opp: of: drop incorrect lockdep_assert_held()
[linux-2.6-block.git] / mm / hugetlb.c
CommitLineData
457c8996 1// SPDX-License-Identifier: GPL-2.0-only
1da177e4
LT
2/*
3 * Generic hugetlb support.
6d49e352 4 * (C) Nadia Yvette Chambers, April 2004
1da177e4 5 */
1da177e4
LT
6#include <linux/list.h>
7#include <linux/init.h>
1da177e4 8#include <linux/mm.h>
e1759c21 9#include <linux/seq_file.h>
1da177e4
LT
10#include <linux/sysctl.h>
11#include <linux/highmem.h>
cddb8a5c 12#include <linux/mmu_notifier.h>
1da177e4 13#include <linux/nodemask.h>
63551ae0 14#include <linux/pagemap.h>
5da7ca86 15#include <linux/mempolicy.h>
3b32123d 16#include <linux/compiler.h>
aea47ff3 17#include <linux/cpuset.h>
3935baa9 18#include <linux/mutex.h>
97ad1087 19#include <linux/memblock.h>
a3437870 20#include <linux/sysfs.h>
5a0e3ad6 21#include <linux/slab.h>
63489f8e 22#include <linux/mmdebug.h>
174cd4b1 23#include <linux/sched/signal.h>
0fe6e20b 24#include <linux/rmap.h>
c6247f72 25#include <linux/string_helpers.h>
fd6a03ed
NH
26#include <linux/swap.h>
27#include <linux/swapops.h>
8382d914 28#include <linux/jhash.h>
98fa15f3 29#include <linux/numa.h>
d6606683 30
63551ae0
DG
31#include <asm/page.h>
32#include <asm/pgtable.h>
24669e58 33#include <asm/tlb.h>
63551ae0 34
24669e58 35#include <linux/io.h>
63551ae0 36#include <linux/hugetlb.h>
9dd540e2 37#include <linux/hugetlb_cgroup.h>
9a305230 38#include <linux/node.h>
1a1aad8a 39#include <linux/userfaultfd_k.h>
ab5ac90a 40#include <linux/page_owner.h>
7835e98b 41#include "internal.h"
1da177e4 42
c3f38a38 43int hugetlb_max_hstate __read_mostly;
e5ff2159
AK
44unsigned int default_hstate_idx;
45struct hstate hstates[HUGE_MAX_HSTATE];
641844f5
NH
46/*
47 * Minimum page order among possible hugepage sizes, set to a proper value
48 * at boot time.
49 */
50static unsigned int minimum_order __read_mostly = UINT_MAX;
e5ff2159 51
53ba51d2
JT
52__initdata LIST_HEAD(huge_boot_pages);
53
e5ff2159
AK
54/* for command line parsing */
55static struct hstate * __initdata parsed_hstate;
56static unsigned long __initdata default_hstate_max_huge_pages;
e11bfbfc 57static unsigned long __initdata default_hstate_size;
9fee021d 58static bool __initdata parsed_valid_hugepagesz = true;
e5ff2159 59
3935baa9 60/*
31caf665
NH
61 * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
62 * free_huge_pages, and surplus_huge_pages.
3935baa9 63 */
c3f38a38 64DEFINE_SPINLOCK(hugetlb_lock);
0bd0f9fb 65
8382d914
DB
66/*
67 * Serializes faults on the same logical page. This is used to
68 * prevent spurious OOMs when the hugepage pool is fully utilized.
69 */
70static int num_fault_mutexes;
c672c7f2 71struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp;
8382d914 72
7ca02d0a
MK
73/* Forward declaration */
74static int hugetlb_acct_memory(struct hstate *h, long delta);
75
90481622
DG
76static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
77{
78 bool free = (spool->count == 0) && (spool->used_hpages == 0);
79
80 spin_unlock(&spool->lock);
81
82 /* If no pages are used, and no other handles to the subpool
7ca02d0a
MK
83 * remain, give up any reservations mased on minimum size and
84 * free the subpool */
85 if (free) {
86 if (spool->min_hpages != -1)
87 hugetlb_acct_memory(spool->hstate,
88 -spool->min_hpages);
90481622 89 kfree(spool);
7ca02d0a 90 }
90481622
DG
91}
92
7ca02d0a
MK
93struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
94 long min_hpages)
90481622
DG
95{
96 struct hugepage_subpool *spool;
97
c6a91820 98 spool = kzalloc(sizeof(*spool), GFP_KERNEL);
90481622
DG
99 if (!spool)
100 return NULL;
101
102 spin_lock_init(&spool->lock);
103 spool->count = 1;
7ca02d0a
MK
104 spool->max_hpages = max_hpages;
105 spool->hstate = h;
106 spool->min_hpages = min_hpages;
107
108 if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
109 kfree(spool);
110 return NULL;
111 }
112 spool->rsv_hpages = min_hpages;
90481622
DG
113
114 return spool;
115}
116
117void hugepage_put_subpool(struct hugepage_subpool *spool)
118{
119 spin_lock(&spool->lock);
120 BUG_ON(!spool->count);
121 spool->count--;
122 unlock_or_release_subpool(spool);
123}
124
1c5ecae3
MK
125/*
126 * Subpool accounting for allocating and reserving pages.
127 * Return -ENOMEM if there are not enough resources to satisfy the
128 * the request. Otherwise, return the number of pages by which the
129 * global pools must be adjusted (upward). The returned value may
130 * only be different than the passed value (delta) in the case where
131 * a subpool minimum size must be manitained.
132 */
133static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
90481622
DG
134 long delta)
135{
1c5ecae3 136 long ret = delta;
90481622
DG
137
138 if (!spool)
1c5ecae3 139 return ret;
90481622
DG
140
141 spin_lock(&spool->lock);
1c5ecae3
MK
142
143 if (spool->max_hpages != -1) { /* maximum size accounting */
144 if ((spool->used_hpages + delta) <= spool->max_hpages)
145 spool->used_hpages += delta;
146 else {
147 ret = -ENOMEM;
148 goto unlock_ret;
149 }
90481622 150 }
90481622 151
09a95e29
MK
152 /* minimum size accounting */
153 if (spool->min_hpages != -1 && spool->rsv_hpages) {
1c5ecae3
MK
154 if (delta > spool->rsv_hpages) {
155 /*
156 * Asking for more reserves than those already taken on
157 * behalf of subpool. Return difference.
158 */
159 ret = delta - spool->rsv_hpages;
160 spool->rsv_hpages = 0;
161 } else {
162 ret = 0; /* reserves already accounted for */
163 spool->rsv_hpages -= delta;
164 }
165 }
166
167unlock_ret:
168 spin_unlock(&spool->lock);
90481622
DG
169 return ret;
170}
171
1c5ecae3
MK
172/*
173 * Subpool accounting for freeing and unreserving pages.
174 * Return the number of global page reservations that must be dropped.
175 * The return value may only be different than the passed value (delta)
176 * in the case where a subpool minimum size must be maintained.
177 */
178static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
90481622
DG
179 long delta)
180{
1c5ecae3
MK
181 long ret = delta;
182
90481622 183 if (!spool)
1c5ecae3 184 return delta;
90481622
DG
185
186 spin_lock(&spool->lock);
1c5ecae3
MK
187
188 if (spool->max_hpages != -1) /* maximum size accounting */
189 spool->used_hpages -= delta;
190
09a95e29
MK
191 /* minimum size accounting */
192 if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) {
1c5ecae3
MK
193 if (spool->rsv_hpages + delta <= spool->min_hpages)
194 ret = 0;
195 else
196 ret = spool->rsv_hpages + delta - spool->min_hpages;
197
198 spool->rsv_hpages += delta;
199 if (spool->rsv_hpages > spool->min_hpages)
200 spool->rsv_hpages = spool->min_hpages;
201 }
202
203 /*
204 * If hugetlbfs_put_super couldn't free spool due to an outstanding
205 * quota reference, free it now.
206 */
90481622 207 unlock_or_release_subpool(spool);
1c5ecae3
MK
208
209 return ret;
90481622
DG
210}
211
212static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
213{
214 return HUGETLBFS_SB(inode->i_sb)->spool;
215}
216
217static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
218{
496ad9aa 219 return subpool_inode(file_inode(vma->vm_file));
90481622
DG
220}
221
96822904
AW
222/*
223 * Region tracking -- allows tracking of reservations and instantiated pages
224 * across the pages in a mapping.
84afd99b 225 *
1dd308a7
MK
226 * The region data structures are embedded into a resv_map and protected
227 * by a resv_map's lock. The set of regions within the resv_map represent
228 * reservations for huge pages, or huge pages that have already been
229 * instantiated within the map. The from and to elements are huge page
230 * indicies into the associated mapping. from indicates the starting index
231 * of the region. to represents the first index past the end of the region.
232 *
233 * For example, a file region structure with from == 0 and to == 4 represents
234 * four huge pages in a mapping. It is important to note that the to element
235 * represents the first element past the end of the region. This is used in
236 * arithmetic as 4(to) - 0(from) = 4 huge pages in the region.
237 *
238 * Interval notation of the form [from, to) will be used to indicate that
239 * the endpoint from is inclusive and to is exclusive.
96822904
AW
240 */
241struct file_region {
242 struct list_head link;
243 long from;
244 long to;
245};
246
1dd308a7
MK
247/*
248 * Add the huge page range represented by [f, t) to the reserve
5e911373
MK
249 * map. In the normal case, existing regions will be expanded
250 * to accommodate the specified range. Sufficient regions should
251 * exist for expansion due to the previous call to region_chg
252 * with the same range. However, it is possible that region_del
253 * could have been called after region_chg and modifed the map
254 * in such a way that no region exists to be expanded. In this
255 * case, pull a region descriptor from the cache associated with
256 * the map and use that for the new range.
cf3ad20b
MK
257 *
258 * Return the number of new huge pages added to the map. This
259 * number is greater than or equal to zero.
1dd308a7 260 */
1406ec9b 261static long region_add(struct resv_map *resv, long f, long t)
96822904 262{
1406ec9b 263 struct list_head *head = &resv->regions;
96822904 264 struct file_region *rg, *nrg, *trg;
cf3ad20b 265 long add = 0;
96822904 266
7b24d861 267 spin_lock(&resv->lock);
96822904
AW
268 /* Locate the region we are either in or before. */
269 list_for_each_entry(rg, head, link)
270 if (f <= rg->to)
271 break;
272
5e911373
MK
273 /*
274 * If no region exists which can be expanded to include the
275 * specified range, the list must have been modified by an
276 * interleving call to region_del(). Pull a region descriptor
277 * from the cache and use it for this range.
278 */
279 if (&rg->link == head || t < rg->from) {
280 VM_BUG_ON(resv->region_cache_count <= 0);
281
282 resv->region_cache_count--;
283 nrg = list_first_entry(&resv->region_cache, struct file_region,
284 link);
285 list_del(&nrg->link);
286
287 nrg->from = f;
288 nrg->to = t;
289 list_add(&nrg->link, rg->link.prev);
290
291 add += t - f;
292 goto out_locked;
293 }
294
96822904
AW
295 /* Round our left edge to the current segment if it encloses us. */
296 if (f > rg->from)
297 f = rg->from;
298
299 /* Check for and consume any regions we now overlap with. */
300 nrg = rg;
301 list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
302 if (&rg->link == head)
303 break;
304 if (rg->from > t)
305 break;
306
307 /* If this area reaches higher then extend our area to
308 * include it completely. If this is not the first area
309 * which we intend to reuse, free it. */
310 if (rg->to > t)
311 t = rg->to;
312 if (rg != nrg) {
cf3ad20b
MK
313 /* Decrement return value by the deleted range.
314 * Another range will span this area so that by
315 * end of routine add will be >= zero
316 */
317 add -= (rg->to - rg->from);
96822904
AW
318 list_del(&rg->link);
319 kfree(rg);
320 }
321 }
cf3ad20b
MK
322
323 add += (nrg->from - f); /* Added to beginning of region */
96822904 324 nrg->from = f;
cf3ad20b 325 add += t - nrg->to; /* Added to end of region */
96822904 326 nrg->to = t;
cf3ad20b 327
5e911373
MK
328out_locked:
329 resv->adds_in_progress--;
7b24d861 330 spin_unlock(&resv->lock);
cf3ad20b
MK
331 VM_BUG_ON(add < 0);
332 return add;
96822904
AW
333}
334
1dd308a7
MK
335/*
336 * Examine the existing reserve map and determine how many
337 * huge pages in the specified range [f, t) are NOT currently
338 * represented. This routine is called before a subsequent
339 * call to region_add that will actually modify the reserve
340 * map to add the specified range [f, t). region_chg does
341 * not change the number of huge pages represented by the
342 * map. However, if the existing regions in the map can not
343 * be expanded to represent the new range, a new file_region
344 * structure is added to the map as a placeholder. This is
345 * so that the subsequent region_add call will have all the
346 * regions it needs and will not fail.
347 *
5e911373
MK
348 * Upon entry, region_chg will also examine the cache of region descriptors
349 * associated with the map. If there are not enough descriptors cached, one
350 * will be allocated for the in progress add operation.
351 *
352 * Returns the number of huge pages that need to be added to the existing
353 * reservation map for the range [f, t). This number is greater or equal to
354 * zero. -ENOMEM is returned if a new file_region structure or cache entry
355 * is needed and can not be allocated.
1dd308a7 356 */
1406ec9b 357static long region_chg(struct resv_map *resv, long f, long t)
96822904 358{
1406ec9b 359 struct list_head *head = &resv->regions;
7b24d861 360 struct file_region *rg, *nrg = NULL;
96822904
AW
361 long chg = 0;
362
7b24d861
DB
363retry:
364 spin_lock(&resv->lock);
5e911373
MK
365retry_locked:
366 resv->adds_in_progress++;
367
368 /*
369 * Check for sufficient descriptors in the cache to accommodate
370 * the number of in progress add operations.
371 */
372 if (resv->adds_in_progress > resv->region_cache_count) {
373 struct file_region *trg;
374
375 VM_BUG_ON(resv->adds_in_progress - resv->region_cache_count > 1);
376 /* Must drop lock to allocate a new descriptor. */
377 resv->adds_in_progress--;
378 spin_unlock(&resv->lock);
379
380 trg = kmalloc(sizeof(*trg), GFP_KERNEL);
dbe409e4
MK
381 if (!trg) {
382 kfree(nrg);
5e911373 383 return -ENOMEM;
dbe409e4 384 }
5e911373
MK
385
386 spin_lock(&resv->lock);
387 list_add(&trg->link, &resv->region_cache);
388 resv->region_cache_count++;
389 goto retry_locked;
390 }
391
96822904
AW
392 /* Locate the region we are before or in. */
393 list_for_each_entry(rg, head, link)
394 if (f <= rg->to)
395 break;
396
397 /* If we are below the current region then a new region is required.
398 * Subtle, allocate a new region at the position but make it zero
399 * size such that we can guarantee to record the reservation. */
400 if (&rg->link == head || t < rg->from) {
7b24d861 401 if (!nrg) {
5e911373 402 resv->adds_in_progress--;
7b24d861
DB
403 spin_unlock(&resv->lock);
404 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
405 if (!nrg)
406 return -ENOMEM;
407
408 nrg->from = f;
409 nrg->to = f;
410 INIT_LIST_HEAD(&nrg->link);
411 goto retry;
412 }
96822904 413
7b24d861
DB
414 list_add(&nrg->link, rg->link.prev);
415 chg = t - f;
416 goto out_nrg;
96822904
AW
417 }
418
419 /* Round our left edge to the current segment if it encloses us. */
420 if (f > rg->from)
421 f = rg->from;
422 chg = t - f;
423
424 /* Check for and consume any regions we now overlap with. */
425 list_for_each_entry(rg, rg->link.prev, link) {
426 if (&rg->link == head)
427 break;
428 if (rg->from > t)
7b24d861 429 goto out;
96822904 430
25985edc 431 /* We overlap with this area, if it extends further than
96822904
AW
432 * us then we must extend ourselves. Account for its
433 * existing reservation. */
434 if (rg->to > t) {
435 chg += rg->to - t;
436 t = rg->to;
437 }
438 chg -= rg->to - rg->from;
439 }
7b24d861
DB
440
441out:
442 spin_unlock(&resv->lock);
443 /* We already know we raced and no longer need the new region */
444 kfree(nrg);
445 return chg;
446out_nrg:
447 spin_unlock(&resv->lock);
96822904
AW
448 return chg;
449}
450
5e911373
MK
451/*
452 * Abort the in progress add operation. The adds_in_progress field
453 * of the resv_map keeps track of the operations in progress between
454 * calls to region_chg and region_add. Operations are sometimes
455 * aborted after the call to region_chg. In such cases, region_abort
456 * is called to decrement the adds_in_progress counter.
457 *
458 * NOTE: The range arguments [f, t) are not needed or used in this
459 * routine. They are kept to make reading the calling code easier as
460 * arguments will match the associated region_chg call.
461 */
462static void region_abort(struct resv_map *resv, long f, long t)
463{
464 spin_lock(&resv->lock);
465 VM_BUG_ON(!resv->region_cache_count);
466 resv->adds_in_progress--;
467 spin_unlock(&resv->lock);
468}
469
1dd308a7 470/*
feba16e2
MK
471 * Delete the specified range [f, t) from the reserve map. If the
472 * t parameter is LONG_MAX, this indicates that ALL regions after f
473 * should be deleted. Locate the regions which intersect [f, t)
474 * and either trim, delete or split the existing regions.
475 *
476 * Returns the number of huge pages deleted from the reserve map.
477 * In the normal case, the return value is zero or more. In the
478 * case where a region must be split, a new region descriptor must
479 * be allocated. If the allocation fails, -ENOMEM will be returned.
480 * NOTE: If the parameter t == LONG_MAX, then we will never split
481 * a region and possibly return -ENOMEM. Callers specifying
482 * t == LONG_MAX do not need to check for -ENOMEM error.
1dd308a7 483 */
feba16e2 484static long region_del(struct resv_map *resv, long f, long t)
96822904 485{
1406ec9b 486 struct list_head *head = &resv->regions;
96822904 487 struct file_region *rg, *trg;
feba16e2
MK
488 struct file_region *nrg = NULL;
489 long del = 0;
96822904 490
feba16e2 491retry:
7b24d861 492 spin_lock(&resv->lock);
feba16e2 493 list_for_each_entry_safe(rg, trg, head, link) {
dbe409e4
MK
494 /*
495 * Skip regions before the range to be deleted. file_region
496 * ranges are normally of the form [from, to). However, there
497 * may be a "placeholder" entry in the map which is of the form
498 * (from, to) with from == to. Check for placeholder entries
499 * at the beginning of the range to be deleted.
500 */
501 if (rg->to <= f && (rg->to != rg->from || rg->to != f))
feba16e2 502 continue;
dbe409e4 503
feba16e2 504 if (rg->from >= t)
96822904 505 break;
96822904 506
feba16e2
MK
507 if (f > rg->from && t < rg->to) { /* Must split region */
508 /*
509 * Check for an entry in the cache before dropping
510 * lock and attempting allocation.
511 */
512 if (!nrg &&
513 resv->region_cache_count > resv->adds_in_progress) {
514 nrg = list_first_entry(&resv->region_cache,
515 struct file_region,
516 link);
517 list_del(&nrg->link);
518 resv->region_cache_count--;
519 }
96822904 520
feba16e2
MK
521 if (!nrg) {
522 spin_unlock(&resv->lock);
523 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
524 if (!nrg)
525 return -ENOMEM;
526 goto retry;
527 }
528
529 del += t - f;
530
531 /* New entry for end of split region */
532 nrg->from = t;
533 nrg->to = rg->to;
534 INIT_LIST_HEAD(&nrg->link);
535
536 /* Original entry is trimmed */
537 rg->to = f;
538
539 list_add(&nrg->link, &rg->link);
540 nrg = NULL;
96822904 541 break;
feba16e2
MK
542 }
543
544 if (f <= rg->from && t >= rg->to) { /* Remove entire region */
545 del += rg->to - rg->from;
546 list_del(&rg->link);
547 kfree(rg);
548 continue;
549 }
550
551 if (f <= rg->from) { /* Trim beginning of region */
552 del += t - rg->from;
553 rg->from = t;
554 } else { /* Trim end of region */
555 del += rg->to - f;
556 rg->to = f;
557 }
96822904 558 }
7b24d861 559
7b24d861 560 spin_unlock(&resv->lock);
feba16e2
MK
561 kfree(nrg);
562 return del;
96822904
AW
563}
564
b5cec28d
MK
565/*
566 * A rare out of memory error was encountered which prevented removal of
567 * the reserve map region for a page. The huge page itself was free'ed
568 * and removed from the page cache. This routine will adjust the subpool
569 * usage count, and the global reserve count if needed. By incrementing
570 * these counts, the reserve map entry which could not be deleted will
571 * appear as a "reserved" entry instead of simply dangling with incorrect
572 * counts.
573 */
72e2936c 574void hugetlb_fix_reserve_counts(struct inode *inode)
b5cec28d
MK
575{
576 struct hugepage_subpool *spool = subpool_inode(inode);
577 long rsv_adjust;
578
579 rsv_adjust = hugepage_subpool_get_pages(spool, 1);
72e2936c 580 if (rsv_adjust) {
b5cec28d
MK
581 struct hstate *h = hstate_inode(inode);
582
583 hugetlb_acct_memory(h, 1);
584 }
585}
586
1dd308a7
MK
587/*
588 * Count and return the number of huge pages in the reserve map
589 * that intersect with the range [f, t).
590 */
1406ec9b 591static long region_count(struct resv_map *resv, long f, long t)
84afd99b 592{
1406ec9b 593 struct list_head *head = &resv->regions;
84afd99b
AW
594 struct file_region *rg;
595 long chg = 0;
596
7b24d861 597 spin_lock(&resv->lock);
84afd99b
AW
598 /* Locate each segment we overlap with, and count that overlap. */
599 list_for_each_entry(rg, head, link) {
f2135a4a
WSH
600 long seg_from;
601 long seg_to;
84afd99b
AW
602
603 if (rg->to <= f)
604 continue;
605 if (rg->from >= t)
606 break;
607
608 seg_from = max(rg->from, f);
609 seg_to = min(rg->to, t);
610
611 chg += seg_to - seg_from;
612 }
7b24d861 613 spin_unlock(&resv->lock);
84afd99b
AW
614
615 return chg;
616}
617
e7c4b0bf
AW
618/*
619 * Convert the address within this vma to the page offset within
620 * the mapping, in pagecache page units; huge pages here.
621 */
a5516438
AK
622static pgoff_t vma_hugecache_offset(struct hstate *h,
623 struct vm_area_struct *vma, unsigned long address)
e7c4b0bf 624{
a5516438
AK
625 return ((address - vma->vm_start) >> huge_page_shift(h)) +
626 (vma->vm_pgoff >> huge_page_order(h));
e7c4b0bf
AW
627}
628
0fe6e20b
NH
629pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
630 unsigned long address)
631{
632 return vma_hugecache_offset(hstate_vma(vma), vma, address);
633}
dee41079 634EXPORT_SYMBOL_GPL(linear_hugepage_index);
0fe6e20b 635
08fba699
MG
636/*
637 * Return the size of the pages allocated when backing a VMA. In the majority
638 * cases this will be same size as used by the page table entries.
639 */
640unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
641{
05ea8860
DW
642 if (vma->vm_ops && vma->vm_ops->pagesize)
643 return vma->vm_ops->pagesize(vma);
644 return PAGE_SIZE;
08fba699 645}
f340ca0f 646EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
08fba699 647
3340289d
MG
648/*
649 * Return the page size being used by the MMU to back a VMA. In the majority
650 * of cases, the page size used by the kernel matches the MMU size. On
09135cc5
DW
651 * architectures where it differs, an architecture-specific 'strong'
652 * version of this symbol is required.
3340289d 653 */
09135cc5 654__weak unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
3340289d
MG
655{
656 return vma_kernel_pagesize(vma);
657}
3340289d 658
84afd99b
AW
659/*
660 * Flags for MAP_PRIVATE reservations. These are stored in the bottom
661 * bits of the reservation map pointer, which are always clear due to
662 * alignment.
663 */
664#define HPAGE_RESV_OWNER (1UL << 0)
665#define HPAGE_RESV_UNMAPPED (1UL << 1)
04f2cbe3 666#define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
84afd99b 667
a1e78772
MG
668/*
669 * These helpers are used to track how many pages are reserved for
670 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
671 * is guaranteed to have their future faults succeed.
672 *
673 * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
674 * the reserve counters are updated with the hugetlb_lock held. It is safe
675 * to reset the VMA at fork() time as it is not in use yet and there is no
676 * chance of the global counters getting corrupted as a result of the values.
84afd99b
AW
677 *
678 * The private mapping reservation is represented in a subtly different
679 * manner to a shared mapping. A shared mapping has a region map associated
680 * with the underlying file, this region map represents the backing file
681 * pages which have ever had a reservation assigned which this persists even
682 * after the page is instantiated. A private mapping has a region map
683 * associated with the original mmap which is attached to all VMAs which
684 * reference it, this region map represents those offsets which have consumed
685 * reservation ie. where pages have been instantiated.
a1e78772 686 */
e7c4b0bf
AW
687static unsigned long get_vma_private_data(struct vm_area_struct *vma)
688{
689 return (unsigned long)vma->vm_private_data;
690}
691
692static void set_vma_private_data(struct vm_area_struct *vma,
693 unsigned long value)
694{
695 vma->vm_private_data = (void *)value;
696}
697
9119a41e 698struct resv_map *resv_map_alloc(void)
84afd99b
AW
699{
700 struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
5e911373
MK
701 struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);
702
703 if (!resv_map || !rg) {
704 kfree(resv_map);
705 kfree(rg);
84afd99b 706 return NULL;
5e911373 707 }
84afd99b
AW
708
709 kref_init(&resv_map->refs);
7b24d861 710 spin_lock_init(&resv_map->lock);
84afd99b
AW
711 INIT_LIST_HEAD(&resv_map->regions);
712
5e911373
MK
713 resv_map->adds_in_progress = 0;
714
715 INIT_LIST_HEAD(&resv_map->region_cache);
716 list_add(&rg->link, &resv_map->region_cache);
717 resv_map->region_cache_count = 1;
718
84afd99b
AW
719 return resv_map;
720}
721
9119a41e 722void resv_map_release(struct kref *ref)
84afd99b
AW
723{
724 struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
5e911373
MK
725 struct list_head *head = &resv_map->region_cache;
726 struct file_region *rg, *trg;
84afd99b
AW
727
728 /* Clear out any active regions before we release the map. */
feba16e2 729 region_del(resv_map, 0, LONG_MAX);
5e911373
MK
730
731 /* ... and any entries left in the cache */
732 list_for_each_entry_safe(rg, trg, head, link) {
733 list_del(&rg->link);
734 kfree(rg);
735 }
736
737 VM_BUG_ON(resv_map->adds_in_progress);
738
84afd99b
AW
739 kfree(resv_map);
740}
741
4e35f483
JK
742static inline struct resv_map *inode_resv_map(struct inode *inode)
743{
f27a5136
MK
744 /*
745 * At inode evict time, i_mapping may not point to the original
746 * address space within the inode. This original address space
747 * contains the pointer to the resv_map. So, always use the
748 * address space embedded within the inode.
749 * The VERY common case is inode->mapping == &inode->i_data but,
750 * this may not be true for device special inodes.
751 */
752 return (struct resv_map *)(&inode->i_data)->private_data;
4e35f483
JK
753}
754
84afd99b 755static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
a1e78772 756{
81d1b09c 757 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
4e35f483
JK
758 if (vma->vm_flags & VM_MAYSHARE) {
759 struct address_space *mapping = vma->vm_file->f_mapping;
760 struct inode *inode = mapping->host;
761
762 return inode_resv_map(inode);
763
764 } else {
84afd99b
AW
765 return (struct resv_map *)(get_vma_private_data(vma) &
766 ~HPAGE_RESV_MASK);
4e35f483 767 }
a1e78772
MG
768}
769
84afd99b 770static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
a1e78772 771{
81d1b09c
SL
772 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
773 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
a1e78772 774
84afd99b
AW
775 set_vma_private_data(vma, (get_vma_private_data(vma) &
776 HPAGE_RESV_MASK) | (unsigned long)map);
04f2cbe3
MG
777}
778
779static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
780{
81d1b09c
SL
781 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
782 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
e7c4b0bf
AW
783
784 set_vma_private_data(vma, get_vma_private_data(vma) | flags);
04f2cbe3
MG
785}
786
787static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
788{
81d1b09c 789 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
e7c4b0bf
AW
790
791 return (get_vma_private_data(vma) & flag) != 0;
a1e78772
MG
792}
793
04f2cbe3 794/* Reset counters to 0 and clear all HPAGE_RESV_* flags */
a1e78772
MG
795void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
796{
81d1b09c 797 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
f83a275d 798 if (!(vma->vm_flags & VM_MAYSHARE))
a1e78772
MG
799 vma->vm_private_data = (void *)0;
800}
801
802/* Returns true if the VMA has associated reserve pages */
559ec2f8 803static bool vma_has_reserves(struct vm_area_struct *vma, long chg)
a1e78772 804{
af0ed73e
JK
805 if (vma->vm_flags & VM_NORESERVE) {
806 /*
807 * This address is already reserved by other process(chg == 0),
808 * so, we should decrement reserved count. Without decrementing,
809 * reserve count remains after releasing inode, because this
810 * allocated page will go into page cache and is regarded as
811 * coming from reserved pool in releasing step. Currently, we
812 * don't have any other solution to deal with this situation
813 * properly, so add work-around here.
814 */
815 if (vma->vm_flags & VM_MAYSHARE && chg == 0)
559ec2f8 816 return true;
af0ed73e 817 else
559ec2f8 818 return false;
af0ed73e 819 }
a63884e9
JK
820
821 /* Shared mappings always use reserves */
1fb1b0e9
MK
822 if (vma->vm_flags & VM_MAYSHARE) {
823 /*
824 * We know VM_NORESERVE is not set. Therefore, there SHOULD
825 * be a region map for all pages. The only situation where
826 * there is no region map is if a hole was punched via
827 * fallocate. In this case, there really are no reverves to
828 * use. This situation is indicated if chg != 0.
829 */
830 if (chg)
831 return false;
832 else
833 return true;
834 }
a63884e9
JK
835
836 /*
837 * Only the process that called mmap() has reserves for
838 * private mappings.
839 */
67961f9d
MK
840 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
841 /*
842 * Like the shared case above, a hole punch or truncate
843 * could have been performed on the private mapping.
844 * Examine the value of chg to determine if reserves
845 * actually exist or were previously consumed.
846 * Very Subtle - The value of chg comes from a previous
847 * call to vma_needs_reserves(). The reserve map for
848 * private mappings has different (opposite) semantics
849 * than that of shared mappings. vma_needs_reserves()
850 * has already taken this difference in semantics into
851 * account. Therefore, the meaning of chg is the same
852 * as in the shared case above. Code could easily be
853 * combined, but keeping it separate draws attention to
854 * subtle differences.
855 */
856 if (chg)
857 return false;
858 else
859 return true;
860 }
a63884e9 861
559ec2f8 862 return false;
a1e78772
MG
863}
864
a5516438 865static void enqueue_huge_page(struct hstate *h, struct page *page)
1da177e4
LT
866{
867 int nid = page_to_nid(page);
0edaecfa 868 list_move(&page->lru, &h->hugepage_freelists[nid]);
a5516438
AK
869 h->free_huge_pages++;
870 h->free_huge_pages_node[nid]++;
1da177e4
LT
871}
872
94310cbc 873static struct page *dequeue_huge_page_node_exact(struct hstate *h, int nid)
bf50bab2
NH
874{
875 struct page *page;
876
c8721bbb 877 list_for_each_entry(page, &h->hugepage_freelists[nid], lru)
243abd5b 878 if (!PageHWPoison(page))
c8721bbb
NH
879 break;
880 /*
881 * if 'non-isolated free hugepage' not found on the list,
882 * the allocation fails.
883 */
884 if (&h->hugepage_freelists[nid] == &page->lru)
bf50bab2 885 return NULL;
0edaecfa 886 list_move(&page->lru, &h->hugepage_activelist);
a9869b83 887 set_page_refcounted(page);
bf50bab2
NH
888 h->free_huge_pages--;
889 h->free_huge_pages_node[nid]--;
890 return page;
891}
892
3e59fcb0
MH
893static struct page *dequeue_huge_page_nodemask(struct hstate *h, gfp_t gfp_mask, int nid,
894 nodemask_t *nmask)
94310cbc 895{
3e59fcb0
MH
896 unsigned int cpuset_mems_cookie;
897 struct zonelist *zonelist;
898 struct zone *zone;
899 struct zoneref *z;
98fa15f3 900 int node = NUMA_NO_NODE;
94310cbc 901
3e59fcb0
MH
902 zonelist = node_zonelist(nid, gfp_mask);
903
904retry_cpuset:
905 cpuset_mems_cookie = read_mems_allowed_begin();
906 for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nmask) {
907 struct page *page;
908
909 if (!cpuset_zone_allowed(zone, gfp_mask))
910 continue;
911 /*
912 * no need to ask again on the same node. Pool is node rather than
913 * zone aware
914 */
915 if (zone_to_nid(zone) == node)
916 continue;
917 node = zone_to_nid(zone);
94310cbc 918
94310cbc
AK
919 page = dequeue_huge_page_node_exact(h, node);
920 if (page)
921 return page;
922 }
3e59fcb0
MH
923 if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie)))
924 goto retry_cpuset;
925
94310cbc
AK
926 return NULL;
927}
928
86cdb465
NH
929/* Movability of hugepages depends on migration support. */
930static inline gfp_t htlb_alloc_mask(struct hstate *h)
931{
7ed2c31d 932 if (hugepage_movable_supported(h))
86cdb465
NH
933 return GFP_HIGHUSER_MOVABLE;
934 else
935 return GFP_HIGHUSER;
936}
937
a5516438
AK
938static struct page *dequeue_huge_page_vma(struct hstate *h,
939 struct vm_area_struct *vma,
af0ed73e
JK
940 unsigned long address, int avoid_reserve,
941 long chg)
1da177e4 942{
3e59fcb0 943 struct page *page;
480eccf9 944 struct mempolicy *mpol;
04ec6264 945 gfp_t gfp_mask;
3e59fcb0 946 nodemask_t *nodemask;
04ec6264 947 int nid;
1da177e4 948
a1e78772
MG
949 /*
950 * A child process with MAP_PRIVATE mappings created by their parent
951 * have no page reserves. This check ensures that reservations are
952 * not "stolen". The child may still get SIGKILLed
953 */
af0ed73e 954 if (!vma_has_reserves(vma, chg) &&
a5516438 955 h->free_huge_pages - h->resv_huge_pages == 0)
c0ff7453 956 goto err;
a1e78772 957
04f2cbe3 958 /* If reserves cannot be used, ensure enough pages are in the pool */
a5516438 959 if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
6eab04a8 960 goto err;
04f2cbe3 961
04ec6264
VB
962 gfp_mask = htlb_alloc_mask(h);
963 nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
3e59fcb0
MH
964 page = dequeue_huge_page_nodemask(h, gfp_mask, nid, nodemask);
965 if (page && !avoid_reserve && vma_has_reserves(vma, chg)) {
966 SetPagePrivate(page);
967 h->resv_huge_pages--;
1da177e4 968 }
cc9a6c87 969
52cd3b07 970 mpol_cond_put(mpol);
1da177e4 971 return page;
cc9a6c87
MG
972
973err:
cc9a6c87 974 return NULL;
1da177e4
LT
975}
976
1cac6f2c
LC
977/*
978 * common helper functions for hstate_next_node_to_{alloc|free}.
979 * We may have allocated or freed a huge page based on a different
980 * nodes_allowed previously, so h->next_node_to_{alloc|free} might
981 * be outside of *nodes_allowed. Ensure that we use an allowed
982 * node for alloc or free.
983 */
984static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
985{
0edaf86c 986 nid = next_node_in(nid, *nodes_allowed);
1cac6f2c
LC
987 VM_BUG_ON(nid >= MAX_NUMNODES);
988
989 return nid;
990}
991
992static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
993{
994 if (!node_isset(nid, *nodes_allowed))
995 nid = next_node_allowed(nid, nodes_allowed);
996 return nid;
997}
998
999/*
1000 * returns the previously saved node ["this node"] from which to
1001 * allocate a persistent huge page for the pool and advance the
1002 * next node from which to allocate, handling wrap at end of node
1003 * mask.
1004 */
1005static int hstate_next_node_to_alloc(struct hstate *h,
1006 nodemask_t *nodes_allowed)
1007{
1008 int nid;
1009
1010 VM_BUG_ON(!nodes_allowed);
1011
1012 nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
1013 h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
1014
1015 return nid;
1016}
1017
1018/*
1019 * helper for free_pool_huge_page() - return the previously saved
1020 * node ["this node"] from which to free a huge page. Advance the
1021 * next node id whether or not we find a free huge page to free so
1022 * that the next attempt to free addresses the next node.
1023 */
1024static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
1025{
1026 int nid;
1027
1028 VM_BUG_ON(!nodes_allowed);
1029
1030 nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
1031 h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
1032
1033 return nid;
1034}
1035
1036#define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask) \
1037 for (nr_nodes = nodes_weight(*mask); \
1038 nr_nodes > 0 && \
1039 ((node = hstate_next_node_to_alloc(hs, mask)) || 1); \
1040 nr_nodes--)
1041
1042#define for_each_node_mask_to_free(hs, nr_nodes, node, mask) \
1043 for (nr_nodes = nodes_weight(*mask); \
1044 nr_nodes > 0 && \
1045 ((node = hstate_next_node_to_free(hs, mask)) || 1); \
1046 nr_nodes--)
1047
e1073d1e 1048#ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE
944d9fec 1049static void destroy_compound_gigantic_page(struct page *page,
d00181b9 1050 unsigned int order)
944d9fec
LC
1051{
1052 int i;
1053 int nr_pages = 1 << order;
1054 struct page *p = page + 1;
1055
c8cc708a 1056 atomic_set(compound_mapcount_ptr(page), 0);
944d9fec 1057 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1d798ca3 1058 clear_compound_head(p);
944d9fec 1059 set_page_refcounted(p);
944d9fec
LC
1060 }
1061
1062 set_compound_order(page, 0);
1063 __ClearPageHead(page);
1064}
1065
d00181b9 1066static void free_gigantic_page(struct page *page, unsigned int order)
944d9fec
LC
1067{
1068 free_contig_range(page_to_pfn(page), 1 << order);
1069}
1070
4eb0716e 1071#ifdef CONFIG_CONTIG_ALLOC
944d9fec 1072static int __alloc_gigantic_page(unsigned long start_pfn,
79b63f12 1073 unsigned long nr_pages, gfp_t gfp_mask)
944d9fec
LC
1074{
1075 unsigned long end_pfn = start_pfn + nr_pages;
ca96b625 1076 return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE,
79b63f12 1077 gfp_mask);
944d9fec
LC
1078}
1079
f44b2dda
JK
1080static bool pfn_range_valid_gigantic(struct zone *z,
1081 unsigned long start_pfn, unsigned long nr_pages)
944d9fec
LC
1082{
1083 unsigned long i, end_pfn = start_pfn + nr_pages;
1084 struct page *page;
1085
1086 for (i = start_pfn; i < end_pfn; i++) {
1087 if (!pfn_valid(i))
1088 return false;
1089
1090 page = pfn_to_page(i);
1091
f44b2dda
JK
1092 if (page_zone(page) != z)
1093 return false;
1094
944d9fec
LC
1095 if (PageReserved(page))
1096 return false;
1097
1098 if (page_count(page) > 0)
1099 return false;
1100
1101 if (PageHuge(page))
1102 return false;
1103 }
1104
1105 return true;
1106}
1107
1108static bool zone_spans_last_pfn(const struct zone *zone,
1109 unsigned long start_pfn, unsigned long nr_pages)
1110{
1111 unsigned long last_pfn = start_pfn + nr_pages - 1;
1112 return zone_spans_pfn(zone, last_pfn);
1113}
1114
d9cc948f
MH
1115static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1116 int nid, nodemask_t *nodemask)
944d9fec 1117{
79b63f12 1118 unsigned int order = huge_page_order(h);
944d9fec
LC
1119 unsigned long nr_pages = 1 << order;
1120 unsigned long ret, pfn, flags;
79b63f12
MH
1121 struct zonelist *zonelist;
1122 struct zone *zone;
1123 struct zoneref *z;
944d9fec 1124
79b63f12 1125 zonelist = node_zonelist(nid, gfp_mask);
d9cc948f 1126 for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nodemask) {
79b63f12 1127 spin_lock_irqsave(&zone->lock, flags);
944d9fec 1128
79b63f12
MH
1129 pfn = ALIGN(zone->zone_start_pfn, nr_pages);
1130 while (zone_spans_last_pfn(zone, pfn, nr_pages)) {
1131 if (pfn_range_valid_gigantic(zone, pfn, nr_pages)) {
944d9fec
LC
1132 /*
1133 * We release the zone lock here because
1134 * alloc_contig_range() will also lock the zone
1135 * at some point. If there's an allocation
1136 * spinning on this lock, it may win the race
1137 * and cause alloc_contig_range() to fail...
1138 */
79b63f12
MH
1139 spin_unlock_irqrestore(&zone->lock, flags);
1140 ret = __alloc_gigantic_page(pfn, nr_pages, gfp_mask);
944d9fec
LC
1141 if (!ret)
1142 return pfn_to_page(pfn);
79b63f12 1143 spin_lock_irqsave(&zone->lock, flags);
944d9fec
LC
1144 }
1145 pfn += nr_pages;
1146 }
1147
79b63f12 1148 spin_unlock_irqrestore(&zone->lock, flags);
944d9fec
LC
1149 }
1150
1151 return NULL;
1152}
1153
1154static void prep_new_huge_page(struct hstate *h, struct page *page, int nid);
d00181b9 1155static void prep_compound_gigantic_page(struct page *page, unsigned int order);
4eb0716e
AG
1156#else /* !CONFIG_CONTIG_ALLOC */
1157static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1158 int nid, nodemask_t *nodemask)
1159{
1160 return NULL;
1161}
1162#endif /* CONFIG_CONTIG_ALLOC */
944d9fec 1163
e1073d1e 1164#else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */
d9cc948f 1165static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
4eb0716e
AG
1166 int nid, nodemask_t *nodemask)
1167{
1168 return NULL;
1169}
d00181b9 1170static inline void free_gigantic_page(struct page *page, unsigned int order) { }
944d9fec 1171static inline void destroy_compound_gigantic_page(struct page *page,
d00181b9 1172 unsigned int order) { }
944d9fec
LC
1173#endif
1174
a5516438 1175static void update_and_free_page(struct hstate *h, struct page *page)
6af2acb6
AL
1176{
1177 int i;
a5516438 1178
4eb0716e 1179 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
944d9fec 1180 return;
18229df5 1181
a5516438
AK
1182 h->nr_huge_pages--;
1183 h->nr_huge_pages_node[page_to_nid(page)]--;
1184 for (i = 0; i < pages_per_huge_page(h); i++) {
32f84528
CF
1185 page[i].flags &= ~(1 << PG_locked | 1 << PG_error |
1186 1 << PG_referenced | 1 << PG_dirty |
a7407a27
LC
1187 1 << PG_active | 1 << PG_private |
1188 1 << PG_writeback);
6af2acb6 1189 }
309381fe 1190 VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page);
f1e61557 1191 set_compound_page_dtor(page, NULL_COMPOUND_DTOR);
6af2acb6 1192 set_page_refcounted(page);
944d9fec
LC
1193 if (hstate_is_gigantic(h)) {
1194 destroy_compound_gigantic_page(page, huge_page_order(h));
1195 free_gigantic_page(page, huge_page_order(h));
1196 } else {
944d9fec
LC
1197 __free_pages(page, huge_page_order(h));
1198 }
6af2acb6
AL
1199}
1200
e5ff2159
AK
1201struct hstate *size_to_hstate(unsigned long size)
1202{
1203 struct hstate *h;
1204
1205 for_each_hstate(h) {
1206 if (huge_page_size(h) == size)
1207 return h;
1208 }
1209 return NULL;
1210}
1211
bcc54222
NH
1212/*
1213 * Test to determine whether the hugepage is "active/in-use" (i.e. being linked
1214 * to hstate->hugepage_activelist.)
1215 *
1216 * This function can be called for tail pages, but never returns true for them.
1217 */
1218bool page_huge_active(struct page *page)
1219{
1220 VM_BUG_ON_PAGE(!PageHuge(page), page);
1221 return PageHead(page) && PagePrivate(&page[1]);
1222}
1223
1224/* never called for tail page */
1225static void set_page_huge_active(struct page *page)
1226{
1227 VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1228 SetPagePrivate(&page[1]);
1229}
1230
1231static void clear_page_huge_active(struct page *page)
1232{
1233 VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1234 ClearPagePrivate(&page[1]);
1235}
1236
ab5ac90a
MH
1237/*
1238 * Internal hugetlb specific page flag. Do not use outside of the hugetlb
1239 * code
1240 */
1241static inline bool PageHugeTemporary(struct page *page)
1242{
1243 if (!PageHuge(page))
1244 return false;
1245
1246 return (unsigned long)page[2].mapping == -1U;
1247}
1248
1249static inline void SetPageHugeTemporary(struct page *page)
1250{
1251 page[2].mapping = (void *)-1U;
1252}
1253
1254static inline void ClearPageHugeTemporary(struct page *page)
1255{
1256 page[2].mapping = NULL;
1257}
1258
8f1d26d0 1259void free_huge_page(struct page *page)
27a85ef1 1260{
a5516438
AK
1261 /*
1262 * Can't pass hstate in here because it is called from the
1263 * compound page destructor.
1264 */
e5ff2159 1265 struct hstate *h = page_hstate(page);
7893d1d5 1266 int nid = page_to_nid(page);
90481622
DG
1267 struct hugepage_subpool *spool =
1268 (struct hugepage_subpool *)page_private(page);
07443a85 1269 bool restore_reserve;
27a85ef1 1270
b4330afb
MK
1271 VM_BUG_ON_PAGE(page_count(page), page);
1272 VM_BUG_ON_PAGE(page_mapcount(page), page);
8ace22bc
YW
1273
1274 set_page_private(page, 0);
1275 page->mapping = NULL;
07443a85 1276 restore_reserve = PagePrivate(page);
16c794b4 1277 ClearPagePrivate(page);
27a85ef1 1278
1c5ecae3 1279 /*
0919e1b6
MK
1280 * If PagePrivate() was set on page, page allocation consumed a
1281 * reservation. If the page was associated with a subpool, there
1282 * would have been a page reserved in the subpool before allocation
1283 * via hugepage_subpool_get_pages(). Since we are 'restoring' the
1284 * reservtion, do not call hugepage_subpool_put_pages() as this will
1285 * remove the reserved page from the subpool.
1c5ecae3 1286 */
0919e1b6
MK
1287 if (!restore_reserve) {
1288 /*
1289 * A return code of zero implies that the subpool will be
1290 * under its minimum size if the reservation is not restored
1291 * after page is free. Therefore, force restore_reserve
1292 * operation.
1293 */
1294 if (hugepage_subpool_put_pages(spool, 1) == 0)
1295 restore_reserve = true;
1296 }
1c5ecae3 1297
27a85ef1 1298 spin_lock(&hugetlb_lock);
bcc54222 1299 clear_page_huge_active(page);
6d76dcf4
AK
1300 hugetlb_cgroup_uncharge_page(hstate_index(h),
1301 pages_per_huge_page(h), page);
07443a85
JK
1302 if (restore_reserve)
1303 h->resv_huge_pages++;
1304
ab5ac90a
MH
1305 if (PageHugeTemporary(page)) {
1306 list_del(&page->lru);
1307 ClearPageHugeTemporary(page);
1308 update_and_free_page(h, page);
1309 } else if (h->surplus_huge_pages_node[nid]) {
0edaecfa
AK
1310 /* remove the page from active list */
1311 list_del(&page->lru);
a5516438
AK
1312 update_and_free_page(h, page);
1313 h->surplus_huge_pages--;
1314 h->surplus_huge_pages_node[nid]--;
7893d1d5 1315 } else {
5d3a551c 1316 arch_clear_hugepage_flags(page);
a5516438 1317 enqueue_huge_page(h, page);
7893d1d5 1318 }
27a85ef1
DG
1319 spin_unlock(&hugetlb_lock);
1320}
1321
a5516438 1322static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
b7ba30c6 1323{
0edaecfa 1324 INIT_LIST_HEAD(&page->lru);
f1e61557 1325 set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
b7ba30c6 1326 spin_lock(&hugetlb_lock);
9dd540e2 1327 set_hugetlb_cgroup(page, NULL);
a5516438
AK
1328 h->nr_huge_pages++;
1329 h->nr_huge_pages_node[nid]++;
b7ba30c6 1330 spin_unlock(&hugetlb_lock);
b7ba30c6
AK
1331}
1332
d00181b9 1333static void prep_compound_gigantic_page(struct page *page, unsigned int order)
20a0307c
WF
1334{
1335 int i;
1336 int nr_pages = 1 << order;
1337 struct page *p = page + 1;
1338
1339 /* we rely on prep_new_huge_page to set the destructor */
1340 set_compound_order(page, order);
ef5a22be 1341 __ClearPageReserved(page);
de09d31d 1342 __SetPageHead(page);
20a0307c 1343 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
ef5a22be
AA
1344 /*
1345 * For gigantic hugepages allocated through bootmem at
1346 * boot, it's safer to be consistent with the not-gigantic
1347 * hugepages and clear the PG_reserved bit from all tail pages
1348 * too. Otherwse drivers using get_user_pages() to access tail
1349 * pages may get the reference counting wrong if they see
1350 * PG_reserved set on a tail page (despite the head page not
1351 * having PG_reserved set). Enforcing this consistency between
1352 * head and tail pages allows drivers to optimize away a check
1353 * on the head page when they need know if put_page() is needed
1354 * after get_user_pages().
1355 */
1356 __ClearPageReserved(p);
58a84aa9 1357 set_page_count(p, 0);
1d798ca3 1358 set_compound_head(p, page);
20a0307c 1359 }
b4330afb 1360 atomic_set(compound_mapcount_ptr(page), -1);
20a0307c
WF
1361}
1362
7795912c
AM
1363/*
1364 * PageHuge() only returns true for hugetlbfs pages, but not for normal or
1365 * transparent huge pages. See the PageTransHuge() documentation for more
1366 * details.
1367 */
20a0307c
WF
1368int PageHuge(struct page *page)
1369{
20a0307c
WF
1370 if (!PageCompound(page))
1371 return 0;
1372
1373 page = compound_head(page);
f1e61557 1374 return page[1].compound_dtor == HUGETLB_PAGE_DTOR;
20a0307c 1375}
43131e14
NH
1376EXPORT_SYMBOL_GPL(PageHuge);
1377
27c73ae7
AA
1378/*
1379 * PageHeadHuge() only returns true for hugetlbfs head page, but not for
1380 * normal or transparent huge pages.
1381 */
1382int PageHeadHuge(struct page *page_head)
1383{
27c73ae7
AA
1384 if (!PageHead(page_head))
1385 return 0;
1386
758f66a2 1387 return get_compound_page_dtor(page_head) == free_huge_page;
27c73ae7 1388}
27c73ae7 1389
13d60f4b
ZY
1390pgoff_t __basepage_index(struct page *page)
1391{
1392 struct page *page_head = compound_head(page);
1393 pgoff_t index = page_index(page_head);
1394 unsigned long compound_idx;
1395
1396 if (!PageHuge(page_head))
1397 return page_index(page);
1398
1399 if (compound_order(page_head) >= MAX_ORDER)
1400 compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
1401 else
1402 compound_idx = page - page_head;
1403
1404 return (index << compound_order(page_head)) + compound_idx;
1405}
1406
0c397dae 1407static struct page *alloc_buddy_huge_page(struct hstate *h,
f60858f9
MK
1408 gfp_t gfp_mask, int nid, nodemask_t *nmask,
1409 nodemask_t *node_alloc_noretry)
1da177e4 1410{
af0fb9df 1411 int order = huge_page_order(h);
1da177e4 1412 struct page *page;
f60858f9 1413 bool alloc_try_hard = true;
f96efd58 1414
f60858f9
MK
1415 /*
1416 * By default we always try hard to allocate the page with
1417 * __GFP_RETRY_MAYFAIL flag. However, if we are allocating pages in
1418 * a loop (to adjust global huge page counts) and previous allocation
1419 * failed, do not continue to try hard on the same node. Use the
1420 * node_alloc_noretry bitmap to manage this state information.
1421 */
1422 if (node_alloc_noretry && node_isset(nid, *node_alloc_noretry))
1423 alloc_try_hard = false;
1424 gfp_mask |= __GFP_COMP|__GFP_NOWARN;
1425 if (alloc_try_hard)
1426 gfp_mask |= __GFP_RETRY_MAYFAIL;
af0fb9df
MH
1427 if (nid == NUMA_NO_NODE)
1428 nid = numa_mem_id();
1429 page = __alloc_pages_nodemask(gfp_mask, order, nid, nmask);
1430 if (page)
1431 __count_vm_event(HTLB_BUDDY_PGALLOC);
1432 else
1433 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
63b4613c 1434
f60858f9
MK
1435 /*
1436 * If we did not specify __GFP_RETRY_MAYFAIL, but still got a page this
1437 * indicates an overall state change. Clear bit so that we resume
1438 * normal 'try hard' allocations.
1439 */
1440 if (node_alloc_noretry && page && !alloc_try_hard)
1441 node_clear(nid, *node_alloc_noretry);
1442
1443 /*
1444 * If we tried hard to get a page but failed, set bit so that
1445 * subsequent attempts will not try as hard until there is an
1446 * overall state change.
1447 */
1448 if (node_alloc_noretry && !page && alloc_try_hard)
1449 node_set(nid, *node_alloc_noretry);
1450
63b4613c
NA
1451 return page;
1452}
1453
0c397dae
MH
1454/*
1455 * Common helper to allocate a fresh hugetlb page. All specific allocators
1456 * should use this function to get new hugetlb pages
1457 */
1458static struct page *alloc_fresh_huge_page(struct hstate *h,
f60858f9
MK
1459 gfp_t gfp_mask, int nid, nodemask_t *nmask,
1460 nodemask_t *node_alloc_noretry)
0c397dae
MH
1461{
1462 struct page *page;
1463
1464 if (hstate_is_gigantic(h))
1465 page = alloc_gigantic_page(h, gfp_mask, nid, nmask);
1466 else
1467 page = alloc_buddy_huge_page(h, gfp_mask,
f60858f9 1468 nid, nmask, node_alloc_noretry);
0c397dae
MH
1469 if (!page)
1470 return NULL;
1471
1472 if (hstate_is_gigantic(h))
1473 prep_compound_gigantic_page(page, huge_page_order(h));
1474 prep_new_huge_page(h, page, page_to_nid(page));
1475
1476 return page;
1477}
1478
af0fb9df
MH
1479/*
1480 * Allocates a fresh page to the hugetlb allocator pool in the node interleaved
1481 * manner.
1482 */
f60858f9
MK
1483static int alloc_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
1484 nodemask_t *node_alloc_noretry)
b2261026
JK
1485{
1486 struct page *page;
1487 int nr_nodes, node;
af0fb9df 1488 gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
b2261026
JK
1489
1490 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
f60858f9
MK
1491 page = alloc_fresh_huge_page(h, gfp_mask, node, nodes_allowed,
1492 node_alloc_noretry);
af0fb9df 1493 if (page)
b2261026 1494 break;
b2261026
JK
1495 }
1496
af0fb9df
MH
1497 if (!page)
1498 return 0;
b2261026 1499
af0fb9df
MH
1500 put_page(page); /* free it into the hugepage allocator */
1501
1502 return 1;
b2261026
JK
1503}
1504
e8c5c824
LS
1505/*
1506 * Free huge page from pool from next node to free.
1507 * Attempt to keep persistent huge pages more or less
1508 * balanced over allowed nodes.
1509 * Called with hugetlb_lock locked.
1510 */
6ae11b27
LS
1511static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
1512 bool acct_surplus)
e8c5c824 1513{
b2261026 1514 int nr_nodes, node;
e8c5c824
LS
1515 int ret = 0;
1516
b2261026 1517 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
685f3457
LS
1518 /*
1519 * If we're returning unused surplus pages, only examine
1520 * nodes with surplus pages.
1521 */
b2261026
JK
1522 if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
1523 !list_empty(&h->hugepage_freelists[node])) {
e8c5c824 1524 struct page *page =
b2261026 1525 list_entry(h->hugepage_freelists[node].next,
e8c5c824
LS
1526 struct page, lru);
1527 list_del(&page->lru);
1528 h->free_huge_pages--;
b2261026 1529 h->free_huge_pages_node[node]--;
685f3457
LS
1530 if (acct_surplus) {
1531 h->surplus_huge_pages--;
b2261026 1532 h->surplus_huge_pages_node[node]--;
685f3457 1533 }
e8c5c824
LS
1534 update_and_free_page(h, page);
1535 ret = 1;
9a76db09 1536 break;
e8c5c824 1537 }
b2261026 1538 }
e8c5c824
LS
1539
1540 return ret;
1541}
1542
c8721bbb
NH
1543/*
1544 * Dissolve a given free hugepage into free buddy pages. This function does
faf53def
NH
1545 * nothing for in-use hugepages and non-hugepages.
1546 * This function returns values like below:
1547 *
1548 * -EBUSY: failed to dissolved free hugepages or the hugepage is in-use
1549 * (allocated or reserved.)
1550 * 0: successfully dissolved free hugepages or the page is not a
1551 * hugepage (considered as already dissolved)
c8721bbb 1552 */
c3114a84 1553int dissolve_free_huge_page(struct page *page)
c8721bbb 1554{
6bc9b564 1555 int rc = -EBUSY;
082d5b6b 1556
faf53def
NH
1557 /* Not to disrupt normal path by vainly holding hugetlb_lock */
1558 if (!PageHuge(page))
1559 return 0;
1560
c8721bbb 1561 spin_lock(&hugetlb_lock);
faf53def
NH
1562 if (!PageHuge(page)) {
1563 rc = 0;
1564 goto out;
1565 }
1566
1567 if (!page_count(page)) {
2247bb33
GS
1568 struct page *head = compound_head(page);
1569 struct hstate *h = page_hstate(head);
1570 int nid = page_to_nid(head);
6bc9b564 1571 if (h->free_huge_pages - h->resv_huge_pages == 0)
082d5b6b 1572 goto out;
c3114a84
AK
1573 /*
1574 * Move PageHWPoison flag from head page to the raw error page,
1575 * which makes any subpages rather than the error page reusable.
1576 */
1577 if (PageHWPoison(head) && page != head) {
1578 SetPageHWPoison(page);
1579 ClearPageHWPoison(head);
1580 }
2247bb33 1581 list_del(&head->lru);
c8721bbb
NH
1582 h->free_huge_pages--;
1583 h->free_huge_pages_node[nid]--;
c1470b33 1584 h->max_huge_pages--;
2247bb33 1585 update_and_free_page(h, head);
6bc9b564 1586 rc = 0;
c8721bbb 1587 }
082d5b6b 1588out:
c8721bbb 1589 spin_unlock(&hugetlb_lock);
082d5b6b 1590 return rc;
c8721bbb
NH
1591}
1592
1593/*
1594 * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
1595 * make specified memory blocks removable from the system.
2247bb33
GS
1596 * Note that this will dissolve a free gigantic hugepage completely, if any
1597 * part of it lies within the given range.
082d5b6b
GS
1598 * Also note that if dissolve_free_huge_page() returns with an error, all
1599 * free hugepages that were dissolved before that error are lost.
c8721bbb 1600 */
082d5b6b 1601int dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
c8721bbb 1602{
c8721bbb 1603 unsigned long pfn;
eb03aa00 1604 struct page *page;
082d5b6b 1605 int rc = 0;
c8721bbb 1606
d0177639 1607 if (!hugepages_supported())
082d5b6b 1608 return rc;
d0177639 1609
eb03aa00
GS
1610 for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << minimum_order) {
1611 page = pfn_to_page(pfn);
faf53def
NH
1612 rc = dissolve_free_huge_page(page);
1613 if (rc)
1614 break;
eb03aa00 1615 }
082d5b6b
GS
1616
1617 return rc;
c8721bbb
NH
1618}
1619
ab5ac90a
MH
1620/*
1621 * Allocates a fresh surplus page from the page allocator.
1622 */
0c397dae 1623static struct page *alloc_surplus_huge_page(struct hstate *h, gfp_t gfp_mask,
aaf14e40 1624 int nid, nodemask_t *nmask)
7893d1d5 1625{
9980d744 1626 struct page *page = NULL;
7893d1d5 1627
bae7f4ae 1628 if (hstate_is_gigantic(h))
aa888a74
AK
1629 return NULL;
1630
d1c3fb1f 1631 spin_lock(&hugetlb_lock);
9980d744
MH
1632 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages)
1633 goto out_unlock;
d1c3fb1f
NA
1634 spin_unlock(&hugetlb_lock);
1635
f60858f9 1636 page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask, NULL);
9980d744 1637 if (!page)
0c397dae 1638 return NULL;
d1c3fb1f
NA
1639
1640 spin_lock(&hugetlb_lock);
9980d744
MH
1641 /*
1642 * We could have raced with the pool size change.
1643 * Double check that and simply deallocate the new page
1644 * if we would end up overcommiting the surpluses. Abuse
1645 * temporary page to workaround the nasty free_huge_page
1646 * codeflow
1647 */
1648 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
1649 SetPageHugeTemporary(page);
2bf753e6 1650 spin_unlock(&hugetlb_lock);
9980d744 1651 put_page(page);
2bf753e6 1652 return NULL;
9980d744 1653 } else {
9980d744 1654 h->surplus_huge_pages++;
4704dea3 1655 h->surplus_huge_pages_node[page_to_nid(page)]++;
7893d1d5 1656 }
9980d744
MH
1657
1658out_unlock:
d1c3fb1f 1659 spin_unlock(&hugetlb_lock);
7893d1d5
AL
1660
1661 return page;
1662}
1663
9a4e9f3b
AK
1664struct page *alloc_migrate_huge_page(struct hstate *h, gfp_t gfp_mask,
1665 int nid, nodemask_t *nmask)
ab5ac90a
MH
1666{
1667 struct page *page;
1668
1669 if (hstate_is_gigantic(h))
1670 return NULL;
1671
f60858f9 1672 page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask, NULL);
ab5ac90a
MH
1673 if (!page)
1674 return NULL;
1675
1676 /*
1677 * We do not account these pages as surplus because they are only
1678 * temporary and will be released properly on the last reference
1679 */
ab5ac90a
MH
1680 SetPageHugeTemporary(page);
1681
1682 return page;
1683}
1684
099730d6
DH
1685/*
1686 * Use the VMA's mpolicy to allocate a huge page from the buddy.
1687 */
e0ec90ee 1688static
0c397dae 1689struct page *alloc_buddy_huge_page_with_mpol(struct hstate *h,
099730d6
DH
1690 struct vm_area_struct *vma, unsigned long addr)
1691{
aaf14e40
MH
1692 struct page *page;
1693 struct mempolicy *mpol;
1694 gfp_t gfp_mask = htlb_alloc_mask(h);
1695 int nid;
1696 nodemask_t *nodemask;
1697
1698 nid = huge_node(vma, addr, gfp_mask, &mpol, &nodemask);
0c397dae 1699 page = alloc_surplus_huge_page(h, gfp_mask, nid, nodemask);
aaf14e40
MH
1700 mpol_cond_put(mpol);
1701
1702 return page;
099730d6
DH
1703}
1704
ab5ac90a 1705/* page migration callback function */
bf50bab2
NH
1706struct page *alloc_huge_page_node(struct hstate *h, int nid)
1707{
aaf14e40 1708 gfp_t gfp_mask = htlb_alloc_mask(h);
4ef91848 1709 struct page *page = NULL;
bf50bab2 1710
aaf14e40
MH
1711 if (nid != NUMA_NO_NODE)
1712 gfp_mask |= __GFP_THISNODE;
1713
bf50bab2 1714 spin_lock(&hugetlb_lock);
4ef91848 1715 if (h->free_huge_pages - h->resv_huge_pages > 0)
3e59fcb0 1716 page = dequeue_huge_page_nodemask(h, gfp_mask, nid, NULL);
bf50bab2
NH
1717 spin_unlock(&hugetlb_lock);
1718
94ae8ba7 1719 if (!page)
0c397dae 1720 page = alloc_migrate_huge_page(h, gfp_mask, nid, NULL);
bf50bab2
NH
1721
1722 return page;
1723}
1724
ab5ac90a 1725/* page migration callback function */
3e59fcb0
MH
1726struct page *alloc_huge_page_nodemask(struct hstate *h, int preferred_nid,
1727 nodemask_t *nmask)
4db9b2ef 1728{
aaf14e40 1729 gfp_t gfp_mask = htlb_alloc_mask(h);
4db9b2ef
MH
1730
1731 spin_lock(&hugetlb_lock);
1732 if (h->free_huge_pages - h->resv_huge_pages > 0) {
3e59fcb0
MH
1733 struct page *page;
1734
1735 page = dequeue_huge_page_nodemask(h, gfp_mask, preferred_nid, nmask);
1736 if (page) {
1737 spin_unlock(&hugetlb_lock);
1738 return page;
4db9b2ef
MH
1739 }
1740 }
1741 spin_unlock(&hugetlb_lock);
4db9b2ef 1742
0c397dae 1743 return alloc_migrate_huge_page(h, gfp_mask, preferred_nid, nmask);
4db9b2ef
MH
1744}
1745
ebd63723 1746/* mempolicy aware migration callback */
389c8178
MH
1747struct page *alloc_huge_page_vma(struct hstate *h, struct vm_area_struct *vma,
1748 unsigned long address)
ebd63723
MH
1749{
1750 struct mempolicy *mpol;
1751 nodemask_t *nodemask;
1752 struct page *page;
ebd63723
MH
1753 gfp_t gfp_mask;
1754 int node;
1755
ebd63723
MH
1756 gfp_mask = htlb_alloc_mask(h);
1757 node = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
1758 page = alloc_huge_page_nodemask(h, node, nodemask);
1759 mpol_cond_put(mpol);
1760
1761 return page;
1762}
1763
e4e574b7 1764/*
25985edc 1765 * Increase the hugetlb pool such that it can accommodate a reservation
e4e574b7
AL
1766 * of size 'delta'.
1767 */
a5516438 1768static int gather_surplus_pages(struct hstate *h, int delta)
e4e574b7
AL
1769{
1770 struct list_head surplus_list;
1771 struct page *page, *tmp;
1772 int ret, i;
1773 int needed, allocated;
28073b02 1774 bool alloc_ok = true;
e4e574b7 1775
a5516438 1776 needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
ac09b3a1 1777 if (needed <= 0) {
a5516438 1778 h->resv_huge_pages += delta;
e4e574b7 1779 return 0;
ac09b3a1 1780 }
e4e574b7
AL
1781
1782 allocated = 0;
1783 INIT_LIST_HEAD(&surplus_list);
1784
1785 ret = -ENOMEM;
1786retry:
1787 spin_unlock(&hugetlb_lock);
1788 for (i = 0; i < needed; i++) {
0c397dae 1789 page = alloc_surplus_huge_page(h, htlb_alloc_mask(h),
aaf14e40 1790 NUMA_NO_NODE, NULL);
28073b02
HD
1791 if (!page) {
1792 alloc_ok = false;
1793 break;
1794 }
e4e574b7 1795 list_add(&page->lru, &surplus_list);
69ed779a 1796 cond_resched();
e4e574b7 1797 }
28073b02 1798 allocated += i;
e4e574b7
AL
1799
1800 /*
1801 * After retaking hugetlb_lock, we need to recalculate 'needed'
1802 * because either resv_huge_pages or free_huge_pages may have changed.
1803 */
1804 spin_lock(&hugetlb_lock);
a5516438
AK
1805 needed = (h->resv_huge_pages + delta) -
1806 (h->free_huge_pages + allocated);
28073b02
HD
1807 if (needed > 0) {
1808 if (alloc_ok)
1809 goto retry;
1810 /*
1811 * We were not able to allocate enough pages to
1812 * satisfy the entire reservation so we free what
1813 * we've allocated so far.
1814 */
1815 goto free;
1816 }
e4e574b7
AL
1817 /*
1818 * The surplus_list now contains _at_least_ the number of extra pages
25985edc 1819 * needed to accommodate the reservation. Add the appropriate number
e4e574b7 1820 * of pages to the hugetlb pool and free the extras back to the buddy
ac09b3a1
AL
1821 * allocator. Commit the entire reservation here to prevent another
1822 * process from stealing the pages as they are added to the pool but
1823 * before they are reserved.
e4e574b7
AL
1824 */
1825 needed += allocated;
a5516438 1826 h->resv_huge_pages += delta;
e4e574b7 1827 ret = 0;
a9869b83 1828
19fc3f0a 1829 /* Free the needed pages to the hugetlb pool */
e4e574b7 1830 list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
19fc3f0a
AL
1831 if ((--needed) < 0)
1832 break;
a9869b83
NH
1833 /*
1834 * This page is now managed by the hugetlb allocator and has
1835 * no users -- drop the buddy allocator's reference.
1836 */
1837 put_page_testzero(page);
309381fe 1838 VM_BUG_ON_PAGE(page_count(page), page);
a5516438 1839 enqueue_huge_page(h, page);
19fc3f0a 1840 }
28073b02 1841free:
b0365c8d 1842 spin_unlock(&hugetlb_lock);
19fc3f0a
AL
1843
1844 /* Free unnecessary surplus pages to the buddy allocator */
c0d934ba
JK
1845 list_for_each_entry_safe(page, tmp, &surplus_list, lru)
1846 put_page(page);
a9869b83 1847 spin_lock(&hugetlb_lock);
e4e574b7
AL
1848
1849 return ret;
1850}
1851
1852/*
e5bbc8a6
MK
1853 * This routine has two main purposes:
1854 * 1) Decrement the reservation count (resv_huge_pages) by the value passed
1855 * in unused_resv_pages. This corresponds to the prior adjustments made
1856 * to the associated reservation map.
1857 * 2) Free any unused surplus pages that may have been allocated to satisfy
1858 * the reservation. As many as unused_resv_pages may be freed.
1859 *
1860 * Called with hugetlb_lock held. However, the lock could be dropped (and
1861 * reacquired) during calls to cond_resched_lock. Whenever dropping the lock,
1862 * we must make sure nobody else can claim pages we are in the process of
1863 * freeing. Do this by ensuring resv_huge_page always is greater than the
1864 * number of huge pages we plan to free when dropping the lock.
e4e574b7 1865 */
a5516438
AK
1866static void return_unused_surplus_pages(struct hstate *h,
1867 unsigned long unused_resv_pages)
e4e574b7 1868{
e4e574b7
AL
1869 unsigned long nr_pages;
1870
aa888a74 1871 /* Cannot return gigantic pages currently */
bae7f4ae 1872 if (hstate_is_gigantic(h))
e5bbc8a6 1873 goto out;
aa888a74 1874
e5bbc8a6
MK
1875 /*
1876 * Part (or even all) of the reservation could have been backed
1877 * by pre-allocated pages. Only free surplus pages.
1878 */
a5516438 1879 nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
e4e574b7 1880
685f3457
LS
1881 /*
1882 * We want to release as many surplus pages as possible, spread
9b5e5d0f
LS
1883 * evenly across all nodes with memory. Iterate across these nodes
1884 * until we can no longer free unreserved surplus pages. This occurs
1885 * when the nodes with surplus pages have no free pages.
1886 * free_pool_huge_page() will balance the the freed pages across the
1887 * on-line nodes with memory and will handle the hstate accounting.
e5bbc8a6
MK
1888 *
1889 * Note that we decrement resv_huge_pages as we free the pages. If
1890 * we drop the lock, resv_huge_pages will still be sufficiently large
1891 * to cover subsequent pages we may free.
685f3457
LS
1892 */
1893 while (nr_pages--) {
e5bbc8a6
MK
1894 h->resv_huge_pages--;
1895 unused_resv_pages--;
8cebfcd0 1896 if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1))
e5bbc8a6 1897 goto out;
7848a4bf 1898 cond_resched_lock(&hugetlb_lock);
e4e574b7 1899 }
e5bbc8a6
MK
1900
1901out:
1902 /* Fully uncommit the reservation */
1903 h->resv_huge_pages -= unused_resv_pages;
e4e574b7
AL
1904}
1905
5e911373 1906
c37f9fb1 1907/*
feba16e2 1908 * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
5e911373 1909 * are used by the huge page allocation routines to manage reservations.
cf3ad20b
MK
1910 *
1911 * vma_needs_reservation is called to determine if the huge page at addr
1912 * within the vma has an associated reservation. If a reservation is
1913 * needed, the value 1 is returned. The caller is then responsible for
1914 * managing the global reservation and subpool usage counts. After
1915 * the huge page has been allocated, vma_commit_reservation is called
feba16e2
MK
1916 * to add the page to the reservation map. If the page allocation fails,
1917 * the reservation must be ended instead of committed. vma_end_reservation
1918 * is called in such cases.
cf3ad20b
MK
1919 *
1920 * In the normal case, vma_commit_reservation returns the same value
1921 * as the preceding vma_needs_reservation call. The only time this
1922 * is not the case is if a reserve map was changed between calls. It
1923 * is the responsibility of the caller to notice the difference and
1924 * take appropriate action.
96b96a96
MK
1925 *
1926 * vma_add_reservation is used in error paths where a reservation must
1927 * be restored when a newly allocated huge page must be freed. It is
1928 * to be called after calling vma_needs_reservation to determine if a
1929 * reservation exists.
c37f9fb1 1930 */
5e911373
MK
1931enum vma_resv_mode {
1932 VMA_NEEDS_RESV,
1933 VMA_COMMIT_RESV,
feba16e2 1934 VMA_END_RESV,
96b96a96 1935 VMA_ADD_RESV,
5e911373 1936};
cf3ad20b
MK
1937static long __vma_reservation_common(struct hstate *h,
1938 struct vm_area_struct *vma, unsigned long addr,
5e911373 1939 enum vma_resv_mode mode)
c37f9fb1 1940{
4e35f483
JK
1941 struct resv_map *resv;
1942 pgoff_t idx;
cf3ad20b 1943 long ret;
c37f9fb1 1944
4e35f483
JK
1945 resv = vma_resv_map(vma);
1946 if (!resv)
84afd99b 1947 return 1;
c37f9fb1 1948
4e35f483 1949 idx = vma_hugecache_offset(h, vma, addr);
5e911373
MK
1950 switch (mode) {
1951 case VMA_NEEDS_RESV:
cf3ad20b 1952 ret = region_chg(resv, idx, idx + 1);
5e911373
MK
1953 break;
1954 case VMA_COMMIT_RESV:
1955 ret = region_add(resv, idx, idx + 1);
1956 break;
feba16e2 1957 case VMA_END_RESV:
5e911373
MK
1958 region_abort(resv, idx, idx + 1);
1959 ret = 0;
1960 break;
96b96a96
MK
1961 case VMA_ADD_RESV:
1962 if (vma->vm_flags & VM_MAYSHARE)
1963 ret = region_add(resv, idx, idx + 1);
1964 else {
1965 region_abort(resv, idx, idx + 1);
1966 ret = region_del(resv, idx, idx + 1);
1967 }
1968 break;
5e911373
MK
1969 default:
1970 BUG();
1971 }
84afd99b 1972
4e35f483 1973 if (vma->vm_flags & VM_MAYSHARE)
cf3ad20b 1974 return ret;
67961f9d
MK
1975 else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) && ret >= 0) {
1976 /*
1977 * In most cases, reserves always exist for private mappings.
1978 * However, a file associated with mapping could have been
1979 * hole punched or truncated after reserves were consumed.
1980 * As subsequent fault on such a range will not use reserves.
1981 * Subtle - The reserve map for private mappings has the
1982 * opposite meaning than that of shared mappings. If NO
1983 * entry is in the reserve map, it means a reservation exists.
1984 * If an entry exists in the reserve map, it means the
1985 * reservation has already been consumed. As a result, the
1986 * return value of this routine is the opposite of the
1987 * value returned from reserve map manipulation routines above.
1988 */
1989 if (ret)
1990 return 0;
1991 else
1992 return 1;
1993 }
4e35f483 1994 else
cf3ad20b 1995 return ret < 0 ? ret : 0;
c37f9fb1 1996}
cf3ad20b
MK
1997
1998static long vma_needs_reservation(struct hstate *h,
a5516438 1999 struct vm_area_struct *vma, unsigned long addr)
c37f9fb1 2000{
5e911373 2001 return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
cf3ad20b 2002}
84afd99b 2003
cf3ad20b
MK
2004static long vma_commit_reservation(struct hstate *h,
2005 struct vm_area_struct *vma, unsigned long addr)
2006{
5e911373
MK
2007 return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
2008}
2009
feba16e2 2010static void vma_end_reservation(struct hstate *h,
5e911373
MK
2011 struct vm_area_struct *vma, unsigned long addr)
2012{
feba16e2 2013 (void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
c37f9fb1
AW
2014}
2015
96b96a96
MK
2016static long vma_add_reservation(struct hstate *h,
2017 struct vm_area_struct *vma, unsigned long addr)
2018{
2019 return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV);
2020}
2021
2022/*
2023 * This routine is called to restore a reservation on error paths. In the
2024 * specific error paths, a huge page was allocated (via alloc_huge_page)
2025 * and is about to be freed. If a reservation for the page existed,
2026 * alloc_huge_page would have consumed the reservation and set PagePrivate
2027 * in the newly allocated page. When the page is freed via free_huge_page,
2028 * the global reservation count will be incremented if PagePrivate is set.
2029 * However, free_huge_page can not adjust the reserve map. Adjust the
2030 * reserve map here to be consistent with global reserve count adjustments
2031 * to be made by free_huge_page.
2032 */
2033static void restore_reserve_on_error(struct hstate *h,
2034 struct vm_area_struct *vma, unsigned long address,
2035 struct page *page)
2036{
2037 if (unlikely(PagePrivate(page))) {
2038 long rc = vma_needs_reservation(h, vma, address);
2039
2040 if (unlikely(rc < 0)) {
2041 /*
2042 * Rare out of memory condition in reserve map
2043 * manipulation. Clear PagePrivate so that
2044 * global reserve count will not be incremented
2045 * by free_huge_page. This will make it appear
2046 * as though the reservation for this page was
2047 * consumed. This may prevent the task from
2048 * faulting in the page at a later time. This
2049 * is better than inconsistent global huge page
2050 * accounting of reserve counts.
2051 */
2052 ClearPagePrivate(page);
2053 } else if (rc) {
2054 rc = vma_add_reservation(h, vma, address);
2055 if (unlikely(rc < 0))
2056 /*
2057 * See above comment about rare out of
2058 * memory condition.
2059 */
2060 ClearPagePrivate(page);
2061 } else
2062 vma_end_reservation(h, vma, address);
2063 }
2064}
2065
70c3547e 2066struct page *alloc_huge_page(struct vm_area_struct *vma,
04f2cbe3 2067 unsigned long addr, int avoid_reserve)
1da177e4 2068{
90481622 2069 struct hugepage_subpool *spool = subpool_vma(vma);
a5516438 2070 struct hstate *h = hstate_vma(vma);
348ea204 2071 struct page *page;
d85f69b0
MK
2072 long map_chg, map_commit;
2073 long gbl_chg;
6d76dcf4
AK
2074 int ret, idx;
2075 struct hugetlb_cgroup *h_cg;
a1e78772 2076
6d76dcf4 2077 idx = hstate_index(h);
a1e78772 2078 /*
d85f69b0
MK
2079 * Examine the region/reserve map to determine if the process
2080 * has a reservation for the page to be allocated. A return
2081 * code of zero indicates a reservation exists (no change).
a1e78772 2082 */
d85f69b0
MK
2083 map_chg = gbl_chg = vma_needs_reservation(h, vma, addr);
2084 if (map_chg < 0)
76dcee75 2085 return ERR_PTR(-ENOMEM);
d85f69b0
MK
2086
2087 /*
2088 * Processes that did not create the mapping will have no
2089 * reserves as indicated by the region/reserve map. Check
2090 * that the allocation will not exceed the subpool limit.
2091 * Allocations for MAP_NORESERVE mappings also need to be
2092 * checked against any subpool limit.
2093 */
2094 if (map_chg || avoid_reserve) {
2095 gbl_chg = hugepage_subpool_get_pages(spool, 1);
2096 if (gbl_chg < 0) {
feba16e2 2097 vma_end_reservation(h, vma, addr);
76dcee75 2098 return ERR_PTR(-ENOSPC);
5e911373 2099 }
1da177e4 2100
d85f69b0
MK
2101 /*
2102 * Even though there was no reservation in the region/reserve
2103 * map, there could be reservations associated with the
2104 * subpool that can be used. This would be indicated if the
2105 * return value of hugepage_subpool_get_pages() is zero.
2106 * However, if avoid_reserve is specified we still avoid even
2107 * the subpool reservations.
2108 */
2109 if (avoid_reserve)
2110 gbl_chg = 1;
2111 }
2112
6d76dcf4 2113 ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
8f34af6f
JZ
2114 if (ret)
2115 goto out_subpool_put;
2116
1da177e4 2117 spin_lock(&hugetlb_lock);
d85f69b0
MK
2118 /*
2119 * glb_chg is passed to indicate whether or not a page must be taken
2120 * from the global free pool (global change). gbl_chg == 0 indicates
2121 * a reservation exists for the allocation.
2122 */
2123 page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, gbl_chg);
81a6fcae 2124 if (!page) {
94ae8ba7 2125 spin_unlock(&hugetlb_lock);
0c397dae 2126 page = alloc_buddy_huge_page_with_mpol(h, vma, addr);
8f34af6f
JZ
2127 if (!page)
2128 goto out_uncharge_cgroup;
a88c7695
NH
2129 if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) {
2130 SetPagePrivate(page);
2131 h->resv_huge_pages--;
2132 }
79dbb236
AK
2133 spin_lock(&hugetlb_lock);
2134 list_move(&page->lru, &h->hugepage_activelist);
81a6fcae 2135 /* Fall through */
68842c9b 2136 }
81a6fcae
JK
2137 hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
2138 spin_unlock(&hugetlb_lock);
348ea204 2139
90481622 2140 set_page_private(page, (unsigned long)spool);
90d8b7e6 2141
d85f69b0
MK
2142 map_commit = vma_commit_reservation(h, vma, addr);
2143 if (unlikely(map_chg > map_commit)) {
33039678
MK
2144 /*
2145 * The page was added to the reservation map between
2146 * vma_needs_reservation and vma_commit_reservation.
2147 * This indicates a race with hugetlb_reserve_pages.
2148 * Adjust for the subpool count incremented above AND
2149 * in hugetlb_reserve_pages for the same page. Also,
2150 * the reservation count added in hugetlb_reserve_pages
2151 * no longer applies.
2152 */
2153 long rsv_adjust;
2154
2155 rsv_adjust = hugepage_subpool_put_pages(spool, 1);
2156 hugetlb_acct_memory(h, -rsv_adjust);
2157 }
90d8b7e6 2158 return page;
8f34af6f
JZ
2159
2160out_uncharge_cgroup:
2161 hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
2162out_subpool_put:
d85f69b0 2163 if (map_chg || avoid_reserve)
8f34af6f 2164 hugepage_subpool_put_pages(spool, 1);
feba16e2 2165 vma_end_reservation(h, vma, addr);
8f34af6f 2166 return ERR_PTR(-ENOSPC);
b45b5bd6
DG
2167}
2168
e24a1307
AK
2169int alloc_bootmem_huge_page(struct hstate *h)
2170 __attribute__ ((weak, alias("__alloc_bootmem_huge_page")));
2171int __alloc_bootmem_huge_page(struct hstate *h)
aa888a74
AK
2172{
2173 struct huge_bootmem_page *m;
b2261026 2174 int nr_nodes, node;
aa888a74 2175
b2261026 2176 for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
aa888a74
AK
2177 void *addr;
2178
eb31d559 2179 addr = memblock_alloc_try_nid_raw(
8b89a116 2180 huge_page_size(h), huge_page_size(h),
97ad1087 2181 0, MEMBLOCK_ALLOC_ACCESSIBLE, node);
aa888a74
AK
2182 if (addr) {
2183 /*
2184 * Use the beginning of the huge page to store the
2185 * huge_bootmem_page struct (until gather_bootmem
2186 * puts them into the mem_map).
2187 */
2188 m = addr;
91f47662 2189 goto found;
aa888a74 2190 }
aa888a74
AK
2191 }
2192 return 0;
2193
2194found:
df994ead 2195 BUG_ON(!IS_ALIGNED(virt_to_phys(m), huge_page_size(h)));
aa888a74 2196 /* Put them into a private list first because mem_map is not up yet */
330d6e48 2197 INIT_LIST_HEAD(&m->list);
aa888a74
AK
2198 list_add(&m->list, &huge_boot_pages);
2199 m->hstate = h;
2200 return 1;
2201}
2202
d00181b9
KS
2203static void __init prep_compound_huge_page(struct page *page,
2204 unsigned int order)
18229df5
AW
2205{
2206 if (unlikely(order > (MAX_ORDER - 1)))
2207 prep_compound_gigantic_page(page, order);
2208 else
2209 prep_compound_page(page, order);
2210}
2211
aa888a74
AK
2212/* Put bootmem huge pages into the standard lists after mem_map is up */
2213static void __init gather_bootmem_prealloc(void)
2214{
2215 struct huge_bootmem_page *m;
2216
2217 list_for_each_entry(m, &huge_boot_pages, list) {
40d18ebf 2218 struct page *page = virt_to_page(m);
aa888a74 2219 struct hstate *h = m->hstate;
ee8f248d 2220
aa888a74 2221 WARN_ON(page_count(page) != 1);
18229df5 2222 prep_compound_huge_page(page, h->order);
ef5a22be 2223 WARN_ON(PageReserved(page));
aa888a74 2224 prep_new_huge_page(h, page, page_to_nid(page));
af0fb9df
MH
2225 put_page(page); /* free it into the hugepage allocator */
2226
b0320c7b
RA
2227 /*
2228 * If we had gigantic hugepages allocated at boot time, we need
2229 * to restore the 'stolen' pages to totalram_pages in order to
2230 * fix confusing memory reports from free(1) and another
2231 * side-effects, like CommitLimit going negative.
2232 */
bae7f4ae 2233 if (hstate_is_gigantic(h))
3dcc0571 2234 adjust_managed_page_count(page, 1 << h->order);
520495fe 2235 cond_resched();
aa888a74
AK
2236 }
2237}
2238
8faa8b07 2239static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
1da177e4
LT
2240{
2241 unsigned long i;
f60858f9
MK
2242 nodemask_t *node_alloc_noretry;
2243
2244 if (!hstate_is_gigantic(h)) {
2245 /*
2246 * Bit mask controlling how hard we retry per-node allocations.
2247 * Ignore errors as lower level routines can deal with
2248 * node_alloc_noretry == NULL. If this kmalloc fails at boot
2249 * time, we are likely in bigger trouble.
2250 */
2251 node_alloc_noretry = kmalloc(sizeof(*node_alloc_noretry),
2252 GFP_KERNEL);
2253 } else {
2254 /* allocations done at boot time */
2255 node_alloc_noretry = NULL;
2256 }
2257
2258 /* bit mask controlling how hard we retry per-node allocations */
2259 if (node_alloc_noretry)
2260 nodes_clear(*node_alloc_noretry);
a5516438 2261
e5ff2159 2262 for (i = 0; i < h->max_huge_pages; ++i) {
bae7f4ae 2263 if (hstate_is_gigantic(h)) {
aa888a74
AK
2264 if (!alloc_bootmem_huge_page(h))
2265 break;
0c397dae 2266 } else if (!alloc_pool_huge_page(h,
f60858f9
MK
2267 &node_states[N_MEMORY],
2268 node_alloc_noretry))
1da177e4 2269 break;
69ed779a 2270 cond_resched();
1da177e4 2271 }
d715cf80
LH
2272 if (i < h->max_huge_pages) {
2273 char buf[32];
2274
c6247f72 2275 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
d715cf80
LH
2276 pr_warn("HugeTLB: allocating %lu of page size %s failed. Only allocated %lu hugepages.\n",
2277 h->max_huge_pages, buf, i);
2278 h->max_huge_pages = i;
2279 }
f60858f9
MK
2280
2281 kfree(node_alloc_noretry);
e5ff2159
AK
2282}
2283
2284static void __init hugetlb_init_hstates(void)
2285{
2286 struct hstate *h;
2287
2288 for_each_hstate(h) {
641844f5
NH
2289 if (minimum_order > huge_page_order(h))
2290 minimum_order = huge_page_order(h);
2291
8faa8b07 2292 /* oversize hugepages were init'ed in early boot */
bae7f4ae 2293 if (!hstate_is_gigantic(h))
8faa8b07 2294 hugetlb_hstate_alloc_pages(h);
e5ff2159 2295 }
641844f5 2296 VM_BUG_ON(minimum_order == UINT_MAX);
e5ff2159
AK
2297}
2298
2299static void __init report_hugepages(void)
2300{
2301 struct hstate *h;
2302
2303 for_each_hstate(h) {
4abd32db 2304 char buf[32];
c6247f72
MW
2305
2306 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
ffb22af5 2307 pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
c6247f72 2308 buf, h->free_huge_pages);
e5ff2159
AK
2309 }
2310}
2311
1da177e4 2312#ifdef CONFIG_HIGHMEM
6ae11b27
LS
2313static void try_to_free_low(struct hstate *h, unsigned long count,
2314 nodemask_t *nodes_allowed)
1da177e4 2315{
4415cc8d
CL
2316 int i;
2317
bae7f4ae 2318 if (hstate_is_gigantic(h))
aa888a74
AK
2319 return;
2320
6ae11b27 2321 for_each_node_mask(i, *nodes_allowed) {
1da177e4 2322 struct page *page, *next;
a5516438
AK
2323 struct list_head *freel = &h->hugepage_freelists[i];
2324 list_for_each_entry_safe(page, next, freel, lru) {
2325 if (count >= h->nr_huge_pages)
6b0c880d 2326 return;
1da177e4
LT
2327 if (PageHighMem(page))
2328 continue;
2329 list_del(&page->lru);
e5ff2159 2330 update_and_free_page(h, page);
a5516438
AK
2331 h->free_huge_pages--;
2332 h->free_huge_pages_node[page_to_nid(page)]--;
1da177e4
LT
2333 }
2334 }
2335}
2336#else
6ae11b27
LS
2337static inline void try_to_free_low(struct hstate *h, unsigned long count,
2338 nodemask_t *nodes_allowed)
1da177e4
LT
2339{
2340}
2341#endif
2342
20a0307c
WF
2343/*
2344 * Increment or decrement surplus_huge_pages. Keep node-specific counters
2345 * balanced by operating on them in a round-robin fashion.
2346 * Returns 1 if an adjustment was made.
2347 */
6ae11b27
LS
2348static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
2349 int delta)
20a0307c 2350{
b2261026 2351 int nr_nodes, node;
20a0307c
WF
2352
2353 VM_BUG_ON(delta != -1 && delta != 1);
20a0307c 2354
b2261026
JK
2355 if (delta < 0) {
2356 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
2357 if (h->surplus_huge_pages_node[node])
2358 goto found;
e8c5c824 2359 }
b2261026
JK
2360 } else {
2361 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
2362 if (h->surplus_huge_pages_node[node] <
2363 h->nr_huge_pages_node[node])
2364 goto found;
e8c5c824 2365 }
b2261026
JK
2366 }
2367 return 0;
20a0307c 2368
b2261026
JK
2369found:
2370 h->surplus_huge_pages += delta;
2371 h->surplus_huge_pages_node[node] += delta;
2372 return 1;
20a0307c
WF
2373}
2374
a5516438 2375#define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
fd875dca 2376static int set_max_huge_pages(struct hstate *h, unsigned long count, int nid,
4eb0716e 2377 nodemask_t *nodes_allowed)
1da177e4 2378{
7893d1d5 2379 unsigned long min_count, ret;
f60858f9
MK
2380 NODEMASK_ALLOC(nodemask_t, node_alloc_noretry, GFP_KERNEL);
2381
2382 /*
2383 * Bit mask controlling how hard we retry per-node allocations.
2384 * If we can not allocate the bit mask, do not attempt to allocate
2385 * the requested huge pages.
2386 */
2387 if (node_alloc_noretry)
2388 nodes_clear(*node_alloc_noretry);
2389 else
2390 return -ENOMEM;
1da177e4 2391
4eb0716e
AG
2392 spin_lock(&hugetlb_lock);
2393
fd875dca
MK
2394 /*
2395 * Check for a node specific request.
2396 * Changing node specific huge page count may require a corresponding
2397 * change to the global count. In any case, the passed node mask
2398 * (nodes_allowed) will restrict alloc/free to the specified node.
2399 */
2400 if (nid != NUMA_NO_NODE) {
2401 unsigned long old_count = count;
2402
2403 count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
2404 /*
2405 * User may have specified a large count value which caused the
2406 * above calculation to overflow. In this case, they wanted
2407 * to allocate as many huge pages as possible. Set count to
2408 * largest possible value to align with their intention.
2409 */
2410 if (count < old_count)
2411 count = ULONG_MAX;
2412 }
2413
4eb0716e
AG
2414 /*
2415 * Gigantic pages runtime allocation depend on the capability for large
2416 * page range allocation.
2417 * If the system does not provide this feature, return an error when
2418 * the user tries to allocate gigantic pages but let the user free the
2419 * boottime allocated gigantic pages.
2420 */
2421 if (hstate_is_gigantic(h) && !IS_ENABLED(CONFIG_CONTIG_ALLOC)) {
2422 if (count > persistent_huge_pages(h)) {
2423 spin_unlock(&hugetlb_lock);
f60858f9 2424 NODEMASK_FREE(node_alloc_noretry);
4eb0716e
AG
2425 return -EINVAL;
2426 }
2427 /* Fall through to decrease pool */
2428 }
aa888a74 2429
7893d1d5
AL
2430 /*
2431 * Increase the pool size
2432 * First take pages out of surplus state. Then make up the
2433 * remaining difference by allocating fresh huge pages.
d1c3fb1f 2434 *
0c397dae 2435 * We might race with alloc_surplus_huge_page() here and be unable
d1c3fb1f
NA
2436 * to convert a surplus huge page to a normal huge page. That is
2437 * not critical, though, it just means the overall size of the
2438 * pool might be one hugepage larger than it needs to be, but
2439 * within all the constraints specified by the sysctls.
7893d1d5 2440 */
a5516438 2441 while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
6ae11b27 2442 if (!adjust_pool_surplus(h, nodes_allowed, -1))
7893d1d5
AL
2443 break;
2444 }
2445
a5516438 2446 while (count > persistent_huge_pages(h)) {
7893d1d5
AL
2447 /*
2448 * If this allocation races such that we no longer need the
2449 * page, free_huge_page will handle it by freeing the page
2450 * and reducing the surplus.
2451 */
2452 spin_unlock(&hugetlb_lock);
649920c6
JH
2453
2454 /* yield cpu to avoid soft lockup */
2455 cond_resched();
2456
f60858f9
MK
2457 ret = alloc_pool_huge_page(h, nodes_allowed,
2458 node_alloc_noretry);
7893d1d5
AL
2459 spin_lock(&hugetlb_lock);
2460 if (!ret)
2461 goto out;
2462
536240f2
MG
2463 /* Bail for signals. Probably ctrl-c from user */
2464 if (signal_pending(current))
2465 goto out;
7893d1d5 2466 }
7893d1d5
AL
2467
2468 /*
2469 * Decrease the pool size
2470 * First return free pages to the buddy allocator (being careful
2471 * to keep enough around to satisfy reservations). Then place
2472 * pages into surplus state as needed so the pool will shrink
2473 * to the desired size as pages become free.
d1c3fb1f
NA
2474 *
2475 * By placing pages into the surplus state independent of the
2476 * overcommit value, we are allowing the surplus pool size to
2477 * exceed overcommit. There are few sane options here. Since
0c397dae 2478 * alloc_surplus_huge_page() is checking the global counter,
d1c3fb1f
NA
2479 * though, we'll note that we're not allowed to exceed surplus
2480 * and won't grow the pool anywhere else. Not until one of the
2481 * sysctls are changed, or the surplus pages go out of use.
7893d1d5 2482 */
a5516438 2483 min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
6b0c880d 2484 min_count = max(count, min_count);
6ae11b27 2485 try_to_free_low(h, min_count, nodes_allowed);
a5516438 2486 while (min_count < persistent_huge_pages(h)) {
6ae11b27 2487 if (!free_pool_huge_page(h, nodes_allowed, 0))
1da177e4 2488 break;
55f67141 2489 cond_resched_lock(&hugetlb_lock);
1da177e4 2490 }
a5516438 2491 while (count < persistent_huge_pages(h)) {
6ae11b27 2492 if (!adjust_pool_surplus(h, nodes_allowed, 1))
7893d1d5
AL
2493 break;
2494 }
2495out:
4eb0716e 2496 h->max_huge_pages = persistent_huge_pages(h);
1da177e4 2497 spin_unlock(&hugetlb_lock);
4eb0716e 2498
f60858f9
MK
2499 NODEMASK_FREE(node_alloc_noretry);
2500
4eb0716e 2501 return 0;
1da177e4
LT
2502}
2503
a3437870
NA
2504#define HSTATE_ATTR_RO(_name) \
2505 static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
2506
2507#define HSTATE_ATTR(_name) \
2508 static struct kobj_attribute _name##_attr = \
2509 __ATTR(_name, 0644, _name##_show, _name##_store)
2510
2511static struct kobject *hugepages_kobj;
2512static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
2513
9a305230
LS
2514static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
2515
2516static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
a3437870
NA
2517{
2518 int i;
9a305230 2519
a3437870 2520 for (i = 0; i < HUGE_MAX_HSTATE; i++)
9a305230
LS
2521 if (hstate_kobjs[i] == kobj) {
2522 if (nidp)
2523 *nidp = NUMA_NO_NODE;
a3437870 2524 return &hstates[i];
9a305230
LS
2525 }
2526
2527 return kobj_to_node_hstate(kobj, nidp);
a3437870
NA
2528}
2529
06808b08 2530static ssize_t nr_hugepages_show_common(struct kobject *kobj,
a3437870
NA
2531 struct kobj_attribute *attr, char *buf)
2532{
9a305230
LS
2533 struct hstate *h;
2534 unsigned long nr_huge_pages;
2535 int nid;
2536
2537 h = kobj_to_hstate(kobj, &nid);
2538 if (nid == NUMA_NO_NODE)
2539 nr_huge_pages = h->nr_huge_pages;
2540 else
2541 nr_huge_pages = h->nr_huge_pages_node[nid];
2542
2543 return sprintf(buf, "%lu\n", nr_huge_pages);
a3437870 2544}
adbe8726 2545
238d3c13
DR
2546static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
2547 struct hstate *h, int nid,
2548 unsigned long count, size_t len)
a3437870
NA
2549{
2550 int err;
2d0adf7e 2551 nodemask_t nodes_allowed, *n_mask;
a3437870 2552
2d0adf7e
OS
2553 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
2554 return -EINVAL;
adbe8726 2555
9a305230
LS
2556 if (nid == NUMA_NO_NODE) {
2557 /*
2558 * global hstate attribute
2559 */
2560 if (!(obey_mempolicy &&
2d0adf7e
OS
2561 init_nodemask_of_mempolicy(&nodes_allowed)))
2562 n_mask = &node_states[N_MEMORY];
2563 else
2564 n_mask = &nodes_allowed;
2565 } else {
9a305230 2566 /*
fd875dca
MK
2567 * Node specific request. count adjustment happens in
2568 * set_max_huge_pages() after acquiring hugetlb_lock.
9a305230 2569 */
2d0adf7e
OS
2570 init_nodemask_of_node(&nodes_allowed, nid);
2571 n_mask = &nodes_allowed;
fd875dca 2572 }
9a305230 2573
2d0adf7e 2574 err = set_max_huge_pages(h, count, nid, n_mask);
06808b08 2575
4eb0716e 2576 return err ? err : len;
06808b08
LS
2577}
2578
238d3c13
DR
2579static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
2580 struct kobject *kobj, const char *buf,
2581 size_t len)
2582{
2583 struct hstate *h;
2584 unsigned long count;
2585 int nid;
2586 int err;
2587
2588 err = kstrtoul(buf, 10, &count);
2589 if (err)
2590 return err;
2591
2592 h = kobj_to_hstate(kobj, &nid);
2593 return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
2594}
2595
06808b08
LS
2596static ssize_t nr_hugepages_show(struct kobject *kobj,
2597 struct kobj_attribute *attr, char *buf)
2598{
2599 return nr_hugepages_show_common(kobj, attr, buf);
2600}
2601
2602static ssize_t nr_hugepages_store(struct kobject *kobj,
2603 struct kobj_attribute *attr, const char *buf, size_t len)
2604{
238d3c13 2605 return nr_hugepages_store_common(false, kobj, buf, len);
a3437870
NA
2606}
2607HSTATE_ATTR(nr_hugepages);
2608
06808b08
LS
2609#ifdef CONFIG_NUMA
2610
2611/*
2612 * hstate attribute for optionally mempolicy-based constraint on persistent
2613 * huge page alloc/free.
2614 */
2615static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
2616 struct kobj_attribute *attr, char *buf)
2617{
2618 return nr_hugepages_show_common(kobj, attr, buf);
2619}
2620
2621static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
2622 struct kobj_attribute *attr, const char *buf, size_t len)
2623{
238d3c13 2624 return nr_hugepages_store_common(true, kobj, buf, len);
06808b08
LS
2625}
2626HSTATE_ATTR(nr_hugepages_mempolicy);
2627#endif
2628
2629
a3437870
NA
2630static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
2631 struct kobj_attribute *attr, char *buf)
2632{
9a305230 2633 struct hstate *h = kobj_to_hstate(kobj, NULL);
a3437870
NA
2634 return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
2635}
adbe8726 2636
a3437870
NA
2637static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
2638 struct kobj_attribute *attr, const char *buf, size_t count)
2639{
2640 int err;
2641 unsigned long input;
9a305230 2642 struct hstate *h = kobj_to_hstate(kobj, NULL);
a3437870 2643
bae7f4ae 2644 if (hstate_is_gigantic(h))
adbe8726
EM
2645 return -EINVAL;
2646
3dbb95f7 2647 err = kstrtoul(buf, 10, &input);
a3437870 2648 if (err)
73ae31e5 2649 return err;
a3437870
NA
2650
2651 spin_lock(&hugetlb_lock);
2652 h->nr_overcommit_huge_pages = input;
2653 spin_unlock(&hugetlb_lock);
2654
2655 return count;
2656}
2657HSTATE_ATTR(nr_overcommit_hugepages);
2658
2659static ssize_t free_hugepages_show(struct kobject *kobj,
2660 struct kobj_attribute *attr, char *buf)
2661{
9a305230
LS
2662 struct hstate *h;
2663 unsigned long free_huge_pages;
2664 int nid;
2665
2666 h = kobj_to_hstate(kobj, &nid);
2667 if (nid == NUMA_NO_NODE)
2668 free_huge_pages = h->free_huge_pages;
2669 else
2670 free_huge_pages = h->free_huge_pages_node[nid];
2671
2672 return sprintf(buf, "%lu\n", free_huge_pages);
a3437870
NA
2673}
2674HSTATE_ATTR_RO(free_hugepages);
2675
2676static ssize_t resv_hugepages_show(struct kobject *kobj,
2677 struct kobj_attribute *attr, char *buf)
2678{
9a305230 2679 struct hstate *h = kobj_to_hstate(kobj, NULL);
a3437870
NA
2680 return sprintf(buf, "%lu\n", h->resv_huge_pages);
2681}
2682HSTATE_ATTR_RO(resv_hugepages);
2683
2684static ssize_t surplus_hugepages_show(struct kobject *kobj,
2685 struct kobj_attribute *attr, char *buf)
2686{
9a305230
LS
2687 struct hstate *h;
2688 unsigned long surplus_huge_pages;
2689 int nid;
2690
2691 h = kobj_to_hstate(kobj, &nid);
2692 if (nid == NUMA_NO_NODE)
2693 surplus_huge_pages = h->surplus_huge_pages;
2694 else
2695 surplus_huge_pages = h->surplus_huge_pages_node[nid];
2696
2697 return sprintf(buf, "%lu\n", surplus_huge_pages);
a3437870
NA
2698}
2699HSTATE_ATTR_RO(surplus_hugepages);
2700
2701static struct attribute *hstate_attrs[] = {
2702 &nr_hugepages_attr.attr,
2703 &nr_overcommit_hugepages_attr.attr,
2704 &free_hugepages_attr.attr,
2705 &resv_hugepages_attr.attr,
2706 &surplus_hugepages_attr.attr,
06808b08
LS
2707#ifdef CONFIG_NUMA
2708 &nr_hugepages_mempolicy_attr.attr,
2709#endif
a3437870
NA
2710 NULL,
2711};
2712
67e5ed96 2713static const struct attribute_group hstate_attr_group = {
a3437870
NA
2714 .attrs = hstate_attrs,
2715};
2716
094e9539
JM
2717static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
2718 struct kobject **hstate_kobjs,
67e5ed96 2719 const struct attribute_group *hstate_attr_group)
a3437870
NA
2720{
2721 int retval;
972dc4de 2722 int hi = hstate_index(h);
a3437870 2723
9a305230
LS
2724 hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
2725 if (!hstate_kobjs[hi])
a3437870
NA
2726 return -ENOMEM;
2727
9a305230 2728 retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
a3437870 2729 if (retval)
9a305230 2730 kobject_put(hstate_kobjs[hi]);
a3437870
NA
2731
2732 return retval;
2733}
2734
2735static void __init hugetlb_sysfs_init(void)
2736{
2737 struct hstate *h;
2738 int err;
2739
2740 hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
2741 if (!hugepages_kobj)
2742 return;
2743
2744 for_each_hstate(h) {
9a305230
LS
2745 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
2746 hstate_kobjs, &hstate_attr_group);
a3437870 2747 if (err)
ffb22af5 2748 pr_err("Hugetlb: Unable to add hstate %s", h->name);
a3437870
NA
2749 }
2750}
2751
9a305230
LS
2752#ifdef CONFIG_NUMA
2753
2754/*
2755 * node_hstate/s - associate per node hstate attributes, via their kobjects,
10fbcf4c
KS
2756 * with node devices in node_devices[] using a parallel array. The array
2757 * index of a node device or _hstate == node id.
2758 * This is here to avoid any static dependency of the node device driver, in
9a305230
LS
2759 * the base kernel, on the hugetlb module.
2760 */
2761struct node_hstate {
2762 struct kobject *hugepages_kobj;
2763 struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
2764};
b4e289a6 2765static struct node_hstate node_hstates[MAX_NUMNODES];
9a305230
LS
2766
2767/*
10fbcf4c 2768 * A subset of global hstate attributes for node devices
9a305230
LS
2769 */
2770static struct attribute *per_node_hstate_attrs[] = {
2771 &nr_hugepages_attr.attr,
2772 &free_hugepages_attr.attr,
2773 &surplus_hugepages_attr.attr,
2774 NULL,
2775};
2776
67e5ed96 2777static const struct attribute_group per_node_hstate_attr_group = {
9a305230
LS
2778 .attrs = per_node_hstate_attrs,
2779};
2780
2781/*
10fbcf4c 2782 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
9a305230
LS
2783 * Returns node id via non-NULL nidp.
2784 */
2785static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
2786{
2787 int nid;
2788
2789 for (nid = 0; nid < nr_node_ids; nid++) {
2790 struct node_hstate *nhs = &node_hstates[nid];
2791 int i;
2792 for (i = 0; i < HUGE_MAX_HSTATE; i++)
2793 if (nhs->hstate_kobjs[i] == kobj) {
2794 if (nidp)
2795 *nidp = nid;
2796 return &hstates[i];
2797 }
2798 }
2799
2800 BUG();
2801 return NULL;
2802}
2803
2804/*
10fbcf4c 2805 * Unregister hstate attributes from a single node device.
9a305230
LS
2806 * No-op if no hstate attributes attached.
2807 */
3cd8b44f 2808static void hugetlb_unregister_node(struct node *node)
9a305230
LS
2809{
2810 struct hstate *h;
10fbcf4c 2811 struct node_hstate *nhs = &node_hstates[node->dev.id];
9a305230
LS
2812
2813 if (!nhs->hugepages_kobj)
9b5e5d0f 2814 return; /* no hstate attributes */
9a305230 2815
972dc4de
AK
2816 for_each_hstate(h) {
2817 int idx = hstate_index(h);
2818 if (nhs->hstate_kobjs[idx]) {
2819 kobject_put(nhs->hstate_kobjs[idx]);
2820 nhs->hstate_kobjs[idx] = NULL;
9a305230 2821 }
972dc4de 2822 }
9a305230
LS
2823
2824 kobject_put(nhs->hugepages_kobj);
2825 nhs->hugepages_kobj = NULL;
2826}
2827
9a305230
LS
2828
2829/*
10fbcf4c 2830 * Register hstate attributes for a single node device.
9a305230
LS
2831 * No-op if attributes already registered.
2832 */
3cd8b44f 2833static void hugetlb_register_node(struct node *node)
9a305230
LS
2834{
2835 struct hstate *h;
10fbcf4c 2836 struct node_hstate *nhs = &node_hstates[node->dev.id];
9a305230
LS
2837 int err;
2838
2839 if (nhs->hugepages_kobj)
2840 return; /* already allocated */
2841
2842 nhs->hugepages_kobj = kobject_create_and_add("hugepages",
10fbcf4c 2843 &node->dev.kobj);
9a305230
LS
2844 if (!nhs->hugepages_kobj)
2845 return;
2846
2847 for_each_hstate(h) {
2848 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
2849 nhs->hstate_kobjs,
2850 &per_node_hstate_attr_group);
2851 if (err) {
ffb22af5
AM
2852 pr_err("Hugetlb: Unable to add hstate %s for node %d\n",
2853 h->name, node->dev.id);
9a305230
LS
2854 hugetlb_unregister_node(node);
2855 break;
2856 }
2857 }
2858}
2859
2860/*
9b5e5d0f 2861 * hugetlb init time: register hstate attributes for all registered node
10fbcf4c
KS
2862 * devices of nodes that have memory. All on-line nodes should have
2863 * registered their associated device by this time.
9a305230 2864 */
7d9ca000 2865static void __init hugetlb_register_all_nodes(void)
9a305230
LS
2866{
2867 int nid;
2868
8cebfcd0 2869 for_each_node_state(nid, N_MEMORY) {
8732794b 2870 struct node *node = node_devices[nid];
10fbcf4c 2871 if (node->dev.id == nid)
9a305230
LS
2872 hugetlb_register_node(node);
2873 }
2874
2875 /*
10fbcf4c 2876 * Let the node device driver know we're here so it can
9a305230
LS
2877 * [un]register hstate attributes on node hotplug.
2878 */
2879 register_hugetlbfs_with_node(hugetlb_register_node,
2880 hugetlb_unregister_node);
2881}
2882#else /* !CONFIG_NUMA */
2883
2884static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
2885{
2886 BUG();
2887 if (nidp)
2888 *nidp = -1;
2889 return NULL;
2890}
2891
9a305230
LS
2892static void hugetlb_register_all_nodes(void) { }
2893
2894#endif
2895
a3437870
NA
2896static int __init hugetlb_init(void)
2897{
8382d914
DB
2898 int i;
2899
457c1b27 2900 if (!hugepages_supported())
0ef89d25 2901 return 0;
a3437870 2902
e11bfbfc 2903 if (!size_to_hstate(default_hstate_size)) {
d715cf80
LH
2904 if (default_hstate_size != 0) {
2905 pr_err("HugeTLB: unsupported default_hugepagesz %lu. Reverting to %lu\n",
2906 default_hstate_size, HPAGE_SIZE);
2907 }
2908
e11bfbfc
NP
2909 default_hstate_size = HPAGE_SIZE;
2910 if (!size_to_hstate(default_hstate_size))
2911 hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
a3437870 2912 }
972dc4de 2913 default_hstate_idx = hstate_index(size_to_hstate(default_hstate_size));
f8b74815
VT
2914 if (default_hstate_max_huge_pages) {
2915 if (!default_hstate.max_huge_pages)
2916 default_hstate.max_huge_pages = default_hstate_max_huge_pages;
2917 }
a3437870
NA
2918
2919 hugetlb_init_hstates();
aa888a74 2920 gather_bootmem_prealloc();
a3437870
NA
2921 report_hugepages();
2922
2923 hugetlb_sysfs_init();
9a305230 2924 hugetlb_register_all_nodes();
7179e7bf 2925 hugetlb_cgroup_file_init();
9a305230 2926
8382d914
DB
2927#ifdef CONFIG_SMP
2928 num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
2929#else
2930 num_fault_mutexes = 1;
2931#endif
c672c7f2 2932 hugetlb_fault_mutex_table =
6da2ec56
KC
2933 kmalloc_array(num_fault_mutexes, sizeof(struct mutex),
2934 GFP_KERNEL);
c672c7f2 2935 BUG_ON(!hugetlb_fault_mutex_table);
8382d914
DB
2936
2937 for (i = 0; i < num_fault_mutexes; i++)
c672c7f2 2938 mutex_init(&hugetlb_fault_mutex_table[i]);
a3437870
NA
2939 return 0;
2940}
3e89e1c5 2941subsys_initcall(hugetlb_init);
a3437870
NA
2942
2943/* Should be called on processing a hugepagesz=... option */
9fee021d
VT
2944void __init hugetlb_bad_size(void)
2945{
2946 parsed_valid_hugepagesz = false;
2947}
2948
d00181b9 2949void __init hugetlb_add_hstate(unsigned int order)
a3437870
NA
2950{
2951 struct hstate *h;
8faa8b07
AK
2952 unsigned long i;
2953
a3437870 2954 if (size_to_hstate(PAGE_SIZE << order)) {
598d8091 2955 pr_warn("hugepagesz= specified twice, ignoring\n");
a3437870
NA
2956 return;
2957 }
47d38344 2958 BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
a3437870 2959 BUG_ON(order == 0);
47d38344 2960 h = &hstates[hugetlb_max_hstate++];
a3437870
NA
2961 h->order = order;
2962 h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
8faa8b07
AK
2963 h->nr_huge_pages = 0;
2964 h->free_huge_pages = 0;
2965 for (i = 0; i < MAX_NUMNODES; ++i)
2966 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
0edaecfa 2967 INIT_LIST_HEAD(&h->hugepage_activelist);
54f18d35
AM
2968 h->next_nid_to_alloc = first_memory_node;
2969 h->next_nid_to_free = first_memory_node;
a3437870
NA
2970 snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
2971 huge_page_size(h)/1024);
8faa8b07 2972
a3437870
NA
2973 parsed_hstate = h;
2974}
2975
e11bfbfc 2976static int __init hugetlb_nrpages_setup(char *s)
a3437870
NA
2977{
2978 unsigned long *mhp;
8faa8b07 2979 static unsigned long *last_mhp;
a3437870 2980
9fee021d
VT
2981 if (!parsed_valid_hugepagesz) {
2982 pr_warn("hugepages = %s preceded by "
2983 "an unsupported hugepagesz, ignoring\n", s);
2984 parsed_valid_hugepagesz = true;
2985 return 1;
2986 }
a3437870 2987 /*
47d38344 2988 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter yet,
a3437870
NA
2989 * so this hugepages= parameter goes to the "default hstate".
2990 */
9fee021d 2991 else if (!hugetlb_max_hstate)
a3437870
NA
2992 mhp = &default_hstate_max_huge_pages;
2993 else
2994 mhp = &parsed_hstate->max_huge_pages;
2995
8faa8b07 2996 if (mhp == last_mhp) {
598d8091 2997 pr_warn("hugepages= specified twice without interleaving hugepagesz=, ignoring\n");
8faa8b07
AK
2998 return 1;
2999 }
3000
a3437870
NA
3001 if (sscanf(s, "%lu", mhp) <= 0)
3002 *mhp = 0;
3003
8faa8b07
AK
3004 /*
3005 * Global state is always initialized later in hugetlb_init.
3006 * But we need to allocate >= MAX_ORDER hstates here early to still
3007 * use the bootmem allocator.
3008 */
47d38344 3009 if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER)
8faa8b07
AK
3010 hugetlb_hstate_alloc_pages(parsed_hstate);
3011
3012 last_mhp = mhp;
3013
a3437870
NA
3014 return 1;
3015}
e11bfbfc
NP
3016__setup("hugepages=", hugetlb_nrpages_setup);
3017
3018static int __init hugetlb_default_setup(char *s)
3019{
3020 default_hstate_size = memparse(s, &s);
3021 return 1;
3022}
3023__setup("default_hugepagesz=", hugetlb_default_setup);
a3437870 3024
8a213460
NA
3025static unsigned int cpuset_mems_nr(unsigned int *array)
3026{
3027 int node;
3028 unsigned int nr = 0;
3029
3030 for_each_node_mask(node, cpuset_current_mems_allowed)
3031 nr += array[node];
3032
3033 return nr;
3034}
3035
3036#ifdef CONFIG_SYSCTL
06808b08
LS
3037static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
3038 struct ctl_table *table, int write,
3039 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 3040{
e5ff2159 3041 struct hstate *h = &default_hstate;
238d3c13 3042 unsigned long tmp = h->max_huge_pages;
08d4a246 3043 int ret;
e5ff2159 3044
457c1b27 3045 if (!hugepages_supported())
86613628 3046 return -EOPNOTSUPP;
457c1b27 3047
e5ff2159
AK
3048 table->data = &tmp;
3049 table->maxlen = sizeof(unsigned long);
08d4a246
MH
3050 ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
3051 if (ret)
3052 goto out;
e5ff2159 3053
238d3c13
DR
3054 if (write)
3055 ret = __nr_hugepages_store_common(obey_mempolicy, h,
3056 NUMA_NO_NODE, tmp, *length);
08d4a246
MH
3057out:
3058 return ret;
1da177e4 3059}
396faf03 3060
06808b08
LS
3061int hugetlb_sysctl_handler(struct ctl_table *table, int write,
3062 void __user *buffer, size_t *length, loff_t *ppos)
3063{
3064
3065 return hugetlb_sysctl_handler_common(false, table, write,
3066 buffer, length, ppos);
3067}
3068
3069#ifdef CONFIG_NUMA
3070int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
3071 void __user *buffer, size_t *length, loff_t *ppos)
3072{
3073 return hugetlb_sysctl_handler_common(true, table, write,
3074 buffer, length, ppos);
3075}
3076#endif /* CONFIG_NUMA */
3077
a3d0c6aa 3078int hugetlb_overcommit_handler(struct ctl_table *table, int write,
8d65af78 3079 void __user *buffer,
a3d0c6aa
NA
3080 size_t *length, loff_t *ppos)
3081{
a5516438 3082 struct hstate *h = &default_hstate;
e5ff2159 3083 unsigned long tmp;
08d4a246 3084 int ret;
e5ff2159 3085
457c1b27 3086 if (!hugepages_supported())
86613628 3087 return -EOPNOTSUPP;
457c1b27 3088
c033a93c 3089 tmp = h->nr_overcommit_huge_pages;
e5ff2159 3090
bae7f4ae 3091 if (write && hstate_is_gigantic(h))
adbe8726
EM
3092 return -EINVAL;
3093
e5ff2159
AK
3094 table->data = &tmp;
3095 table->maxlen = sizeof(unsigned long);
08d4a246
MH
3096 ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
3097 if (ret)
3098 goto out;
e5ff2159
AK
3099
3100 if (write) {
3101 spin_lock(&hugetlb_lock);
3102 h->nr_overcommit_huge_pages = tmp;
3103 spin_unlock(&hugetlb_lock);
3104 }
08d4a246
MH
3105out:
3106 return ret;
a3d0c6aa
NA
3107}
3108
1da177e4
LT
3109#endif /* CONFIG_SYSCTL */
3110
e1759c21 3111void hugetlb_report_meminfo(struct seq_file *m)
1da177e4 3112{
fcb2b0c5
RG
3113 struct hstate *h;
3114 unsigned long total = 0;
3115
457c1b27
NA
3116 if (!hugepages_supported())
3117 return;
fcb2b0c5
RG
3118
3119 for_each_hstate(h) {
3120 unsigned long count = h->nr_huge_pages;
3121
3122 total += (PAGE_SIZE << huge_page_order(h)) * count;
3123
3124 if (h == &default_hstate)
3125 seq_printf(m,
3126 "HugePages_Total: %5lu\n"
3127 "HugePages_Free: %5lu\n"
3128 "HugePages_Rsvd: %5lu\n"
3129 "HugePages_Surp: %5lu\n"
3130 "Hugepagesize: %8lu kB\n",
3131 count,
3132 h->free_huge_pages,
3133 h->resv_huge_pages,
3134 h->surplus_huge_pages,
3135 (PAGE_SIZE << huge_page_order(h)) / 1024);
3136 }
3137
3138 seq_printf(m, "Hugetlb: %8lu kB\n", total / 1024);
1da177e4
LT
3139}
3140
3141int hugetlb_report_node_meminfo(int nid, char *buf)
3142{
a5516438 3143 struct hstate *h = &default_hstate;
457c1b27
NA
3144 if (!hugepages_supported())
3145 return 0;
1da177e4
LT
3146 return sprintf(buf,
3147 "Node %d HugePages_Total: %5u\n"
a1de0919
NA
3148 "Node %d HugePages_Free: %5u\n"
3149 "Node %d HugePages_Surp: %5u\n",
a5516438
AK
3150 nid, h->nr_huge_pages_node[nid],
3151 nid, h->free_huge_pages_node[nid],
3152 nid, h->surplus_huge_pages_node[nid]);
1da177e4
LT
3153}
3154
949f7ec5
DR
3155void hugetlb_show_meminfo(void)
3156{
3157 struct hstate *h;
3158 int nid;
3159
457c1b27
NA
3160 if (!hugepages_supported())
3161 return;
3162
949f7ec5
DR
3163 for_each_node_state(nid, N_MEMORY)
3164 for_each_hstate(h)
3165 pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
3166 nid,
3167 h->nr_huge_pages_node[nid],
3168 h->free_huge_pages_node[nid],
3169 h->surplus_huge_pages_node[nid],
3170 1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
3171}
3172
5d317b2b
NH
3173void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
3174{
3175 seq_printf(m, "HugetlbPages:\t%8lu kB\n",
3176 atomic_long_read(&mm->hugetlb_usage) << (PAGE_SHIFT - 10));
3177}
3178
1da177e4
LT
3179/* Return the number pages of memory we physically have, in PAGE_SIZE units. */
3180unsigned long hugetlb_total_pages(void)
3181{
d0028588
WL
3182 struct hstate *h;
3183 unsigned long nr_total_pages = 0;
3184
3185 for_each_hstate(h)
3186 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
3187 return nr_total_pages;
1da177e4 3188}
1da177e4 3189
a5516438 3190static int hugetlb_acct_memory(struct hstate *h, long delta)
fc1b8a73
MG
3191{
3192 int ret = -ENOMEM;
3193
3194 spin_lock(&hugetlb_lock);
3195 /*
3196 * When cpuset is configured, it breaks the strict hugetlb page
3197 * reservation as the accounting is done on a global variable. Such
3198 * reservation is completely rubbish in the presence of cpuset because
3199 * the reservation is not checked against page availability for the
3200 * current cpuset. Application can still potentially OOM'ed by kernel
3201 * with lack of free htlb page in cpuset that the task is in.
3202 * Attempt to enforce strict accounting with cpuset is almost
3203 * impossible (or too ugly) because cpuset is too fluid that
3204 * task or memory node can be dynamically moved between cpusets.
3205 *
3206 * The change of semantics for shared hugetlb mapping with cpuset is
3207 * undesirable. However, in order to preserve some of the semantics,
3208 * we fall back to check against current free page availability as
3209 * a best attempt and hopefully to minimize the impact of changing
3210 * semantics that cpuset has.
3211 */
3212 if (delta > 0) {
a5516438 3213 if (gather_surplus_pages(h, delta) < 0)
fc1b8a73
MG
3214 goto out;
3215
a5516438
AK
3216 if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
3217 return_unused_surplus_pages(h, delta);
fc1b8a73
MG
3218 goto out;
3219 }
3220 }
3221
3222 ret = 0;
3223 if (delta < 0)
a5516438 3224 return_unused_surplus_pages(h, (unsigned long) -delta);
fc1b8a73
MG
3225
3226out:
3227 spin_unlock(&hugetlb_lock);
3228 return ret;
3229}
3230
84afd99b
AW
3231static void hugetlb_vm_op_open(struct vm_area_struct *vma)
3232{
f522c3ac 3233 struct resv_map *resv = vma_resv_map(vma);
84afd99b
AW
3234
3235 /*
3236 * This new VMA should share its siblings reservation map if present.
3237 * The VMA will only ever have a valid reservation map pointer where
3238 * it is being copied for another still existing VMA. As that VMA
25985edc 3239 * has a reference to the reservation map it cannot disappear until
84afd99b
AW
3240 * after this open call completes. It is therefore safe to take a
3241 * new reference here without additional locking.
3242 */
4e35f483 3243 if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
f522c3ac 3244 kref_get(&resv->refs);
84afd99b
AW
3245}
3246
a1e78772
MG
3247static void hugetlb_vm_op_close(struct vm_area_struct *vma)
3248{
a5516438 3249 struct hstate *h = hstate_vma(vma);
f522c3ac 3250 struct resv_map *resv = vma_resv_map(vma);
90481622 3251 struct hugepage_subpool *spool = subpool_vma(vma);
4e35f483 3252 unsigned long reserve, start, end;
1c5ecae3 3253 long gbl_reserve;
84afd99b 3254
4e35f483
JK
3255 if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
3256 return;
84afd99b 3257
4e35f483
JK
3258 start = vma_hugecache_offset(h, vma, vma->vm_start);
3259 end = vma_hugecache_offset(h, vma, vma->vm_end);
84afd99b 3260
4e35f483 3261 reserve = (end - start) - region_count(resv, start, end);
84afd99b 3262
4e35f483
JK
3263 kref_put(&resv->refs, resv_map_release);
3264
3265 if (reserve) {
1c5ecae3
MK
3266 /*
3267 * Decrement reserve counts. The global reserve count may be
3268 * adjusted if the subpool has a minimum size.
3269 */
3270 gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
3271 hugetlb_acct_memory(h, -gbl_reserve);
84afd99b 3272 }
a1e78772
MG
3273}
3274
31383c68
DW
3275static int hugetlb_vm_op_split(struct vm_area_struct *vma, unsigned long addr)
3276{
3277 if (addr & ~(huge_page_mask(hstate_vma(vma))))
3278 return -EINVAL;
3279 return 0;
3280}
3281
05ea8860
DW
3282static unsigned long hugetlb_vm_op_pagesize(struct vm_area_struct *vma)
3283{
3284 struct hstate *hstate = hstate_vma(vma);
3285
3286 return 1UL << huge_page_shift(hstate);
3287}
3288
1da177e4
LT
3289/*
3290 * We cannot handle pagefaults against hugetlb pages at all. They cause
3291 * handle_mm_fault() to try to instantiate regular-sized pages in the
3292 * hugegpage VMA. do_page_fault() is supposed to trap this, so BUG is we get
3293 * this far.
3294 */
b3ec9f33 3295static vm_fault_t hugetlb_vm_op_fault(struct vm_fault *vmf)
1da177e4
LT
3296{
3297 BUG();
d0217ac0 3298 return 0;
1da177e4
LT
3299}
3300
eec3636a
JC
3301/*
3302 * When a new function is introduced to vm_operations_struct and added
3303 * to hugetlb_vm_ops, please consider adding the function to shm_vm_ops.
3304 * This is because under System V memory model, mappings created via
3305 * shmget/shmat with "huge page" specified are backed by hugetlbfs files,
3306 * their original vm_ops are overwritten with shm_vm_ops.
3307 */
f0f37e2f 3308const struct vm_operations_struct hugetlb_vm_ops = {
d0217ac0 3309 .fault = hugetlb_vm_op_fault,
84afd99b 3310 .open = hugetlb_vm_op_open,
a1e78772 3311 .close = hugetlb_vm_op_close,
31383c68 3312 .split = hugetlb_vm_op_split,
05ea8860 3313 .pagesize = hugetlb_vm_op_pagesize,
1da177e4
LT
3314};
3315
1e8f889b
DG
3316static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
3317 int writable)
63551ae0
DG
3318{
3319 pte_t entry;
3320
1e8f889b 3321 if (writable) {
106c992a
GS
3322 entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
3323 vma->vm_page_prot)));
63551ae0 3324 } else {
106c992a
GS
3325 entry = huge_pte_wrprotect(mk_huge_pte(page,
3326 vma->vm_page_prot));
63551ae0
DG
3327 }
3328 entry = pte_mkyoung(entry);
3329 entry = pte_mkhuge(entry);
d9ed9faa 3330 entry = arch_make_huge_pte(entry, vma, page, writable);
63551ae0
DG
3331
3332 return entry;
3333}
3334
1e8f889b
DG
3335static void set_huge_ptep_writable(struct vm_area_struct *vma,
3336 unsigned long address, pte_t *ptep)
3337{
3338 pte_t entry;
3339
106c992a 3340 entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
32f84528 3341 if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
4b3073e1 3342 update_mmu_cache(vma, address, ptep);
1e8f889b
DG
3343}
3344
d5ed7444 3345bool is_hugetlb_entry_migration(pte_t pte)
4a705fef
NH
3346{
3347 swp_entry_t swp;
3348
3349 if (huge_pte_none(pte) || pte_present(pte))
d5ed7444 3350 return false;
4a705fef
NH
3351 swp = pte_to_swp_entry(pte);
3352 if (non_swap_entry(swp) && is_migration_entry(swp))
d5ed7444 3353 return true;
4a705fef 3354 else
d5ed7444 3355 return false;
4a705fef
NH
3356}
3357
3358static int is_hugetlb_entry_hwpoisoned(pte_t pte)
3359{
3360 swp_entry_t swp;
3361
3362 if (huge_pte_none(pte) || pte_present(pte))
3363 return 0;
3364 swp = pte_to_swp_entry(pte);
3365 if (non_swap_entry(swp) && is_hwpoison_entry(swp))
3366 return 1;
3367 else
3368 return 0;
3369}
1e8f889b 3370
63551ae0
DG
3371int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
3372 struct vm_area_struct *vma)
3373{
5e41540c 3374 pte_t *src_pte, *dst_pte, entry, dst_entry;
63551ae0 3375 struct page *ptepage;
1c59827d 3376 unsigned long addr;
1e8f889b 3377 int cow;
a5516438
AK
3378 struct hstate *h = hstate_vma(vma);
3379 unsigned long sz = huge_page_size(h);
ac46d4f3 3380 struct mmu_notifier_range range;
e8569dd2 3381 int ret = 0;
1e8f889b
DG
3382
3383 cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
63551ae0 3384
ac46d4f3 3385 if (cow) {
7269f999 3386 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, src,
6f4f13e8 3387 vma->vm_start,
ac46d4f3
JG
3388 vma->vm_end);
3389 mmu_notifier_invalidate_range_start(&range);
3390 }
e8569dd2 3391
a5516438 3392 for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
cb900f41 3393 spinlock_t *src_ptl, *dst_ptl;
7868a208 3394 src_pte = huge_pte_offset(src, addr, sz);
c74df32c
HD
3395 if (!src_pte)
3396 continue;
a5516438 3397 dst_pte = huge_pte_alloc(dst, addr, sz);
e8569dd2
AS
3398 if (!dst_pte) {
3399 ret = -ENOMEM;
3400 break;
3401 }
c5c99429 3402
5e41540c
MK
3403 /*
3404 * If the pagetables are shared don't copy or take references.
3405 * dst_pte == src_pte is the common case of src/dest sharing.
3406 *
3407 * However, src could have 'unshared' and dst shares with
3408 * another vma. If dst_pte !none, this implies sharing.
3409 * Check here before taking page table lock, and once again
3410 * after taking the lock below.
3411 */
3412 dst_entry = huge_ptep_get(dst_pte);
3413 if ((dst_pte == src_pte) || !huge_pte_none(dst_entry))
c5c99429
LW
3414 continue;
3415
cb900f41
KS
3416 dst_ptl = huge_pte_lock(h, dst, dst_pte);
3417 src_ptl = huge_pte_lockptr(h, src, src_pte);
3418 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
4a705fef 3419 entry = huge_ptep_get(src_pte);
5e41540c
MK
3420 dst_entry = huge_ptep_get(dst_pte);
3421 if (huge_pte_none(entry) || !huge_pte_none(dst_entry)) {
3422 /*
3423 * Skip if src entry none. Also, skip in the
3424 * unlikely case dst entry !none as this implies
3425 * sharing with another vma.
3426 */
4a705fef
NH
3427 ;
3428 } else if (unlikely(is_hugetlb_entry_migration(entry) ||
3429 is_hugetlb_entry_hwpoisoned(entry))) {
3430 swp_entry_t swp_entry = pte_to_swp_entry(entry);
3431
3432 if (is_write_migration_entry(swp_entry) && cow) {
3433 /*
3434 * COW mappings require pages in both
3435 * parent and child to be set to read.
3436 */
3437 make_migration_entry_read(&swp_entry);
3438 entry = swp_entry_to_pte(swp_entry);
e5251fd4
PA
3439 set_huge_swap_pte_at(src, addr, src_pte,
3440 entry, sz);
4a705fef 3441 }
e5251fd4 3442 set_huge_swap_pte_at(dst, addr, dst_pte, entry, sz);
4a705fef 3443 } else {
34ee645e 3444 if (cow) {
0f10851e
JG
3445 /*
3446 * No need to notify as we are downgrading page
3447 * table protection not changing it to point
3448 * to a new page.
3449 *
ad56b738 3450 * See Documentation/vm/mmu_notifier.rst
0f10851e 3451 */
7f2e9525 3452 huge_ptep_set_wrprotect(src, addr, src_pte);
34ee645e 3453 }
0253d634 3454 entry = huge_ptep_get(src_pte);
1c59827d
HD
3455 ptepage = pte_page(entry);
3456 get_page(ptepage);
53f9263b 3457 page_dup_rmap(ptepage, true);
1c59827d 3458 set_huge_pte_at(dst, addr, dst_pte, entry);
5d317b2b 3459 hugetlb_count_add(pages_per_huge_page(h), dst);
1c59827d 3460 }
cb900f41
KS
3461 spin_unlock(src_ptl);
3462 spin_unlock(dst_ptl);
63551ae0 3463 }
63551ae0 3464
e8569dd2 3465 if (cow)
ac46d4f3 3466 mmu_notifier_invalidate_range_end(&range);
e8569dd2
AS
3467
3468 return ret;
63551ae0
DG
3469}
3470
24669e58
AK
3471void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
3472 unsigned long start, unsigned long end,
3473 struct page *ref_page)
63551ae0
DG
3474{
3475 struct mm_struct *mm = vma->vm_mm;
3476 unsigned long address;
c7546f8f 3477 pte_t *ptep;
63551ae0 3478 pte_t pte;
cb900f41 3479 spinlock_t *ptl;
63551ae0 3480 struct page *page;
a5516438
AK
3481 struct hstate *h = hstate_vma(vma);
3482 unsigned long sz = huge_page_size(h);
ac46d4f3 3483 struct mmu_notifier_range range;
a5516438 3484
63551ae0 3485 WARN_ON(!is_vm_hugetlb_page(vma));
a5516438
AK
3486 BUG_ON(start & ~huge_page_mask(h));
3487 BUG_ON(end & ~huge_page_mask(h));
63551ae0 3488
07e32661
AK
3489 /*
3490 * This is a hugetlb vma, all the pte entries should point
3491 * to huge page.
3492 */
ed6a7935 3493 tlb_change_page_size(tlb, sz);
24669e58 3494 tlb_start_vma(tlb, vma);
dff11abe
MK
3495
3496 /*
3497 * If sharing possible, alert mmu notifiers of worst case.
3498 */
6f4f13e8
JG
3499 mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, mm, start,
3500 end);
ac46d4f3
JG
3501 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
3502 mmu_notifier_invalidate_range_start(&range);
569f48b8 3503 address = start;
569f48b8 3504 for (; address < end; address += sz) {
7868a208 3505 ptep = huge_pte_offset(mm, address, sz);
4c887265 3506 if (!ptep)
c7546f8f
DG
3507 continue;
3508
cb900f41 3509 ptl = huge_pte_lock(h, mm, ptep);
31d49da5
AK
3510 if (huge_pmd_unshare(mm, &address, ptep)) {
3511 spin_unlock(ptl);
dff11abe
MK
3512 /*
3513 * We just unmapped a page of PMDs by clearing a PUD.
3514 * The caller's TLB flush range should cover this area.
3515 */
31d49da5
AK
3516 continue;
3517 }
39dde65c 3518
6629326b 3519 pte = huge_ptep_get(ptep);
31d49da5
AK
3520 if (huge_pte_none(pte)) {
3521 spin_unlock(ptl);
3522 continue;
3523 }
6629326b
HD
3524
3525 /*
9fbc1f63
NH
3526 * Migrating hugepage or HWPoisoned hugepage is already
3527 * unmapped and its refcount is dropped, so just clear pte here.
6629326b 3528 */
9fbc1f63 3529 if (unlikely(!pte_present(pte))) {
9386fac3 3530 huge_pte_clear(mm, address, ptep, sz);
31d49da5
AK
3531 spin_unlock(ptl);
3532 continue;
8c4894c6 3533 }
6629326b
HD
3534
3535 page = pte_page(pte);
04f2cbe3
MG
3536 /*
3537 * If a reference page is supplied, it is because a specific
3538 * page is being unmapped, not a range. Ensure the page we
3539 * are about to unmap is the actual page of interest.
3540 */
3541 if (ref_page) {
31d49da5
AK
3542 if (page != ref_page) {
3543 spin_unlock(ptl);
3544 continue;
3545 }
04f2cbe3
MG
3546 /*
3547 * Mark the VMA as having unmapped its page so that
3548 * future faults in this VMA will fail rather than
3549 * looking like data was lost
3550 */
3551 set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
3552 }
3553
c7546f8f 3554 pte = huge_ptep_get_and_clear(mm, address, ptep);
b528e4b6 3555 tlb_remove_huge_tlb_entry(h, tlb, ptep, address);
106c992a 3556 if (huge_pte_dirty(pte))
6649a386 3557 set_page_dirty(page);
9e81130b 3558
5d317b2b 3559 hugetlb_count_sub(pages_per_huge_page(h), mm);
d281ee61 3560 page_remove_rmap(page, true);
31d49da5 3561
cb900f41 3562 spin_unlock(ptl);
e77b0852 3563 tlb_remove_page_size(tlb, page, huge_page_size(h));
31d49da5
AK
3564 /*
3565 * Bail out after unmapping reference page if supplied
3566 */
3567 if (ref_page)
3568 break;
fe1668ae 3569 }
ac46d4f3 3570 mmu_notifier_invalidate_range_end(&range);
24669e58 3571 tlb_end_vma(tlb, vma);
1da177e4 3572}
63551ae0 3573
d833352a
MG
3574void __unmap_hugepage_range_final(struct mmu_gather *tlb,
3575 struct vm_area_struct *vma, unsigned long start,
3576 unsigned long end, struct page *ref_page)
3577{
3578 __unmap_hugepage_range(tlb, vma, start, end, ref_page);
3579
3580 /*
3581 * Clear this flag so that x86's huge_pmd_share page_table_shareable
3582 * test will fail on a vma being torn down, and not grab a page table
3583 * on its way out. We're lucky that the flag has such an appropriate
3584 * name, and can in fact be safely cleared here. We could clear it
3585 * before the __unmap_hugepage_range above, but all that's necessary
c8c06efa 3586 * is to clear it before releasing the i_mmap_rwsem. This works
d833352a 3587 * because in the context this is called, the VMA is about to be
c8c06efa 3588 * destroyed and the i_mmap_rwsem is held.
d833352a
MG
3589 */
3590 vma->vm_flags &= ~VM_MAYSHARE;
3591}
3592
502717f4 3593void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
04f2cbe3 3594 unsigned long end, struct page *ref_page)
502717f4 3595{
24669e58
AK
3596 struct mm_struct *mm;
3597 struct mmu_gather tlb;
dff11abe
MK
3598 unsigned long tlb_start = start;
3599 unsigned long tlb_end = end;
3600
3601 /*
3602 * If shared PMDs were possibly used within this vma range, adjust
3603 * start/end for worst case tlb flushing.
3604 * Note that we can not be sure if PMDs are shared until we try to
3605 * unmap pages. However, we want to make sure TLB flushing covers
3606 * the largest possible range.
3607 */
3608 adjust_range_if_pmd_sharing_possible(vma, &tlb_start, &tlb_end);
24669e58
AK
3609
3610 mm = vma->vm_mm;
3611
dff11abe 3612 tlb_gather_mmu(&tlb, mm, tlb_start, tlb_end);
24669e58 3613 __unmap_hugepage_range(&tlb, vma, start, end, ref_page);
dff11abe 3614 tlb_finish_mmu(&tlb, tlb_start, tlb_end);
502717f4
CK
3615}
3616
04f2cbe3
MG
3617/*
3618 * This is called when the original mapper is failing to COW a MAP_PRIVATE
3619 * mappping it owns the reserve page for. The intention is to unmap the page
3620 * from other VMAs and let the children be SIGKILLed if they are faulting the
3621 * same region.
3622 */
2f4612af
DB
3623static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
3624 struct page *page, unsigned long address)
04f2cbe3 3625{
7526674d 3626 struct hstate *h = hstate_vma(vma);
04f2cbe3
MG
3627 struct vm_area_struct *iter_vma;
3628 struct address_space *mapping;
04f2cbe3
MG
3629 pgoff_t pgoff;
3630
3631 /*
3632 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
3633 * from page cache lookup which is in HPAGE_SIZE units.
3634 */
7526674d 3635 address = address & huge_page_mask(h);
36e4f20a
MH
3636 pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
3637 vma->vm_pgoff;
93c76a3d 3638 mapping = vma->vm_file->f_mapping;
04f2cbe3 3639
4eb2b1dc
MG
3640 /*
3641 * Take the mapping lock for the duration of the table walk. As
3642 * this mapping should be shared between all the VMAs,
3643 * __unmap_hugepage_range() is called as the lock is already held
3644 */
83cde9e8 3645 i_mmap_lock_write(mapping);
6b2dbba8 3646 vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
04f2cbe3
MG
3647 /* Do not unmap the current VMA */
3648 if (iter_vma == vma)
3649 continue;
3650
2f84a899
MG
3651 /*
3652 * Shared VMAs have their own reserves and do not affect
3653 * MAP_PRIVATE accounting but it is possible that a shared
3654 * VMA is using the same page so check and skip such VMAs.
3655 */
3656 if (iter_vma->vm_flags & VM_MAYSHARE)
3657 continue;
3658
04f2cbe3
MG
3659 /*
3660 * Unmap the page from other VMAs without their own reserves.
3661 * They get marked to be SIGKILLed if they fault in these
3662 * areas. This is because a future no-page fault on this VMA
3663 * could insert a zeroed page instead of the data existing
3664 * from the time of fork. This would look like data corruption
3665 */
3666 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
24669e58
AK
3667 unmap_hugepage_range(iter_vma, address,
3668 address + huge_page_size(h), page);
04f2cbe3 3669 }
83cde9e8 3670 i_mmap_unlock_write(mapping);
04f2cbe3
MG
3671}
3672
0fe6e20b
NH
3673/*
3674 * Hugetlb_cow() should be called with page lock of the original hugepage held.
ef009b25
MH
3675 * Called with hugetlb_instantiation_mutex held and pte_page locked so we
3676 * cannot race with other handlers or page migration.
3677 * Keep the pte_same checks anyway to make transition from the mutex easier.
0fe6e20b 3678 */
2b740303 3679static vm_fault_t hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
974e6d66 3680 unsigned long address, pte_t *ptep,
3999f52e 3681 struct page *pagecache_page, spinlock_t *ptl)
1e8f889b 3682{
3999f52e 3683 pte_t pte;
a5516438 3684 struct hstate *h = hstate_vma(vma);
1e8f889b 3685 struct page *old_page, *new_page;
2b740303
SJ
3686 int outside_reserve = 0;
3687 vm_fault_t ret = 0;
974e6d66 3688 unsigned long haddr = address & huge_page_mask(h);
ac46d4f3 3689 struct mmu_notifier_range range;
1e8f889b 3690
3999f52e 3691 pte = huge_ptep_get(ptep);
1e8f889b
DG
3692 old_page = pte_page(pte);
3693
04f2cbe3 3694retry_avoidcopy:
1e8f889b
DG
3695 /* If no-one else is actually using this page, avoid the copy
3696 * and just make the page writable */
37a2140d 3697 if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
5a49973d 3698 page_move_anon_rmap(old_page, vma);
5b7a1d40 3699 set_huge_ptep_writable(vma, haddr, ptep);
83c54070 3700 return 0;
1e8f889b
DG
3701 }
3702
04f2cbe3
MG
3703 /*
3704 * If the process that created a MAP_PRIVATE mapping is about to
3705 * perform a COW due to a shared page count, attempt to satisfy
3706 * the allocation without using the existing reserves. The pagecache
3707 * page is used to determine if the reserve at this address was
3708 * consumed or not. If reserves were used, a partial faulted mapping
3709 * at the time of fork() could consume its reserves on COW instead
3710 * of the full address range.
3711 */
5944d011 3712 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
04f2cbe3
MG
3713 old_page != pagecache_page)
3714 outside_reserve = 1;
3715
09cbfeaf 3716 get_page(old_page);
b76c8cfb 3717
ad4404a2
DB
3718 /*
3719 * Drop page table lock as buddy allocator may be called. It will
3720 * be acquired again before returning to the caller, as expected.
3721 */
cb900f41 3722 spin_unlock(ptl);
5b7a1d40 3723 new_page = alloc_huge_page(vma, haddr, outside_reserve);
1e8f889b 3724
2fc39cec 3725 if (IS_ERR(new_page)) {
04f2cbe3
MG
3726 /*
3727 * If a process owning a MAP_PRIVATE mapping fails to COW,
3728 * it is due to references held by a child and an insufficient
3729 * huge page pool. To guarantee the original mappers
3730 * reliability, unmap the page from child processes. The child
3731 * may get SIGKILLed if it later faults.
3732 */
3733 if (outside_reserve) {
09cbfeaf 3734 put_page(old_page);
04f2cbe3 3735 BUG_ON(huge_pte_none(pte));
5b7a1d40 3736 unmap_ref_private(mm, vma, old_page, haddr);
2f4612af
DB
3737 BUG_ON(huge_pte_none(pte));
3738 spin_lock(ptl);
5b7a1d40 3739 ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
2f4612af
DB
3740 if (likely(ptep &&
3741 pte_same(huge_ptep_get(ptep), pte)))
3742 goto retry_avoidcopy;
3743 /*
3744 * race occurs while re-acquiring page table
3745 * lock, and our job is done.
3746 */
3747 return 0;
04f2cbe3
MG
3748 }
3749
2b740303 3750 ret = vmf_error(PTR_ERR(new_page));
ad4404a2 3751 goto out_release_old;
1e8f889b
DG
3752 }
3753
0fe6e20b
NH
3754 /*
3755 * When the original hugepage is shared one, it does not have
3756 * anon_vma prepared.
3757 */
44e2aa93 3758 if (unlikely(anon_vma_prepare(vma))) {
ad4404a2
DB
3759 ret = VM_FAULT_OOM;
3760 goto out_release_all;
44e2aa93 3761 }
0fe6e20b 3762
974e6d66 3763 copy_user_huge_page(new_page, old_page, address, vma,
47ad8475 3764 pages_per_huge_page(h));
0ed361de 3765 __SetPageUptodate(new_page);
1e8f889b 3766
7269f999 3767 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, haddr,
6f4f13e8 3768 haddr + huge_page_size(h));
ac46d4f3 3769 mmu_notifier_invalidate_range_start(&range);
ad4404a2 3770
b76c8cfb 3771 /*
cb900f41 3772 * Retake the page table lock to check for racing updates
b76c8cfb
LW
3773 * before the page tables are altered
3774 */
cb900f41 3775 spin_lock(ptl);
5b7a1d40 3776 ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
a9af0c5d 3777 if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
07443a85
JK
3778 ClearPagePrivate(new_page);
3779
1e8f889b 3780 /* Break COW */
5b7a1d40 3781 huge_ptep_clear_flush(vma, haddr, ptep);
ac46d4f3 3782 mmu_notifier_invalidate_range(mm, range.start, range.end);
5b7a1d40 3783 set_huge_pte_at(mm, haddr, ptep,
1e8f889b 3784 make_huge_pte(vma, new_page, 1));
d281ee61 3785 page_remove_rmap(old_page, true);
5b7a1d40 3786 hugepage_add_new_anon_rmap(new_page, vma, haddr);
cb6acd01 3787 set_page_huge_active(new_page);
1e8f889b
DG
3788 /* Make the old page be freed below */
3789 new_page = old_page;
3790 }
cb900f41 3791 spin_unlock(ptl);
ac46d4f3 3792 mmu_notifier_invalidate_range_end(&range);
ad4404a2 3793out_release_all:
5b7a1d40 3794 restore_reserve_on_error(h, vma, haddr, new_page);
09cbfeaf 3795 put_page(new_page);
ad4404a2 3796out_release_old:
09cbfeaf 3797 put_page(old_page);
8312034f 3798
ad4404a2
DB
3799 spin_lock(ptl); /* Caller expects lock to be held */
3800 return ret;
1e8f889b
DG
3801}
3802
04f2cbe3 3803/* Return the pagecache page at a given address within a VMA */
a5516438
AK
3804static struct page *hugetlbfs_pagecache_page(struct hstate *h,
3805 struct vm_area_struct *vma, unsigned long address)
04f2cbe3
MG
3806{
3807 struct address_space *mapping;
e7c4b0bf 3808 pgoff_t idx;
04f2cbe3
MG
3809
3810 mapping = vma->vm_file->f_mapping;
a5516438 3811 idx = vma_hugecache_offset(h, vma, address);
04f2cbe3
MG
3812
3813 return find_lock_page(mapping, idx);
3814}
3815
3ae77f43
HD
3816/*
3817 * Return whether there is a pagecache page to back given address within VMA.
3818 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
3819 */
3820static bool hugetlbfs_pagecache_present(struct hstate *h,
2a15efc9
HD
3821 struct vm_area_struct *vma, unsigned long address)
3822{
3823 struct address_space *mapping;
3824 pgoff_t idx;
3825 struct page *page;
3826
3827 mapping = vma->vm_file->f_mapping;
3828 idx = vma_hugecache_offset(h, vma, address);
3829
3830 page = find_get_page(mapping, idx);
3831 if (page)
3832 put_page(page);
3833 return page != NULL;
3834}
3835
ab76ad54
MK
3836int huge_add_to_page_cache(struct page *page, struct address_space *mapping,
3837 pgoff_t idx)
3838{
3839 struct inode *inode = mapping->host;
3840 struct hstate *h = hstate_inode(inode);
3841 int err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
3842
3843 if (err)
3844 return err;
3845 ClearPagePrivate(page);
3846
22146c3c
MK
3847 /*
3848 * set page dirty so that it will not be removed from cache/file
3849 * by non-hugetlbfs specific code paths.
3850 */
3851 set_page_dirty(page);
3852
ab76ad54
MK
3853 spin_lock(&inode->i_lock);
3854 inode->i_blocks += blocks_per_huge_page(h);
3855 spin_unlock(&inode->i_lock);
3856 return 0;
3857}
3858
2b740303
SJ
3859static vm_fault_t hugetlb_no_page(struct mm_struct *mm,
3860 struct vm_area_struct *vma,
3861 struct address_space *mapping, pgoff_t idx,
3862 unsigned long address, pte_t *ptep, unsigned int flags)
ac9b9c66 3863{
a5516438 3864 struct hstate *h = hstate_vma(vma);
2b740303 3865 vm_fault_t ret = VM_FAULT_SIGBUS;
409eb8c2 3866 int anon_rmap = 0;
4c887265 3867 unsigned long size;
4c887265 3868 struct page *page;
1e8f889b 3869 pte_t new_pte;
cb900f41 3870 spinlock_t *ptl;
285b8dca 3871 unsigned long haddr = address & huge_page_mask(h);
cb6acd01 3872 bool new_page = false;
4c887265 3873
04f2cbe3
MG
3874 /*
3875 * Currently, we are forced to kill the process in the event the
3876 * original mapper has unmapped pages from the child due to a failed
25985edc 3877 * COW. Warn that such a situation has occurred as it may not be obvious
04f2cbe3
MG
3878 */
3879 if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
910154d5 3880 pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n",
ffb22af5 3881 current->pid);
04f2cbe3
MG
3882 return ret;
3883 }
3884
4c887265 3885 /*
e7c58097
MK
3886 * Use page lock to guard against racing truncation
3887 * before we get page_table_lock.
4c887265 3888 */
6bda666a
CL
3889retry:
3890 page = find_lock_page(mapping, idx);
3891 if (!page) {
e7c58097
MK
3892 size = i_size_read(mapping->host) >> huge_page_shift(h);
3893 if (idx >= size)
3894 goto out;
3895
1a1aad8a
MK
3896 /*
3897 * Check for page in userfault range
3898 */
3899 if (userfaultfd_missing(vma)) {
3900 u32 hash;
3901 struct vm_fault vmf = {
3902 .vma = vma,
285b8dca 3903 .address = haddr,
1a1aad8a
MK
3904 .flags = flags,
3905 /*
3906 * Hard to debug if it ends up being
3907 * used by a callee that assumes
3908 * something about the other
3909 * uninitialized fields... same as in
3910 * memory.c
3911 */
3912 };
3913
3914 /*
ddeaab32
MK
3915 * hugetlb_fault_mutex must be dropped before
3916 * handling userfault. Reacquire after handling
3917 * fault to make calling code simpler.
1a1aad8a 3918 */
1b426bac 3919 hash = hugetlb_fault_mutex_hash(h, mapping, idx, haddr);
1a1aad8a
MK
3920 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
3921 ret = handle_userfault(&vmf, VM_UFFD_MISSING);
3922 mutex_lock(&hugetlb_fault_mutex_table[hash]);
3923 goto out;
3924 }
3925
285b8dca 3926 page = alloc_huge_page(vma, haddr, 0);
2fc39cec 3927 if (IS_ERR(page)) {
4643d67e
MK
3928 /*
3929 * Returning error will result in faulting task being
3930 * sent SIGBUS. The hugetlb fault mutex prevents two
3931 * tasks from racing to fault in the same page which
3932 * could result in false unable to allocate errors.
3933 * Page migration does not take the fault mutex, but
3934 * does a clear then write of pte's under page table
3935 * lock. Page fault code could race with migration,
3936 * notice the clear pte and try to allocate a page
3937 * here. Before returning error, get ptl and make
3938 * sure there really is no pte entry.
3939 */
3940 ptl = huge_pte_lock(h, mm, ptep);
3941 if (!huge_pte_none(huge_ptep_get(ptep))) {
3942 ret = 0;
3943 spin_unlock(ptl);
3944 goto out;
3945 }
3946 spin_unlock(ptl);
2b740303 3947 ret = vmf_error(PTR_ERR(page));
6bda666a
CL
3948 goto out;
3949 }
47ad8475 3950 clear_huge_page(page, address, pages_per_huge_page(h));
0ed361de 3951 __SetPageUptodate(page);
cb6acd01 3952 new_page = true;
ac9b9c66 3953
f83a275d 3954 if (vma->vm_flags & VM_MAYSHARE) {
ab76ad54 3955 int err = huge_add_to_page_cache(page, mapping, idx);
6bda666a
CL
3956 if (err) {
3957 put_page(page);
6bda666a
CL
3958 if (err == -EEXIST)
3959 goto retry;
3960 goto out;
3961 }
23be7468 3962 } else {
6bda666a 3963 lock_page(page);
0fe6e20b
NH
3964 if (unlikely(anon_vma_prepare(vma))) {
3965 ret = VM_FAULT_OOM;
3966 goto backout_unlocked;
3967 }
409eb8c2 3968 anon_rmap = 1;
23be7468 3969 }
0fe6e20b 3970 } else {
998b4382
NH
3971 /*
3972 * If memory error occurs between mmap() and fault, some process
3973 * don't have hwpoisoned swap entry for errored virtual address.
3974 * So we need to block hugepage fault by PG_hwpoison bit check.
3975 */
3976 if (unlikely(PageHWPoison(page))) {
32f84528 3977 ret = VM_FAULT_HWPOISON |
972dc4de 3978 VM_FAULT_SET_HINDEX(hstate_index(h));
998b4382
NH
3979 goto backout_unlocked;
3980 }
6bda666a 3981 }
1e8f889b 3982
57303d80
AW
3983 /*
3984 * If we are going to COW a private mapping later, we examine the
3985 * pending reservations for this page now. This will ensure that
3986 * any allocations necessary to record that reservation occur outside
3987 * the spinlock.
3988 */
5e911373 3989 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
285b8dca 3990 if (vma_needs_reservation(h, vma, haddr) < 0) {
2b26736c
AW
3991 ret = VM_FAULT_OOM;
3992 goto backout_unlocked;
3993 }
5e911373 3994 /* Just decrements count, does not deallocate */
285b8dca 3995 vma_end_reservation(h, vma, haddr);
5e911373 3996 }
57303d80 3997
8bea8052 3998 ptl = huge_pte_lock(h, mm, ptep);
e7c58097
MK
3999 size = i_size_read(mapping->host) >> huge_page_shift(h);
4000 if (idx >= size)
4001 goto backout;
4c887265 4002
83c54070 4003 ret = 0;
7f2e9525 4004 if (!huge_pte_none(huge_ptep_get(ptep)))
4c887265
AL
4005 goto backout;
4006
07443a85
JK
4007 if (anon_rmap) {
4008 ClearPagePrivate(page);
285b8dca 4009 hugepage_add_new_anon_rmap(page, vma, haddr);
ac714904 4010 } else
53f9263b 4011 page_dup_rmap(page, true);
1e8f889b
DG
4012 new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
4013 && (vma->vm_flags & VM_SHARED)));
285b8dca 4014 set_huge_pte_at(mm, haddr, ptep, new_pte);
1e8f889b 4015
5d317b2b 4016 hugetlb_count_add(pages_per_huge_page(h), mm);
788c7df4 4017 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
1e8f889b 4018 /* Optimization, do the COW without a second fault */
974e6d66 4019 ret = hugetlb_cow(mm, vma, address, ptep, page, ptl);
1e8f889b
DG
4020 }
4021
cb900f41 4022 spin_unlock(ptl);
cb6acd01
MK
4023
4024 /*
4025 * Only make newly allocated pages active. Existing pages found
4026 * in the pagecache could be !page_huge_active() if they have been
4027 * isolated for migration.
4028 */
4029 if (new_page)
4030 set_page_huge_active(page);
4031
4c887265
AL
4032 unlock_page(page);
4033out:
ac9b9c66 4034 return ret;
4c887265
AL
4035
4036backout:
cb900f41 4037 spin_unlock(ptl);
2b26736c 4038backout_unlocked:
4c887265 4039 unlock_page(page);
285b8dca 4040 restore_reserve_on_error(h, vma, haddr, page);
4c887265
AL
4041 put_page(page);
4042 goto out;
ac9b9c66
HD
4043}
4044
8382d914 4045#ifdef CONFIG_SMP
1b426bac 4046u32 hugetlb_fault_mutex_hash(struct hstate *h, struct address_space *mapping,
8382d914
DB
4047 pgoff_t idx, unsigned long address)
4048{
4049 unsigned long key[2];
4050 u32 hash;
4051
1b426bac
MK
4052 key[0] = (unsigned long) mapping;
4053 key[1] = idx;
8382d914
DB
4054
4055 hash = jhash2((u32 *)&key, sizeof(key)/sizeof(u32), 0);
4056
4057 return hash & (num_fault_mutexes - 1);
4058}
4059#else
4060/*
4061 * For uniprocesor systems we always use a single mutex, so just
4062 * return 0 and avoid the hashing overhead.
4063 */
1b426bac 4064u32 hugetlb_fault_mutex_hash(struct hstate *h, struct address_space *mapping,
8382d914
DB
4065 pgoff_t idx, unsigned long address)
4066{
4067 return 0;
4068}
4069#endif
4070
2b740303 4071vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
788c7df4 4072 unsigned long address, unsigned int flags)
86e5216f 4073{
8382d914 4074 pte_t *ptep, entry;
cb900f41 4075 spinlock_t *ptl;
2b740303 4076 vm_fault_t ret;
8382d914
DB
4077 u32 hash;
4078 pgoff_t idx;
0fe6e20b 4079 struct page *page = NULL;
57303d80 4080 struct page *pagecache_page = NULL;
a5516438 4081 struct hstate *h = hstate_vma(vma);
8382d914 4082 struct address_space *mapping;
0f792cf9 4083 int need_wait_lock = 0;
285b8dca 4084 unsigned long haddr = address & huge_page_mask(h);
86e5216f 4085
285b8dca 4086 ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
fd6a03ed
NH
4087 if (ptep) {
4088 entry = huge_ptep_get(ptep);
290408d4 4089 if (unlikely(is_hugetlb_entry_migration(entry))) {
cb900f41 4090 migration_entry_wait_huge(vma, mm, ptep);
290408d4
NH
4091 return 0;
4092 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
32f84528 4093 return VM_FAULT_HWPOISON_LARGE |
972dc4de 4094 VM_FAULT_SET_HINDEX(hstate_index(h));
ddeaab32
MK
4095 } else {
4096 ptep = huge_pte_alloc(mm, haddr, huge_page_size(h));
4097 if (!ptep)
4098 return VM_FAULT_OOM;
fd6a03ed
NH
4099 }
4100
8382d914 4101 mapping = vma->vm_file->f_mapping;
ddeaab32 4102 idx = vma_hugecache_offset(h, vma, haddr);
8382d914 4103
3935baa9
DG
4104 /*
4105 * Serialize hugepage allocation and instantiation, so that we don't
4106 * get spurious allocation failures if two CPUs race to instantiate
4107 * the same page in the page cache.
4108 */
1b426bac 4109 hash = hugetlb_fault_mutex_hash(h, mapping, idx, haddr);
c672c7f2 4110 mutex_lock(&hugetlb_fault_mutex_table[hash]);
8382d914 4111
7f2e9525
GS
4112 entry = huge_ptep_get(ptep);
4113 if (huge_pte_none(entry)) {
8382d914 4114 ret = hugetlb_no_page(mm, vma, mapping, idx, address, ptep, flags);
b4d1d99f 4115 goto out_mutex;
3935baa9 4116 }
86e5216f 4117
83c54070 4118 ret = 0;
1e8f889b 4119
0f792cf9
NH
4120 /*
4121 * entry could be a migration/hwpoison entry at this point, so this
4122 * check prevents the kernel from going below assuming that we have
4123 * a active hugepage in pagecache. This goto expects the 2nd page fault,
4124 * and is_hugetlb_entry_(migration|hwpoisoned) check will properly
4125 * handle it.
4126 */
4127 if (!pte_present(entry))
4128 goto out_mutex;
4129
57303d80
AW
4130 /*
4131 * If we are going to COW the mapping later, we examine the pending
4132 * reservations for this page now. This will ensure that any
4133 * allocations necessary to record that reservation occur outside the
4134 * spinlock. For private mappings, we also lookup the pagecache
4135 * page now as it is used to determine if a reservation has been
4136 * consumed.
4137 */
106c992a 4138 if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
285b8dca 4139 if (vma_needs_reservation(h, vma, haddr) < 0) {
2b26736c 4140 ret = VM_FAULT_OOM;
b4d1d99f 4141 goto out_mutex;
2b26736c 4142 }
5e911373 4143 /* Just decrements count, does not deallocate */
285b8dca 4144 vma_end_reservation(h, vma, haddr);
57303d80 4145
f83a275d 4146 if (!(vma->vm_flags & VM_MAYSHARE))
57303d80 4147 pagecache_page = hugetlbfs_pagecache_page(h,
285b8dca 4148 vma, haddr);
57303d80
AW
4149 }
4150
0f792cf9
NH
4151 ptl = huge_pte_lock(h, mm, ptep);
4152
4153 /* Check for a racing update before calling hugetlb_cow */
4154 if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
4155 goto out_ptl;
4156
56c9cfb1
NH
4157 /*
4158 * hugetlb_cow() requires page locks of pte_page(entry) and
4159 * pagecache_page, so here we need take the former one
4160 * when page != pagecache_page or !pagecache_page.
56c9cfb1
NH
4161 */
4162 page = pte_page(entry);
4163 if (page != pagecache_page)
0f792cf9
NH
4164 if (!trylock_page(page)) {
4165 need_wait_lock = 1;
4166 goto out_ptl;
4167 }
b4d1d99f 4168
0f792cf9 4169 get_page(page);
b4d1d99f 4170
788c7df4 4171 if (flags & FAULT_FLAG_WRITE) {
106c992a 4172 if (!huge_pte_write(entry)) {
974e6d66 4173 ret = hugetlb_cow(mm, vma, address, ptep,
3999f52e 4174 pagecache_page, ptl);
0f792cf9 4175 goto out_put_page;
b4d1d99f 4176 }
106c992a 4177 entry = huge_pte_mkdirty(entry);
b4d1d99f
DG
4178 }
4179 entry = pte_mkyoung(entry);
285b8dca 4180 if (huge_ptep_set_access_flags(vma, haddr, ptep, entry,
788c7df4 4181 flags & FAULT_FLAG_WRITE))
285b8dca 4182 update_mmu_cache(vma, haddr, ptep);
0f792cf9
NH
4183out_put_page:
4184 if (page != pagecache_page)
4185 unlock_page(page);
4186 put_page(page);
cb900f41
KS
4187out_ptl:
4188 spin_unlock(ptl);
57303d80
AW
4189
4190 if (pagecache_page) {
4191 unlock_page(pagecache_page);
4192 put_page(pagecache_page);
4193 }
b4d1d99f 4194out_mutex:
c672c7f2 4195 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
0f792cf9
NH
4196 /*
4197 * Generally it's safe to hold refcount during waiting page lock. But
4198 * here we just wait to defer the next page fault to avoid busy loop and
4199 * the page is not used after unlocked before returning from the current
4200 * page fault. So we are safe from accessing freed page, even if we wait
4201 * here without taking refcount.
4202 */
4203 if (need_wait_lock)
4204 wait_on_page_locked(page);
1e8f889b 4205 return ret;
86e5216f
AL
4206}
4207
8fb5debc
MK
4208/*
4209 * Used by userfaultfd UFFDIO_COPY. Based on mcopy_atomic_pte with
4210 * modifications for huge pages.
4211 */
4212int hugetlb_mcopy_atomic_pte(struct mm_struct *dst_mm,
4213 pte_t *dst_pte,
4214 struct vm_area_struct *dst_vma,
4215 unsigned long dst_addr,
4216 unsigned long src_addr,
4217 struct page **pagep)
4218{
1e392147
AA
4219 struct address_space *mapping;
4220 pgoff_t idx;
4221 unsigned long size;
1c9e8def 4222 int vm_shared = dst_vma->vm_flags & VM_SHARED;
8fb5debc
MK
4223 struct hstate *h = hstate_vma(dst_vma);
4224 pte_t _dst_pte;
4225 spinlock_t *ptl;
4226 int ret;
4227 struct page *page;
4228
4229 if (!*pagep) {
4230 ret = -ENOMEM;
4231 page = alloc_huge_page(dst_vma, dst_addr, 0);
4232 if (IS_ERR(page))
4233 goto out;
4234
4235 ret = copy_huge_page_from_user(page,
4236 (const void __user *) src_addr,
810a56b9 4237 pages_per_huge_page(h), false);
8fb5debc
MK
4238
4239 /* fallback to copy_from_user outside mmap_sem */
4240 if (unlikely(ret)) {
9e368259 4241 ret = -ENOENT;
8fb5debc
MK
4242 *pagep = page;
4243 /* don't free the page */
4244 goto out;
4245 }
4246 } else {
4247 page = *pagep;
4248 *pagep = NULL;
4249 }
4250
4251 /*
4252 * The memory barrier inside __SetPageUptodate makes sure that
4253 * preceding stores to the page contents become visible before
4254 * the set_pte_at() write.
4255 */
4256 __SetPageUptodate(page);
8fb5debc 4257
1e392147
AA
4258 mapping = dst_vma->vm_file->f_mapping;
4259 idx = vma_hugecache_offset(h, dst_vma, dst_addr);
4260
1c9e8def
MK
4261 /*
4262 * If shared, add to page cache
4263 */
4264 if (vm_shared) {
1e392147
AA
4265 size = i_size_read(mapping->host) >> huge_page_shift(h);
4266 ret = -EFAULT;
4267 if (idx >= size)
4268 goto out_release_nounlock;
1c9e8def 4269
1e392147
AA
4270 /*
4271 * Serialization between remove_inode_hugepages() and
4272 * huge_add_to_page_cache() below happens through the
4273 * hugetlb_fault_mutex_table that here must be hold by
4274 * the caller.
4275 */
1c9e8def
MK
4276 ret = huge_add_to_page_cache(page, mapping, idx);
4277 if (ret)
4278 goto out_release_nounlock;
4279 }
4280
8fb5debc
MK
4281 ptl = huge_pte_lockptr(h, dst_mm, dst_pte);
4282 spin_lock(ptl);
4283
1e392147
AA
4284 /*
4285 * Recheck the i_size after holding PT lock to make sure not
4286 * to leave any page mapped (as page_mapped()) beyond the end
4287 * of the i_size (remove_inode_hugepages() is strict about
4288 * enforcing that). If we bail out here, we'll also leave a
4289 * page in the radix tree in the vm_shared case beyond the end
4290 * of the i_size, but remove_inode_hugepages() will take care
4291 * of it as soon as we drop the hugetlb_fault_mutex_table.
4292 */
4293 size = i_size_read(mapping->host) >> huge_page_shift(h);
4294 ret = -EFAULT;
4295 if (idx >= size)
4296 goto out_release_unlock;
4297
8fb5debc
MK
4298 ret = -EEXIST;
4299 if (!huge_pte_none(huge_ptep_get(dst_pte)))
4300 goto out_release_unlock;
4301
1c9e8def
MK
4302 if (vm_shared) {
4303 page_dup_rmap(page, true);
4304 } else {
4305 ClearPagePrivate(page);
4306 hugepage_add_new_anon_rmap(page, dst_vma, dst_addr);
4307 }
8fb5debc
MK
4308
4309 _dst_pte = make_huge_pte(dst_vma, page, dst_vma->vm_flags & VM_WRITE);
4310 if (dst_vma->vm_flags & VM_WRITE)
4311 _dst_pte = huge_pte_mkdirty(_dst_pte);
4312 _dst_pte = pte_mkyoung(_dst_pte);
4313
4314 set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
4315
4316 (void)huge_ptep_set_access_flags(dst_vma, dst_addr, dst_pte, _dst_pte,
4317 dst_vma->vm_flags & VM_WRITE);
4318 hugetlb_count_add(pages_per_huge_page(h), dst_mm);
4319
4320 /* No need to invalidate - it was non-present before */
4321 update_mmu_cache(dst_vma, dst_addr, dst_pte);
4322
4323 spin_unlock(ptl);
cb6acd01 4324 set_page_huge_active(page);
1c9e8def
MK
4325 if (vm_shared)
4326 unlock_page(page);
8fb5debc
MK
4327 ret = 0;
4328out:
4329 return ret;
4330out_release_unlock:
4331 spin_unlock(ptl);
1c9e8def
MK
4332 if (vm_shared)
4333 unlock_page(page);
5af10dfd 4334out_release_nounlock:
8fb5debc
MK
4335 put_page(page);
4336 goto out;
4337}
4338
28a35716
ML
4339long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
4340 struct page **pages, struct vm_area_struct **vmas,
4341 unsigned long *position, unsigned long *nr_pages,
87ffc118 4342 long i, unsigned int flags, int *nonblocking)
63551ae0 4343{
d5d4b0aa
CK
4344 unsigned long pfn_offset;
4345 unsigned long vaddr = *position;
28a35716 4346 unsigned long remainder = *nr_pages;
a5516438 4347 struct hstate *h = hstate_vma(vma);
2be7cfed 4348 int err = -EFAULT;
63551ae0 4349
63551ae0 4350 while (vaddr < vma->vm_end && remainder) {
4c887265 4351 pte_t *pte;
cb900f41 4352 spinlock_t *ptl = NULL;
2a15efc9 4353 int absent;
4c887265 4354 struct page *page;
63551ae0 4355
02057967
DR
4356 /*
4357 * If we have a pending SIGKILL, don't keep faulting pages and
4358 * potentially allocating memory.
4359 */
fa45f116 4360 if (fatal_signal_pending(current)) {
02057967
DR
4361 remainder = 0;
4362 break;
4363 }
4364
4c887265
AL
4365 /*
4366 * Some archs (sparc64, sh*) have multiple pte_ts to
2a15efc9 4367 * each hugepage. We have to make sure we get the
4c887265 4368 * first, for the page indexing below to work.
cb900f41
KS
4369 *
4370 * Note that page table lock is not held when pte is null.
4c887265 4371 */
7868a208
PA
4372 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h),
4373 huge_page_size(h));
cb900f41
KS
4374 if (pte)
4375 ptl = huge_pte_lock(h, mm, pte);
2a15efc9
HD
4376 absent = !pte || huge_pte_none(huge_ptep_get(pte));
4377
4378 /*
4379 * When coredumping, it suits get_dump_page if we just return
3ae77f43
HD
4380 * an error where there's an empty slot with no huge pagecache
4381 * to back it. This way, we avoid allocating a hugepage, and
4382 * the sparse dumpfile avoids allocating disk blocks, but its
4383 * huge holes still show up with zeroes where they need to be.
2a15efc9 4384 */
3ae77f43
HD
4385 if (absent && (flags & FOLL_DUMP) &&
4386 !hugetlbfs_pagecache_present(h, vma, vaddr)) {
cb900f41
KS
4387 if (pte)
4388 spin_unlock(ptl);
2a15efc9
HD
4389 remainder = 0;
4390 break;
4391 }
63551ae0 4392
9cc3a5bd
NH
4393 /*
4394 * We need call hugetlb_fault for both hugepages under migration
4395 * (in which case hugetlb_fault waits for the migration,) and
4396 * hwpoisoned hugepages (in which case we need to prevent the
4397 * caller from accessing to them.) In order to do this, we use
4398 * here is_swap_pte instead of is_hugetlb_entry_migration and
4399 * is_hugetlb_entry_hwpoisoned. This is because it simply covers
4400 * both cases, and because we can't follow correct pages
4401 * directly from any kind of swap entries.
4402 */
4403 if (absent || is_swap_pte(huge_ptep_get(pte)) ||
106c992a
GS
4404 ((flags & FOLL_WRITE) &&
4405 !huge_pte_write(huge_ptep_get(pte)))) {
2b740303 4406 vm_fault_t ret;
87ffc118 4407 unsigned int fault_flags = 0;
63551ae0 4408
cb900f41
KS
4409 if (pte)
4410 spin_unlock(ptl);
87ffc118
AA
4411 if (flags & FOLL_WRITE)
4412 fault_flags |= FAULT_FLAG_WRITE;
4413 if (nonblocking)
4414 fault_flags |= FAULT_FLAG_ALLOW_RETRY;
4415 if (flags & FOLL_NOWAIT)
4416 fault_flags |= FAULT_FLAG_ALLOW_RETRY |
4417 FAULT_FLAG_RETRY_NOWAIT;
4418 if (flags & FOLL_TRIED) {
4419 VM_WARN_ON_ONCE(fault_flags &
4420 FAULT_FLAG_ALLOW_RETRY);
4421 fault_flags |= FAULT_FLAG_TRIED;
4422 }
4423 ret = hugetlb_fault(mm, vma, vaddr, fault_flags);
4424 if (ret & VM_FAULT_ERROR) {
2be7cfed 4425 err = vm_fault_to_errno(ret, flags);
87ffc118
AA
4426 remainder = 0;
4427 break;
4428 }
4429 if (ret & VM_FAULT_RETRY) {
1ac25013
AA
4430 if (nonblocking &&
4431 !(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
87ffc118
AA
4432 *nonblocking = 0;
4433 *nr_pages = 0;
4434 /*
4435 * VM_FAULT_RETRY must not return an
4436 * error, it will return zero
4437 * instead.
4438 *
4439 * No need to update "position" as the
4440 * caller will not check it after
4441 * *nr_pages is set to 0.
4442 */
4443 return i;
4444 }
4445 continue;
4c887265
AL
4446 }
4447
a5516438 4448 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
7f2e9525 4449 page = pte_page(huge_ptep_get(pte));
8fde12ca
LT
4450
4451 /*
4452 * Instead of doing 'try_get_page()' below in the same_page
4453 * loop, just check the count once here.
4454 */
4455 if (unlikely(page_count(page) <= 0)) {
4456 if (pages) {
4457 spin_unlock(ptl);
4458 remainder = 0;
4459 err = -ENOMEM;
4460 break;
4461 }
4462 }
d5d4b0aa 4463same_page:
d6692183 4464 if (pages) {
2a15efc9 4465 pages[i] = mem_map_offset(page, pfn_offset);
ddc58f27 4466 get_page(pages[i]);
d6692183 4467 }
63551ae0
DG
4468
4469 if (vmas)
4470 vmas[i] = vma;
4471
4472 vaddr += PAGE_SIZE;
d5d4b0aa 4473 ++pfn_offset;
63551ae0
DG
4474 --remainder;
4475 ++i;
d5d4b0aa 4476 if (vaddr < vma->vm_end && remainder &&
a5516438 4477 pfn_offset < pages_per_huge_page(h)) {
d5d4b0aa
CK
4478 /*
4479 * We use pfn_offset to avoid touching the pageframes
4480 * of this compound page.
4481 */
4482 goto same_page;
4483 }
cb900f41 4484 spin_unlock(ptl);
63551ae0 4485 }
28a35716 4486 *nr_pages = remainder;
87ffc118
AA
4487 /*
4488 * setting position is actually required only if remainder is
4489 * not zero but it's faster not to add a "if (remainder)"
4490 * branch.
4491 */
63551ae0
DG
4492 *position = vaddr;
4493
2be7cfed 4494 return i ? i : err;
63551ae0 4495}
8f860591 4496
5491ae7b
AK
4497#ifndef __HAVE_ARCH_FLUSH_HUGETLB_TLB_RANGE
4498/*
4499 * ARCHes with special requirements for evicting HUGETLB backing TLB entries can
4500 * implement this.
4501 */
4502#define flush_hugetlb_tlb_range(vma, addr, end) flush_tlb_range(vma, addr, end)
4503#endif
4504
7da4d641 4505unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
8f860591
ZY
4506 unsigned long address, unsigned long end, pgprot_t newprot)
4507{
4508 struct mm_struct *mm = vma->vm_mm;
4509 unsigned long start = address;
4510 pte_t *ptep;
4511 pte_t pte;
a5516438 4512 struct hstate *h = hstate_vma(vma);
7da4d641 4513 unsigned long pages = 0;
dff11abe 4514 bool shared_pmd = false;
ac46d4f3 4515 struct mmu_notifier_range range;
dff11abe
MK
4516
4517 /*
4518 * In the case of shared PMDs, the area to flush could be beyond
ac46d4f3 4519 * start/end. Set range.start/range.end to cover the maximum possible
dff11abe
MK
4520 * range if PMD sharing is possible.
4521 */
7269f999
JG
4522 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_VMA,
4523 0, vma, mm, start, end);
ac46d4f3 4524 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
8f860591
ZY
4525
4526 BUG_ON(address >= end);
ac46d4f3 4527 flush_cache_range(vma, range.start, range.end);
8f860591 4528
ac46d4f3 4529 mmu_notifier_invalidate_range_start(&range);
83cde9e8 4530 i_mmap_lock_write(vma->vm_file->f_mapping);
a5516438 4531 for (; address < end; address += huge_page_size(h)) {
cb900f41 4532 spinlock_t *ptl;
7868a208 4533 ptep = huge_pte_offset(mm, address, huge_page_size(h));
8f860591
ZY
4534 if (!ptep)
4535 continue;
cb900f41 4536 ptl = huge_pte_lock(h, mm, ptep);
7da4d641
PZ
4537 if (huge_pmd_unshare(mm, &address, ptep)) {
4538 pages++;
cb900f41 4539 spin_unlock(ptl);
dff11abe 4540 shared_pmd = true;
39dde65c 4541 continue;
7da4d641 4542 }
a8bda28d
NH
4543 pte = huge_ptep_get(ptep);
4544 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
4545 spin_unlock(ptl);
4546 continue;
4547 }
4548 if (unlikely(is_hugetlb_entry_migration(pte))) {
4549 swp_entry_t entry = pte_to_swp_entry(pte);
4550
4551 if (is_write_migration_entry(entry)) {
4552 pte_t newpte;
4553
4554 make_migration_entry_read(&entry);
4555 newpte = swp_entry_to_pte(entry);
e5251fd4
PA
4556 set_huge_swap_pte_at(mm, address, ptep,
4557 newpte, huge_page_size(h));
a8bda28d
NH
4558 pages++;
4559 }
4560 spin_unlock(ptl);
4561 continue;
4562 }
4563 if (!huge_pte_none(pte)) {
023bdd00
AK
4564 pte_t old_pte;
4565
4566 old_pte = huge_ptep_modify_prot_start(vma, address, ptep);
4567 pte = pte_mkhuge(huge_pte_modify(old_pte, newprot));
be7517d6 4568 pte = arch_make_huge_pte(pte, vma, NULL, 0);
023bdd00 4569 huge_ptep_modify_prot_commit(vma, address, ptep, old_pte, pte);
7da4d641 4570 pages++;
8f860591 4571 }
cb900f41 4572 spin_unlock(ptl);
8f860591 4573 }
d833352a 4574 /*
c8c06efa 4575 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
d833352a 4576 * may have cleared our pud entry and done put_page on the page table:
c8c06efa 4577 * once we release i_mmap_rwsem, another task can do the final put_page
dff11abe
MK
4578 * and that page table be reused and filled with junk. If we actually
4579 * did unshare a page of pmds, flush the range corresponding to the pud.
d833352a 4580 */
dff11abe 4581 if (shared_pmd)
ac46d4f3 4582 flush_hugetlb_tlb_range(vma, range.start, range.end);
dff11abe
MK
4583 else
4584 flush_hugetlb_tlb_range(vma, start, end);
0f10851e
JG
4585 /*
4586 * No need to call mmu_notifier_invalidate_range() we are downgrading
4587 * page table protection not changing it to point to a new page.
4588 *
ad56b738 4589 * See Documentation/vm/mmu_notifier.rst
0f10851e 4590 */
83cde9e8 4591 i_mmap_unlock_write(vma->vm_file->f_mapping);
ac46d4f3 4592 mmu_notifier_invalidate_range_end(&range);
7da4d641
PZ
4593
4594 return pages << h->order;
8f860591
ZY
4595}
4596
a1e78772
MG
4597int hugetlb_reserve_pages(struct inode *inode,
4598 long from, long to,
5a6fe125 4599 struct vm_area_struct *vma,
ca16d140 4600 vm_flags_t vm_flags)
e4e574b7 4601{
17c9d12e 4602 long ret, chg;
a5516438 4603 struct hstate *h = hstate_inode(inode);
90481622 4604 struct hugepage_subpool *spool = subpool_inode(inode);
9119a41e 4605 struct resv_map *resv_map;
1c5ecae3 4606 long gbl_reserve;
e4e574b7 4607
63489f8e
MK
4608 /* This should never happen */
4609 if (from > to) {
4610 VM_WARN(1, "%s called with a negative range\n", __func__);
4611 return -EINVAL;
4612 }
4613
17c9d12e
MG
4614 /*
4615 * Only apply hugepage reservation if asked. At fault time, an
4616 * attempt will be made for VM_NORESERVE to allocate a page
90481622 4617 * without using reserves
17c9d12e 4618 */
ca16d140 4619 if (vm_flags & VM_NORESERVE)
17c9d12e
MG
4620 return 0;
4621
a1e78772
MG
4622 /*
4623 * Shared mappings base their reservation on the number of pages that
4624 * are already allocated on behalf of the file. Private mappings need
4625 * to reserve the full area even if read-only as mprotect() may be
4626 * called to make the mapping read-write. Assume !vma is a shm mapping
4627 */
9119a41e 4628 if (!vma || vma->vm_flags & VM_MAYSHARE) {
f27a5136
MK
4629 /*
4630 * resv_map can not be NULL as hugetlb_reserve_pages is only
4631 * called for inodes for which resv_maps were created (see
4632 * hugetlbfs_get_inode).
4633 */
4e35f483 4634 resv_map = inode_resv_map(inode);
9119a41e 4635
1406ec9b 4636 chg = region_chg(resv_map, from, to);
9119a41e
JK
4637
4638 } else {
4639 resv_map = resv_map_alloc();
17c9d12e
MG
4640 if (!resv_map)
4641 return -ENOMEM;
4642
a1e78772 4643 chg = to - from;
84afd99b 4644
17c9d12e
MG
4645 set_vma_resv_map(vma, resv_map);
4646 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
4647 }
4648
c50ac050
DH
4649 if (chg < 0) {
4650 ret = chg;
4651 goto out_err;
4652 }
8a630112 4653
1c5ecae3
MK
4654 /*
4655 * There must be enough pages in the subpool for the mapping. If
4656 * the subpool has a minimum size, there may be some global
4657 * reservations already in place (gbl_reserve).
4658 */
4659 gbl_reserve = hugepage_subpool_get_pages(spool, chg);
4660 if (gbl_reserve < 0) {
c50ac050
DH
4661 ret = -ENOSPC;
4662 goto out_err;
4663 }
5a6fe125
MG
4664
4665 /*
17c9d12e 4666 * Check enough hugepages are available for the reservation.
90481622 4667 * Hand the pages back to the subpool if there are not
5a6fe125 4668 */
1c5ecae3 4669 ret = hugetlb_acct_memory(h, gbl_reserve);
68842c9b 4670 if (ret < 0) {
1c5ecae3
MK
4671 /* put back original number of pages, chg */
4672 (void)hugepage_subpool_put_pages(spool, chg);
c50ac050 4673 goto out_err;
68842c9b 4674 }
17c9d12e
MG
4675
4676 /*
4677 * Account for the reservations made. Shared mappings record regions
4678 * that have reservations as they are shared by multiple VMAs.
4679 * When the last VMA disappears, the region map says how much
4680 * the reservation was and the page cache tells how much of
4681 * the reservation was consumed. Private mappings are per-VMA and
4682 * only the consumed reservations are tracked. When the VMA
4683 * disappears, the original reservation is the VMA size and the
4684 * consumed reservations are stored in the map. Hence, nothing
4685 * else has to be done for private mappings here
4686 */
33039678
MK
4687 if (!vma || vma->vm_flags & VM_MAYSHARE) {
4688 long add = region_add(resv_map, from, to);
4689
4690 if (unlikely(chg > add)) {
4691 /*
4692 * pages in this range were added to the reserve
4693 * map between region_chg and region_add. This
4694 * indicates a race with alloc_huge_page. Adjust
4695 * the subpool and reserve counts modified above
4696 * based on the difference.
4697 */
4698 long rsv_adjust;
4699
4700 rsv_adjust = hugepage_subpool_put_pages(spool,
4701 chg - add);
4702 hugetlb_acct_memory(h, -rsv_adjust);
4703 }
4704 }
a43a8c39 4705 return 0;
c50ac050 4706out_err:
5e911373 4707 if (!vma || vma->vm_flags & VM_MAYSHARE)
ff8c0c53
MK
4708 /* Don't call region_abort if region_chg failed */
4709 if (chg >= 0)
4710 region_abort(resv_map, from, to);
f031dd27
JK
4711 if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
4712 kref_put(&resv_map->refs, resv_map_release);
c50ac050 4713 return ret;
a43a8c39
CK
4714}
4715
b5cec28d
MK
4716long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
4717 long freed)
a43a8c39 4718{
a5516438 4719 struct hstate *h = hstate_inode(inode);
4e35f483 4720 struct resv_map *resv_map = inode_resv_map(inode);
9119a41e 4721 long chg = 0;
90481622 4722 struct hugepage_subpool *spool = subpool_inode(inode);
1c5ecae3 4723 long gbl_reserve;
45c682a6 4724
f27a5136
MK
4725 /*
4726 * Since this routine can be called in the evict inode path for all
4727 * hugetlbfs inodes, resv_map could be NULL.
4728 */
b5cec28d
MK
4729 if (resv_map) {
4730 chg = region_del(resv_map, start, end);
4731 /*
4732 * region_del() can fail in the rare case where a region
4733 * must be split and another region descriptor can not be
4734 * allocated. If end == LONG_MAX, it will not fail.
4735 */
4736 if (chg < 0)
4737 return chg;
4738 }
4739
45c682a6 4740 spin_lock(&inode->i_lock);
e4c6f8be 4741 inode->i_blocks -= (blocks_per_huge_page(h) * freed);
45c682a6
KC
4742 spin_unlock(&inode->i_lock);
4743
1c5ecae3
MK
4744 /*
4745 * If the subpool has a minimum size, the number of global
4746 * reservations to be released may be adjusted.
4747 */
4748 gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
4749 hugetlb_acct_memory(h, -gbl_reserve);
b5cec28d
MK
4750
4751 return 0;
a43a8c39 4752}
93f70f90 4753
3212b535
SC
4754#ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
4755static unsigned long page_table_shareable(struct vm_area_struct *svma,
4756 struct vm_area_struct *vma,
4757 unsigned long addr, pgoff_t idx)
4758{
4759 unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
4760 svma->vm_start;
4761 unsigned long sbase = saddr & PUD_MASK;
4762 unsigned long s_end = sbase + PUD_SIZE;
4763
4764 /* Allow segments to share if only one is marked locked */
de60f5f1
EM
4765 unsigned long vm_flags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
4766 unsigned long svm_flags = svma->vm_flags & VM_LOCKED_CLEAR_MASK;
3212b535
SC
4767
4768 /*
4769 * match the virtual addresses, permission and the alignment of the
4770 * page table page.
4771 */
4772 if (pmd_index(addr) != pmd_index(saddr) ||
4773 vm_flags != svm_flags ||
4774 sbase < svma->vm_start || svma->vm_end < s_end)
4775 return 0;
4776
4777 return saddr;
4778}
4779
31aafb45 4780static bool vma_shareable(struct vm_area_struct *vma, unsigned long addr)
3212b535
SC
4781{
4782 unsigned long base = addr & PUD_MASK;
4783 unsigned long end = base + PUD_SIZE;
4784
4785 /*
4786 * check on proper vm_flags and page table alignment
4787 */
017b1660 4788 if (vma->vm_flags & VM_MAYSHARE && range_in_vma(vma, base, end))
31aafb45
NK
4789 return true;
4790 return false;
3212b535
SC
4791}
4792
017b1660
MK
4793/*
4794 * Determine if start,end range within vma could be mapped by shared pmd.
4795 * If yes, adjust start and end to cover range associated with possible
4796 * shared pmd mappings.
4797 */
4798void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
4799 unsigned long *start, unsigned long *end)
4800{
4801 unsigned long check_addr = *start;
4802
4803 if (!(vma->vm_flags & VM_MAYSHARE))
4804 return;
4805
4806 for (check_addr = *start; check_addr < *end; check_addr += PUD_SIZE) {
4807 unsigned long a_start = check_addr & PUD_MASK;
4808 unsigned long a_end = a_start + PUD_SIZE;
4809
4810 /*
4811 * If sharing is possible, adjust start/end if necessary.
4812 */
4813 if (range_in_vma(vma, a_start, a_end)) {
4814 if (a_start < *start)
4815 *start = a_start;
4816 if (a_end > *end)
4817 *end = a_end;
4818 }
4819 }
4820}
4821
3212b535
SC
4822/*
4823 * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
4824 * and returns the corresponding pte. While this is not necessary for the
4825 * !shared pmd case because we can allocate the pmd later as well, it makes the
ddeaab32
MK
4826 * code much cleaner. pmd allocation is essential for the shared case because
4827 * pud has to be populated inside the same i_mmap_rwsem section - otherwise
4828 * racing tasks could either miss the sharing (see huge_pte_offset) or select a
4829 * bad pmd for sharing.
3212b535
SC
4830 */
4831pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
4832{
4833 struct vm_area_struct *vma = find_vma(mm, addr);
4834 struct address_space *mapping = vma->vm_file->f_mapping;
4835 pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
4836 vma->vm_pgoff;
4837 struct vm_area_struct *svma;
4838 unsigned long saddr;
4839 pte_t *spte = NULL;
4840 pte_t *pte;
cb900f41 4841 spinlock_t *ptl;
3212b535
SC
4842
4843 if (!vma_shareable(vma, addr))
4844 return (pte_t *)pmd_alloc(mm, pud, addr);
4845
ddeaab32 4846 i_mmap_lock_write(mapping);
3212b535
SC
4847 vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
4848 if (svma == vma)
4849 continue;
4850
4851 saddr = page_table_shareable(svma, vma, addr, idx);
4852 if (saddr) {
7868a208
PA
4853 spte = huge_pte_offset(svma->vm_mm, saddr,
4854 vma_mmu_pagesize(svma));
3212b535
SC
4855 if (spte) {
4856 get_page(virt_to_page(spte));
4857 break;
4858 }
4859 }
4860 }
4861
4862 if (!spte)
4863 goto out;
4864
8bea8052 4865 ptl = huge_pte_lock(hstate_vma(vma), mm, spte);
dc6c9a35 4866 if (pud_none(*pud)) {
3212b535
SC
4867 pud_populate(mm, pud,
4868 (pmd_t *)((unsigned long)spte & PAGE_MASK));
c17b1f42 4869 mm_inc_nr_pmds(mm);
dc6c9a35 4870 } else {
3212b535 4871 put_page(virt_to_page(spte));
dc6c9a35 4872 }
cb900f41 4873 spin_unlock(ptl);
3212b535
SC
4874out:
4875 pte = (pte_t *)pmd_alloc(mm, pud, addr);
ddeaab32 4876 i_mmap_unlock_write(mapping);
3212b535
SC
4877 return pte;
4878}
4879
4880/*
4881 * unmap huge page backed by shared pte.
4882 *
4883 * Hugetlb pte page is ref counted at the time of mapping. If pte is shared
4884 * indicated by page_count > 1, unmap is achieved by clearing pud and
4885 * decrementing the ref count. If count == 1, the pte page is not shared.
4886 *
ddeaab32 4887 * called with page table lock held.
3212b535
SC
4888 *
4889 * returns: 1 successfully unmapped a shared pte page
4890 * 0 the underlying pte page is not shared, or it is the last user
4891 */
4892int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
4893{
4894 pgd_t *pgd = pgd_offset(mm, *addr);
c2febafc
KS
4895 p4d_t *p4d = p4d_offset(pgd, *addr);
4896 pud_t *pud = pud_offset(p4d, *addr);
3212b535
SC
4897
4898 BUG_ON(page_count(virt_to_page(ptep)) == 0);
4899 if (page_count(virt_to_page(ptep)) == 1)
4900 return 0;
4901
4902 pud_clear(pud);
4903 put_page(virt_to_page(ptep));
dc6c9a35 4904 mm_dec_nr_pmds(mm);
3212b535
SC
4905 *addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE;
4906 return 1;
4907}
9e5fc74c
SC
4908#define want_pmd_share() (1)
4909#else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
4910pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
4911{
4912 return NULL;
4913}
e81f2d22
ZZ
4914
4915int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
4916{
4917 return 0;
4918}
017b1660
MK
4919
4920void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
4921 unsigned long *start, unsigned long *end)
4922{
4923}
9e5fc74c 4924#define want_pmd_share() (0)
3212b535
SC
4925#endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
4926
9e5fc74c
SC
4927#ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
4928pte_t *huge_pte_alloc(struct mm_struct *mm,
4929 unsigned long addr, unsigned long sz)
4930{
4931 pgd_t *pgd;
c2febafc 4932 p4d_t *p4d;
9e5fc74c
SC
4933 pud_t *pud;
4934 pte_t *pte = NULL;
4935
4936 pgd = pgd_offset(mm, addr);
f4f0a3d8
KS
4937 p4d = p4d_alloc(mm, pgd, addr);
4938 if (!p4d)
4939 return NULL;
c2febafc 4940 pud = pud_alloc(mm, p4d, addr);
9e5fc74c
SC
4941 if (pud) {
4942 if (sz == PUD_SIZE) {
4943 pte = (pte_t *)pud;
4944 } else {
4945 BUG_ON(sz != PMD_SIZE);
4946 if (want_pmd_share() && pud_none(*pud))
4947 pte = huge_pmd_share(mm, addr, pud);
4948 else
4949 pte = (pte_t *)pmd_alloc(mm, pud, addr);
4950 }
4951 }
4e666314 4952 BUG_ON(pte && pte_present(*pte) && !pte_huge(*pte));
9e5fc74c
SC
4953
4954 return pte;
4955}
4956
9b19df29
PA
4957/*
4958 * huge_pte_offset() - Walk the page table to resolve the hugepage
4959 * entry at address @addr
4960 *
4961 * Return: Pointer to page table or swap entry (PUD or PMD) for
4962 * address @addr, or NULL if a p*d_none() entry is encountered and the
4963 * size @sz doesn't match the hugepage size at this level of the page
4964 * table.
4965 */
7868a208
PA
4966pte_t *huge_pte_offset(struct mm_struct *mm,
4967 unsigned long addr, unsigned long sz)
9e5fc74c
SC
4968{
4969 pgd_t *pgd;
c2febafc 4970 p4d_t *p4d;
9e5fc74c 4971 pud_t *pud;
c2febafc 4972 pmd_t *pmd;
9e5fc74c
SC
4973
4974 pgd = pgd_offset(mm, addr);
c2febafc
KS
4975 if (!pgd_present(*pgd))
4976 return NULL;
4977 p4d = p4d_offset(pgd, addr);
4978 if (!p4d_present(*p4d))
4979 return NULL;
9b19df29 4980
c2febafc 4981 pud = pud_offset(p4d, addr);
9b19df29 4982 if (sz != PUD_SIZE && pud_none(*pud))
c2febafc 4983 return NULL;
9b19df29
PA
4984 /* hugepage or swap? */
4985 if (pud_huge(*pud) || !pud_present(*pud))
c2febafc 4986 return (pte_t *)pud;
9b19df29 4987
c2febafc 4988 pmd = pmd_offset(pud, addr);
9b19df29
PA
4989 if (sz != PMD_SIZE && pmd_none(*pmd))
4990 return NULL;
4991 /* hugepage or swap? */
4992 if (pmd_huge(*pmd) || !pmd_present(*pmd))
4993 return (pte_t *)pmd;
4994
4995 return NULL;
9e5fc74c
SC
4996}
4997
61f77eda
NH
4998#endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
4999
5000/*
5001 * These functions are overwritable if your architecture needs its own
5002 * behavior.
5003 */
5004struct page * __weak
5005follow_huge_addr(struct mm_struct *mm, unsigned long address,
5006 int write)
5007{
5008 return ERR_PTR(-EINVAL);
5009}
5010
4dc71451
AK
5011struct page * __weak
5012follow_huge_pd(struct vm_area_struct *vma,
5013 unsigned long address, hugepd_t hpd, int flags, int pdshift)
5014{
5015 WARN(1, "hugepd follow called with no support for hugepage directory format\n");
5016 return NULL;
5017}
5018
61f77eda 5019struct page * __weak
9e5fc74c 5020follow_huge_pmd(struct mm_struct *mm, unsigned long address,
e66f17ff 5021 pmd_t *pmd, int flags)
9e5fc74c 5022{
e66f17ff
NH
5023 struct page *page = NULL;
5024 spinlock_t *ptl;
c9d398fa 5025 pte_t pte;
e66f17ff
NH
5026retry:
5027 ptl = pmd_lockptr(mm, pmd);
5028 spin_lock(ptl);
5029 /*
5030 * make sure that the address range covered by this pmd is not
5031 * unmapped from other threads.
5032 */
5033 if (!pmd_huge(*pmd))
5034 goto out;
c9d398fa
NH
5035 pte = huge_ptep_get((pte_t *)pmd);
5036 if (pte_present(pte)) {
97534127 5037 page = pmd_page(*pmd) + ((address & ~PMD_MASK) >> PAGE_SHIFT);
e66f17ff
NH
5038 if (flags & FOLL_GET)
5039 get_page(page);
5040 } else {
c9d398fa 5041 if (is_hugetlb_entry_migration(pte)) {
e66f17ff
NH
5042 spin_unlock(ptl);
5043 __migration_entry_wait(mm, (pte_t *)pmd, ptl);
5044 goto retry;
5045 }
5046 /*
5047 * hwpoisoned entry is treated as no_page_table in
5048 * follow_page_mask().
5049 */
5050 }
5051out:
5052 spin_unlock(ptl);
9e5fc74c
SC
5053 return page;
5054}
5055
61f77eda 5056struct page * __weak
9e5fc74c 5057follow_huge_pud(struct mm_struct *mm, unsigned long address,
e66f17ff 5058 pud_t *pud, int flags)
9e5fc74c 5059{
e66f17ff
NH
5060 if (flags & FOLL_GET)
5061 return NULL;
9e5fc74c 5062
e66f17ff 5063 return pte_page(*(pte_t *)pud) + ((address & ~PUD_MASK) >> PAGE_SHIFT);
9e5fc74c
SC
5064}
5065
faaa5b62
AK
5066struct page * __weak
5067follow_huge_pgd(struct mm_struct *mm, unsigned long address, pgd_t *pgd, int flags)
5068{
5069 if (flags & FOLL_GET)
5070 return NULL;
5071
5072 return pte_page(*(pte_t *)pgd) + ((address & ~PGDIR_MASK) >> PAGE_SHIFT);
5073}
5074
31caf665
NH
5075bool isolate_huge_page(struct page *page, struct list_head *list)
5076{
bcc54222
NH
5077 bool ret = true;
5078
309381fe 5079 VM_BUG_ON_PAGE(!PageHead(page), page);
31caf665 5080 spin_lock(&hugetlb_lock);
bcc54222
NH
5081 if (!page_huge_active(page) || !get_page_unless_zero(page)) {
5082 ret = false;
5083 goto unlock;
5084 }
5085 clear_page_huge_active(page);
31caf665 5086 list_move_tail(&page->lru, list);
bcc54222 5087unlock:
31caf665 5088 spin_unlock(&hugetlb_lock);
bcc54222 5089 return ret;
31caf665
NH
5090}
5091
5092void putback_active_hugepage(struct page *page)
5093{
309381fe 5094 VM_BUG_ON_PAGE(!PageHead(page), page);
31caf665 5095 spin_lock(&hugetlb_lock);
bcc54222 5096 set_page_huge_active(page);
31caf665
NH
5097 list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
5098 spin_unlock(&hugetlb_lock);
5099 put_page(page);
5100}
ab5ac90a
MH
5101
5102void move_hugetlb_state(struct page *oldpage, struct page *newpage, int reason)
5103{
5104 struct hstate *h = page_hstate(oldpage);
5105
5106 hugetlb_cgroup_migrate(oldpage, newpage);
5107 set_page_owner_migrate_reason(newpage, reason);
5108
5109 /*
5110 * transfer temporary state of the new huge page. This is
5111 * reverse to other transitions because the newpage is going to
5112 * be final while the old one will be freed so it takes over
5113 * the temporary status.
5114 *
5115 * Also note that we have to transfer the per-node surplus state
5116 * here as well otherwise the global surplus count will not match
5117 * the per-node's.
5118 */
5119 if (PageHugeTemporary(newpage)) {
5120 int old_nid = page_to_nid(oldpage);
5121 int new_nid = page_to_nid(newpage);
5122
5123 SetPageHugeTemporary(oldpage);
5124 ClearPageHugeTemporary(newpage);
5125
5126 spin_lock(&hugetlb_lock);
5127 if (h->surplus_huge_pages_node[old_nid]) {
5128 h->surplus_huge_pages_node[old_nid]--;
5129 h->surplus_huge_pages_node[new_nid]++;
5130 }
5131 spin_unlock(&hugetlb_lock);
5132 }
5133}