kernel: remove CONFIG_USE_GENERIC_SMP_HELPERS cleanly
[linux-2.6-block.git] / mm / hugetlb.c
CommitLineData
1da177e4
LT
1/*
2 * Generic hugetlb support.
6d49e352 3 * (C) Nadia Yvette Chambers, April 2004
1da177e4 4 */
1da177e4
LT
5#include <linux/list.h>
6#include <linux/init.h>
7#include <linux/module.h>
8#include <linux/mm.h>
e1759c21 9#include <linux/seq_file.h>
1da177e4
LT
10#include <linux/sysctl.h>
11#include <linux/highmem.h>
cddb8a5c 12#include <linux/mmu_notifier.h>
1da177e4 13#include <linux/nodemask.h>
63551ae0 14#include <linux/pagemap.h>
5da7ca86 15#include <linux/mempolicy.h>
aea47ff3 16#include <linux/cpuset.h>
3935baa9 17#include <linux/mutex.h>
aa888a74 18#include <linux/bootmem.h>
a3437870 19#include <linux/sysfs.h>
5a0e3ad6 20#include <linux/slab.h>
0fe6e20b 21#include <linux/rmap.h>
fd6a03ed
NH
22#include <linux/swap.h>
23#include <linux/swapops.h>
c8721bbb 24#include <linux/page-isolation.h>
d6606683 25
63551ae0
DG
26#include <asm/page.h>
27#include <asm/pgtable.h>
24669e58 28#include <asm/tlb.h>
63551ae0 29
24669e58 30#include <linux/io.h>
63551ae0 31#include <linux/hugetlb.h>
9dd540e2 32#include <linux/hugetlb_cgroup.h>
9a305230 33#include <linux/node.h>
7835e98b 34#include "internal.h"
1da177e4
LT
35
36const unsigned long hugetlb_zero = 0, hugetlb_infinity = ~0UL;
396faf03 37unsigned long hugepages_treat_as_movable;
a5516438 38
c3f38a38 39int hugetlb_max_hstate __read_mostly;
e5ff2159
AK
40unsigned int default_hstate_idx;
41struct hstate hstates[HUGE_MAX_HSTATE];
42
53ba51d2
JT
43__initdata LIST_HEAD(huge_boot_pages);
44
e5ff2159
AK
45/* for command line parsing */
46static struct hstate * __initdata parsed_hstate;
47static unsigned long __initdata default_hstate_max_huge_pages;
e11bfbfc 48static unsigned long __initdata default_hstate_size;
e5ff2159 49
3935baa9 50/*
31caf665
NH
51 * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
52 * free_huge_pages, and surplus_huge_pages.
3935baa9 53 */
c3f38a38 54DEFINE_SPINLOCK(hugetlb_lock);
0bd0f9fb 55
90481622
DG
56static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
57{
58 bool free = (spool->count == 0) && (spool->used_hpages == 0);
59
60 spin_unlock(&spool->lock);
61
62 /* If no pages are used, and no other handles to the subpool
63 * remain, free the subpool the subpool remain */
64 if (free)
65 kfree(spool);
66}
67
68struct hugepage_subpool *hugepage_new_subpool(long nr_blocks)
69{
70 struct hugepage_subpool *spool;
71
72 spool = kmalloc(sizeof(*spool), GFP_KERNEL);
73 if (!spool)
74 return NULL;
75
76 spin_lock_init(&spool->lock);
77 spool->count = 1;
78 spool->max_hpages = nr_blocks;
79 spool->used_hpages = 0;
80
81 return spool;
82}
83
84void hugepage_put_subpool(struct hugepage_subpool *spool)
85{
86 spin_lock(&spool->lock);
87 BUG_ON(!spool->count);
88 spool->count--;
89 unlock_or_release_subpool(spool);
90}
91
92static int hugepage_subpool_get_pages(struct hugepage_subpool *spool,
93 long delta)
94{
95 int ret = 0;
96
97 if (!spool)
98 return 0;
99
100 spin_lock(&spool->lock);
101 if ((spool->used_hpages + delta) <= spool->max_hpages) {
102 spool->used_hpages += delta;
103 } else {
104 ret = -ENOMEM;
105 }
106 spin_unlock(&spool->lock);
107
108 return ret;
109}
110
111static void hugepage_subpool_put_pages(struct hugepage_subpool *spool,
112 long delta)
113{
114 if (!spool)
115 return;
116
117 spin_lock(&spool->lock);
118 spool->used_hpages -= delta;
119 /* If hugetlbfs_put_super couldn't free spool due to
120 * an outstanding quota reference, free it now. */
121 unlock_or_release_subpool(spool);
122}
123
124static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
125{
126 return HUGETLBFS_SB(inode->i_sb)->spool;
127}
128
129static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
130{
496ad9aa 131 return subpool_inode(file_inode(vma->vm_file));
90481622
DG
132}
133
96822904
AW
134/*
135 * Region tracking -- allows tracking of reservations and instantiated pages
136 * across the pages in a mapping.
84afd99b
AW
137 *
138 * The region data structures are protected by a combination of the mmap_sem
c748c262 139 * and the hugetlb_instantiation_mutex. To access or modify a region the caller
84afd99b 140 * must either hold the mmap_sem for write, or the mmap_sem for read and
c748c262 141 * the hugetlb_instantiation_mutex:
84afd99b 142 *
32f84528 143 * down_write(&mm->mmap_sem);
84afd99b 144 * or
32f84528
CF
145 * down_read(&mm->mmap_sem);
146 * mutex_lock(&hugetlb_instantiation_mutex);
96822904
AW
147 */
148struct file_region {
149 struct list_head link;
150 long from;
151 long to;
152};
153
154static long region_add(struct list_head *head, long f, long t)
155{
156 struct file_region *rg, *nrg, *trg;
157
158 /* Locate the region we are either in or before. */
159 list_for_each_entry(rg, head, link)
160 if (f <= rg->to)
161 break;
162
163 /* Round our left edge to the current segment if it encloses us. */
164 if (f > rg->from)
165 f = rg->from;
166
167 /* Check for and consume any regions we now overlap with. */
168 nrg = rg;
169 list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
170 if (&rg->link == head)
171 break;
172 if (rg->from > t)
173 break;
174
175 /* If this area reaches higher then extend our area to
176 * include it completely. If this is not the first area
177 * which we intend to reuse, free it. */
178 if (rg->to > t)
179 t = rg->to;
180 if (rg != nrg) {
181 list_del(&rg->link);
182 kfree(rg);
183 }
184 }
185 nrg->from = f;
186 nrg->to = t;
187 return 0;
188}
189
190static long region_chg(struct list_head *head, long f, long t)
191{
192 struct file_region *rg, *nrg;
193 long chg = 0;
194
195 /* Locate the region we are before or in. */
196 list_for_each_entry(rg, head, link)
197 if (f <= rg->to)
198 break;
199
200 /* If we are below the current region then a new region is required.
201 * Subtle, allocate a new region at the position but make it zero
202 * size such that we can guarantee to record the reservation. */
203 if (&rg->link == head || t < rg->from) {
204 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
205 if (!nrg)
206 return -ENOMEM;
207 nrg->from = f;
208 nrg->to = f;
209 INIT_LIST_HEAD(&nrg->link);
210 list_add(&nrg->link, rg->link.prev);
211
212 return t - f;
213 }
214
215 /* Round our left edge to the current segment if it encloses us. */
216 if (f > rg->from)
217 f = rg->from;
218 chg = t - f;
219
220 /* Check for and consume any regions we now overlap with. */
221 list_for_each_entry(rg, rg->link.prev, link) {
222 if (&rg->link == head)
223 break;
224 if (rg->from > t)
225 return chg;
226
25985edc 227 /* We overlap with this area, if it extends further than
96822904
AW
228 * us then we must extend ourselves. Account for its
229 * existing reservation. */
230 if (rg->to > t) {
231 chg += rg->to - t;
232 t = rg->to;
233 }
234 chg -= rg->to - rg->from;
235 }
236 return chg;
237}
238
239static long region_truncate(struct list_head *head, long end)
240{
241 struct file_region *rg, *trg;
242 long chg = 0;
243
244 /* Locate the region we are either in or before. */
245 list_for_each_entry(rg, head, link)
246 if (end <= rg->to)
247 break;
248 if (&rg->link == head)
249 return 0;
250
251 /* If we are in the middle of a region then adjust it. */
252 if (end > rg->from) {
253 chg = rg->to - end;
254 rg->to = end;
255 rg = list_entry(rg->link.next, typeof(*rg), link);
256 }
257
258 /* Drop any remaining regions. */
259 list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
260 if (&rg->link == head)
261 break;
262 chg += rg->to - rg->from;
263 list_del(&rg->link);
264 kfree(rg);
265 }
266 return chg;
267}
268
84afd99b
AW
269static long region_count(struct list_head *head, long f, long t)
270{
271 struct file_region *rg;
272 long chg = 0;
273
274 /* Locate each segment we overlap with, and count that overlap. */
275 list_for_each_entry(rg, head, link) {
f2135a4a
WSH
276 long seg_from;
277 long seg_to;
84afd99b
AW
278
279 if (rg->to <= f)
280 continue;
281 if (rg->from >= t)
282 break;
283
284 seg_from = max(rg->from, f);
285 seg_to = min(rg->to, t);
286
287 chg += seg_to - seg_from;
288 }
289
290 return chg;
291}
292
e7c4b0bf
AW
293/*
294 * Convert the address within this vma to the page offset within
295 * the mapping, in pagecache page units; huge pages here.
296 */
a5516438
AK
297static pgoff_t vma_hugecache_offset(struct hstate *h,
298 struct vm_area_struct *vma, unsigned long address)
e7c4b0bf 299{
a5516438
AK
300 return ((address - vma->vm_start) >> huge_page_shift(h)) +
301 (vma->vm_pgoff >> huge_page_order(h));
e7c4b0bf
AW
302}
303
0fe6e20b
NH
304pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
305 unsigned long address)
306{
307 return vma_hugecache_offset(hstate_vma(vma), vma, address);
308}
309
08fba699
MG
310/*
311 * Return the size of the pages allocated when backing a VMA. In the majority
312 * cases this will be same size as used by the page table entries.
313 */
314unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
315{
316 struct hstate *hstate;
317
318 if (!is_vm_hugetlb_page(vma))
319 return PAGE_SIZE;
320
321 hstate = hstate_vma(vma);
322
2415cf12 323 return 1UL << huge_page_shift(hstate);
08fba699 324}
f340ca0f 325EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
08fba699 326
3340289d
MG
327/*
328 * Return the page size being used by the MMU to back a VMA. In the majority
329 * of cases, the page size used by the kernel matches the MMU size. On
330 * architectures where it differs, an architecture-specific version of this
331 * function is required.
332 */
333#ifndef vma_mmu_pagesize
334unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
335{
336 return vma_kernel_pagesize(vma);
337}
338#endif
339
84afd99b
AW
340/*
341 * Flags for MAP_PRIVATE reservations. These are stored in the bottom
342 * bits of the reservation map pointer, which are always clear due to
343 * alignment.
344 */
345#define HPAGE_RESV_OWNER (1UL << 0)
346#define HPAGE_RESV_UNMAPPED (1UL << 1)
04f2cbe3 347#define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
84afd99b 348
a1e78772
MG
349/*
350 * These helpers are used to track how many pages are reserved for
351 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
352 * is guaranteed to have their future faults succeed.
353 *
354 * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
355 * the reserve counters are updated with the hugetlb_lock held. It is safe
356 * to reset the VMA at fork() time as it is not in use yet and there is no
357 * chance of the global counters getting corrupted as a result of the values.
84afd99b
AW
358 *
359 * The private mapping reservation is represented in a subtly different
360 * manner to a shared mapping. A shared mapping has a region map associated
361 * with the underlying file, this region map represents the backing file
362 * pages which have ever had a reservation assigned which this persists even
363 * after the page is instantiated. A private mapping has a region map
364 * associated with the original mmap which is attached to all VMAs which
365 * reference it, this region map represents those offsets which have consumed
366 * reservation ie. where pages have been instantiated.
a1e78772 367 */
e7c4b0bf
AW
368static unsigned long get_vma_private_data(struct vm_area_struct *vma)
369{
370 return (unsigned long)vma->vm_private_data;
371}
372
373static void set_vma_private_data(struct vm_area_struct *vma,
374 unsigned long value)
375{
376 vma->vm_private_data = (void *)value;
377}
378
84afd99b
AW
379struct resv_map {
380 struct kref refs;
381 struct list_head regions;
382};
383
2a4b3ded 384static struct resv_map *resv_map_alloc(void)
84afd99b
AW
385{
386 struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
387 if (!resv_map)
388 return NULL;
389
390 kref_init(&resv_map->refs);
391 INIT_LIST_HEAD(&resv_map->regions);
392
393 return resv_map;
394}
395
2a4b3ded 396static void resv_map_release(struct kref *ref)
84afd99b
AW
397{
398 struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
399
400 /* Clear out any active regions before we release the map. */
401 region_truncate(&resv_map->regions, 0);
402 kfree(resv_map);
403}
404
405static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
a1e78772
MG
406{
407 VM_BUG_ON(!is_vm_hugetlb_page(vma));
f83a275d 408 if (!(vma->vm_flags & VM_MAYSHARE))
84afd99b
AW
409 return (struct resv_map *)(get_vma_private_data(vma) &
410 ~HPAGE_RESV_MASK);
2a4b3ded 411 return NULL;
a1e78772
MG
412}
413
84afd99b 414static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
a1e78772
MG
415{
416 VM_BUG_ON(!is_vm_hugetlb_page(vma));
f83a275d 417 VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
a1e78772 418
84afd99b
AW
419 set_vma_private_data(vma, (get_vma_private_data(vma) &
420 HPAGE_RESV_MASK) | (unsigned long)map);
04f2cbe3
MG
421}
422
423static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
424{
04f2cbe3 425 VM_BUG_ON(!is_vm_hugetlb_page(vma));
f83a275d 426 VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
e7c4b0bf
AW
427
428 set_vma_private_data(vma, get_vma_private_data(vma) | flags);
04f2cbe3
MG
429}
430
431static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
432{
433 VM_BUG_ON(!is_vm_hugetlb_page(vma));
e7c4b0bf
AW
434
435 return (get_vma_private_data(vma) & flag) != 0;
a1e78772
MG
436}
437
04f2cbe3 438/* Reset counters to 0 and clear all HPAGE_RESV_* flags */
a1e78772
MG
439void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
440{
441 VM_BUG_ON(!is_vm_hugetlb_page(vma));
f83a275d 442 if (!(vma->vm_flags & VM_MAYSHARE))
a1e78772
MG
443 vma->vm_private_data = (void *)0;
444}
445
446/* Returns true if the VMA has associated reserve pages */
af0ed73e 447static int vma_has_reserves(struct vm_area_struct *vma, long chg)
a1e78772 448{
af0ed73e
JK
449 if (vma->vm_flags & VM_NORESERVE) {
450 /*
451 * This address is already reserved by other process(chg == 0),
452 * so, we should decrement reserved count. Without decrementing,
453 * reserve count remains after releasing inode, because this
454 * allocated page will go into page cache and is regarded as
455 * coming from reserved pool in releasing step. Currently, we
456 * don't have any other solution to deal with this situation
457 * properly, so add work-around here.
458 */
459 if (vma->vm_flags & VM_MAYSHARE && chg == 0)
460 return 1;
461 else
462 return 0;
463 }
a63884e9
JK
464
465 /* Shared mappings always use reserves */
f83a275d 466 if (vma->vm_flags & VM_MAYSHARE)
7f09ca51 467 return 1;
a63884e9
JK
468
469 /*
470 * Only the process that called mmap() has reserves for
471 * private mappings.
472 */
7f09ca51
MG
473 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER))
474 return 1;
a63884e9 475
7f09ca51 476 return 0;
a1e78772
MG
477}
478
a5516438 479static void enqueue_huge_page(struct hstate *h, struct page *page)
1da177e4
LT
480{
481 int nid = page_to_nid(page);
0edaecfa 482 list_move(&page->lru, &h->hugepage_freelists[nid]);
a5516438
AK
483 h->free_huge_pages++;
484 h->free_huge_pages_node[nid]++;
1da177e4
LT
485}
486
bf50bab2
NH
487static struct page *dequeue_huge_page_node(struct hstate *h, int nid)
488{
489 struct page *page;
490
c8721bbb
NH
491 list_for_each_entry(page, &h->hugepage_freelists[nid], lru)
492 if (!is_migrate_isolate_page(page))
493 break;
494 /*
495 * if 'non-isolated free hugepage' not found on the list,
496 * the allocation fails.
497 */
498 if (&h->hugepage_freelists[nid] == &page->lru)
bf50bab2 499 return NULL;
0edaecfa 500 list_move(&page->lru, &h->hugepage_activelist);
a9869b83 501 set_page_refcounted(page);
bf50bab2
NH
502 h->free_huge_pages--;
503 h->free_huge_pages_node[nid]--;
504 return page;
505}
506
86cdb465
NH
507/* Movability of hugepages depends on migration support. */
508static inline gfp_t htlb_alloc_mask(struct hstate *h)
509{
510 if (hugepages_treat_as_movable || hugepage_migration_support(h))
511 return GFP_HIGHUSER_MOVABLE;
512 else
513 return GFP_HIGHUSER;
514}
515
a5516438
AK
516static struct page *dequeue_huge_page_vma(struct hstate *h,
517 struct vm_area_struct *vma,
af0ed73e
JK
518 unsigned long address, int avoid_reserve,
519 long chg)
1da177e4 520{
b1c12cbc 521 struct page *page = NULL;
480eccf9 522 struct mempolicy *mpol;
19770b32 523 nodemask_t *nodemask;
c0ff7453 524 struct zonelist *zonelist;
dd1a239f
MG
525 struct zone *zone;
526 struct zoneref *z;
cc9a6c87 527 unsigned int cpuset_mems_cookie;
1da177e4 528
a1e78772
MG
529 /*
530 * A child process with MAP_PRIVATE mappings created by their parent
531 * have no page reserves. This check ensures that reservations are
532 * not "stolen". The child may still get SIGKILLed
533 */
af0ed73e 534 if (!vma_has_reserves(vma, chg) &&
a5516438 535 h->free_huge_pages - h->resv_huge_pages == 0)
c0ff7453 536 goto err;
a1e78772 537
04f2cbe3 538 /* If reserves cannot be used, ensure enough pages are in the pool */
a5516438 539 if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
6eab04a8 540 goto err;
04f2cbe3 541
9966c4bb
JK
542retry_cpuset:
543 cpuset_mems_cookie = get_mems_allowed();
544 zonelist = huge_zonelist(vma, address,
86cdb465 545 htlb_alloc_mask(h), &mpol, &nodemask);
9966c4bb 546
19770b32
MG
547 for_each_zone_zonelist_nodemask(zone, z, zonelist,
548 MAX_NR_ZONES - 1, nodemask) {
86cdb465 549 if (cpuset_zone_allowed_softwall(zone, htlb_alloc_mask(h))) {
bf50bab2
NH
550 page = dequeue_huge_page_node(h, zone_to_nid(zone));
551 if (page) {
af0ed73e
JK
552 if (avoid_reserve)
553 break;
554 if (!vma_has_reserves(vma, chg))
555 break;
556
07443a85 557 SetPagePrivate(page);
af0ed73e 558 h->resv_huge_pages--;
bf50bab2
NH
559 break;
560 }
3abf7afd 561 }
1da177e4 562 }
cc9a6c87 563
52cd3b07 564 mpol_cond_put(mpol);
cc9a6c87
MG
565 if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !page))
566 goto retry_cpuset;
1da177e4 567 return page;
cc9a6c87
MG
568
569err:
cc9a6c87 570 return NULL;
1da177e4
LT
571}
572
a5516438 573static void update_and_free_page(struct hstate *h, struct page *page)
6af2acb6
AL
574{
575 int i;
a5516438 576
18229df5
AW
577 VM_BUG_ON(h->order >= MAX_ORDER);
578
a5516438
AK
579 h->nr_huge_pages--;
580 h->nr_huge_pages_node[page_to_nid(page)]--;
581 for (i = 0; i < pages_per_huge_page(h); i++) {
32f84528
CF
582 page[i].flags &= ~(1 << PG_locked | 1 << PG_error |
583 1 << PG_referenced | 1 << PG_dirty |
584 1 << PG_active | 1 << PG_reserved |
585 1 << PG_private | 1 << PG_writeback);
6af2acb6 586 }
9dd540e2 587 VM_BUG_ON(hugetlb_cgroup_from_page(page));
6af2acb6
AL
588 set_compound_page_dtor(page, NULL);
589 set_page_refcounted(page);
7f2e9525 590 arch_release_hugepage(page);
a5516438 591 __free_pages(page, huge_page_order(h));
6af2acb6
AL
592}
593
e5ff2159
AK
594struct hstate *size_to_hstate(unsigned long size)
595{
596 struct hstate *h;
597
598 for_each_hstate(h) {
599 if (huge_page_size(h) == size)
600 return h;
601 }
602 return NULL;
603}
604
27a85ef1
DG
605static void free_huge_page(struct page *page)
606{
a5516438
AK
607 /*
608 * Can't pass hstate in here because it is called from the
609 * compound page destructor.
610 */
e5ff2159 611 struct hstate *h = page_hstate(page);
7893d1d5 612 int nid = page_to_nid(page);
90481622
DG
613 struct hugepage_subpool *spool =
614 (struct hugepage_subpool *)page_private(page);
07443a85 615 bool restore_reserve;
27a85ef1 616
e5df70ab 617 set_page_private(page, 0);
23be7468 618 page->mapping = NULL;
7893d1d5 619 BUG_ON(page_count(page));
0fe6e20b 620 BUG_ON(page_mapcount(page));
07443a85 621 restore_reserve = PagePrivate(page);
16c794b4 622 ClearPagePrivate(page);
27a85ef1
DG
623
624 spin_lock(&hugetlb_lock);
6d76dcf4
AK
625 hugetlb_cgroup_uncharge_page(hstate_index(h),
626 pages_per_huge_page(h), page);
07443a85
JK
627 if (restore_reserve)
628 h->resv_huge_pages++;
629
aa888a74 630 if (h->surplus_huge_pages_node[nid] && huge_page_order(h) < MAX_ORDER) {
0edaecfa
AK
631 /* remove the page from active list */
632 list_del(&page->lru);
a5516438
AK
633 update_and_free_page(h, page);
634 h->surplus_huge_pages--;
635 h->surplus_huge_pages_node[nid]--;
7893d1d5 636 } else {
5d3a551c 637 arch_clear_hugepage_flags(page);
a5516438 638 enqueue_huge_page(h, page);
7893d1d5 639 }
27a85ef1 640 spin_unlock(&hugetlb_lock);
90481622 641 hugepage_subpool_put_pages(spool, 1);
27a85ef1
DG
642}
643
a5516438 644static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
b7ba30c6 645{
0edaecfa 646 INIT_LIST_HEAD(&page->lru);
b7ba30c6
AK
647 set_compound_page_dtor(page, free_huge_page);
648 spin_lock(&hugetlb_lock);
9dd540e2 649 set_hugetlb_cgroup(page, NULL);
a5516438
AK
650 h->nr_huge_pages++;
651 h->nr_huge_pages_node[nid]++;
b7ba30c6
AK
652 spin_unlock(&hugetlb_lock);
653 put_page(page); /* free it into the hugepage allocator */
654}
655
20a0307c
WF
656static void prep_compound_gigantic_page(struct page *page, unsigned long order)
657{
658 int i;
659 int nr_pages = 1 << order;
660 struct page *p = page + 1;
661
662 /* we rely on prep_new_huge_page to set the destructor */
663 set_compound_order(page, order);
664 __SetPageHead(page);
ef5a22be 665 __ClearPageReserved(page);
20a0307c
WF
666 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
667 __SetPageTail(p);
ef5a22be
AA
668 /*
669 * For gigantic hugepages allocated through bootmem at
670 * boot, it's safer to be consistent with the not-gigantic
671 * hugepages and clear the PG_reserved bit from all tail pages
672 * too. Otherwse drivers using get_user_pages() to access tail
673 * pages may get the reference counting wrong if they see
674 * PG_reserved set on a tail page (despite the head page not
675 * having PG_reserved set). Enforcing this consistency between
676 * head and tail pages allows drivers to optimize away a check
677 * on the head page when they need know if put_page() is needed
678 * after get_user_pages().
679 */
680 __ClearPageReserved(p);
58a84aa9 681 set_page_count(p, 0);
20a0307c
WF
682 p->first_page = page;
683 }
684}
685
7795912c
AM
686/*
687 * PageHuge() only returns true for hugetlbfs pages, but not for normal or
688 * transparent huge pages. See the PageTransHuge() documentation for more
689 * details.
690 */
20a0307c
WF
691int PageHuge(struct page *page)
692{
693 compound_page_dtor *dtor;
694
695 if (!PageCompound(page))
696 return 0;
697
698 page = compound_head(page);
699 dtor = get_compound_page_dtor(page);
700
701 return dtor == free_huge_page;
702}
43131e14
NH
703EXPORT_SYMBOL_GPL(PageHuge);
704
13d60f4b
ZY
705pgoff_t __basepage_index(struct page *page)
706{
707 struct page *page_head = compound_head(page);
708 pgoff_t index = page_index(page_head);
709 unsigned long compound_idx;
710
711 if (!PageHuge(page_head))
712 return page_index(page);
713
714 if (compound_order(page_head) >= MAX_ORDER)
715 compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
716 else
717 compound_idx = page - page_head;
718
719 return (index << compound_order(page_head)) + compound_idx;
720}
721
a5516438 722static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid)
1da177e4 723{
1da177e4 724 struct page *page;
f96efd58 725
aa888a74
AK
726 if (h->order >= MAX_ORDER)
727 return NULL;
728
6484eb3e 729 page = alloc_pages_exact_node(nid,
86cdb465 730 htlb_alloc_mask(h)|__GFP_COMP|__GFP_THISNODE|
551883ae 731 __GFP_REPEAT|__GFP_NOWARN,
a5516438 732 huge_page_order(h));
1da177e4 733 if (page) {
7f2e9525 734 if (arch_prepare_hugepage(page)) {
caff3a2c 735 __free_pages(page, huge_page_order(h));
7b8ee84d 736 return NULL;
7f2e9525 737 }
a5516438 738 prep_new_huge_page(h, page, nid);
1da177e4 739 }
63b4613c
NA
740
741 return page;
742}
743
9a76db09 744/*
6ae11b27
LS
745 * common helper functions for hstate_next_node_to_{alloc|free}.
746 * We may have allocated or freed a huge page based on a different
747 * nodes_allowed previously, so h->next_node_to_{alloc|free} might
748 * be outside of *nodes_allowed. Ensure that we use an allowed
749 * node for alloc or free.
9a76db09 750 */
6ae11b27 751static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
9a76db09 752{
6ae11b27 753 nid = next_node(nid, *nodes_allowed);
9a76db09 754 if (nid == MAX_NUMNODES)
6ae11b27 755 nid = first_node(*nodes_allowed);
9a76db09
LS
756 VM_BUG_ON(nid >= MAX_NUMNODES);
757
758 return nid;
759}
760
6ae11b27
LS
761static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
762{
763 if (!node_isset(nid, *nodes_allowed))
764 nid = next_node_allowed(nid, nodes_allowed);
765 return nid;
766}
767
5ced66c9 768/*
6ae11b27
LS
769 * returns the previously saved node ["this node"] from which to
770 * allocate a persistent huge page for the pool and advance the
771 * next node from which to allocate, handling wrap at end of node
772 * mask.
5ced66c9 773 */
6ae11b27
LS
774static int hstate_next_node_to_alloc(struct hstate *h,
775 nodemask_t *nodes_allowed)
5ced66c9 776{
6ae11b27
LS
777 int nid;
778
779 VM_BUG_ON(!nodes_allowed);
780
781 nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
782 h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
9a76db09 783
9a76db09 784 return nid;
5ced66c9
AK
785}
786
e8c5c824 787/*
6ae11b27
LS
788 * helper for free_pool_huge_page() - return the previously saved
789 * node ["this node"] from which to free a huge page. Advance the
790 * next node id whether or not we find a free huge page to free so
791 * that the next attempt to free addresses the next node.
e8c5c824 792 */
6ae11b27 793static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
e8c5c824 794{
6ae11b27
LS
795 int nid;
796
797 VM_BUG_ON(!nodes_allowed);
798
799 nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
800 h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
9a76db09 801
9a76db09 802 return nid;
e8c5c824
LS
803}
804
b2261026
JK
805#define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask) \
806 for (nr_nodes = nodes_weight(*mask); \
807 nr_nodes > 0 && \
808 ((node = hstate_next_node_to_alloc(hs, mask)) || 1); \
809 nr_nodes--)
810
811#define for_each_node_mask_to_free(hs, nr_nodes, node, mask) \
812 for (nr_nodes = nodes_weight(*mask); \
813 nr_nodes > 0 && \
814 ((node = hstate_next_node_to_free(hs, mask)) || 1); \
815 nr_nodes--)
816
817static int alloc_fresh_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
818{
819 struct page *page;
820 int nr_nodes, node;
821 int ret = 0;
822
823 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
824 page = alloc_fresh_huge_page_node(h, node);
825 if (page) {
826 ret = 1;
827 break;
828 }
829 }
830
831 if (ret)
832 count_vm_event(HTLB_BUDDY_PGALLOC);
833 else
834 count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
835
836 return ret;
837}
838
e8c5c824
LS
839/*
840 * Free huge page from pool from next node to free.
841 * Attempt to keep persistent huge pages more or less
842 * balanced over allowed nodes.
843 * Called with hugetlb_lock locked.
844 */
6ae11b27
LS
845static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
846 bool acct_surplus)
e8c5c824 847{
b2261026 848 int nr_nodes, node;
e8c5c824
LS
849 int ret = 0;
850
b2261026 851 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
685f3457
LS
852 /*
853 * If we're returning unused surplus pages, only examine
854 * nodes with surplus pages.
855 */
b2261026
JK
856 if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
857 !list_empty(&h->hugepage_freelists[node])) {
e8c5c824 858 struct page *page =
b2261026 859 list_entry(h->hugepage_freelists[node].next,
e8c5c824
LS
860 struct page, lru);
861 list_del(&page->lru);
862 h->free_huge_pages--;
b2261026 863 h->free_huge_pages_node[node]--;
685f3457
LS
864 if (acct_surplus) {
865 h->surplus_huge_pages--;
b2261026 866 h->surplus_huge_pages_node[node]--;
685f3457 867 }
e8c5c824
LS
868 update_and_free_page(h, page);
869 ret = 1;
9a76db09 870 break;
e8c5c824 871 }
b2261026 872 }
e8c5c824
LS
873
874 return ret;
875}
876
c8721bbb
NH
877/*
878 * Dissolve a given free hugepage into free buddy pages. This function does
879 * nothing for in-use (including surplus) hugepages.
880 */
881static void dissolve_free_huge_page(struct page *page)
882{
883 spin_lock(&hugetlb_lock);
884 if (PageHuge(page) && !page_count(page)) {
885 struct hstate *h = page_hstate(page);
886 int nid = page_to_nid(page);
887 list_del(&page->lru);
888 h->free_huge_pages--;
889 h->free_huge_pages_node[nid]--;
890 update_and_free_page(h, page);
891 }
892 spin_unlock(&hugetlb_lock);
893}
894
895/*
896 * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
897 * make specified memory blocks removable from the system.
898 * Note that start_pfn should aligned with (minimum) hugepage size.
899 */
900void dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
901{
902 unsigned int order = 8 * sizeof(void *);
903 unsigned long pfn;
904 struct hstate *h;
905
906 /* Set scan step to minimum hugepage size */
907 for_each_hstate(h)
908 if (order > huge_page_order(h))
909 order = huge_page_order(h);
910 VM_BUG_ON(!IS_ALIGNED(start_pfn, 1 << order));
911 for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << order)
912 dissolve_free_huge_page(pfn_to_page(pfn));
913}
914
bf50bab2 915static struct page *alloc_buddy_huge_page(struct hstate *h, int nid)
7893d1d5
AL
916{
917 struct page *page;
bf50bab2 918 unsigned int r_nid;
7893d1d5 919
aa888a74
AK
920 if (h->order >= MAX_ORDER)
921 return NULL;
922
d1c3fb1f
NA
923 /*
924 * Assume we will successfully allocate the surplus page to
925 * prevent racing processes from causing the surplus to exceed
926 * overcommit
927 *
928 * This however introduces a different race, where a process B
929 * tries to grow the static hugepage pool while alloc_pages() is
930 * called by process A. B will only examine the per-node
931 * counters in determining if surplus huge pages can be
932 * converted to normal huge pages in adjust_pool_surplus(). A
933 * won't be able to increment the per-node counter, until the
934 * lock is dropped by B, but B doesn't drop hugetlb_lock until
935 * no more huge pages can be converted from surplus to normal
936 * state (and doesn't try to convert again). Thus, we have a
937 * case where a surplus huge page exists, the pool is grown, and
938 * the surplus huge page still exists after, even though it
939 * should just have been converted to a normal huge page. This
940 * does not leak memory, though, as the hugepage will be freed
941 * once it is out of use. It also does not allow the counters to
942 * go out of whack in adjust_pool_surplus() as we don't modify
943 * the node values until we've gotten the hugepage and only the
944 * per-node value is checked there.
945 */
946 spin_lock(&hugetlb_lock);
a5516438 947 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
d1c3fb1f
NA
948 spin_unlock(&hugetlb_lock);
949 return NULL;
950 } else {
a5516438
AK
951 h->nr_huge_pages++;
952 h->surplus_huge_pages++;
d1c3fb1f
NA
953 }
954 spin_unlock(&hugetlb_lock);
955
bf50bab2 956 if (nid == NUMA_NO_NODE)
86cdb465 957 page = alloc_pages(htlb_alloc_mask(h)|__GFP_COMP|
bf50bab2
NH
958 __GFP_REPEAT|__GFP_NOWARN,
959 huge_page_order(h));
960 else
961 page = alloc_pages_exact_node(nid,
86cdb465 962 htlb_alloc_mask(h)|__GFP_COMP|__GFP_THISNODE|
bf50bab2 963 __GFP_REPEAT|__GFP_NOWARN, huge_page_order(h));
d1c3fb1f 964
caff3a2c
GS
965 if (page && arch_prepare_hugepage(page)) {
966 __free_pages(page, huge_page_order(h));
ea5768c7 967 page = NULL;
caff3a2c
GS
968 }
969
d1c3fb1f 970 spin_lock(&hugetlb_lock);
7893d1d5 971 if (page) {
0edaecfa 972 INIT_LIST_HEAD(&page->lru);
bf50bab2 973 r_nid = page_to_nid(page);
7893d1d5 974 set_compound_page_dtor(page, free_huge_page);
9dd540e2 975 set_hugetlb_cgroup(page, NULL);
d1c3fb1f
NA
976 /*
977 * We incremented the global counters already
978 */
bf50bab2
NH
979 h->nr_huge_pages_node[r_nid]++;
980 h->surplus_huge_pages_node[r_nid]++;
3b116300 981 __count_vm_event(HTLB_BUDDY_PGALLOC);
d1c3fb1f 982 } else {
a5516438
AK
983 h->nr_huge_pages--;
984 h->surplus_huge_pages--;
3b116300 985 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
7893d1d5 986 }
d1c3fb1f 987 spin_unlock(&hugetlb_lock);
7893d1d5
AL
988
989 return page;
990}
991
bf50bab2
NH
992/*
993 * This allocation function is useful in the context where vma is irrelevant.
994 * E.g. soft-offlining uses this function because it only cares physical
995 * address of error page.
996 */
997struct page *alloc_huge_page_node(struct hstate *h, int nid)
998{
4ef91848 999 struct page *page = NULL;
bf50bab2
NH
1000
1001 spin_lock(&hugetlb_lock);
4ef91848
JK
1002 if (h->free_huge_pages - h->resv_huge_pages > 0)
1003 page = dequeue_huge_page_node(h, nid);
bf50bab2
NH
1004 spin_unlock(&hugetlb_lock);
1005
94ae8ba7 1006 if (!page)
bf50bab2
NH
1007 page = alloc_buddy_huge_page(h, nid);
1008
1009 return page;
1010}
1011
e4e574b7 1012/*
25985edc 1013 * Increase the hugetlb pool such that it can accommodate a reservation
e4e574b7
AL
1014 * of size 'delta'.
1015 */
a5516438 1016static int gather_surplus_pages(struct hstate *h, int delta)
e4e574b7
AL
1017{
1018 struct list_head surplus_list;
1019 struct page *page, *tmp;
1020 int ret, i;
1021 int needed, allocated;
28073b02 1022 bool alloc_ok = true;
e4e574b7 1023
a5516438 1024 needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
ac09b3a1 1025 if (needed <= 0) {
a5516438 1026 h->resv_huge_pages += delta;
e4e574b7 1027 return 0;
ac09b3a1 1028 }
e4e574b7
AL
1029
1030 allocated = 0;
1031 INIT_LIST_HEAD(&surplus_list);
1032
1033 ret = -ENOMEM;
1034retry:
1035 spin_unlock(&hugetlb_lock);
1036 for (i = 0; i < needed; i++) {
bf50bab2 1037 page = alloc_buddy_huge_page(h, NUMA_NO_NODE);
28073b02
HD
1038 if (!page) {
1039 alloc_ok = false;
1040 break;
1041 }
e4e574b7
AL
1042 list_add(&page->lru, &surplus_list);
1043 }
28073b02 1044 allocated += i;
e4e574b7
AL
1045
1046 /*
1047 * After retaking hugetlb_lock, we need to recalculate 'needed'
1048 * because either resv_huge_pages or free_huge_pages may have changed.
1049 */
1050 spin_lock(&hugetlb_lock);
a5516438
AK
1051 needed = (h->resv_huge_pages + delta) -
1052 (h->free_huge_pages + allocated);
28073b02
HD
1053 if (needed > 0) {
1054 if (alloc_ok)
1055 goto retry;
1056 /*
1057 * We were not able to allocate enough pages to
1058 * satisfy the entire reservation so we free what
1059 * we've allocated so far.
1060 */
1061 goto free;
1062 }
e4e574b7
AL
1063 /*
1064 * The surplus_list now contains _at_least_ the number of extra pages
25985edc 1065 * needed to accommodate the reservation. Add the appropriate number
e4e574b7 1066 * of pages to the hugetlb pool and free the extras back to the buddy
ac09b3a1
AL
1067 * allocator. Commit the entire reservation here to prevent another
1068 * process from stealing the pages as they are added to the pool but
1069 * before they are reserved.
e4e574b7
AL
1070 */
1071 needed += allocated;
a5516438 1072 h->resv_huge_pages += delta;
e4e574b7 1073 ret = 0;
a9869b83 1074
19fc3f0a 1075 /* Free the needed pages to the hugetlb pool */
e4e574b7 1076 list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
19fc3f0a
AL
1077 if ((--needed) < 0)
1078 break;
a9869b83
NH
1079 /*
1080 * This page is now managed by the hugetlb allocator and has
1081 * no users -- drop the buddy allocator's reference.
1082 */
1083 put_page_testzero(page);
1084 VM_BUG_ON(page_count(page));
a5516438 1085 enqueue_huge_page(h, page);
19fc3f0a 1086 }
28073b02 1087free:
b0365c8d 1088 spin_unlock(&hugetlb_lock);
19fc3f0a
AL
1089
1090 /* Free unnecessary surplus pages to the buddy allocator */
c0d934ba
JK
1091 list_for_each_entry_safe(page, tmp, &surplus_list, lru)
1092 put_page(page);
a9869b83 1093 spin_lock(&hugetlb_lock);
e4e574b7
AL
1094
1095 return ret;
1096}
1097
1098/*
1099 * When releasing a hugetlb pool reservation, any surplus pages that were
1100 * allocated to satisfy the reservation must be explicitly freed if they were
1101 * never used.
685f3457 1102 * Called with hugetlb_lock held.
e4e574b7 1103 */
a5516438
AK
1104static void return_unused_surplus_pages(struct hstate *h,
1105 unsigned long unused_resv_pages)
e4e574b7 1106{
e4e574b7
AL
1107 unsigned long nr_pages;
1108
ac09b3a1 1109 /* Uncommit the reservation */
a5516438 1110 h->resv_huge_pages -= unused_resv_pages;
ac09b3a1 1111
aa888a74
AK
1112 /* Cannot return gigantic pages currently */
1113 if (h->order >= MAX_ORDER)
1114 return;
1115
a5516438 1116 nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
e4e574b7 1117
685f3457
LS
1118 /*
1119 * We want to release as many surplus pages as possible, spread
9b5e5d0f
LS
1120 * evenly across all nodes with memory. Iterate across these nodes
1121 * until we can no longer free unreserved surplus pages. This occurs
1122 * when the nodes with surplus pages have no free pages.
1123 * free_pool_huge_page() will balance the the freed pages across the
1124 * on-line nodes with memory and will handle the hstate accounting.
685f3457
LS
1125 */
1126 while (nr_pages--) {
8cebfcd0 1127 if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1))
685f3457 1128 break;
e4e574b7
AL
1129 }
1130}
1131
c37f9fb1
AW
1132/*
1133 * Determine if the huge page at addr within the vma has an associated
1134 * reservation. Where it does not we will need to logically increase
90481622
DG
1135 * reservation and actually increase subpool usage before an allocation
1136 * can occur. Where any new reservation would be required the
1137 * reservation change is prepared, but not committed. Once the page
1138 * has been allocated from the subpool and instantiated the change should
1139 * be committed via vma_commit_reservation. No action is required on
1140 * failure.
c37f9fb1 1141 */
e2f17d94 1142static long vma_needs_reservation(struct hstate *h,
a5516438 1143 struct vm_area_struct *vma, unsigned long addr)
c37f9fb1
AW
1144{
1145 struct address_space *mapping = vma->vm_file->f_mapping;
1146 struct inode *inode = mapping->host;
1147
f83a275d 1148 if (vma->vm_flags & VM_MAYSHARE) {
a5516438 1149 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
c37f9fb1
AW
1150 return region_chg(&inode->i_mapping->private_list,
1151 idx, idx + 1);
1152
84afd99b
AW
1153 } else if (!is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1154 return 1;
c37f9fb1 1155
84afd99b 1156 } else {
e2f17d94 1157 long err;
a5516438 1158 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
f522c3ac 1159 struct resv_map *resv = vma_resv_map(vma);
84afd99b 1160
f522c3ac 1161 err = region_chg(&resv->regions, idx, idx + 1);
84afd99b
AW
1162 if (err < 0)
1163 return err;
1164 return 0;
1165 }
c37f9fb1 1166}
a5516438
AK
1167static void vma_commit_reservation(struct hstate *h,
1168 struct vm_area_struct *vma, unsigned long addr)
c37f9fb1
AW
1169{
1170 struct address_space *mapping = vma->vm_file->f_mapping;
1171 struct inode *inode = mapping->host;
1172
f83a275d 1173 if (vma->vm_flags & VM_MAYSHARE) {
a5516438 1174 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
c37f9fb1 1175 region_add(&inode->i_mapping->private_list, idx, idx + 1);
84afd99b
AW
1176
1177 } else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
a5516438 1178 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
f522c3ac 1179 struct resv_map *resv = vma_resv_map(vma);
84afd99b
AW
1180
1181 /* Mark this page used in the map. */
f522c3ac 1182 region_add(&resv->regions, idx, idx + 1);
c37f9fb1
AW
1183 }
1184}
1185
a1e78772 1186static struct page *alloc_huge_page(struct vm_area_struct *vma,
04f2cbe3 1187 unsigned long addr, int avoid_reserve)
1da177e4 1188{
90481622 1189 struct hugepage_subpool *spool = subpool_vma(vma);
a5516438 1190 struct hstate *h = hstate_vma(vma);
348ea204 1191 struct page *page;
e2f17d94 1192 long chg;
6d76dcf4
AK
1193 int ret, idx;
1194 struct hugetlb_cgroup *h_cg;
a1e78772 1195
6d76dcf4 1196 idx = hstate_index(h);
a1e78772 1197 /*
90481622
DG
1198 * Processes that did not create the mapping will have no
1199 * reserves and will not have accounted against subpool
1200 * limit. Check that the subpool limit can be made before
1201 * satisfying the allocation MAP_NORESERVE mappings may also
1202 * need pages and subpool limit allocated allocated if no reserve
1203 * mapping overlaps.
a1e78772 1204 */
a5516438 1205 chg = vma_needs_reservation(h, vma, addr);
c37f9fb1 1206 if (chg < 0)
76dcee75 1207 return ERR_PTR(-ENOMEM);
8bb3f12e
JK
1208 if (chg || avoid_reserve)
1209 if (hugepage_subpool_get_pages(spool, 1))
76dcee75 1210 return ERR_PTR(-ENOSPC);
1da177e4 1211
6d76dcf4
AK
1212 ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
1213 if (ret) {
8bb3f12e
JK
1214 if (chg || avoid_reserve)
1215 hugepage_subpool_put_pages(spool, 1);
6d76dcf4
AK
1216 return ERR_PTR(-ENOSPC);
1217 }
1da177e4 1218 spin_lock(&hugetlb_lock);
af0ed73e 1219 page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, chg);
81a6fcae 1220 if (!page) {
94ae8ba7 1221 spin_unlock(&hugetlb_lock);
bf50bab2 1222 page = alloc_buddy_huge_page(h, NUMA_NO_NODE);
68842c9b 1223 if (!page) {
6d76dcf4
AK
1224 hugetlb_cgroup_uncharge_cgroup(idx,
1225 pages_per_huge_page(h),
1226 h_cg);
8bb3f12e
JK
1227 if (chg || avoid_reserve)
1228 hugepage_subpool_put_pages(spool, 1);
76dcee75 1229 return ERR_PTR(-ENOSPC);
68842c9b 1230 }
79dbb236
AK
1231 spin_lock(&hugetlb_lock);
1232 list_move(&page->lru, &h->hugepage_activelist);
81a6fcae 1233 /* Fall through */
68842c9b 1234 }
81a6fcae
JK
1235 hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
1236 spin_unlock(&hugetlb_lock);
348ea204 1237
90481622 1238 set_page_private(page, (unsigned long)spool);
90d8b7e6 1239
a5516438 1240 vma_commit_reservation(h, vma, addr);
90d8b7e6 1241 return page;
b45b5bd6
DG
1242}
1243
74060e4d
NH
1244/*
1245 * alloc_huge_page()'s wrapper which simply returns the page if allocation
1246 * succeeds, otherwise NULL. This function is called from new_vma_page(),
1247 * where no ERR_VALUE is expected to be returned.
1248 */
1249struct page *alloc_huge_page_noerr(struct vm_area_struct *vma,
1250 unsigned long addr, int avoid_reserve)
1251{
1252 struct page *page = alloc_huge_page(vma, addr, avoid_reserve);
1253 if (IS_ERR(page))
1254 page = NULL;
1255 return page;
1256}
1257
91f47662 1258int __weak alloc_bootmem_huge_page(struct hstate *h)
aa888a74
AK
1259{
1260 struct huge_bootmem_page *m;
b2261026 1261 int nr_nodes, node;
aa888a74 1262
b2261026 1263 for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
aa888a74
AK
1264 void *addr;
1265
b2261026 1266 addr = __alloc_bootmem_node_nopanic(NODE_DATA(node),
aa888a74
AK
1267 huge_page_size(h), huge_page_size(h), 0);
1268
1269 if (addr) {
1270 /*
1271 * Use the beginning of the huge page to store the
1272 * huge_bootmem_page struct (until gather_bootmem
1273 * puts them into the mem_map).
1274 */
1275 m = addr;
91f47662 1276 goto found;
aa888a74 1277 }
aa888a74
AK
1278 }
1279 return 0;
1280
1281found:
1282 BUG_ON((unsigned long)virt_to_phys(m) & (huge_page_size(h) - 1));
1283 /* Put them into a private list first because mem_map is not up yet */
1284 list_add(&m->list, &huge_boot_pages);
1285 m->hstate = h;
1286 return 1;
1287}
1288
18229df5
AW
1289static void prep_compound_huge_page(struct page *page, int order)
1290{
1291 if (unlikely(order > (MAX_ORDER - 1)))
1292 prep_compound_gigantic_page(page, order);
1293 else
1294 prep_compound_page(page, order);
1295}
1296
aa888a74
AK
1297/* Put bootmem huge pages into the standard lists after mem_map is up */
1298static void __init gather_bootmem_prealloc(void)
1299{
1300 struct huge_bootmem_page *m;
1301
1302 list_for_each_entry(m, &huge_boot_pages, list) {
aa888a74 1303 struct hstate *h = m->hstate;
ee8f248d
BB
1304 struct page *page;
1305
1306#ifdef CONFIG_HIGHMEM
1307 page = pfn_to_page(m->phys >> PAGE_SHIFT);
1308 free_bootmem_late((unsigned long)m,
1309 sizeof(struct huge_bootmem_page));
1310#else
1311 page = virt_to_page(m);
1312#endif
aa888a74 1313 WARN_ON(page_count(page) != 1);
18229df5 1314 prep_compound_huge_page(page, h->order);
ef5a22be 1315 WARN_ON(PageReserved(page));
aa888a74 1316 prep_new_huge_page(h, page, page_to_nid(page));
b0320c7b
RA
1317 /*
1318 * If we had gigantic hugepages allocated at boot time, we need
1319 * to restore the 'stolen' pages to totalram_pages in order to
1320 * fix confusing memory reports from free(1) and another
1321 * side-effects, like CommitLimit going negative.
1322 */
1323 if (h->order > (MAX_ORDER - 1))
3dcc0571 1324 adjust_managed_page_count(page, 1 << h->order);
aa888a74
AK
1325 }
1326}
1327
8faa8b07 1328static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
1da177e4
LT
1329{
1330 unsigned long i;
a5516438 1331
e5ff2159 1332 for (i = 0; i < h->max_huge_pages; ++i) {
aa888a74
AK
1333 if (h->order >= MAX_ORDER) {
1334 if (!alloc_bootmem_huge_page(h))
1335 break;
9b5e5d0f 1336 } else if (!alloc_fresh_huge_page(h,
8cebfcd0 1337 &node_states[N_MEMORY]))
1da177e4 1338 break;
1da177e4 1339 }
8faa8b07 1340 h->max_huge_pages = i;
e5ff2159
AK
1341}
1342
1343static void __init hugetlb_init_hstates(void)
1344{
1345 struct hstate *h;
1346
1347 for_each_hstate(h) {
8faa8b07
AK
1348 /* oversize hugepages were init'ed in early boot */
1349 if (h->order < MAX_ORDER)
1350 hugetlb_hstate_alloc_pages(h);
e5ff2159
AK
1351 }
1352}
1353
4abd32db
AK
1354static char * __init memfmt(char *buf, unsigned long n)
1355{
1356 if (n >= (1UL << 30))
1357 sprintf(buf, "%lu GB", n >> 30);
1358 else if (n >= (1UL << 20))
1359 sprintf(buf, "%lu MB", n >> 20);
1360 else
1361 sprintf(buf, "%lu KB", n >> 10);
1362 return buf;
1363}
1364
e5ff2159
AK
1365static void __init report_hugepages(void)
1366{
1367 struct hstate *h;
1368
1369 for_each_hstate(h) {
4abd32db 1370 char buf[32];
ffb22af5 1371 pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
4abd32db
AK
1372 memfmt(buf, huge_page_size(h)),
1373 h->free_huge_pages);
e5ff2159
AK
1374 }
1375}
1376
1da177e4 1377#ifdef CONFIG_HIGHMEM
6ae11b27
LS
1378static void try_to_free_low(struct hstate *h, unsigned long count,
1379 nodemask_t *nodes_allowed)
1da177e4 1380{
4415cc8d
CL
1381 int i;
1382
aa888a74
AK
1383 if (h->order >= MAX_ORDER)
1384 return;
1385
6ae11b27 1386 for_each_node_mask(i, *nodes_allowed) {
1da177e4 1387 struct page *page, *next;
a5516438
AK
1388 struct list_head *freel = &h->hugepage_freelists[i];
1389 list_for_each_entry_safe(page, next, freel, lru) {
1390 if (count >= h->nr_huge_pages)
6b0c880d 1391 return;
1da177e4
LT
1392 if (PageHighMem(page))
1393 continue;
1394 list_del(&page->lru);
e5ff2159 1395 update_and_free_page(h, page);
a5516438
AK
1396 h->free_huge_pages--;
1397 h->free_huge_pages_node[page_to_nid(page)]--;
1da177e4
LT
1398 }
1399 }
1400}
1401#else
6ae11b27
LS
1402static inline void try_to_free_low(struct hstate *h, unsigned long count,
1403 nodemask_t *nodes_allowed)
1da177e4
LT
1404{
1405}
1406#endif
1407
20a0307c
WF
1408/*
1409 * Increment or decrement surplus_huge_pages. Keep node-specific counters
1410 * balanced by operating on them in a round-robin fashion.
1411 * Returns 1 if an adjustment was made.
1412 */
6ae11b27
LS
1413static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
1414 int delta)
20a0307c 1415{
b2261026 1416 int nr_nodes, node;
20a0307c
WF
1417
1418 VM_BUG_ON(delta != -1 && delta != 1);
20a0307c 1419
b2261026
JK
1420 if (delta < 0) {
1421 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1422 if (h->surplus_huge_pages_node[node])
1423 goto found;
e8c5c824 1424 }
b2261026
JK
1425 } else {
1426 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
1427 if (h->surplus_huge_pages_node[node] <
1428 h->nr_huge_pages_node[node])
1429 goto found;
e8c5c824 1430 }
b2261026
JK
1431 }
1432 return 0;
20a0307c 1433
b2261026
JK
1434found:
1435 h->surplus_huge_pages += delta;
1436 h->surplus_huge_pages_node[node] += delta;
1437 return 1;
20a0307c
WF
1438}
1439
a5516438 1440#define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
6ae11b27
LS
1441static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count,
1442 nodemask_t *nodes_allowed)
1da177e4 1443{
7893d1d5 1444 unsigned long min_count, ret;
1da177e4 1445
aa888a74
AK
1446 if (h->order >= MAX_ORDER)
1447 return h->max_huge_pages;
1448
7893d1d5
AL
1449 /*
1450 * Increase the pool size
1451 * First take pages out of surplus state. Then make up the
1452 * remaining difference by allocating fresh huge pages.
d1c3fb1f
NA
1453 *
1454 * We might race with alloc_buddy_huge_page() here and be unable
1455 * to convert a surplus huge page to a normal huge page. That is
1456 * not critical, though, it just means the overall size of the
1457 * pool might be one hugepage larger than it needs to be, but
1458 * within all the constraints specified by the sysctls.
7893d1d5 1459 */
1da177e4 1460 spin_lock(&hugetlb_lock);
a5516438 1461 while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
6ae11b27 1462 if (!adjust_pool_surplus(h, nodes_allowed, -1))
7893d1d5
AL
1463 break;
1464 }
1465
a5516438 1466 while (count > persistent_huge_pages(h)) {
7893d1d5
AL
1467 /*
1468 * If this allocation races such that we no longer need the
1469 * page, free_huge_page will handle it by freeing the page
1470 * and reducing the surplus.
1471 */
1472 spin_unlock(&hugetlb_lock);
6ae11b27 1473 ret = alloc_fresh_huge_page(h, nodes_allowed);
7893d1d5
AL
1474 spin_lock(&hugetlb_lock);
1475 if (!ret)
1476 goto out;
1477
536240f2
MG
1478 /* Bail for signals. Probably ctrl-c from user */
1479 if (signal_pending(current))
1480 goto out;
7893d1d5 1481 }
7893d1d5
AL
1482
1483 /*
1484 * Decrease the pool size
1485 * First return free pages to the buddy allocator (being careful
1486 * to keep enough around to satisfy reservations). Then place
1487 * pages into surplus state as needed so the pool will shrink
1488 * to the desired size as pages become free.
d1c3fb1f
NA
1489 *
1490 * By placing pages into the surplus state independent of the
1491 * overcommit value, we are allowing the surplus pool size to
1492 * exceed overcommit. There are few sane options here. Since
1493 * alloc_buddy_huge_page() is checking the global counter,
1494 * though, we'll note that we're not allowed to exceed surplus
1495 * and won't grow the pool anywhere else. Not until one of the
1496 * sysctls are changed, or the surplus pages go out of use.
7893d1d5 1497 */
a5516438 1498 min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
6b0c880d 1499 min_count = max(count, min_count);
6ae11b27 1500 try_to_free_low(h, min_count, nodes_allowed);
a5516438 1501 while (min_count < persistent_huge_pages(h)) {
6ae11b27 1502 if (!free_pool_huge_page(h, nodes_allowed, 0))
1da177e4 1503 break;
1da177e4 1504 }
a5516438 1505 while (count < persistent_huge_pages(h)) {
6ae11b27 1506 if (!adjust_pool_surplus(h, nodes_allowed, 1))
7893d1d5
AL
1507 break;
1508 }
1509out:
a5516438 1510 ret = persistent_huge_pages(h);
1da177e4 1511 spin_unlock(&hugetlb_lock);
7893d1d5 1512 return ret;
1da177e4
LT
1513}
1514
a3437870
NA
1515#define HSTATE_ATTR_RO(_name) \
1516 static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
1517
1518#define HSTATE_ATTR(_name) \
1519 static struct kobj_attribute _name##_attr = \
1520 __ATTR(_name, 0644, _name##_show, _name##_store)
1521
1522static struct kobject *hugepages_kobj;
1523static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
1524
9a305230
LS
1525static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
1526
1527static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
a3437870
NA
1528{
1529 int i;
9a305230 1530
a3437870 1531 for (i = 0; i < HUGE_MAX_HSTATE; i++)
9a305230
LS
1532 if (hstate_kobjs[i] == kobj) {
1533 if (nidp)
1534 *nidp = NUMA_NO_NODE;
a3437870 1535 return &hstates[i];
9a305230
LS
1536 }
1537
1538 return kobj_to_node_hstate(kobj, nidp);
a3437870
NA
1539}
1540
06808b08 1541static ssize_t nr_hugepages_show_common(struct kobject *kobj,
a3437870
NA
1542 struct kobj_attribute *attr, char *buf)
1543{
9a305230
LS
1544 struct hstate *h;
1545 unsigned long nr_huge_pages;
1546 int nid;
1547
1548 h = kobj_to_hstate(kobj, &nid);
1549 if (nid == NUMA_NO_NODE)
1550 nr_huge_pages = h->nr_huge_pages;
1551 else
1552 nr_huge_pages = h->nr_huge_pages_node[nid];
1553
1554 return sprintf(buf, "%lu\n", nr_huge_pages);
a3437870 1555}
adbe8726 1556
06808b08
LS
1557static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
1558 struct kobject *kobj, struct kobj_attribute *attr,
1559 const char *buf, size_t len)
a3437870
NA
1560{
1561 int err;
9a305230 1562 int nid;
06808b08 1563 unsigned long count;
9a305230 1564 struct hstate *h;
bad44b5b 1565 NODEMASK_ALLOC(nodemask_t, nodes_allowed, GFP_KERNEL | __GFP_NORETRY);
a3437870 1566
3dbb95f7 1567 err = kstrtoul(buf, 10, &count);
73ae31e5 1568 if (err)
adbe8726 1569 goto out;
a3437870 1570
9a305230 1571 h = kobj_to_hstate(kobj, &nid);
adbe8726
EM
1572 if (h->order >= MAX_ORDER) {
1573 err = -EINVAL;
1574 goto out;
1575 }
1576
9a305230
LS
1577 if (nid == NUMA_NO_NODE) {
1578 /*
1579 * global hstate attribute
1580 */
1581 if (!(obey_mempolicy &&
1582 init_nodemask_of_mempolicy(nodes_allowed))) {
1583 NODEMASK_FREE(nodes_allowed);
8cebfcd0 1584 nodes_allowed = &node_states[N_MEMORY];
9a305230
LS
1585 }
1586 } else if (nodes_allowed) {
1587 /*
1588 * per node hstate attribute: adjust count to global,
1589 * but restrict alloc/free to the specified node.
1590 */
1591 count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
1592 init_nodemask_of_node(nodes_allowed, nid);
1593 } else
8cebfcd0 1594 nodes_allowed = &node_states[N_MEMORY];
9a305230 1595
06808b08 1596 h->max_huge_pages = set_max_huge_pages(h, count, nodes_allowed);
a3437870 1597
8cebfcd0 1598 if (nodes_allowed != &node_states[N_MEMORY])
06808b08
LS
1599 NODEMASK_FREE(nodes_allowed);
1600
1601 return len;
adbe8726
EM
1602out:
1603 NODEMASK_FREE(nodes_allowed);
1604 return err;
06808b08
LS
1605}
1606
1607static ssize_t nr_hugepages_show(struct kobject *kobj,
1608 struct kobj_attribute *attr, char *buf)
1609{
1610 return nr_hugepages_show_common(kobj, attr, buf);
1611}
1612
1613static ssize_t nr_hugepages_store(struct kobject *kobj,
1614 struct kobj_attribute *attr, const char *buf, size_t len)
1615{
1616 return nr_hugepages_store_common(false, kobj, attr, buf, len);
a3437870
NA
1617}
1618HSTATE_ATTR(nr_hugepages);
1619
06808b08
LS
1620#ifdef CONFIG_NUMA
1621
1622/*
1623 * hstate attribute for optionally mempolicy-based constraint on persistent
1624 * huge page alloc/free.
1625 */
1626static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
1627 struct kobj_attribute *attr, char *buf)
1628{
1629 return nr_hugepages_show_common(kobj, attr, buf);
1630}
1631
1632static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
1633 struct kobj_attribute *attr, const char *buf, size_t len)
1634{
1635 return nr_hugepages_store_common(true, kobj, attr, buf, len);
1636}
1637HSTATE_ATTR(nr_hugepages_mempolicy);
1638#endif
1639
1640
a3437870
NA
1641static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
1642 struct kobj_attribute *attr, char *buf)
1643{
9a305230 1644 struct hstate *h = kobj_to_hstate(kobj, NULL);
a3437870
NA
1645 return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
1646}
adbe8726 1647
a3437870
NA
1648static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
1649 struct kobj_attribute *attr, const char *buf, size_t count)
1650{
1651 int err;
1652 unsigned long input;
9a305230 1653 struct hstate *h = kobj_to_hstate(kobj, NULL);
a3437870 1654
adbe8726
EM
1655 if (h->order >= MAX_ORDER)
1656 return -EINVAL;
1657
3dbb95f7 1658 err = kstrtoul(buf, 10, &input);
a3437870 1659 if (err)
73ae31e5 1660 return err;
a3437870
NA
1661
1662 spin_lock(&hugetlb_lock);
1663 h->nr_overcommit_huge_pages = input;
1664 spin_unlock(&hugetlb_lock);
1665
1666 return count;
1667}
1668HSTATE_ATTR(nr_overcommit_hugepages);
1669
1670static ssize_t free_hugepages_show(struct kobject *kobj,
1671 struct kobj_attribute *attr, char *buf)
1672{
9a305230
LS
1673 struct hstate *h;
1674 unsigned long free_huge_pages;
1675 int nid;
1676
1677 h = kobj_to_hstate(kobj, &nid);
1678 if (nid == NUMA_NO_NODE)
1679 free_huge_pages = h->free_huge_pages;
1680 else
1681 free_huge_pages = h->free_huge_pages_node[nid];
1682
1683 return sprintf(buf, "%lu\n", free_huge_pages);
a3437870
NA
1684}
1685HSTATE_ATTR_RO(free_hugepages);
1686
1687static ssize_t resv_hugepages_show(struct kobject *kobj,
1688 struct kobj_attribute *attr, char *buf)
1689{
9a305230 1690 struct hstate *h = kobj_to_hstate(kobj, NULL);
a3437870
NA
1691 return sprintf(buf, "%lu\n", h->resv_huge_pages);
1692}
1693HSTATE_ATTR_RO(resv_hugepages);
1694
1695static ssize_t surplus_hugepages_show(struct kobject *kobj,
1696 struct kobj_attribute *attr, char *buf)
1697{
9a305230
LS
1698 struct hstate *h;
1699 unsigned long surplus_huge_pages;
1700 int nid;
1701
1702 h = kobj_to_hstate(kobj, &nid);
1703 if (nid == NUMA_NO_NODE)
1704 surplus_huge_pages = h->surplus_huge_pages;
1705 else
1706 surplus_huge_pages = h->surplus_huge_pages_node[nid];
1707
1708 return sprintf(buf, "%lu\n", surplus_huge_pages);
a3437870
NA
1709}
1710HSTATE_ATTR_RO(surplus_hugepages);
1711
1712static struct attribute *hstate_attrs[] = {
1713 &nr_hugepages_attr.attr,
1714 &nr_overcommit_hugepages_attr.attr,
1715 &free_hugepages_attr.attr,
1716 &resv_hugepages_attr.attr,
1717 &surplus_hugepages_attr.attr,
06808b08
LS
1718#ifdef CONFIG_NUMA
1719 &nr_hugepages_mempolicy_attr.attr,
1720#endif
a3437870
NA
1721 NULL,
1722};
1723
1724static struct attribute_group hstate_attr_group = {
1725 .attrs = hstate_attrs,
1726};
1727
094e9539
JM
1728static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
1729 struct kobject **hstate_kobjs,
1730 struct attribute_group *hstate_attr_group)
a3437870
NA
1731{
1732 int retval;
972dc4de 1733 int hi = hstate_index(h);
a3437870 1734
9a305230
LS
1735 hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
1736 if (!hstate_kobjs[hi])
a3437870
NA
1737 return -ENOMEM;
1738
9a305230 1739 retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
a3437870 1740 if (retval)
9a305230 1741 kobject_put(hstate_kobjs[hi]);
a3437870
NA
1742
1743 return retval;
1744}
1745
1746static void __init hugetlb_sysfs_init(void)
1747{
1748 struct hstate *h;
1749 int err;
1750
1751 hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
1752 if (!hugepages_kobj)
1753 return;
1754
1755 for_each_hstate(h) {
9a305230
LS
1756 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
1757 hstate_kobjs, &hstate_attr_group);
a3437870 1758 if (err)
ffb22af5 1759 pr_err("Hugetlb: Unable to add hstate %s", h->name);
a3437870
NA
1760 }
1761}
1762
9a305230
LS
1763#ifdef CONFIG_NUMA
1764
1765/*
1766 * node_hstate/s - associate per node hstate attributes, via their kobjects,
10fbcf4c
KS
1767 * with node devices in node_devices[] using a parallel array. The array
1768 * index of a node device or _hstate == node id.
1769 * This is here to avoid any static dependency of the node device driver, in
9a305230
LS
1770 * the base kernel, on the hugetlb module.
1771 */
1772struct node_hstate {
1773 struct kobject *hugepages_kobj;
1774 struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
1775};
1776struct node_hstate node_hstates[MAX_NUMNODES];
1777
1778/*
10fbcf4c 1779 * A subset of global hstate attributes for node devices
9a305230
LS
1780 */
1781static struct attribute *per_node_hstate_attrs[] = {
1782 &nr_hugepages_attr.attr,
1783 &free_hugepages_attr.attr,
1784 &surplus_hugepages_attr.attr,
1785 NULL,
1786};
1787
1788static struct attribute_group per_node_hstate_attr_group = {
1789 .attrs = per_node_hstate_attrs,
1790};
1791
1792/*
10fbcf4c 1793 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
9a305230
LS
1794 * Returns node id via non-NULL nidp.
1795 */
1796static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
1797{
1798 int nid;
1799
1800 for (nid = 0; nid < nr_node_ids; nid++) {
1801 struct node_hstate *nhs = &node_hstates[nid];
1802 int i;
1803 for (i = 0; i < HUGE_MAX_HSTATE; i++)
1804 if (nhs->hstate_kobjs[i] == kobj) {
1805 if (nidp)
1806 *nidp = nid;
1807 return &hstates[i];
1808 }
1809 }
1810
1811 BUG();
1812 return NULL;
1813}
1814
1815/*
10fbcf4c 1816 * Unregister hstate attributes from a single node device.
9a305230
LS
1817 * No-op if no hstate attributes attached.
1818 */
3cd8b44f 1819static void hugetlb_unregister_node(struct node *node)
9a305230
LS
1820{
1821 struct hstate *h;
10fbcf4c 1822 struct node_hstate *nhs = &node_hstates[node->dev.id];
9a305230
LS
1823
1824 if (!nhs->hugepages_kobj)
9b5e5d0f 1825 return; /* no hstate attributes */
9a305230 1826
972dc4de
AK
1827 for_each_hstate(h) {
1828 int idx = hstate_index(h);
1829 if (nhs->hstate_kobjs[idx]) {
1830 kobject_put(nhs->hstate_kobjs[idx]);
1831 nhs->hstate_kobjs[idx] = NULL;
9a305230 1832 }
972dc4de 1833 }
9a305230
LS
1834
1835 kobject_put(nhs->hugepages_kobj);
1836 nhs->hugepages_kobj = NULL;
1837}
1838
1839/*
10fbcf4c 1840 * hugetlb module exit: unregister hstate attributes from node devices
9a305230
LS
1841 * that have them.
1842 */
1843static void hugetlb_unregister_all_nodes(void)
1844{
1845 int nid;
1846
1847 /*
10fbcf4c 1848 * disable node device registrations.
9a305230
LS
1849 */
1850 register_hugetlbfs_with_node(NULL, NULL);
1851
1852 /*
1853 * remove hstate attributes from any nodes that have them.
1854 */
1855 for (nid = 0; nid < nr_node_ids; nid++)
8732794b 1856 hugetlb_unregister_node(node_devices[nid]);
9a305230
LS
1857}
1858
1859/*
10fbcf4c 1860 * Register hstate attributes for a single node device.
9a305230
LS
1861 * No-op if attributes already registered.
1862 */
3cd8b44f 1863static void hugetlb_register_node(struct node *node)
9a305230
LS
1864{
1865 struct hstate *h;
10fbcf4c 1866 struct node_hstate *nhs = &node_hstates[node->dev.id];
9a305230
LS
1867 int err;
1868
1869 if (nhs->hugepages_kobj)
1870 return; /* already allocated */
1871
1872 nhs->hugepages_kobj = kobject_create_and_add("hugepages",
10fbcf4c 1873 &node->dev.kobj);
9a305230
LS
1874 if (!nhs->hugepages_kobj)
1875 return;
1876
1877 for_each_hstate(h) {
1878 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
1879 nhs->hstate_kobjs,
1880 &per_node_hstate_attr_group);
1881 if (err) {
ffb22af5
AM
1882 pr_err("Hugetlb: Unable to add hstate %s for node %d\n",
1883 h->name, node->dev.id);
9a305230
LS
1884 hugetlb_unregister_node(node);
1885 break;
1886 }
1887 }
1888}
1889
1890/*
9b5e5d0f 1891 * hugetlb init time: register hstate attributes for all registered node
10fbcf4c
KS
1892 * devices of nodes that have memory. All on-line nodes should have
1893 * registered their associated device by this time.
9a305230
LS
1894 */
1895static void hugetlb_register_all_nodes(void)
1896{
1897 int nid;
1898
8cebfcd0 1899 for_each_node_state(nid, N_MEMORY) {
8732794b 1900 struct node *node = node_devices[nid];
10fbcf4c 1901 if (node->dev.id == nid)
9a305230
LS
1902 hugetlb_register_node(node);
1903 }
1904
1905 /*
10fbcf4c 1906 * Let the node device driver know we're here so it can
9a305230
LS
1907 * [un]register hstate attributes on node hotplug.
1908 */
1909 register_hugetlbfs_with_node(hugetlb_register_node,
1910 hugetlb_unregister_node);
1911}
1912#else /* !CONFIG_NUMA */
1913
1914static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
1915{
1916 BUG();
1917 if (nidp)
1918 *nidp = -1;
1919 return NULL;
1920}
1921
1922static void hugetlb_unregister_all_nodes(void) { }
1923
1924static void hugetlb_register_all_nodes(void) { }
1925
1926#endif
1927
a3437870
NA
1928static void __exit hugetlb_exit(void)
1929{
1930 struct hstate *h;
1931
9a305230
LS
1932 hugetlb_unregister_all_nodes();
1933
a3437870 1934 for_each_hstate(h) {
972dc4de 1935 kobject_put(hstate_kobjs[hstate_index(h)]);
a3437870
NA
1936 }
1937
1938 kobject_put(hugepages_kobj);
1939}
1940module_exit(hugetlb_exit);
1941
1942static int __init hugetlb_init(void)
1943{
0ef89d25
BH
1944 /* Some platform decide whether they support huge pages at boot
1945 * time. On these, such as powerpc, HPAGE_SHIFT is set to 0 when
1946 * there is no such support
1947 */
1948 if (HPAGE_SHIFT == 0)
1949 return 0;
a3437870 1950
e11bfbfc
NP
1951 if (!size_to_hstate(default_hstate_size)) {
1952 default_hstate_size = HPAGE_SIZE;
1953 if (!size_to_hstate(default_hstate_size))
1954 hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
a3437870 1955 }
972dc4de 1956 default_hstate_idx = hstate_index(size_to_hstate(default_hstate_size));
e11bfbfc
NP
1957 if (default_hstate_max_huge_pages)
1958 default_hstate.max_huge_pages = default_hstate_max_huge_pages;
a3437870
NA
1959
1960 hugetlb_init_hstates();
aa888a74 1961 gather_bootmem_prealloc();
a3437870
NA
1962 report_hugepages();
1963
1964 hugetlb_sysfs_init();
9a305230 1965 hugetlb_register_all_nodes();
7179e7bf 1966 hugetlb_cgroup_file_init();
9a305230 1967
a3437870
NA
1968 return 0;
1969}
1970module_init(hugetlb_init);
1971
1972/* Should be called on processing a hugepagesz=... option */
1973void __init hugetlb_add_hstate(unsigned order)
1974{
1975 struct hstate *h;
8faa8b07
AK
1976 unsigned long i;
1977
a3437870 1978 if (size_to_hstate(PAGE_SIZE << order)) {
ffb22af5 1979 pr_warning("hugepagesz= specified twice, ignoring\n");
a3437870
NA
1980 return;
1981 }
47d38344 1982 BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
a3437870 1983 BUG_ON(order == 0);
47d38344 1984 h = &hstates[hugetlb_max_hstate++];
a3437870
NA
1985 h->order = order;
1986 h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
8faa8b07
AK
1987 h->nr_huge_pages = 0;
1988 h->free_huge_pages = 0;
1989 for (i = 0; i < MAX_NUMNODES; ++i)
1990 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
0edaecfa 1991 INIT_LIST_HEAD(&h->hugepage_activelist);
8cebfcd0
LJ
1992 h->next_nid_to_alloc = first_node(node_states[N_MEMORY]);
1993 h->next_nid_to_free = first_node(node_states[N_MEMORY]);
a3437870
NA
1994 snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
1995 huge_page_size(h)/1024);
8faa8b07 1996
a3437870
NA
1997 parsed_hstate = h;
1998}
1999
e11bfbfc 2000static int __init hugetlb_nrpages_setup(char *s)
a3437870
NA
2001{
2002 unsigned long *mhp;
8faa8b07 2003 static unsigned long *last_mhp;
a3437870
NA
2004
2005 /*
47d38344 2006 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter yet,
a3437870
NA
2007 * so this hugepages= parameter goes to the "default hstate".
2008 */
47d38344 2009 if (!hugetlb_max_hstate)
a3437870
NA
2010 mhp = &default_hstate_max_huge_pages;
2011 else
2012 mhp = &parsed_hstate->max_huge_pages;
2013
8faa8b07 2014 if (mhp == last_mhp) {
ffb22af5
AM
2015 pr_warning("hugepages= specified twice without "
2016 "interleaving hugepagesz=, ignoring\n");
8faa8b07
AK
2017 return 1;
2018 }
2019
a3437870
NA
2020 if (sscanf(s, "%lu", mhp) <= 0)
2021 *mhp = 0;
2022
8faa8b07
AK
2023 /*
2024 * Global state is always initialized later in hugetlb_init.
2025 * But we need to allocate >= MAX_ORDER hstates here early to still
2026 * use the bootmem allocator.
2027 */
47d38344 2028 if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER)
8faa8b07
AK
2029 hugetlb_hstate_alloc_pages(parsed_hstate);
2030
2031 last_mhp = mhp;
2032
a3437870
NA
2033 return 1;
2034}
e11bfbfc
NP
2035__setup("hugepages=", hugetlb_nrpages_setup);
2036
2037static int __init hugetlb_default_setup(char *s)
2038{
2039 default_hstate_size = memparse(s, &s);
2040 return 1;
2041}
2042__setup("default_hugepagesz=", hugetlb_default_setup);
a3437870 2043
8a213460
NA
2044static unsigned int cpuset_mems_nr(unsigned int *array)
2045{
2046 int node;
2047 unsigned int nr = 0;
2048
2049 for_each_node_mask(node, cpuset_current_mems_allowed)
2050 nr += array[node];
2051
2052 return nr;
2053}
2054
2055#ifdef CONFIG_SYSCTL
06808b08
LS
2056static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
2057 struct ctl_table *table, int write,
2058 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 2059{
e5ff2159
AK
2060 struct hstate *h = &default_hstate;
2061 unsigned long tmp;
08d4a246 2062 int ret;
e5ff2159 2063
c033a93c 2064 tmp = h->max_huge_pages;
e5ff2159 2065
adbe8726
EM
2066 if (write && h->order >= MAX_ORDER)
2067 return -EINVAL;
2068
e5ff2159
AK
2069 table->data = &tmp;
2070 table->maxlen = sizeof(unsigned long);
08d4a246
MH
2071 ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2072 if (ret)
2073 goto out;
e5ff2159 2074
06808b08 2075 if (write) {
bad44b5b
DR
2076 NODEMASK_ALLOC(nodemask_t, nodes_allowed,
2077 GFP_KERNEL | __GFP_NORETRY);
06808b08
LS
2078 if (!(obey_mempolicy &&
2079 init_nodemask_of_mempolicy(nodes_allowed))) {
2080 NODEMASK_FREE(nodes_allowed);
8cebfcd0 2081 nodes_allowed = &node_states[N_MEMORY];
06808b08
LS
2082 }
2083 h->max_huge_pages = set_max_huge_pages(h, tmp, nodes_allowed);
2084
8cebfcd0 2085 if (nodes_allowed != &node_states[N_MEMORY])
06808b08
LS
2086 NODEMASK_FREE(nodes_allowed);
2087 }
08d4a246
MH
2088out:
2089 return ret;
1da177e4 2090}
396faf03 2091
06808b08
LS
2092int hugetlb_sysctl_handler(struct ctl_table *table, int write,
2093 void __user *buffer, size_t *length, loff_t *ppos)
2094{
2095
2096 return hugetlb_sysctl_handler_common(false, table, write,
2097 buffer, length, ppos);
2098}
2099
2100#ifdef CONFIG_NUMA
2101int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
2102 void __user *buffer, size_t *length, loff_t *ppos)
2103{
2104 return hugetlb_sysctl_handler_common(true, table, write,
2105 buffer, length, ppos);
2106}
2107#endif /* CONFIG_NUMA */
2108
a3d0c6aa 2109int hugetlb_overcommit_handler(struct ctl_table *table, int write,
8d65af78 2110 void __user *buffer,
a3d0c6aa
NA
2111 size_t *length, loff_t *ppos)
2112{
a5516438 2113 struct hstate *h = &default_hstate;
e5ff2159 2114 unsigned long tmp;
08d4a246 2115 int ret;
e5ff2159 2116
c033a93c 2117 tmp = h->nr_overcommit_huge_pages;
e5ff2159 2118
adbe8726
EM
2119 if (write && h->order >= MAX_ORDER)
2120 return -EINVAL;
2121
e5ff2159
AK
2122 table->data = &tmp;
2123 table->maxlen = sizeof(unsigned long);
08d4a246
MH
2124 ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2125 if (ret)
2126 goto out;
e5ff2159
AK
2127
2128 if (write) {
2129 spin_lock(&hugetlb_lock);
2130 h->nr_overcommit_huge_pages = tmp;
2131 spin_unlock(&hugetlb_lock);
2132 }
08d4a246
MH
2133out:
2134 return ret;
a3d0c6aa
NA
2135}
2136
1da177e4
LT
2137#endif /* CONFIG_SYSCTL */
2138
e1759c21 2139void hugetlb_report_meminfo(struct seq_file *m)
1da177e4 2140{
a5516438 2141 struct hstate *h = &default_hstate;
e1759c21 2142 seq_printf(m,
4f98a2fe
RR
2143 "HugePages_Total: %5lu\n"
2144 "HugePages_Free: %5lu\n"
2145 "HugePages_Rsvd: %5lu\n"
2146 "HugePages_Surp: %5lu\n"
2147 "Hugepagesize: %8lu kB\n",
a5516438
AK
2148 h->nr_huge_pages,
2149 h->free_huge_pages,
2150 h->resv_huge_pages,
2151 h->surplus_huge_pages,
2152 1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
1da177e4
LT
2153}
2154
2155int hugetlb_report_node_meminfo(int nid, char *buf)
2156{
a5516438 2157 struct hstate *h = &default_hstate;
1da177e4
LT
2158 return sprintf(buf,
2159 "Node %d HugePages_Total: %5u\n"
a1de0919
NA
2160 "Node %d HugePages_Free: %5u\n"
2161 "Node %d HugePages_Surp: %5u\n",
a5516438
AK
2162 nid, h->nr_huge_pages_node[nid],
2163 nid, h->free_huge_pages_node[nid],
2164 nid, h->surplus_huge_pages_node[nid]);
1da177e4
LT
2165}
2166
949f7ec5
DR
2167void hugetlb_show_meminfo(void)
2168{
2169 struct hstate *h;
2170 int nid;
2171
2172 for_each_node_state(nid, N_MEMORY)
2173 for_each_hstate(h)
2174 pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
2175 nid,
2176 h->nr_huge_pages_node[nid],
2177 h->free_huge_pages_node[nid],
2178 h->surplus_huge_pages_node[nid],
2179 1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
2180}
2181
1da177e4
LT
2182/* Return the number pages of memory we physically have, in PAGE_SIZE units. */
2183unsigned long hugetlb_total_pages(void)
2184{
d0028588
WL
2185 struct hstate *h;
2186 unsigned long nr_total_pages = 0;
2187
2188 for_each_hstate(h)
2189 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
2190 return nr_total_pages;
1da177e4 2191}
1da177e4 2192
a5516438 2193static int hugetlb_acct_memory(struct hstate *h, long delta)
fc1b8a73
MG
2194{
2195 int ret = -ENOMEM;
2196
2197 spin_lock(&hugetlb_lock);
2198 /*
2199 * When cpuset is configured, it breaks the strict hugetlb page
2200 * reservation as the accounting is done on a global variable. Such
2201 * reservation is completely rubbish in the presence of cpuset because
2202 * the reservation is not checked against page availability for the
2203 * current cpuset. Application can still potentially OOM'ed by kernel
2204 * with lack of free htlb page in cpuset that the task is in.
2205 * Attempt to enforce strict accounting with cpuset is almost
2206 * impossible (or too ugly) because cpuset is too fluid that
2207 * task or memory node can be dynamically moved between cpusets.
2208 *
2209 * The change of semantics for shared hugetlb mapping with cpuset is
2210 * undesirable. However, in order to preserve some of the semantics,
2211 * we fall back to check against current free page availability as
2212 * a best attempt and hopefully to minimize the impact of changing
2213 * semantics that cpuset has.
2214 */
2215 if (delta > 0) {
a5516438 2216 if (gather_surplus_pages(h, delta) < 0)
fc1b8a73
MG
2217 goto out;
2218
a5516438
AK
2219 if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
2220 return_unused_surplus_pages(h, delta);
fc1b8a73
MG
2221 goto out;
2222 }
2223 }
2224
2225 ret = 0;
2226 if (delta < 0)
a5516438 2227 return_unused_surplus_pages(h, (unsigned long) -delta);
fc1b8a73
MG
2228
2229out:
2230 spin_unlock(&hugetlb_lock);
2231 return ret;
2232}
2233
84afd99b
AW
2234static void hugetlb_vm_op_open(struct vm_area_struct *vma)
2235{
f522c3ac 2236 struct resv_map *resv = vma_resv_map(vma);
84afd99b
AW
2237
2238 /*
2239 * This new VMA should share its siblings reservation map if present.
2240 * The VMA will only ever have a valid reservation map pointer where
2241 * it is being copied for another still existing VMA. As that VMA
25985edc 2242 * has a reference to the reservation map it cannot disappear until
84afd99b
AW
2243 * after this open call completes. It is therefore safe to take a
2244 * new reference here without additional locking.
2245 */
f522c3ac
JK
2246 if (resv)
2247 kref_get(&resv->refs);
84afd99b
AW
2248}
2249
c50ac050
DH
2250static void resv_map_put(struct vm_area_struct *vma)
2251{
f522c3ac 2252 struct resv_map *resv = vma_resv_map(vma);
c50ac050 2253
f522c3ac 2254 if (!resv)
c50ac050 2255 return;
f522c3ac 2256 kref_put(&resv->refs, resv_map_release);
c50ac050
DH
2257}
2258
a1e78772
MG
2259static void hugetlb_vm_op_close(struct vm_area_struct *vma)
2260{
a5516438 2261 struct hstate *h = hstate_vma(vma);
f522c3ac 2262 struct resv_map *resv = vma_resv_map(vma);
90481622 2263 struct hugepage_subpool *spool = subpool_vma(vma);
84afd99b
AW
2264 unsigned long reserve;
2265 unsigned long start;
2266 unsigned long end;
2267
f522c3ac 2268 if (resv) {
a5516438
AK
2269 start = vma_hugecache_offset(h, vma, vma->vm_start);
2270 end = vma_hugecache_offset(h, vma, vma->vm_end);
84afd99b
AW
2271
2272 reserve = (end - start) -
f522c3ac 2273 region_count(&resv->regions, start, end);
84afd99b 2274
c50ac050 2275 resv_map_put(vma);
84afd99b 2276
7251ff78 2277 if (reserve) {
a5516438 2278 hugetlb_acct_memory(h, -reserve);
90481622 2279 hugepage_subpool_put_pages(spool, reserve);
7251ff78 2280 }
84afd99b 2281 }
a1e78772
MG
2282}
2283
1da177e4
LT
2284/*
2285 * We cannot handle pagefaults against hugetlb pages at all. They cause
2286 * handle_mm_fault() to try to instantiate regular-sized pages in the
2287 * hugegpage VMA. do_page_fault() is supposed to trap this, so BUG is we get
2288 * this far.
2289 */
d0217ac0 2290static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1da177e4
LT
2291{
2292 BUG();
d0217ac0 2293 return 0;
1da177e4
LT
2294}
2295
f0f37e2f 2296const struct vm_operations_struct hugetlb_vm_ops = {
d0217ac0 2297 .fault = hugetlb_vm_op_fault,
84afd99b 2298 .open = hugetlb_vm_op_open,
a1e78772 2299 .close = hugetlb_vm_op_close,
1da177e4
LT
2300};
2301
1e8f889b
DG
2302static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
2303 int writable)
63551ae0
DG
2304{
2305 pte_t entry;
2306
1e8f889b 2307 if (writable) {
106c992a
GS
2308 entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
2309 vma->vm_page_prot)));
63551ae0 2310 } else {
106c992a
GS
2311 entry = huge_pte_wrprotect(mk_huge_pte(page,
2312 vma->vm_page_prot));
63551ae0
DG
2313 }
2314 entry = pte_mkyoung(entry);
2315 entry = pte_mkhuge(entry);
d9ed9faa 2316 entry = arch_make_huge_pte(entry, vma, page, writable);
63551ae0
DG
2317
2318 return entry;
2319}
2320
1e8f889b
DG
2321static void set_huge_ptep_writable(struct vm_area_struct *vma,
2322 unsigned long address, pte_t *ptep)
2323{
2324 pte_t entry;
2325
106c992a 2326 entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
32f84528 2327 if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
4b3073e1 2328 update_mmu_cache(vma, address, ptep);
1e8f889b
DG
2329}
2330
2331
63551ae0
DG
2332int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
2333 struct vm_area_struct *vma)
2334{
2335 pte_t *src_pte, *dst_pte, entry;
2336 struct page *ptepage;
1c59827d 2337 unsigned long addr;
1e8f889b 2338 int cow;
a5516438
AK
2339 struct hstate *h = hstate_vma(vma);
2340 unsigned long sz = huge_page_size(h);
1e8f889b
DG
2341
2342 cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
63551ae0 2343
a5516438 2344 for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
cb900f41 2345 spinlock_t *src_ptl, *dst_ptl;
c74df32c
HD
2346 src_pte = huge_pte_offset(src, addr);
2347 if (!src_pte)
2348 continue;
a5516438 2349 dst_pte = huge_pte_alloc(dst, addr, sz);
63551ae0
DG
2350 if (!dst_pte)
2351 goto nomem;
c5c99429
LW
2352
2353 /* If the pagetables are shared don't copy or take references */
2354 if (dst_pte == src_pte)
2355 continue;
2356
cb900f41
KS
2357 dst_ptl = huge_pte_lock(h, dst, dst_pte);
2358 src_ptl = huge_pte_lockptr(h, src, src_pte);
2359 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
7f2e9525 2360 if (!huge_pte_none(huge_ptep_get(src_pte))) {
1e8f889b 2361 if (cow)
7f2e9525
GS
2362 huge_ptep_set_wrprotect(src, addr, src_pte);
2363 entry = huge_ptep_get(src_pte);
1c59827d
HD
2364 ptepage = pte_page(entry);
2365 get_page(ptepage);
0fe6e20b 2366 page_dup_rmap(ptepage);
1c59827d
HD
2367 set_huge_pte_at(dst, addr, dst_pte, entry);
2368 }
cb900f41
KS
2369 spin_unlock(src_ptl);
2370 spin_unlock(dst_ptl);
63551ae0
DG
2371 }
2372 return 0;
2373
2374nomem:
2375 return -ENOMEM;
2376}
2377
290408d4
NH
2378static int is_hugetlb_entry_migration(pte_t pte)
2379{
2380 swp_entry_t swp;
2381
2382 if (huge_pte_none(pte) || pte_present(pte))
2383 return 0;
2384 swp = pte_to_swp_entry(pte);
32f84528 2385 if (non_swap_entry(swp) && is_migration_entry(swp))
290408d4 2386 return 1;
32f84528 2387 else
290408d4
NH
2388 return 0;
2389}
2390
fd6a03ed
NH
2391static int is_hugetlb_entry_hwpoisoned(pte_t pte)
2392{
2393 swp_entry_t swp;
2394
2395 if (huge_pte_none(pte) || pte_present(pte))
2396 return 0;
2397 swp = pte_to_swp_entry(pte);
32f84528 2398 if (non_swap_entry(swp) && is_hwpoison_entry(swp))
fd6a03ed 2399 return 1;
32f84528 2400 else
fd6a03ed
NH
2401 return 0;
2402}
2403
24669e58
AK
2404void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
2405 unsigned long start, unsigned long end,
2406 struct page *ref_page)
63551ae0 2407{
24669e58 2408 int force_flush = 0;
63551ae0
DG
2409 struct mm_struct *mm = vma->vm_mm;
2410 unsigned long address;
c7546f8f 2411 pte_t *ptep;
63551ae0 2412 pte_t pte;
cb900f41 2413 spinlock_t *ptl;
63551ae0 2414 struct page *page;
a5516438
AK
2415 struct hstate *h = hstate_vma(vma);
2416 unsigned long sz = huge_page_size(h);
2ec74c3e
SG
2417 const unsigned long mmun_start = start; /* For mmu_notifiers */
2418 const unsigned long mmun_end = end; /* For mmu_notifiers */
a5516438 2419
63551ae0 2420 WARN_ON(!is_vm_hugetlb_page(vma));
a5516438
AK
2421 BUG_ON(start & ~huge_page_mask(h));
2422 BUG_ON(end & ~huge_page_mask(h));
63551ae0 2423
24669e58 2424 tlb_start_vma(tlb, vma);
2ec74c3e 2425 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
24669e58 2426again:
a5516438 2427 for (address = start; address < end; address += sz) {
c7546f8f 2428 ptep = huge_pte_offset(mm, address);
4c887265 2429 if (!ptep)
c7546f8f
DG
2430 continue;
2431
cb900f41 2432 ptl = huge_pte_lock(h, mm, ptep);
39dde65c 2433 if (huge_pmd_unshare(mm, &address, ptep))
cb900f41 2434 goto unlock;
39dde65c 2435
6629326b
HD
2436 pte = huge_ptep_get(ptep);
2437 if (huge_pte_none(pte))
cb900f41 2438 goto unlock;
6629326b
HD
2439
2440 /*
2441 * HWPoisoned hugepage is already unmapped and dropped reference
2442 */
8c4894c6 2443 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
106c992a 2444 huge_pte_clear(mm, address, ptep);
cb900f41 2445 goto unlock;
8c4894c6 2446 }
6629326b
HD
2447
2448 page = pte_page(pte);
04f2cbe3
MG
2449 /*
2450 * If a reference page is supplied, it is because a specific
2451 * page is being unmapped, not a range. Ensure the page we
2452 * are about to unmap is the actual page of interest.
2453 */
2454 if (ref_page) {
04f2cbe3 2455 if (page != ref_page)
cb900f41 2456 goto unlock;
04f2cbe3
MG
2457
2458 /*
2459 * Mark the VMA as having unmapped its page so that
2460 * future faults in this VMA will fail rather than
2461 * looking like data was lost
2462 */
2463 set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
2464 }
2465
c7546f8f 2466 pte = huge_ptep_get_and_clear(mm, address, ptep);
24669e58 2467 tlb_remove_tlb_entry(tlb, ptep, address);
106c992a 2468 if (huge_pte_dirty(pte))
6649a386 2469 set_page_dirty(page);
9e81130b 2470
24669e58
AK
2471 page_remove_rmap(page);
2472 force_flush = !__tlb_remove_page(tlb, page);
cb900f41
KS
2473 if (force_flush) {
2474 spin_unlock(ptl);
24669e58 2475 break;
cb900f41 2476 }
9e81130b 2477 /* Bail out after unmapping reference page if supplied */
cb900f41
KS
2478 if (ref_page) {
2479 spin_unlock(ptl);
9e81130b 2480 break;
cb900f41
KS
2481 }
2482unlock:
2483 spin_unlock(ptl);
63551ae0 2484 }
24669e58
AK
2485 /*
2486 * mmu_gather ran out of room to batch pages, we break out of
2487 * the PTE lock to avoid doing the potential expensive TLB invalidate
2488 * and page-free while holding it.
2489 */
2490 if (force_flush) {
2491 force_flush = 0;
2492 tlb_flush_mmu(tlb);
2493 if (address < end && !ref_page)
2494 goto again;
fe1668ae 2495 }
2ec74c3e 2496 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
24669e58 2497 tlb_end_vma(tlb, vma);
1da177e4 2498}
63551ae0 2499
d833352a
MG
2500void __unmap_hugepage_range_final(struct mmu_gather *tlb,
2501 struct vm_area_struct *vma, unsigned long start,
2502 unsigned long end, struct page *ref_page)
2503{
2504 __unmap_hugepage_range(tlb, vma, start, end, ref_page);
2505
2506 /*
2507 * Clear this flag so that x86's huge_pmd_share page_table_shareable
2508 * test will fail on a vma being torn down, and not grab a page table
2509 * on its way out. We're lucky that the flag has such an appropriate
2510 * name, and can in fact be safely cleared here. We could clear it
2511 * before the __unmap_hugepage_range above, but all that's necessary
2512 * is to clear it before releasing the i_mmap_mutex. This works
2513 * because in the context this is called, the VMA is about to be
2514 * destroyed and the i_mmap_mutex is held.
2515 */
2516 vma->vm_flags &= ~VM_MAYSHARE;
2517}
2518
502717f4 2519void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
04f2cbe3 2520 unsigned long end, struct page *ref_page)
502717f4 2521{
24669e58
AK
2522 struct mm_struct *mm;
2523 struct mmu_gather tlb;
2524
2525 mm = vma->vm_mm;
2526
2b047252 2527 tlb_gather_mmu(&tlb, mm, start, end);
24669e58
AK
2528 __unmap_hugepage_range(&tlb, vma, start, end, ref_page);
2529 tlb_finish_mmu(&tlb, start, end);
502717f4
CK
2530}
2531
04f2cbe3
MG
2532/*
2533 * This is called when the original mapper is failing to COW a MAP_PRIVATE
2534 * mappping it owns the reserve page for. The intention is to unmap the page
2535 * from other VMAs and let the children be SIGKILLed if they are faulting the
2536 * same region.
2537 */
2a4b3ded
HH
2538static int unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
2539 struct page *page, unsigned long address)
04f2cbe3 2540{
7526674d 2541 struct hstate *h = hstate_vma(vma);
04f2cbe3
MG
2542 struct vm_area_struct *iter_vma;
2543 struct address_space *mapping;
04f2cbe3
MG
2544 pgoff_t pgoff;
2545
2546 /*
2547 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
2548 * from page cache lookup which is in HPAGE_SIZE units.
2549 */
7526674d 2550 address = address & huge_page_mask(h);
36e4f20a
MH
2551 pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
2552 vma->vm_pgoff;
496ad9aa 2553 mapping = file_inode(vma->vm_file)->i_mapping;
04f2cbe3 2554
4eb2b1dc
MG
2555 /*
2556 * Take the mapping lock for the duration of the table walk. As
2557 * this mapping should be shared between all the VMAs,
2558 * __unmap_hugepage_range() is called as the lock is already held
2559 */
3d48ae45 2560 mutex_lock(&mapping->i_mmap_mutex);
6b2dbba8 2561 vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
04f2cbe3
MG
2562 /* Do not unmap the current VMA */
2563 if (iter_vma == vma)
2564 continue;
2565
2566 /*
2567 * Unmap the page from other VMAs without their own reserves.
2568 * They get marked to be SIGKILLed if they fault in these
2569 * areas. This is because a future no-page fault on this VMA
2570 * could insert a zeroed page instead of the data existing
2571 * from the time of fork. This would look like data corruption
2572 */
2573 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
24669e58
AK
2574 unmap_hugepage_range(iter_vma, address,
2575 address + huge_page_size(h), page);
04f2cbe3 2576 }
3d48ae45 2577 mutex_unlock(&mapping->i_mmap_mutex);
04f2cbe3
MG
2578
2579 return 1;
2580}
2581
0fe6e20b
NH
2582/*
2583 * Hugetlb_cow() should be called with page lock of the original hugepage held.
ef009b25
MH
2584 * Called with hugetlb_instantiation_mutex held and pte_page locked so we
2585 * cannot race with other handlers or page migration.
2586 * Keep the pte_same checks anyway to make transition from the mutex easier.
0fe6e20b 2587 */
1e8f889b 2588static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
04f2cbe3 2589 unsigned long address, pte_t *ptep, pte_t pte,
cb900f41 2590 struct page *pagecache_page, spinlock_t *ptl)
1e8f889b 2591{
a5516438 2592 struct hstate *h = hstate_vma(vma);
1e8f889b 2593 struct page *old_page, *new_page;
04f2cbe3 2594 int outside_reserve = 0;
2ec74c3e
SG
2595 unsigned long mmun_start; /* For mmu_notifiers */
2596 unsigned long mmun_end; /* For mmu_notifiers */
1e8f889b
DG
2597
2598 old_page = pte_page(pte);
2599
04f2cbe3 2600retry_avoidcopy:
1e8f889b
DG
2601 /* If no-one else is actually using this page, avoid the copy
2602 * and just make the page writable */
37a2140d
JK
2603 if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
2604 page_move_anon_rmap(old_page, vma, address);
1e8f889b 2605 set_huge_ptep_writable(vma, address, ptep);
83c54070 2606 return 0;
1e8f889b
DG
2607 }
2608
04f2cbe3
MG
2609 /*
2610 * If the process that created a MAP_PRIVATE mapping is about to
2611 * perform a COW due to a shared page count, attempt to satisfy
2612 * the allocation without using the existing reserves. The pagecache
2613 * page is used to determine if the reserve at this address was
2614 * consumed or not. If reserves were used, a partial faulted mapping
2615 * at the time of fork() could consume its reserves on COW instead
2616 * of the full address range.
2617 */
5944d011 2618 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
04f2cbe3
MG
2619 old_page != pagecache_page)
2620 outside_reserve = 1;
2621
1e8f889b 2622 page_cache_get(old_page);
b76c8cfb 2623
cb900f41
KS
2624 /* Drop page table lock as buddy allocator may be called */
2625 spin_unlock(ptl);
04f2cbe3 2626 new_page = alloc_huge_page(vma, address, outside_reserve);
1e8f889b 2627
2fc39cec 2628 if (IS_ERR(new_page)) {
76dcee75 2629 long err = PTR_ERR(new_page);
1e8f889b 2630 page_cache_release(old_page);
04f2cbe3
MG
2631
2632 /*
2633 * If a process owning a MAP_PRIVATE mapping fails to COW,
2634 * it is due to references held by a child and an insufficient
2635 * huge page pool. To guarantee the original mappers
2636 * reliability, unmap the page from child processes. The child
2637 * may get SIGKILLed if it later faults.
2638 */
2639 if (outside_reserve) {
2640 BUG_ON(huge_pte_none(pte));
2641 if (unmap_ref_private(mm, vma, old_page, address)) {
04f2cbe3 2642 BUG_ON(huge_pte_none(pte));
cb900f41 2643 spin_lock(ptl);
a734bcc8
HD
2644 ptep = huge_pte_offset(mm, address & huge_page_mask(h));
2645 if (likely(pte_same(huge_ptep_get(ptep), pte)))
2646 goto retry_avoidcopy;
2647 /*
cb900f41
KS
2648 * race occurs while re-acquiring page table
2649 * lock, and our job is done.
a734bcc8
HD
2650 */
2651 return 0;
04f2cbe3
MG
2652 }
2653 WARN_ON_ONCE(1);
2654 }
2655
b76c8cfb 2656 /* Caller expects lock to be held */
cb900f41 2657 spin_lock(ptl);
76dcee75
AK
2658 if (err == -ENOMEM)
2659 return VM_FAULT_OOM;
2660 else
2661 return VM_FAULT_SIGBUS;
1e8f889b
DG
2662 }
2663
0fe6e20b
NH
2664 /*
2665 * When the original hugepage is shared one, it does not have
2666 * anon_vma prepared.
2667 */
44e2aa93 2668 if (unlikely(anon_vma_prepare(vma))) {
ea4039a3
HD
2669 page_cache_release(new_page);
2670 page_cache_release(old_page);
44e2aa93 2671 /* Caller expects lock to be held */
cb900f41 2672 spin_lock(ptl);
0fe6e20b 2673 return VM_FAULT_OOM;
44e2aa93 2674 }
0fe6e20b 2675
47ad8475
AA
2676 copy_user_huge_page(new_page, old_page, address, vma,
2677 pages_per_huge_page(h));
0ed361de 2678 __SetPageUptodate(new_page);
1e8f889b 2679
2ec74c3e
SG
2680 mmun_start = address & huge_page_mask(h);
2681 mmun_end = mmun_start + huge_page_size(h);
2682 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
b76c8cfb 2683 /*
cb900f41 2684 * Retake the page table lock to check for racing updates
b76c8cfb
LW
2685 * before the page tables are altered
2686 */
cb900f41 2687 spin_lock(ptl);
a5516438 2688 ptep = huge_pte_offset(mm, address & huge_page_mask(h));
7f2e9525 2689 if (likely(pte_same(huge_ptep_get(ptep), pte))) {
07443a85
JK
2690 ClearPagePrivate(new_page);
2691
1e8f889b 2692 /* Break COW */
8fe627ec 2693 huge_ptep_clear_flush(vma, address, ptep);
1e8f889b
DG
2694 set_huge_pte_at(mm, address, ptep,
2695 make_huge_pte(vma, new_page, 1));
0fe6e20b 2696 page_remove_rmap(old_page);
cd67f0d2 2697 hugepage_add_new_anon_rmap(new_page, vma, address);
1e8f889b
DG
2698 /* Make the old page be freed below */
2699 new_page = old_page;
2700 }
cb900f41 2701 spin_unlock(ptl);
2ec74c3e 2702 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1e8f889b
DG
2703 page_cache_release(new_page);
2704 page_cache_release(old_page);
8312034f
JK
2705
2706 /* Caller expects lock to be held */
cb900f41 2707 spin_lock(ptl);
83c54070 2708 return 0;
1e8f889b
DG
2709}
2710
04f2cbe3 2711/* Return the pagecache page at a given address within a VMA */
a5516438
AK
2712static struct page *hugetlbfs_pagecache_page(struct hstate *h,
2713 struct vm_area_struct *vma, unsigned long address)
04f2cbe3
MG
2714{
2715 struct address_space *mapping;
e7c4b0bf 2716 pgoff_t idx;
04f2cbe3
MG
2717
2718 mapping = vma->vm_file->f_mapping;
a5516438 2719 idx = vma_hugecache_offset(h, vma, address);
04f2cbe3
MG
2720
2721 return find_lock_page(mapping, idx);
2722}
2723
3ae77f43
HD
2724/*
2725 * Return whether there is a pagecache page to back given address within VMA.
2726 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
2727 */
2728static bool hugetlbfs_pagecache_present(struct hstate *h,
2a15efc9
HD
2729 struct vm_area_struct *vma, unsigned long address)
2730{
2731 struct address_space *mapping;
2732 pgoff_t idx;
2733 struct page *page;
2734
2735 mapping = vma->vm_file->f_mapping;
2736 idx = vma_hugecache_offset(h, vma, address);
2737
2738 page = find_get_page(mapping, idx);
2739 if (page)
2740 put_page(page);
2741 return page != NULL;
2742}
2743
a1ed3dda 2744static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
788c7df4 2745 unsigned long address, pte_t *ptep, unsigned int flags)
ac9b9c66 2746{
a5516438 2747 struct hstate *h = hstate_vma(vma);
ac9b9c66 2748 int ret = VM_FAULT_SIGBUS;
409eb8c2 2749 int anon_rmap = 0;
e7c4b0bf 2750 pgoff_t idx;
4c887265 2751 unsigned long size;
4c887265
AL
2752 struct page *page;
2753 struct address_space *mapping;
1e8f889b 2754 pte_t new_pte;
cb900f41 2755 spinlock_t *ptl;
4c887265 2756
04f2cbe3
MG
2757 /*
2758 * Currently, we are forced to kill the process in the event the
2759 * original mapper has unmapped pages from the child due to a failed
25985edc 2760 * COW. Warn that such a situation has occurred as it may not be obvious
04f2cbe3
MG
2761 */
2762 if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
ffb22af5
AM
2763 pr_warning("PID %d killed due to inadequate hugepage pool\n",
2764 current->pid);
04f2cbe3
MG
2765 return ret;
2766 }
2767
4c887265 2768 mapping = vma->vm_file->f_mapping;
a5516438 2769 idx = vma_hugecache_offset(h, vma, address);
4c887265
AL
2770
2771 /*
2772 * Use page lock to guard against racing truncation
2773 * before we get page_table_lock.
2774 */
6bda666a
CL
2775retry:
2776 page = find_lock_page(mapping, idx);
2777 if (!page) {
a5516438 2778 size = i_size_read(mapping->host) >> huge_page_shift(h);
ebed4bfc
HD
2779 if (idx >= size)
2780 goto out;
04f2cbe3 2781 page = alloc_huge_page(vma, address, 0);
2fc39cec 2782 if (IS_ERR(page)) {
76dcee75
AK
2783 ret = PTR_ERR(page);
2784 if (ret == -ENOMEM)
2785 ret = VM_FAULT_OOM;
2786 else
2787 ret = VM_FAULT_SIGBUS;
6bda666a
CL
2788 goto out;
2789 }
47ad8475 2790 clear_huge_page(page, address, pages_per_huge_page(h));
0ed361de 2791 __SetPageUptodate(page);
ac9b9c66 2792
f83a275d 2793 if (vma->vm_flags & VM_MAYSHARE) {
6bda666a 2794 int err;
45c682a6 2795 struct inode *inode = mapping->host;
6bda666a
CL
2796
2797 err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
2798 if (err) {
2799 put_page(page);
6bda666a
CL
2800 if (err == -EEXIST)
2801 goto retry;
2802 goto out;
2803 }
07443a85 2804 ClearPagePrivate(page);
45c682a6
KC
2805
2806 spin_lock(&inode->i_lock);
a5516438 2807 inode->i_blocks += blocks_per_huge_page(h);
45c682a6 2808 spin_unlock(&inode->i_lock);
23be7468 2809 } else {
6bda666a 2810 lock_page(page);
0fe6e20b
NH
2811 if (unlikely(anon_vma_prepare(vma))) {
2812 ret = VM_FAULT_OOM;
2813 goto backout_unlocked;
2814 }
409eb8c2 2815 anon_rmap = 1;
23be7468 2816 }
0fe6e20b 2817 } else {
998b4382
NH
2818 /*
2819 * If memory error occurs between mmap() and fault, some process
2820 * don't have hwpoisoned swap entry for errored virtual address.
2821 * So we need to block hugepage fault by PG_hwpoison bit check.
2822 */
2823 if (unlikely(PageHWPoison(page))) {
32f84528 2824 ret = VM_FAULT_HWPOISON |
972dc4de 2825 VM_FAULT_SET_HINDEX(hstate_index(h));
998b4382
NH
2826 goto backout_unlocked;
2827 }
6bda666a 2828 }
1e8f889b 2829
57303d80
AW
2830 /*
2831 * If we are going to COW a private mapping later, we examine the
2832 * pending reservations for this page now. This will ensure that
2833 * any allocations necessary to record that reservation occur outside
2834 * the spinlock.
2835 */
788c7df4 2836 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED))
2b26736c
AW
2837 if (vma_needs_reservation(h, vma, address) < 0) {
2838 ret = VM_FAULT_OOM;
2839 goto backout_unlocked;
2840 }
57303d80 2841
cb900f41
KS
2842 ptl = huge_pte_lockptr(h, mm, ptep);
2843 spin_lock(ptl);
a5516438 2844 size = i_size_read(mapping->host) >> huge_page_shift(h);
4c887265
AL
2845 if (idx >= size)
2846 goto backout;
2847
83c54070 2848 ret = 0;
7f2e9525 2849 if (!huge_pte_none(huge_ptep_get(ptep)))
4c887265
AL
2850 goto backout;
2851
07443a85
JK
2852 if (anon_rmap) {
2853 ClearPagePrivate(page);
409eb8c2 2854 hugepage_add_new_anon_rmap(page, vma, address);
07443a85 2855 }
409eb8c2
HD
2856 else
2857 page_dup_rmap(page);
1e8f889b
DG
2858 new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
2859 && (vma->vm_flags & VM_SHARED)));
2860 set_huge_pte_at(mm, address, ptep, new_pte);
2861
788c7df4 2862 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
1e8f889b 2863 /* Optimization, do the COW without a second fault */
cb900f41 2864 ret = hugetlb_cow(mm, vma, address, ptep, new_pte, page, ptl);
1e8f889b
DG
2865 }
2866
cb900f41 2867 spin_unlock(ptl);
4c887265
AL
2868 unlock_page(page);
2869out:
ac9b9c66 2870 return ret;
4c887265
AL
2871
2872backout:
cb900f41 2873 spin_unlock(ptl);
2b26736c 2874backout_unlocked:
4c887265
AL
2875 unlock_page(page);
2876 put_page(page);
2877 goto out;
ac9b9c66
HD
2878}
2879
86e5216f 2880int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
788c7df4 2881 unsigned long address, unsigned int flags)
86e5216f
AL
2882{
2883 pte_t *ptep;
2884 pte_t entry;
cb900f41 2885 spinlock_t *ptl;
1e8f889b 2886 int ret;
0fe6e20b 2887 struct page *page = NULL;
57303d80 2888 struct page *pagecache_page = NULL;
3935baa9 2889 static DEFINE_MUTEX(hugetlb_instantiation_mutex);
a5516438 2890 struct hstate *h = hstate_vma(vma);
86e5216f 2891
1e16a539
KH
2892 address &= huge_page_mask(h);
2893
fd6a03ed
NH
2894 ptep = huge_pte_offset(mm, address);
2895 if (ptep) {
2896 entry = huge_ptep_get(ptep);
290408d4 2897 if (unlikely(is_hugetlb_entry_migration(entry))) {
cb900f41 2898 migration_entry_wait_huge(vma, mm, ptep);
290408d4
NH
2899 return 0;
2900 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
32f84528 2901 return VM_FAULT_HWPOISON_LARGE |
972dc4de 2902 VM_FAULT_SET_HINDEX(hstate_index(h));
fd6a03ed
NH
2903 }
2904
a5516438 2905 ptep = huge_pte_alloc(mm, address, huge_page_size(h));
86e5216f
AL
2906 if (!ptep)
2907 return VM_FAULT_OOM;
2908
3935baa9
DG
2909 /*
2910 * Serialize hugepage allocation and instantiation, so that we don't
2911 * get spurious allocation failures if two CPUs race to instantiate
2912 * the same page in the page cache.
2913 */
2914 mutex_lock(&hugetlb_instantiation_mutex);
7f2e9525
GS
2915 entry = huge_ptep_get(ptep);
2916 if (huge_pte_none(entry)) {
788c7df4 2917 ret = hugetlb_no_page(mm, vma, address, ptep, flags);
b4d1d99f 2918 goto out_mutex;
3935baa9 2919 }
86e5216f 2920
83c54070 2921 ret = 0;
1e8f889b 2922
57303d80
AW
2923 /*
2924 * If we are going to COW the mapping later, we examine the pending
2925 * reservations for this page now. This will ensure that any
2926 * allocations necessary to record that reservation occur outside the
2927 * spinlock. For private mappings, we also lookup the pagecache
2928 * page now as it is used to determine if a reservation has been
2929 * consumed.
2930 */
106c992a 2931 if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
2b26736c
AW
2932 if (vma_needs_reservation(h, vma, address) < 0) {
2933 ret = VM_FAULT_OOM;
b4d1d99f 2934 goto out_mutex;
2b26736c 2935 }
57303d80 2936
f83a275d 2937 if (!(vma->vm_flags & VM_MAYSHARE))
57303d80
AW
2938 pagecache_page = hugetlbfs_pagecache_page(h,
2939 vma, address);
2940 }
2941
56c9cfb1
NH
2942 /*
2943 * hugetlb_cow() requires page locks of pte_page(entry) and
2944 * pagecache_page, so here we need take the former one
2945 * when page != pagecache_page or !pagecache_page.
2946 * Note that locking order is always pagecache_page -> page,
2947 * so no worry about deadlock.
2948 */
2949 page = pte_page(entry);
66aebce7 2950 get_page(page);
56c9cfb1 2951 if (page != pagecache_page)
0fe6e20b 2952 lock_page(page);
0fe6e20b 2953
cb900f41
KS
2954 ptl = huge_pte_lockptr(h, mm, ptep);
2955 spin_lock(ptl);
1e8f889b 2956 /* Check for a racing update before calling hugetlb_cow */
b4d1d99f 2957 if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
cb900f41 2958 goto out_ptl;
b4d1d99f
DG
2959
2960
788c7df4 2961 if (flags & FAULT_FLAG_WRITE) {
106c992a 2962 if (!huge_pte_write(entry)) {
57303d80 2963 ret = hugetlb_cow(mm, vma, address, ptep, entry,
cb900f41
KS
2964 pagecache_page, ptl);
2965 goto out_ptl;
b4d1d99f 2966 }
106c992a 2967 entry = huge_pte_mkdirty(entry);
b4d1d99f
DG
2968 }
2969 entry = pte_mkyoung(entry);
788c7df4
HD
2970 if (huge_ptep_set_access_flags(vma, address, ptep, entry,
2971 flags & FAULT_FLAG_WRITE))
4b3073e1 2972 update_mmu_cache(vma, address, ptep);
b4d1d99f 2973
cb900f41
KS
2974out_ptl:
2975 spin_unlock(ptl);
57303d80
AW
2976
2977 if (pagecache_page) {
2978 unlock_page(pagecache_page);
2979 put_page(pagecache_page);
2980 }
1f64d69c
DN
2981 if (page != pagecache_page)
2982 unlock_page(page);
66aebce7 2983 put_page(page);
57303d80 2984
b4d1d99f 2985out_mutex:
3935baa9 2986 mutex_unlock(&hugetlb_instantiation_mutex);
1e8f889b
DG
2987
2988 return ret;
86e5216f
AL
2989}
2990
28a35716
ML
2991long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
2992 struct page **pages, struct vm_area_struct **vmas,
2993 unsigned long *position, unsigned long *nr_pages,
2994 long i, unsigned int flags)
63551ae0 2995{
d5d4b0aa
CK
2996 unsigned long pfn_offset;
2997 unsigned long vaddr = *position;
28a35716 2998 unsigned long remainder = *nr_pages;
a5516438 2999 struct hstate *h = hstate_vma(vma);
63551ae0 3000
63551ae0 3001 while (vaddr < vma->vm_end && remainder) {
4c887265 3002 pte_t *pte;
cb900f41 3003 spinlock_t *ptl = NULL;
2a15efc9 3004 int absent;
4c887265 3005 struct page *page;
63551ae0 3006
4c887265
AL
3007 /*
3008 * Some archs (sparc64, sh*) have multiple pte_ts to
2a15efc9 3009 * each hugepage. We have to make sure we get the
4c887265 3010 * first, for the page indexing below to work.
cb900f41
KS
3011 *
3012 * Note that page table lock is not held when pte is null.
4c887265 3013 */
a5516438 3014 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h));
cb900f41
KS
3015 if (pte)
3016 ptl = huge_pte_lock(h, mm, pte);
2a15efc9
HD
3017 absent = !pte || huge_pte_none(huge_ptep_get(pte));
3018
3019 /*
3020 * When coredumping, it suits get_dump_page if we just return
3ae77f43
HD
3021 * an error where there's an empty slot with no huge pagecache
3022 * to back it. This way, we avoid allocating a hugepage, and
3023 * the sparse dumpfile avoids allocating disk blocks, but its
3024 * huge holes still show up with zeroes where they need to be.
2a15efc9 3025 */
3ae77f43
HD
3026 if (absent && (flags & FOLL_DUMP) &&
3027 !hugetlbfs_pagecache_present(h, vma, vaddr)) {
cb900f41
KS
3028 if (pte)
3029 spin_unlock(ptl);
2a15efc9
HD
3030 remainder = 0;
3031 break;
3032 }
63551ae0 3033
9cc3a5bd
NH
3034 /*
3035 * We need call hugetlb_fault for both hugepages under migration
3036 * (in which case hugetlb_fault waits for the migration,) and
3037 * hwpoisoned hugepages (in which case we need to prevent the
3038 * caller from accessing to them.) In order to do this, we use
3039 * here is_swap_pte instead of is_hugetlb_entry_migration and
3040 * is_hugetlb_entry_hwpoisoned. This is because it simply covers
3041 * both cases, and because we can't follow correct pages
3042 * directly from any kind of swap entries.
3043 */
3044 if (absent || is_swap_pte(huge_ptep_get(pte)) ||
106c992a
GS
3045 ((flags & FOLL_WRITE) &&
3046 !huge_pte_write(huge_ptep_get(pte)))) {
4c887265 3047 int ret;
63551ae0 3048
cb900f41
KS
3049 if (pte)
3050 spin_unlock(ptl);
2a15efc9
HD
3051 ret = hugetlb_fault(mm, vma, vaddr,
3052 (flags & FOLL_WRITE) ? FAULT_FLAG_WRITE : 0);
a89182c7 3053 if (!(ret & VM_FAULT_ERROR))
4c887265 3054 continue;
63551ae0 3055
4c887265 3056 remainder = 0;
4c887265
AL
3057 break;
3058 }
3059
a5516438 3060 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
7f2e9525 3061 page = pte_page(huge_ptep_get(pte));
d5d4b0aa 3062same_page:
d6692183 3063 if (pages) {
2a15efc9 3064 pages[i] = mem_map_offset(page, pfn_offset);
4b2e38ad 3065 get_page(pages[i]);
d6692183 3066 }
63551ae0
DG
3067
3068 if (vmas)
3069 vmas[i] = vma;
3070
3071 vaddr += PAGE_SIZE;
d5d4b0aa 3072 ++pfn_offset;
63551ae0
DG
3073 --remainder;
3074 ++i;
d5d4b0aa 3075 if (vaddr < vma->vm_end && remainder &&
a5516438 3076 pfn_offset < pages_per_huge_page(h)) {
d5d4b0aa
CK
3077 /*
3078 * We use pfn_offset to avoid touching the pageframes
3079 * of this compound page.
3080 */
3081 goto same_page;
3082 }
cb900f41 3083 spin_unlock(ptl);
63551ae0 3084 }
28a35716 3085 *nr_pages = remainder;
63551ae0
DG
3086 *position = vaddr;
3087
2a15efc9 3088 return i ? i : -EFAULT;
63551ae0 3089}
8f860591 3090
7da4d641 3091unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
8f860591
ZY
3092 unsigned long address, unsigned long end, pgprot_t newprot)
3093{
3094 struct mm_struct *mm = vma->vm_mm;
3095 unsigned long start = address;
3096 pte_t *ptep;
3097 pte_t pte;
a5516438 3098 struct hstate *h = hstate_vma(vma);
7da4d641 3099 unsigned long pages = 0;
8f860591
ZY
3100
3101 BUG_ON(address >= end);
3102 flush_cache_range(vma, address, end);
3103
3d48ae45 3104 mutex_lock(&vma->vm_file->f_mapping->i_mmap_mutex);
a5516438 3105 for (; address < end; address += huge_page_size(h)) {
cb900f41 3106 spinlock_t *ptl;
8f860591
ZY
3107 ptep = huge_pte_offset(mm, address);
3108 if (!ptep)
3109 continue;
cb900f41 3110 ptl = huge_pte_lock(h, mm, ptep);
7da4d641
PZ
3111 if (huge_pmd_unshare(mm, &address, ptep)) {
3112 pages++;
cb900f41 3113 spin_unlock(ptl);
39dde65c 3114 continue;
7da4d641 3115 }
7f2e9525 3116 if (!huge_pte_none(huge_ptep_get(ptep))) {
8f860591 3117 pte = huge_ptep_get_and_clear(mm, address, ptep);
106c992a 3118 pte = pte_mkhuge(huge_pte_modify(pte, newprot));
be7517d6 3119 pte = arch_make_huge_pte(pte, vma, NULL, 0);
8f860591 3120 set_huge_pte_at(mm, address, ptep, pte);
7da4d641 3121 pages++;
8f860591 3122 }
cb900f41 3123 spin_unlock(ptl);
8f860591 3124 }
d833352a
MG
3125 /*
3126 * Must flush TLB before releasing i_mmap_mutex: x86's huge_pmd_unshare
3127 * may have cleared our pud entry and done put_page on the page table:
3128 * once we release i_mmap_mutex, another task can do the final put_page
3129 * and that page table be reused and filled with junk.
3130 */
8f860591 3131 flush_tlb_range(vma, start, end);
d833352a 3132 mutex_unlock(&vma->vm_file->f_mapping->i_mmap_mutex);
7da4d641
PZ
3133
3134 return pages << h->order;
8f860591
ZY
3135}
3136
a1e78772
MG
3137int hugetlb_reserve_pages(struct inode *inode,
3138 long from, long to,
5a6fe125 3139 struct vm_area_struct *vma,
ca16d140 3140 vm_flags_t vm_flags)
e4e574b7 3141{
17c9d12e 3142 long ret, chg;
a5516438 3143 struct hstate *h = hstate_inode(inode);
90481622 3144 struct hugepage_subpool *spool = subpool_inode(inode);
e4e574b7 3145
17c9d12e
MG
3146 /*
3147 * Only apply hugepage reservation if asked. At fault time, an
3148 * attempt will be made for VM_NORESERVE to allocate a page
90481622 3149 * without using reserves
17c9d12e 3150 */
ca16d140 3151 if (vm_flags & VM_NORESERVE)
17c9d12e
MG
3152 return 0;
3153
a1e78772
MG
3154 /*
3155 * Shared mappings base their reservation on the number of pages that
3156 * are already allocated on behalf of the file. Private mappings need
3157 * to reserve the full area even if read-only as mprotect() may be
3158 * called to make the mapping read-write. Assume !vma is a shm mapping
3159 */
f83a275d 3160 if (!vma || vma->vm_flags & VM_MAYSHARE)
a1e78772 3161 chg = region_chg(&inode->i_mapping->private_list, from, to);
17c9d12e
MG
3162 else {
3163 struct resv_map *resv_map = resv_map_alloc();
3164 if (!resv_map)
3165 return -ENOMEM;
3166
a1e78772 3167 chg = to - from;
84afd99b 3168
17c9d12e
MG
3169 set_vma_resv_map(vma, resv_map);
3170 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
3171 }
3172
c50ac050
DH
3173 if (chg < 0) {
3174 ret = chg;
3175 goto out_err;
3176 }
8a630112 3177
90481622 3178 /* There must be enough pages in the subpool for the mapping */
c50ac050
DH
3179 if (hugepage_subpool_get_pages(spool, chg)) {
3180 ret = -ENOSPC;
3181 goto out_err;
3182 }
5a6fe125
MG
3183
3184 /*
17c9d12e 3185 * Check enough hugepages are available for the reservation.
90481622 3186 * Hand the pages back to the subpool if there are not
5a6fe125 3187 */
a5516438 3188 ret = hugetlb_acct_memory(h, chg);
68842c9b 3189 if (ret < 0) {
90481622 3190 hugepage_subpool_put_pages(spool, chg);
c50ac050 3191 goto out_err;
68842c9b 3192 }
17c9d12e
MG
3193
3194 /*
3195 * Account for the reservations made. Shared mappings record regions
3196 * that have reservations as they are shared by multiple VMAs.
3197 * When the last VMA disappears, the region map says how much
3198 * the reservation was and the page cache tells how much of
3199 * the reservation was consumed. Private mappings are per-VMA and
3200 * only the consumed reservations are tracked. When the VMA
3201 * disappears, the original reservation is the VMA size and the
3202 * consumed reservations are stored in the map. Hence, nothing
3203 * else has to be done for private mappings here
3204 */
f83a275d 3205 if (!vma || vma->vm_flags & VM_MAYSHARE)
a1e78772 3206 region_add(&inode->i_mapping->private_list, from, to);
a43a8c39 3207 return 0;
c50ac050 3208out_err:
4523e145
DH
3209 if (vma)
3210 resv_map_put(vma);
c50ac050 3211 return ret;
a43a8c39
CK
3212}
3213
3214void hugetlb_unreserve_pages(struct inode *inode, long offset, long freed)
3215{
a5516438 3216 struct hstate *h = hstate_inode(inode);
a43a8c39 3217 long chg = region_truncate(&inode->i_mapping->private_list, offset);
90481622 3218 struct hugepage_subpool *spool = subpool_inode(inode);
45c682a6
KC
3219
3220 spin_lock(&inode->i_lock);
e4c6f8be 3221 inode->i_blocks -= (blocks_per_huge_page(h) * freed);
45c682a6
KC
3222 spin_unlock(&inode->i_lock);
3223
90481622 3224 hugepage_subpool_put_pages(spool, (chg - freed));
a5516438 3225 hugetlb_acct_memory(h, -(chg - freed));
a43a8c39 3226}
93f70f90 3227
3212b535
SC
3228#ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
3229static unsigned long page_table_shareable(struct vm_area_struct *svma,
3230 struct vm_area_struct *vma,
3231 unsigned long addr, pgoff_t idx)
3232{
3233 unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
3234 svma->vm_start;
3235 unsigned long sbase = saddr & PUD_MASK;
3236 unsigned long s_end = sbase + PUD_SIZE;
3237
3238 /* Allow segments to share if only one is marked locked */
3239 unsigned long vm_flags = vma->vm_flags & ~VM_LOCKED;
3240 unsigned long svm_flags = svma->vm_flags & ~VM_LOCKED;
3241
3242 /*
3243 * match the virtual addresses, permission and the alignment of the
3244 * page table page.
3245 */
3246 if (pmd_index(addr) != pmd_index(saddr) ||
3247 vm_flags != svm_flags ||
3248 sbase < svma->vm_start || svma->vm_end < s_end)
3249 return 0;
3250
3251 return saddr;
3252}
3253
3254static int vma_shareable(struct vm_area_struct *vma, unsigned long addr)
3255{
3256 unsigned long base = addr & PUD_MASK;
3257 unsigned long end = base + PUD_SIZE;
3258
3259 /*
3260 * check on proper vm_flags and page table alignment
3261 */
3262 if (vma->vm_flags & VM_MAYSHARE &&
3263 vma->vm_start <= base && end <= vma->vm_end)
3264 return 1;
3265 return 0;
3266}
3267
3268/*
3269 * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
3270 * and returns the corresponding pte. While this is not necessary for the
3271 * !shared pmd case because we can allocate the pmd later as well, it makes the
3272 * code much cleaner. pmd allocation is essential for the shared case because
3273 * pud has to be populated inside the same i_mmap_mutex section - otherwise
3274 * racing tasks could either miss the sharing (see huge_pte_offset) or select a
3275 * bad pmd for sharing.
3276 */
3277pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
3278{
3279 struct vm_area_struct *vma = find_vma(mm, addr);
3280 struct address_space *mapping = vma->vm_file->f_mapping;
3281 pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
3282 vma->vm_pgoff;
3283 struct vm_area_struct *svma;
3284 unsigned long saddr;
3285 pte_t *spte = NULL;
3286 pte_t *pte;
cb900f41 3287 spinlock_t *ptl;
3212b535
SC
3288
3289 if (!vma_shareable(vma, addr))
3290 return (pte_t *)pmd_alloc(mm, pud, addr);
3291
3292 mutex_lock(&mapping->i_mmap_mutex);
3293 vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
3294 if (svma == vma)
3295 continue;
3296
3297 saddr = page_table_shareable(svma, vma, addr, idx);
3298 if (saddr) {
3299 spte = huge_pte_offset(svma->vm_mm, saddr);
3300 if (spte) {
3301 get_page(virt_to_page(spte));
3302 break;
3303 }
3304 }
3305 }
3306
3307 if (!spte)
3308 goto out;
3309
cb900f41
KS
3310 ptl = huge_pte_lockptr(hstate_vma(vma), mm, spte);
3311 spin_lock(ptl);
3212b535
SC
3312 if (pud_none(*pud))
3313 pud_populate(mm, pud,
3314 (pmd_t *)((unsigned long)spte & PAGE_MASK));
3315 else
3316 put_page(virt_to_page(spte));
cb900f41 3317 spin_unlock(ptl);
3212b535
SC
3318out:
3319 pte = (pte_t *)pmd_alloc(mm, pud, addr);
3320 mutex_unlock(&mapping->i_mmap_mutex);
3321 return pte;
3322}
3323
3324/*
3325 * unmap huge page backed by shared pte.
3326 *
3327 * Hugetlb pte page is ref counted at the time of mapping. If pte is shared
3328 * indicated by page_count > 1, unmap is achieved by clearing pud and
3329 * decrementing the ref count. If count == 1, the pte page is not shared.
3330 *
cb900f41 3331 * called with page table lock held.
3212b535
SC
3332 *
3333 * returns: 1 successfully unmapped a shared pte page
3334 * 0 the underlying pte page is not shared, or it is the last user
3335 */
3336int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
3337{
3338 pgd_t *pgd = pgd_offset(mm, *addr);
3339 pud_t *pud = pud_offset(pgd, *addr);
3340
3341 BUG_ON(page_count(virt_to_page(ptep)) == 0);
3342 if (page_count(virt_to_page(ptep)) == 1)
3343 return 0;
3344
3345 pud_clear(pud);
3346 put_page(virt_to_page(ptep));
3347 *addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE;
3348 return 1;
3349}
9e5fc74c
SC
3350#define want_pmd_share() (1)
3351#else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
3352pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
3353{
3354 return NULL;
3355}
3356#define want_pmd_share() (0)
3212b535
SC
3357#endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
3358
9e5fc74c
SC
3359#ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
3360pte_t *huge_pte_alloc(struct mm_struct *mm,
3361 unsigned long addr, unsigned long sz)
3362{
3363 pgd_t *pgd;
3364 pud_t *pud;
3365 pte_t *pte = NULL;
3366
3367 pgd = pgd_offset(mm, addr);
3368 pud = pud_alloc(mm, pgd, addr);
3369 if (pud) {
3370 if (sz == PUD_SIZE) {
3371 pte = (pte_t *)pud;
3372 } else {
3373 BUG_ON(sz != PMD_SIZE);
3374 if (want_pmd_share() && pud_none(*pud))
3375 pte = huge_pmd_share(mm, addr, pud);
3376 else
3377 pte = (pte_t *)pmd_alloc(mm, pud, addr);
3378 }
3379 }
3380 BUG_ON(pte && !pte_none(*pte) && !pte_huge(*pte));
3381
3382 return pte;
3383}
3384
3385pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr)
3386{
3387 pgd_t *pgd;
3388 pud_t *pud;
3389 pmd_t *pmd = NULL;
3390
3391 pgd = pgd_offset(mm, addr);
3392 if (pgd_present(*pgd)) {
3393 pud = pud_offset(pgd, addr);
3394 if (pud_present(*pud)) {
3395 if (pud_huge(*pud))
3396 return (pte_t *)pud;
3397 pmd = pmd_offset(pud, addr);
3398 }
3399 }
3400 return (pte_t *) pmd;
3401}
3402
3403struct page *
3404follow_huge_pmd(struct mm_struct *mm, unsigned long address,
3405 pmd_t *pmd, int write)
3406{
3407 struct page *page;
3408
3409 page = pte_page(*(pte_t *)pmd);
3410 if (page)
3411 page += ((address & ~PMD_MASK) >> PAGE_SHIFT);
3412 return page;
3413}
3414
3415struct page *
3416follow_huge_pud(struct mm_struct *mm, unsigned long address,
3417 pud_t *pud, int write)
3418{
3419 struct page *page;
3420
3421 page = pte_page(*(pte_t *)pud);
3422 if (page)
3423 page += ((address & ~PUD_MASK) >> PAGE_SHIFT);
3424 return page;
3425}
3426
3427#else /* !CONFIG_ARCH_WANT_GENERAL_HUGETLB */
3428
3429/* Can be overriden by architectures */
3430__attribute__((weak)) struct page *
3431follow_huge_pud(struct mm_struct *mm, unsigned long address,
3432 pud_t *pud, int write)
3433{
3434 BUG();
3435 return NULL;
3436}
3437
3438#endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
3439
d5bd9106
AK
3440#ifdef CONFIG_MEMORY_FAILURE
3441
6de2b1aa
NH
3442/* Should be called in hugetlb_lock */
3443static int is_hugepage_on_freelist(struct page *hpage)
3444{
3445 struct page *page;
3446 struct page *tmp;
3447 struct hstate *h = page_hstate(hpage);
3448 int nid = page_to_nid(hpage);
3449
3450 list_for_each_entry_safe(page, tmp, &h->hugepage_freelists[nid], lru)
3451 if (page == hpage)
3452 return 1;
3453 return 0;
3454}
3455
93f70f90
NH
3456/*
3457 * This function is called from memory failure code.
3458 * Assume the caller holds page lock of the head page.
3459 */
6de2b1aa 3460int dequeue_hwpoisoned_huge_page(struct page *hpage)
93f70f90
NH
3461{
3462 struct hstate *h = page_hstate(hpage);
3463 int nid = page_to_nid(hpage);
6de2b1aa 3464 int ret = -EBUSY;
93f70f90
NH
3465
3466 spin_lock(&hugetlb_lock);
6de2b1aa 3467 if (is_hugepage_on_freelist(hpage)) {
56f2fb14
NH
3468 /*
3469 * Hwpoisoned hugepage isn't linked to activelist or freelist,
3470 * but dangling hpage->lru can trigger list-debug warnings
3471 * (this happens when we call unpoison_memory() on it),
3472 * so let it point to itself with list_del_init().
3473 */
3474 list_del_init(&hpage->lru);
8c6c2ecb 3475 set_page_refcounted(hpage);
6de2b1aa
NH
3476 h->free_huge_pages--;
3477 h->free_huge_pages_node[nid]--;
3478 ret = 0;
3479 }
93f70f90 3480 spin_unlock(&hugetlb_lock);
6de2b1aa 3481 return ret;
93f70f90 3482}
6de2b1aa 3483#endif
31caf665
NH
3484
3485bool isolate_huge_page(struct page *page, struct list_head *list)
3486{
3487 VM_BUG_ON(!PageHead(page));
3488 if (!get_page_unless_zero(page))
3489 return false;
3490 spin_lock(&hugetlb_lock);
3491 list_move_tail(&page->lru, list);
3492 spin_unlock(&hugetlb_lock);
3493 return true;
3494}
3495
3496void putback_active_hugepage(struct page *page)
3497{
3498 VM_BUG_ON(!PageHead(page));
3499 spin_lock(&hugetlb_lock);
3500 list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
3501 spin_unlock(&hugetlb_lock);
3502 put_page(page);
3503}
c8721bbb
NH
3504
3505bool is_hugepage_active(struct page *page)
3506{
3507 VM_BUG_ON(!PageHuge(page));
3508 /*
3509 * This function can be called for a tail page because the caller,
3510 * scan_movable_pages, scans through a given pfn-range which typically
3511 * covers one memory block. In systems using gigantic hugepage (1GB
3512 * for x86_64,) a hugepage is larger than a memory block, and we don't
3513 * support migrating such large hugepages for now, so return false
3514 * when called for tail pages.
3515 */
3516 if (PageTail(page))
3517 return false;
3518 /*
3519 * Refcount of a hwpoisoned hugepages is 1, but they are not active,
3520 * so we should return false for them.
3521 */
3522 if (unlikely(PageHWPoison(page)))
3523 return false;
3524 return page_count(page) > 0;
3525}