cpufreq: Register drivers only after CPU devices have been registered
[linux-2.6-block.git] / mm / hugetlb.c
CommitLineData
457c8996 1// SPDX-License-Identifier: GPL-2.0-only
1da177e4
LT
2/*
3 * Generic hugetlb support.
6d49e352 4 * (C) Nadia Yvette Chambers, April 2004
1da177e4 5 */
1da177e4
LT
6#include <linux/list.h>
7#include <linux/init.h>
1da177e4 8#include <linux/mm.h>
e1759c21 9#include <linux/seq_file.h>
1da177e4
LT
10#include <linux/sysctl.h>
11#include <linux/highmem.h>
cddb8a5c 12#include <linux/mmu_notifier.h>
1da177e4 13#include <linux/nodemask.h>
63551ae0 14#include <linux/pagemap.h>
5da7ca86 15#include <linux/mempolicy.h>
3b32123d 16#include <linux/compiler.h>
aea47ff3 17#include <linux/cpuset.h>
3935baa9 18#include <linux/mutex.h>
97ad1087 19#include <linux/memblock.h>
a3437870 20#include <linux/sysfs.h>
5a0e3ad6 21#include <linux/slab.h>
63489f8e 22#include <linux/mmdebug.h>
174cd4b1 23#include <linux/sched/signal.h>
0fe6e20b 24#include <linux/rmap.h>
c6247f72 25#include <linux/string_helpers.h>
fd6a03ed
NH
26#include <linux/swap.h>
27#include <linux/swapops.h>
8382d914 28#include <linux/jhash.h>
98fa15f3 29#include <linux/numa.h>
d6606683 30
63551ae0
DG
31#include <asm/page.h>
32#include <asm/pgtable.h>
24669e58 33#include <asm/tlb.h>
63551ae0 34
24669e58 35#include <linux/io.h>
63551ae0 36#include <linux/hugetlb.h>
9dd540e2 37#include <linux/hugetlb_cgroup.h>
9a305230 38#include <linux/node.h>
1a1aad8a 39#include <linux/userfaultfd_k.h>
ab5ac90a 40#include <linux/page_owner.h>
7835e98b 41#include "internal.h"
1da177e4 42
c3f38a38 43int hugetlb_max_hstate __read_mostly;
e5ff2159
AK
44unsigned int default_hstate_idx;
45struct hstate hstates[HUGE_MAX_HSTATE];
641844f5
NH
46/*
47 * Minimum page order among possible hugepage sizes, set to a proper value
48 * at boot time.
49 */
50static unsigned int minimum_order __read_mostly = UINT_MAX;
e5ff2159 51
53ba51d2
JT
52__initdata LIST_HEAD(huge_boot_pages);
53
e5ff2159
AK
54/* for command line parsing */
55static struct hstate * __initdata parsed_hstate;
56static unsigned long __initdata default_hstate_max_huge_pages;
e11bfbfc 57static unsigned long __initdata default_hstate_size;
9fee021d 58static bool __initdata parsed_valid_hugepagesz = true;
e5ff2159 59
3935baa9 60/*
31caf665
NH
61 * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
62 * free_huge_pages, and surplus_huge_pages.
3935baa9 63 */
c3f38a38 64DEFINE_SPINLOCK(hugetlb_lock);
0bd0f9fb 65
8382d914
DB
66/*
67 * Serializes faults on the same logical page. This is used to
68 * prevent spurious OOMs when the hugepage pool is fully utilized.
69 */
70static int num_fault_mutexes;
c672c7f2 71struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp;
8382d914 72
7ca02d0a
MK
73/* Forward declaration */
74static int hugetlb_acct_memory(struct hstate *h, long delta);
75
90481622
DG
76static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
77{
78 bool free = (spool->count == 0) && (spool->used_hpages == 0);
79
80 spin_unlock(&spool->lock);
81
82 /* If no pages are used, and no other handles to the subpool
7ca02d0a
MK
83 * remain, give up any reservations mased on minimum size and
84 * free the subpool */
85 if (free) {
86 if (spool->min_hpages != -1)
87 hugetlb_acct_memory(spool->hstate,
88 -spool->min_hpages);
90481622 89 kfree(spool);
7ca02d0a 90 }
90481622
DG
91}
92
7ca02d0a
MK
93struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
94 long min_hpages)
90481622
DG
95{
96 struct hugepage_subpool *spool;
97
c6a91820 98 spool = kzalloc(sizeof(*spool), GFP_KERNEL);
90481622
DG
99 if (!spool)
100 return NULL;
101
102 spin_lock_init(&spool->lock);
103 spool->count = 1;
7ca02d0a
MK
104 spool->max_hpages = max_hpages;
105 spool->hstate = h;
106 spool->min_hpages = min_hpages;
107
108 if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
109 kfree(spool);
110 return NULL;
111 }
112 spool->rsv_hpages = min_hpages;
90481622
DG
113
114 return spool;
115}
116
117void hugepage_put_subpool(struct hugepage_subpool *spool)
118{
119 spin_lock(&spool->lock);
120 BUG_ON(!spool->count);
121 spool->count--;
122 unlock_or_release_subpool(spool);
123}
124
1c5ecae3
MK
125/*
126 * Subpool accounting for allocating and reserving pages.
127 * Return -ENOMEM if there are not enough resources to satisfy the
128 * the request. Otherwise, return the number of pages by which the
129 * global pools must be adjusted (upward). The returned value may
130 * only be different than the passed value (delta) in the case where
131 * a subpool minimum size must be manitained.
132 */
133static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
90481622
DG
134 long delta)
135{
1c5ecae3 136 long ret = delta;
90481622
DG
137
138 if (!spool)
1c5ecae3 139 return ret;
90481622
DG
140
141 spin_lock(&spool->lock);
1c5ecae3
MK
142
143 if (spool->max_hpages != -1) { /* maximum size accounting */
144 if ((spool->used_hpages + delta) <= spool->max_hpages)
145 spool->used_hpages += delta;
146 else {
147 ret = -ENOMEM;
148 goto unlock_ret;
149 }
90481622 150 }
90481622 151
09a95e29
MK
152 /* minimum size accounting */
153 if (spool->min_hpages != -1 && spool->rsv_hpages) {
1c5ecae3
MK
154 if (delta > spool->rsv_hpages) {
155 /*
156 * Asking for more reserves than those already taken on
157 * behalf of subpool. Return difference.
158 */
159 ret = delta - spool->rsv_hpages;
160 spool->rsv_hpages = 0;
161 } else {
162 ret = 0; /* reserves already accounted for */
163 spool->rsv_hpages -= delta;
164 }
165 }
166
167unlock_ret:
168 spin_unlock(&spool->lock);
90481622
DG
169 return ret;
170}
171
1c5ecae3
MK
172/*
173 * Subpool accounting for freeing and unreserving pages.
174 * Return the number of global page reservations that must be dropped.
175 * The return value may only be different than the passed value (delta)
176 * in the case where a subpool minimum size must be maintained.
177 */
178static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
90481622
DG
179 long delta)
180{
1c5ecae3
MK
181 long ret = delta;
182
90481622 183 if (!spool)
1c5ecae3 184 return delta;
90481622
DG
185
186 spin_lock(&spool->lock);
1c5ecae3
MK
187
188 if (spool->max_hpages != -1) /* maximum size accounting */
189 spool->used_hpages -= delta;
190
09a95e29
MK
191 /* minimum size accounting */
192 if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) {
1c5ecae3
MK
193 if (spool->rsv_hpages + delta <= spool->min_hpages)
194 ret = 0;
195 else
196 ret = spool->rsv_hpages + delta - spool->min_hpages;
197
198 spool->rsv_hpages += delta;
199 if (spool->rsv_hpages > spool->min_hpages)
200 spool->rsv_hpages = spool->min_hpages;
201 }
202
203 /*
204 * If hugetlbfs_put_super couldn't free spool due to an outstanding
205 * quota reference, free it now.
206 */
90481622 207 unlock_or_release_subpool(spool);
1c5ecae3
MK
208
209 return ret;
90481622
DG
210}
211
212static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
213{
214 return HUGETLBFS_SB(inode->i_sb)->spool;
215}
216
217static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
218{
496ad9aa 219 return subpool_inode(file_inode(vma->vm_file));
90481622
DG
220}
221
96822904
AW
222/*
223 * Region tracking -- allows tracking of reservations and instantiated pages
224 * across the pages in a mapping.
84afd99b 225 *
1dd308a7
MK
226 * The region data structures are embedded into a resv_map and protected
227 * by a resv_map's lock. The set of regions within the resv_map represent
228 * reservations for huge pages, or huge pages that have already been
229 * instantiated within the map. The from and to elements are huge page
230 * indicies into the associated mapping. from indicates the starting index
231 * of the region. to represents the first index past the end of the region.
232 *
233 * For example, a file region structure with from == 0 and to == 4 represents
234 * four huge pages in a mapping. It is important to note that the to element
235 * represents the first element past the end of the region. This is used in
236 * arithmetic as 4(to) - 0(from) = 4 huge pages in the region.
237 *
238 * Interval notation of the form [from, to) will be used to indicate that
239 * the endpoint from is inclusive and to is exclusive.
96822904
AW
240 */
241struct file_region {
242 struct list_head link;
243 long from;
244 long to;
245};
246
1dd308a7
MK
247/*
248 * Add the huge page range represented by [f, t) to the reserve
5e911373
MK
249 * map. In the normal case, existing regions will be expanded
250 * to accommodate the specified range. Sufficient regions should
251 * exist for expansion due to the previous call to region_chg
252 * with the same range. However, it is possible that region_del
253 * could have been called after region_chg and modifed the map
254 * in such a way that no region exists to be expanded. In this
255 * case, pull a region descriptor from the cache associated with
256 * the map and use that for the new range.
cf3ad20b
MK
257 *
258 * Return the number of new huge pages added to the map. This
259 * number is greater than or equal to zero.
1dd308a7 260 */
1406ec9b 261static long region_add(struct resv_map *resv, long f, long t)
96822904 262{
1406ec9b 263 struct list_head *head = &resv->regions;
96822904 264 struct file_region *rg, *nrg, *trg;
cf3ad20b 265 long add = 0;
96822904 266
7b24d861 267 spin_lock(&resv->lock);
96822904
AW
268 /* Locate the region we are either in or before. */
269 list_for_each_entry(rg, head, link)
270 if (f <= rg->to)
271 break;
272
5e911373
MK
273 /*
274 * If no region exists which can be expanded to include the
275 * specified range, the list must have been modified by an
276 * interleving call to region_del(). Pull a region descriptor
277 * from the cache and use it for this range.
278 */
279 if (&rg->link == head || t < rg->from) {
280 VM_BUG_ON(resv->region_cache_count <= 0);
281
282 resv->region_cache_count--;
283 nrg = list_first_entry(&resv->region_cache, struct file_region,
284 link);
285 list_del(&nrg->link);
286
287 nrg->from = f;
288 nrg->to = t;
289 list_add(&nrg->link, rg->link.prev);
290
291 add += t - f;
292 goto out_locked;
293 }
294
96822904
AW
295 /* Round our left edge to the current segment if it encloses us. */
296 if (f > rg->from)
297 f = rg->from;
298
299 /* Check for and consume any regions we now overlap with. */
300 nrg = rg;
301 list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
302 if (&rg->link == head)
303 break;
304 if (rg->from > t)
305 break;
306
307 /* If this area reaches higher then extend our area to
308 * include it completely. If this is not the first area
309 * which we intend to reuse, free it. */
310 if (rg->to > t)
311 t = rg->to;
312 if (rg != nrg) {
cf3ad20b
MK
313 /* Decrement return value by the deleted range.
314 * Another range will span this area so that by
315 * end of routine add will be >= zero
316 */
317 add -= (rg->to - rg->from);
96822904
AW
318 list_del(&rg->link);
319 kfree(rg);
320 }
321 }
cf3ad20b
MK
322
323 add += (nrg->from - f); /* Added to beginning of region */
96822904 324 nrg->from = f;
cf3ad20b 325 add += t - nrg->to; /* Added to end of region */
96822904 326 nrg->to = t;
cf3ad20b 327
5e911373
MK
328out_locked:
329 resv->adds_in_progress--;
7b24d861 330 spin_unlock(&resv->lock);
cf3ad20b
MK
331 VM_BUG_ON(add < 0);
332 return add;
96822904
AW
333}
334
1dd308a7
MK
335/*
336 * Examine the existing reserve map and determine how many
337 * huge pages in the specified range [f, t) are NOT currently
338 * represented. This routine is called before a subsequent
339 * call to region_add that will actually modify the reserve
340 * map to add the specified range [f, t). region_chg does
341 * not change the number of huge pages represented by the
342 * map. However, if the existing regions in the map can not
343 * be expanded to represent the new range, a new file_region
344 * structure is added to the map as a placeholder. This is
345 * so that the subsequent region_add call will have all the
346 * regions it needs and will not fail.
347 *
5e911373
MK
348 * Upon entry, region_chg will also examine the cache of region descriptors
349 * associated with the map. If there are not enough descriptors cached, one
350 * will be allocated for the in progress add operation.
351 *
352 * Returns the number of huge pages that need to be added to the existing
353 * reservation map for the range [f, t). This number is greater or equal to
354 * zero. -ENOMEM is returned if a new file_region structure or cache entry
355 * is needed and can not be allocated.
1dd308a7 356 */
1406ec9b 357static long region_chg(struct resv_map *resv, long f, long t)
96822904 358{
1406ec9b 359 struct list_head *head = &resv->regions;
7b24d861 360 struct file_region *rg, *nrg = NULL;
96822904
AW
361 long chg = 0;
362
7b24d861
DB
363retry:
364 spin_lock(&resv->lock);
5e911373
MK
365retry_locked:
366 resv->adds_in_progress++;
367
368 /*
369 * Check for sufficient descriptors in the cache to accommodate
370 * the number of in progress add operations.
371 */
372 if (resv->adds_in_progress > resv->region_cache_count) {
373 struct file_region *trg;
374
375 VM_BUG_ON(resv->adds_in_progress - resv->region_cache_count > 1);
376 /* Must drop lock to allocate a new descriptor. */
377 resv->adds_in_progress--;
378 spin_unlock(&resv->lock);
379
380 trg = kmalloc(sizeof(*trg), GFP_KERNEL);
dbe409e4
MK
381 if (!trg) {
382 kfree(nrg);
5e911373 383 return -ENOMEM;
dbe409e4 384 }
5e911373
MK
385
386 spin_lock(&resv->lock);
387 list_add(&trg->link, &resv->region_cache);
388 resv->region_cache_count++;
389 goto retry_locked;
390 }
391
96822904
AW
392 /* Locate the region we are before or in. */
393 list_for_each_entry(rg, head, link)
394 if (f <= rg->to)
395 break;
396
397 /* If we are below the current region then a new region is required.
398 * Subtle, allocate a new region at the position but make it zero
399 * size such that we can guarantee to record the reservation. */
400 if (&rg->link == head || t < rg->from) {
7b24d861 401 if (!nrg) {
5e911373 402 resv->adds_in_progress--;
7b24d861
DB
403 spin_unlock(&resv->lock);
404 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
405 if (!nrg)
406 return -ENOMEM;
407
408 nrg->from = f;
409 nrg->to = f;
410 INIT_LIST_HEAD(&nrg->link);
411 goto retry;
412 }
96822904 413
7b24d861
DB
414 list_add(&nrg->link, rg->link.prev);
415 chg = t - f;
416 goto out_nrg;
96822904
AW
417 }
418
419 /* Round our left edge to the current segment if it encloses us. */
420 if (f > rg->from)
421 f = rg->from;
422 chg = t - f;
423
424 /* Check for and consume any regions we now overlap with. */
425 list_for_each_entry(rg, rg->link.prev, link) {
426 if (&rg->link == head)
427 break;
428 if (rg->from > t)
7b24d861 429 goto out;
96822904 430
25985edc 431 /* We overlap with this area, if it extends further than
96822904
AW
432 * us then we must extend ourselves. Account for its
433 * existing reservation. */
434 if (rg->to > t) {
435 chg += rg->to - t;
436 t = rg->to;
437 }
438 chg -= rg->to - rg->from;
439 }
7b24d861
DB
440
441out:
442 spin_unlock(&resv->lock);
443 /* We already know we raced and no longer need the new region */
444 kfree(nrg);
445 return chg;
446out_nrg:
447 spin_unlock(&resv->lock);
96822904
AW
448 return chg;
449}
450
5e911373
MK
451/*
452 * Abort the in progress add operation. The adds_in_progress field
453 * of the resv_map keeps track of the operations in progress between
454 * calls to region_chg and region_add. Operations are sometimes
455 * aborted after the call to region_chg. In such cases, region_abort
456 * is called to decrement the adds_in_progress counter.
457 *
458 * NOTE: The range arguments [f, t) are not needed or used in this
459 * routine. They are kept to make reading the calling code easier as
460 * arguments will match the associated region_chg call.
461 */
462static void region_abort(struct resv_map *resv, long f, long t)
463{
464 spin_lock(&resv->lock);
465 VM_BUG_ON(!resv->region_cache_count);
466 resv->adds_in_progress--;
467 spin_unlock(&resv->lock);
468}
469
1dd308a7 470/*
feba16e2
MK
471 * Delete the specified range [f, t) from the reserve map. If the
472 * t parameter is LONG_MAX, this indicates that ALL regions after f
473 * should be deleted. Locate the regions which intersect [f, t)
474 * and either trim, delete or split the existing regions.
475 *
476 * Returns the number of huge pages deleted from the reserve map.
477 * In the normal case, the return value is zero or more. In the
478 * case where a region must be split, a new region descriptor must
479 * be allocated. If the allocation fails, -ENOMEM will be returned.
480 * NOTE: If the parameter t == LONG_MAX, then we will never split
481 * a region and possibly return -ENOMEM. Callers specifying
482 * t == LONG_MAX do not need to check for -ENOMEM error.
1dd308a7 483 */
feba16e2 484static long region_del(struct resv_map *resv, long f, long t)
96822904 485{
1406ec9b 486 struct list_head *head = &resv->regions;
96822904 487 struct file_region *rg, *trg;
feba16e2
MK
488 struct file_region *nrg = NULL;
489 long del = 0;
96822904 490
feba16e2 491retry:
7b24d861 492 spin_lock(&resv->lock);
feba16e2 493 list_for_each_entry_safe(rg, trg, head, link) {
dbe409e4
MK
494 /*
495 * Skip regions before the range to be deleted. file_region
496 * ranges are normally of the form [from, to). However, there
497 * may be a "placeholder" entry in the map which is of the form
498 * (from, to) with from == to. Check for placeholder entries
499 * at the beginning of the range to be deleted.
500 */
501 if (rg->to <= f && (rg->to != rg->from || rg->to != f))
feba16e2 502 continue;
dbe409e4 503
feba16e2 504 if (rg->from >= t)
96822904 505 break;
96822904 506
feba16e2
MK
507 if (f > rg->from && t < rg->to) { /* Must split region */
508 /*
509 * Check for an entry in the cache before dropping
510 * lock and attempting allocation.
511 */
512 if (!nrg &&
513 resv->region_cache_count > resv->adds_in_progress) {
514 nrg = list_first_entry(&resv->region_cache,
515 struct file_region,
516 link);
517 list_del(&nrg->link);
518 resv->region_cache_count--;
519 }
96822904 520
feba16e2
MK
521 if (!nrg) {
522 spin_unlock(&resv->lock);
523 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
524 if (!nrg)
525 return -ENOMEM;
526 goto retry;
527 }
528
529 del += t - f;
530
531 /* New entry for end of split region */
532 nrg->from = t;
533 nrg->to = rg->to;
534 INIT_LIST_HEAD(&nrg->link);
535
536 /* Original entry is trimmed */
537 rg->to = f;
538
539 list_add(&nrg->link, &rg->link);
540 nrg = NULL;
96822904 541 break;
feba16e2
MK
542 }
543
544 if (f <= rg->from && t >= rg->to) { /* Remove entire region */
545 del += rg->to - rg->from;
546 list_del(&rg->link);
547 kfree(rg);
548 continue;
549 }
550
551 if (f <= rg->from) { /* Trim beginning of region */
552 del += t - rg->from;
553 rg->from = t;
554 } else { /* Trim end of region */
555 del += rg->to - f;
556 rg->to = f;
557 }
96822904 558 }
7b24d861 559
7b24d861 560 spin_unlock(&resv->lock);
feba16e2
MK
561 kfree(nrg);
562 return del;
96822904
AW
563}
564
b5cec28d
MK
565/*
566 * A rare out of memory error was encountered which prevented removal of
567 * the reserve map region for a page. The huge page itself was free'ed
568 * and removed from the page cache. This routine will adjust the subpool
569 * usage count, and the global reserve count if needed. By incrementing
570 * these counts, the reserve map entry which could not be deleted will
571 * appear as a "reserved" entry instead of simply dangling with incorrect
572 * counts.
573 */
72e2936c 574void hugetlb_fix_reserve_counts(struct inode *inode)
b5cec28d
MK
575{
576 struct hugepage_subpool *spool = subpool_inode(inode);
577 long rsv_adjust;
578
579 rsv_adjust = hugepage_subpool_get_pages(spool, 1);
72e2936c 580 if (rsv_adjust) {
b5cec28d
MK
581 struct hstate *h = hstate_inode(inode);
582
583 hugetlb_acct_memory(h, 1);
584 }
585}
586
1dd308a7
MK
587/*
588 * Count and return the number of huge pages in the reserve map
589 * that intersect with the range [f, t).
590 */
1406ec9b 591static long region_count(struct resv_map *resv, long f, long t)
84afd99b 592{
1406ec9b 593 struct list_head *head = &resv->regions;
84afd99b
AW
594 struct file_region *rg;
595 long chg = 0;
596
7b24d861 597 spin_lock(&resv->lock);
84afd99b
AW
598 /* Locate each segment we overlap with, and count that overlap. */
599 list_for_each_entry(rg, head, link) {
f2135a4a
WSH
600 long seg_from;
601 long seg_to;
84afd99b
AW
602
603 if (rg->to <= f)
604 continue;
605 if (rg->from >= t)
606 break;
607
608 seg_from = max(rg->from, f);
609 seg_to = min(rg->to, t);
610
611 chg += seg_to - seg_from;
612 }
7b24d861 613 spin_unlock(&resv->lock);
84afd99b
AW
614
615 return chg;
616}
617
e7c4b0bf
AW
618/*
619 * Convert the address within this vma to the page offset within
620 * the mapping, in pagecache page units; huge pages here.
621 */
a5516438
AK
622static pgoff_t vma_hugecache_offset(struct hstate *h,
623 struct vm_area_struct *vma, unsigned long address)
e7c4b0bf 624{
a5516438
AK
625 return ((address - vma->vm_start) >> huge_page_shift(h)) +
626 (vma->vm_pgoff >> huge_page_order(h));
e7c4b0bf
AW
627}
628
0fe6e20b
NH
629pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
630 unsigned long address)
631{
632 return vma_hugecache_offset(hstate_vma(vma), vma, address);
633}
dee41079 634EXPORT_SYMBOL_GPL(linear_hugepage_index);
0fe6e20b 635
08fba699
MG
636/*
637 * Return the size of the pages allocated when backing a VMA. In the majority
638 * cases this will be same size as used by the page table entries.
639 */
640unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
641{
05ea8860
DW
642 if (vma->vm_ops && vma->vm_ops->pagesize)
643 return vma->vm_ops->pagesize(vma);
644 return PAGE_SIZE;
08fba699 645}
f340ca0f 646EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
08fba699 647
3340289d
MG
648/*
649 * Return the page size being used by the MMU to back a VMA. In the majority
650 * of cases, the page size used by the kernel matches the MMU size. On
09135cc5
DW
651 * architectures where it differs, an architecture-specific 'strong'
652 * version of this symbol is required.
3340289d 653 */
09135cc5 654__weak unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
3340289d
MG
655{
656 return vma_kernel_pagesize(vma);
657}
3340289d 658
84afd99b
AW
659/*
660 * Flags for MAP_PRIVATE reservations. These are stored in the bottom
661 * bits of the reservation map pointer, which are always clear due to
662 * alignment.
663 */
664#define HPAGE_RESV_OWNER (1UL << 0)
665#define HPAGE_RESV_UNMAPPED (1UL << 1)
04f2cbe3 666#define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
84afd99b 667
a1e78772
MG
668/*
669 * These helpers are used to track how many pages are reserved for
670 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
671 * is guaranteed to have their future faults succeed.
672 *
673 * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
674 * the reserve counters are updated with the hugetlb_lock held. It is safe
675 * to reset the VMA at fork() time as it is not in use yet and there is no
676 * chance of the global counters getting corrupted as a result of the values.
84afd99b
AW
677 *
678 * The private mapping reservation is represented in a subtly different
679 * manner to a shared mapping. A shared mapping has a region map associated
680 * with the underlying file, this region map represents the backing file
681 * pages which have ever had a reservation assigned which this persists even
682 * after the page is instantiated. A private mapping has a region map
683 * associated with the original mmap which is attached to all VMAs which
684 * reference it, this region map represents those offsets which have consumed
685 * reservation ie. where pages have been instantiated.
a1e78772 686 */
e7c4b0bf
AW
687static unsigned long get_vma_private_data(struct vm_area_struct *vma)
688{
689 return (unsigned long)vma->vm_private_data;
690}
691
692static void set_vma_private_data(struct vm_area_struct *vma,
693 unsigned long value)
694{
695 vma->vm_private_data = (void *)value;
696}
697
9119a41e 698struct resv_map *resv_map_alloc(void)
84afd99b
AW
699{
700 struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
5e911373
MK
701 struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);
702
703 if (!resv_map || !rg) {
704 kfree(resv_map);
705 kfree(rg);
84afd99b 706 return NULL;
5e911373 707 }
84afd99b
AW
708
709 kref_init(&resv_map->refs);
7b24d861 710 spin_lock_init(&resv_map->lock);
84afd99b
AW
711 INIT_LIST_HEAD(&resv_map->regions);
712
5e911373
MK
713 resv_map->adds_in_progress = 0;
714
715 INIT_LIST_HEAD(&resv_map->region_cache);
716 list_add(&rg->link, &resv_map->region_cache);
717 resv_map->region_cache_count = 1;
718
84afd99b
AW
719 return resv_map;
720}
721
9119a41e 722void resv_map_release(struct kref *ref)
84afd99b
AW
723{
724 struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
5e911373
MK
725 struct list_head *head = &resv_map->region_cache;
726 struct file_region *rg, *trg;
84afd99b
AW
727
728 /* Clear out any active regions before we release the map. */
feba16e2 729 region_del(resv_map, 0, LONG_MAX);
5e911373
MK
730
731 /* ... and any entries left in the cache */
732 list_for_each_entry_safe(rg, trg, head, link) {
733 list_del(&rg->link);
734 kfree(rg);
735 }
736
737 VM_BUG_ON(resv_map->adds_in_progress);
738
84afd99b
AW
739 kfree(resv_map);
740}
741
4e35f483
JK
742static inline struct resv_map *inode_resv_map(struct inode *inode)
743{
f27a5136
MK
744 /*
745 * At inode evict time, i_mapping may not point to the original
746 * address space within the inode. This original address space
747 * contains the pointer to the resv_map. So, always use the
748 * address space embedded within the inode.
749 * The VERY common case is inode->mapping == &inode->i_data but,
750 * this may not be true for device special inodes.
751 */
752 return (struct resv_map *)(&inode->i_data)->private_data;
4e35f483
JK
753}
754
84afd99b 755static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
a1e78772 756{
81d1b09c 757 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
4e35f483
JK
758 if (vma->vm_flags & VM_MAYSHARE) {
759 struct address_space *mapping = vma->vm_file->f_mapping;
760 struct inode *inode = mapping->host;
761
762 return inode_resv_map(inode);
763
764 } else {
84afd99b
AW
765 return (struct resv_map *)(get_vma_private_data(vma) &
766 ~HPAGE_RESV_MASK);
4e35f483 767 }
a1e78772
MG
768}
769
84afd99b 770static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
a1e78772 771{
81d1b09c
SL
772 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
773 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
a1e78772 774
84afd99b
AW
775 set_vma_private_data(vma, (get_vma_private_data(vma) &
776 HPAGE_RESV_MASK) | (unsigned long)map);
04f2cbe3
MG
777}
778
779static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
780{
81d1b09c
SL
781 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
782 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
e7c4b0bf
AW
783
784 set_vma_private_data(vma, get_vma_private_data(vma) | flags);
04f2cbe3
MG
785}
786
787static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
788{
81d1b09c 789 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
e7c4b0bf
AW
790
791 return (get_vma_private_data(vma) & flag) != 0;
a1e78772
MG
792}
793
04f2cbe3 794/* Reset counters to 0 and clear all HPAGE_RESV_* flags */
a1e78772
MG
795void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
796{
81d1b09c 797 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
f83a275d 798 if (!(vma->vm_flags & VM_MAYSHARE))
a1e78772
MG
799 vma->vm_private_data = (void *)0;
800}
801
802/* Returns true if the VMA has associated reserve pages */
559ec2f8 803static bool vma_has_reserves(struct vm_area_struct *vma, long chg)
a1e78772 804{
af0ed73e
JK
805 if (vma->vm_flags & VM_NORESERVE) {
806 /*
807 * This address is already reserved by other process(chg == 0),
808 * so, we should decrement reserved count. Without decrementing,
809 * reserve count remains after releasing inode, because this
810 * allocated page will go into page cache and is regarded as
811 * coming from reserved pool in releasing step. Currently, we
812 * don't have any other solution to deal with this situation
813 * properly, so add work-around here.
814 */
815 if (vma->vm_flags & VM_MAYSHARE && chg == 0)
559ec2f8 816 return true;
af0ed73e 817 else
559ec2f8 818 return false;
af0ed73e 819 }
a63884e9
JK
820
821 /* Shared mappings always use reserves */
1fb1b0e9
MK
822 if (vma->vm_flags & VM_MAYSHARE) {
823 /*
824 * We know VM_NORESERVE is not set. Therefore, there SHOULD
825 * be a region map for all pages. The only situation where
826 * there is no region map is if a hole was punched via
827 * fallocate. In this case, there really are no reverves to
828 * use. This situation is indicated if chg != 0.
829 */
830 if (chg)
831 return false;
832 else
833 return true;
834 }
a63884e9
JK
835
836 /*
837 * Only the process that called mmap() has reserves for
838 * private mappings.
839 */
67961f9d
MK
840 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
841 /*
842 * Like the shared case above, a hole punch or truncate
843 * could have been performed on the private mapping.
844 * Examine the value of chg to determine if reserves
845 * actually exist or were previously consumed.
846 * Very Subtle - The value of chg comes from a previous
847 * call to vma_needs_reserves(). The reserve map for
848 * private mappings has different (opposite) semantics
849 * than that of shared mappings. vma_needs_reserves()
850 * has already taken this difference in semantics into
851 * account. Therefore, the meaning of chg is the same
852 * as in the shared case above. Code could easily be
853 * combined, but keeping it separate draws attention to
854 * subtle differences.
855 */
856 if (chg)
857 return false;
858 else
859 return true;
860 }
a63884e9 861
559ec2f8 862 return false;
a1e78772
MG
863}
864
a5516438 865static void enqueue_huge_page(struct hstate *h, struct page *page)
1da177e4
LT
866{
867 int nid = page_to_nid(page);
0edaecfa 868 list_move(&page->lru, &h->hugepage_freelists[nid]);
a5516438
AK
869 h->free_huge_pages++;
870 h->free_huge_pages_node[nid]++;
1da177e4
LT
871}
872
94310cbc 873static struct page *dequeue_huge_page_node_exact(struct hstate *h, int nid)
bf50bab2
NH
874{
875 struct page *page;
876
c8721bbb 877 list_for_each_entry(page, &h->hugepage_freelists[nid], lru)
243abd5b 878 if (!PageHWPoison(page))
c8721bbb
NH
879 break;
880 /*
881 * if 'non-isolated free hugepage' not found on the list,
882 * the allocation fails.
883 */
884 if (&h->hugepage_freelists[nid] == &page->lru)
bf50bab2 885 return NULL;
0edaecfa 886 list_move(&page->lru, &h->hugepage_activelist);
a9869b83 887 set_page_refcounted(page);
bf50bab2
NH
888 h->free_huge_pages--;
889 h->free_huge_pages_node[nid]--;
890 return page;
891}
892
3e59fcb0
MH
893static struct page *dequeue_huge_page_nodemask(struct hstate *h, gfp_t gfp_mask, int nid,
894 nodemask_t *nmask)
94310cbc 895{
3e59fcb0
MH
896 unsigned int cpuset_mems_cookie;
897 struct zonelist *zonelist;
898 struct zone *zone;
899 struct zoneref *z;
98fa15f3 900 int node = NUMA_NO_NODE;
94310cbc 901
3e59fcb0
MH
902 zonelist = node_zonelist(nid, gfp_mask);
903
904retry_cpuset:
905 cpuset_mems_cookie = read_mems_allowed_begin();
906 for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nmask) {
907 struct page *page;
908
909 if (!cpuset_zone_allowed(zone, gfp_mask))
910 continue;
911 /*
912 * no need to ask again on the same node. Pool is node rather than
913 * zone aware
914 */
915 if (zone_to_nid(zone) == node)
916 continue;
917 node = zone_to_nid(zone);
94310cbc 918
94310cbc
AK
919 page = dequeue_huge_page_node_exact(h, node);
920 if (page)
921 return page;
922 }
3e59fcb0
MH
923 if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie)))
924 goto retry_cpuset;
925
94310cbc
AK
926 return NULL;
927}
928
86cdb465
NH
929/* Movability of hugepages depends on migration support. */
930static inline gfp_t htlb_alloc_mask(struct hstate *h)
931{
7ed2c31d 932 if (hugepage_movable_supported(h))
86cdb465
NH
933 return GFP_HIGHUSER_MOVABLE;
934 else
935 return GFP_HIGHUSER;
936}
937
a5516438
AK
938static struct page *dequeue_huge_page_vma(struct hstate *h,
939 struct vm_area_struct *vma,
af0ed73e
JK
940 unsigned long address, int avoid_reserve,
941 long chg)
1da177e4 942{
3e59fcb0 943 struct page *page;
480eccf9 944 struct mempolicy *mpol;
04ec6264 945 gfp_t gfp_mask;
3e59fcb0 946 nodemask_t *nodemask;
04ec6264 947 int nid;
1da177e4 948
a1e78772
MG
949 /*
950 * A child process with MAP_PRIVATE mappings created by their parent
951 * have no page reserves. This check ensures that reservations are
952 * not "stolen". The child may still get SIGKILLed
953 */
af0ed73e 954 if (!vma_has_reserves(vma, chg) &&
a5516438 955 h->free_huge_pages - h->resv_huge_pages == 0)
c0ff7453 956 goto err;
a1e78772 957
04f2cbe3 958 /* If reserves cannot be used, ensure enough pages are in the pool */
a5516438 959 if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
6eab04a8 960 goto err;
04f2cbe3 961
04ec6264
VB
962 gfp_mask = htlb_alloc_mask(h);
963 nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
3e59fcb0
MH
964 page = dequeue_huge_page_nodemask(h, gfp_mask, nid, nodemask);
965 if (page && !avoid_reserve && vma_has_reserves(vma, chg)) {
966 SetPagePrivate(page);
967 h->resv_huge_pages--;
1da177e4 968 }
cc9a6c87 969
52cd3b07 970 mpol_cond_put(mpol);
1da177e4 971 return page;
cc9a6c87
MG
972
973err:
cc9a6c87 974 return NULL;
1da177e4
LT
975}
976
1cac6f2c
LC
977/*
978 * common helper functions for hstate_next_node_to_{alloc|free}.
979 * We may have allocated or freed a huge page based on a different
980 * nodes_allowed previously, so h->next_node_to_{alloc|free} might
981 * be outside of *nodes_allowed. Ensure that we use an allowed
982 * node for alloc or free.
983 */
984static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
985{
0edaf86c 986 nid = next_node_in(nid, *nodes_allowed);
1cac6f2c
LC
987 VM_BUG_ON(nid >= MAX_NUMNODES);
988
989 return nid;
990}
991
992static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
993{
994 if (!node_isset(nid, *nodes_allowed))
995 nid = next_node_allowed(nid, nodes_allowed);
996 return nid;
997}
998
999/*
1000 * returns the previously saved node ["this node"] from which to
1001 * allocate a persistent huge page for the pool and advance the
1002 * next node from which to allocate, handling wrap at end of node
1003 * mask.
1004 */
1005static int hstate_next_node_to_alloc(struct hstate *h,
1006 nodemask_t *nodes_allowed)
1007{
1008 int nid;
1009
1010 VM_BUG_ON(!nodes_allowed);
1011
1012 nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
1013 h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
1014
1015 return nid;
1016}
1017
1018/*
1019 * helper for free_pool_huge_page() - return the previously saved
1020 * node ["this node"] from which to free a huge page. Advance the
1021 * next node id whether or not we find a free huge page to free so
1022 * that the next attempt to free addresses the next node.
1023 */
1024static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
1025{
1026 int nid;
1027
1028 VM_BUG_ON(!nodes_allowed);
1029
1030 nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
1031 h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
1032
1033 return nid;
1034}
1035
1036#define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask) \
1037 for (nr_nodes = nodes_weight(*mask); \
1038 nr_nodes > 0 && \
1039 ((node = hstate_next_node_to_alloc(hs, mask)) || 1); \
1040 nr_nodes--)
1041
1042#define for_each_node_mask_to_free(hs, nr_nodes, node, mask) \
1043 for (nr_nodes = nodes_weight(*mask); \
1044 nr_nodes > 0 && \
1045 ((node = hstate_next_node_to_free(hs, mask)) || 1); \
1046 nr_nodes--)
1047
e1073d1e 1048#ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE
944d9fec 1049static void destroy_compound_gigantic_page(struct page *page,
d00181b9 1050 unsigned int order)
944d9fec
LC
1051{
1052 int i;
1053 int nr_pages = 1 << order;
1054 struct page *p = page + 1;
1055
c8cc708a 1056 atomic_set(compound_mapcount_ptr(page), 0);
944d9fec 1057 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1d798ca3 1058 clear_compound_head(p);
944d9fec 1059 set_page_refcounted(p);
944d9fec
LC
1060 }
1061
1062 set_compound_order(page, 0);
1063 __ClearPageHead(page);
1064}
1065
d00181b9 1066static void free_gigantic_page(struct page *page, unsigned int order)
944d9fec
LC
1067{
1068 free_contig_range(page_to_pfn(page), 1 << order);
1069}
1070
4eb0716e 1071#ifdef CONFIG_CONTIG_ALLOC
944d9fec 1072static int __alloc_gigantic_page(unsigned long start_pfn,
79b63f12 1073 unsigned long nr_pages, gfp_t gfp_mask)
944d9fec
LC
1074{
1075 unsigned long end_pfn = start_pfn + nr_pages;
ca96b625 1076 return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE,
79b63f12 1077 gfp_mask);
944d9fec
LC
1078}
1079
f44b2dda
JK
1080static bool pfn_range_valid_gigantic(struct zone *z,
1081 unsigned long start_pfn, unsigned long nr_pages)
944d9fec
LC
1082{
1083 unsigned long i, end_pfn = start_pfn + nr_pages;
1084 struct page *page;
1085
1086 for (i = start_pfn; i < end_pfn; i++) {
f231fe42
DH
1087 page = pfn_to_online_page(i);
1088 if (!page)
944d9fec
LC
1089 return false;
1090
f44b2dda
JK
1091 if (page_zone(page) != z)
1092 return false;
1093
944d9fec
LC
1094 if (PageReserved(page))
1095 return false;
1096
1097 if (page_count(page) > 0)
1098 return false;
1099
1100 if (PageHuge(page))
1101 return false;
1102 }
1103
1104 return true;
1105}
1106
1107static bool zone_spans_last_pfn(const struct zone *zone,
1108 unsigned long start_pfn, unsigned long nr_pages)
1109{
1110 unsigned long last_pfn = start_pfn + nr_pages - 1;
1111 return zone_spans_pfn(zone, last_pfn);
1112}
1113
d9cc948f
MH
1114static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1115 int nid, nodemask_t *nodemask)
944d9fec 1116{
79b63f12 1117 unsigned int order = huge_page_order(h);
944d9fec
LC
1118 unsigned long nr_pages = 1 << order;
1119 unsigned long ret, pfn, flags;
79b63f12
MH
1120 struct zonelist *zonelist;
1121 struct zone *zone;
1122 struct zoneref *z;
944d9fec 1123
79b63f12 1124 zonelist = node_zonelist(nid, gfp_mask);
d9cc948f 1125 for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nodemask) {
79b63f12 1126 spin_lock_irqsave(&zone->lock, flags);
944d9fec 1127
79b63f12
MH
1128 pfn = ALIGN(zone->zone_start_pfn, nr_pages);
1129 while (zone_spans_last_pfn(zone, pfn, nr_pages)) {
1130 if (pfn_range_valid_gigantic(zone, pfn, nr_pages)) {
944d9fec
LC
1131 /*
1132 * We release the zone lock here because
1133 * alloc_contig_range() will also lock the zone
1134 * at some point. If there's an allocation
1135 * spinning on this lock, it may win the race
1136 * and cause alloc_contig_range() to fail...
1137 */
79b63f12
MH
1138 spin_unlock_irqrestore(&zone->lock, flags);
1139 ret = __alloc_gigantic_page(pfn, nr_pages, gfp_mask);
944d9fec
LC
1140 if (!ret)
1141 return pfn_to_page(pfn);
79b63f12 1142 spin_lock_irqsave(&zone->lock, flags);
944d9fec
LC
1143 }
1144 pfn += nr_pages;
1145 }
1146
79b63f12 1147 spin_unlock_irqrestore(&zone->lock, flags);
944d9fec
LC
1148 }
1149
1150 return NULL;
1151}
1152
1153static void prep_new_huge_page(struct hstate *h, struct page *page, int nid);
d00181b9 1154static void prep_compound_gigantic_page(struct page *page, unsigned int order);
4eb0716e
AG
1155#else /* !CONFIG_CONTIG_ALLOC */
1156static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1157 int nid, nodemask_t *nodemask)
1158{
1159 return NULL;
1160}
1161#endif /* CONFIG_CONTIG_ALLOC */
944d9fec 1162
e1073d1e 1163#else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */
d9cc948f 1164static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
4eb0716e
AG
1165 int nid, nodemask_t *nodemask)
1166{
1167 return NULL;
1168}
d00181b9 1169static inline void free_gigantic_page(struct page *page, unsigned int order) { }
944d9fec 1170static inline void destroy_compound_gigantic_page(struct page *page,
d00181b9 1171 unsigned int order) { }
944d9fec
LC
1172#endif
1173
a5516438 1174static void update_and_free_page(struct hstate *h, struct page *page)
6af2acb6
AL
1175{
1176 int i;
a5516438 1177
4eb0716e 1178 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
944d9fec 1179 return;
18229df5 1180
a5516438
AK
1181 h->nr_huge_pages--;
1182 h->nr_huge_pages_node[page_to_nid(page)]--;
1183 for (i = 0; i < pages_per_huge_page(h); i++) {
32f84528
CF
1184 page[i].flags &= ~(1 << PG_locked | 1 << PG_error |
1185 1 << PG_referenced | 1 << PG_dirty |
a7407a27
LC
1186 1 << PG_active | 1 << PG_private |
1187 1 << PG_writeback);
6af2acb6 1188 }
309381fe 1189 VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page);
f1e61557 1190 set_compound_page_dtor(page, NULL_COMPOUND_DTOR);
6af2acb6 1191 set_page_refcounted(page);
944d9fec
LC
1192 if (hstate_is_gigantic(h)) {
1193 destroy_compound_gigantic_page(page, huge_page_order(h));
1194 free_gigantic_page(page, huge_page_order(h));
1195 } else {
944d9fec
LC
1196 __free_pages(page, huge_page_order(h));
1197 }
6af2acb6
AL
1198}
1199
e5ff2159
AK
1200struct hstate *size_to_hstate(unsigned long size)
1201{
1202 struct hstate *h;
1203
1204 for_each_hstate(h) {
1205 if (huge_page_size(h) == size)
1206 return h;
1207 }
1208 return NULL;
1209}
1210
bcc54222
NH
1211/*
1212 * Test to determine whether the hugepage is "active/in-use" (i.e. being linked
1213 * to hstate->hugepage_activelist.)
1214 *
1215 * This function can be called for tail pages, but never returns true for them.
1216 */
1217bool page_huge_active(struct page *page)
1218{
1219 VM_BUG_ON_PAGE(!PageHuge(page), page);
1220 return PageHead(page) && PagePrivate(&page[1]);
1221}
1222
1223/* never called for tail page */
1224static void set_page_huge_active(struct page *page)
1225{
1226 VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1227 SetPagePrivate(&page[1]);
1228}
1229
1230static void clear_page_huge_active(struct page *page)
1231{
1232 VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1233 ClearPagePrivate(&page[1]);
1234}
1235
ab5ac90a
MH
1236/*
1237 * Internal hugetlb specific page flag. Do not use outside of the hugetlb
1238 * code
1239 */
1240static inline bool PageHugeTemporary(struct page *page)
1241{
1242 if (!PageHuge(page))
1243 return false;
1244
1245 return (unsigned long)page[2].mapping == -1U;
1246}
1247
1248static inline void SetPageHugeTemporary(struct page *page)
1249{
1250 page[2].mapping = (void *)-1U;
1251}
1252
1253static inline void ClearPageHugeTemporary(struct page *page)
1254{
1255 page[2].mapping = NULL;
1256}
1257
8f1d26d0 1258void free_huge_page(struct page *page)
27a85ef1 1259{
a5516438
AK
1260 /*
1261 * Can't pass hstate in here because it is called from the
1262 * compound page destructor.
1263 */
e5ff2159 1264 struct hstate *h = page_hstate(page);
7893d1d5 1265 int nid = page_to_nid(page);
90481622
DG
1266 struct hugepage_subpool *spool =
1267 (struct hugepage_subpool *)page_private(page);
07443a85 1268 bool restore_reserve;
27a85ef1 1269
b4330afb
MK
1270 VM_BUG_ON_PAGE(page_count(page), page);
1271 VM_BUG_ON_PAGE(page_mapcount(page), page);
8ace22bc
YW
1272
1273 set_page_private(page, 0);
1274 page->mapping = NULL;
07443a85 1275 restore_reserve = PagePrivate(page);
16c794b4 1276 ClearPagePrivate(page);
27a85ef1 1277
1c5ecae3 1278 /*
0919e1b6
MK
1279 * If PagePrivate() was set on page, page allocation consumed a
1280 * reservation. If the page was associated with a subpool, there
1281 * would have been a page reserved in the subpool before allocation
1282 * via hugepage_subpool_get_pages(). Since we are 'restoring' the
1283 * reservtion, do not call hugepage_subpool_put_pages() as this will
1284 * remove the reserved page from the subpool.
1c5ecae3 1285 */
0919e1b6
MK
1286 if (!restore_reserve) {
1287 /*
1288 * A return code of zero implies that the subpool will be
1289 * under its minimum size if the reservation is not restored
1290 * after page is free. Therefore, force restore_reserve
1291 * operation.
1292 */
1293 if (hugepage_subpool_put_pages(spool, 1) == 0)
1294 restore_reserve = true;
1295 }
1c5ecae3 1296
27a85ef1 1297 spin_lock(&hugetlb_lock);
bcc54222 1298 clear_page_huge_active(page);
6d76dcf4
AK
1299 hugetlb_cgroup_uncharge_page(hstate_index(h),
1300 pages_per_huge_page(h), page);
07443a85
JK
1301 if (restore_reserve)
1302 h->resv_huge_pages++;
1303
ab5ac90a
MH
1304 if (PageHugeTemporary(page)) {
1305 list_del(&page->lru);
1306 ClearPageHugeTemporary(page);
1307 update_and_free_page(h, page);
1308 } else if (h->surplus_huge_pages_node[nid]) {
0edaecfa
AK
1309 /* remove the page from active list */
1310 list_del(&page->lru);
a5516438
AK
1311 update_and_free_page(h, page);
1312 h->surplus_huge_pages--;
1313 h->surplus_huge_pages_node[nid]--;
7893d1d5 1314 } else {
5d3a551c 1315 arch_clear_hugepage_flags(page);
a5516438 1316 enqueue_huge_page(h, page);
7893d1d5 1317 }
27a85ef1
DG
1318 spin_unlock(&hugetlb_lock);
1319}
1320
a5516438 1321static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
b7ba30c6 1322{
0edaecfa 1323 INIT_LIST_HEAD(&page->lru);
f1e61557 1324 set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
b7ba30c6 1325 spin_lock(&hugetlb_lock);
9dd540e2 1326 set_hugetlb_cgroup(page, NULL);
a5516438
AK
1327 h->nr_huge_pages++;
1328 h->nr_huge_pages_node[nid]++;
b7ba30c6 1329 spin_unlock(&hugetlb_lock);
b7ba30c6
AK
1330}
1331
d00181b9 1332static void prep_compound_gigantic_page(struct page *page, unsigned int order)
20a0307c
WF
1333{
1334 int i;
1335 int nr_pages = 1 << order;
1336 struct page *p = page + 1;
1337
1338 /* we rely on prep_new_huge_page to set the destructor */
1339 set_compound_order(page, order);
ef5a22be 1340 __ClearPageReserved(page);
de09d31d 1341 __SetPageHead(page);
20a0307c 1342 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
ef5a22be
AA
1343 /*
1344 * For gigantic hugepages allocated through bootmem at
1345 * boot, it's safer to be consistent with the not-gigantic
1346 * hugepages and clear the PG_reserved bit from all tail pages
1347 * too. Otherwse drivers using get_user_pages() to access tail
1348 * pages may get the reference counting wrong if they see
1349 * PG_reserved set on a tail page (despite the head page not
1350 * having PG_reserved set). Enforcing this consistency between
1351 * head and tail pages allows drivers to optimize away a check
1352 * on the head page when they need know if put_page() is needed
1353 * after get_user_pages().
1354 */
1355 __ClearPageReserved(p);
58a84aa9 1356 set_page_count(p, 0);
1d798ca3 1357 set_compound_head(p, page);
20a0307c 1358 }
b4330afb 1359 atomic_set(compound_mapcount_ptr(page), -1);
20a0307c
WF
1360}
1361
7795912c
AM
1362/*
1363 * PageHuge() only returns true for hugetlbfs pages, but not for normal or
1364 * transparent huge pages. See the PageTransHuge() documentation for more
1365 * details.
1366 */
20a0307c
WF
1367int PageHuge(struct page *page)
1368{
20a0307c
WF
1369 if (!PageCompound(page))
1370 return 0;
1371
1372 page = compound_head(page);
f1e61557 1373 return page[1].compound_dtor == HUGETLB_PAGE_DTOR;
20a0307c 1374}
43131e14
NH
1375EXPORT_SYMBOL_GPL(PageHuge);
1376
27c73ae7
AA
1377/*
1378 * PageHeadHuge() only returns true for hugetlbfs head page, but not for
1379 * normal or transparent huge pages.
1380 */
1381int PageHeadHuge(struct page *page_head)
1382{
27c73ae7
AA
1383 if (!PageHead(page_head))
1384 return 0;
1385
758f66a2 1386 return get_compound_page_dtor(page_head) == free_huge_page;
27c73ae7 1387}
27c73ae7 1388
13d60f4b
ZY
1389pgoff_t __basepage_index(struct page *page)
1390{
1391 struct page *page_head = compound_head(page);
1392 pgoff_t index = page_index(page_head);
1393 unsigned long compound_idx;
1394
1395 if (!PageHuge(page_head))
1396 return page_index(page);
1397
1398 if (compound_order(page_head) >= MAX_ORDER)
1399 compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
1400 else
1401 compound_idx = page - page_head;
1402
1403 return (index << compound_order(page_head)) + compound_idx;
1404}
1405
0c397dae 1406static struct page *alloc_buddy_huge_page(struct hstate *h,
f60858f9
MK
1407 gfp_t gfp_mask, int nid, nodemask_t *nmask,
1408 nodemask_t *node_alloc_noretry)
1da177e4 1409{
af0fb9df 1410 int order = huge_page_order(h);
1da177e4 1411 struct page *page;
f60858f9 1412 bool alloc_try_hard = true;
f96efd58 1413
f60858f9
MK
1414 /*
1415 * By default we always try hard to allocate the page with
1416 * __GFP_RETRY_MAYFAIL flag. However, if we are allocating pages in
1417 * a loop (to adjust global huge page counts) and previous allocation
1418 * failed, do not continue to try hard on the same node. Use the
1419 * node_alloc_noretry bitmap to manage this state information.
1420 */
1421 if (node_alloc_noretry && node_isset(nid, *node_alloc_noretry))
1422 alloc_try_hard = false;
1423 gfp_mask |= __GFP_COMP|__GFP_NOWARN;
1424 if (alloc_try_hard)
1425 gfp_mask |= __GFP_RETRY_MAYFAIL;
af0fb9df
MH
1426 if (nid == NUMA_NO_NODE)
1427 nid = numa_mem_id();
1428 page = __alloc_pages_nodemask(gfp_mask, order, nid, nmask);
1429 if (page)
1430 __count_vm_event(HTLB_BUDDY_PGALLOC);
1431 else
1432 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
63b4613c 1433
f60858f9
MK
1434 /*
1435 * If we did not specify __GFP_RETRY_MAYFAIL, but still got a page this
1436 * indicates an overall state change. Clear bit so that we resume
1437 * normal 'try hard' allocations.
1438 */
1439 if (node_alloc_noretry && page && !alloc_try_hard)
1440 node_clear(nid, *node_alloc_noretry);
1441
1442 /*
1443 * If we tried hard to get a page but failed, set bit so that
1444 * subsequent attempts will not try as hard until there is an
1445 * overall state change.
1446 */
1447 if (node_alloc_noretry && !page && alloc_try_hard)
1448 node_set(nid, *node_alloc_noretry);
1449
63b4613c
NA
1450 return page;
1451}
1452
0c397dae
MH
1453/*
1454 * Common helper to allocate a fresh hugetlb page. All specific allocators
1455 * should use this function to get new hugetlb pages
1456 */
1457static struct page *alloc_fresh_huge_page(struct hstate *h,
f60858f9
MK
1458 gfp_t gfp_mask, int nid, nodemask_t *nmask,
1459 nodemask_t *node_alloc_noretry)
0c397dae
MH
1460{
1461 struct page *page;
1462
1463 if (hstate_is_gigantic(h))
1464 page = alloc_gigantic_page(h, gfp_mask, nid, nmask);
1465 else
1466 page = alloc_buddy_huge_page(h, gfp_mask,
f60858f9 1467 nid, nmask, node_alloc_noretry);
0c397dae
MH
1468 if (!page)
1469 return NULL;
1470
1471 if (hstate_is_gigantic(h))
1472 prep_compound_gigantic_page(page, huge_page_order(h));
1473 prep_new_huge_page(h, page, page_to_nid(page));
1474
1475 return page;
1476}
1477
af0fb9df
MH
1478/*
1479 * Allocates a fresh page to the hugetlb allocator pool in the node interleaved
1480 * manner.
1481 */
f60858f9
MK
1482static int alloc_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
1483 nodemask_t *node_alloc_noretry)
b2261026
JK
1484{
1485 struct page *page;
1486 int nr_nodes, node;
af0fb9df 1487 gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
b2261026
JK
1488
1489 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
f60858f9
MK
1490 page = alloc_fresh_huge_page(h, gfp_mask, node, nodes_allowed,
1491 node_alloc_noretry);
af0fb9df 1492 if (page)
b2261026 1493 break;
b2261026
JK
1494 }
1495
af0fb9df
MH
1496 if (!page)
1497 return 0;
b2261026 1498
af0fb9df
MH
1499 put_page(page); /* free it into the hugepage allocator */
1500
1501 return 1;
b2261026
JK
1502}
1503
e8c5c824
LS
1504/*
1505 * Free huge page from pool from next node to free.
1506 * Attempt to keep persistent huge pages more or less
1507 * balanced over allowed nodes.
1508 * Called with hugetlb_lock locked.
1509 */
6ae11b27
LS
1510static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
1511 bool acct_surplus)
e8c5c824 1512{
b2261026 1513 int nr_nodes, node;
e8c5c824
LS
1514 int ret = 0;
1515
b2261026 1516 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
685f3457
LS
1517 /*
1518 * If we're returning unused surplus pages, only examine
1519 * nodes with surplus pages.
1520 */
b2261026
JK
1521 if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
1522 !list_empty(&h->hugepage_freelists[node])) {
e8c5c824 1523 struct page *page =
b2261026 1524 list_entry(h->hugepage_freelists[node].next,
e8c5c824
LS
1525 struct page, lru);
1526 list_del(&page->lru);
1527 h->free_huge_pages--;
b2261026 1528 h->free_huge_pages_node[node]--;
685f3457
LS
1529 if (acct_surplus) {
1530 h->surplus_huge_pages--;
b2261026 1531 h->surplus_huge_pages_node[node]--;
685f3457 1532 }
e8c5c824
LS
1533 update_and_free_page(h, page);
1534 ret = 1;
9a76db09 1535 break;
e8c5c824 1536 }
b2261026 1537 }
e8c5c824
LS
1538
1539 return ret;
1540}
1541
c8721bbb
NH
1542/*
1543 * Dissolve a given free hugepage into free buddy pages. This function does
faf53def
NH
1544 * nothing for in-use hugepages and non-hugepages.
1545 * This function returns values like below:
1546 *
1547 * -EBUSY: failed to dissolved free hugepages or the hugepage is in-use
1548 * (allocated or reserved.)
1549 * 0: successfully dissolved free hugepages or the page is not a
1550 * hugepage (considered as already dissolved)
c8721bbb 1551 */
c3114a84 1552int dissolve_free_huge_page(struct page *page)
c8721bbb 1553{
6bc9b564 1554 int rc = -EBUSY;
082d5b6b 1555
faf53def
NH
1556 /* Not to disrupt normal path by vainly holding hugetlb_lock */
1557 if (!PageHuge(page))
1558 return 0;
1559
c8721bbb 1560 spin_lock(&hugetlb_lock);
faf53def
NH
1561 if (!PageHuge(page)) {
1562 rc = 0;
1563 goto out;
1564 }
1565
1566 if (!page_count(page)) {
2247bb33
GS
1567 struct page *head = compound_head(page);
1568 struct hstate *h = page_hstate(head);
1569 int nid = page_to_nid(head);
6bc9b564 1570 if (h->free_huge_pages - h->resv_huge_pages == 0)
082d5b6b 1571 goto out;
c3114a84
AK
1572 /*
1573 * Move PageHWPoison flag from head page to the raw error page,
1574 * which makes any subpages rather than the error page reusable.
1575 */
1576 if (PageHWPoison(head) && page != head) {
1577 SetPageHWPoison(page);
1578 ClearPageHWPoison(head);
1579 }
2247bb33 1580 list_del(&head->lru);
c8721bbb
NH
1581 h->free_huge_pages--;
1582 h->free_huge_pages_node[nid]--;
c1470b33 1583 h->max_huge_pages--;
2247bb33 1584 update_and_free_page(h, head);
6bc9b564 1585 rc = 0;
c8721bbb 1586 }
082d5b6b 1587out:
c8721bbb 1588 spin_unlock(&hugetlb_lock);
082d5b6b 1589 return rc;
c8721bbb
NH
1590}
1591
1592/*
1593 * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
1594 * make specified memory blocks removable from the system.
2247bb33
GS
1595 * Note that this will dissolve a free gigantic hugepage completely, if any
1596 * part of it lies within the given range.
082d5b6b
GS
1597 * Also note that if dissolve_free_huge_page() returns with an error, all
1598 * free hugepages that were dissolved before that error are lost.
c8721bbb 1599 */
082d5b6b 1600int dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
c8721bbb 1601{
c8721bbb 1602 unsigned long pfn;
eb03aa00 1603 struct page *page;
082d5b6b 1604 int rc = 0;
c8721bbb 1605
d0177639 1606 if (!hugepages_supported())
082d5b6b 1607 return rc;
d0177639 1608
eb03aa00
GS
1609 for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << minimum_order) {
1610 page = pfn_to_page(pfn);
faf53def
NH
1611 rc = dissolve_free_huge_page(page);
1612 if (rc)
1613 break;
eb03aa00 1614 }
082d5b6b
GS
1615
1616 return rc;
c8721bbb
NH
1617}
1618
ab5ac90a
MH
1619/*
1620 * Allocates a fresh surplus page from the page allocator.
1621 */
0c397dae 1622static struct page *alloc_surplus_huge_page(struct hstate *h, gfp_t gfp_mask,
aaf14e40 1623 int nid, nodemask_t *nmask)
7893d1d5 1624{
9980d744 1625 struct page *page = NULL;
7893d1d5 1626
bae7f4ae 1627 if (hstate_is_gigantic(h))
aa888a74
AK
1628 return NULL;
1629
d1c3fb1f 1630 spin_lock(&hugetlb_lock);
9980d744
MH
1631 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages)
1632 goto out_unlock;
d1c3fb1f
NA
1633 spin_unlock(&hugetlb_lock);
1634
f60858f9 1635 page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask, NULL);
9980d744 1636 if (!page)
0c397dae 1637 return NULL;
d1c3fb1f
NA
1638
1639 spin_lock(&hugetlb_lock);
9980d744
MH
1640 /*
1641 * We could have raced with the pool size change.
1642 * Double check that and simply deallocate the new page
1643 * if we would end up overcommiting the surpluses. Abuse
1644 * temporary page to workaround the nasty free_huge_page
1645 * codeflow
1646 */
1647 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
1648 SetPageHugeTemporary(page);
2bf753e6 1649 spin_unlock(&hugetlb_lock);
9980d744 1650 put_page(page);
2bf753e6 1651 return NULL;
9980d744 1652 } else {
9980d744 1653 h->surplus_huge_pages++;
4704dea3 1654 h->surplus_huge_pages_node[page_to_nid(page)]++;
7893d1d5 1655 }
9980d744
MH
1656
1657out_unlock:
d1c3fb1f 1658 spin_unlock(&hugetlb_lock);
7893d1d5
AL
1659
1660 return page;
1661}
1662
9a4e9f3b
AK
1663struct page *alloc_migrate_huge_page(struct hstate *h, gfp_t gfp_mask,
1664 int nid, nodemask_t *nmask)
ab5ac90a
MH
1665{
1666 struct page *page;
1667
1668 if (hstate_is_gigantic(h))
1669 return NULL;
1670
f60858f9 1671 page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask, NULL);
ab5ac90a
MH
1672 if (!page)
1673 return NULL;
1674
1675 /*
1676 * We do not account these pages as surplus because they are only
1677 * temporary and will be released properly on the last reference
1678 */
ab5ac90a
MH
1679 SetPageHugeTemporary(page);
1680
1681 return page;
1682}
1683
099730d6
DH
1684/*
1685 * Use the VMA's mpolicy to allocate a huge page from the buddy.
1686 */
e0ec90ee 1687static
0c397dae 1688struct page *alloc_buddy_huge_page_with_mpol(struct hstate *h,
099730d6
DH
1689 struct vm_area_struct *vma, unsigned long addr)
1690{
aaf14e40
MH
1691 struct page *page;
1692 struct mempolicy *mpol;
1693 gfp_t gfp_mask = htlb_alloc_mask(h);
1694 int nid;
1695 nodemask_t *nodemask;
1696
1697 nid = huge_node(vma, addr, gfp_mask, &mpol, &nodemask);
0c397dae 1698 page = alloc_surplus_huge_page(h, gfp_mask, nid, nodemask);
aaf14e40
MH
1699 mpol_cond_put(mpol);
1700
1701 return page;
099730d6
DH
1702}
1703
ab5ac90a 1704/* page migration callback function */
bf50bab2
NH
1705struct page *alloc_huge_page_node(struct hstate *h, int nid)
1706{
aaf14e40 1707 gfp_t gfp_mask = htlb_alloc_mask(h);
4ef91848 1708 struct page *page = NULL;
bf50bab2 1709
aaf14e40
MH
1710 if (nid != NUMA_NO_NODE)
1711 gfp_mask |= __GFP_THISNODE;
1712
bf50bab2 1713 spin_lock(&hugetlb_lock);
4ef91848 1714 if (h->free_huge_pages - h->resv_huge_pages > 0)
3e59fcb0 1715 page = dequeue_huge_page_nodemask(h, gfp_mask, nid, NULL);
bf50bab2
NH
1716 spin_unlock(&hugetlb_lock);
1717
94ae8ba7 1718 if (!page)
0c397dae 1719 page = alloc_migrate_huge_page(h, gfp_mask, nid, NULL);
bf50bab2
NH
1720
1721 return page;
1722}
1723
ab5ac90a 1724/* page migration callback function */
3e59fcb0
MH
1725struct page *alloc_huge_page_nodemask(struct hstate *h, int preferred_nid,
1726 nodemask_t *nmask)
4db9b2ef 1727{
aaf14e40 1728 gfp_t gfp_mask = htlb_alloc_mask(h);
4db9b2ef
MH
1729
1730 spin_lock(&hugetlb_lock);
1731 if (h->free_huge_pages - h->resv_huge_pages > 0) {
3e59fcb0
MH
1732 struct page *page;
1733
1734 page = dequeue_huge_page_nodemask(h, gfp_mask, preferred_nid, nmask);
1735 if (page) {
1736 spin_unlock(&hugetlb_lock);
1737 return page;
4db9b2ef
MH
1738 }
1739 }
1740 spin_unlock(&hugetlb_lock);
4db9b2ef 1741
0c397dae 1742 return alloc_migrate_huge_page(h, gfp_mask, preferred_nid, nmask);
4db9b2ef
MH
1743}
1744
ebd63723 1745/* mempolicy aware migration callback */
389c8178
MH
1746struct page *alloc_huge_page_vma(struct hstate *h, struct vm_area_struct *vma,
1747 unsigned long address)
ebd63723
MH
1748{
1749 struct mempolicy *mpol;
1750 nodemask_t *nodemask;
1751 struct page *page;
ebd63723
MH
1752 gfp_t gfp_mask;
1753 int node;
1754
ebd63723
MH
1755 gfp_mask = htlb_alloc_mask(h);
1756 node = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
1757 page = alloc_huge_page_nodemask(h, node, nodemask);
1758 mpol_cond_put(mpol);
1759
1760 return page;
1761}
1762
e4e574b7 1763/*
25985edc 1764 * Increase the hugetlb pool such that it can accommodate a reservation
e4e574b7
AL
1765 * of size 'delta'.
1766 */
a5516438 1767static int gather_surplus_pages(struct hstate *h, int delta)
e4e574b7
AL
1768{
1769 struct list_head surplus_list;
1770 struct page *page, *tmp;
1771 int ret, i;
1772 int needed, allocated;
28073b02 1773 bool alloc_ok = true;
e4e574b7 1774
a5516438 1775 needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
ac09b3a1 1776 if (needed <= 0) {
a5516438 1777 h->resv_huge_pages += delta;
e4e574b7 1778 return 0;
ac09b3a1 1779 }
e4e574b7
AL
1780
1781 allocated = 0;
1782 INIT_LIST_HEAD(&surplus_list);
1783
1784 ret = -ENOMEM;
1785retry:
1786 spin_unlock(&hugetlb_lock);
1787 for (i = 0; i < needed; i++) {
0c397dae 1788 page = alloc_surplus_huge_page(h, htlb_alloc_mask(h),
aaf14e40 1789 NUMA_NO_NODE, NULL);
28073b02
HD
1790 if (!page) {
1791 alloc_ok = false;
1792 break;
1793 }
e4e574b7 1794 list_add(&page->lru, &surplus_list);
69ed779a 1795 cond_resched();
e4e574b7 1796 }
28073b02 1797 allocated += i;
e4e574b7
AL
1798
1799 /*
1800 * After retaking hugetlb_lock, we need to recalculate 'needed'
1801 * because either resv_huge_pages or free_huge_pages may have changed.
1802 */
1803 spin_lock(&hugetlb_lock);
a5516438
AK
1804 needed = (h->resv_huge_pages + delta) -
1805 (h->free_huge_pages + allocated);
28073b02
HD
1806 if (needed > 0) {
1807 if (alloc_ok)
1808 goto retry;
1809 /*
1810 * We were not able to allocate enough pages to
1811 * satisfy the entire reservation so we free what
1812 * we've allocated so far.
1813 */
1814 goto free;
1815 }
e4e574b7
AL
1816 /*
1817 * The surplus_list now contains _at_least_ the number of extra pages
25985edc 1818 * needed to accommodate the reservation. Add the appropriate number
e4e574b7 1819 * of pages to the hugetlb pool and free the extras back to the buddy
ac09b3a1
AL
1820 * allocator. Commit the entire reservation here to prevent another
1821 * process from stealing the pages as they are added to the pool but
1822 * before they are reserved.
e4e574b7
AL
1823 */
1824 needed += allocated;
a5516438 1825 h->resv_huge_pages += delta;
e4e574b7 1826 ret = 0;
a9869b83 1827
19fc3f0a 1828 /* Free the needed pages to the hugetlb pool */
e4e574b7 1829 list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
19fc3f0a
AL
1830 if ((--needed) < 0)
1831 break;
a9869b83
NH
1832 /*
1833 * This page is now managed by the hugetlb allocator and has
1834 * no users -- drop the buddy allocator's reference.
1835 */
1836 put_page_testzero(page);
309381fe 1837 VM_BUG_ON_PAGE(page_count(page), page);
a5516438 1838 enqueue_huge_page(h, page);
19fc3f0a 1839 }
28073b02 1840free:
b0365c8d 1841 spin_unlock(&hugetlb_lock);
19fc3f0a
AL
1842
1843 /* Free unnecessary surplus pages to the buddy allocator */
c0d934ba
JK
1844 list_for_each_entry_safe(page, tmp, &surplus_list, lru)
1845 put_page(page);
a9869b83 1846 spin_lock(&hugetlb_lock);
e4e574b7
AL
1847
1848 return ret;
1849}
1850
1851/*
e5bbc8a6
MK
1852 * This routine has two main purposes:
1853 * 1) Decrement the reservation count (resv_huge_pages) by the value passed
1854 * in unused_resv_pages. This corresponds to the prior adjustments made
1855 * to the associated reservation map.
1856 * 2) Free any unused surplus pages that may have been allocated to satisfy
1857 * the reservation. As many as unused_resv_pages may be freed.
1858 *
1859 * Called with hugetlb_lock held. However, the lock could be dropped (and
1860 * reacquired) during calls to cond_resched_lock. Whenever dropping the lock,
1861 * we must make sure nobody else can claim pages we are in the process of
1862 * freeing. Do this by ensuring resv_huge_page always is greater than the
1863 * number of huge pages we plan to free when dropping the lock.
e4e574b7 1864 */
a5516438
AK
1865static void return_unused_surplus_pages(struct hstate *h,
1866 unsigned long unused_resv_pages)
e4e574b7 1867{
e4e574b7
AL
1868 unsigned long nr_pages;
1869
aa888a74 1870 /* Cannot return gigantic pages currently */
bae7f4ae 1871 if (hstate_is_gigantic(h))
e5bbc8a6 1872 goto out;
aa888a74 1873
e5bbc8a6
MK
1874 /*
1875 * Part (or even all) of the reservation could have been backed
1876 * by pre-allocated pages. Only free surplus pages.
1877 */
a5516438 1878 nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
e4e574b7 1879
685f3457
LS
1880 /*
1881 * We want to release as many surplus pages as possible, spread
9b5e5d0f
LS
1882 * evenly across all nodes with memory. Iterate across these nodes
1883 * until we can no longer free unreserved surplus pages. This occurs
1884 * when the nodes with surplus pages have no free pages.
1885 * free_pool_huge_page() will balance the the freed pages across the
1886 * on-line nodes with memory and will handle the hstate accounting.
e5bbc8a6
MK
1887 *
1888 * Note that we decrement resv_huge_pages as we free the pages. If
1889 * we drop the lock, resv_huge_pages will still be sufficiently large
1890 * to cover subsequent pages we may free.
685f3457
LS
1891 */
1892 while (nr_pages--) {
e5bbc8a6
MK
1893 h->resv_huge_pages--;
1894 unused_resv_pages--;
8cebfcd0 1895 if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1))
e5bbc8a6 1896 goto out;
7848a4bf 1897 cond_resched_lock(&hugetlb_lock);
e4e574b7 1898 }
e5bbc8a6
MK
1899
1900out:
1901 /* Fully uncommit the reservation */
1902 h->resv_huge_pages -= unused_resv_pages;
e4e574b7
AL
1903}
1904
5e911373 1905
c37f9fb1 1906/*
feba16e2 1907 * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
5e911373 1908 * are used by the huge page allocation routines to manage reservations.
cf3ad20b
MK
1909 *
1910 * vma_needs_reservation is called to determine if the huge page at addr
1911 * within the vma has an associated reservation. If a reservation is
1912 * needed, the value 1 is returned. The caller is then responsible for
1913 * managing the global reservation and subpool usage counts. After
1914 * the huge page has been allocated, vma_commit_reservation is called
feba16e2
MK
1915 * to add the page to the reservation map. If the page allocation fails,
1916 * the reservation must be ended instead of committed. vma_end_reservation
1917 * is called in such cases.
cf3ad20b
MK
1918 *
1919 * In the normal case, vma_commit_reservation returns the same value
1920 * as the preceding vma_needs_reservation call. The only time this
1921 * is not the case is if a reserve map was changed between calls. It
1922 * is the responsibility of the caller to notice the difference and
1923 * take appropriate action.
96b96a96
MK
1924 *
1925 * vma_add_reservation is used in error paths where a reservation must
1926 * be restored when a newly allocated huge page must be freed. It is
1927 * to be called after calling vma_needs_reservation to determine if a
1928 * reservation exists.
c37f9fb1 1929 */
5e911373
MK
1930enum vma_resv_mode {
1931 VMA_NEEDS_RESV,
1932 VMA_COMMIT_RESV,
feba16e2 1933 VMA_END_RESV,
96b96a96 1934 VMA_ADD_RESV,
5e911373 1935};
cf3ad20b
MK
1936static long __vma_reservation_common(struct hstate *h,
1937 struct vm_area_struct *vma, unsigned long addr,
5e911373 1938 enum vma_resv_mode mode)
c37f9fb1 1939{
4e35f483
JK
1940 struct resv_map *resv;
1941 pgoff_t idx;
cf3ad20b 1942 long ret;
c37f9fb1 1943
4e35f483
JK
1944 resv = vma_resv_map(vma);
1945 if (!resv)
84afd99b 1946 return 1;
c37f9fb1 1947
4e35f483 1948 idx = vma_hugecache_offset(h, vma, addr);
5e911373
MK
1949 switch (mode) {
1950 case VMA_NEEDS_RESV:
cf3ad20b 1951 ret = region_chg(resv, idx, idx + 1);
5e911373
MK
1952 break;
1953 case VMA_COMMIT_RESV:
1954 ret = region_add(resv, idx, idx + 1);
1955 break;
feba16e2 1956 case VMA_END_RESV:
5e911373
MK
1957 region_abort(resv, idx, idx + 1);
1958 ret = 0;
1959 break;
96b96a96
MK
1960 case VMA_ADD_RESV:
1961 if (vma->vm_flags & VM_MAYSHARE)
1962 ret = region_add(resv, idx, idx + 1);
1963 else {
1964 region_abort(resv, idx, idx + 1);
1965 ret = region_del(resv, idx, idx + 1);
1966 }
1967 break;
5e911373
MK
1968 default:
1969 BUG();
1970 }
84afd99b 1971
4e35f483 1972 if (vma->vm_flags & VM_MAYSHARE)
cf3ad20b 1973 return ret;
67961f9d
MK
1974 else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) && ret >= 0) {
1975 /*
1976 * In most cases, reserves always exist for private mappings.
1977 * However, a file associated with mapping could have been
1978 * hole punched or truncated after reserves were consumed.
1979 * As subsequent fault on such a range will not use reserves.
1980 * Subtle - The reserve map for private mappings has the
1981 * opposite meaning than that of shared mappings. If NO
1982 * entry is in the reserve map, it means a reservation exists.
1983 * If an entry exists in the reserve map, it means the
1984 * reservation has already been consumed. As a result, the
1985 * return value of this routine is the opposite of the
1986 * value returned from reserve map manipulation routines above.
1987 */
1988 if (ret)
1989 return 0;
1990 else
1991 return 1;
1992 }
4e35f483 1993 else
cf3ad20b 1994 return ret < 0 ? ret : 0;
c37f9fb1 1995}
cf3ad20b
MK
1996
1997static long vma_needs_reservation(struct hstate *h,
a5516438 1998 struct vm_area_struct *vma, unsigned long addr)
c37f9fb1 1999{
5e911373 2000 return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
cf3ad20b 2001}
84afd99b 2002
cf3ad20b
MK
2003static long vma_commit_reservation(struct hstate *h,
2004 struct vm_area_struct *vma, unsigned long addr)
2005{
5e911373
MK
2006 return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
2007}
2008
feba16e2 2009static void vma_end_reservation(struct hstate *h,
5e911373
MK
2010 struct vm_area_struct *vma, unsigned long addr)
2011{
feba16e2 2012 (void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
c37f9fb1
AW
2013}
2014
96b96a96
MK
2015static long vma_add_reservation(struct hstate *h,
2016 struct vm_area_struct *vma, unsigned long addr)
2017{
2018 return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV);
2019}
2020
2021/*
2022 * This routine is called to restore a reservation on error paths. In the
2023 * specific error paths, a huge page was allocated (via alloc_huge_page)
2024 * and is about to be freed. If a reservation for the page existed,
2025 * alloc_huge_page would have consumed the reservation and set PagePrivate
2026 * in the newly allocated page. When the page is freed via free_huge_page,
2027 * the global reservation count will be incremented if PagePrivate is set.
2028 * However, free_huge_page can not adjust the reserve map. Adjust the
2029 * reserve map here to be consistent with global reserve count adjustments
2030 * to be made by free_huge_page.
2031 */
2032static void restore_reserve_on_error(struct hstate *h,
2033 struct vm_area_struct *vma, unsigned long address,
2034 struct page *page)
2035{
2036 if (unlikely(PagePrivate(page))) {
2037 long rc = vma_needs_reservation(h, vma, address);
2038
2039 if (unlikely(rc < 0)) {
2040 /*
2041 * Rare out of memory condition in reserve map
2042 * manipulation. Clear PagePrivate so that
2043 * global reserve count will not be incremented
2044 * by free_huge_page. This will make it appear
2045 * as though the reservation for this page was
2046 * consumed. This may prevent the task from
2047 * faulting in the page at a later time. This
2048 * is better than inconsistent global huge page
2049 * accounting of reserve counts.
2050 */
2051 ClearPagePrivate(page);
2052 } else if (rc) {
2053 rc = vma_add_reservation(h, vma, address);
2054 if (unlikely(rc < 0))
2055 /*
2056 * See above comment about rare out of
2057 * memory condition.
2058 */
2059 ClearPagePrivate(page);
2060 } else
2061 vma_end_reservation(h, vma, address);
2062 }
2063}
2064
70c3547e 2065struct page *alloc_huge_page(struct vm_area_struct *vma,
04f2cbe3 2066 unsigned long addr, int avoid_reserve)
1da177e4 2067{
90481622 2068 struct hugepage_subpool *spool = subpool_vma(vma);
a5516438 2069 struct hstate *h = hstate_vma(vma);
348ea204 2070 struct page *page;
d85f69b0
MK
2071 long map_chg, map_commit;
2072 long gbl_chg;
6d76dcf4
AK
2073 int ret, idx;
2074 struct hugetlb_cgroup *h_cg;
a1e78772 2075
6d76dcf4 2076 idx = hstate_index(h);
a1e78772 2077 /*
d85f69b0
MK
2078 * Examine the region/reserve map to determine if the process
2079 * has a reservation for the page to be allocated. A return
2080 * code of zero indicates a reservation exists (no change).
a1e78772 2081 */
d85f69b0
MK
2082 map_chg = gbl_chg = vma_needs_reservation(h, vma, addr);
2083 if (map_chg < 0)
76dcee75 2084 return ERR_PTR(-ENOMEM);
d85f69b0
MK
2085
2086 /*
2087 * Processes that did not create the mapping will have no
2088 * reserves as indicated by the region/reserve map. Check
2089 * that the allocation will not exceed the subpool limit.
2090 * Allocations for MAP_NORESERVE mappings also need to be
2091 * checked against any subpool limit.
2092 */
2093 if (map_chg || avoid_reserve) {
2094 gbl_chg = hugepage_subpool_get_pages(spool, 1);
2095 if (gbl_chg < 0) {
feba16e2 2096 vma_end_reservation(h, vma, addr);
76dcee75 2097 return ERR_PTR(-ENOSPC);
5e911373 2098 }
1da177e4 2099
d85f69b0
MK
2100 /*
2101 * Even though there was no reservation in the region/reserve
2102 * map, there could be reservations associated with the
2103 * subpool that can be used. This would be indicated if the
2104 * return value of hugepage_subpool_get_pages() is zero.
2105 * However, if avoid_reserve is specified we still avoid even
2106 * the subpool reservations.
2107 */
2108 if (avoid_reserve)
2109 gbl_chg = 1;
2110 }
2111
6d76dcf4 2112 ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
8f34af6f
JZ
2113 if (ret)
2114 goto out_subpool_put;
2115
1da177e4 2116 spin_lock(&hugetlb_lock);
d85f69b0
MK
2117 /*
2118 * glb_chg is passed to indicate whether or not a page must be taken
2119 * from the global free pool (global change). gbl_chg == 0 indicates
2120 * a reservation exists for the allocation.
2121 */
2122 page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, gbl_chg);
81a6fcae 2123 if (!page) {
94ae8ba7 2124 spin_unlock(&hugetlb_lock);
0c397dae 2125 page = alloc_buddy_huge_page_with_mpol(h, vma, addr);
8f34af6f
JZ
2126 if (!page)
2127 goto out_uncharge_cgroup;
a88c7695
NH
2128 if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) {
2129 SetPagePrivate(page);
2130 h->resv_huge_pages--;
2131 }
79dbb236
AK
2132 spin_lock(&hugetlb_lock);
2133 list_move(&page->lru, &h->hugepage_activelist);
81a6fcae 2134 /* Fall through */
68842c9b 2135 }
81a6fcae
JK
2136 hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
2137 spin_unlock(&hugetlb_lock);
348ea204 2138
90481622 2139 set_page_private(page, (unsigned long)spool);
90d8b7e6 2140
d85f69b0
MK
2141 map_commit = vma_commit_reservation(h, vma, addr);
2142 if (unlikely(map_chg > map_commit)) {
33039678
MK
2143 /*
2144 * The page was added to the reservation map between
2145 * vma_needs_reservation and vma_commit_reservation.
2146 * This indicates a race with hugetlb_reserve_pages.
2147 * Adjust for the subpool count incremented above AND
2148 * in hugetlb_reserve_pages for the same page. Also,
2149 * the reservation count added in hugetlb_reserve_pages
2150 * no longer applies.
2151 */
2152 long rsv_adjust;
2153
2154 rsv_adjust = hugepage_subpool_put_pages(spool, 1);
2155 hugetlb_acct_memory(h, -rsv_adjust);
2156 }
90d8b7e6 2157 return page;
8f34af6f
JZ
2158
2159out_uncharge_cgroup:
2160 hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
2161out_subpool_put:
d85f69b0 2162 if (map_chg || avoid_reserve)
8f34af6f 2163 hugepage_subpool_put_pages(spool, 1);
feba16e2 2164 vma_end_reservation(h, vma, addr);
8f34af6f 2165 return ERR_PTR(-ENOSPC);
b45b5bd6
DG
2166}
2167
e24a1307
AK
2168int alloc_bootmem_huge_page(struct hstate *h)
2169 __attribute__ ((weak, alias("__alloc_bootmem_huge_page")));
2170int __alloc_bootmem_huge_page(struct hstate *h)
aa888a74
AK
2171{
2172 struct huge_bootmem_page *m;
b2261026 2173 int nr_nodes, node;
aa888a74 2174
b2261026 2175 for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
aa888a74
AK
2176 void *addr;
2177
eb31d559 2178 addr = memblock_alloc_try_nid_raw(
8b89a116 2179 huge_page_size(h), huge_page_size(h),
97ad1087 2180 0, MEMBLOCK_ALLOC_ACCESSIBLE, node);
aa888a74
AK
2181 if (addr) {
2182 /*
2183 * Use the beginning of the huge page to store the
2184 * huge_bootmem_page struct (until gather_bootmem
2185 * puts them into the mem_map).
2186 */
2187 m = addr;
91f47662 2188 goto found;
aa888a74 2189 }
aa888a74
AK
2190 }
2191 return 0;
2192
2193found:
df994ead 2194 BUG_ON(!IS_ALIGNED(virt_to_phys(m), huge_page_size(h)));
aa888a74 2195 /* Put them into a private list first because mem_map is not up yet */
330d6e48 2196 INIT_LIST_HEAD(&m->list);
aa888a74
AK
2197 list_add(&m->list, &huge_boot_pages);
2198 m->hstate = h;
2199 return 1;
2200}
2201
d00181b9
KS
2202static void __init prep_compound_huge_page(struct page *page,
2203 unsigned int order)
18229df5
AW
2204{
2205 if (unlikely(order > (MAX_ORDER - 1)))
2206 prep_compound_gigantic_page(page, order);
2207 else
2208 prep_compound_page(page, order);
2209}
2210
aa888a74
AK
2211/* Put bootmem huge pages into the standard lists after mem_map is up */
2212static void __init gather_bootmem_prealloc(void)
2213{
2214 struct huge_bootmem_page *m;
2215
2216 list_for_each_entry(m, &huge_boot_pages, list) {
40d18ebf 2217 struct page *page = virt_to_page(m);
aa888a74 2218 struct hstate *h = m->hstate;
ee8f248d 2219
aa888a74 2220 WARN_ON(page_count(page) != 1);
18229df5 2221 prep_compound_huge_page(page, h->order);
ef5a22be 2222 WARN_ON(PageReserved(page));
aa888a74 2223 prep_new_huge_page(h, page, page_to_nid(page));
af0fb9df
MH
2224 put_page(page); /* free it into the hugepage allocator */
2225
b0320c7b
RA
2226 /*
2227 * If we had gigantic hugepages allocated at boot time, we need
2228 * to restore the 'stolen' pages to totalram_pages in order to
2229 * fix confusing memory reports from free(1) and another
2230 * side-effects, like CommitLimit going negative.
2231 */
bae7f4ae 2232 if (hstate_is_gigantic(h))
3dcc0571 2233 adjust_managed_page_count(page, 1 << h->order);
520495fe 2234 cond_resched();
aa888a74
AK
2235 }
2236}
2237
8faa8b07 2238static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
1da177e4
LT
2239{
2240 unsigned long i;
f60858f9
MK
2241 nodemask_t *node_alloc_noretry;
2242
2243 if (!hstate_is_gigantic(h)) {
2244 /*
2245 * Bit mask controlling how hard we retry per-node allocations.
2246 * Ignore errors as lower level routines can deal with
2247 * node_alloc_noretry == NULL. If this kmalloc fails at boot
2248 * time, we are likely in bigger trouble.
2249 */
2250 node_alloc_noretry = kmalloc(sizeof(*node_alloc_noretry),
2251 GFP_KERNEL);
2252 } else {
2253 /* allocations done at boot time */
2254 node_alloc_noretry = NULL;
2255 }
2256
2257 /* bit mask controlling how hard we retry per-node allocations */
2258 if (node_alloc_noretry)
2259 nodes_clear(*node_alloc_noretry);
a5516438 2260
e5ff2159 2261 for (i = 0; i < h->max_huge_pages; ++i) {
bae7f4ae 2262 if (hstate_is_gigantic(h)) {
aa888a74
AK
2263 if (!alloc_bootmem_huge_page(h))
2264 break;
0c397dae 2265 } else if (!alloc_pool_huge_page(h,
f60858f9
MK
2266 &node_states[N_MEMORY],
2267 node_alloc_noretry))
1da177e4 2268 break;
69ed779a 2269 cond_resched();
1da177e4 2270 }
d715cf80
LH
2271 if (i < h->max_huge_pages) {
2272 char buf[32];
2273
c6247f72 2274 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
d715cf80
LH
2275 pr_warn("HugeTLB: allocating %lu of page size %s failed. Only allocated %lu hugepages.\n",
2276 h->max_huge_pages, buf, i);
2277 h->max_huge_pages = i;
2278 }
f60858f9
MK
2279
2280 kfree(node_alloc_noretry);
e5ff2159
AK
2281}
2282
2283static void __init hugetlb_init_hstates(void)
2284{
2285 struct hstate *h;
2286
2287 for_each_hstate(h) {
641844f5
NH
2288 if (minimum_order > huge_page_order(h))
2289 minimum_order = huge_page_order(h);
2290
8faa8b07 2291 /* oversize hugepages were init'ed in early boot */
bae7f4ae 2292 if (!hstate_is_gigantic(h))
8faa8b07 2293 hugetlb_hstate_alloc_pages(h);
e5ff2159 2294 }
641844f5 2295 VM_BUG_ON(minimum_order == UINT_MAX);
e5ff2159
AK
2296}
2297
2298static void __init report_hugepages(void)
2299{
2300 struct hstate *h;
2301
2302 for_each_hstate(h) {
4abd32db 2303 char buf[32];
c6247f72
MW
2304
2305 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
ffb22af5 2306 pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
c6247f72 2307 buf, h->free_huge_pages);
e5ff2159
AK
2308 }
2309}
2310
1da177e4 2311#ifdef CONFIG_HIGHMEM
6ae11b27
LS
2312static void try_to_free_low(struct hstate *h, unsigned long count,
2313 nodemask_t *nodes_allowed)
1da177e4 2314{
4415cc8d
CL
2315 int i;
2316
bae7f4ae 2317 if (hstate_is_gigantic(h))
aa888a74
AK
2318 return;
2319
6ae11b27 2320 for_each_node_mask(i, *nodes_allowed) {
1da177e4 2321 struct page *page, *next;
a5516438
AK
2322 struct list_head *freel = &h->hugepage_freelists[i];
2323 list_for_each_entry_safe(page, next, freel, lru) {
2324 if (count >= h->nr_huge_pages)
6b0c880d 2325 return;
1da177e4
LT
2326 if (PageHighMem(page))
2327 continue;
2328 list_del(&page->lru);
e5ff2159 2329 update_and_free_page(h, page);
a5516438
AK
2330 h->free_huge_pages--;
2331 h->free_huge_pages_node[page_to_nid(page)]--;
1da177e4
LT
2332 }
2333 }
2334}
2335#else
6ae11b27
LS
2336static inline void try_to_free_low(struct hstate *h, unsigned long count,
2337 nodemask_t *nodes_allowed)
1da177e4
LT
2338{
2339}
2340#endif
2341
20a0307c
WF
2342/*
2343 * Increment or decrement surplus_huge_pages. Keep node-specific counters
2344 * balanced by operating on them in a round-robin fashion.
2345 * Returns 1 if an adjustment was made.
2346 */
6ae11b27
LS
2347static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
2348 int delta)
20a0307c 2349{
b2261026 2350 int nr_nodes, node;
20a0307c
WF
2351
2352 VM_BUG_ON(delta != -1 && delta != 1);
20a0307c 2353
b2261026
JK
2354 if (delta < 0) {
2355 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
2356 if (h->surplus_huge_pages_node[node])
2357 goto found;
e8c5c824 2358 }
b2261026
JK
2359 } else {
2360 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
2361 if (h->surplus_huge_pages_node[node] <
2362 h->nr_huge_pages_node[node])
2363 goto found;
e8c5c824 2364 }
b2261026
JK
2365 }
2366 return 0;
20a0307c 2367
b2261026
JK
2368found:
2369 h->surplus_huge_pages += delta;
2370 h->surplus_huge_pages_node[node] += delta;
2371 return 1;
20a0307c
WF
2372}
2373
a5516438 2374#define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
fd875dca 2375static int set_max_huge_pages(struct hstate *h, unsigned long count, int nid,
4eb0716e 2376 nodemask_t *nodes_allowed)
1da177e4 2377{
7893d1d5 2378 unsigned long min_count, ret;
f60858f9
MK
2379 NODEMASK_ALLOC(nodemask_t, node_alloc_noretry, GFP_KERNEL);
2380
2381 /*
2382 * Bit mask controlling how hard we retry per-node allocations.
2383 * If we can not allocate the bit mask, do not attempt to allocate
2384 * the requested huge pages.
2385 */
2386 if (node_alloc_noretry)
2387 nodes_clear(*node_alloc_noretry);
2388 else
2389 return -ENOMEM;
1da177e4 2390
4eb0716e
AG
2391 spin_lock(&hugetlb_lock);
2392
fd875dca
MK
2393 /*
2394 * Check for a node specific request.
2395 * Changing node specific huge page count may require a corresponding
2396 * change to the global count. In any case, the passed node mask
2397 * (nodes_allowed) will restrict alloc/free to the specified node.
2398 */
2399 if (nid != NUMA_NO_NODE) {
2400 unsigned long old_count = count;
2401
2402 count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
2403 /*
2404 * User may have specified a large count value which caused the
2405 * above calculation to overflow. In this case, they wanted
2406 * to allocate as many huge pages as possible. Set count to
2407 * largest possible value to align with their intention.
2408 */
2409 if (count < old_count)
2410 count = ULONG_MAX;
2411 }
2412
4eb0716e
AG
2413 /*
2414 * Gigantic pages runtime allocation depend on the capability for large
2415 * page range allocation.
2416 * If the system does not provide this feature, return an error when
2417 * the user tries to allocate gigantic pages but let the user free the
2418 * boottime allocated gigantic pages.
2419 */
2420 if (hstate_is_gigantic(h) && !IS_ENABLED(CONFIG_CONTIG_ALLOC)) {
2421 if (count > persistent_huge_pages(h)) {
2422 spin_unlock(&hugetlb_lock);
f60858f9 2423 NODEMASK_FREE(node_alloc_noretry);
4eb0716e
AG
2424 return -EINVAL;
2425 }
2426 /* Fall through to decrease pool */
2427 }
aa888a74 2428
7893d1d5
AL
2429 /*
2430 * Increase the pool size
2431 * First take pages out of surplus state. Then make up the
2432 * remaining difference by allocating fresh huge pages.
d1c3fb1f 2433 *
0c397dae 2434 * We might race with alloc_surplus_huge_page() here and be unable
d1c3fb1f
NA
2435 * to convert a surplus huge page to a normal huge page. That is
2436 * not critical, though, it just means the overall size of the
2437 * pool might be one hugepage larger than it needs to be, but
2438 * within all the constraints specified by the sysctls.
7893d1d5 2439 */
a5516438 2440 while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
6ae11b27 2441 if (!adjust_pool_surplus(h, nodes_allowed, -1))
7893d1d5
AL
2442 break;
2443 }
2444
a5516438 2445 while (count > persistent_huge_pages(h)) {
7893d1d5
AL
2446 /*
2447 * If this allocation races such that we no longer need the
2448 * page, free_huge_page will handle it by freeing the page
2449 * and reducing the surplus.
2450 */
2451 spin_unlock(&hugetlb_lock);
649920c6
JH
2452
2453 /* yield cpu to avoid soft lockup */
2454 cond_resched();
2455
f60858f9
MK
2456 ret = alloc_pool_huge_page(h, nodes_allowed,
2457 node_alloc_noretry);
7893d1d5
AL
2458 spin_lock(&hugetlb_lock);
2459 if (!ret)
2460 goto out;
2461
536240f2
MG
2462 /* Bail for signals. Probably ctrl-c from user */
2463 if (signal_pending(current))
2464 goto out;
7893d1d5 2465 }
7893d1d5
AL
2466
2467 /*
2468 * Decrease the pool size
2469 * First return free pages to the buddy allocator (being careful
2470 * to keep enough around to satisfy reservations). Then place
2471 * pages into surplus state as needed so the pool will shrink
2472 * to the desired size as pages become free.
d1c3fb1f
NA
2473 *
2474 * By placing pages into the surplus state independent of the
2475 * overcommit value, we are allowing the surplus pool size to
2476 * exceed overcommit. There are few sane options here. Since
0c397dae 2477 * alloc_surplus_huge_page() is checking the global counter,
d1c3fb1f
NA
2478 * though, we'll note that we're not allowed to exceed surplus
2479 * and won't grow the pool anywhere else. Not until one of the
2480 * sysctls are changed, or the surplus pages go out of use.
7893d1d5 2481 */
a5516438 2482 min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
6b0c880d 2483 min_count = max(count, min_count);
6ae11b27 2484 try_to_free_low(h, min_count, nodes_allowed);
a5516438 2485 while (min_count < persistent_huge_pages(h)) {
6ae11b27 2486 if (!free_pool_huge_page(h, nodes_allowed, 0))
1da177e4 2487 break;
55f67141 2488 cond_resched_lock(&hugetlb_lock);
1da177e4 2489 }
a5516438 2490 while (count < persistent_huge_pages(h)) {
6ae11b27 2491 if (!adjust_pool_surplus(h, nodes_allowed, 1))
7893d1d5
AL
2492 break;
2493 }
2494out:
4eb0716e 2495 h->max_huge_pages = persistent_huge_pages(h);
1da177e4 2496 spin_unlock(&hugetlb_lock);
4eb0716e 2497
f60858f9
MK
2498 NODEMASK_FREE(node_alloc_noretry);
2499
4eb0716e 2500 return 0;
1da177e4
LT
2501}
2502
a3437870
NA
2503#define HSTATE_ATTR_RO(_name) \
2504 static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
2505
2506#define HSTATE_ATTR(_name) \
2507 static struct kobj_attribute _name##_attr = \
2508 __ATTR(_name, 0644, _name##_show, _name##_store)
2509
2510static struct kobject *hugepages_kobj;
2511static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
2512
9a305230
LS
2513static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
2514
2515static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
a3437870
NA
2516{
2517 int i;
9a305230 2518
a3437870 2519 for (i = 0; i < HUGE_MAX_HSTATE; i++)
9a305230
LS
2520 if (hstate_kobjs[i] == kobj) {
2521 if (nidp)
2522 *nidp = NUMA_NO_NODE;
a3437870 2523 return &hstates[i];
9a305230
LS
2524 }
2525
2526 return kobj_to_node_hstate(kobj, nidp);
a3437870
NA
2527}
2528
06808b08 2529static ssize_t nr_hugepages_show_common(struct kobject *kobj,
a3437870
NA
2530 struct kobj_attribute *attr, char *buf)
2531{
9a305230
LS
2532 struct hstate *h;
2533 unsigned long nr_huge_pages;
2534 int nid;
2535
2536 h = kobj_to_hstate(kobj, &nid);
2537 if (nid == NUMA_NO_NODE)
2538 nr_huge_pages = h->nr_huge_pages;
2539 else
2540 nr_huge_pages = h->nr_huge_pages_node[nid];
2541
2542 return sprintf(buf, "%lu\n", nr_huge_pages);
a3437870 2543}
adbe8726 2544
238d3c13
DR
2545static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
2546 struct hstate *h, int nid,
2547 unsigned long count, size_t len)
a3437870
NA
2548{
2549 int err;
2d0adf7e 2550 nodemask_t nodes_allowed, *n_mask;
a3437870 2551
2d0adf7e
OS
2552 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
2553 return -EINVAL;
adbe8726 2554
9a305230
LS
2555 if (nid == NUMA_NO_NODE) {
2556 /*
2557 * global hstate attribute
2558 */
2559 if (!(obey_mempolicy &&
2d0adf7e
OS
2560 init_nodemask_of_mempolicy(&nodes_allowed)))
2561 n_mask = &node_states[N_MEMORY];
2562 else
2563 n_mask = &nodes_allowed;
2564 } else {
9a305230 2565 /*
fd875dca
MK
2566 * Node specific request. count adjustment happens in
2567 * set_max_huge_pages() after acquiring hugetlb_lock.
9a305230 2568 */
2d0adf7e
OS
2569 init_nodemask_of_node(&nodes_allowed, nid);
2570 n_mask = &nodes_allowed;
fd875dca 2571 }
9a305230 2572
2d0adf7e 2573 err = set_max_huge_pages(h, count, nid, n_mask);
06808b08 2574
4eb0716e 2575 return err ? err : len;
06808b08
LS
2576}
2577
238d3c13
DR
2578static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
2579 struct kobject *kobj, const char *buf,
2580 size_t len)
2581{
2582 struct hstate *h;
2583 unsigned long count;
2584 int nid;
2585 int err;
2586
2587 err = kstrtoul(buf, 10, &count);
2588 if (err)
2589 return err;
2590
2591 h = kobj_to_hstate(kobj, &nid);
2592 return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
2593}
2594
06808b08
LS
2595static ssize_t nr_hugepages_show(struct kobject *kobj,
2596 struct kobj_attribute *attr, char *buf)
2597{
2598 return nr_hugepages_show_common(kobj, attr, buf);
2599}
2600
2601static ssize_t nr_hugepages_store(struct kobject *kobj,
2602 struct kobj_attribute *attr, const char *buf, size_t len)
2603{
238d3c13 2604 return nr_hugepages_store_common(false, kobj, buf, len);
a3437870
NA
2605}
2606HSTATE_ATTR(nr_hugepages);
2607
06808b08
LS
2608#ifdef CONFIG_NUMA
2609
2610/*
2611 * hstate attribute for optionally mempolicy-based constraint on persistent
2612 * huge page alloc/free.
2613 */
2614static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
2615 struct kobj_attribute *attr, char *buf)
2616{
2617 return nr_hugepages_show_common(kobj, attr, buf);
2618}
2619
2620static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
2621 struct kobj_attribute *attr, const char *buf, size_t len)
2622{
238d3c13 2623 return nr_hugepages_store_common(true, kobj, buf, len);
06808b08
LS
2624}
2625HSTATE_ATTR(nr_hugepages_mempolicy);
2626#endif
2627
2628
a3437870
NA
2629static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
2630 struct kobj_attribute *attr, char *buf)
2631{
9a305230 2632 struct hstate *h = kobj_to_hstate(kobj, NULL);
a3437870
NA
2633 return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
2634}
adbe8726 2635
a3437870
NA
2636static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
2637 struct kobj_attribute *attr, const char *buf, size_t count)
2638{
2639 int err;
2640 unsigned long input;
9a305230 2641 struct hstate *h = kobj_to_hstate(kobj, NULL);
a3437870 2642
bae7f4ae 2643 if (hstate_is_gigantic(h))
adbe8726
EM
2644 return -EINVAL;
2645
3dbb95f7 2646 err = kstrtoul(buf, 10, &input);
a3437870 2647 if (err)
73ae31e5 2648 return err;
a3437870
NA
2649
2650 spin_lock(&hugetlb_lock);
2651 h->nr_overcommit_huge_pages = input;
2652 spin_unlock(&hugetlb_lock);
2653
2654 return count;
2655}
2656HSTATE_ATTR(nr_overcommit_hugepages);
2657
2658static ssize_t free_hugepages_show(struct kobject *kobj,
2659 struct kobj_attribute *attr, char *buf)
2660{
9a305230
LS
2661 struct hstate *h;
2662 unsigned long free_huge_pages;
2663 int nid;
2664
2665 h = kobj_to_hstate(kobj, &nid);
2666 if (nid == NUMA_NO_NODE)
2667 free_huge_pages = h->free_huge_pages;
2668 else
2669 free_huge_pages = h->free_huge_pages_node[nid];
2670
2671 return sprintf(buf, "%lu\n", free_huge_pages);
a3437870
NA
2672}
2673HSTATE_ATTR_RO(free_hugepages);
2674
2675static ssize_t resv_hugepages_show(struct kobject *kobj,
2676 struct kobj_attribute *attr, char *buf)
2677{
9a305230 2678 struct hstate *h = kobj_to_hstate(kobj, NULL);
a3437870
NA
2679 return sprintf(buf, "%lu\n", h->resv_huge_pages);
2680}
2681HSTATE_ATTR_RO(resv_hugepages);
2682
2683static ssize_t surplus_hugepages_show(struct kobject *kobj,
2684 struct kobj_attribute *attr, char *buf)
2685{
9a305230
LS
2686 struct hstate *h;
2687 unsigned long surplus_huge_pages;
2688 int nid;
2689
2690 h = kobj_to_hstate(kobj, &nid);
2691 if (nid == NUMA_NO_NODE)
2692 surplus_huge_pages = h->surplus_huge_pages;
2693 else
2694 surplus_huge_pages = h->surplus_huge_pages_node[nid];
2695
2696 return sprintf(buf, "%lu\n", surplus_huge_pages);
a3437870
NA
2697}
2698HSTATE_ATTR_RO(surplus_hugepages);
2699
2700static struct attribute *hstate_attrs[] = {
2701 &nr_hugepages_attr.attr,
2702 &nr_overcommit_hugepages_attr.attr,
2703 &free_hugepages_attr.attr,
2704 &resv_hugepages_attr.attr,
2705 &surplus_hugepages_attr.attr,
06808b08
LS
2706#ifdef CONFIG_NUMA
2707 &nr_hugepages_mempolicy_attr.attr,
2708#endif
a3437870
NA
2709 NULL,
2710};
2711
67e5ed96 2712static const struct attribute_group hstate_attr_group = {
a3437870
NA
2713 .attrs = hstate_attrs,
2714};
2715
094e9539
JM
2716static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
2717 struct kobject **hstate_kobjs,
67e5ed96 2718 const struct attribute_group *hstate_attr_group)
a3437870
NA
2719{
2720 int retval;
972dc4de 2721 int hi = hstate_index(h);
a3437870 2722
9a305230
LS
2723 hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
2724 if (!hstate_kobjs[hi])
a3437870
NA
2725 return -ENOMEM;
2726
9a305230 2727 retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
a3437870 2728 if (retval)
9a305230 2729 kobject_put(hstate_kobjs[hi]);
a3437870
NA
2730
2731 return retval;
2732}
2733
2734static void __init hugetlb_sysfs_init(void)
2735{
2736 struct hstate *h;
2737 int err;
2738
2739 hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
2740 if (!hugepages_kobj)
2741 return;
2742
2743 for_each_hstate(h) {
9a305230
LS
2744 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
2745 hstate_kobjs, &hstate_attr_group);
a3437870 2746 if (err)
ffb22af5 2747 pr_err("Hugetlb: Unable to add hstate %s", h->name);
a3437870
NA
2748 }
2749}
2750
9a305230
LS
2751#ifdef CONFIG_NUMA
2752
2753/*
2754 * node_hstate/s - associate per node hstate attributes, via their kobjects,
10fbcf4c
KS
2755 * with node devices in node_devices[] using a parallel array. The array
2756 * index of a node device or _hstate == node id.
2757 * This is here to avoid any static dependency of the node device driver, in
9a305230
LS
2758 * the base kernel, on the hugetlb module.
2759 */
2760struct node_hstate {
2761 struct kobject *hugepages_kobj;
2762 struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
2763};
b4e289a6 2764static struct node_hstate node_hstates[MAX_NUMNODES];
9a305230
LS
2765
2766/*
10fbcf4c 2767 * A subset of global hstate attributes for node devices
9a305230
LS
2768 */
2769static struct attribute *per_node_hstate_attrs[] = {
2770 &nr_hugepages_attr.attr,
2771 &free_hugepages_attr.attr,
2772 &surplus_hugepages_attr.attr,
2773 NULL,
2774};
2775
67e5ed96 2776static const struct attribute_group per_node_hstate_attr_group = {
9a305230
LS
2777 .attrs = per_node_hstate_attrs,
2778};
2779
2780/*
10fbcf4c 2781 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
9a305230
LS
2782 * Returns node id via non-NULL nidp.
2783 */
2784static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
2785{
2786 int nid;
2787
2788 for (nid = 0; nid < nr_node_ids; nid++) {
2789 struct node_hstate *nhs = &node_hstates[nid];
2790 int i;
2791 for (i = 0; i < HUGE_MAX_HSTATE; i++)
2792 if (nhs->hstate_kobjs[i] == kobj) {
2793 if (nidp)
2794 *nidp = nid;
2795 return &hstates[i];
2796 }
2797 }
2798
2799 BUG();
2800 return NULL;
2801}
2802
2803/*
10fbcf4c 2804 * Unregister hstate attributes from a single node device.
9a305230
LS
2805 * No-op if no hstate attributes attached.
2806 */
3cd8b44f 2807static void hugetlb_unregister_node(struct node *node)
9a305230
LS
2808{
2809 struct hstate *h;
10fbcf4c 2810 struct node_hstate *nhs = &node_hstates[node->dev.id];
9a305230
LS
2811
2812 if (!nhs->hugepages_kobj)
9b5e5d0f 2813 return; /* no hstate attributes */
9a305230 2814
972dc4de
AK
2815 for_each_hstate(h) {
2816 int idx = hstate_index(h);
2817 if (nhs->hstate_kobjs[idx]) {
2818 kobject_put(nhs->hstate_kobjs[idx]);
2819 nhs->hstate_kobjs[idx] = NULL;
9a305230 2820 }
972dc4de 2821 }
9a305230
LS
2822
2823 kobject_put(nhs->hugepages_kobj);
2824 nhs->hugepages_kobj = NULL;
2825}
2826
9a305230
LS
2827
2828/*
10fbcf4c 2829 * Register hstate attributes for a single node device.
9a305230
LS
2830 * No-op if attributes already registered.
2831 */
3cd8b44f 2832static void hugetlb_register_node(struct node *node)
9a305230
LS
2833{
2834 struct hstate *h;
10fbcf4c 2835 struct node_hstate *nhs = &node_hstates[node->dev.id];
9a305230
LS
2836 int err;
2837
2838 if (nhs->hugepages_kobj)
2839 return; /* already allocated */
2840
2841 nhs->hugepages_kobj = kobject_create_and_add("hugepages",
10fbcf4c 2842 &node->dev.kobj);
9a305230
LS
2843 if (!nhs->hugepages_kobj)
2844 return;
2845
2846 for_each_hstate(h) {
2847 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
2848 nhs->hstate_kobjs,
2849 &per_node_hstate_attr_group);
2850 if (err) {
ffb22af5
AM
2851 pr_err("Hugetlb: Unable to add hstate %s for node %d\n",
2852 h->name, node->dev.id);
9a305230
LS
2853 hugetlb_unregister_node(node);
2854 break;
2855 }
2856 }
2857}
2858
2859/*
9b5e5d0f 2860 * hugetlb init time: register hstate attributes for all registered node
10fbcf4c
KS
2861 * devices of nodes that have memory. All on-line nodes should have
2862 * registered their associated device by this time.
9a305230 2863 */
7d9ca000 2864static void __init hugetlb_register_all_nodes(void)
9a305230
LS
2865{
2866 int nid;
2867
8cebfcd0 2868 for_each_node_state(nid, N_MEMORY) {
8732794b 2869 struct node *node = node_devices[nid];
10fbcf4c 2870 if (node->dev.id == nid)
9a305230
LS
2871 hugetlb_register_node(node);
2872 }
2873
2874 /*
10fbcf4c 2875 * Let the node device driver know we're here so it can
9a305230
LS
2876 * [un]register hstate attributes on node hotplug.
2877 */
2878 register_hugetlbfs_with_node(hugetlb_register_node,
2879 hugetlb_unregister_node);
2880}
2881#else /* !CONFIG_NUMA */
2882
2883static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
2884{
2885 BUG();
2886 if (nidp)
2887 *nidp = -1;
2888 return NULL;
2889}
2890
9a305230
LS
2891static void hugetlb_register_all_nodes(void) { }
2892
2893#endif
2894
a3437870
NA
2895static int __init hugetlb_init(void)
2896{
8382d914
DB
2897 int i;
2898
457c1b27 2899 if (!hugepages_supported())
0ef89d25 2900 return 0;
a3437870 2901
e11bfbfc 2902 if (!size_to_hstate(default_hstate_size)) {
d715cf80
LH
2903 if (default_hstate_size != 0) {
2904 pr_err("HugeTLB: unsupported default_hugepagesz %lu. Reverting to %lu\n",
2905 default_hstate_size, HPAGE_SIZE);
2906 }
2907
e11bfbfc
NP
2908 default_hstate_size = HPAGE_SIZE;
2909 if (!size_to_hstate(default_hstate_size))
2910 hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
a3437870 2911 }
972dc4de 2912 default_hstate_idx = hstate_index(size_to_hstate(default_hstate_size));
f8b74815
VT
2913 if (default_hstate_max_huge_pages) {
2914 if (!default_hstate.max_huge_pages)
2915 default_hstate.max_huge_pages = default_hstate_max_huge_pages;
2916 }
a3437870
NA
2917
2918 hugetlb_init_hstates();
aa888a74 2919 gather_bootmem_prealloc();
a3437870
NA
2920 report_hugepages();
2921
2922 hugetlb_sysfs_init();
9a305230 2923 hugetlb_register_all_nodes();
7179e7bf 2924 hugetlb_cgroup_file_init();
9a305230 2925
8382d914
DB
2926#ifdef CONFIG_SMP
2927 num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
2928#else
2929 num_fault_mutexes = 1;
2930#endif
c672c7f2 2931 hugetlb_fault_mutex_table =
6da2ec56
KC
2932 kmalloc_array(num_fault_mutexes, sizeof(struct mutex),
2933 GFP_KERNEL);
c672c7f2 2934 BUG_ON(!hugetlb_fault_mutex_table);
8382d914
DB
2935
2936 for (i = 0; i < num_fault_mutexes; i++)
c672c7f2 2937 mutex_init(&hugetlb_fault_mutex_table[i]);
a3437870
NA
2938 return 0;
2939}
3e89e1c5 2940subsys_initcall(hugetlb_init);
a3437870
NA
2941
2942/* Should be called on processing a hugepagesz=... option */
9fee021d
VT
2943void __init hugetlb_bad_size(void)
2944{
2945 parsed_valid_hugepagesz = false;
2946}
2947
d00181b9 2948void __init hugetlb_add_hstate(unsigned int order)
a3437870
NA
2949{
2950 struct hstate *h;
8faa8b07
AK
2951 unsigned long i;
2952
a3437870 2953 if (size_to_hstate(PAGE_SIZE << order)) {
598d8091 2954 pr_warn("hugepagesz= specified twice, ignoring\n");
a3437870
NA
2955 return;
2956 }
47d38344 2957 BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
a3437870 2958 BUG_ON(order == 0);
47d38344 2959 h = &hstates[hugetlb_max_hstate++];
a3437870
NA
2960 h->order = order;
2961 h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
8faa8b07
AK
2962 h->nr_huge_pages = 0;
2963 h->free_huge_pages = 0;
2964 for (i = 0; i < MAX_NUMNODES; ++i)
2965 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
0edaecfa 2966 INIT_LIST_HEAD(&h->hugepage_activelist);
54f18d35
AM
2967 h->next_nid_to_alloc = first_memory_node;
2968 h->next_nid_to_free = first_memory_node;
a3437870
NA
2969 snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
2970 huge_page_size(h)/1024);
8faa8b07 2971
a3437870
NA
2972 parsed_hstate = h;
2973}
2974
e11bfbfc 2975static int __init hugetlb_nrpages_setup(char *s)
a3437870
NA
2976{
2977 unsigned long *mhp;
8faa8b07 2978 static unsigned long *last_mhp;
a3437870 2979
9fee021d
VT
2980 if (!parsed_valid_hugepagesz) {
2981 pr_warn("hugepages = %s preceded by "
2982 "an unsupported hugepagesz, ignoring\n", s);
2983 parsed_valid_hugepagesz = true;
2984 return 1;
2985 }
a3437870 2986 /*
47d38344 2987 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter yet,
a3437870
NA
2988 * so this hugepages= parameter goes to the "default hstate".
2989 */
9fee021d 2990 else if (!hugetlb_max_hstate)
a3437870
NA
2991 mhp = &default_hstate_max_huge_pages;
2992 else
2993 mhp = &parsed_hstate->max_huge_pages;
2994
8faa8b07 2995 if (mhp == last_mhp) {
598d8091 2996 pr_warn("hugepages= specified twice without interleaving hugepagesz=, ignoring\n");
8faa8b07
AK
2997 return 1;
2998 }
2999
a3437870
NA
3000 if (sscanf(s, "%lu", mhp) <= 0)
3001 *mhp = 0;
3002
8faa8b07
AK
3003 /*
3004 * Global state is always initialized later in hugetlb_init.
3005 * But we need to allocate >= MAX_ORDER hstates here early to still
3006 * use the bootmem allocator.
3007 */
47d38344 3008 if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER)
8faa8b07
AK
3009 hugetlb_hstate_alloc_pages(parsed_hstate);
3010
3011 last_mhp = mhp;
3012
a3437870
NA
3013 return 1;
3014}
e11bfbfc
NP
3015__setup("hugepages=", hugetlb_nrpages_setup);
3016
3017static int __init hugetlb_default_setup(char *s)
3018{
3019 default_hstate_size = memparse(s, &s);
3020 return 1;
3021}
3022__setup("default_hugepagesz=", hugetlb_default_setup);
a3437870 3023
8a213460
NA
3024static unsigned int cpuset_mems_nr(unsigned int *array)
3025{
3026 int node;
3027 unsigned int nr = 0;
3028
3029 for_each_node_mask(node, cpuset_current_mems_allowed)
3030 nr += array[node];
3031
3032 return nr;
3033}
3034
3035#ifdef CONFIG_SYSCTL
06808b08
LS
3036static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
3037 struct ctl_table *table, int write,
3038 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 3039{
e5ff2159 3040 struct hstate *h = &default_hstate;
238d3c13 3041 unsigned long tmp = h->max_huge_pages;
08d4a246 3042 int ret;
e5ff2159 3043
457c1b27 3044 if (!hugepages_supported())
86613628 3045 return -EOPNOTSUPP;
457c1b27 3046
e5ff2159
AK
3047 table->data = &tmp;
3048 table->maxlen = sizeof(unsigned long);
08d4a246
MH
3049 ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
3050 if (ret)
3051 goto out;
e5ff2159 3052
238d3c13
DR
3053 if (write)
3054 ret = __nr_hugepages_store_common(obey_mempolicy, h,
3055 NUMA_NO_NODE, tmp, *length);
08d4a246
MH
3056out:
3057 return ret;
1da177e4 3058}
396faf03 3059
06808b08
LS
3060int hugetlb_sysctl_handler(struct ctl_table *table, int write,
3061 void __user *buffer, size_t *length, loff_t *ppos)
3062{
3063
3064 return hugetlb_sysctl_handler_common(false, table, write,
3065 buffer, length, ppos);
3066}
3067
3068#ifdef CONFIG_NUMA
3069int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
3070 void __user *buffer, size_t *length, loff_t *ppos)
3071{
3072 return hugetlb_sysctl_handler_common(true, table, write,
3073 buffer, length, ppos);
3074}
3075#endif /* CONFIG_NUMA */
3076
a3d0c6aa 3077int hugetlb_overcommit_handler(struct ctl_table *table, int write,
8d65af78 3078 void __user *buffer,
a3d0c6aa
NA
3079 size_t *length, loff_t *ppos)
3080{
a5516438 3081 struct hstate *h = &default_hstate;
e5ff2159 3082 unsigned long tmp;
08d4a246 3083 int ret;
e5ff2159 3084
457c1b27 3085 if (!hugepages_supported())
86613628 3086 return -EOPNOTSUPP;
457c1b27 3087
c033a93c 3088 tmp = h->nr_overcommit_huge_pages;
e5ff2159 3089
bae7f4ae 3090 if (write && hstate_is_gigantic(h))
adbe8726
EM
3091 return -EINVAL;
3092
e5ff2159
AK
3093 table->data = &tmp;
3094 table->maxlen = sizeof(unsigned long);
08d4a246
MH
3095 ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
3096 if (ret)
3097 goto out;
e5ff2159
AK
3098
3099 if (write) {
3100 spin_lock(&hugetlb_lock);
3101 h->nr_overcommit_huge_pages = tmp;
3102 spin_unlock(&hugetlb_lock);
3103 }
08d4a246
MH
3104out:
3105 return ret;
a3d0c6aa
NA
3106}
3107
1da177e4
LT
3108#endif /* CONFIG_SYSCTL */
3109
e1759c21 3110void hugetlb_report_meminfo(struct seq_file *m)
1da177e4 3111{
fcb2b0c5
RG
3112 struct hstate *h;
3113 unsigned long total = 0;
3114
457c1b27
NA
3115 if (!hugepages_supported())
3116 return;
fcb2b0c5
RG
3117
3118 for_each_hstate(h) {
3119 unsigned long count = h->nr_huge_pages;
3120
3121 total += (PAGE_SIZE << huge_page_order(h)) * count;
3122
3123 if (h == &default_hstate)
3124 seq_printf(m,
3125 "HugePages_Total: %5lu\n"
3126 "HugePages_Free: %5lu\n"
3127 "HugePages_Rsvd: %5lu\n"
3128 "HugePages_Surp: %5lu\n"
3129 "Hugepagesize: %8lu kB\n",
3130 count,
3131 h->free_huge_pages,
3132 h->resv_huge_pages,
3133 h->surplus_huge_pages,
3134 (PAGE_SIZE << huge_page_order(h)) / 1024);
3135 }
3136
3137 seq_printf(m, "Hugetlb: %8lu kB\n", total / 1024);
1da177e4
LT
3138}
3139
3140int hugetlb_report_node_meminfo(int nid, char *buf)
3141{
a5516438 3142 struct hstate *h = &default_hstate;
457c1b27
NA
3143 if (!hugepages_supported())
3144 return 0;
1da177e4
LT
3145 return sprintf(buf,
3146 "Node %d HugePages_Total: %5u\n"
a1de0919
NA
3147 "Node %d HugePages_Free: %5u\n"
3148 "Node %d HugePages_Surp: %5u\n",
a5516438
AK
3149 nid, h->nr_huge_pages_node[nid],
3150 nid, h->free_huge_pages_node[nid],
3151 nid, h->surplus_huge_pages_node[nid]);
1da177e4
LT
3152}
3153
949f7ec5
DR
3154void hugetlb_show_meminfo(void)
3155{
3156 struct hstate *h;
3157 int nid;
3158
457c1b27
NA
3159 if (!hugepages_supported())
3160 return;
3161
949f7ec5
DR
3162 for_each_node_state(nid, N_MEMORY)
3163 for_each_hstate(h)
3164 pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
3165 nid,
3166 h->nr_huge_pages_node[nid],
3167 h->free_huge_pages_node[nid],
3168 h->surplus_huge_pages_node[nid],
3169 1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
3170}
3171
5d317b2b
NH
3172void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
3173{
3174 seq_printf(m, "HugetlbPages:\t%8lu kB\n",
3175 atomic_long_read(&mm->hugetlb_usage) << (PAGE_SHIFT - 10));
3176}
3177
1da177e4
LT
3178/* Return the number pages of memory we physically have, in PAGE_SIZE units. */
3179unsigned long hugetlb_total_pages(void)
3180{
d0028588
WL
3181 struct hstate *h;
3182 unsigned long nr_total_pages = 0;
3183
3184 for_each_hstate(h)
3185 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
3186 return nr_total_pages;
1da177e4 3187}
1da177e4 3188
a5516438 3189static int hugetlb_acct_memory(struct hstate *h, long delta)
fc1b8a73
MG
3190{
3191 int ret = -ENOMEM;
3192
3193 spin_lock(&hugetlb_lock);
3194 /*
3195 * When cpuset is configured, it breaks the strict hugetlb page
3196 * reservation as the accounting is done on a global variable. Such
3197 * reservation is completely rubbish in the presence of cpuset because
3198 * the reservation is not checked against page availability for the
3199 * current cpuset. Application can still potentially OOM'ed by kernel
3200 * with lack of free htlb page in cpuset that the task is in.
3201 * Attempt to enforce strict accounting with cpuset is almost
3202 * impossible (or too ugly) because cpuset is too fluid that
3203 * task or memory node can be dynamically moved between cpusets.
3204 *
3205 * The change of semantics for shared hugetlb mapping with cpuset is
3206 * undesirable. However, in order to preserve some of the semantics,
3207 * we fall back to check against current free page availability as
3208 * a best attempt and hopefully to minimize the impact of changing
3209 * semantics that cpuset has.
3210 */
3211 if (delta > 0) {
a5516438 3212 if (gather_surplus_pages(h, delta) < 0)
fc1b8a73
MG
3213 goto out;
3214
a5516438
AK
3215 if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
3216 return_unused_surplus_pages(h, delta);
fc1b8a73
MG
3217 goto out;
3218 }
3219 }
3220
3221 ret = 0;
3222 if (delta < 0)
a5516438 3223 return_unused_surplus_pages(h, (unsigned long) -delta);
fc1b8a73
MG
3224
3225out:
3226 spin_unlock(&hugetlb_lock);
3227 return ret;
3228}
3229
84afd99b
AW
3230static void hugetlb_vm_op_open(struct vm_area_struct *vma)
3231{
f522c3ac 3232 struct resv_map *resv = vma_resv_map(vma);
84afd99b
AW
3233
3234 /*
3235 * This new VMA should share its siblings reservation map if present.
3236 * The VMA will only ever have a valid reservation map pointer where
3237 * it is being copied for another still existing VMA. As that VMA
25985edc 3238 * has a reference to the reservation map it cannot disappear until
84afd99b
AW
3239 * after this open call completes. It is therefore safe to take a
3240 * new reference here without additional locking.
3241 */
4e35f483 3242 if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
f522c3ac 3243 kref_get(&resv->refs);
84afd99b
AW
3244}
3245
a1e78772
MG
3246static void hugetlb_vm_op_close(struct vm_area_struct *vma)
3247{
a5516438 3248 struct hstate *h = hstate_vma(vma);
f522c3ac 3249 struct resv_map *resv = vma_resv_map(vma);
90481622 3250 struct hugepage_subpool *spool = subpool_vma(vma);
4e35f483 3251 unsigned long reserve, start, end;
1c5ecae3 3252 long gbl_reserve;
84afd99b 3253
4e35f483
JK
3254 if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
3255 return;
84afd99b 3256
4e35f483
JK
3257 start = vma_hugecache_offset(h, vma, vma->vm_start);
3258 end = vma_hugecache_offset(h, vma, vma->vm_end);
84afd99b 3259
4e35f483 3260 reserve = (end - start) - region_count(resv, start, end);
84afd99b 3261
4e35f483
JK
3262 kref_put(&resv->refs, resv_map_release);
3263
3264 if (reserve) {
1c5ecae3
MK
3265 /*
3266 * Decrement reserve counts. The global reserve count may be
3267 * adjusted if the subpool has a minimum size.
3268 */
3269 gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
3270 hugetlb_acct_memory(h, -gbl_reserve);
84afd99b 3271 }
a1e78772
MG
3272}
3273
31383c68
DW
3274static int hugetlb_vm_op_split(struct vm_area_struct *vma, unsigned long addr)
3275{
3276 if (addr & ~(huge_page_mask(hstate_vma(vma))))
3277 return -EINVAL;
3278 return 0;
3279}
3280
05ea8860
DW
3281static unsigned long hugetlb_vm_op_pagesize(struct vm_area_struct *vma)
3282{
3283 struct hstate *hstate = hstate_vma(vma);
3284
3285 return 1UL << huge_page_shift(hstate);
3286}
3287
1da177e4
LT
3288/*
3289 * We cannot handle pagefaults against hugetlb pages at all. They cause
3290 * handle_mm_fault() to try to instantiate regular-sized pages in the
3291 * hugegpage VMA. do_page_fault() is supposed to trap this, so BUG is we get
3292 * this far.
3293 */
b3ec9f33 3294static vm_fault_t hugetlb_vm_op_fault(struct vm_fault *vmf)
1da177e4
LT
3295{
3296 BUG();
d0217ac0 3297 return 0;
1da177e4
LT
3298}
3299
eec3636a
JC
3300/*
3301 * When a new function is introduced to vm_operations_struct and added
3302 * to hugetlb_vm_ops, please consider adding the function to shm_vm_ops.
3303 * This is because under System V memory model, mappings created via
3304 * shmget/shmat with "huge page" specified are backed by hugetlbfs files,
3305 * their original vm_ops are overwritten with shm_vm_ops.
3306 */
f0f37e2f 3307const struct vm_operations_struct hugetlb_vm_ops = {
d0217ac0 3308 .fault = hugetlb_vm_op_fault,
84afd99b 3309 .open = hugetlb_vm_op_open,
a1e78772 3310 .close = hugetlb_vm_op_close,
31383c68 3311 .split = hugetlb_vm_op_split,
05ea8860 3312 .pagesize = hugetlb_vm_op_pagesize,
1da177e4
LT
3313};
3314
1e8f889b
DG
3315static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
3316 int writable)
63551ae0
DG
3317{
3318 pte_t entry;
3319
1e8f889b 3320 if (writable) {
106c992a
GS
3321 entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
3322 vma->vm_page_prot)));
63551ae0 3323 } else {
106c992a
GS
3324 entry = huge_pte_wrprotect(mk_huge_pte(page,
3325 vma->vm_page_prot));
63551ae0
DG
3326 }
3327 entry = pte_mkyoung(entry);
3328 entry = pte_mkhuge(entry);
d9ed9faa 3329 entry = arch_make_huge_pte(entry, vma, page, writable);
63551ae0
DG
3330
3331 return entry;
3332}
3333
1e8f889b
DG
3334static void set_huge_ptep_writable(struct vm_area_struct *vma,
3335 unsigned long address, pte_t *ptep)
3336{
3337 pte_t entry;
3338
106c992a 3339 entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
32f84528 3340 if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
4b3073e1 3341 update_mmu_cache(vma, address, ptep);
1e8f889b
DG
3342}
3343
d5ed7444 3344bool is_hugetlb_entry_migration(pte_t pte)
4a705fef
NH
3345{
3346 swp_entry_t swp;
3347
3348 if (huge_pte_none(pte) || pte_present(pte))
d5ed7444 3349 return false;
4a705fef
NH
3350 swp = pte_to_swp_entry(pte);
3351 if (non_swap_entry(swp) && is_migration_entry(swp))
d5ed7444 3352 return true;
4a705fef 3353 else
d5ed7444 3354 return false;
4a705fef
NH
3355}
3356
3357static int is_hugetlb_entry_hwpoisoned(pte_t pte)
3358{
3359 swp_entry_t swp;
3360
3361 if (huge_pte_none(pte) || pte_present(pte))
3362 return 0;
3363 swp = pte_to_swp_entry(pte);
3364 if (non_swap_entry(swp) && is_hwpoison_entry(swp))
3365 return 1;
3366 else
3367 return 0;
3368}
1e8f889b 3369
63551ae0
DG
3370int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
3371 struct vm_area_struct *vma)
3372{
5e41540c 3373 pte_t *src_pte, *dst_pte, entry, dst_entry;
63551ae0 3374 struct page *ptepage;
1c59827d 3375 unsigned long addr;
1e8f889b 3376 int cow;
a5516438
AK
3377 struct hstate *h = hstate_vma(vma);
3378 unsigned long sz = huge_page_size(h);
ac46d4f3 3379 struct mmu_notifier_range range;
e8569dd2 3380 int ret = 0;
1e8f889b
DG
3381
3382 cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
63551ae0 3383
ac46d4f3 3384 if (cow) {
7269f999 3385 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, src,
6f4f13e8 3386 vma->vm_start,
ac46d4f3
JG
3387 vma->vm_end);
3388 mmu_notifier_invalidate_range_start(&range);
3389 }
e8569dd2 3390
a5516438 3391 for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
cb900f41 3392 spinlock_t *src_ptl, *dst_ptl;
7868a208 3393 src_pte = huge_pte_offset(src, addr, sz);
c74df32c
HD
3394 if (!src_pte)
3395 continue;
a5516438 3396 dst_pte = huge_pte_alloc(dst, addr, sz);
e8569dd2
AS
3397 if (!dst_pte) {
3398 ret = -ENOMEM;
3399 break;
3400 }
c5c99429 3401
5e41540c
MK
3402 /*
3403 * If the pagetables are shared don't copy or take references.
3404 * dst_pte == src_pte is the common case of src/dest sharing.
3405 *
3406 * However, src could have 'unshared' and dst shares with
3407 * another vma. If dst_pte !none, this implies sharing.
3408 * Check here before taking page table lock, and once again
3409 * after taking the lock below.
3410 */
3411 dst_entry = huge_ptep_get(dst_pte);
3412 if ((dst_pte == src_pte) || !huge_pte_none(dst_entry))
c5c99429
LW
3413 continue;
3414
cb900f41
KS
3415 dst_ptl = huge_pte_lock(h, dst, dst_pte);
3416 src_ptl = huge_pte_lockptr(h, src, src_pte);
3417 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
4a705fef 3418 entry = huge_ptep_get(src_pte);
5e41540c
MK
3419 dst_entry = huge_ptep_get(dst_pte);
3420 if (huge_pte_none(entry) || !huge_pte_none(dst_entry)) {
3421 /*
3422 * Skip if src entry none. Also, skip in the
3423 * unlikely case dst entry !none as this implies
3424 * sharing with another vma.
3425 */
4a705fef
NH
3426 ;
3427 } else if (unlikely(is_hugetlb_entry_migration(entry) ||
3428 is_hugetlb_entry_hwpoisoned(entry))) {
3429 swp_entry_t swp_entry = pte_to_swp_entry(entry);
3430
3431 if (is_write_migration_entry(swp_entry) && cow) {
3432 /*
3433 * COW mappings require pages in both
3434 * parent and child to be set to read.
3435 */
3436 make_migration_entry_read(&swp_entry);
3437 entry = swp_entry_to_pte(swp_entry);
e5251fd4
PA
3438 set_huge_swap_pte_at(src, addr, src_pte,
3439 entry, sz);
4a705fef 3440 }
e5251fd4 3441 set_huge_swap_pte_at(dst, addr, dst_pte, entry, sz);
4a705fef 3442 } else {
34ee645e 3443 if (cow) {
0f10851e
JG
3444 /*
3445 * No need to notify as we are downgrading page
3446 * table protection not changing it to point
3447 * to a new page.
3448 *
ad56b738 3449 * See Documentation/vm/mmu_notifier.rst
0f10851e 3450 */
7f2e9525 3451 huge_ptep_set_wrprotect(src, addr, src_pte);
34ee645e 3452 }
0253d634 3453 entry = huge_ptep_get(src_pte);
1c59827d
HD
3454 ptepage = pte_page(entry);
3455 get_page(ptepage);
53f9263b 3456 page_dup_rmap(ptepage, true);
1c59827d 3457 set_huge_pte_at(dst, addr, dst_pte, entry);
5d317b2b 3458 hugetlb_count_add(pages_per_huge_page(h), dst);
1c59827d 3459 }
cb900f41
KS
3460 spin_unlock(src_ptl);
3461 spin_unlock(dst_ptl);
63551ae0 3462 }
63551ae0 3463
e8569dd2 3464 if (cow)
ac46d4f3 3465 mmu_notifier_invalidate_range_end(&range);
e8569dd2
AS
3466
3467 return ret;
63551ae0
DG
3468}
3469
24669e58
AK
3470void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
3471 unsigned long start, unsigned long end,
3472 struct page *ref_page)
63551ae0
DG
3473{
3474 struct mm_struct *mm = vma->vm_mm;
3475 unsigned long address;
c7546f8f 3476 pte_t *ptep;
63551ae0 3477 pte_t pte;
cb900f41 3478 spinlock_t *ptl;
63551ae0 3479 struct page *page;
a5516438
AK
3480 struct hstate *h = hstate_vma(vma);
3481 unsigned long sz = huge_page_size(h);
ac46d4f3 3482 struct mmu_notifier_range range;
a5516438 3483
63551ae0 3484 WARN_ON(!is_vm_hugetlb_page(vma));
a5516438
AK
3485 BUG_ON(start & ~huge_page_mask(h));
3486 BUG_ON(end & ~huge_page_mask(h));
63551ae0 3487
07e32661
AK
3488 /*
3489 * This is a hugetlb vma, all the pte entries should point
3490 * to huge page.
3491 */
ed6a7935 3492 tlb_change_page_size(tlb, sz);
24669e58 3493 tlb_start_vma(tlb, vma);
dff11abe
MK
3494
3495 /*
3496 * If sharing possible, alert mmu notifiers of worst case.
3497 */
6f4f13e8
JG
3498 mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, mm, start,
3499 end);
ac46d4f3
JG
3500 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
3501 mmu_notifier_invalidate_range_start(&range);
569f48b8 3502 address = start;
569f48b8 3503 for (; address < end; address += sz) {
7868a208 3504 ptep = huge_pte_offset(mm, address, sz);
4c887265 3505 if (!ptep)
c7546f8f
DG
3506 continue;
3507
cb900f41 3508 ptl = huge_pte_lock(h, mm, ptep);
31d49da5
AK
3509 if (huge_pmd_unshare(mm, &address, ptep)) {
3510 spin_unlock(ptl);
dff11abe
MK
3511 /*
3512 * We just unmapped a page of PMDs by clearing a PUD.
3513 * The caller's TLB flush range should cover this area.
3514 */
31d49da5
AK
3515 continue;
3516 }
39dde65c 3517
6629326b 3518 pte = huge_ptep_get(ptep);
31d49da5
AK
3519 if (huge_pte_none(pte)) {
3520 spin_unlock(ptl);
3521 continue;
3522 }
6629326b
HD
3523
3524 /*
9fbc1f63
NH
3525 * Migrating hugepage or HWPoisoned hugepage is already
3526 * unmapped and its refcount is dropped, so just clear pte here.
6629326b 3527 */
9fbc1f63 3528 if (unlikely(!pte_present(pte))) {
9386fac3 3529 huge_pte_clear(mm, address, ptep, sz);
31d49da5
AK
3530 spin_unlock(ptl);
3531 continue;
8c4894c6 3532 }
6629326b
HD
3533
3534 page = pte_page(pte);
04f2cbe3
MG
3535 /*
3536 * If a reference page is supplied, it is because a specific
3537 * page is being unmapped, not a range. Ensure the page we
3538 * are about to unmap is the actual page of interest.
3539 */
3540 if (ref_page) {
31d49da5
AK
3541 if (page != ref_page) {
3542 spin_unlock(ptl);
3543 continue;
3544 }
04f2cbe3
MG
3545 /*
3546 * Mark the VMA as having unmapped its page so that
3547 * future faults in this VMA will fail rather than
3548 * looking like data was lost
3549 */
3550 set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
3551 }
3552
c7546f8f 3553 pte = huge_ptep_get_and_clear(mm, address, ptep);
b528e4b6 3554 tlb_remove_huge_tlb_entry(h, tlb, ptep, address);
106c992a 3555 if (huge_pte_dirty(pte))
6649a386 3556 set_page_dirty(page);
9e81130b 3557
5d317b2b 3558 hugetlb_count_sub(pages_per_huge_page(h), mm);
d281ee61 3559 page_remove_rmap(page, true);
31d49da5 3560
cb900f41 3561 spin_unlock(ptl);
e77b0852 3562 tlb_remove_page_size(tlb, page, huge_page_size(h));
31d49da5
AK
3563 /*
3564 * Bail out after unmapping reference page if supplied
3565 */
3566 if (ref_page)
3567 break;
fe1668ae 3568 }
ac46d4f3 3569 mmu_notifier_invalidate_range_end(&range);
24669e58 3570 tlb_end_vma(tlb, vma);
1da177e4 3571}
63551ae0 3572
d833352a
MG
3573void __unmap_hugepage_range_final(struct mmu_gather *tlb,
3574 struct vm_area_struct *vma, unsigned long start,
3575 unsigned long end, struct page *ref_page)
3576{
3577 __unmap_hugepage_range(tlb, vma, start, end, ref_page);
3578
3579 /*
3580 * Clear this flag so that x86's huge_pmd_share page_table_shareable
3581 * test will fail on a vma being torn down, and not grab a page table
3582 * on its way out. We're lucky that the flag has such an appropriate
3583 * name, and can in fact be safely cleared here. We could clear it
3584 * before the __unmap_hugepage_range above, but all that's necessary
c8c06efa 3585 * is to clear it before releasing the i_mmap_rwsem. This works
d833352a 3586 * because in the context this is called, the VMA is about to be
c8c06efa 3587 * destroyed and the i_mmap_rwsem is held.
d833352a
MG
3588 */
3589 vma->vm_flags &= ~VM_MAYSHARE;
3590}
3591
502717f4 3592void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
04f2cbe3 3593 unsigned long end, struct page *ref_page)
502717f4 3594{
24669e58
AK
3595 struct mm_struct *mm;
3596 struct mmu_gather tlb;
dff11abe
MK
3597 unsigned long tlb_start = start;
3598 unsigned long tlb_end = end;
3599
3600 /*
3601 * If shared PMDs were possibly used within this vma range, adjust
3602 * start/end for worst case tlb flushing.
3603 * Note that we can not be sure if PMDs are shared until we try to
3604 * unmap pages. However, we want to make sure TLB flushing covers
3605 * the largest possible range.
3606 */
3607 adjust_range_if_pmd_sharing_possible(vma, &tlb_start, &tlb_end);
24669e58
AK
3608
3609 mm = vma->vm_mm;
3610
dff11abe 3611 tlb_gather_mmu(&tlb, mm, tlb_start, tlb_end);
24669e58 3612 __unmap_hugepage_range(&tlb, vma, start, end, ref_page);
dff11abe 3613 tlb_finish_mmu(&tlb, tlb_start, tlb_end);
502717f4
CK
3614}
3615
04f2cbe3
MG
3616/*
3617 * This is called when the original mapper is failing to COW a MAP_PRIVATE
3618 * mappping it owns the reserve page for. The intention is to unmap the page
3619 * from other VMAs and let the children be SIGKILLed if they are faulting the
3620 * same region.
3621 */
2f4612af
DB
3622static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
3623 struct page *page, unsigned long address)
04f2cbe3 3624{
7526674d 3625 struct hstate *h = hstate_vma(vma);
04f2cbe3
MG
3626 struct vm_area_struct *iter_vma;
3627 struct address_space *mapping;
04f2cbe3
MG
3628 pgoff_t pgoff;
3629
3630 /*
3631 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
3632 * from page cache lookup which is in HPAGE_SIZE units.
3633 */
7526674d 3634 address = address & huge_page_mask(h);
36e4f20a
MH
3635 pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
3636 vma->vm_pgoff;
93c76a3d 3637 mapping = vma->vm_file->f_mapping;
04f2cbe3 3638
4eb2b1dc
MG
3639 /*
3640 * Take the mapping lock for the duration of the table walk. As
3641 * this mapping should be shared between all the VMAs,
3642 * __unmap_hugepage_range() is called as the lock is already held
3643 */
83cde9e8 3644 i_mmap_lock_write(mapping);
6b2dbba8 3645 vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
04f2cbe3
MG
3646 /* Do not unmap the current VMA */
3647 if (iter_vma == vma)
3648 continue;
3649
2f84a899
MG
3650 /*
3651 * Shared VMAs have their own reserves and do not affect
3652 * MAP_PRIVATE accounting but it is possible that a shared
3653 * VMA is using the same page so check and skip such VMAs.
3654 */
3655 if (iter_vma->vm_flags & VM_MAYSHARE)
3656 continue;
3657
04f2cbe3
MG
3658 /*
3659 * Unmap the page from other VMAs without their own reserves.
3660 * They get marked to be SIGKILLed if they fault in these
3661 * areas. This is because a future no-page fault on this VMA
3662 * could insert a zeroed page instead of the data existing
3663 * from the time of fork. This would look like data corruption
3664 */
3665 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
24669e58
AK
3666 unmap_hugepage_range(iter_vma, address,
3667 address + huge_page_size(h), page);
04f2cbe3 3668 }
83cde9e8 3669 i_mmap_unlock_write(mapping);
04f2cbe3
MG
3670}
3671
0fe6e20b
NH
3672/*
3673 * Hugetlb_cow() should be called with page lock of the original hugepage held.
ef009b25
MH
3674 * Called with hugetlb_instantiation_mutex held and pte_page locked so we
3675 * cannot race with other handlers or page migration.
3676 * Keep the pte_same checks anyway to make transition from the mutex easier.
0fe6e20b 3677 */
2b740303 3678static vm_fault_t hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
974e6d66 3679 unsigned long address, pte_t *ptep,
3999f52e 3680 struct page *pagecache_page, spinlock_t *ptl)
1e8f889b 3681{
3999f52e 3682 pte_t pte;
a5516438 3683 struct hstate *h = hstate_vma(vma);
1e8f889b 3684 struct page *old_page, *new_page;
2b740303
SJ
3685 int outside_reserve = 0;
3686 vm_fault_t ret = 0;
974e6d66 3687 unsigned long haddr = address & huge_page_mask(h);
ac46d4f3 3688 struct mmu_notifier_range range;
1e8f889b 3689
3999f52e 3690 pte = huge_ptep_get(ptep);
1e8f889b
DG
3691 old_page = pte_page(pte);
3692
04f2cbe3 3693retry_avoidcopy:
1e8f889b
DG
3694 /* If no-one else is actually using this page, avoid the copy
3695 * and just make the page writable */
37a2140d 3696 if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
5a49973d 3697 page_move_anon_rmap(old_page, vma);
5b7a1d40 3698 set_huge_ptep_writable(vma, haddr, ptep);
83c54070 3699 return 0;
1e8f889b
DG
3700 }
3701
04f2cbe3
MG
3702 /*
3703 * If the process that created a MAP_PRIVATE mapping is about to
3704 * perform a COW due to a shared page count, attempt to satisfy
3705 * the allocation without using the existing reserves. The pagecache
3706 * page is used to determine if the reserve at this address was
3707 * consumed or not. If reserves were used, a partial faulted mapping
3708 * at the time of fork() could consume its reserves on COW instead
3709 * of the full address range.
3710 */
5944d011 3711 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
04f2cbe3
MG
3712 old_page != pagecache_page)
3713 outside_reserve = 1;
3714
09cbfeaf 3715 get_page(old_page);
b76c8cfb 3716
ad4404a2
DB
3717 /*
3718 * Drop page table lock as buddy allocator may be called. It will
3719 * be acquired again before returning to the caller, as expected.
3720 */
cb900f41 3721 spin_unlock(ptl);
5b7a1d40 3722 new_page = alloc_huge_page(vma, haddr, outside_reserve);
1e8f889b 3723
2fc39cec 3724 if (IS_ERR(new_page)) {
04f2cbe3
MG
3725 /*
3726 * If a process owning a MAP_PRIVATE mapping fails to COW,
3727 * it is due to references held by a child and an insufficient
3728 * huge page pool. To guarantee the original mappers
3729 * reliability, unmap the page from child processes. The child
3730 * may get SIGKILLed if it later faults.
3731 */
3732 if (outside_reserve) {
09cbfeaf 3733 put_page(old_page);
04f2cbe3 3734 BUG_ON(huge_pte_none(pte));
5b7a1d40 3735 unmap_ref_private(mm, vma, old_page, haddr);
2f4612af
DB
3736 BUG_ON(huge_pte_none(pte));
3737 spin_lock(ptl);
5b7a1d40 3738 ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
2f4612af
DB
3739 if (likely(ptep &&
3740 pte_same(huge_ptep_get(ptep), pte)))
3741 goto retry_avoidcopy;
3742 /*
3743 * race occurs while re-acquiring page table
3744 * lock, and our job is done.
3745 */
3746 return 0;
04f2cbe3
MG
3747 }
3748
2b740303 3749 ret = vmf_error(PTR_ERR(new_page));
ad4404a2 3750 goto out_release_old;
1e8f889b
DG
3751 }
3752
0fe6e20b
NH
3753 /*
3754 * When the original hugepage is shared one, it does not have
3755 * anon_vma prepared.
3756 */
44e2aa93 3757 if (unlikely(anon_vma_prepare(vma))) {
ad4404a2
DB
3758 ret = VM_FAULT_OOM;
3759 goto out_release_all;
44e2aa93 3760 }
0fe6e20b 3761
974e6d66 3762 copy_user_huge_page(new_page, old_page, address, vma,
47ad8475 3763 pages_per_huge_page(h));
0ed361de 3764 __SetPageUptodate(new_page);
1e8f889b 3765
7269f999 3766 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, haddr,
6f4f13e8 3767 haddr + huge_page_size(h));
ac46d4f3 3768 mmu_notifier_invalidate_range_start(&range);
ad4404a2 3769
b76c8cfb 3770 /*
cb900f41 3771 * Retake the page table lock to check for racing updates
b76c8cfb
LW
3772 * before the page tables are altered
3773 */
cb900f41 3774 spin_lock(ptl);
5b7a1d40 3775 ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
a9af0c5d 3776 if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
07443a85
JK
3777 ClearPagePrivate(new_page);
3778
1e8f889b 3779 /* Break COW */
5b7a1d40 3780 huge_ptep_clear_flush(vma, haddr, ptep);
ac46d4f3 3781 mmu_notifier_invalidate_range(mm, range.start, range.end);
5b7a1d40 3782 set_huge_pte_at(mm, haddr, ptep,
1e8f889b 3783 make_huge_pte(vma, new_page, 1));
d281ee61 3784 page_remove_rmap(old_page, true);
5b7a1d40 3785 hugepage_add_new_anon_rmap(new_page, vma, haddr);
cb6acd01 3786 set_page_huge_active(new_page);
1e8f889b
DG
3787 /* Make the old page be freed below */
3788 new_page = old_page;
3789 }
cb900f41 3790 spin_unlock(ptl);
ac46d4f3 3791 mmu_notifier_invalidate_range_end(&range);
ad4404a2 3792out_release_all:
5b7a1d40 3793 restore_reserve_on_error(h, vma, haddr, new_page);
09cbfeaf 3794 put_page(new_page);
ad4404a2 3795out_release_old:
09cbfeaf 3796 put_page(old_page);
8312034f 3797
ad4404a2
DB
3798 spin_lock(ptl); /* Caller expects lock to be held */
3799 return ret;
1e8f889b
DG
3800}
3801
04f2cbe3 3802/* Return the pagecache page at a given address within a VMA */
a5516438
AK
3803static struct page *hugetlbfs_pagecache_page(struct hstate *h,
3804 struct vm_area_struct *vma, unsigned long address)
04f2cbe3
MG
3805{
3806 struct address_space *mapping;
e7c4b0bf 3807 pgoff_t idx;
04f2cbe3
MG
3808
3809 mapping = vma->vm_file->f_mapping;
a5516438 3810 idx = vma_hugecache_offset(h, vma, address);
04f2cbe3
MG
3811
3812 return find_lock_page(mapping, idx);
3813}
3814
3ae77f43
HD
3815/*
3816 * Return whether there is a pagecache page to back given address within VMA.
3817 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
3818 */
3819static bool hugetlbfs_pagecache_present(struct hstate *h,
2a15efc9
HD
3820 struct vm_area_struct *vma, unsigned long address)
3821{
3822 struct address_space *mapping;
3823 pgoff_t idx;
3824 struct page *page;
3825
3826 mapping = vma->vm_file->f_mapping;
3827 idx = vma_hugecache_offset(h, vma, address);
3828
3829 page = find_get_page(mapping, idx);
3830 if (page)
3831 put_page(page);
3832 return page != NULL;
3833}
3834
ab76ad54
MK
3835int huge_add_to_page_cache(struct page *page, struct address_space *mapping,
3836 pgoff_t idx)
3837{
3838 struct inode *inode = mapping->host;
3839 struct hstate *h = hstate_inode(inode);
3840 int err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
3841
3842 if (err)
3843 return err;
3844 ClearPagePrivate(page);
3845
22146c3c
MK
3846 /*
3847 * set page dirty so that it will not be removed from cache/file
3848 * by non-hugetlbfs specific code paths.
3849 */
3850 set_page_dirty(page);
3851
ab76ad54
MK
3852 spin_lock(&inode->i_lock);
3853 inode->i_blocks += blocks_per_huge_page(h);
3854 spin_unlock(&inode->i_lock);
3855 return 0;
3856}
3857
2b740303
SJ
3858static vm_fault_t hugetlb_no_page(struct mm_struct *mm,
3859 struct vm_area_struct *vma,
3860 struct address_space *mapping, pgoff_t idx,
3861 unsigned long address, pte_t *ptep, unsigned int flags)
ac9b9c66 3862{
a5516438 3863 struct hstate *h = hstate_vma(vma);
2b740303 3864 vm_fault_t ret = VM_FAULT_SIGBUS;
409eb8c2 3865 int anon_rmap = 0;
4c887265 3866 unsigned long size;
4c887265 3867 struct page *page;
1e8f889b 3868 pte_t new_pte;
cb900f41 3869 spinlock_t *ptl;
285b8dca 3870 unsigned long haddr = address & huge_page_mask(h);
cb6acd01 3871 bool new_page = false;
4c887265 3872
04f2cbe3
MG
3873 /*
3874 * Currently, we are forced to kill the process in the event the
3875 * original mapper has unmapped pages from the child due to a failed
25985edc 3876 * COW. Warn that such a situation has occurred as it may not be obvious
04f2cbe3
MG
3877 */
3878 if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
910154d5 3879 pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n",
ffb22af5 3880 current->pid);
04f2cbe3
MG
3881 return ret;
3882 }
3883
4c887265 3884 /*
e7c58097
MK
3885 * Use page lock to guard against racing truncation
3886 * before we get page_table_lock.
4c887265 3887 */
6bda666a
CL
3888retry:
3889 page = find_lock_page(mapping, idx);
3890 if (!page) {
e7c58097
MK
3891 size = i_size_read(mapping->host) >> huge_page_shift(h);
3892 if (idx >= size)
3893 goto out;
3894
1a1aad8a
MK
3895 /*
3896 * Check for page in userfault range
3897 */
3898 if (userfaultfd_missing(vma)) {
3899 u32 hash;
3900 struct vm_fault vmf = {
3901 .vma = vma,
285b8dca 3902 .address = haddr,
1a1aad8a
MK
3903 .flags = flags,
3904 /*
3905 * Hard to debug if it ends up being
3906 * used by a callee that assumes
3907 * something about the other
3908 * uninitialized fields... same as in
3909 * memory.c
3910 */
3911 };
3912
3913 /*
ddeaab32
MK
3914 * hugetlb_fault_mutex must be dropped before
3915 * handling userfault. Reacquire after handling
3916 * fault to make calling code simpler.
1a1aad8a 3917 */
1b426bac 3918 hash = hugetlb_fault_mutex_hash(h, mapping, idx, haddr);
1a1aad8a
MK
3919 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
3920 ret = handle_userfault(&vmf, VM_UFFD_MISSING);
3921 mutex_lock(&hugetlb_fault_mutex_table[hash]);
3922 goto out;
3923 }
3924
285b8dca 3925 page = alloc_huge_page(vma, haddr, 0);
2fc39cec 3926 if (IS_ERR(page)) {
4643d67e
MK
3927 /*
3928 * Returning error will result in faulting task being
3929 * sent SIGBUS. The hugetlb fault mutex prevents two
3930 * tasks from racing to fault in the same page which
3931 * could result in false unable to allocate errors.
3932 * Page migration does not take the fault mutex, but
3933 * does a clear then write of pte's under page table
3934 * lock. Page fault code could race with migration,
3935 * notice the clear pte and try to allocate a page
3936 * here. Before returning error, get ptl and make
3937 * sure there really is no pte entry.
3938 */
3939 ptl = huge_pte_lock(h, mm, ptep);
3940 if (!huge_pte_none(huge_ptep_get(ptep))) {
3941 ret = 0;
3942 spin_unlock(ptl);
3943 goto out;
3944 }
3945 spin_unlock(ptl);
2b740303 3946 ret = vmf_error(PTR_ERR(page));
6bda666a
CL
3947 goto out;
3948 }
47ad8475 3949 clear_huge_page(page, address, pages_per_huge_page(h));
0ed361de 3950 __SetPageUptodate(page);
cb6acd01 3951 new_page = true;
ac9b9c66 3952
f83a275d 3953 if (vma->vm_flags & VM_MAYSHARE) {
ab76ad54 3954 int err = huge_add_to_page_cache(page, mapping, idx);
6bda666a
CL
3955 if (err) {
3956 put_page(page);
6bda666a
CL
3957 if (err == -EEXIST)
3958 goto retry;
3959 goto out;
3960 }
23be7468 3961 } else {
6bda666a 3962 lock_page(page);
0fe6e20b
NH
3963 if (unlikely(anon_vma_prepare(vma))) {
3964 ret = VM_FAULT_OOM;
3965 goto backout_unlocked;
3966 }
409eb8c2 3967 anon_rmap = 1;
23be7468 3968 }
0fe6e20b 3969 } else {
998b4382
NH
3970 /*
3971 * If memory error occurs between mmap() and fault, some process
3972 * don't have hwpoisoned swap entry for errored virtual address.
3973 * So we need to block hugepage fault by PG_hwpoison bit check.
3974 */
3975 if (unlikely(PageHWPoison(page))) {
32f84528 3976 ret = VM_FAULT_HWPOISON |
972dc4de 3977 VM_FAULT_SET_HINDEX(hstate_index(h));
998b4382
NH
3978 goto backout_unlocked;
3979 }
6bda666a 3980 }
1e8f889b 3981
57303d80
AW
3982 /*
3983 * If we are going to COW a private mapping later, we examine the
3984 * pending reservations for this page now. This will ensure that
3985 * any allocations necessary to record that reservation occur outside
3986 * the spinlock.
3987 */
5e911373 3988 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
285b8dca 3989 if (vma_needs_reservation(h, vma, haddr) < 0) {
2b26736c
AW
3990 ret = VM_FAULT_OOM;
3991 goto backout_unlocked;
3992 }
5e911373 3993 /* Just decrements count, does not deallocate */
285b8dca 3994 vma_end_reservation(h, vma, haddr);
5e911373 3995 }
57303d80 3996
8bea8052 3997 ptl = huge_pte_lock(h, mm, ptep);
e7c58097
MK
3998 size = i_size_read(mapping->host) >> huge_page_shift(h);
3999 if (idx >= size)
4000 goto backout;
4c887265 4001
83c54070 4002 ret = 0;
7f2e9525 4003 if (!huge_pte_none(huge_ptep_get(ptep)))
4c887265
AL
4004 goto backout;
4005
07443a85
JK
4006 if (anon_rmap) {
4007 ClearPagePrivate(page);
285b8dca 4008 hugepage_add_new_anon_rmap(page, vma, haddr);
ac714904 4009 } else
53f9263b 4010 page_dup_rmap(page, true);
1e8f889b
DG
4011 new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
4012 && (vma->vm_flags & VM_SHARED)));
285b8dca 4013 set_huge_pte_at(mm, haddr, ptep, new_pte);
1e8f889b 4014
5d317b2b 4015 hugetlb_count_add(pages_per_huge_page(h), mm);
788c7df4 4016 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
1e8f889b 4017 /* Optimization, do the COW without a second fault */
974e6d66 4018 ret = hugetlb_cow(mm, vma, address, ptep, page, ptl);
1e8f889b
DG
4019 }
4020
cb900f41 4021 spin_unlock(ptl);
cb6acd01
MK
4022
4023 /*
4024 * Only make newly allocated pages active. Existing pages found
4025 * in the pagecache could be !page_huge_active() if they have been
4026 * isolated for migration.
4027 */
4028 if (new_page)
4029 set_page_huge_active(page);
4030
4c887265
AL
4031 unlock_page(page);
4032out:
ac9b9c66 4033 return ret;
4c887265
AL
4034
4035backout:
cb900f41 4036 spin_unlock(ptl);
2b26736c 4037backout_unlocked:
4c887265 4038 unlock_page(page);
285b8dca 4039 restore_reserve_on_error(h, vma, haddr, page);
4c887265
AL
4040 put_page(page);
4041 goto out;
ac9b9c66
HD
4042}
4043
8382d914 4044#ifdef CONFIG_SMP
1b426bac 4045u32 hugetlb_fault_mutex_hash(struct hstate *h, struct address_space *mapping,
8382d914
DB
4046 pgoff_t idx, unsigned long address)
4047{
4048 unsigned long key[2];
4049 u32 hash;
4050
1b426bac
MK
4051 key[0] = (unsigned long) mapping;
4052 key[1] = idx;
8382d914
DB
4053
4054 hash = jhash2((u32 *)&key, sizeof(key)/sizeof(u32), 0);
4055
4056 return hash & (num_fault_mutexes - 1);
4057}
4058#else
4059/*
4060 * For uniprocesor systems we always use a single mutex, so just
4061 * return 0 and avoid the hashing overhead.
4062 */
1b426bac 4063u32 hugetlb_fault_mutex_hash(struct hstate *h, struct address_space *mapping,
8382d914
DB
4064 pgoff_t idx, unsigned long address)
4065{
4066 return 0;
4067}
4068#endif
4069
2b740303 4070vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
788c7df4 4071 unsigned long address, unsigned int flags)
86e5216f 4072{
8382d914 4073 pte_t *ptep, entry;
cb900f41 4074 spinlock_t *ptl;
2b740303 4075 vm_fault_t ret;
8382d914
DB
4076 u32 hash;
4077 pgoff_t idx;
0fe6e20b 4078 struct page *page = NULL;
57303d80 4079 struct page *pagecache_page = NULL;
a5516438 4080 struct hstate *h = hstate_vma(vma);
8382d914 4081 struct address_space *mapping;
0f792cf9 4082 int need_wait_lock = 0;
285b8dca 4083 unsigned long haddr = address & huge_page_mask(h);
86e5216f 4084
285b8dca 4085 ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
fd6a03ed
NH
4086 if (ptep) {
4087 entry = huge_ptep_get(ptep);
290408d4 4088 if (unlikely(is_hugetlb_entry_migration(entry))) {
cb900f41 4089 migration_entry_wait_huge(vma, mm, ptep);
290408d4
NH
4090 return 0;
4091 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
32f84528 4092 return VM_FAULT_HWPOISON_LARGE |
972dc4de 4093 VM_FAULT_SET_HINDEX(hstate_index(h));
ddeaab32
MK
4094 } else {
4095 ptep = huge_pte_alloc(mm, haddr, huge_page_size(h));
4096 if (!ptep)
4097 return VM_FAULT_OOM;
fd6a03ed
NH
4098 }
4099
8382d914 4100 mapping = vma->vm_file->f_mapping;
ddeaab32 4101 idx = vma_hugecache_offset(h, vma, haddr);
8382d914 4102
3935baa9
DG
4103 /*
4104 * Serialize hugepage allocation and instantiation, so that we don't
4105 * get spurious allocation failures if two CPUs race to instantiate
4106 * the same page in the page cache.
4107 */
1b426bac 4108 hash = hugetlb_fault_mutex_hash(h, mapping, idx, haddr);
c672c7f2 4109 mutex_lock(&hugetlb_fault_mutex_table[hash]);
8382d914 4110
7f2e9525
GS
4111 entry = huge_ptep_get(ptep);
4112 if (huge_pte_none(entry)) {
8382d914 4113 ret = hugetlb_no_page(mm, vma, mapping, idx, address, ptep, flags);
b4d1d99f 4114 goto out_mutex;
3935baa9 4115 }
86e5216f 4116
83c54070 4117 ret = 0;
1e8f889b 4118
0f792cf9
NH
4119 /*
4120 * entry could be a migration/hwpoison entry at this point, so this
4121 * check prevents the kernel from going below assuming that we have
4122 * a active hugepage in pagecache. This goto expects the 2nd page fault,
4123 * and is_hugetlb_entry_(migration|hwpoisoned) check will properly
4124 * handle it.
4125 */
4126 if (!pte_present(entry))
4127 goto out_mutex;
4128
57303d80
AW
4129 /*
4130 * If we are going to COW the mapping later, we examine the pending
4131 * reservations for this page now. This will ensure that any
4132 * allocations necessary to record that reservation occur outside the
4133 * spinlock. For private mappings, we also lookup the pagecache
4134 * page now as it is used to determine if a reservation has been
4135 * consumed.
4136 */
106c992a 4137 if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
285b8dca 4138 if (vma_needs_reservation(h, vma, haddr) < 0) {
2b26736c 4139 ret = VM_FAULT_OOM;
b4d1d99f 4140 goto out_mutex;
2b26736c 4141 }
5e911373 4142 /* Just decrements count, does not deallocate */
285b8dca 4143 vma_end_reservation(h, vma, haddr);
57303d80 4144
f83a275d 4145 if (!(vma->vm_flags & VM_MAYSHARE))
57303d80 4146 pagecache_page = hugetlbfs_pagecache_page(h,
285b8dca 4147 vma, haddr);
57303d80
AW
4148 }
4149
0f792cf9
NH
4150 ptl = huge_pte_lock(h, mm, ptep);
4151
4152 /* Check for a racing update before calling hugetlb_cow */
4153 if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
4154 goto out_ptl;
4155
56c9cfb1
NH
4156 /*
4157 * hugetlb_cow() requires page locks of pte_page(entry) and
4158 * pagecache_page, so here we need take the former one
4159 * when page != pagecache_page or !pagecache_page.
56c9cfb1
NH
4160 */
4161 page = pte_page(entry);
4162 if (page != pagecache_page)
0f792cf9
NH
4163 if (!trylock_page(page)) {
4164 need_wait_lock = 1;
4165 goto out_ptl;
4166 }
b4d1d99f 4167
0f792cf9 4168 get_page(page);
b4d1d99f 4169
788c7df4 4170 if (flags & FAULT_FLAG_WRITE) {
106c992a 4171 if (!huge_pte_write(entry)) {
974e6d66 4172 ret = hugetlb_cow(mm, vma, address, ptep,
3999f52e 4173 pagecache_page, ptl);
0f792cf9 4174 goto out_put_page;
b4d1d99f 4175 }
106c992a 4176 entry = huge_pte_mkdirty(entry);
b4d1d99f
DG
4177 }
4178 entry = pte_mkyoung(entry);
285b8dca 4179 if (huge_ptep_set_access_flags(vma, haddr, ptep, entry,
788c7df4 4180 flags & FAULT_FLAG_WRITE))
285b8dca 4181 update_mmu_cache(vma, haddr, ptep);
0f792cf9
NH
4182out_put_page:
4183 if (page != pagecache_page)
4184 unlock_page(page);
4185 put_page(page);
cb900f41
KS
4186out_ptl:
4187 spin_unlock(ptl);
57303d80
AW
4188
4189 if (pagecache_page) {
4190 unlock_page(pagecache_page);
4191 put_page(pagecache_page);
4192 }
b4d1d99f 4193out_mutex:
c672c7f2 4194 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
0f792cf9
NH
4195 /*
4196 * Generally it's safe to hold refcount during waiting page lock. But
4197 * here we just wait to defer the next page fault to avoid busy loop and
4198 * the page is not used after unlocked before returning from the current
4199 * page fault. So we are safe from accessing freed page, even if we wait
4200 * here without taking refcount.
4201 */
4202 if (need_wait_lock)
4203 wait_on_page_locked(page);
1e8f889b 4204 return ret;
86e5216f
AL
4205}
4206
8fb5debc
MK
4207/*
4208 * Used by userfaultfd UFFDIO_COPY. Based on mcopy_atomic_pte with
4209 * modifications for huge pages.
4210 */
4211int hugetlb_mcopy_atomic_pte(struct mm_struct *dst_mm,
4212 pte_t *dst_pte,
4213 struct vm_area_struct *dst_vma,
4214 unsigned long dst_addr,
4215 unsigned long src_addr,
4216 struct page **pagep)
4217{
1e392147
AA
4218 struct address_space *mapping;
4219 pgoff_t idx;
4220 unsigned long size;
1c9e8def 4221 int vm_shared = dst_vma->vm_flags & VM_SHARED;
8fb5debc
MK
4222 struct hstate *h = hstate_vma(dst_vma);
4223 pte_t _dst_pte;
4224 spinlock_t *ptl;
4225 int ret;
4226 struct page *page;
4227
4228 if (!*pagep) {
4229 ret = -ENOMEM;
4230 page = alloc_huge_page(dst_vma, dst_addr, 0);
4231 if (IS_ERR(page))
4232 goto out;
4233
4234 ret = copy_huge_page_from_user(page,
4235 (const void __user *) src_addr,
810a56b9 4236 pages_per_huge_page(h), false);
8fb5debc
MK
4237
4238 /* fallback to copy_from_user outside mmap_sem */
4239 if (unlikely(ret)) {
9e368259 4240 ret = -ENOENT;
8fb5debc
MK
4241 *pagep = page;
4242 /* don't free the page */
4243 goto out;
4244 }
4245 } else {
4246 page = *pagep;
4247 *pagep = NULL;
4248 }
4249
4250 /*
4251 * The memory barrier inside __SetPageUptodate makes sure that
4252 * preceding stores to the page contents become visible before
4253 * the set_pte_at() write.
4254 */
4255 __SetPageUptodate(page);
8fb5debc 4256
1e392147
AA
4257 mapping = dst_vma->vm_file->f_mapping;
4258 idx = vma_hugecache_offset(h, dst_vma, dst_addr);
4259
1c9e8def
MK
4260 /*
4261 * If shared, add to page cache
4262 */
4263 if (vm_shared) {
1e392147
AA
4264 size = i_size_read(mapping->host) >> huge_page_shift(h);
4265 ret = -EFAULT;
4266 if (idx >= size)
4267 goto out_release_nounlock;
1c9e8def 4268
1e392147
AA
4269 /*
4270 * Serialization between remove_inode_hugepages() and
4271 * huge_add_to_page_cache() below happens through the
4272 * hugetlb_fault_mutex_table that here must be hold by
4273 * the caller.
4274 */
1c9e8def
MK
4275 ret = huge_add_to_page_cache(page, mapping, idx);
4276 if (ret)
4277 goto out_release_nounlock;
4278 }
4279
8fb5debc
MK
4280 ptl = huge_pte_lockptr(h, dst_mm, dst_pte);
4281 spin_lock(ptl);
4282
1e392147
AA
4283 /*
4284 * Recheck the i_size after holding PT lock to make sure not
4285 * to leave any page mapped (as page_mapped()) beyond the end
4286 * of the i_size (remove_inode_hugepages() is strict about
4287 * enforcing that). If we bail out here, we'll also leave a
4288 * page in the radix tree in the vm_shared case beyond the end
4289 * of the i_size, but remove_inode_hugepages() will take care
4290 * of it as soon as we drop the hugetlb_fault_mutex_table.
4291 */
4292 size = i_size_read(mapping->host) >> huge_page_shift(h);
4293 ret = -EFAULT;
4294 if (idx >= size)
4295 goto out_release_unlock;
4296
8fb5debc
MK
4297 ret = -EEXIST;
4298 if (!huge_pte_none(huge_ptep_get(dst_pte)))
4299 goto out_release_unlock;
4300
1c9e8def
MK
4301 if (vm_shared) {
4302 page_dup_rmap(page, true);
4303 } else {
4304 ClearPagePrivate(page);
4305 hugepage_add_new_anon_rmap(page, dst_vma, dst_addr);
4306 }
8fb5debc
MK
4307
4308 _dst_pte = make_huge_pte(dst_vma, page, dst_vma->vm_flags & VM_WRITE);
4309 if (dst_vma->vm_flags & VM_WRITE)
4310 _dst_pte = huge_pte_mkdirty(_dst_pte);
4311 _dst_pte = pte_mkyoung(_dst_pte);
4312
4313 set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
4314
4315 (void)huge_ptep_set_access_flags(dst_vma, dst_addr, dst_pte, _dst_pte,
4316 dst_vma->vm_flags & VM_WRITE);
4317 hugetlb_count_add(pages_per_huge_page(h), dst_mm);
4318
4319 /* No need to invalidate - it was non-present before */
4320 update_mmu_cache(dst_vma, dst_addr, dst_pte);
4321
4322 spin_unlock(ptl);
cb6acd01 4323 set_page_huge_active(page);
1c9e8def
MK
4324 if (vm_shared)
4325 unlock_page(page);
8fb5debc
MK
4326 ret = 0;
4327out:
4328 return ret;
4329out_release_unlock:
4330 spin_unlock(ptl);
1c9e8def
MK
4331 if (vm_shared)
4332 unlock_page(page);
5af10dfd 4333out_release_nounlock:
8fb5debc
MK
4334 put_page(page);
4335 goto out;
4336}
4337
28a35716
ML
4338long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
4339 struct page **pages, struct vm_area_struct **vmas,
4340 unsigned long *position, unsigned long *nr_pages,
87ffc118 4341 long i, unsigned int flags, int *nonblocking)
63551ae0 4342{
d5d4b0aa
CK
4343 unsigned long pfn_offset;
4344 unsigned long vaddr = *position;
28a35716 4345 unsigned long remainder = *nr_pages;
a5516438 4346 struct hstate *h = hstate_vma(vma);
2be7cfed 4347 int err = -EFAULT;
63551ae0 4348
63551ae0 4349 while (vaddr < vma->vm_end && remainder) {
4c887265 4350 pte_t *pte;
cb900f41 4351 spinlock_t *ptl = NULL;
2a15efc9 4352 int absent;
4c887265 4353 struct page *page;
63551ae0 4354
02057967
DR
4355 /*
4356 * If we have a pending SIGKILL, don't keep faulting pages and
4357 * potentially allocating memory.
4358 */
fa45f116 4359 if (fatal_signal_pending(current)) {
02057967
DR
4360 remainder = 0;
4361 break;
4362 }
4363
4c887265
AL
4364 /*
4365 * Some archs (sparc64, sh*) have multiple pte_ts to
2a15efc9 4366 * each hugepage. We have to make sure we get the
4c887265 4367 * first, for the page indexing below to work.
cb900f41
KS
4368 *
4369 * Note that page table lock is not held when pte is null.
4c887265 4370 */
7868a208
PA
4371 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h),
4372 huge_page_size(h));
cb900f41
KS
4373 if (pte)
4374 ptl = huge_pte_lock(h, mm, pte);
2a15efc9
HD
4375 absent = !pte || huge_pte_none(huge_ptep_get(pte));
4376
4377 /*
4378 * When coredumping, it suits get_dump_page if we just return
3ae77f43
HD
4379 * an error where there's an empty slot with no huge pagecache
4380 * to back it. This way, we avoid allocating a hugepage, and
4381 * the sparse dumpfile avoids allocating disk blocks, but its
4382 * huge holes still show up with zeroes where they need to be.
2a15efc9 4383 */
3ae77f43
HD
4384 if (absent && (flags & FOLL_DUMP) &&
4385 !hugetlbfs_pagecache_present(h, vma, vaddr)) {
cb900f41
KS
4386 if (pte)
4387 spin_unlock(ptl);
2a15efc9
HD
4388 remainder = 0;
4389 break;
4390 }
63551ae0 4391
9cc3a5bd
NH
4392 /*
4393 * We need call hugetlb_fault for both hugepages under migration
4394 * (in which case hugetlb_fault waits for the migration,) and
4395 * hwpoisoned hugepages (in which case we need to prevent the
4396 * caller from accessing to them.) In order to do this, we use
4397 * here is_swap_pte instead of is_hugetlb_entry_migration and
4398 * is_hugetlb_entry_hwpoisoned. This is because it simply covers
4399 * both cases, and because we can't follow correct pages
4400 * directly from any kind of swap entries.
4401 */
4402 if (absent || is_swap_pte(huge_ptep_get(pte)) ||
106c992a
GS
4403 ((flags & FOLL_WRITE) &&
4404 !huge_pte_write(huge_ptep_get(pte)))) {
2b740303 4405 vm_fault_t ret;
87ffc118 4406 unsigned int fault_flags = 0;
63551ae0 4407
cb900f41
KS
4408 if (pte)
4409 spin_unlock(ptl);
87ffc118
AA
4410 if (flags & FOLL_WRITE)
4411 fault_flags |= FAULT_FLAG_WRITE;
4412 if (nonblocking)
4413 fault_flags |= FAULT_FLAG_ALLOW_RETRY;
4414 if (flags & FOLL_NOWAIT)
4415 fault_flags |= FAULT_FLAG_ALLOW_RETRY |
4416 FAULT_FLAG_RETRY_NOWAIT;
4417 if (flags & FOLL_TRIED) {
4418 VM_WARN_ON_ONCE(fault_flags &
4419 FAULT_FLAG_ALLOW_RETRY);
4420 fault_flags |= FAULT_FLAG_TRIED;
4421 }
4422 ret = hugetlb_fault(mm, vma, vaddr, fault_flags);
4423 if (ret & VM_FAULT_ERROR) {
2be7cfed 4424 err = vm_fault_to_errno(ret, flags);
87ffc118
AA
4425 remainder = 0;
4426 break;
4427 }
4428 if (ret & VM_FAULT_RETRY) {
1ac25013
AA
4429 if (nonblocking &&
4430 !(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
87ffc118
AA
4431 *nonblocking = 0;
4432 *nr_pages = 0;
4433 /*
4434 * VM_FAULT_RETRY must not return an
4435 * error, it will return zero
4436 * instead.
4437 *
4438 * No need to update "position" as the
4439 * caller will not check it after
4440 * *nr_pages is set to 0.
4441 */
4442 return i;
4443 }
4444 continue;
4c887265
AL
4445 }
4446
a5516438 4447 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
7f2e9525 4448 page = pte_page(huge_ptep_get(pte));
8fde12ca
LT
4449
4450 /*
4451 * Instead of doing 'try_get_page()' below in the same_page
4452 * loop, just check the count once here.
4453 */
4454 if (unlikely(page_count(page) <= 0)) {
4455 if (pages) {
4456 spin_unlock(ptl);
4457 remainder = 0;
4458 err = -ENOMEM;
4459 break;
4460 }
4461 }
d5d4b0aa 4462same_page:
d6692183 4463 if (pages) {
2a15efc9 4464 pages[i] = mem_map_offset(page, pfn_offset);
ddc58f27 4465 get_page(pages[i]);
d6692183 4466 }
63551ae0
DG
4467
4468 if (vmas)
4469 vmas[i] = vma;
4470
4471 vaddr += PAGE_SIZE;
d5d4b0aa 4472 ++pfn_offset;
63551ae0
DG
4473 --remainder;
4474 ++i;
d5d4b0aa 4475 if (vaddr < vma->vm_end && remainder &&
a5516438 4476 pfn_offset < pages_per_huge_page(h)) {
d5d4b0aa
CK
4477 /*
4478 * We use pfn_offset to avoid touching the pageframes
4479 * of this compound page.
4480 */
4481 goto same_page;
4482 }
cb900f41 4483 spin_unlock(ptl);
63551ae0 4484 }
28a35716 4485 *nr_pages = remainder;
87ffc118
AA
4486 /*
4487 * setting position is actually required only if remainder is
4488 * not zero but it's faster not to add a "if (remainder)"
4489 * branch.
4490 */
63551ae0
DG
4491 *position = vaddr;
4492
2be7cfed 4493 return i ? i : err;
63551ae0 4494}
8f860591 4495
5491ae7b
AK
4496#ifndef __HAVE_ARCH_FLUSH_HUGETLB_TLB_RANGE
4497/*
4498 * ARCHes with special requirements for evicting HUGETLB backing TLB entries can
4499 * implement this.
4500 */
4501#define flush_hugetlb_tlb_range(vma, addr, end) flush_tlb_range(vma, addr, end)
4502#endif
4503
7da4d641 4504unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
8f860591
ZY
4505 unsigned long address, unsigned long end, pgprot_t newprot)
4506{
4507 struct mm_struct *mm = vma->vm_mm;
4508 unsigned long start = address;
4509 pte_t *ptep;
4510 pte_t pte;
a5516438 4511 struct hstate *h = hstate_vma(vma);
7da4d641 4512 unsigned long pages = 0;
dff11abe 4513 bool shared_pmd = false;
ac46d4f3 4514 struct mmu_notifier_range range;
dff11abe
MK
4515
4516 /*
4517 * In the case of shared PMDs, the area to flush could be beyond
ac46d4f3 4518 * start/end. Set range.start/range.end to cover the maximum possible
dff11abe
MK
4519 * range if PMD sharing is possible.
4520 */
7269f999
JG
4521 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_VMA,
4522 0, vma, mm, start, end);
ac46d4f3 4523 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
8f860591
ZY
4524
4525 BUG_ON(address >= end);
ac46d4f3 4526 flush_cache_range(vma, range.start, range.end);
8f860591 4527
ac46d4f3 4528 mmu_notifier_invalidate_range_start(&range);
83cde9e8 4529 i_mmap_lock_write(vma->vm_file->f_mapping);
a5516438 4530 for (; address < end; address += huge_page_size(h)) {
cb900f41 4531 spinlock_t *ptl;
7868a208 4532 ptep = huge_pte_offset(mm, address, huge_page_size(h));
8f860591
ZY
4533 if (!ptep)
4534 continue;
cb900f41 4535 ptl = huge_pte_lock(h, mm, ptep);
7da4d641
PZ
4536 if (huge_pmd_unshare(mm, &address, ptep)) {
4537 pages++;
cb900f41 4538 spin_unlock(ptl);
dff11abe 4539 shared_pmd = true;
39dde65c 4540 continue;
7da4d641 4541 }
a8bda28d
NH
4542 pte = huge_ptep_get(ptep);
4543 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
4544 spin_unlock(ptl);
4545 continue;
4546 }
4547 if (unlikely(is_hugetlb_entry_migration(pte))) {
4548 swp_entry_t entry = pte_to_swp_entry(pte);
4549
4550 if (is_write_migration_entry(entry)) {
4551 pte_t newpte;
4552
4553 make_migration_entry_read(&entry);
4554 newpte = swp_entry_to_pte(entry);
e5251fd4
PA
4555 set_huge_swap_pte_at(mm, address, ptep,
4556 newpte, huge_page_size(h));
a8bda28d
NH
4557 pages++;
4558 }
4559 spin_unlock(ptl);
4560 continue;
4561 }
4562 if (!huge_pte_none(pte)) {
023bdd00
AK
4563 pte_t old_pte;
4564
4565 old_pte = huge_ptep_modify_prot_start(vma, address, ptep);
4566 pte = pte_mkhuge(huge_pte_modify(old_pte, newprot));
be7517d6 4567 pte = arch_make_huge_pte(pte, vma, NULL, 0);
023bdd00 4568 huge_ptep_modify_prot_commit(vma, address, ptep, old_pte, pte);
7da4d641 4569 pages++;
8f860591 4570 }
cb900f41 4571 spin_unlock(ptl);
8f860591 4572 }
d833352a 4573 /*
c8c06efa 4574 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
d833352a 4575 * may have cleared our pud entry and done put_page on the page table:
c8c06efa 4576 * once we release i_mmap_rwsem, another task can do the final put_page
dff11abe
MK
4577 * and that page table be reused and filled with junk. If we actually
4578 * did unshare a page of pmds, flush the range corresponding to the pud.
d833352a 4579 */
dff11abe 4580 if (shared_pmd)
ac46d4f3 4581 flush_hugetlb_tlb_range(vma, range.start, range.end);
dff11abe
MK
4582 else
4583 flush_hugetlb_tlb_range(vma, start, end);
0f10851e
JG
4584 /*
4585 * No need to call mmu_notifier_invalidate_range() we are downgrading
4586 * page table protection not changing it to point to a new page.
4587 *
ad56b738 4588 * See Documentation/vm/mmu_notifier.rst
0f10851e 4589 */
83cde9e8 4590 i_mmap_unlock_write(vma->vm_file->f_mapping);
ac46d4f3 4591 mmu_notifier_invalidate_range_end(&range);
7da4d641
PZ
4592
4593 return pages << h->order;
8f860591
ZY
4594}
4595
a1e78772
MG
4596int hugetlb_reserve_pages(struct inode *inode,
4597 long from, long to,
5a6fe125 4598 struct vm_area_struct *vma,
ca16d140 4599 vm_flags_t vm_flags)
e4e574b7 4600{
17c9d12e 4601 long ret, chg;
a5516438 4602 struct hstate *h = hstate_inode(inode);
90481622 4603 struct hugepage_subpool *spool = subpool_inode(inode);
9119a41e 4604 struct resv_map *resv_map;
1c5ecae3 4605 long gbl_reserve;
e4e574b7 4606
63489f8e
MK
4607 /* This should never happen */
4608 if (from > to) {
4609 VM_WARN(1, "%s called with a negative range\n", __func__);
4610 return -EINVAL;
4611 }
4612
17c9d12e
MG
4613 /*
4614 * Only apply hugepage reservation if asked. At fault time, an
4615 * attempt will be made for VM_NORESERVE to allocate a page
90481622 4616 * without using reserves
17c9d12e 4617 */
ca16d140 4618 if (vm_flags & VM_NORESERVE)
17c9d12e
MG
4619 return 0;
4620
a1e78772
MG
4621 /*
4622 * Shared mappings base their reservation on the number of pages that
4623 * are already allocated on behalf of the file. Private mappings need
4624 * to reserve the full area even if read-only as mprotect() may be
4625 * called to make the mapping read-write. Assume !vma is a shm mapping
4626 */
9119a41e 4627 if (!vma || vma->vm_flags & VM_MAYSHARE) {
f27a5136
MK
4628 /*
4629 * resv_map can not be NULL as hugetlb_reserve_pages is only
4630 * called for inodes for which resv_maps were created (see
4631 * hugetlbfs_get_inode).
4632 */
4e35f483 4633 resv_map = inode_resv_map(inode);
9119a41e 4634
1406ec9b 4635 chg = region_chg(resv_map, from, to);
9119a41e
JK
4636
4637 } else {
4638 resv_map = resv_map_alloc();
17c9d12e
MG
4639 if (!resv_map)
4640 return -ENOMEM;
4641
a1e78772 4642 chg = to - from;
84afd99b 4643
17c9d12e
MG
4644 set_vma_resv_map(vma, resv_map);
4645 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
4646 }
4647
c50ac050
DH
4648 if (chg < 0) {
4649 ret = chg;
4650 goto out_err;
4651 }
8a630112 4652
1c5ecae3
MK
4653 /*
4654 * There must be enough pages in the subpool for the mapping. If
4655 * the subpool has a minimum size, there may be some global
4656 * reservations already in place (gbl_reserve).
4657 */
4658 gbl_reserve = hugepage_subpool_get_pages(spool, chg);
4659 if (gbl_reserve < 0) {
c50ac050
DH
4660 ret = -ENOSPC;
4661 goto out_err;
4662 }
5a6fe125
MG
4663
4664 /*
17c9d12e 4665 * Check enough hugepages are available for the reservation.
90481622 4666 * Hand the pages back to the subpool if there are not
5a6fe125 4667 */
1c5ecae3 4668 ret = hugetlb_acct_memory(h, gbl_reserve);
68842c9b 4669 if (ret < 0) {
1c5ecae3
MK
4670 /* put back original number of pages, chg */
4671 (void)hugepage_subpool_put_pages(spool, chg);
c50ac050 4672 goto out_err;
68842c9b 4673 }
17c9d12e
MG
4674
4675 /*
4676 * Account for the reservations made. Shared mappings record regions
4677 * that have reservations as they are shared by multiple VMAs.
4678 * When the last VMA disappears, the region map says how much
4679 * the reservation was and the page cache tells how much of
4680 * the reservation was consumed. Private mappings are per-VMA and
4681 * only the consumed reservations are tracked. When the VMA
4682 * disappears, the original reservation is the VMA size and the
4683 * consumed reservations are stored in the map. Hence, nothing
4684 * else has to be done for private mappings here
4685 */
33039678
MK
4686 if (!vma || vma->vm_flags & VM_MAYSHARE) {
4687 long add = region_add(resv_map, from, to);
4688
4689 if (unlikely(chg > add)) {
4690 /*
4691 * pages in this range were added to the reserve
4692 * map between region_chg and region_add. This
4693 * indicates a race with alloc_huge_page. Adjust
4694 * the subpool and reserve counts modified above
4695 * based on the difference.
4696 */
4697 long rsv_adjust;
4698
4699 rsv_adjust = hugepage_subpool_put_pages(spool,
4700 chg - add);
4701 hugetlb_acct_memory(h, -rsv_adjust);
4702 }
4703 }
a43a8c39 4704 return 0;
c50ac050 4705out_err:
5e911373 4706 if (!vma || vma->vm_flags & VM_MAYSHARE)
ff8c0c53
MK
4707 /* Don't call region_abort if region_chg failed */
4708 if (chg >= 0)
4709 region_abort(resv_map, from, to);
f031dd27
JK
4710 if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
4711 kref_put(&resv_map->refs, resv_map_release);
c50ac050 4712 return ret;
a43a8c39
CK
4713}
4714
b5cec28d
MK
4715long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
4716 long freed)
a43a8c39 4717{
a5516438 4718 struct hstate *h = hstate_inode(inode);
4e35f483 4719 struct resv_map *resv_map = inode_resv_map(inode);
9119a41e 4720 long chg = 0;
90481622 4721 struct hugepage_subpool *spool = subpool_inode(inode);
1c5ecae3 4722 long gbl_reserve;
45c682a6 4723
f27a5136
MK
4724 /*
4725 * Since this routine can be called in the evict inode path for all
4726 * hugetlbfs inodes, resv_map could be NULL.
4727 */
b5cec28d
MK
4728 if (resv_map) {
4729 chg = region_del(resv_map, start, end);
4730 /*
4731 * region_del() can fail in the rare case where a region
4732 * must be split and another region descriptor can not be
4733 * allocated. If end == LONG_MAX, it will not fail.
4734 */
4735 if (chg < 0)
4736 return chg;
4737 }
4738
45c682a6 4739 spin_lock(&inode->i_lock);
e4c6f8be 4740 inode->i_blocks -= (blocks_per_huge_page(h) * freed);
45c682a6
KC
4741 spin_unlock(&inode->i_lock);
4742
1c5ecae3
MK
4743 /*
4744 * If the subpool has a minimum size, the number of global
4745 * reservations to be released may be adjusted.
4746 */
4747 gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
4748 hugetlb_acct_memory(h, -gbl_reserve);
b5cec28d
MK
4749
4750 return 0;
a43a8c39 4751}
93f70f90 4752
3212b535
SC
4753#ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
4754static unsigned long page_table_shareable(struct vm_area_struct *svma,
4755 struct vm_area_struct *vma,
4756 unsigned long addr, pgoff_t idx)
4757{
4758 unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
4759 svma->vm_start;
4760 unsigned long sbase = saddr & PUD_MASK;
4761 unsigned long s_end = sbase + PUD_SIZE;
4762
4763 /* Allow segments to share if only one is marked locked */
de60f5f1
EM
4764 unsigned long vm_flags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
4765 unsigned long svm_flags = svma->vm_flags & VM_LOCKED_CLEAR_MASK;
3212b535
SC
4766
4767 /*
4768 * match the virtual addresses, permission and the alignment of the
4769 * page table page.
4770 */
4771 if (pmd_index(addr) != pmd_index(saddr) ||
4772 vm_flags != svm_flags ||
4773 sbase < svma->vm_start || svma->vm_end < s_end)
4774 return 0;
4775
4776 return saddr;
4777}
4778
31aafb45 4779static bool vma_shareable(struct vm_area_struct *vma, unsigned long addr)
3212b535
SC
4780{
4781 unsigned long base = addr & PUD_MASK;
4782 unsigned long end = base + PUD_SIZE;
4783
4784 /*
4785 * check on proper vm_flags and page table alignment
4786 */
017b1660 4787 if (vma->vm_flags & VM_MAYSHARE && range_in_vma(vma, base, end))
31aafb45
NK
4788 return true;
4789 return false;
3212b535
SC
4790}
4791
017b1660
MK
4792/*
4793 * Determine if start,end range within vma could be mapped by shared pmd.
4794 * If yes, adjust start and end to cover range associated with possible
4795 * shared pmd mappings.
4796 */
4797void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
4798 unsigned long *start, unsigned long *end)
4799{
4800 unsigned long check_addr = *start;
4801
4802 if (!(vma->vm_flags & VM_MAYSHARE))
4803 return;
4804
4805 for (check_addr = *start; check_addr < *end; check_addr += PUD_SIZE) {
4806 unsigned long a_start = check_addr & PUD_MASK;
4807 unsigned long a_end = a_start + PUD_SIZE;
4808
4809 /*
4810 * If sharing is possible, adjust start/end if necessary.
4811 */
4812 if (range_in_vma(vma, a_start, a_end)) {
4813 if (a_start < *start)
4814 *start = a_start;
4815 if (a_end > *end)
4816 *end = a_end;
4817 }
4818 }
4819}
4820
3212b535
SC
4821/*
4822 * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
4823 * and returns the corresponding pte. While this is not necessary for the
4824 * !shared pmd case because we can allocate the pmd later as well, it makes the
ddeaab32
MK
4825 * code much cleaner. pmd allocation is essential for the shared case because
4826 * pud has to be populated inside the same i_mmap_rwsem section - otherwise
4827 * racing tasks could either miss the sharing (see huge_pte_offset) or select a
4828 * bad pmd for sharing.
3212b535
SC
4829 */
4830pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
4831{
4832 struct vm_area_struct *vma = find_vma(mm, addr);
4833 struct address_space *mapping = vma->vm_file->f_mapping;
4834 pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
4835 vma->vm_pgoff;
4836 struct vm_area_struct *svma;
4837 unsigned long saddr;
4838 pte_t *spte = NULL;
4839 pte_t *pte;
cb900f41 4840 spinlock_t *ptl;
3212b535
SC
4841
4842 if (!vma_shareable(vma, addr))
4843 return (pte_t *)pmd_alloc(mm, pud, addr);
4844
ddeaab32 4845 i_mmap_lock_write(mapping);
3212b535
SC
4846 vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
4847 if (svma == vma)
4848 continue;
4849
4850 saddr = page_table_shareable(svma, vma, addr, idx);
4851 if (saddr) {
7868a208
PA
4852 spte = huge_pte_offset(svma->vm_mm, saddr,
4853 vma_mmu_pagesize(svma));
3212b535
SC
4854 if (spte) {
4855 get_page(virt_to_page(spte));
4856 break;
4857 }
4858 }
4859 }
4860
4861 if (!spte)
4862 goto out;
4863
8bea8052 4864 ptl = huge_pte_lock(hstate_vma(vma), mm, spte);
dc6c9a35 4865 if (pud_none(*pud)) {
3212b535
SC
4866 pud_populate(mm, pud,
4867 (pmd_t *)((unsigned long)spte & PAGE_MASK));
c17b1f42 4868 mm_inc_nr_pmds(mm);
dc6c9a35 4869 } else {
3212b535 4870 put_page(virt_to_page(spte));
dc6c9a35 4871 }
cb900f41 4872 spin_unlock(ptl);
3212b535
SC
4873out:
4874 pte = (pte_t *)pmd_alloc(mm, pud, addr);
ddeaab32 4875 i_mmap_unlock_write(mapping);
3212b535
SC
4876 return pte;
4877}
4878
4879/*
4880 * unmap huge page backed by shared pte.
4881 *
4882 * Hugetlb pte page is ref counted at the time of mapping. If pte is shared
4883 * indicated by page_count > 1, unmap is achieved by clearing pud and
4884 * decrementing the ref count. If count == 1, the pte page is not shared.
4885 *
ddeaab32 4886 * called with page table lock held.
3212b535
SC
4887 *
4888 * returns: 1 successfully unmapped a shared pte page
4889 * 0 the underlying pte page is not shared, or it is the last user
4890 */
4891int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
4892{
4893 pgd_t *pgd = pgd_offset(mm, *addr);
c2febafc
KS
4894 p4d_t *p4d = p4d_offset(pgd, *addr);
4895 pud_t *pud = pud_offset(p4d, *addr);
3212b535
SC
4896
4897 BUG_ON(page_count(virt_to_page(ptep)) == 0);
4898 if (page_count(virt_to_page(ptep)) == 1)
4899 return 0;
4900
4901 pud_clear(pud);
4902 put_page(virt_to_page(ptep));
dc6c9a35 4903 mm_dec_nr_pmds(mm);
3212b535
SC
4904 *addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE;
4905 return 1;
4906}
9e5fc74c
SC
4907#define want_pmd_share() (1)
4908#else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
4909pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
4910{
4911 return NULL;
4912}
e81f2d22
ZZ
4913
4914int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
4915{
4916 return 0;
4917}
017b1660
MK
4918
4919void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
4920 unsigned long *start, unsigned long *end)
4921{
4922}
9e5fc74c 4923#define want_pmd_share() (0)
3212b535
SC
4924#endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
4925
9e5fc74c
SC
4926#ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
4927pte_t *huge_pte_alloc(struct mm_struct *mm,
4928 unsigned long addr, unsigned long sz)
4929{
4930 pgd_t *pgd;
c2febafc 4931 p4d_t *p4d;
9e5fc74c
SC
4932 pud_t *pud;
4933 pte_t *pte = NULL;
4934
4935 pgd = pgd_offset(mm, addr);
f4f0a3d8
KS
4936 p4d = p4d_alloc(mm, pgd, addr);
4937 if (!p4d)
4938 return NULL;
c2febafc 4939 pud = pud_alloc(mm, p4d, addr);
9e5fc74c
SC
4940 if (pud) {
4941 if (sz == PUD_SIZE) {
4942 pte = (pte_t *)pud;
4943 } else {
4944 BUG_ON(sz != PMD_SIZE);
4945 if (want_pmd_share() && pud_none(*pud))
4946 pte = huge_pmd_share(mm, addr, pud);
4947 else
4948 pte = (pte_t *)pmd_alloc(mm, pud, addr);
4949 }
4950 }
4e666314 4951 BUG_ON(pte && pte_present(*pte) && !pte_huge(*pte));
9e5fc74c
SC
4952
4953 return pte;
4954}
4955
9b19df29
PA
4956/*
4957 * huge_pte_offset() - Walk the page table to resolve the hugepage
4958 * entry at address @addr
4959 *
4960 * Return: Pointer to page table or swap entry (PUD or PMD) for
4961 * address @addr, or NULL if a p*d_none() entry is encountered and the
4962 * size @sz doesn't match the hugepage size at this level of the page
4963 * table.
4964 */
7868a208
PA
4965pte_t *huge_pte_offset(struct mm_struct *mm,
4966 unsigned long addr, unsigned long sz)
9e5fc74c
SC
4967{
4968 pgd_t *pgd;
c2febafc 4969 p4d_t *p4d;
9e5fc74c 4970 pud_t *pud;
c2febafc 4971 pmd_t *pmd;
9e5fc74c
SC
4972
4973 pgd = pgd_offset(mm, addr);
c2febafc
KS
4974 if (!pgd_present(*pgd))
4975 return NULL;
4976 p4d = p4d_offset(pgd, addr);
4977 if (!p4d_present(*p4d))
4978 return NULL;
9b19df29 4979
c2febafc 4980 pud = pud_offset(p4d, addr);
9b19df29 4981 if (sz != PUD_SIZE && pud_none(*pud))
c2febafc 4982 return NULL;
9b19df29
PA
4983 /* hugepage or swap? */
4984 if (pud_huge(*pud) || !pud_present(*pud))
c2febafc 4985 return (pte_t *)pud;
9b19df29 4986
c2febafc 4987 pmd = pmd_offset(pud, addr);
9b19df29
PA
4988 if (sz != PMD_SIZE && pmd_none(*pmd))
4989 return NULL;
4990 /* hugepage or swap? */
4991 if (pmd_huge(*pmd) || !pmd_present(*pmd))
4992 return (pte_t *)pmd;
4993
4994 return NULL;
9e5fc74c
SC
4995}
4996
61f77eda
NH
4997#endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
4998
4999/*
5000 * These functions are overwritable if your architecture needs its own
5001 * behavior.
5002 */
5003struct page * __weak
5004follow_huge_addr(struct mm_struct *mm, unsigned long address,
5005 int write)
5006{
5007 return ERR_PTR(-EINVAL);
5008}
5009
4dc71451
AK
5010struct page * __weak
5011follow_huge_pd(struct vm_area_struct *vma,
5012 unsigned long address, hugepd_t hpd, int flags, int pdshift)
5013{
5014 WARN(1, "hugepd follow called with no support for hugepage directory format\n");
5015 return NULL;
5016}
5017
61f77eda 5018struct page * __weak
9e5fc74c 5019follow_huge_pmd(struct mm_struct *mm, unsigned long address,
e66f17ff 5020 pmd_t *pmd, int flags)
9e5fc74c 5021{
e66f17ff
NH
5022 struct page *page = NULL;
5023 spinlock_t *ptl;
c9d398fa 5024 pte_t pte;
e66f17ff
NH
5025retry:
5026 ptl = pmd_lockptr(mm, pmd);
5027 spin_lock(ptl);
5028 /*
5029 * make sure that the address range covered by this pmd is not
5030 * unmapped from other threads.
5031 */
5032 if (!pmd_huge(*pmd))
5033 goto out;
c9d398fa
NH
5034 pte = huge_ptep_get((pte_t *)pmd);
5035 if (pte_present(pte)) {
97534127 5036 page = pmd_page(*pmd) + ((address & ~PMD_MASK) >> PAGE_SHIFT);
e66f17ff
NH
5037 if (flags & FOLL_GET)
5038 get_page(page);
5039 } else {
c9d398fa 5040 if (is_hugetlb_entry_migration(pte)) {
e66f17ff
NH
5041 spin_unlock(ptl);
5042 __migration_entry_wait(mm, (pte_t *)pmd, ptl);
5043 goto retry;
5044 }
5045 /*
5046 * hwpoisoned entry is treated as no_page_table in
5047 * follow_page_mask().
5048 */
5049 }
5050out:
5051 spin_unlock(ptl);
9e5fc74c
SC
5052 return page;
5053}
5054
61f77eda 5055struct page * __weak
9e5fc74c 5056follow_huge_pud(struct mm_struct *mm, unsigned long address,
e66f17ff 5057 pud_t *pud, int flags)
9e5fc74c 5058{
e66f17ff
NH
5059 if (flags & FOLL_GET)
5060 return NULL;
9e5fc74c 5061
e66f17ff 5062 return pte_page(*(pte_t *)pud) + ((address & ~PUD_MASK) >> PAGE_SHIFT);
9e5fc74c
SC
5063}
5064
faaa5b62
AK
5065struct page * __weak
5066follow_huge_pgd(struct mm_struct *mm, unsigned long address, pgd_t *pgd, int flags)
5067{
5068 if (flags & FOLL_GET)
5069 return NULL;
5070
5071 return pte_page(*(pte_t *)pgd) + ((address & ~PGDIR_MASK) >> PAGE_SHIFT);
5072}
5073
31caf665
NH
5074bool isolate_huge_page(struct page *page, struct list_head *list)
5075{
bcc54222
NH
5076 bool ret = true;
5077
309381fe 5078 VM_BUG_ON_PAGE(!PageHead(page), page);
31caf665 5079 spin_lock(&hugetlb_lock);
bcc54222
NH
5080 if (!page_huge_active(page) || !get_page_unless_zero(page)) {
5081 ret = false;
5082 goto unlock;
5083 }
5084 clear_page_huge_active(page);
31caf665 5085 list_move_tail(&page->lru, list);
bcc54222 5086unlock:
31caf665 5087 spin_unlock(&hugetlb_lock);
bcc54222 5088 return ret;
31caf665
NH
5089}
5090
5091void putback_active_hugepage(struct page *page)
5092{
309381fe 5093 VM_BUG_ON_PAGE(!PageHead(page), page);
31caf665 5094 spin_lock(&hugetlb_lock);
bcc54222 5095 set_page_huge_active(page);
31caf665
NH
5096 list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
5097 spin_unlock(&hugetlb_lock);
5098 put_page(page);
5099}
ab5ac90a
MH
5100
5101void move_hugetlb_state(struct page *oldpage, struct page *newpage, int reason)
5102{
5103 struct hstate *h = page_hstate(oldpage);
5104
5105 hugetlb_cgroup_migrate(oldpage, newpage);
5106 set_page_owner_migrate_reason(newpage, reason);
5107
5108 /*
5109 * transfer temporary state of the new huge page. This is
5110 * reverse to other transitions because the newpage is going to
5111 * be final while the old one will be freed so it takes over
5112 * the temporary status.
5113 *
5114 * Also note that we have to transfer the per-node surplus state
5115 * here as well otherwise the global surplus count will not match
5116 * the per-node's.
5117 */
5118 if (PageHugeTemporary(newpage)) {
5119 int old_nid = page_to_nid(oldpage);
5120 int new_nid = page_to_nid(newpage);
5121
5122 SetPageHugeTemporary(oldpage);
5123 ClearPageHugeTemporary(newpage);
5124
5125 spin_lock(&hugetlb_lock);
5126 if (h->surplus_huge_pages_node[old_nid]) {
5127 h->surplus_huge_pages_node[old_nid]--;
5128 h->surplus_huge_pages_node[new_nid]++;
5129 }
5130 spin_unlock(&hugetlb_lock);
5131 }
5132}