(h, node);
828 if (page) {
829 ret = 1;
830 break;
831 }
832 }
833
834 if (ret)
835 count_vm_event(HTLB_BUDDY_PGALLOC);
836 else
837 count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
838
839 return ret;
840}
841
e8c5c824
LS
842/*
843 * Free huge page from pool from next node to free.
844 * Attempt to keep persistent huge pages more or less
845 * balanced over allowed nodes.
846 * Called with hugetlb_lock locked.
847 */
6ae11b27
LS
848static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
849 bool acct_surplus)
e8c5c824 850{
b2261026 851 int nr_nodes, node;
e8c5c824
LS
852 int ret = 0;
853
b2261026 854 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
685f3457
LS
855 /*
856 * If we're returning unused surplus pages, only examine
857 * nodes with surplus pages.
858 */
b2261026
JK
859 if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
860 !list_empty(&h->hugepage_freelists[node])) {
e8c5c824 861 struct page *page =
b2261026 862 list_entry(h->hugepage_freelists[node].next,
e8c5c824
LS
863 struct page, lru);
864 list_del(&page->lru);
865 h->free_huge_pages--;
b2261026 866 h->free_huge_pages_node[node]--;
685f3457
LS
867 if (acct_surplus) {
868 h->surplus_huge_pages--;
b2261026 869 h->surplus_huge_pages_node[node]--;
685f3457 870 }
e8c5c824
LS
871 update_and_free_page(h, page);
872 ret = 1;
9a76db09 873 break;
e8c5c824 874 }
b2261026 875 }
e8c5c824
LS
876
877 return ret;
878}
879
bf50bab2 880static struct page *alloc_buddy_huge_page(struct hstate *h, int nid)
7893d1d5
AL
881{
882 struct page *page;
bf50bab2 883 unsigned int r_nid;
7893d1d5 884
aa888a74
AK
885 if (h->order >= MAX_ORDER)
886 return NULL;
887
d1c3fb1f
NA
888 /*
889 * Assume we will successfully allocate the surplus page to
890 * prevent racing processes from causing the surplus to exceed
891 * overcommit
892 *
893 * This however introduces a different race, where a process B
894 * tries to grow the static hugepage pool while alloc_pages() is
895 * called by process A. B will only examine the per-node
896 * counters in determining if surplus huge pages can be
897 * converted to normal huge pages in adjust_pool_surplus(). A
898 * won't be able to increment the per-node counter, until the
899 * lock is dropped by B, but B doesn't drop hugetlb_lock until
900 * no more huge pages can be converted from surplus to normal
901 * state (and doesn't try to convert again). Thus, we have a
902 * case where a surplus huge page exists, the pool is grown, and
903 * the surplus huge page still exists after, even though it
904 * should just have been converted to a normal huge page. This
905 * does not leak memory, though, as the hugepage will be freed
906 * once it is out of use. It also does not allow the counters to
907 * go out of whack in adjust_pool_surplus() as we don't modify
908 * the node values until we've gotten the hugepage and only the
909 * per-node value is checked there.
910 */
911 spin_lock(&hugetlb_lock);
a5516438 912 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
d1c3fb1f
NA
913 spin_unlock(&hugetlb_lock);
914 return NULL;
915 } else {
a5516438
AK
916 h->nr_huge_pages++;
917 h->surplus_huge_pages++;
d1c3fb1f
NA
918 }
919 spin_unlock(&hugetlb_lock);
920
bf50bab2
NH
921 if (nid == NUMA_NO_NODE)
922 page = alloc_pages(htlb_alloc_mask|__GFP_COMP|
923 __GFP_REPEAT|__GFP_NOWARN,
924 huge_page_order(h));
925 else
926 page = alloc_pages_exact_node(nid,
927 htlb_alloc_mask|__GFP_COMP|__GFP_THISNODE|
928 __GFP_REPEAT|__GFP_NOWARN, huge_page_order(h));
d1c3fb1f 929
caff3a2c
GS
930 if (page && arch_prepare_hugepage(page)) {
931 __free_pages(page, huge_page_order(h));
ea5768c7 932 page = NULL;
caff3a2c
GS
933 }
934
d1c3fb1f 935 spin_lock(&hugetlb_lock);
7893d1d5 936 if (page) {
0edaecfa 937 INIT_LIST_HEAD(&page->lru);
bf50bab2 938 r_nid = page_to_nid(page);
7893d1d5 939 set_compound_page_dtor(page, free_huge_page);
9dd540e2 940 set_hugetlb_cgroup(page, NULL);
d1c3fb1f
NA
941 /*
942 * We incremented the global counters already
943 */
bf50bab2
NH
944 h->nr_huge_pages_node[r_nid]++;
945 h->surplus_huge_pages_node[r_nid]++;
3b116300 946 __count_vm_event(HTLB_BUDDY_PGALLOC);
d1c3fb1f 947 } else {
a5516438
AK
948 h->nr_huge_pages--;
949 h->surplus_huge_pages--;
3b116300 950 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
7893d1d5 951 }
d1c3fb1f 952 spin_unlock(&hugetlb_lock);
7893d1d5
AL
953
954 return page;
955}
956
bf50bab2
NH
957/*
958 * This allocation function is useful in the context where vma is irrelevant.
959 * E.g. soft-offlining uses this function because it only cares physical
960 * address of error page.
961 */
962struct page *alloc_huge_page_node(struct hstate *h, int nid)
963{
4ef91848 964 struct page *page = NULL;
bf50bab2
NH
965
966 spin_lock(&hugetlb_lock);
4ef91848
JK
967 if (h->free_huge_pages - h->resv_huge_pages > 0)
968 page = dequeue_huge_page_node(h, nid);
bf50bab2
NH
969 spin_unlock(&hugetlb_lock);
970
94ae8ba7 971 if (!page)
bf50bab2
NH
972 page = alloc_buddy_huge_page(h, nid);
973
974 return page;
975}
976
e4e574b7 977/*
25985edc 978 * Increase the hugetlb pool such that it can accommodate a reservation
e4e574b7
AL
979 * of size 'delta'.
980 */
a5516438 981static int gather_surplus_pages(struct hstate *h, int delta)
e4e574b7
AL
982{
983 struct list_head surplus_list;
984 struct page *page, *tmp;
985 int ret, i;
986 int needed, allocated;
28073b02 987 bool alloc_ok = true;
e4e574b7 988
a5516438 989 needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
ac09b3a1 990 if (needed <= 0) {
a5516438 991 h->resv_huge_pages += delta;
e4e574b7 992 return 0;
ac09b3a1 993 }
e4e574b7
AL
994
995 allocated = 0;
996 INIT_LIST_HEAD(&surplus_list);
997
998 ret = -ENOMEM;
999retry:
1000 spin_unlock(&hugetlb_lock);
1001 for (i = 0; i < needed; i++) {
bf50bab2 1002 page = alloc_buddy_huge_page(h, NUMA_NO_NODE);
28073b02
HD
1003 if (!page) {
1004 alloc_ok = false;
1005 break;
1006 }
e4e574b7
AL
1007 list_add(&page->lru, &surplus_list);
1008 }
28073b02 1009 allocated += i;
e4e574b7
AL
1010
1011 /*
1012 * After retaking hugetlb_lock, we need to recalculate 'needed'
1013 * because either resv_huge_pages or free_huge_pages may have changed.
1014 */
1015 spin_lock(&hugetlb_lock);
a5516438
AK
1016 needed = (h->resv_huge_pages + delta) -
1017 (h->free_huge_pages + allocated);
28073b02
HD
1018 if (needed > 0) {
1019 if (alloc_ok)
1020 goto retry;
1021 /*
1022 * We were not able to allocate enough pages to
1023 * satisfy the entire reservation so we free what
1024 * we've allocated so far.
1025 */
1026 goto free;
1027 }
e4e574b7
AL
1028 /*
1029 * The surplus_list now contains _at_least_ the number of extra pages
25985edc 1030 * needed to accommodate the reservation. Add the appropriate number
e4e574b7 1031 * of pages to the hugetlb pool and free the extras back to the buddy
ac09b3a1
AL
1032 * allocator. Commit the entire reservation here to prevent another
1033 * process from stealing the pages as they are added to the pool but
1034 * before they are reserved.
e4e574b7
AL
1035 */
1036 needed += allocated;
a5516438 1037 h->resv_huge_pages += delta;
e4e574b7 1038 ret = 0;
a9869b83 1039
19fc3f0a 1040 /* Free the needed pages to the hugetlb pool */
e4e574b7 1041 list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
19fc3f0a
AL
1042 if ((--needed) < 0)
1043 break;
a9869b83
NH
1044 /*
1045 * This page is now managed by the hugetlb allocator and has
1046 * no users -- drop the buddy allocator's reference.
1047 */
1048 put_page_testzero(page);
1049 VM_BUG_ON(page_count(page));
a5516438 1050 enqueue_huge_page(h, page);
19fc3f0a 1051 }
28073b02 1052free:
b0365c8d 1053 spin_unlock(&hugetlb_lock);
19fc3f0a
AL
1054
1055 /* Free unnecessary surplus pages to the buddy allocator */
c0d934ba
JK
1056 list_for_each_entry_safe(page, tmp, &surplus_list, lru)
1057 put_page(page);
a9869b83 1058 spin_lock(&hugetlb_lock);
e4e574b7
AL
1059
1060 return ret;
1061}
1062
1063/*
1064 * When releasing a hugetlb pool reservation, any surplus pages that were
1065 * allocated to satisfy the reservation must be explicitly freed if they were
1066 * never used.
685f3457 1067 * Called with hugetlb_lock held.
e4e574b7 1068 */
a5516438
AK
1069static void return_unused_surplus_pages(struct hstate *h,
1070 unsigned long unused_resv_pages)
e4e574b7 1071{
e4e574b7
AL
1072 unsigned long nr_pages;
1073
ac09b3a1 1074 /* Uncommit the reservation */
a5516438 1075 h->resv_huge_pages -= unused_resv_pages;
ac09b3a1 1076
aa888a74
AK
1077 /* Cannot return gigantic pages currently */
1078 if (h->order >= MAX_ORDER)
1079 return;
1080
a5516438 1081 nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
e4e574b7 1082
685f3457
LS
1083 /*
1084 * We want to release as many surplus pages as possible, spread
9b5e5d0f
LS
1085 * evenly across all nodes with memory. Iterate across these nodes
1086 * until we can no longer free unreserved surplus pages. This occurs
1087 * when the nodes with surplus pages have no free pages.
1088 * free_pool_huge_page() will balance the the freed pages across the
1089 * on-line nodes with memory and will handle the hstate accounting.
685f3457
LS
1090 */
1091 while (nr_pages--) {
8cebfcd0 1092 if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1))
685f3457 1093 break;
e4e574b7
AL
1094 }
1095}
1096
c37f9fb1
AW
1097/*
1098 * Determine if the huge page at addr within the vma has an associated
1099 * reservation. Where it does not we will need to logically increase
90481622
DG
1100 * reservation and actually increase subpool usage before an allocation
1101 * can occur. Where any new reservation would be required the
1102 * reservation change is prepared, but not committed. Once the page
1103 * has been allocated from the subpool and instantiated the change should
1104 * be committed via vma_commit_reservation. No action is required on
1105 * failure.
c37f9fb1 1106 */
e2f17d94 1107static long vma_needs_reservation(struct hstate *h,
a5516438 1108 struct vm_area_struct *vma, unsigned long addr)
c37f9fb1
AW
1109{
1110 struct address_space *mapping = vma->vm_file->f_mapping;
1111 struct inode *inode = mapping->host;
1112
f83a275d 1113 if (vma->vm_flags & VM_MAYSHARE) {
a5516438 1114 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
c37f9fb1
AW
1115 return region_chg(&inode->i_mapping->private_list,
1116 idx, idx + 1);
1117
84afd99b
AW
1118 } else if (!is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1119 return 1;
c37f9fb1 1120
84afd99b 1121 } else {
e2f17d94 1122 long err;
a5516438 1123 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
f522c3ac 1124 struct resv_map *resv = vma_resv_map(vma);
84afd99b 1125
f522c3ac 1126 err = region_chg(&resv->regions, idx, idx + 1);
84afd99b
AW
1127 if (err < 0)
1128 return err;
1129 return 0;
1130 }
c37f9fb1 1131}
a5516438
AK
1132static void vma_commit_reservation(struct hstate *h,
1133 struct vm_area_struct *vma, unsigned long addr)
c37f9fb1
AW
1134{
1135 struct address_space *mapping = vma->vm_file->f_mapping;
1136 struct inode *inode = mapping->host;
1137
f83a275d 1138 if (vma->vm_flags & VM_MAYSHARE) {
a5516438 1139 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
c37f9fb1 1140 region_add(&inode->i_mapping->private_list, idx, idx + 1);
84afd99b
AW
1141
1142 } else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
a5516438 1143 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
f522c3ac 1144 struct resv_map *resv = vma_resv_map(vma);
84afd99b
AW
1145
1146 /* Mark this page used in the map. */
f522c3ac 1147 region_add(&resv->regions, idx, idx + 1);
c37f9fb1
AW
1148 }
1149}
1150
a1e78772 1151static struct page *alloc_huge_page(struct vm_area_struct *vma,
04f2cbe3 1152 unsigned long addr, int avoid_reserve)
1da177e4 1153{
90481622 1154 struct hugepage_subpool *spool = subpool_vma(vma);
a5516438 1155 struct hstate *h = hstate_vma(vma);
348ea204 1156 struct page *page;
e2f17d94 1157 long chg;
6d76dcf4
AK
1158 int ret, idx;
1159 struct hugetlb_cgroup *h_cg;
a1e78772 1160
6d76dcf4 1161 idx = hstate_index(h);
a1e78772 1162 /*
90481622
DG
1163 * Processes that did not create the mapping will have no
1164 * reserves and will not have accounted against subpool
1165 * limit. Check that the subpool limit can be made before
1166 * satisfying the allocation MAP_NORESERVE mappings may also
1167 * need pages and subpool limit allocated allocated if no reserve
1168 * mapping overlaps.
a1e78772 1169 */
a5516438 1170 chg = vma_needs_reservation(h, vma, addr);
c37f9fb1 1171 if (chg < 0)
76dcee75 1172 return ERR_PTR(-ENOMEM);
8bb3f12e
JK
1173 if (chg || avoid_reserve)
1174 if (hugepage_subpool_get_pages(spool, 1))
76dcee75 1175 return ERR_PTR(-ENOSPC);
1da177e4 1176
6d76dcf4
AK
1177 ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
1178 if (ret) {
8bb3f12e
JK
1179 if (chg || avoid_reserve)
1180 hugepage_subpool_put_pages(spool, 1);
6d76dcf4
AK
1181 return ERR_PTR(-ENOSPC);
1182 }
1da177e4 1183 spin_lock(&hugetlb_lock);
af0ed73e 1184 page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, chg);
81a6fcae 1185 if (!page) {
94ae8ba7 1186 spin_unlock(&hugetlb_lock);
bf50bab2 1187 page = alloc_buddy_huge_page(h, NUMA_NO_NODE);
68842c9b 1188 if (!page) {
6d76dcf4
AK
1189 hugetlb_cgroup_uncharge_cgroup(idx,
1190 pages_per_huge_page(h),
1191 h_cg);
8bb3f12e
JK
1192 if (chg || avoid_reserve)
1193 hugepage_subpool_put_pages(spool, 1);
76dcee75 1194 return ERR_PTR(-ENOSPC);
68842c9b 1195 }
79dbb236
AK
1196 spin_lock(&hugetlb_lock);
1197 list_move(&page->lru, &h->hugepage_activelist);
81a6fcae 1198 /* Fall through */
68842c9b 1199 }
81a6fcae
JK
1200 hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
1201 spin_unlock(&hugetlb_lock);
348ea204 1202
90481622 1203 set_page_private(page, (unsigned long)spool);
90d8b7e6 1204
a5516438 1205 vma_commit_reservation(h, vma, addr);
90d8b7e6 1206 return page;
b45b5bd6
DG
1207}
1208
91f47662 1209int __weak alloc_bootmem_huge_page(struct hstate *h)
aa888a74
AK
1210{
1211 struct huge_bootmem_page *m;
b2261026 1212 int nr_nodes, node;
aa888a74 1213
b2261026 1214 for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
aa888a74
AK
1215 void *addr;
1216
b2261026 1217 addr = __alloc_bootmem_node_nopanic(NODE_DATA(node),
aa888a74
AK
1218 huge_page_size(h), huge_page_size(h), 0);
1219
1220 if (addr) {
1221 /*
1222 * Use the beginning of the huge page to store the
1223 * huge_bootmem_page struct (until gather_bootmem
1224 * puts them into the mem_map).
1225 */
1226 m = addr;
91f47662 1227 goto found;
aa888a74 1228 }
aa888a74
AK
1229 }
1230 return 0;
1231
1232found:
1233 BUG_ON((unsigned long)virt_to_phys(m) & (huge_page_size(h) - 1));
1234 /* Put them into a private list first because mem_map is not up yet */
1235 list_add(&m->list, &huge_boot_pages);
1236 m->hstate = h;
1237 return 1;
1238}
1239
18229df5
AW
1240static void prep_compound_huge_page(struct page *page, int order)
1241{
1242 if (unlikely(order > (MAX_ORDER - 1)))
1243 prep_compound_gigantic_page(page, order);
1244 else
1245 prep_compound_page(page, order);
1246}
1247
aa888a74
AK
1248/* Put bootmem huge pages into the standard lists after mem_map is up */
1249static void __init gather_bootmem_prealloc(void)
1250{
1251 struct huge_bootmem_page *m;
1252
1253 list_for_each_entry(m, &huge_boot_pages, list) {
aa888a74 1254 struct hstate *h = m->hstate;
ee8f248d
BB
1255 struct page *page;
1256
1257#ifdef CONFIG_HIGHMEM
1258 page = pfn_to_page(m->phys >> PAGE_SHIFT);
1259 free_bootmem_late((unsigned long)m,
1260 sizeof(struct huge_bootmem_page));
1261#else
1262 page = virt_to_page(m);
1263#endif
aa888a74
AK
1264 __ClearPageReserved(page);
1265 WARN_ON(page_count(page) != 1);
18229df5 1266 prep_compound_huge_page(page, h->order);
aa888a74 1267 prep_new_huge_page(h, page, page_to_nid(page));
b0320c7b
RA
1268 /*
1269 * If we had gigantic hugepages allocated at boot time, we need
1270 * to restore the 'stolen' pages to totalram_pages in order to
1271 * fix confusing memory reports from free(1) and another
1272 * side-effects, like CommitLimit going negative.
1273 */
1274 if (h->order > (MAX_ORDER - 1))
3dcc0571 1275 adjust_managed_page_count(page, 1 << h->order);
aa888a74
AK
1276 }
1277}
1278
8faa8b07 1279static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
1da177e4
LT
1280{
1281 unsigned long i;
a5516438 1282
e5ff2159 1283 for (i = 0; i < h->max_huge_pages; ++i) {
aa888a74
AK
1284 if (h->order >= MAX_ORDER) {
1285 if (!alloc_bootmem_huge_page(h))
1286 break;
9b5e5d0f 1287 } else if (!alloc_fresh_huge_page(h,
8cebfcd0 1288 &node_states[N_MEMORY]))
1da177e4 1289 break;
1da177e4 1290 }
8faa8b07 1291 h->max_huge_pages = i;
e5ff2159
AK
1292}
1293
1294static void __init hugetlb_init_hstates(void)
1295{
1296 struct hstate *h;
1297
1298 for_each_hstate(h) {
8faa8b07
AK
1299 /* oversize hugepages were init'ed in early boot */
1300 if (h->order < MAX_ORDER)
1301 hugetlb_hstate_alloc_pages(h);
e5ff2159
AK
1302 }
1303}
1304
4abd32db
AK
1305static char * __init memfmt(char *buf, unsigned long n)
1306{
1307 if (n >= (1UL << 30))
1308 sprintf(buf, "%lu GB", n >> 30);
1309 else if (n >= (1UL << 20))
1310 sprintf(buf, "%lu MB", n >> 20);
1311 else
1312 sprintf(buf, "%lu KB", n >> 10);
1313 return buf;
1314}
1315
e5ff2159
AK
1316static void __init report_hugepages(void)
1317{
1318 struct hstate *h;
1319
1320 for_each_hstate(h) {
4abd32db 1321 char buf[32];
ffb22af5 1322 pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
4abd32db
AK
1323 memfmt(buf, huge_page_size(h)),
1324 h->free_huge_pages);
e5ff2159
AK
1325 }
1326}
1327
1da177e4 1328#ifdef CONFIG_HIGHMEM
6ae11b27
LS
1329static void try_to_free_low(struct hstate *h, unsigned long count,
1330 nodemask_t *nodes_allowed)
1da177e4 1331{
4415cc8d
CL
1332 int i;
1333
aa888a74
AK
1334 if (h->order >= MAX_ORDER)
1335 return;
1336
6ae11b27 1337 for_each_node_mask(i, *nodes_allowed) {
1da177e4 1338 struct page *page, *next;
a5516438
AK
1339 struct list_head *freel = &h->hugepage_freelists[i];
1340 list_for_each_entry_safe(page, next, freel, lru) {
1341 if (count >= h->nr_huge_pages)
6b0c880d 1342 return;
1da177e4
LT
1343 if (PageHighMem(page))
1344 continue;
1345 list_del(&page->lru);
e5ff2159 1346 update_and_free_page(h, page);
a5516438
AK
1347 h->free_huge_pages--;
1348 h->free_huge_pages_node[page_to_nid(page)]--;
1da177e4
LT
1349 }
1350 }
1351}
1352#else
6ae11b27
LS
1353static inline void try_to_free_low(struct hstate *h, unsigned long count,
1354 nodemask_t *nodes_allowed)
1da177e4
LT
1355{
1356}
1357#endif
1358
20a0307c
WF
1359/*
1360 * Increment or decrement surplus_huge_pages. Keep node-specific counters
1361 * balanced by operating on them in a round-robin fashion.
1362 * Returns 1 if an adjustment was made.
1363 */
6ae11b27
LS
1364static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
1365 int delta)
20a0307c 1366{
b2261026 1367 int nr_nodes, node;
20a0307c
WF
1368
1369 VM_BUG_ON(delta != -1 && delta != 1);
20a0307c 1370
b2261026
JK
1371 if (delta < 0) {
1372 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1373 if (h->surplus_huge_pages_node[node])
1374 goto found;
e8c5c824 1375 }
b2261026
JK
1376 } else {
1377 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
1378 if (h->surplus_huge_pages_node[node] <
1379 h->nr_huge_pages_node[node])
1380 goto found;
e8c5c824 1381 }
b2261026
JK
1382 }
1383 return 0;
20a0307c 1384
b2261026
JK
1385found:
1386 h->surplus_huge_pages += delta;
1387 h->surplus_huge_pages_node[node] += delta;
1388 return 1;
20a0307c
WF
1389}
1390
a5516438 1391#define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
6ae11b27
LS
1392static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count,
1393 nodemask_t *nodes_allowed)
1da177e4 1394{
7893d1d5 1395 unsigned long min_count, ret;
1da177e4 1396
aa888a74
AK
1397 if (h->order >= MAX_ORDER)
1398 return h->max_huge_pages;
1399
7893d1d5
AL
1400 /*
1401 * Increase the pool size
1402 * First take pages out of surplus state. Then make up the
1403 * remaining difference by allocating fresh huge pages.
d1c3fb1f
NA
1404 *
1405 * We might race with alloc_buddy_huge_page() here and be unable
1406 * to convert a surplus huge page to a normal huge page. That is
1407 * not critical, though, it just means the overall size of the
1408 * pool might be one hugepage larger than it needs to be, but
1409 * within all the constraints specified by the sysctls.
7893d1d5 1410 */
1da177e4 1411 spin_lock(&hugetlb_lock);
a5516438 1412 while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
6ae11b27 1413 if (!adjust_pool_surplus(h, nodes_allowed, -1))
7893d1d5
AL
1414 break;
1415 }
1416
a5516438 1417 while (count > persistent_huge_pages(h)) {
7893d1d5
AL
1418 /*
1419 * If this allocation races such that we no longer need the
1420 * page, free_huge_page will handle it by freeing the page
1421 * and reducing the surplus.
1422 */
1423 spin_unlock(&hugetlb_lock);
6ae11b27 1424 ret = alloc_fresh_huge_page(h, nodes_allowed);
7893d1d5
AL
1425 spin_lock(&hugetlb_lock);
1426 if (!ret)
1427 goto out;
1428
536240f2
MG
1429 /* Bail for signals. Probably ctrl-c from user */
1430 if (signal_pending(current))
1431 goto out;
7893d1d5 1432 }
7893d1d5
AL
1433
1434 /*
1435 * Decrease the pool size
1436 * First return free pages to the buddy allocator (being careful
1437 * to keep enough around to satisfy reservations). Then place
1438 * pages into surplus state as needed so the pool will shrink
1439 * to the desired size as pages become free.
d1c3fb1f
NA
1440 *
1441 * By placing pages into the surplus state independent of the
1442 * overcommit value, we are allowing the surplus pool size to
1443 * exceed overcommit. There are few sane options here. Since
1444 * alloc_buddy_huge_page() is checking the global counter,
1445 * though, we'll note that we're not allowed to exceed surplus
1446 * and won't grow the pool anywhere else. Not until one of the
1447 * sysctls are changed, or the surplus pages go out of use.
7893d1d5 1448 */
a5516438 1449 min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
6b0c880d 1450 min_count = max(count, min_count);
6ae11b27 1451 try_to_free_low(h, min_count, nodes_allowed);
a5516438 1452 while (min_count < persistent_huge_pages(h)) {
6ae11b27 1453 if (!free_pool_huge_page(h, nodes_allowed, 0))
1da177e4 1454 break;
1da177e4 1455 }
a5516438 1456 while (count < persistent_huge_pages(h)) {
6ae11b27 1457 if (!adjust_pool_surplus(h, nodes_allowed, 1))
7893d1d5
AL
1458 break;
1459 }
1460out:
a5516438 1461 ret = persistent_huge_pages(h);
1da177e4 1462 spin_unlock(&hugetlb_lock);
7893d1d5 1463 return ret;
1da177e4
LT
1464}
1465
a3437870
NA
1466#define HSTATE_ATTR_RO(_name) \
1467 static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
1468
1469#define HSTATE_ATTR(_name) \
1470 static struct kobj_attribute _name##_attr = \
1471 __ATTR(_name, 0644, _name##_show, _name##_store)
1472
1473static struct kobject *hugepages_kobj;
1474static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
1475
9a305230
LS
1476static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
1477
1478static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
a3437870
NA
1479{
1480 int i;
9a305230 1481
a3437870 1482 for (i = 0; i < HUGE_MAX_HSTATE; i++)
9a305230
LS
1483 if (hstate_kobjs[i] == kobj) {
1484 if (nidp)
1485 *nidp = NUMA_NO_NODE;
a3437870 1486 return &hstates[i];
9a305230
LS
1487 }
1488
1489 return kobj_to_node_hstate(kobj, nidp);
a3437870
NA
1490}
1491
06808b08 1492static ssize_t nr_hugepages_show_common(struct kobject *kobj,
a3437870
NA
1493 struct kobj_attribute *attr, char *buf)
1494{
9a305230
LS
1495 struct hstate *h;
1496 unsigned long nr_huge_pages;
1497 int nid;
1498
1499 h = kobj_to_hstate(kobj, &nid);
1500 if (nid == NUMA_NO_NODE)
1501 nr_huge_pages = h->nr_huge_pages;
1502 else
1503 nr_huge_pages = h->nr_huge_pages_node[nid];
1504
1505 return sprintf(buf, "%lu\n", nr_huge_pages);
a3437870 1506}
adbe8726 1507
06808b08
LS
1508static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
1509 struct kobject *kobj, struct kobj_attribute *attr,
1510 const char *buf, size_t len)
a3437870
NA
1511{
1512 int err;
9a305230 1513 int nid;
06808b08 1514 unsigned long count;
9a305230 1515 struct hstate *h;
bad44b5b 1516 NODEMASK_ALLOC(nodemask_t, nodes_allowed, GFP_KERNEL | __GFP_NORETRY);
a3437870 1517
3dbb95f7 1518 err = kstrtoul(buf, 10, &count);
73ae31e5 1519 if (err)
adbe8726 1520 goto out;
a3437870 1521
9a305230 1522 h = kobj_to_hstate(kobj, &nid);
adbe8726
EM
1523 if (h->order >= MAX_ORDER) {
1524 err = -EINVAL;
1525 goto out;
1526 }
1527
9a305230
LS
1528 if (nid == NUMA_NO_NODE) {
1529 /*
1530 * global hstate attribute
1531 */
1532 if (!(obey_mempolicy &&
1533 init_nodemask_of_mempolicy(nodes_allowed))) {
1534 NODEMASK_FREE(nodes_allowed);
8cebfcd0 1535 nodes_allowed = &node_states[N_MEMORY];
9a305230
LS
1536 }
1537 } else if (nodes_allowed) {
1538 /*
1539 * per node hstate attribute: adjust count to global,
1540 * but restrict alloc/free to the specified node.
1541 */
1542 count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
1543 init_nodemask_of_node(nodes_allowed, nid);
1544 } else
8cebfcd0 1545 nodes_allowed = &node_states[N_MEMORY];
9a305230 1546
06808b08 1547 h->max_huge_pages = set_max_huge_pages(h, count, nodes_allowed);
a3437870 1548
8cebfcd0 1549 if (nodes_allowed != &node_states[N_MEMORY])
06808b08
LS
1550 NODEMASK_FREE(nodes_allowed);
1551
1552 return len;
adbe8726
EM
1553out:
1554 NODEMASK_FREE(nodes_allowed);
1555 return err;
06808b08
LS
1556}
1557
1558static ssize_t nr_hugepages_show(struct kobject *kobj,
1559 struct kobj_attribute *attr, char *buf)
1560{
1561 return nr_hugepages_show_common(kobj, attr, buf);
1562}
1563
1564static ssize_t nr_hugepages_store(struct kobject *kobj,
1565 struct kobj_attribute *attr, const char *buf, size_t len)
1566{
1567 return nr_hugepages_store_common(false, kobj, attr, buf, len);
a3437870
NA
1568}
1569HSTATE_ATTR(nr_hugepages);
1570
06808b08
LS
1571#ifdef CONFIG_NUMA
1572
1573/*
1574 * hstate attribute for optionally mempolicy-based constraint on persistent
1575 * huge page alloc/free.
1576 */
1577static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
1578 struct kobj_attribute *attr, char *buf)
1579{
1580 return nr_hugepages_show_common(kobj, attr, buf);
1581}
1582
1583static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
1584 struct kobj_attribute *attr, const char *buf, size_t len)
1585{
1586 return nr_hugepages_store_common(true, kobj, attr, buf, len);
1587}
1588HSTATE_ATTR(nr_hugepages_mempolicy);
1589#endif
1590
1591
a3437870
NA
1592static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
1593 struct kobj_attribute *attr, char *buf)
1594{
9a305230 1595 struct hstate *h = kobj_to_hstate(kobj, NULL);
a3437870
NA
1596 return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
1597}
adbe8726 1598
a3437870
NA
1599static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
1600 struct kobj_attribute *attr, const char *buf, size_t count)
1601{
1602 int err;
1603 unsigned long input;
9a305230 1604 struct hstate *h = kobj_to_hstate(kobj, NULL);
a3437870 1605
adbe8726
EM
1606 if (h->order >= MAX_ORDER)
1607 return -EINVAL;
1608
3dbb95f7 1609 err = kstrtoul(buf, 10, &input);
a3437870 1610 if (err)
73ae31e5 1611 return err;
a3437870
NA
1612
1613 spin_lock(&hugetlb_lock);
1614 h->nr_overcommit_huge_pages = input;
1615 spin_unlock(&hugetlb_lock);
1616
1617 return count;
1618}
1619HSTATE_ATTR(nr_overcommit_hugepages);
1620
1621static ssize_t free_hugepages_show(struct kobject *kobj,
1622 struct kobj_attribute *attr, char *buf)
1623{
9a305230
LS
1624 struct hstate *h;
1625 unsigned long free_huge_pages;
1626 int nid;
1627
1628 h = kobj_to_hstate(kobj, &nid);
1629 if (nid == NUMA_NO_NODE)
1630 free_huge_pages = h->free_huge_pages;
1631 else
1632 free_huge_pages = h->free_huge_pages_node[nid];
1633
1634 return sprintf(buf, "%lu\n", free_huge_pages);
a3437870
NA
1635}
1636HSTATE_ATTR_RO(free_hugepages);
1637
1638static ssize_t resv_hugepages_show(struct kobject *kobj,
1639 struct kobj_attribute *attr, char *buf)
1640{
9a305230 1641 struct hstate *h = kobj_to_hstate(kobj, NULL);
a3437870
NA
1642 return sprintf(buf, "%lu\n", h->resv_huge_pages);
1643}
1644HSTATE_ATTR_RO(resv_hugepages);
1645
1646static ssize_t surplus_hugepages_show(struct kobject *kobj,
1647 struct kobj_attribute *attr, char *buf)
1648{
9a305230
LS
1649 struct hstate *h;
1650 unsigned long surplus_huge_pages;
1651 int nid;
1652
1653 h = kobj_to_hstate(kobj, &nid);
1654 if (nid == NUMA_NO_NODE)
1655 surplus_huge_pages = h->surplus_huge_pages;
1656 else
1657 surplus_huge_pages = h->surplus_huge_pages_node[nid];
1658
1659 return sprintf(buf, "%lu\n", surplus_huge_pages);
a3437870
NA
1660}
1661HSTATE_ATTR_RO(surplus_hugepages);
1662
1663static struct attribute *hstate_attrs[] = {
1664 &nr_hugepages_attr.attr,
1665 &nr_overcommit_hugepages_attr.attr,
1666 &free_hugepages_attr.attr,
1667 &resv_hugepages_attr.attr,
1668 &surplus_hugepages_attr.attr,
06808b08
LS
1669#ifdef CONFIG_NUMA
1670 &nr_hugepages_mempolicy_attr.attr,
1671#endif
a3437870
NA
1672 NULL,
1673};
1674
1675static struct attribute_group hstate_attr_group = {
1676 .attrs = hstate_attrs,
1677};
1678
094e9539
JM
1679static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
1680 struct kobject **hstate_kobjs,
1681 struct attribute_group *hstate_attr_group)
a3437870
NA
1682{
1683 int retval;
972dc4de 1684 int hi = hstate_index(h);
a3437870 1685
9a305230
LS
1686 hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
1687 if (!hstate_kobjs[hi])
a3437870
NA
1688 return -ENOMEM;
1689
9a305230 1690 retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
a3437870 1691 if (retval)
9a305230 1692 kobject_put(hstate_kobjs[hi]);
a3437870
NA
1693
1694 return retval;
1695}
1696
1697static void __init hugetlb_sysfs_init(void)
1698{
1699 struct hstate *h;
1700 int err;
1701
1702 hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
1703 if (!hugepages_kobj)
1704 return;
1705
1706 for_each_hstate(h) {
9a305230
LS
1707 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
1708 hstate_kobjs, &hstate_attr_group);
a3437870 1709 if (err)
ffb22af5 1710 pr_err("Hugetlb: Unable to add hstate %s", h->name);
a3437870
NA
1711 }
1712}
1713
9a305230
LS
1714#ifdef CONFIG_NUMA
1715
1716/*
1717 * node_hstate/s - associate per node hstate attributes, via their kobjects,
10fbcf4c
KS
1718 * with node devices in node_devices[] using a parallel array. The array
1719 * index of a node device or _hstate == node id.
1720 * This is here to avoid any static dependency of the node device driver, in
9a305230
LS
1721 * the base kernel, on the hugetlb module.
1722 */
1723struct node_hstate {
1724 struct kobject *hugepages_kobj;
1725 struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
1726};
1727struct node_hstate node_hstates[MAX_NUMNODES];
1728
1729/*
10fbcf4c 1730 * A subset of global hstate attributes for node devices
9a305230
LS
1731 */
1732static struct attribute *per_node_hstate_attrs[] = {
1733 &nr_hugepages_attr.attr,
1734 &free_hugepages_attr.attr,
1735 &surplus_hugepages_attr.attr,
1736 NULL,
1737};
1738
1739static struct attribute_group per_node_hstate_attr_group = {
1740 .attrs = per_node_hstate_attrs,
1741};
1742
1743/*
10fbcf4c 1744 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
9a305230
LS
1745 * Returns node id via non-NULL nidp.
1746 */
1747static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
1748{
1749 int nid;
1750
1751 for (nid = 0; nid < nr_node_ids; nid++) {
1752 struct node_hstate *nhs = &node_hstates[nid];
1753 int i;
1754 for (i = 0; i < HUGE_MAX_HSTATE; i++)
1755 if (nhs->hstate_kobjs[i] == kobj) {
1756 if (nidp)
1757 *nidp = nid;
1758 return &hstates[i];
1759 }
1760 }
1761
1762 BUG();
1763 return NULL;
1764}
1765
1766/*
10fbcf4c 1767 * Unregister hstate attributes from a single node device.
9a305230
LS
1768 * No-op if no hstate attributes attached.
1769 */
3cd8b44f 1770static void hugetlb_unregister_node(struct node *node)
9a305230
LS
1771{
1772 struct hstate *h;
10fbcf4c 1773 struct node_hstate *nhs = &node_hstates[node->dev.id];
9a305230
LS
1774
1775 if (!nhs->hugepages_kobj)
9b5e5d0f 1776 return; /* no hstate attributes */
9a305230 1777
972dc4de
AK
1778 for_each_hstate(h) {
1779 int idx = hstate_index(h);
1780 if (nhs->hstate_kobjs[idx]) {
1781 kobject_put(nhs->hstate_kobjs[idx]);
1782 nhs->hstate_kobjs[idx] = NULL;
9a305230 1783 }
972dc4de 1784 }
9a305230
LS
1785
1786 kobject_put(nhs->hugepages_kobj);
1787 nhs->hugepages_kobj = NULL;
1788}
1789
1790/*
10fbcf4c 1791 * hugetlb module exit: unregister hstate attributes from node devices
9a305230
LS
1792 * that have them.
1793 */
1794static void hugetlb_unregister_all_nodes(void)
1795{
1796 int nid;
1797
1798 /*
10fbcf4c 1799 * disable node device registrations.
9a305230
LS
1800 */
1801 register_hugetlbfs_with_node(NULL, NULL);
1802
1803 /*
1804 * remove hstate attributes from any nodes that have them.
1805 */
1806 for (nid = 0; nid < nr_node_ids; nid++)
8732794b 1807 hugetlb_unregister_node(node_devices[nid]);
9a305230
LS
1808}
1809
1810/*
10fbcf4c 1811 * Register hstate attributes for a single node device.
9a305230
LS
1812 * No-op if attributes already registered.
1813 */
3cd8b44f 1814static void hugetlb_register_node(struct node *node)
9a305230
LS
1815{
1816 struct hstate *h;
10fbcf4c 1817 struct node_hstate *nhs = &node_hstates[node->dev.id];
9a305230
LS
1818 int err;
1819
1820 if (nhs->hugepages_kobj)
1821 return; /* already allocated */
1822
1823 nhs->hugepages_kobj = kobject_create_and_add("hugepages",
10fbcf4c 1824 &node->dev.kobj);
9a305230
LS
1825 if (!nhs->hugepages_kobj)
1826 return;
1827
1828 for_each_hstate(h) {
1829 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
1830 nhs->hstate_kobjs,
1831 &per_node_hstate_attr_group);
1832 if (err) {
ffb22af5
AM
1833 pr_err("Hugetlb: Unable to add hstate %s for node %d\n",
1834 h->name, node->dev.id);
9a305230
LS
1835 hugetlb_unregister_node(node);
1836 break;
1837 }
1838 }
1839}
1840
1841/*
9b5e5d0f 1842 * hugetlb init time: register hstate attributes for all registered node
10fbcf4c
KS
1843 * devices of nodes that have memory. All on-line nodes should have
1844 * registered their associated device by this time.
9a305230
LS
1845 */
1846static void hugetlb_register_all_nodes(void)
1847{
1848 int nid;
1849
8cebfcd0 1850 for_each_node_state(nid, N_MEMORY) {
8732794b 1851 struct node *node = node_devices[nid];
10fbcf4c 1852 if (node->dev.id == nid)
9a305230
LS
1853 hugetlb_register_node(node);
1854 }
1855
1856 /*
10fbcf4c 1857 * Let the node device driver know we're here so it can
9a305230
LS
1858 * [un]register hstate attributes on node hotplug.
1859 */
1860 register_hugetlbfs_with_node(hugetlb_register_node,
1861 hugetlb_unregister_node);
1862}
1863#else /* !CONFIG_NUMA */
1864
1865static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
1866{
1867 BUG();
1868 if (nidp)
1869 *nidp = -1;
1870 return NULL;
1871}
1872
1873static void hugetlb_unregister_all_nodes(void) { }
1874
1875static void hugetlb_register_all_nodes(void) { }
1876
1877#endif
1878
a3437870
NA
1879static void __exit hugetlb_exit(void)
1880{
1881 struct hstate *h;
1882
9a305230
LS
1883 hugetlb_unregister_all_nodes();
1884
a3437870 1885 for_each_hstate(h) {
972dc4de 1886 kobject_put(hstate_kobjs[hstate_index(h)]);
a3437870
NA
1887 }
1888
1889 kobject_put(hugepages_kobj);
1890}
1891module_exit(hugetlb_exit);
1892
1893static int __init hugetlb_init(void)
1894{
0ef89d25
BH
1895 /* Some platform decide whether they support huge pages at boot
1896 * time. On these, such as powerpc, HPAGE_SHIFT is set to 0 when
1897 * there is no such support
1898 */
1899 if (HPAGE_SHIFT == 0)
1900 return 0;
a3437870 1901
e11bfbfc
NP
1902 if (!size_to_hstate(default_hstate_size)) {
1903 default_hstate_size = HPAGE_SIZE;
1904 if (!size_to_hstate(default_hstate_size))
1905 hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
a3437870 1906 }
972dc4de 1907 default_hstate_idx = hstate_index(size_to_hstate(default_hstate_size));
e11bfbfc
NP
1908 if (default_hstate_max_huge_pages)
1909 default_hstate.max_huge_pages = default_hstate_max_huge_pages;
a3437870
NA
1910
1911 hugetlb_init_hstates();
aa888a74 1912 gather_bootmem_prealloc();
a3437870
NA
1913 report_hugepages();
1914
1915 hugetlb_sysfs_init();
9a305230 1916 hugetlb_register_all_nodes();
7179e7bf 1917 hugetlb_cgroup_file_init();
9a305230 1918
a3437870
NA
1919 return 0;
1920}
1921module_init(hugetlb_init);
1922
1923/* Should be called on processing a hugepagesz=... option */
1924void __init hugetlb_add_hstate(unsigned order)
1925{
1926 struct hstate *h;
8faa8b07
AK
1927 unsigned long i;
1928
a3437870 1929 if (size_to_hstate(PAGE_SIZE << order)) {
ffb22af5 1930 pr_warning("hugepagesz= specified twice, ignoring\n");
a3437870
NA
1931 return;
1932 }
47d38344 1933 BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
a3437870 1934 BUG_ON(order == 0);
47d38344 1935 h = &hstates[hugetlb_max_hstate++];
a3437870
NA
1936 h->order = order;
1937 h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
8faa8b07
AK
1938 h->nr_huge_pages = 0;
1939 h->free_huge_pages = 0;
1940 for (i = 0; i < MAX_NUMNODES; ++i)
1941 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
0edaecfa 1942 INIT_LIST_HEAD(&h->hugepage_activelist);
8cebfcd0
LJ
1943 h->next_nid_to_alloc = first_node(node_states[N_MEMORY]);
1944 h->next_nid_to_free = first_node(node_states[N_MEMORY]);
a3437870
NA
1945 snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
1946 huge_page_size(h)/1024);
8faa8b07 1947
a3437870
NA
1948 parsed_hstate = h;
1949}
1950
e11bfbfc 1951static int __init hugetlb_nrpages_setup(char *s)
a3437870
NA
1952{
1953 unsigned long *mhp;
8faa8b07 1954 static unsigned long *last_mhp;
a3437870
NA
1955
1956 /*
47d38344 1957 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter yet,
a3437870
NA
1958 * so this hugepages= parameter goes to the "default hstate".
1959 */
47d38344 1960 if (!hugetlb_max_hstate)
a3437870
NA
1961 mhp = &default_hstate_max_huge_pages;
1962 else
1963 mhp = &parsed_hstate->max_huge_pages;
1964
8faa8b07 1965 if (mhp == last_mhp) {
ffb22af5
AM
1966 pr_warning("hugepages= specified twice without "
1967 "interleaving hugepagesz=, ignoring\n");
8faa8b07
AK
1968 return 1;
1969 }
1970
a3437870
NA
1971 if (sscanf(s, "%lu", mhp) <= 0)
1972 *mhp = 0;
1973
8faa8b07
AK
1974 /*
1975 * Global state is always initialized later in hugetlb_init.
1976 * But we need to allocate >= MAX_ORDER hstates here early to still
1977 * use the bootmem allocator.
1978 */
47d38344 1979 if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER)
8faa8b07
AK
1980 hugetlb_hstate_alloc_pages(parsed_hstate);
1981
1982 last_mhp = mhp;
1983
a3437870
NA
1984 return 1;
1985}
e11bfbfc
NP
1986__setup("hugepages=", hugetlb_nrpages_setup);
1987
1988static int __init hugetlb_default_setup(char *s)
1989{
1990 default_hstate_size = memparse(s, &s);
1991 return 1;
1992}
1993__setup("default_hugepagesz=", hugetlb_default_setup);
a3437870 1994
8a213460
NA
1995static unsigned int cpuset_mems_nr(unsigned int *array)
1996{
1997 int node;
1998 unsigned int nr = 0;
1999
2000 for_each_node_mask(node, cpuset_current_mems_allowed)
2001 nr += array[node];
2002
2003 return nr;
2004}
2005
2006#ifdef CONFIG_SYSCTL
06808b08
LS
2007static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
2008 struct ctl_table *table, int write,
2009 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 2010{
e5ff2159
AK
2011 struct hstate *h = &default_hstate;
2012 unsigned long tmp;
08d4a246 2013 int ret;
e5ff2159 2014
c033a93c 2015 tmp = h->max_huge_pages;
e5ff2159 2016
adbe8726
EM
2017 if (write && h->order >= MAX_ORDER)
2018 return -EINVAL;
2019
e5ff2159
AK
2020 table->data = &tmp;
2021 table->maxlen = sizeof(unsigned long);
08d4a246
MH
2022 ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2023 if (ret)
2024 goto out;
e5ff2159 2025
06808b08 2026 if (write) {
bad44b5b
DR
2027 NODEMASK_ALLOC(nodemask_t, nodes_allowed,
2028 GFP_KERNEL | __GFP_NORETRY);
06808b08
LS
2029 if (!(obey_mempolicy &&
2030 init_nodemask_of_mempolicy(nodes_allowed))) {
2031 NODEMASK_FREE(nodes_allowed);
8cebfcd0 2032 nodes_allowed = &node_states[N_MEMORY];
06808b08
LS
2033 }
2034 h->max_huge_pages = set_max_huge_pages(h, tmp, nodes_allowed);
2035
8cebfcd0 2036 if (nodes_allowed != &node_states[N_MEMORY])
06808b08
LS
2037 NODEMASK_FREE(nodes_allowed);
2038 }
08d4a246
MH
2039out:
2040 return ret;
1da177e4 2041}
396faf03 2042
06808b08
LS
2043int hugetlb_sysctl_handler(struct ctl_table *table, int write,
2044 void __user *buffer, size_t *length, loff_t *ppos)
2045{
2046
2047 return hugetlb_sysctl_handler_common(false, table, write,
2048 buffer, length, ppos);
2049}
2050
2051#ifdef CONFIG_NUMA
2052int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
2053 void __user *buffer, size_t *length, loff_t *ppos)
2054{
2055 return hugetlb_sysctl_handler_common(true, table, write,
2056 buffer, length, ppos);
2057}
2058#endif /* CONFIG_NUMA */
2059
396faf03 2060int hugetlb_treat_movable_handler(struct ctl_table *table, int write,
8d65af78 2061 void __user *buffer,
396faf03
MG
2062 size_t *length, loff_t *ppos)
2063{
8d65af78 2064 proc_dointvec(table, write, buffer, length, ppos);
396faf03
MG
2065 if (hugepages_treat_as_movable)
2066 htlb_alloc_mask = GFP_HIGHUSER_MOVABLE;
2067 else
2068 htlb_alloc_mask = GFP_HIGHUSER;
2069 return 0;
2070}
2071
a3d0c6aa 2072int hugetlb_overcommit_handler(struct ctl_table *table, int write,
8d65af78 2073 void __user *buffer,
a3d0c6aa
NA
2074 size_t *length, loff_t *ppos)
2075{
a5516438 2076 struct hstate *h = &default_hstate;
e5ff2159 2077 unsigned long tmp;
08d4a246 2078 int ret;
e5ff2159 2079
c033a93c 2080 tmp = h->nr_overcommit_huge_pages;
e5ff2159 2081
adbe8726
EM
2082 if (write && h->order >= MAX_ORDER)
2083 return -EINVAL;
2084
e5ff2159
AK
2085 table->data = &tmp;
2086 table->maxlen = sizeof(unsigned long);
08d4a246
MH
2087 ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2088 if (ret)
2089 goto out;
e5ff2159
AK
2090
2091 if (write) {
2092 spin_lock(&hugetlb_lock);
2093 h->nr_overcommit_huge_pages = tmp;
2094 spin_unlock(&hugetlb_lock);
2095 }
08d4a246
MH
2096out:
2097 return ret;
a3d0c6aa
NA
2098}
2099
1da177e4
LT
2100#endif /* CONFIG_SYSCTL */
2101
e1759c21 2102void hugetlb_report_meminfo(struct seq_file *m)
1da177e4 2103{
a5516438 2104 struct hstate *h = &default_hstate;
e1759c21 2105 seq_printf(m,
4f98a2fe
RR
2106 "HugePages_Total: %5lu\n"
2107 "HugePages_Free: %5lu\n"
2108 "HugePages_Rsvd: %5lu\n"
2109 "HugePages_Surp: %5lu\n"
2110 "Hugepagesize: %8lu kB\n",
a5516438
AK
2111 h->nr_huge_pages,
2112 h->free_huge_pages,
2113 h->resv_huge_pages,
2114 h->surplus_huge_pages,
2115 1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
1da177e4
LT
2116}
2117
2118int hugetlb_report_node_meminfo(int nid, char *buf)
2119{
a5516438 2120 struct hstate *h = &default_hstate;
1da177e4
LT
2121 return sprintf(buf,
2122 "Node %d HugePages_Total: %5u\n"
a1de0919
NA
2123 "Node %d HugePages_Free: %5u\n"
2124 "Node %d HugePages_Surp: %5u\n",
a5516438
AK
2125 nid, h->nr_huge_pages_node[nid],
2126 nid, h->free_huge_pages_node[nid],
2127 nid, h->surplus_huge_pages_node[nid]);
1da177e4
LT
2128}
2129
949f7ec5
DR
2130void hugetlb_show_meminfo(void)
2131{
2132 struct hstate *h;
2133 int nid;
2134
2135 for_each_node_state(nid, N_MEMORY)
2136 for_each_hstate(h)
2137 pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
2138 nid,
2139 h->nr_huge_pages_node[nid],
2140 h->free_huge_pages_node[nid],
2141 h->surplus_huge_pages_node[nid],
2142 1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
2143}
2144
1da177e4
LT
2145/* Return the number pages of memory we physically have, in PAGE_SIZE units. */
2146unsigned long hugetlb_total_pages(void)
2147{
d0028588
WL
2148 struct hstate *h;
2149 unsigned long nr_total_pages = 0;
2150
2151 for_each_hstate(h)
2152 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
2153 return nr_total_pages;
1da177e4 2154}
1da177e4 2155
a5516438 2156static int hugetlb_acct_memory(struct hstate *h, long delta)
fc1b8a73
MG
2157{
2158 int ret = -ENOMEM;
2159
2160 spin_lock(&hugetlb_lock);
2161 /*
2162 * When cpuset is configured, it breaks the strict hugetlb page
2163 * reservation as the accounting is done on a global variable. Such
2164 * reservation is completely rubbish in the presence of cpuset because
2165 * the reservation is not checked against page availability for the
2166 * current cpuset. Application can still potentially OOM'ed by kernel
2167 * with lack of free htlb page in cpuset that the task is in.
2168 * Attempt to enforce strict accounting with cpuset is almost
2169 * impossible (or too ugly) because cpuset is too fluid that
2170 * task or memory node can be dynamically moved between cpusets.
2171 *
2172 * The change of semantics for shared hugetlb mapping with cpuset is
2173 * undesirable. However, in order to preserve some of the semantics,
2174 * we fall back to check against current free page availability as
2175 * a best attempt and hopefully to minimize the impact of changing
2176 * semantics that cpuset has.
2177 */
2178 if (delta > 0) {
a5516438 2179 if (gather_surplus_pages(h, delta) < 0)
fc1b8a73
MG
2180 goto out;
2181
a5516438
AK
2182 if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
2183 return_unused_surplus_pages(h, delta);
fc1b8a73
MG
2184 goto out;
2185 }
2186 }
2187
2188 ret = 0;
2189 if (delta < 0)
a5516438 2190 return_unused_surplus_pages(h, (unsigned long) -delta);
fc1b8a73
MG
2191
2192out:
2193 spin_unlock(&hugetlb_lock);
2194 return ret;
2195}
2196
84afd99b
AW
2197static void hugetlb_vm_op_open(struct vm_area_struct *vma)
2198{
f522c3ac 2199 struct resv_map *resv = vma_resv_map(vma);
84afd99b
AW
2200
2201 /*
2202 * This new VMA should share its siblings reservation map if present.
2203 * The VMA will only ever have a valid reservation map pointer where
2204 * it is being copied for another still existing VMA. As that VMA
25985edc 2205 * has a reference to the reservation map it cannot disappear until
84afd99b
AW
2206 * after this open call completes. It is therefore safe to take a
2207 * new reference here without additional locking.
2208 */
f522c3ac
JK
2209 if (resv)
2210 kref_get(&resv->refs);
84afd99b
AW
2211}
2212
c50ac050
DH
2213static void resv_map_put(struct vm_area_struct *vma)
2214{
f522c3ac 2215 struct resv_map *resv = vma_resv_map(vma);
c50ac050 2216
f522c3ac 2217 if (!resv)
c50ac050 2218 return;
f522c3ac 2219 kref_put(&resv->refs, resv_map_release);
c50ac050
DH
2220}
2221
a1e78772
MG
2222static void hugetlb_vm_op_close(struct vm_area_struct *vma)
2223{
a5516438 2224 struct hstate *h = hstate_vma(vma);
f522c3ac 2225 struct resv_map *resv = vma_resv_map(vma);
90481622 2226 struct hugepage_subpool *spool = subpool_vma(vma);
84afd99b
AW
2227 unsigned long reserve;
2228 unsigned long start;
2229 unsigned long end;
2230
f522c3ac 2231 if (resv) {
a5516438
AK
2232 start = vma_hugecache_offset(h, vma, vma->vm_start);
2233 end = vma_hugecache_offset(h, vma, vma->vm_end);
84afd99b
AW
2234
2235 reserve = (end - start) -
f522c3ac 2236 region_count(&resv->regions, start, end);
84afd99b 2237
c50ac050 2238 resv_map_put(vma);
84afd99b 2239
7251ff78 2240 if (reserve) {
a5516438 2241 hugetlb_acct_memory(h, -reserve);
90481622 2242 hugepage_subpool_put_pages(spool, reserve);
7251ff78 2243 }
84afd99b 2244 }
a1e78772
MG
2245}
2246
1da177e4
LT
2247/*
2248 * We cannot handle pagefaults against hugetlb pages at all. They cause
2249 * handle_mm_fault() to try to instantiate regular-sized pages in the
2250 * hugegpage VMA. do_page_fault() is supposed to trap this, so BUG is we get
2251 * this far.
2252 */
d0217ac0 2253static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1da177e4
LT
2254{
2255 BUG();
d0217ac0 2256 return 0;
1da177e4
LT
2257}
2258
f0f37e2f 2259const struct vm_operations_struct hugetlb_vm_ops = {
d0217ac0 2260 .fault = hugetlb_vm_op_fault,
84afd99b 2261 .open = hugetlb_vm_op_open,
a1e78772 2262 .close = hugetlb_vm_op_close,
1da177e4
LT
2263};
2264
1e8f889b
DG
2265static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
2266 int writable)
63551ae0
DG
2267{
2268 pte_t entry;
2269
1e8f889b 2270 if (writable) {
106c992a
GS
2271 entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
2272 vma->vm_page_prot)));
63551ae0 2273 } else {
106c992a
GS
2274 entry = huge_pte_wrprotect(mk_huge_pte(page,
2275 vma->vm_page_prot));
63551ae0
DG
2276 }
2277 entry = pte_mkyoung(entry);
2278 entry = pte_mkhuge(entry);
d9ed9faa 2279 entry = arch_make_huge_pte(entry, vma, page, writable);
63551ae0
DG
2280
2281 return entry;
2282}
2283
1e8f889b
DG
2284static void set_huge_ptep_writable(struct vm_area_struct *vma,
2285 unsigned long address, pte_t *ptep)
2286{
2287 pte_t entry;
2288
106c992a 2289 entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
32f84528 2290 if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
4b3073e1 2291 update_mmu_cache(vma, address, ptep);
1e8f889b
DG
2292}
2293
2294
63551ae0
DG
2295int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
2296 struct vm_area_struct *vma)
2297{
2298 pte_t *src_pte, *dst_pte, entry;
2299 struct page *ptepage;
1c59827d 2300 unsigned long addr;
1e8f889b 2301 int cow;
a5516438
AK
2302 struct hstate *h = hstate_vma(vma);
2303 unsigned long sz = huge_page_size(h);
1e8f889b
DG
2304
2305 cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
63551ae0 2306
a5516438 2307 for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
c74df32c
HD
2308 src_pte = huge_pte_offset(src, addr);
2309 if (!src_pte)
2310 continue;
a5516438 2311 dst_pte = huge_pte_alloc(dst, addr, sz);
63551ae0
DG
2312 if (!dst_pte)
2313 goto nomem;
c5c99429
LW
2314
2315 /* If the pagetables are shared don't copy or take references */
2316 if (dst_pte == src_pte)
2317 continue;
2318
c74df32c 2319 spin_lock(&dst->page_table_lock);
46478758 2320 spin_lock_nested(&src->page_table_lock, SINGLE_DEPTH_NESTING);
7f2e9525 2321 if (!huge_pte_none(huge_ptep_get(src_pte))) {
1e8f889b 2322 if (cow)
7f2e9525
GS
2323 huge_ptep_set_wrprotect(src, addr, src_pte);
2324 entry = huge_ptep_get(src_pte);
1c59827d
HD
2325 ptepage = pte_page(entry);
2326 get_page(ptepage);
0fe6e20b 2327 page_dup_rmap(ptepage);
1c59827d
HD
2328 set_huge_pte_at(dst, addr, dst_pte, entry);
2329 }
2330 spin_unlock(&src->page_table_lock);
c74df32c 2331 spin_unlock(&dst->page_table_lock);
63551ae0
DG
2332 }
2333 return 0;
2334
2335nomem:
2336 return -ENOMEM;
2337}
2338
290408d4
NH
2339static int is_hugetlb_entry_migration(pte_t pte)
2340{
2341 swp_entry_t swp;
2342
2343 if (huge_pte_none(pte) || pte_present(pte))
2344 return 0;
2345 swp = pte_to_swp_entry(pte);
32f84528 2346 if (non_swap_entry(swp) && is_migration_entry(swp))
290408d4 2347 return 1;
32f84528 2348 else
290408d4
NH
2349 return 0;
2350}
2351
fd6a03ed
NH
2352static int is_hugetlb_entry_hwpoisoned(pte_t pte)
2353{
2354 swp_entry_t swp;
2355
2356 if (huge_pte_none(pte) || pte_present(pte))
2357 return 0;
2358 swp = pte_to_swp_entry(pte);
32f84528 2359 if (non_swap_entry(swp) && is_hwpoison_entry(swp))
fd6a03ed 2360 return 1;
32f84528 2361 else
fd6a03ed
NH
2362 return 0;
2363}
2364
24669e58
AK
2365void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
2366 unsigned long start, unsigned long end,
2367 struct page *ref_page)
63551ae0 2368{
24669e58 2369 int force_flush = 0;
63551ae0
DG
2370 struct mm_struct *mm = vma->vm_mm;
2371 unsigned long address;
c7546f8f 2372 pte_t *ptep;
63551ae0
DG
2373 pte_t pte;
2374 struct page *page;
a5516438
AK
2375 struct hstate *h = hstate_vma(vma);
2376 unsigned long sz = huge_page_size(h);
2ec74c3e
SG
2377 const unsigned long mmun_start = start; /* For mmu_notifiers */
2378 const unsigned long mmun_end = end; /* For mmu_notifiers */
a5516438 2379
63551ae0 2380 WARN_ON(!is_vm_hugetlb_page(vma));
a5516438
AK
2381 BUG_ON(start & ~huge_page_mask(h));
2382 BUG_ON(end & ~huge_page_mask(h));
63551ae0 2383
24669e58 2384 tlb_start_vma(tlb, vma);
2ec74c3e 2385 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
24669e58 2386again:
508034a3 2387 spin_lock(&mm->page_table_lock);
a5516438 2388 for (address = start; address < end; address += sz) {
c7546f8f 2389 ptep = huge_pte_offset(mm, address);
4c887265 2390 if (!ptep)
c7546f8f
DG
2391 continue;
2392
39dde65c
CK
2393 if (huge_pmd_unshare(mm, &address, ptep))
2394 continue;
2395
6629326b
HD
2396 pte = huge_ptep_get(ptep);
2397 if (huge_pte_none(pte))
2398 continue;
2399
2400 /*
2401 * HWPoisoned hugepage is already unmapped and dropped reference
2402 */
8c4894c6 2403 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
106c992a 2404 huge_pte_clear(mm, address, ptep);
6629326b 2405 continue;
8c4894c6 2406 }
6629326b
HD
2407
2408 page = pte_page(pte);
04f2cbe3
MG
2409 /*
2410 * If a reference page is supplied, it is because a specific
2411 * page is being unmapped, not a range. Ensure the page we
2412 * are about to unmap is the actual page of interest.
2413 */
2414 if (ref_page) {
04f2cbe3
MG
2415 if (page != ref_page)
2416 continue;
2417
2418 /*
2419 * Mark the VMA as having unmapped its page so that
2420 * future faults in this VMA will fail rather than
2421 * looking like data was lost
2422 */
2423 set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
2424 }
2425
c7546f8f 2426 pte = huge_ptep_get_and_clear(mm, address, ptep);
24669e58 2427 tlb_remove_tlb_entry(tlb, ptep, address);
106c992a 2428 if (huge_pte_dirty(pte))
6649a386 2429 set_page_dirty(page);
9e81130b 2430
24669e58
AK
2431 page_remove_rmap(page);
2432 force_flush = !__tlb_remove_page(tlb, page);
2433 if (force_flush)
2434 break;
9e81130b
HD
2435 /* Bail out after unmapping reference page if supplied */
2436 if (ref_page)
2437 break;
63551ae0 2438 }
cd2934a3 2439 spin_unlock(&mm->page_table_lock);
24669e58
AK
2440 /*
2441 * mmu_gather ran out of room to batch pages, we break out of
2442 * the PTE lock to avoid doing the potential expensive TLB invalidate
2443 * and page-free while holding it.
2444 */
2445 if (force_flush) {
2446 force_flush = 0;
2447 tlb_flush_mmu(tlb);
2448 if (address < end && !ref_page)
2449 goto again;
fe1668ae 2450 }
2ec74c3e 2451 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
24669e58 2452 tlb_end_vma(tlb, vma);
1da177e4 2453}
63551ae0 2454
d833352a
MG
2455void __unmap_hugepage_range_final(struct mmu_gather *tlb,
2456 struct vm_area_struct *vma, unsigned long start,
2457 unsigned long end, struct page *ref_page)
2458{
2459 __unmap_hugepage_range(tlb, vma, start, end, ref_page);
2460
2461 /*
2462 * Clear this flag so that x86's huge_pmd_share page_table_shareable
2463 * test will fail on a vma being torn down, and not grab a page table
2464 * on its way out. We're lucky that the flag has such an appropriate
2465 * name, and can in fact be safely cleared here. We could clear it
2466 * before the __unmap_hugepage_range above, but all that's necessary
2467 * is to clear it before releasing the i_mmap_mutex. This works
2468 * because in the context this is called, the VMA is about to be
2469 * destroyed and the i_mmap_mutex is held.
2470 */
2471 vma->vm_flags &= ~VM_MAYSHARE;
2472}
2473
502717f4 2474void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
04f2cbe3 2475 unsigned long end, struct page *ref_page)
502717f4 2476{
24669e58
AK
2477 struct mm_struct *mm;
2478 struct mmu_gather tlb;
2479
2480 mm = vma->vm_mm;
2481
2b047252 2482 tlb_gather_mmu(&tlb, mm, start, end);
24669e58
AK
2483 __unmap_hugepage_range(&tlb, vma, start, end, ref_page);
2484 tlb_finish_mmu(&tlb, start, end);
502717f4
CK
2485}
2486
04f2cbe3
MG
2487/*
2488 * This is called when the original mapper is failing to COW a MAP_PRIVATE
2489 * mappping it owns the reserve page for. The intention is to unmap the page
2490 * from other VMAs and let the children be SIGKILLed if they are faulting the
2491 * same region.
2492 */
2a4b3ded
HH
2493static int unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
2494 struct page *page, unsigned long address)
04f2cbe3 2495{
7526674d 2496 struct hstate *h = hstate_vma(vma);
04f2cbe3
MG
2497 struct vm_area_struct *iter_vma;
2498 struct address_space *mapping;
04f2cbe3
MG
2499 pgoff_t pgoff;
2500
2501 /*
2502 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
2503 * from page cache lookup which is in HPAGE_SIZE units.
2504 */
7526674d 2505 address = address & huge_page_mask(h);
36e4f20a
MH
2506 pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
2507 vma->vm_pgoff;
496ad9aa 2508 mapping = file_inode(vma->vm_file)->i_mapping;
04f2cbe3 2509
4eb2b1dc
MG
2510 /*
2511 * Take the mapping lock for the duration of the table walk. As
2512 * this mapping should be shared between all the VMAs,
2513 * __unmap_hugepage_range() is called as the lock is already held
2514 */
3d48ae45 2515 mutex_lock(&mapping->i_mmap_mutex);
6b2dbba8 2516 vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
04f2cbe3
MG
2517 /* Do not unmap the current VMA */
2518 if (iter_vma == vma)
2519 continue;
2520
2521 /*
2522 * Unmap the page from other VMAs without their own reserves.
2523 * They get marked to be SIGKILLed if they fault in these
2524 * areas. This is because a future no-page fault on this VMA
2525 * could insert a zeroed page instead of the data existing
2526 * from the time of fork. This would look like data corruption
2527 */
2528 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
24669e58
AK
2529 unmap_hugepage_range(iter_vma, address,
2530 address + huge_page_size(h), page);
04f2cbe3 2531 }
3d48ae45 2532 mutex_unlock(&mapping->i_mmap_mutex);
04f2cbe3
MG
2533
2534 return 1;
2535}
2536
0fe6e20b
NH
2537/*
2538 * Hugetlb_cow() should be called with page lock of the original hugepage held.
ef009b25
MH
2539 * Called with hugetlb_instantiation_mutex held and pte_page locked so we
2540 * cannot race with other handlers or page migration.
2541 * Keep the pte_same checks anyway to make transition from the mutex easier.
0fe6e20b 2542 */
1e8f889b 2543static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
04f2cbe3
MG
2544 unsigned long address, pte_t *ptep, pte_t pte,
2545 struct page *pagecache_page)
1e8f889b 2546{
a5516438 2547 struct hstate *h = hstate_vma(vma);
1e8f889b 2548 struct page *old_page, *new_page;
04f2cbe3 2549 int outside_reserve = 0;
2ec74c3e
SG
2550 unsigned long mmun_start; /* For mmu_notifiers */
2551 unsigned long mmun_end; /* For mmu_notifiers */
1e8f889b
DG
2552
2553 old_page = pte_page(pte);
2554
04f2cbe3 2555retry_avoidcopy:
1e8f889b
DG
2556 /* If no-one else is actually using this page, avoid the copy
2557 * and just make the page writable */
37a2140d
JK
2558 if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
2559 page_move_anon_rmap(old_page, vma, address);
1e8f889b 2560 set_huge_ptep_writable(vma, address, ptep);
83c54070 2561 return 0;
1e8f889b
DG
2562 }
2563
04f2cbe3
MG
2564 /*
2565 * If the process that created a MAP_PRIVATE mapping is about to
2566 * perform a COW due to a shared page count, attempt to satisfy
2567 * the allocation without using the existing reserves. The pagecache
2568 * page is used to determine if the reserve at this address was
2569 * consumed or not. If reserves were used, a partial faulted mapping
2570 * at the time of fork() could consume its reserves on COW instead
2571 * of the full address range.
2572 */
5944d011 2573 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
04f2cbe3
MG
2574 old_page != pagecache_page)
2575 outside_reserve = 1;
2576
1e8f889b 2577 page_cache_get(old_page);
b76c8cfb
LW
2578
2579 /* Drop page_table_lock as buddy allocator may be called */
2580 spin_unlock(&mm->page_table_lock);
04f2cbe3 2581 new_page = alloc_huge_page(vma, address, outside_reserve);
1e8f889b 2582
2fc39cec 2583 if (IS_ERR(new_page)) {
76dcee75 2584 long err = PTR_ERR(new_page);
1e8f889b 2585 page_cache_release(old_page);
04f2cbe3
MG
2586
2587 /*
2588 * If a process owning a MAP_PRIVATE mapping fails to COW,
2589 * it is due to references held by a child and an insufficient
2590 * huge page pool. To guarantee the original mappers
2591 * reliability, unmap the page from child processes. The child
2592 * may get SIGKILLed if it later faults.
2593 */
2594 if (outside_reserve) {
2595 BUG_ON(huge_pte_none(pte));
2596 if (unmap_ref_private(mm, vma, old_page, address)) {
04f2cbe3 2597 BUG_ON(huge_pte_none(pte));
b76c8cfb 2598 spin_lock(&mm->page_table_lock);
a734bcc8
HD
2599 ptep = huge_pte_offset(mm, address & huge_page_mask(h));
2600 if (likely(pte_same(huge_ptep_get(ptep), pte)))
2601 goto retry_avoidcopy;
2602 /*
2603 * race occurs while re-acquiring page_table_lock, and
2604 * our job is done.
2605 */
2606 return 0;
04f2cbe3
MG
2607 }
2608 WARN_ON_ONCE(1);
2609 }
2610
b76c8cfb
LW
2611 /* Caller expects lock to be held */
2612 spin_lock(&mm->page_table_lock);
76dcee75
AK
2613 if (err == -ENOMEM)
2614 return VM_FAULT_OOM;
2615 else
2616 return VM_FAULT_SIGBUS;
1e8f889b
DG
2617 }
2618
0fe6e20b
NH
2619 /*
2620 * When the original hugepage is shared one, it does not have
2621 * anon_vma prepared.
2622 */
44e2aa93 2623 if (unlikely(anon_vma_prepare(vma))) {
ea4039a3
HD
2624 page_cache_release(new_page);
2625 page_cache_release(old_page);
44e2aa93
DN
2626 /* Caller expects lock to be held */
2627 spin_lock(&mm->page_table_lock);
0fe6e20b 2628 return VM_FAULT_OOM;
44e2aa93 2629 }
0fe6e20b 2630
47ad8475
AA
2631 copy_user_huge_page(new_page, old_page, address, vma,
2632 pages_per_huge_page(h));
0ed361de 2633 __SetPageUptodate(new_page);
1e8f889b 2634
2ec74c3e
SG
2635 mmun_start = address & huge_page_mask(h);
2636 mmun_end = mmun_start + huge_page_size(h);
2637 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
b76c8cfb
LW
2638 /*
2639 * Retake the page_table_lock to check for racing updates
2640 * before the page tables are altered
2641 */
2642 spin_lock(&mm->page_table_lock);
a5516438 2643 ptep = huge_pte_offset(mm, address & huge_page_mask(h));
7f2e9525 2644 if (likely(pte_same(huge_ptep_get(ptep), pte))) {
07443a85
JK
2645 ClearPagePrivate(new_page);
2646
1e8f889b 2647 /* Break COW */
8fe627ec 2648 huge_ptep_clear_flush(vma, address, ptep);
1e8f889b
DG
2649 set_huge_pte_at(mm, address, ptep,
2650 make_huge_pte(vma, new_page, 1));
0fe6e20b 2651 page_remove_rmap(old_page);
cd67f0d2 2652 hugepage_add_new_anon_rmap(new_page, vma, address);
1e8f889b
DG
2653 /* Make the old page be freed below */
2654 new_page = old_page;
2655 }
2ec74c3e
SG
2656 spin_unlock(&mm->page_table_lock);
2657 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1e8f889b
DG
2658 page_cache_release(new_page);
2659 page_cache_release(old_page);
8312034f
JK
2660
2661 /* Caller expects lock to be held */
2662 spin_lock(&mm->page_table_lock);
83c54070 2663 return 0;
1e8f889b
DG
2664}
2665
04f2cbe3 2666/* Return the pagecache page at a given address within a VMA */
a5516438
AK
2667static struct page *hugetlbfs_pagecache_page(struct hstate *h,
2668 struct vm_area_struct *vma, unsigned long address)
04f2cbe3
MG
2669{
2670 struct address_space *mapping;
e7c4b0bf 2671 pgoff_t idx;
04f2cbe3
MG
2672
2673 mapping = vma->vm_file->f_mapping;
a5516438 2674 idx = vma_hugecache_offset(h, vma, address);
04f2cbe3
MG
2675
2676 return find_lock_page(mapping, idx);
2677}
2678
3ae77f43
HD
2679/*
2680 * Return whether there is a pagecache page to back given address within VMA.
2681 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
2682 */
2683static bool hugetlbfs_pagecache_present(struct hstate *h,
2a15efc9
HD
2684 struct vm_area_struct *vma, unsigned long address)
2685{
2686 struct address_space *mapping;
2687 pgoff_t idx;
2688 struct page *page;
2689
2690 mapping = vma->vm_file->f_mapping;
2691 idx = vma_hugecache_offset(h, vma, address);
2692
2693 page = find_get_page(mapping, idx);
2694 if (page)
2695 put_page(page);
2696 return page != NULL;
2697}
2698
a1ed3dda 2699static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
788c7df4 2700 unsigned long address, pte_t *ptep, unsigned int flags)
ac9b9c66 2701{
a5516438 2702 struct hstate *h = hstate_vma(vma);
ac9b9c66 2703 int ret = VM_FAULT_SIGBUS;
409eb8c2 2704 int anon_rmap = 0;
e7c4b0bf 2705 pgoff_t idx;
4c887265 2706 unsigned long size;
4c887265
AL
2707 struct page *page;
2708 struct address_space *mapping;
1e8f889b 2709 pte_t new_pte;
4c887265 2710
04f2cbe3
MG
2711 /*
2712 * Currently, we are forced to kill the process in the event the
2713 * original mapper has unmapped pages from the child due to a failed
25985edc 2714 * COW. Warn that such a situation has occurred as it may not be obvious
04f2cbe3
MG
2715 */
2716 if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
ffb22af5
AM
2717 pr_warning("PID %d killed due to inadequate hugepage pool\n",
2718 current->pid);
04f2cbe3
MG
2719 return ret;
2720 }
2721
4c887265 2722 mapping = vma->vm_file->f_mapping;
a5516438 2723 idx = vma_hugecache_offset(h, vma, address);
4c887265
AL
2724
2725 /*
2726 * Use page lock to guard against racing truncation
2727 * before we get page_table_lock.
2728 */
6bda666a
CL
2729retry:
2730 page = find_lock_page(mapping, idx);
2731 if (!page) {
a5516438 2732 size = i_size_read(mapping->host) >> huge_page_shift(h);
ebed4bfc
HD
2733 if (idx >= size)
2734 goto out;
04f2cbe3 2735 page = alloc_huge_page(vma, address, 0);
2fc39cec 2736 if (IS_ERR(page)) {
76dcee75
AK
2737 ret = PTR_ERR(page);
2738 if (ret == -ENOMEM)
2739 ret = VM_FAULT_OOM;
2740 else
2741 ret = VM_FAULT_SIGBUS;
6bda666a
CL
2742 goto out;
2743 }
47ad8475 2744 clear_huge_page(page, address, pages_per_huge_page(h));
0ed361de 2745 __SetPageUptodate(page);
ac9b9c66 2746
f83a275d 2747 if (vma->vm_flags & VM_MAYSHARE) {
6bda666a 2748 int err;
45c682a6 2749 struct inode *inode = mapping->host;
6bda666a
CL
2750
2751 err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
2752 if (err) {
2753 put_page(page);
6bda666a
CL
2754 if (err == -EEXIST)
2755 goto retry;
2756 goto out;
2757 }
07443a85 2758 ClearPagePrivate(page);
45c682a6
KC
2759
2760 spin_lock(&inode->i_lock);
a5516438 2761 inode->i_blocks += blocks_per_huge_page(h);
45c682a6 2762 spin_unlock(&inode->i_lock);
23be7468 2763 } else {
6bda666a 2764 lock_page(page);
0fe6e20b
NH
2765 if (unlikely(anon_vma_prepare(vma))) {
2766 ret = VM_FAULT_OOM;
2767 goto backout_unlocked;
2768 }
409eb8c2 2769 anon_rmap = 1;
23be7468 2770 }
0fe6e20b 2771 } else {
998b4382
NH
2772 /*
2773 * If memory error occurs between mmap() and fault, some process
2774 * don't have hwpoisoned swap entry for errored virtual address.
2775 * So we need to block hugepage fault by PG_hwpoison bit check.
2776 */
2777 if (unlikely(PageHWPoison(page))) {
32f84528 2778 ret = VM_FAULT_HWPOISON |
972dc4de 2779 VM_FAULT_SET_HINDEX(hstate_index(h));
998b4382
NH
2780 goto backout_unlocked;
2781 }
6bda666a 2782 }
1e8f889b 2783
57303d80
AW
2784 /*
2785 * If we are going to COW a private mapping later, we examine the
2786 * pending reservations for this page now. This will ensure that
2787 * any allocations necessary to record that reservation occur outside
2788 * the spinlock.
2789 */
788c7df4 2790 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED))
2b26736c
AW
2791 if (vma_needs_reservation(h, vma, address) < 0) {
2792 ret = VM_FAULT_OOM;
2793 goto backout_unlocked;
2794 }
57303d80 2795
ac9b9c66 2796 spin_lock(&mm->page_table_lock);
a5516438 2797 size = i_size_read(mapping->host) >> huge_page_shift(h);
4c887265
AL
2798 if (idx >= size)
2799 goto backout;
2800
83c54070 2801 ret = 0;
7f2e9525 2802 if (!huge_pte_none(huge_ptep_get(ptep)))
4c887265
AL
2803 goto backout;
2804
07443a85
JK
2805 if (anon_rmap) {
2806 ClearPagePrivate(page);
409eb8c2 2807 hugepage_add_new_anon_rmap(page, vma, address);
07443a85 2808 }
409eb8c2
HD
2809 else
2810 page_dup_rmap(page);
1e8f889b
DG
2811 new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
2812 && (vma->vm_flags & VM_SHARED)));
2813 set_huge_pte_at(mm, address, ptep, new_pte);
2814
788c7df4 2815 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
1e8f889b 2816 /* Optimization, do the COW without a second fault */
04f2cbe3 2817 ret = hugetlb_cow(mm, vma, address, ptep, new_pte, page);
1e8f889b
DG
2818 }
2819
ac9b9c66 2820 spin_unlock(&mm->page_table_lock);
4c887265
AL
2821 unlock_page(page);
2822out:
ac9b9c66 2823 return ret;
4c887265
AL
2824
2825backout:
2826 spin_unlock(&mm->page_table_lock);
2b26736c 2827backout_unlocked:
4c887265
AL
2828 unlock_page(page);
2829 put_page(page);
2830 goto out;
ac9b9c66
HD
2831}
2832
86e5216f 2833int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
788c7df4 2834 unsigned long address, unsigned int flags)
86e5216f
AL
2835{
2836 pte_t *ptep;
2837 pte_t entry;
1e8f889b 2838 int ret;
0fe6e20b 2839 struct page *page = NULL;
57303d80 2840 struct page *pagecache_page = NULL;
3935baa9 2841 static DEFINE_MUTEX(hugetlb_instantiation_mutex);
a5516438 2842 struct hstate *h = hstate_vma(vma);
86e5216f 2843
1e16a539
KH
2844 address &= huge_page_mask(h);
2845
fd6a03ed
NH
2846 ptep = huge_pte_offset(mm, address);
2847 if (ptep) {
2848 entry = huge_ptep_get(ptep);
290408d4 2849 if (unlikely(is_hugetlb_entry_migration(entry))) {
30dad309 2850 migration_entry_wait_huge(mm, ptep);
290408d4
NH
2851 return 0;
2852 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
32f84528 2853 return VM_FAULT_HWPOISON_LARGE |
972dc4de 2854 VM_FAULT_SET_HINDEX(hstate_index(h));
fd6a03ed
NH
2855 }
2856
a5516438 2857 ptep = huge_pte_alloc(mm, address, huge_page_size(h));
86e5216f
AL
2858 if (!ptep)
2859 return VM_FAULT_OOM;
2860
3935baa9
DG
2861 /*
2862 * Serialize hugepage allocation and instantiation, so that we don't
2863 * get spurious allocation failures if two CPUs race to instantiate
2864 * the same page in the page cache.
2865 */
2866 mutex_lock(&hugetlb_instantiation_mutex);
7f2e9525
GS
2867 entry = huge_ptep_get(ptep);
2868 if (huge_pte_none(entry)) {
788c7df4 2869 ret = hugetlb_no_page(mm, vma, address, ptep, flags);
b4d1d99f 2870 goto out_mutex;
3935baa9 2871 }
86e5216f 2872
83c54070 2873 ret = 0;
1e8f889b 2874
57303d80
AW
2875 /*
2876 * If we are going to COW the mapping later, we examine the pending
2877 * reservations for this page now. This will ensure that any
2878 * allocations necessary to record that reservation occur outside the
2879 * spinlock. For private mappings, we also lookup the pagecache
2880 * page now as it is used to determine if a reservation has been
2881 * consumed.
2882 */
106c992a 2883 if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
2b26736c
AW
2884 if (vma_needs_reservation(h, vma, address) < 0) {
2885 ret = VM_FAULT_OOM;
b4d1d99f 2886 goto out_mutex;
2b26736c 2887 }
57303d80 2888
f83a275d 2889 if (!(vma->vm_flags & VM_MAYSHARE))
57303d80
AW
2890 pagecache_page = hugetlbfs_pagecache_page(h,
2891 vma, address);
2892 }
2893
56c9cfb1
NH
2894 /*
2895 * hugetlb_cow() requires page locks of pte_page(entry) and
2896 * pagecache_page, so here we need take the former one
2897 * when page != pagecache_page or !pagecache_page.
2898 * Note that locking order is always pagecache_page -> page,
2899 * so no worry about deadlock.
2900 */
2901 page = pte_page(entry);
66aebce7 2902 get_page(page);
56c9cfb1 2903 if (page != pagecache_page)
0fe6e20b 2904 lock_page(page);
0fe6e20b 2905
1e8f889b
DG
2906 spin_lock(&mm->page_table_lock);
2907 /* Check for a racing update before calling hugetlb_cow */
b4d1d99f
DG
2908 if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
2909 goto out_page_table_lock;
2910
2911
788c7df4 2912 if (flags & FAULT_FLAG_WRITE) {
106c992a 2913 if (!huge_pte_write(entry)) {
57303d80
AW
2914 ret = hugetlb_cow(mm, vma, address, ptep, entry,
2915 pagecache_page);
b4d1d99f
DG
2916 goto out_page_table_lock;
2917 }
106c992a 2918 entry = huge_pte_mkdirty(entry);
b4d1d99f
DG
2919 }
2920 entry = pte_mkyoung(entry);
788c7df4
HD
2921 if (huge_ptep_set_access_flags(vma, address, ptep, entry,
2922 flags & FAULT_FLAG_WRITE))
4b3073e1 2923 update_mmu_cache(vma, address, ptep);
b4d1d99f
DG
2924
2925out_page_table_lock:
1e8f889b 2926 spin_unlock(&mm->page_table_lock);
57303d80
AW
2927
2928 if (pagecache_page) {
2929 unlock_page(pagecache_page);
2930 put_page(pagecache_page);
2931 }
1f64d69c
DN
2932 if (page != pagecache_page)
2933 unlock_page(page);
66aebce7 2934 put_page(page);
57303d80 2935
b4d1d99f 2936out_mutex:
3935baa9 2937 mutex_unlock(&hugetlb_instantiation_mutex);
1e8f889b
DG
2938
2939 return ret;
86e5216f
AL
2940}
2941
28a35716
ML
2942long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
2943 struct page **pages, struct vm_area_struct **vmas,
2944 unsigned long *position, unsigned long *nr_pages,
2945 long i, unsigned int flags)
63551ae0 2946{
d5d4b0aa
CK
2947 unsigned long pfn_offset;
2948 unsigned long vaddr = *position;
28a35716 2949 unsigned long remainder = *nr_pages;
a5516438 2950 struct hstate *h = hstate_vma(vma);
63551ae0 2951
1c59827d 2952 spin_lock(&mm->page_table_lock);
63551ae0 2953 while (vaddr < vma->vm_end && remainder) {
4c887265 2954 pte_t *pte;
2a15efc9 2955 int absent;
4c887265 2956 struct page *page;
63551ae0 2957
4c887265
AL
2958 /*
2959 * Some archs (sparc64, sh*) have multiple pte_ts to
2a15efc9 2960 * each hugepage. We have to make sure we get the
4c887265
AL
2961 * first, for the page indexing below to work.
2962 */
a5516438 2963 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h));
2a15efc9
HD
2964 absent = !pte || huge_pte_none(huge_ptep_get(pte));
2965
2966 /*
2967 * When coredumping, it suits get_dump_page if we just return
3ae77f43
HD
2968 * an error where there's an empty slot with no huge pagecache
2969 * to back it. This way, we avoid allocating a hugepage, and
2970 * the sparse dumpfile avoids allocating disk blocks, but its
2971 * huge holes still show up with zeroes where they need to be.
2a15efc9 2972 */
3ae77f43
HD
2973 if (absent && (flags & FOLL_DUMP) &&
2974 !hugetlbfs_pagecache_present(h, vma, vaddr)) {
2a15efc9
HD
2975 remainder = 0;
2976 break;
2977 }
63551ae0 2978
9cc3a5bd
NH
2979 /*
2980 * We need call hugetlb_fault for both hugepages under migration
2981 * (in which case hugetlb_fault waits for the migration,) and
2982 * hwpoisoned hugepages (in which case we need to prevent the
2983 * caller from accessing to them.) In order to do this, we use
2984 * here is_swap_pte instead of is_hugetlb_entry_migration and
2985 * is_hugetlb_entry_hwpoisoned. This is because it simply covers
2986 * both cases, and because we can't follow correct pages
2987 * directly from any kind of swap entries.
2988 */
2989 if (absent || is_swap_pte(huge_ptep_get(pte)) ||
106c992a
GS
2990 ((flags & FOLL_WRITE) &&
2991 !huge_pte_write(huge_ptep_get(pte)))) {
4c887265 2992 int ret;
63551ae0 2993
4c887265 2994 spin_unlock(&mm->page_table_lock);
2a15efc9
HD
2995 ret = hugetlb_fault(mm, vma, vaddr,
2996 (flags & FOLL_WRITE) ? FAULT_FLAG_WRITE : 0);
4c887265 2997 spin_lock(&mm->page_table_lock);
a89182c7 2998 if (!(ret & VM_FAULT_ERROR))
4c887265 2999 continue;
63551ae0 3000
4c887265 3001 remainder = 0;
4c887265
AL
3002 break;
3003 }
3004
a5516438 3005 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
7f2e9525 3006 page = pte_page(huge_ptep_get(pte));
d5d4b0aa 3007same_page:
d6692183 3008 if (pages) {
2a15efc9 3009 pages[i] = mem_map_offset(page, pfn_offset);
4b2e38ad 3010 get_page(pages[i]);
d6692183 3011 }
63551ae0
DG
3012
3013 if (vmas)
3014 vmas[i] = vma;
3015
3016 vaddr += PAGE_SIZE;
d5d4b0aa 3017 ++pfn_offset;
63551ae0
DG
3018 --remainder;
3019 ++i;
d5d4b0aa 3020 if (vaddr < vma->vm_end && remainder &&
a5516438 3021 pfn_offset < pages_per_huge_page(h)) {
d5d4b0aa
CK
3022 /*
3023 * We use pfn_offset to avoid touching the pageframes
3024 * of this compound page.
3025 */
3026 goto same_page;
3027 }
63551ae0 3028 }
1c59827d 3029 spin_unlock(&mm->page_table_lock);
28a35716 3030 *nr_pages = remainder;
63551ae0
DG
3031 *position = vaddr;
3032
2a15efc9 3033 return i ? i : -EFAULT;
63551ae0 3034}
8f860591 3035
7da4d641 3036unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
8f860591
ZY
3037 unsigned long address, unsigned long end, pgprot_t newprot)
3038{
3039 struct mm_struct *mm = vma->vm_mm;
3040 unsigned long start = address;
3041 pte_t *ptep;
3042 pte_t pte;
a5516438 3043 struct hstate *h = hstate_vma(vma);
7da4d641 3044 unsigned long pages = 0;
8f860591
ZY
3045
3046 BUG_ON(address >= end);
3047 flush_cache_range(vma, address, end);
3048
3d48ae45 3049 mutex_lock(&vma->vm_file->f_mapping->i_mmap_mutex);
8f860591 3050 spin_lock(&mm->page_table_lock);
a5516438 3051 for (; address < end; address += huge_page_size(h)) {
8f860591
ZY
3052 ptep = huge_pte_offset(mm, address);
3053 if (!ptep)
3054 continue;
7da4d641
PZ
3055 if (huge_pmd_unshare(mm, &address, ptep)) {
3056 pages++;
39dde65c 3057 continue;
7da4d641 3058 }
7f2e9525 3059 if (!huge_pte_none(huge_ptep_get(ptep))) {
8f860591 3060 pte = huge_ptep_get_and_clear(mm, address, ptep);
106c992a 3061 pte = pte_mkhuge(huge_pte_modify(pte, newprot));
be7517d6 3062 pte = arch_make_huge_pte(pte, vma, NULL, 0);
8f860591 3063 set_huge_pte_at(mm, address, ptep, pte);
7da4d641 3064 pages++;
8f860591
ZY
3065 }
3066 }
3067 spin_unlock(&mm->page_table_lock);
d833352a
MG
3068 /*
3069 * Must flush TLB before releasing i_mmap_mutex: x86's huge_pmd_unshare
3070 * may have cleared our pud entry and done put_page on the page table:
3071 * once we release i_mmap_mutex, another task can do the final put_page
3072 * and that page table be reused and filled with junk.
3073 */
8f860591 3074 flush_tlb_range(vma, start, end);
d833352a 3075 mutex_unlock(&vma->vm_file->f_mapping->i_mmap_mutex);
7da4d641
PZ
3076
3077 return pages << h->order;
8f860591
ZY
3078}
3079
a1e78772
MG
3080int hugetlb_reserve_pages(struct inode *inode,
3081 long from, long to,
5a6fe125 3082 struct vm_area_struct *vma,
ca16d140 3083 vm_flags_t vm_flags)
e4e574b7 3084{
17c9d12e 3085 long ret, chg;
a5516438 3086 struct hstate *h = hstate_inode(inode);
90481622 3087 struct hugepage_subpool *spool = subpool_inode(inode);
e4e574b7 3088
17c9d12e
MG
3089 /*
3090 * Only apply hugepage reservation if asked. At fault time, an
3091 * attempt will be made for VM_NORESERVE to allocate a page
90481622 3092 * without using reserves
17c9d12e 3093 */
ca16d140 3094 if (vm_flags & VM_NORESERVE)
17c9d12e
MG
3095 return 0;
3096
a1e78772
MG
3097 /*
3098 * Shared mappings base their reservation on the number of pages that
3099 * are already allocated on behalf of the file. Private mappings need
3100 * to reserve the full area even if read-only as mprotect() may be
3101 * called to make the mapping read-write. Assume !vma is a shm mapping
3102 */
f83a275d 3103 if (!vma || vma->vm_flags & VM_MAYSHARE)
a1e78772 3104 chg = region_chg(&inode->i_mapping->private_list, from, to);
17c9d12e
MG
3105 else {
3106 struct resv_map *resv_map = resv_map_alloc();
3107 if (!resv_map)
3108 return -ENOMEM;
3109
a1e78772 3110 chg = to - from;
84afd99b 3111
17c9d12e
MG
3112 set_vma_resv_map(vma, resv_map);
3113 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
3114 }
3115
c50ac050
DH
3116 if (chg < 0) {
3117 ret = chg;
3118 goto out_err;
3119 }
8a630112 3120
90481622 3121 /* There must be enough pages in the subpool for the mapping */
c50ac050
DH
3122 if (hugepage_subpool_get_pages(spool, chg)) {
3123 ret = -ENOSPC;
3124 goto out_err;
3125 }
5a6fe125
MG
3126
3127 /*
17c9d12e 3128 * Check enough hugepages are available for the reservation.
90481622 3129 * Hand the pages back to the subpool if there are not
5a6fe125 3130 */
a5516438 3131 ret = hugetlb_acct_memory(h, chg);
68842c9b 3132 if (ret < 0) {
90481622 3133 hugepage_subpool_put_pages(spool, chg);
c50ac050 3134 goto out_err;
68842c9b 3135 }
17c9d12e
MG
3136
3137 /*
3138 * Account for the reservations made. Shared mappings record regions
3139 * that have reservations as they are shared by multiple VMAs.
3140 * When the last VMA disappears, the region map says how much
3141 * the reservation was and the page cache tells how much of
3142 * the reservation was consumed. Private mappings are per-VMA and
3143 * only the consumed reservations are tracked. When the VMA
3144 * disappears, the original reservation is the VMA size and the
3145 * consumed reservations are stored in the map. Hence, nothing
3146 * else has to be done for private mappings here
3147 */
f83a275d 3148 if (!vma || vma->vm_flags & VM_MAYSHARE)
a1e78772 3149 region_add(&inode->i_mapping->private_list, from, to);
a43a8c39 3150 return 0;
c50ac050 3151out_err:
4523e145
DH
3152 if (vma)
3153 resv_map_put(vma);
c50ac050 3154 return ret;
a43a8c39
CK
3155}
3156
3157void hugetlb_unreserve_pages(struct inode *inode, long offset, long freed)
3158{
a5516438 3159 struct hstate *h = hstate_inode(inode);
a43a8c39 3160 long chg = region_truncate(&inode->i_mapping->private_list, offset);
90481622 3161 struct hugepage_subpool *spool = subpool_inode(inode);
45c682a6
KC
3162
3163 spin_lock(&inode->i_lock);
e4c6f8be 3164 inode->i_blocks -= (blocks_per_huge_page(h) * freed);
45c682a6
KC
3165 spin_unlock(&inode->i_lock);
3166
90481622 3167 hugepage_subpool_put_pages(spool, (chg - freed));
a5516438 3168 hugetlb_acct_memory(h, -(chg - freed));
a43a8c39 3169}
93f70f90 3170
3212b535
SC
3171#ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
3172static unsigned long page_table_shareable(struct vm_area_struct *svma,
3173 struct vm_area_struct *vma,
3174 unsigned long addr, pgoff_t idx)
3175{
3176 unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
3177 svma->vm_start;
3178 unsigned long sbase = saddr & PUD_MASK;
3179 unsigned long s_end = sbase + PUD_SIZE;
3180
3181 /* Allow segments to share if only one is marked locked */
3182 unsigned long vm_flags = vma->vm_flags & ~VM_LOCKED;
3183 unsigned long svm_flags = svma->vm_flags & ~VM_LOCKED;
3184
3185 /*
3186 * match the virtual addresses, permission and the alignment of the
3187 * page table page.
3188 */
3189 if (pmd_index(addr) != pmd_index(saddr) ||
3190 vm_flags != svm_flags ||
3191 sbase < svma->vm_start || svma->vm_end < s_end)
3192 return 0;
3193
3194 return saddr;
3195}
3196
3197static int vma_shareable(struct vm_area_struct *vma, unsigned long addr)
3198{
3199 unsigned long base = addr & PUD_MASK;
3200 unsigned long end = base + PUD_SIZE;
3201
3202 /*
3203 * check on proper vm_flags and page table alignment
3204 */
3205 if (vma->vm_flags & VM_MAYSHARE &&
3206 vma->vm_start <= base && end <= vma->vm_end)
3207 return 1;
3208 return 0;
3209}
3210
3211/*
3212 * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
3213 * and returns the corresponding pte. While this is not necessary for the
3214 * !shared pmd case because we can allocate the pmd later as well, it makes the
3215 * code much cleaner. pmd allocation is essential for the shared case because
3216 * pud has to be populated inside the same i_mmap_mutex section - otherwise
3217 * racing tasks could either miss the sharing (see huge_pte_offset) or select a
3218 * bad pmd for sharing.
3219 */
3220pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
3221{
3222 struct vm_area_struct *vma = find_vma(mm, addr);
3223 struct address_space *mapping = vma->vm_file->f_mapping;
3224 pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
3225 vma->vm_pgoff;
3226 struct vm_area_struct *svma;
3227 unsigned long saddr;
3228 pte_t *spte = NULL;
3229 pte_t *pte;
3230
3231 if (!vma_shareable(vma, addr))
3232 return (pte_t *)pmd_alloc(mm, pud, addr);
3233
3234 mutex_lock(&mapping->i_mmap_mutex);
3235 vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
3236 if (svma == vma)
3237 continue;
3238
3239 saddr = page_table_shareable(svma, vma, addr, idx);
3240 if (saddr) {
3241 spte = huge_pte_offset(svma->vm_mm, saddr);
3242 if (spte) {
3243 get_page(virt_to_page(spte));
3244 break;
3245 }
3246 }
3247 }
3248
3249 if (!spte)
3250 goto out;
3251
3252 spin_lock(&mm->page_table_lock);
3253 if (pud_none(*pud))
3254 pud_populate(mm, pud,
3255 (pmd_t *)((unsigned long)spte & PAGE_MASK));
3256 else
3257 put_page(virt_to_page(spte));
3258 spin_unlock(&mm->page_table_lock);
3259out:
3260 pte = (pte_t *)pmd_alloc(mm, pud, addr);
3261 mutex_unlock(&mapping->i_mmap_mutex);
3262 return pte;
3263}
3264
3265/*
3266 * unmap huge page backed by shared pte.
3267 *
3268 * Hugetlb pte page is ref counted at the time of mapping. If pte is shared
3269 * indicated by page_count > 1, unmap is achieved by clearing pud and
3270 * decrementing the ref count. If count == 1, the pte page is not shared.
3271 *
3272 * called with vma->vm_mm->page_table_lock held.
3273 *
3274 * returns: 1 successfully unmapped a shared pte page
3275 * 0 the underlying pte page is not shared, or it is the last user
3276 */
3277int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
3278{
3279 pgd_t *pgd = pgd_offset(mm, *addr);
3280 pud_t *pud = pud_offset(pgd, *addr);
3281
3282 BUG_ON(page_count(virt_to_page(ptep)) == 0);
3283 if (page_count(virt_to_page(ptep)) == 1)
3284 return 0;
3285
3286 pud_clear(pud);
3287 put_page(virt_to_page(ptep));
3288 *addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE;
3289 return 1;
3290}
9e5fc74c
SC
3291#define want_pmd_share() (1)
3292#else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
3293pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
3294{
3295 return NULL;
3296}
3297#define want_pmd_share() (0)
3212b535
SC
3298#endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
3299
9e5fc74c
SC
3300#ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
3301pte_t *huge_pte_alloc(struct mm_struct *mm,
3302 unsigned long addr, unsigned long sz)
3303{
3304 pgd_t *pgd;
3305 pud_t *pud;
3306 pte_t *pte = NULL;
3307
3308 pgd = pgd_offset(mm, addr);
3309 pud = pud_alloc(mm, pgd, addr);
3310 if (pud) {
3311 if (sz == PUD_SIZE) {
3312 pte = (pte_t *)pud;
3313 } else {
3314 BUG_ON(sz != PMD_SIZE);
3315 if (want_pmd_share() && pud_none(*pud))
3316 pte = huge_pmd_share(mm, addr, pud);
3317 else
3318 pte = (pte_t *)pmd_alloc(mm, pud, addr);
3319 }
3320 }
3321 BUG_ON(pte && !pte_none(*pte) && !pte_huge(*pte));
3322
3323 return pte;
3324}
3325
3326pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr)
3327{
3328 pgd_t *pgd;
3329 pud_t *pud;
3330 pmd_t *pmd = NULL;
3331
3332 pgd = pgd_offset(mm, addr);
3333 if (pgd_present(*pgd)) {
3334 pud = pud_offset(pgd, addr);
3335 if (pud_present(*pud)) {
3336 if (pud_huge(*pud))
3337 return (pte_t *)pud;
3338 pmd = pmd_offset(pud, addr);
3339 }
3340 }
3341 return (pte_t *) pmd;
3342}
3343
3344struct page *
3345follow_huge_pmd(struct mm_struct *mm, unsigned long address,
3346 pmd_t *pmd, int write)
3347{
3348 struct page *page;
3349
3350 page = pte_page(*(pte_t *)pmd);
3351 if (page)
3352 page += ((address & ~PMD_MASK) >> PAGE_SHIFT);
3353 return page;
3354}
3355
3356struct page *
3357follow_huge_pud(struct mm_struct *mm, unsigned long address,
3358 pud_t *pud, int write)
3359{
3360 struct page *page;
3361
3362 page = pte_page(*(pte_t *)pud);
3363 if (page)
3364 page += ((address & ~PUD_MASK) >> PAGE_SHIFT);
3365 return page;
3366}
3367
3368#else /* !CONFIG_ARCH_WANT_GENERAL_HUGETLB */
3369
3370/* Can be overriden by architectures */
3371__attribute__((weak)) struct page *
3372follow_huge_pud(struct mm_struct *mm, unsigned long address,
3373 pud_t *pud, int write)
3374{
3375 BUG();
3376 return NULL;
3377}
3378
3379#endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
3380
d5bd9106
AK
3381#ifdef CONFIG_MEMORY_FAILURE
3382
6de2b1aa
NH
3383/* Should be called in hugetlb_lock */
3384static int is_hugepage_on_freelist(struct page *hpage)
3385{
3386 struct page *page;
3387 struct page *tmp;
3388 struct hstate *h = page_hstate(hpage);
3389 int nid = page_to_nid(hpage);
3390
3391 list_for_each_entry_safe(page, tmp, &h->hugepage_freelists[nid], lru)
3392 if (page == hpage)
3393 return 1;
3394 return 0;
3395}
3396
93f70f90
NH
3397/*
3398 * This function is called from memory failure code.
3399 * Assume the caller holds page lock of the head page.
3400 */
6de2b1aa 3401int dequeue_hwpoisoned_huge_page(struct page *hpage)
93f70f90
NH
3402{
3403 struct hstate *h = page_hstate(hpage);
3404 int nid = page_to_nid(hpage);
6de2b1aa 3405 int ret = -EBUSY;
93f70f90
NH
3406
3407 spin_lock(&hugetlb_lock);
6de2b1aa 3408 if (is_hugepage_on_freelist(hpage)) {
56f2fb14
NH
3409 /*
3410 * Hwpoisoned hugepage isn't linked to activelist or freelist,
3411 * but dangling hpage->lru can trigger list-debug warnings
3412 * (this happens when we call unpoison_memory() on it),
3413 * so let it point to itself with list_del_init().
3414 */
3415 list_del_init(&hpage->lru);
8c6c2ecb 3416 set_page_refcounted(hpage);
6de2b1aa
NH
3417 h->free_huge_pages--;
3418 h->free_huge_pages_node[nid]--;
3419 ret = 0;
3420 }
93f70f90 3421 spin_unlock(&hugetlb_lock);
6de2b1aa 3422 return ret;
93f70f90 3423}
6de2b1aa 3424#endif