arm64: dts: marvell: mcbin: enable uart headers
[linux-2.6-block.git] / mm / hugetlb.c
CommitLineData
1da177e4
LT
1/*
2 * Generic hugetlb support.
6d49e352 3 * (C) Nadia Yvette Chambers, April 2004
1da177e4 4 */
1da177e4
LT
5#include <linux/list.h>
6#include <linux/init.h>
1da177e4 7#include <linux/mm.h>
e1759c21 8#include <linux/seq_file.h>
1da177e4
LT
9#include <linux/sysctl.h>
10#include <linux/highmem.h>
cddb8a5c 11#include <linux/mmu_notifier.h>
1da177e4 12#include <linux/nodemask.h>
63551ae0 13#include <linux/pagemap.h>
5da7ca86 14#include <linux/mempolicy.h>
3b32123d 15#include <linux/compiler.h>
aea47ff3 16#include <linux/cpuset.h>
3935baa9 17#include <linux/mutex.h>
aa888a74 18#include <linux/bootmem.h>
a3437870 19#include <linux/sysfs.h>
5a0e3ad6 20#include <linux/slab.h>
174cd4b1 21#include <linux/sched/signal.h>
0fe6e20b 22#include <linux/rmap.h>
c6247f72 23#include <linux/string_helpers.h>
fd6a03ed
NH
24#include <linux/swap.h>
25#include <linux/swapops.h>
8382d914 26#include <linux/jhash.h>
d6606683 27
63551ae0
DG
28#include <asm/page.h>
29#include <asm/pgtable.h>
24669e58 30#include <asm/tlb.h>
63551ae0 31
24669e58 32#include <linux/io.h>
63551ae0 33#include <linux/hugetlb.h>
9dd540e2 34#include <linux/hugetlb_cgroup.h>
9a305230 35#include <linux/node.h>
1a1aad8a 36#include <linux/userfaultfd_k.h>
ab5ac90a 37#include <linux/page_owner.h>
7835e98b 38#include "internal.h"
1da177e4 39
c3f38a38 40int hugetlb_max_hstate __read_mostly;
e5ff2159
AK
41unsigned int default_hstate_idx;
42struct hstate hstates[HUGE_MAX_HSTATE];
641844f5
NH
43/*
44 * Minimum page order among possible hugepage sizes, set to a proper value
45 * at boot time.
46 */
47static unsigned int minimum_order __read_mostly = UINT_MAX;
e5ff2159 48
53ba51d2
JT
49__initdata LIST_HEAD(huge_boot_pages);
50
e5ff2159
AK
51/* for command line parsing */
52static struct hstate * __initdata parsed_hstate;
53static unsigned long __initdata default_hstate_max_huge_pages;
e11bfbfc 54static unsigned long __initdata default_hstate_size;
9fee021d 55static bool __initdata parsed_valid_hugepagesz = true;
e5ff2159 56
3935baa9 57/*
31caf665
NH
58 * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
59 * free_huge_pages, and surplus_huge_pages.
3935baa9 60 */
c3f38a38 61DEFINE_SPINLOCK(hugetlb_lock);
0bd0f9fb 62
8382d914
DB
63/*
64 * Serializes faults on the same logical page. This is used to
65 * prevent spurious OOMs when the hugepage pool is fully utilized.
66 */
67static int num_fault_mutexes;
c672c7f2 68struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp;
8382d914 69
7ca02d0a
MK
70/* Forward declaration */
71static int hugetlb_acct_memory(struct hstate *h, long delta);
72
90481622
DG
73static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
74{
75 bool free = (spool->count == 0) && (spool->used_hpages == 0);
76
77 spin_unlock(&spool->lock);
78
79 /* If no pages are used, and no other handles to the subpool
7ca02d0a
MK
80 * remain, give up any reservations mased on minimum size and
81 * free the subpool */
82 if (free) {
83 if (spool->min_hpages != -1)
84 hugetlb_acct_memory(spool->hstate,
85 -spool->min_hpages);
90481622 86 kfree(spool);
7ca02d0a 87 }
90481622
DG
88}
89
7ca02d0a
MK
90struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
91 long min_hpages)
90481622
DG
92{
93 struct hugepage_subpool *spool;
94
c6a91820 95 spool = kzalloc(sizeof(*spool), GFP_KERNEL);
90481622
DG
96 if (!spool)
97 return NULL;
98
99 spin_lock_init(&spool->lock);
100 spool->count = 1;
7ca02d0a
MK
101 spool->max_hpages = max_hpages;
102 spool->hstate = h;
103 spool->min_hpages = min_hpages;
104
105 if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
106 kfree(spool);
107 return NULL;
108 }
109 spool->rsv_hpages = min_hpages;
90481622
DG
110
111 return spool;
112}
113
114void hugepage_put_subpool(struct hugepage_subpool *spool)
115{
116 spin_lock(&spool->lock);
117 BUG_ON(!spool->count);
118 spool->count--;
119 unlock_or_release_subpool(spool);
120}
121
1c5ecae3
MK
122/*
123 * Subpool accounting for allocating and reserving pages.
124 * Return -ENOMEM if there are not enough resources to satisfy the
125 * the request. Otherwise, return the number of pages by which the
126 * global pools must be adjusted (upward). The returned value may
127 * only be different than the passed value (delta) in the case where
128 * a subpool minimum size must be manitained.
129 */
130static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
90481622
DG
131 long delta)
132{
1c5ecae3 133 long ret = delta;
90481622
DG
134
135 if (!spool)
1c5ecae3 136 return ret;
90481622
DG
137
138 spin_lock(&spool->lock);
1c5ecae3
MK
139
140 if (spool->max_hpages != -1) { /* maximum size accounting */
141 if ((spool->used_hpages + delta) <= spool->max_hpages)
142 spool->used_hpages += delta;
143 else {
144 ret = -ENOMEM;
145 goto unlock_ret;
146 }
90481622 147 }
90481622 148
09a95e29
MK
149 /* minimum size accounting */
150 if (spool->min_hpages != -1 && spool->rsv_hpages) {
1c5ecae3
MK
151 if (delta > spool->rsv_hpages) {
152 /*
153 * Asking for more reserves than those already taken on
154 * behalf of subpool. Return difference.
155 */
156 ret = delta - spool->rsv_hpages;
157 spool->rsv_hpages = 0;
158 } else {
159 ret = 0; /* reserves already accounted for */
160 spool->rsv_hpages -= delta;
161 }
162 }
163
164unlock_ret:
165 spin_unlock(&spool->lock);
90481622
DG
166 return ret;
167}
168
1c5ecae3
MK
169/*
170 * Subpool accounting for freeing and unreserving pages.
171 * Return the number of global page reservations that must be dropped.
172 * The return value may only be different than the passed value (delta)
173 * in the case where a subpool minimum size must be maintained.
174 */
175static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
90481622
DG
176 long delta)
177{
1c5ecae3
MK
178 long ret = delta;
179
90481622 180 if (!spool)
1c5ecae3 181 return delta;
90481622
DG
182
183 spin_lock(&spool->lock);
1c5ecae3
MK
184
185 if (spool->max_hpages != -1) /* maximum size accounting */
186 spool->used_hpages -= delta;
187
09a95e29
MK
188 /* minimum size accounting */
189 if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) {
1c5ecae3
MK
190 if (spool->rsv_hpages + delta <= spool->min_hpages)
191 ret = 0;
192 else
193 ret = spool->rsv_hpages + delta - spool->min_hpages;
194
195 spool->rsv_hpages += delta;
196 if (spool->rsv_hpages > spool->min_hpages)
197 spool->rsv_hpages = spool->min_hpages;
198 }
199
200 /*
201 * If hugetlbfs_put_super couldn't free spool due to an outstanding
202 * quota reference, free it now.
203 */
90481622 204 unlock_or_release_subpool(spool);
1c5ecae3
MK
205
206 return ret;
90481622
DG
207}
208
209static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
210{
211 return HUGETLBFS_SB(inode->i_sb)->spool;
212}
213
214static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
215{
496ad9aa 216 return subpool_inode(file_inode(vma->vm_file));
90481622
DG
217}
218
96822904
AW
219/*
220 * Region tracking -- allows tracking of reservations and instantiated pages
221 * across the pages in a mapping.
84afd99b 222 *
1dd308a7
MK
223 * The region data structures are embedded into a resv_map and protected
224 * by a resv_map's lock. The set of regions within the resv_map represent
225 * reservations for huge pages, or huge pages that have already been
226 * instantiated within the map. The from and to elements are huge page
227 * indicies into the associated mapping. from indicates the starting index
228 * of the region. to represents the first index past the end of the region.
229 *
230 * For example, a file region structure with from == 0 and to == 4 represents
231 * four huge pages in a mapping. It is important to note that the to element
232 * represents the first element past the end of the region. This is used in
233 * arithmetic as 4(to) - 0(from) = 4 huge pages in the region.
234 *
235 * Interval notation of the form [from, to) will be used to indicate that
236 * the endpoint from is inclusive and to is exclusive.
96822904
AW
237 */
238struct file_region {
239 struct list_head link;
240 long from;
241 long to;
242};
243
1dd308a7
MK
244/*
245 * Add the huge page range represented by [f, t) to the reserve
5e911373
MK
246 * map. In the normal case, existing regions will be expanded
247 * to accommodate the specified range. Sufficient regions should
248 * exist for expansion due to the previous call to region_chg
249 * with the same range. However, it is possible that region_del
250 * could have been called after region_chg and modifed the map
251 * in such a way that no region exists to be expanded. In this
252 * case, pull a region descriptor from the cache associated with
253 * the map and use that for the new range.
cf3ad20b
MK
254 *
255 * Return the number of new huge pages added to the map. This
256 * number is greater than or equal to zero.
1dd308a7 257 */
1406ec9b 258static long region_add(struct resv_map *resv, long f, long t)
96822904 259{
1406ec9b 260 struct list_head *head = &resv->regions;
96822904 261 struct file_region *rg, *nrg, *trg;
cf3ad20b 262 long add = 0;
96822904 263
7b24d861 264 spin_lock(&resv->lock);
96822904
AW
265 /* Locate the region we are either in or before. */
266 list_for_each_entry(rg, head, link)
267 if (f <= rg->to)
268 break;
269
5e911373
MK
270 /*
271 * If no region exists which can be expanded to include the
272 * specified range, the list must have been modified by an
273 * interleving call to region_del(). Pull a region descriptor
274 * from the cache and use it for this range.
275 */
276 if (&rg->link == head || t < rg->from) {
277 VM_BUG_ON(resv->region_cache_count <= 0);
278
279 resv->region_cache_count--;
280 nrg = list_first_entry(&resv->region_cache, struct file_region,
281 link);
282 list_del(&nrg->link);
283
284 nrg->from = f;
285 nrg->to = t;
286 list_add(&nrg->link, rg->link.prev);
287
288 add += t - f;
289 goto out_locked;
290 }
291
96822904
AW
292 /* Round our left edge to the current segment if it encloses us. */
293 if (f > rg->from)
294 f = rg->from;
295
296 /* Check for and consume any regions we now overlap with. */
297 nrg = rg;
298 list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
299 if (&rg->link == head)
300 break;
301 if (rg->from > t)
302 break;
303
304 /* If this area reaches higher then extend our area to
305 * include it completely. If this is not the first area
306 * which we intend to reuse, free it. */
307 if (rg->to > t)
308 t = rg->to;
309 if (rg != nrg) {
cf3ad20b
MK
310 /* Decrement return value by the deleted range.
311 * Another range will span this area so that by
312 * end of routine add will be >= zero
313 */
314 add -= (rg->to - rg->from);
96822904
AW
315 list_del(&rg->link);
316 kfree(rg);
317 }
318 }
cf3ad20b
MK
319
320 add += (nrg->from - f); /* Added to beginning of region */
96822904 321 nrg->from = f;
cf3ad20b 322 add += t - nrg->to; /* Added to end of region */
96822904 323 nrg->to = t;
cf3ad20b 324
5e911373
MK
325out_locked:
326 resv->adds_in_progress--;
7b24d861 327 spin_unlock(&resv->lock);
cf3ad20b
MK
328 VM_BUG_ON(add < 0);
329 return add;
96822904
AW
330}
331
1dd308a7
MK
332/*
333 * Examine the existing reserve map and determine how many
334 * huge pages in the specified range [f, t) are NOT currently
335 * represented. This routine is called before a subsequent
336 * call to region_add that will actually modify the reserve
337 * map to add the specified range [f, t). region_chg does
338 * not change the number of huge pages represented by the
339 * map. However, if the existing regions in the map can not
340 * be expanded to represent the new range, a new file_region
341 * structure is added to the map as a placeholder. This is
342 * so that the subsequent region_add call will have all the
343 * regions it needs and will not fail.
344 *
5e911373
MK
345 * Upon entry, region_chg will also examine the cache of region descriptors
346 * associated with the map. If there are not enough descriptors cached, one
347 * will be allocated for the in progress add operation.
348 *
349 * Returns the number of huge pages that need to be added to the existing
350 * reservation map for the range [f, t). This number is greater or equal to
351 * zero. -ENOMEM is returned if a new file_region structure or cache entry
352 * is needed and can not be allocated.
1dd308a7 353 */
1406ec9b 354static long region_chg(struct resv_map *resv, long f, long t)
96822904 355{
1406ec9b 356 struct list_head *head = &resv->regions;
7b24d861 357 struct file_region *rg, *nrg = NULL;
96822904
AW
358 long chg = 0;
359
7b24d861
DB
360retry:
361 spin_lock(&resv->lock);
5e911373
MK
362retry_locked:
363 resv->adds_in_progress++;
364
365 /*
366 * Check for sufficient descriptors in the cache to accommodate
367 * the number of in progress add operations.
368 */
369 if (resv->adds_in_progress > resv->region_cache_count) {
370 struct file_region *trg;
371
372 VM_BUG_ON(resv->adds_in_progress - resv->region_cache_count > 1);
373 /* Must drop lock to allocate a new descriptor. */
374 resv->adds_in_progress--;
375 spin_unlock(&resv->lock);
376
377 trg = kmalloc(sizeof(*trg), GFP_KERNEL);
dbe409e4
MK
378 if (!trg) {
379 kfree(nrg);
5e911373 380 return -ENOMEM;
dbe409e4 381 }
5e911373
MK
382
383 spin_lock(&resv->lock);
384 list_add(&trg->link, &resv->region_cache);
385 resv->region_cache_count++;
386 goto retry_locked;
387 }
388
96822904
AW
389 /* Locate the region we are before or in. */
390 list_for_each_entry(rg, head, link)
391 if (f <= rg->to)
392 break;
393
394 /* If we are below the current region then a new region is required.
395 * Subtle, allocate a new region at the position but make it zero
396 * size such that we can guarantee to record the reservation. */
397 if (&rg->link == head || t < rg->from) {
7b24d861 398 if (!nrg) {
5e911373 399 resv->adds_in_progress--;
7b24d861
DB
400 spin_unlock(&resv->lock);
401 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
402 if (!nrg)
403 return -ENOMEM;
404
405 nrg->from = f;
406 nrg->to = f;
407 INIT_LIST_HEAD(&nrg->link);
408 goto retry;
409 }
96822904 410
7b24d861
DB
411 list_add(&nrg->link, rg->link.prev);
412 chg = t - f;
413 goto out_nrg;
96822904
AW
414 }
415
416 /* Round our left edge to the current segment if it encloses us. */
417 if (f > rg->from)
418 f = rg->from;
419 chg = t - f;
420
421 /* Check for and consume any regions we now overlap with. */
422 list_for_each_entry(rg, rg->link.prev, link) {
423 if (&rg->link == head)
424 break;
425 if (rg->from > t)
7b24d861 426 goto out;
96822904 427
25985edc 428 /* We overlap with this area, if it extends further than
96822904
AW
429 * us then we must extend ourselves. Account for its
430 * existing reservation. */
431 if (rg->to > t) {
432 chg += rg->to - t;
433 t = rg->to;
434 }
435 chg -= rg->to - rg->from;
436 }
7b24d861
DB
437
438out:
439 spin_unlock(&resv->lock);
440 /* We already know we raced and no longer need the new region */
441 kfree(nrg);
442 return chg;
443out_nrg:
444 spin_unlock(&resv->lock);
96822904
AW
445 return chg;
446}
447
5e911373
MK
448/*
449 * Abort the in progress add operation. The adds_in_progress field
450 * of the resv_map keeps track of the operations in progress between
451 * calls to region_chg and region_add. Operations are sometimes
452 * aborted after the call to region_chg. In such cases, region_abort
453 * is called to decrement the adds_in_progress counter.
454 *
455 * NOTE: The range arguments [f, t) are not needed or used in this
456 * routine. They are kept to make reading the calling code easier as
457 * arguments will match the associated region_chg call.
458 */
459static void region_abort(struct resv_map *resv, long f, long t)
460{
461 spin_lock(&resv->lock);
462 VM_BUG_ON(!resv->region_cache_count);
463 resv->adds_in_progress--;
464 spin_unlock(&resv->lock);
465}
466
1dd308a7 467/*
feba16e2
MK
468 * Delete the specified range [f, t) from the reserve map. If the
469 * t parameter is LONG_MAX, this indicates that ALL regions after f
470 * should be deleted. Locate the regions which intersect [f, t)
471 * and either trim, delete or split the existing regions.
472 *
473 * Returns the number of huge pages deleted from the reserve map.
474 * In the normal case, the return value is zero or more. In the
475 * case where a region must be split, a new region descriptor must
476 * be allocated. If the allocation fails, -ENOMEM will be returned.
477 * NOTE: If the parameter t == LONG_MAX, then we will never split
478 * a region and possibly return -ENOMEM. Callers specifying
479 * t == LONG_MAX do not need to check for -ENOMEM error.
1dd308a7 480 */
feba16e2 481static long region_del(struct resv_map *resv, long f, long t)
96822904 482{
1406ec9b 483 struct list_head *head = &resv->regions;
96822904 484 struct file_region *rg, *trg;
feba16e2
MK
485 struct file_region *nrg = NULL;
486 long del = 0;
96822904 487
feba16e2 488retry:
7b24d861 489 spin_lock(&resv->lock);
feba16e2 490 list_for_each_entry_safe(rg, trg, head, link) {
dbe409e4
MK
491 /*
492 * Skip regions before the range to be deleted. file_region
493 * ranges are normally of the form [from, to). However, there
494 * may be a "placeholder" entry in the map which is of the form
495 * (from, to) with from == to. Check for placeholder entries
496 * at the beginning of the range to be deleted.
497 */
498 if (rg->to <= f && (rg->to != rg->from || rg->to != f))
feba16e2 499 continue;
dbe409e4 500
feba16e2 501 if (rg->from >= t)
96822904 502 break;
96822904 503
feba16e2
MK
504 if (f > rg->from && t < rg->to) { /* Must split region */
505 /*
506 * Check for an entry in the cache before dropping
507 * lock and attempting allocation.
508 */
509 if (!nrg &&
510 resv->region_cache_count > resv->adds_in_progress) {
511 nrg = list_first_entry(&resv->region_cache,
512 struct file_region,
513 link);
514 list_del(&nrg->link);
515 resv->region_cache_count--;
516 }
96822904 517
feba16e2
MK
518 if (!nrg) {
519 spin_unlock(&resv->lock);
520 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
521 if (!nrg)
522 return -ENOMEM;
523 goto retry;
524 }
525
526 del += t - f;
527
528 /* New entry for end of split region */
529 nrg->from = t;
530 nrg->to = rg->to;
531 INIT_LIST_HEAD(&nrg->link);
532
533 /* Original entry is trimmed */
534 rg->to = f;
535
536 list_add(&nrg->link, &rg->link);
537 nrg = NULL;
96822904 538 break;
feba16e2
MK
539 }
540
541 if (f <= rg->from && t >= rg->to) { /* Remove entire region */
542 del += rg->to - rg->from;
543 list_del(&rg->link);
544 kfree(rg);
545 continue;
546 }
547
548 if (f <= rg->from) { /* Trim beginning of region */
549 del += t - rg->from;
550 rg->from = t;
551 } else { /* Trim end of region */
552 del += rg->to - f;
553 rg->to = f;
554 }
96822904 555 }
7b24d861 556
7b24d861 557 spin_unlock(&resv->lock);
feba16e2
MK
558 kfree(nrg);
559 return del;
96822904
AW
560}
561
b5cec28d
MK
562/*
563 * A rare out of memory error was encountered which prevented removal of
564 * the reserve map region for a page. The huge page itself was free'ed
565 * and removed from the page cache. This routine will adjust the subpool
566 * usage count, and the global reserve count if needed. By incrementing
567 * these counts, the reserve map entry which could not be deleted will
568 * appear as a "reserved" entry instead of simply dangling with incorrect
569 * counts.
570 */
72e2936c 571void hugetlb_fix_reserve_counts(struct inode *inode)
b5cec28d
MK
572{
573 struct hugepage_subpool *spool = subpool_inode(inode);
574 long rsv_adjust;
575
576 rsv_adjust = hugepage_subpool_get_pages(spool, 1);
72e2936c 577 if (rsv_adjust) {
b5cec28d
MK
578 struct hstate *h = hstate_inode(inode);
579
580 hugetlb_acct_memory(h, 1);
581 }
582}
583
1dd308a7
MK
584/*
585 * Count and return the number of huge pages in the reserve map
586 * that intersect with the range [f, t).
587 */
1406ec9b 588static long region_count(struct resv_map *resv, long f, long t)
84afd99b 589{
1406ec9b 590 struct list_head *head = &resv->regions;
84afd99b
AW
591 struct file_region *rg;
592 long chg = 0;
593
7b24d861 594 spin_lock(&resv->lock);
84afd99b
AW
595 /* Locate each segment we overlap with, and count that overlap. */
596 list_for_each_entry(rg, head, link) {
f2135a4a
WSH
597 long seg_from;
598 long seg_to;
84afd99b
AW
599
600 if (rg->to <= f)
601 continue;
602 if (rg->from >= t)
603 break;
604
605 seg_from = max(rg->from, f);
606 seg_to = min(rg->to, t);
607
608 chg += seg_to - seg_from;
609 }
7b24d861 610 spin_unlock(&resv->lock);
84afd99b
AW
611
612 return chg;
613}
614
e7c4b0bf
AW
615/*
616 * Convert the address within this vma to the page offset within
617 * the mapping, in pagecache page units; huge pages here.
618 */
a5516438
AK
619static pgoff_t vma_hugecache_offset(struct hstate *h,
620 struct vm_area_struct *vma, unsigned long address)
e7c4b0bf 621{
a5516438
AK
622 return ((address - vma->vm_start) >> huge_page_shift(h)) +
623 (vma->vm_pgoff >> huge_page_order(h));
e7c4b0bf
AW
624}
625
0fe6e20b
NH
626pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
627 unsigned long address)
628{
629 return vma_hugecache_offset(hstate_vma(vma), vma, address);
630}
dee41079 631EXPORT_SYMBOL_GPL(linear_hugepage_index);
0fe6e20b 632
08fba699
MG
633/*
634 * Return the size of the pages allocated when backing a VMA. In the majority
635 * cases this will be same size as used by the page table entries.
636 */
637unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
638{
639 struct hstate *hstate;
640
641 if (!is_vm_hugetlb_page(vma))
642 return PAGE_SIZE;
643
644 hstate = hstate_vma(vma);
645
2415cf12 646 return 1UL << huge_page_shift(hstate);
08fba699 647}
f340ca0f 648EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
08fba699 649
3340289d
MG
650/*
651 * Return the page size being used by the MMU to back a VMA. In the majority
652 * of cases, the page size used by the kernel matches the MMU size. On
653 * architectures where it differs, an architecture-specific version of this
654 * function is required.
655 */
656#ifndef vma_mmu_pagesize
657unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
658{
659 return vma_kernel_pagesize(vma);
660}
661#endif
662
84afd99b
AW
663/*
664 * Flags for MAP_PRIVATE reservations. These are stored in the bottom
665 * bits of the reservation map pointer, which are always clear due to
666 * alignment.
667 */
668#define HPAGE_RESV_OWNER (1UL << 0)
669#define HPAGE_RESV_UNMAPPED (1UL << 1)
04f2cbe3 670#define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
84afd99b 671
a1e78772
MG
672/*
673 * These helpers are used to track how many pages are reserved for
674 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
675 * is guaranteed to have their future faults succeed.
676 *
677 * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
678 * the reserve counters are updated with the hugetlb_lock held. It is safe
679 * to reset the VMA at fork() time as it is not in use yet and there is no
680 * chance of the global counters getting corrupted as a result of the values.
84afd99b
AW
681 *
682 * The private mapping reservation is represented in a subtly different
683 * manner to a shared mapping. A shared mapping has a region map associated
684 * with the underlying file, this region map represents the backing file
685 * pages which have ever had a reservation assigned which this persists even
686 * after the page is instantiated. A private mapping has a region map
687 * associated with the original mmap which is attached to all VMAs which
688 * reference it, this region map represents those offsets which have consumed
689 * reservation ie. where pages have been instantiated.
a1e78772 690 */
e7c4b0bf
AW
691static unsigned long get_vma_private_data(struct vm_area_struct *vma)
692{
693 return (unsigned long)vma->vm_private_data;
694}
695
696static void set_vma_private_data(struct vm_area_struct *vma,
697 unsigned long value)
698{
699 vma->vm_private_data = (void *)value;
700}
701
9119a41e 702struct resv_map *resv_map_alloc(void)
84afd99b
AW
703{
704 struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
5e911373
MK
705 struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);
706
707 if (!resv_map || !rg) {
708 kfree(resv_map);
709 kfree(rg);
84afd99b 710 return NULL;
5e911373 711 }
84afd99b
AW
712
713 kref_init(&resv_map->refs);
7b24d861 714 spin_lock_init(&resv_map->lock);
84afd99b
AW
715 INIT_LIST_HEAD(&resv_map->regions);
716
5e911373
MK
717 resv_map->adds_in_progress = 0;
718
719 INIT_LIST_HEAD(&resv_map->region_cache);
720 list_add(&rg->link, &resv_map->region_cache);
721 resv_map->region_cache_count = 1;
722
84afd99b
AW
723 return resv_map;
724}
725
9119a41e 726void resv_map_release(struct kref *ref)
84afd99b
AW
727{
728 struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
5e911373
MK
729 struct list_head *head = &resv_map->region_cache;
730 struct file_region *rg, *trg;
84afd99b
AW
731
732 /* Clear out any active regions before we release the map. */
feba16e2 733 region_del(resv_map, 0, LONG_MAX);
5e911373
MK
734
735 /* ... and any entries left in the cache */
736 list_for_each_entry_safe(rg, trg, head, link) {
737 list_del(&rg->link);
738 kfree(rg);
739 }
740
741 VM_BUG_ON(resv_map->adds_in_progress);
742
84afd99b
AW
743 kfree(resv_map);
744}
745
4e35f483
JK
746static inline struct resv_map *inode_resv_map(struct inode *inode)
747{
748 return inode->i_mapping->private_data;
749}
750
84afd99b 751static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
a1e78772 752{
81d1b09c 753 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
4e35f483
JK
754 if (vma->vm_flags & VM_MAYSHARE) {
755 struct address_space *mapping = vma->vm_file->f_mapping;
756 struct inode *inode = mapping->host;
757
758 return inode_resv_map(inode);
759
760 } else {
84afd99b
AW
761 return (struct resv_map *)(get_vma_private_data(vma) &
762 ~HPAGE_RESV_MASK);
4e35f483 763 }
a1e78772
MG
764}
765
84afd99b 766static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
a1e78772 767{
81d1b09c
SL
768 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
769 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
a1e78772 770
84afd99b
AW
771 set_vma_private_data(vma, (get_vma_private_data(vma) &
772 HPAGE_RESV_MASK) | (unsigned long)map);
04f2cbe3
MG
773}
774
775static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
776{
81d1b09c
SL
777 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
778 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
e7c4b0bf
AW
779
780 set_vma_private_data(vma, get_vma_private_data(vma) | flags);
04f2cbe3
MG
781}
782
783static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
784{
81d1b09c 785 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
e7c4b0bf
AW
786
787 return (get_vma_private_data(vma) & flag) != 0;
a1e78772
MG
788}
789
04f2cbe3 790/* Reset counters to 0 and clear all HPAGE_RESV_* flags */
a1e78772
MG
791void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
792{
81d1b09c 793 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
f83a275d 794 if (!(vma->vm_flags & VM_MAYSHARE))
a1e78772
MG
795 vma->vm_private_data = (void *)0;
796}
797
798/* Returns true if the VMA has associated reserve pages */
559ec2f8 799static bool vma_has_reserves(struct vm_area_struct *vma, long chg)
a1e78772 800{
af0ed73e
JK
801 if (vma->vm_flags & VM_NORESERVE) {
802 /*
803 * This address is already reserved by other process(chg == 0),
804 * so, we should decrement reserved count. Without decrementing,
805 * reserve count remains after releasing inode, because this
806 * allocated page will go into page cache and is regarded as
807 * coming from reserved pool in releasing step. Currently, we
808 * don't have any other solution to deal with this situation
809 * properly, so add work-around here.
810 */
811 if (vma->vm_flags & VM_MAYSHARE && chg == 0)
559ec2f8 812 return true;
af0ed73e 813 else
559ec2f8 814 return false;
af0ed73e 815 }
a63884e9
JK
816
817 /* Shared mappings always use reserves */
1fb1b0e9
MK
818 if (vma->vm_flags & VM_MAYSHARE) {
819 /*
820 * We know VM_NORESERVE is not set. Therefore, there SHOULD
821 * be a region map for all pages. The only situation where
822 * there is no region map is if a hole was punched via
823 * fallocate. In this case, there really are no reverves to
824 * use. This situation is indicated if chg != 0.
825 */
826 if (chg)
827 return false;
828 else
829 return true;
830 }
a63884e9
JK
831
832 /*
833 * Only the process that called mmap() has reserves for
834 * private mappings.
835 */
67961f9d
MK
836 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
837 /*
838 * Like the shared case above, a hole punch or truncate
839 * could have been performed on the private mapping.
840 * Examine the value of chg to determine if reserves
841 * actually exist or were previously consumed.
842 * Very Subtle - The value of chg comes from a previous
843 * call to vma_needs_reserves(). The reserve map for
844 * private mappings has different (opposite) semantics
845 * than that of shared mappings. vma_needs_reserves()
846 * has already taken this difference in semantics into
847 * account. Therefore, the meaning of chg is the same
848 * as in the shared case above. Code could easily be
849 * combined, but keeping it separate draws attention to
850 * subtle differences.
851 */
852 if (chg)
853 return false;
854 else
855 return true;
856 }
a63884e9 857
559ec2f8 858 return false;
a1e78772
MG
859}
860
a5516438 861static void enqueue_huge_page(struct hstate *h, struct page *page)
1da177e4
LT
862{
863 int nid = page_to_nid(page);
0edaecfa 864 list_move(&page->lru, &h->hugepage_freelists[nid]);
a5516438
AK
865 h->free_huge_pages++;
866 h->free_huge_pages_node[nid]++;
1da177e4
LT
867}
868
94310cbc 869static struct page *dequeue_huge_page_node_exact(struct hstate *h, int nid)
bf50bab2
NH
870{
871 struct page *page;
872
c8721bbb 873 list_for_each_entry(page, &h->hugepage_freelists[nid], lru)
243abd5b 874 if (!PageHWPoison(page))
c8721bbb
NH
875 break;
876 /*
877 * if 'non-isolated free hugepage' not found on the list,
878 * the allocation fails.
879 */
880 if (&h->hugepage_freelists[nid] == &page->lru)
bf50bab2 881 return NULL;
0edaecfa 882 list_move(&page->lru, &h->hugepage_activelist);
a9869b83 883 set_page_refcounted(page);
bf50bab2
NH
884 h->free_huge_pages--;
885 h->free_huge_pages_node[nid]--;
886 return page;
887}
888
3e59fcb0
MH
889static struct page *dequeue_huge_page_nodemask(struct hstate *h, gfp_t gfp_mask, int nid,
890 nodemask_t *nmask)
94310cbc 891{
3e59fcb0
MH
892 unsigned int cpuset_mems_cookie;
893 struct zonelist *zonelist;
894 struct zone *zone;
895 struct zoneref *z;
896 int node = -1;
94310cbc 897
3e59fcb0
MH
898 zonelist = node_zonelist(nid, gfp_mask);
899
900retry_cpuset:
901 cpuset_mems_cookie = read_mems_allowed_begin();
902 for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nmask) {
903 struct page *page;
904
905 if (!cpuset_zone_allowed(zone, gfp_mask))
906 continue;
907 /*
908 * no need to ask again on the same node. Pool is node rather than
909 * zone aware
910 */
911 if (zone_to_nid(zone) == node)
912 continue;
913 node = zone_to_nid(zone);
94310cbc 914
94310cbc
AK
915 page = dequeue_huge_page_node_exact(h, node);
916 if (page)
917 return page;
918 }
3e59fcb0
MH
919 if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie)))
920 goto retry_cpuset;
921
94310cbc
AK
922 return NULL;
923}
924
86cdb465
NH
925/* Movability of hugepages depends on migration support. */
926static inline gfp_t htlb_alloc_mask(struct hstate *h)
927{
d6cb41cc 928 if (hugepage_migration_supported(h))
86cdb465
NH
929 return GFP_HIGHUSER_MOVABLE;
930 else
931 return GFP_HIGHUSER;
932}
933
a5516438
AK
934static struct page *dequeue_huge_page_vma(struct hstate *h,
935 struct vm_area_struct *vma,
af0ed73e
JK
936 unsigned long address, int avoid_reserve,
937 long chg)
1da177e4 938{
3e59fcb0 939 struct page *page;
480eccf9 940 struct mempolicy *mpol;
04ec6264 941 gfp_t gfp_mask;
3e59fcb0 942 nodemask_t *nodemask;
04ec6264 943 int nid;
1da177e4 944
a1e78772
MG
945 /*
946 * A child process with MAP_PRIVATE mappings created by their parent
947 * have no page reserves. This check ensures that reservations are
948 * not "stolen". The child may still get SIGKILLed
949 */
af0ed73e 950 if (!vma_has_reserves(vma, chg) &&
a5516438 951 h->free_huge_pages - h->resv_huge_pages == 0)
c0ff7453 952 goto err;
a1e78772 953
04f2cbe3 954 /* If reserves cannot be used, ensure enough pages are in the pool */
a5516438 955 if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
6eab04a8 956 goto err;
04f2cbe3 957
04ec6264
VB
958 gfp_mask = htlb_alloc_mask(h);
959 nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
3e59fcb0
MH
960 page = dequeue_huge_page_nodemask(h, gfp_mask, nid, nodemask);
961 if (page && !avoid_reserve && vma_has_reserves(vma, chg)) {
962 SetPagePrivate(page);
963 h->resv_huge_pages--;
1da177e4 964 }
cc9a6c87 965
52cd3b07 966 mpol_cond_put(mpol);
1da177e4 967 return page;
cc9a6c87
MG
968
969err:
cc9a6c87 970 return NULL;
1da177e4
LT
971}
972
1cac6f2c
LC
973/*
974 * common helper functions for hstate_next_node_to_{alloc|free}.
975 * We may have allocated or freed a huge page based on a different
976 * nodes_allowed previously, so h->next_node_to_{alloc|free} might
977 * be outside of *nodes_allowed. Ensure that we use an allowed
978 * node for alloc or free.
979 */
980static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
981{
0edaf86c 982 nid = next_node_in(nid, *nodes_allowed);
1cac6f2c
LC
983 VM_BUG_ON(nid >= MAX_NUMNODES);
984
985 return nid;
986}
987
988static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
989{
990 if (!node_isset(nid, *nodes_allowed))
991 nid = next_node_allowed(nid, nodes_allowed);
992 return nid;
993}
994
995/*
996 * returns the previously saved node ["this node"] from which to
997 * allocate a persistent huge page for the pool and advance the
998 * next node from which to allocate, handling wrap at end of node
999 * mask.
1000 */
1001static int hstate_next_node_to_alloc(struct hstate *h,
1002 nodemask_t *nodes_allowed)
1003{
1004 int nid;
1005
1006 VM_BUG_ON(!nodes_allowed);
1007
1008 nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
1009 h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
1010
1011 return nid;
1012}
1013
1014/*
1015 * helper for free_pool_huge_page() - return the previously saved
1016 * node ["this node"] from which to free a huge page. Advance the
1017 * next node id whether or not we find a free huge page to free so
1018 * that the next attempt to free addresses the next node.
1019 */
1020static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
1021{
1022 int nid;
1023
1024 VM_BUG_ON(!nodes_allowed);
1025
1026 nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
1027 h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
1028
1029 return nid;
1030}
1031
1032#define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask) \
1033 for (nr_nodes = nodes_weight(*mask); \
1034 nr_nodes > 0 && \
1035 ((node = hstate_next_node_to_alloc(hs, mask)) || 1); \
1036 nr_nodes--)
1037
1038#define for_each_node_mask_to_free(hs, nr_nodes, node, mask) \
1039 for (nr_nodes = nodes_weight(*mask); \
1040 nr_nodes > 0 && \
1041 ((node = hstate_next_node_to_free(hs, mask)) || 1); \
1042 nr_nodes--)
1043
e1073d1e 1044#ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE
944d9fec 1045static void destroy_compound_gigantic_page(struct page *page,
d00181b9 1046 unsigned int order)
944d9fec
LC
1047{
1048 int i;
1049 int nr_pages = 1 << order;
1050 struct page *p = page + 1;
1051
c8cc708a 1052 atomic_set(compound_mapcount_ptr(page), 0);
944d9fec 1053 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1d798ca3 1054 clear_compound_head(p);
944d9fec 1055 set_page_refcounted(p);
944d9fec
LC
1056 }
1057
1058 set_compound_order(page, 0);
1059 __ClearPageHead(page);
1060}
1061
d00181b9 1062static void free_gigantic_page(struct page *page, unsigned int order)
944d9fec
LC
1063{
1064 free_contig_range(page_to_pfn(page), 1 << order);
1065}
1066
1067static int __alloc_gigantic_page(unsigned long start_pfn,
79b63f12 1068 unsigned long nr_pages, gfp_t gfp_mask)
944d9fec
LC
1069{
1070 unsigned long end_pfn = start_pfn + nr_pages;
ca96b625 1071 return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE,
79b63f12 1072 gfp_mask);
944d9fec
LC
1073}
1074
f44b2dda
JK
1075static bool pfn_range_valid_gigantic(struct zone *z,
1076 unsigned long start_pfn, unsigned long nr_pages)
944d9fec
LC
1077{
1078 unsigned long i, end_pfn = start_pfn + nr_pages;
1079 struct page *page;
1080
1081 for (i = start_pfn; i < end_pfn; i++) {
1082 if (!pfn_valid(i))
1083 return false;
1084
1085 page = pfn_to_page(i);
1086
f44b2dda
JK
1087 if (page_zone(page) != z)
1088 return false;
1089
944d9fec
LC
1090 if (PageReserved(page))
1091 return false;
1092
1093 if (page_count(page) > 0)
1094 return false;
1095
1096 if (PageHuge(page))
1097 return false;
1098 }
1099
1100 return true;
1101}
1102
1103static bool zone_spans_last_pfn(const struct zone *zone,
1104 unsigned long start_pfn, unsigned long nr_pages)
1105{
1106 unsigned long last_pfn = start_pfn + nr_pages - 1;
1107 return zone_spans_pfn(zone, last_pfn);
1108}
1109
d9cc948f
MH
1110static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1111 int nid, nodemask_t *nodemask)
944d9fec 1112{
79b63f12 1113 unsigned int order = huge_page_order(h);
944d9fec
LC
1114 unsigned long nr_pages = 1 << order;
1115 unsigned long ret, pfn, flags;
79b63f12
MH
1116 struct zonelist *zonelist;
1117 struct zone *zone;
1118 struct zoneref *z;
944d9fec 1119
79b63f12 1120 zonelist = node_zonelist(nid, gfp_mask);
d9cc948f 1121 for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nodemask) {
79b63f12 1122 spin_lock_irqsave(&zone->lock, flags);
944d9fec 1123
79b63f12
MH
1124 pfn = ALIGN(zone->zone_start_pfn, nr_pages);
1125 while (zone_spans_last_pfn(zone, pfn, nr_pages)) {
1126 if (pfn_range_valid_gigantic(zone, pfn, nr_pages)) {
944d9fec
LC
1127 /*
1128 * We release the zone lock here because
1129 * alloc_contig_range() will also lock the zone
1130 * at some point. If there's an allocation
1131 * spinning on this lock, it may win the race
1132 * and cause alloc_contig_range() to fail...
1133 */
79b63f12
MH
1134 spin_unlock_irqrestore(&zone->lock, flags);
1135 ret = __alloc_gigantic_page(pfn, nr_pages, gfp_mask);
944d9fec
LC
1136 if (!ret)
1137 return pfn_to_page(pfn);
79b63f12 1138 spin_lock_irqsave(&zone->lock, flags);
944d9fec
LC
1139 }
1140 pfn += nr_pages;
1141 }
1142
79b63f12 1143 spin_unlock_irqrestore(&zone->lock, flags);
944d9fec
LC
1144 }
1145
1146 return NULL;
1147}
1148
1149static void prep_new_huge_page(struct hstate *h, struct page *page, int nid);
d00181b9 1150static void prep_compound_gigantic_page(struct page *page, unsigned int order);
944d9fec 1151
e1073d1e 1152#else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */
944d9fec 1153static inline bool gigantic_page_supported(void) { return false; }
d9cc948f
MH
1154static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1155 int nid, nodemask_t *nodemask) { return NULL; }
d00181b9 1156static inline void free_gigantic_page(struct page *page, unsigned int order) { }
944d9fec 1157static inline void destroy_compound_gigantic_page(struct page *page,
d00181b9 1158 unsigned int order) { }
944d9fec
LC
1159#endif
1160
a5516438 1161static void update_and_free_page(struct hstate *h, struct page *page)
6af2acb6
AL
1162{
1163 int i;
a5516438 1164
944d9fec
LC
1165 if (hstate_is_gigantic(h) && !gigantic_page_supported())
1166 return;
18229df5 1167
a5516438
AK
1168 h->nr_huge_pages--;
1169 h->nr_huge_pages_node[page_to_nid(page)]--;
1170 for (i = 0; i < pages_per_huge_page(h); i++) {
32f84528
CF
1171 page[i].flags &= ~(1 << PG_locked | 1 << PG_error |
1172 1 << PG_referenced | 1 << PG_dirty |
a7407a27
LC
1173 1 << PG_active | 1 << PG_private |
1174 1 << PG_writeback);
6af2acb6 1175 }
309381fe 1176 VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page);
f1e61557 1177 set_compound_page_dtor(page, NULL_COMPOUND_DTOR);
6af2acb6 1178 set_page_refcounted(page);
944d9fec
LC
1179 if (hstate_is_gigantic(h)) {
1180 destroy_compound_gigantic_page(page, huge_page_order(h));
1181 free_gigantic_page(page, huge_page_order(h));
1182 } else {
944d9fec
LC
1183 __free_pages(page, huge_page_order(h));
1184 }
6af2acb6
AL
1185}
1186
e5ff2159
AK
1187struct hstate *size_to_hstate(unsigned long size)
1188{
1189 struct hstate *h;
1190
1191 for_each_hstate(h) {
1192 if (huge_page_size(h) == size)
1193 return h;
1194 }
1195 return NULL;
1196}
1197
bcc54222
NH
1198/*
1199 * Test to determine whether the hugepage is "active/in-use" (i.e. being linked
1200 * to hstate->hugepage_activelist.)
1201 *
1202 * This function can be called for tail pages, but never returns true for them.
1203 */
1204bool page_huge_active(struct page *page)
1205{
1206 VM_BUG_ON_PAGE(!PageHuge(page), page);
1207 return PageHead(page) && PagePrivate(&page[1]);
1208}
1209
1210/* never called for tail page */
1211static void set_page_huge_active(struct page *page)
1212{
1213 VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1214 SetPagePrivate(&page[1]);
1215}
1216
1217static void clear_page_huge_active(struct page *page)
1218{
1219 VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1220 ClearPagePrivate(&page[1]);
1221}
1222
ab5ac90a
MH
1223/*
1224 * Internal hugetlb specific page flag. Do not use outside of the hugetlb
1225 * code
1226 */
1227static inline bool PageHugeTemporary(struct page *page)
1228{
1229 if (!PageHuge(page))
1230 return false;
1231
1232 return (unsigned long)page[2].mapping == -1U;
1233}
1234
1235static inline void SetPageHugeTemporary(struct page *page)
1236{
1237 page[2].mapping = (void *)-1U;
1238}
1239
1240static inline void ClearPageHugeTemporary(struct page *page)
1241{
1242 page[2].mapping = NULL;
1243}
1244
8f1d26d0 1245void free_huge_page(struct page *page)
27a85ef1 1246{
a5516438
AK
1247 /*
1248 * Can't pass hstate in here because it is called from the
1249 * compound page destructor.
1250 */
e5ff2159 1251 struct hstate *h = page_hstate(page);
7893d1d5 1252 int nid = page_to_nid(page);
90481622
DG
1253 struct hugepage_subpool *spool =
1254 (struct hugepage_subpool *)page_private(page);
07443a85 1255 bool restore_reserve;
27a85ef1 1256
e5df70ab 1257 set_page_private(page, 0);
23be7468 1258 page->mapping = NULL;
b4330afb
MK
1259 VM_BUG_ON_PAGE(page_count(page), page);
1260 VM_BUG_ON_PAGE(page_mapcount(page), page);
07443a85 1261 restore_reserve = PagePrivate(page);
16c794b4 1262 ClearPagePrivate(page);
27a85ef1 1263
1c5ecae3
MK
1264 /*
1265 * A return code of zero implies that the subpool will be under its
1266 * minimum size if the reservation is not restored after page is free.
1267 * Therefore, force restore_reserve operation.
1268 */
1269 if (hugepage_subpool_put_pages(spool, 1) == 0)
1270 restore_reserve = true;
1271
27a85ef1 1272 spin_lock(&hugetlb_lock);
bcc54222 1273 clear_page_huge_active(page);
6d76dcf4
AK
1274 hugetlb_cgroup_uncharge_page(hstate_index(h),
1275 pages_per_huge_page(h), page);
07443a85
JK
1276 if (restore_reserve)
1277 h->resv_huge_pages++;
1278
ab5ac90a
MH
1279 if (PageHugeTemporary(page)) {
1280 list_del(&page->lru);
1281 ClearPageHugeTemporary(page);
1282 update_and_free_page(h, page);
1283 } else if (h->surplus_huge_pages_node[nid]) {
0edaecfa
AK
1284 /* remove the page from active list */
1285 list_del(&page->lru);
a5516438
AK
1286 update_and_free_page(h, page);
1287 h->surplus_huge_pages--;
1288 h->surplus_huge_pages_node[nid]--;
7893d1d5 1289 } else {
5d3a551c 1290 arch_clear_hugepage_flags(page);
a5516438 1291 enqueue_huge_page(h, page);
7893d1d5 1292 }
27a85ef1
DG
1293 spin_unlock(&hugetlb_lock);
1294}
1295
a5516438 1296static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
b7ba30c6 1297{
0edaecfa 1298 INIT_LIST_HEAD(&page->lru);
f1e61557 1299 set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
b7ba30c6 1300 spin_lock(&hugetlb_lock);
9dd540e2 1301 set_hugetlb_cgroup(page, NULL);
a5516438
AK
1302 h->nr_huge_pages++;
1303 h->nr_huge_pages_node[nid]++;
b7ba30c6 1304 spin_unlock(&hugetlb_lock);
b7ba30c6
AK
1305}
1306
d00181b9 1307static void prep_compound_gigantic_page(struct page *page, unsigned int order)
20a0307c
WF
1308{
1309 int i;
1310 int nr_pages = 1 << order;
1311 struct page *p = page + 1;
1312
1313 /* we rely on prep_new_huge_page to set the destructor */
1314 set_compound_order(page, order);
ef5a22be 1315 __ClearPageReserved(page);
de09d31d 1316 __SetPageHead(page);
20a0307c 1317 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
ef5a22be
AA
1318 /*
1319 * For gigantic hugepages allocated through bootmem at
1320 * boot, it's safer to be consistent with the not-gigantic
1321 * hugepages and clear the PG_reserved bit from all tail pages
1322 * too. Otherwse drivers using get_user_pages() to access tail
1323 * pages may get the reference counting wrong if they see
1324 * PG_reserved set on a tail page (despite the head page not
1325 * having PG_reserved set). Enforcing this consistency between
1326 * head and tail pages allows drivers to optimize away a check
1327 * on the head page when they need know if put_page() is needed
1328 * after get_user_pages().
1329 */
1330 __ClearPageReserved(p);
58a84aa9 1331 set_page_count(p, 0);
1d798ca3 1332 set_compound_head(p, page);
20a0307c 1333 }
b4330afb 1334 atomic_set(compound_mapcount_ptr(page), -1);
20a0307c
WF
1335}
1336
7795912c
AM
1337/*
1338 * PageHuge() only returns true for hugetlbfs pages, but not for normal or
1339 * transparent huge pages. See the PageTransHuge() documentation for more
1340 * details.
1341 */
20a0307c
WF
1342int PageHuge(struct page *page)
1343{
20a0307c
WF
1344 if (!PageCompound(page))
1345 return 0;
1346
1347 page = compound_head(page);
f1e61557 1348 return page[1].compound_dtor == HUGETLB_PAGE_DTOR;
20a0307c 1349}
43131e14
NH
1350EXPORT_SYMBOL_GPL(PageHuge);
1351
27c73ae7
AA
1352/*
1353 * PageHeadHuge() only returns true for hugetlbfs head page, but not for
1354 * normal or transparent huge pages.
1355 */
1356int PageHeadHuge(struct page *page_head)
1357{
27c73ae7
AA
1358 if (!PageHead(page_head))
1359 return 0;
1360
758f66a2 1361 return get_compound_page_dtor(page_head) == free_huge_page;
27c73ae7 1362}
27c73ae7 1363
13d60f4b
ZY
1364pgoff_t __basepage_index(struct page *page)
1365{
1366 struct page *page_head = compound_head(page);
1367 pgoff_t index = page_index(page_head);
1368 unsigned long compound_idx;
1369
1370 if (!PageHuge(page_head))
1371 return page_index(page);
1372
1373 if (compound_order(page_head) >= MAX_ORDER)
1374 compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
1375 else
1376 compound_idx = page - page_head;
1377
1378 return (index << compound_order(page_head)) + compound_idx;
1379}
1380
0c397dae 1381static struct page *alloc_buddy_huge_page(struct hstate *h,
af0fb9df 1382 gfp_t gfp_mask, int nid, nodemask_t *nmask)
1da177e4 1383{
af0fb9df 1384 int order = huge_page_order(h);
1da177e4 1385 struct page *page;
f96efd58 1386
af0fb9df
MH
1387 gfp_mask |= __GFP_COMP|__GFP_RETRY_MAYFAIL|__GFP_NOWARN;
1388 if (nid == NUMA_NO_NODE)
1389 nid = numa_mem_id();
1390 page = __alloc_pages_nodemask(gfp_mask, order, nid, nmask);
1391 if (page)
1392 __count_vm_event(HTLB_BUDDY_PGALLOC);
1393 else
1394 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
63b4613c
NA
1395
1396 return page;
1397}
1398
0c397dae
MH
1399/*
1400 * Common helper to allocate a fresh hugetlb page. All specific allocators
1401 * should use this function to get new hugetlb pages
1402 */
1403static struct page *alloc_fresh_huge_page(struct hstate *h,
1404 gfp_t gfp_mask, int nid, nodemask_t *nmask)
1405{
1406 struct page *page;
1407
1408 if (hstate_is_gigantic(h))
1409 page = alloc_gigantic_page(h, gfp_mask, nid, nmask);
1410 else
1411 page = alloc_buddy_huge_page(h, gfp_mask,
1412 nid, nmask);
1413 if (!page)
1414 return NULL;
1415
1416 if (hstate_is_gigantic(h))
1417 prep_compound_gigantic_page(page, huge_page_order(h));
1418 prep_new_huge_page(h, page, page_to_nid(page));
1419
1420 return page;
1421}
1422
af0fb9df
MH
1423/*
1424 * Allocates a fresh page to the hugetlb allocator pool in the node interleaved
1425 * manner.
1426 */
0c397dae 1427static int alloc_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
b2261026
JK
1428{
1429 struct page *page;
1430 int nr_nodes, node;
af0fb9df 1431 gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
b2261026
JK
1432
1433 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
0c397dae 1434 page = alloc_fresh_huge_page(h, gfp_mask, node, nodes_allowed);
af0fb9df 1435 if (page)
b2261026 1436 break;
b2261026
JK
1437 }
1438
af0fb9df
MH
1439 if (!page)
1440 return 0;
b2261026 1441
af0fb9df
MH
1442 put_page(page); /* free it into the hugepage allocator */
1443
1444 return 1;
b2261026
JK
1445}
1446
e8c5c824
LS
1447/*
1448 * Free huge page from pool from next node to free.
1449 * Attempt to keep persistent huge pages more or less
1450 * balanced over allowed nodes.
1451 * Called with hugetlb_lock locked.
1452 */
6ae11b27
LS
1453static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
1454 bool acct_surplus)
e8c5c824 1455{
b2261026 1456 int nr_nodes, node;
e8c5c824
LS
1457 int ret = 0;
1458
b2261026 1459 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
685f3457
LS
1460 /*
1461 * If we're returning unused surplus pages, only examine
1462 * nodes with surplus pages.
1463 */
b2261026
JK
1464 if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
1465 !list_empty(&h->hugepage_freelists[node])) {
e8c5c824 1466 struct page *page =
b2261026 1467 list_entry(h->hugepage_freelists[node].next,
e8c5c824
LS
1468 struct page, lru);
1469 list_del(&page->lru);
1470 h->free_huge_pages--;
b2261026 1471 h->free_huge_pages_node[node]--;
685f3457
LS
1472 if (acct_surplus) {
1473 h->surplus_huge_pages--;
b2261026 1474 h->surplus_huge_pages_node[node]--;
685f3457 1475 }
e8c5c824
LS
1476 update_and_free_page(h, page);
1477 ret = 1;
9a76db09 1478 break;
e8c5c824 1479 }
b2261026 1480 }
e8c5c824
LS
1481
1482 return ret;
1483}
1484
c8721bbb
NH
1485/*
1486 * Dissolve a given free hugepage into free buddy pages. This function does
082d5b6b
GS
1487 * nothing for in-use (including surplus) hugepages. Returns -EBUSY if the
1488 * number of free hugepages would be reduced below the number of reserved
1489 * hugepages.
c8721bbb 1490 */
c3114a84 1491int dissolve_free_huge_page(struct page *page)
c8721bbb 1492{
082d5b6b
GS
1493 int rc = 0;
1494
c8721bbb
NH
1495 spin_lock(&hugetlb_lock);
1496 if (PageHuge(page) && !page_count(page)) {
2247bb33
GS
1497 struct page *head = compound_head(page);
1498 struct hstate *h = page_hstate(head);
1499 int nid = page_to_nid(head);
082d5b6b
GS
1500 if (h->free_huge_pages - h->resv_huge_pages == 0) {
1501 rc = -EBUSY;
1502 goto out;
1503 }
c3114a84
AK
1504 /*
1505 * Move PageHWPoison flag from head page to the raw error page,
1506 * which makes any subpages rather than the error page reusable.
1507 */
1508 if (PageHWPoison(head) && page != head) {
1509 SetPageHWPoison(page);
1510 ClearPageHWPoison(head);
1511 }
2247bb33 1512 list_del(&head->lru);
c8721bbb
NH
1513 h->free_huge_pages--;
1514 h->free_huge_pages_node[nid]--;
c1470b33 1515 h->max_huge_pages--;
2247bb33 1516 update_and_free_page(h, head);
c8721bbb 1517 }
082d5b6b 1518out:
c8721bbb 1519 spin_unlock(&hugetlb_lock);
082d5b6b 1520 return rc;
c8721bbb
NH
1521}
1522
1523/*
1524 * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
1525 * make specified memory blocks removable from the system.
2247bb33
GS
1526 * Note that this will dissolve a free gigantic hugepage completely, if any
1527 * part of it lies within the given range.
082d5b6b
GS
1528 * Also note that if dissolve_free_huge_page() returns with an error, all
1529 * free hugepages that were dissolved before that error are lost.
c8721bbb 1530 */
082d5b6b 1531int dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
c8721bbb 1532{
c8721bbb 1533 unsigned long pfn;
eb03aa00 1534 struct page *page;
082d5b6b 1535 int rc = 0;
c8721bbb 1536
d0177639 1537 if (!hugepages_supported())
082d5b6b 1538 return rc;
d0177639 1539
eb03aa00
GS
1540 for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << minimum_order) {
1541 page = pfn_to_page(pfn);
1542 if (PageHuge(page) && !page_count(page)) {
1543 rc = dissolve_free_huge_page(page);
1544 if (rc)
1545 break;
1546 }
1547 }
082d5b6b
GS
1548
1549 return rc;
c8721bbb
NH
1550}
1551
ab5ac90a
MH
1552/*
1553 * Allocates a fresh surplus page from the page allocator.
1554 */
0c397dae 1555static struct page *alloc_surplus_huge_page(struct hstate *h, gfp_t gfp_mask,
aaf14e40 1556 int nid, nodemask_t *nmask)
7893d1d5 1557{
9980d744 1558 struct page *page = NULL;
7893d1d5 1559
bae7f4ae 1560 if (hstate_is_gigantic(h))
aa888a74
AK
1561 return NULL;
1562
d1c3fb1f 1563 spin_lock(&hugetlb_lock);
9980d744
MH
1564 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages)
1565 goto out_unlock;
d1c3fb1f
NA
1566 spin_unlock(&hugetlb_lock);
1567
0c397dae 1568 page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask);
9980d744 1569 if (!page)
0c397dae 1570 return NULL;
d1c3fb1f
NA
1571
1572 spin_lock(&hugetlb_lock);
9980d744
MH
1573 /*
1574 * We could have raced with the pool size change.
1575 * Double check that and simply deallocate the new page
1576 * if we would end up overcommiting the surpluses. Abuse
1577 * temporary page to workaround the nasty free_huge_page
1578 * codeflow
1579 */
1580 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
1581 SetPageHugeTemporary(page);
1582 put_page(page);
1583 page = NULL;
1584 } else {
9980d744 1585 h->surplus_huge_pages++;
0c397dae 1586 h->nr_huge_pages_node[page_to_nid(page)]++;
7893d1d5 1587 }
9980d744
MH
1588
1589out_unlock:
d1c3fb1f 1590 spin_unlock(&hugetlb_lock);
7893d1d5
AL
1591
1592 return page;
1593}
1594
0c397dae 1595static struct page *alloc_migrate_huge_page(struct hstate *h, gfp_t gfp_mask,
ab5ac90a
MH
1596 int nid, nodemask_t *nmask)
1597{
1598 struct page *page;
1599
1600 if (hstate_is_gigantic(h))
1601 return NULL;
1602
0c397dae 1603 page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask);
ab5ac90a
MH
1604 if (!page)
1605 return NULL;
1606
1607 /*
1608 * We do not account these pages as surplus because they are only
1609 * temporary and will be released properly on the last reference
1610 */
ab5ac90a
MH
1611 SetPageHugeTemporary(page);
1612
1613 return page;
1614}
1615
099730d6
DH
1616/*
1617 * Use the VMA's mpolicy to allocate a huge page from the buddy.
1618 */
e0ec90ee 1619static
0c397dae 1620struct page *alloc_buddy_huge_page_with_mpol(struct hstate *h,
099730d6
DH
1621 struct vm_area_struct *vma, unsigned long addr)
1622{
aaf14e40
MH
1623 struct page *page;
1624 struct mempolicy *mpol;
1625 gfp_t gfp_mask = htlb_alloc_mask(h);
1626 int nid;
1627 nodemask_t *nodemask;
1628
1629 nid = huge_node(vma, addr, gfp_mask, &mpol, &nodemask);
0c397dae 1630 page = alloc_surplus_huge_page(h, gfp_mask, nid, nodemask);
aaf14e40
MH
1631 mpol_cond_put(mpol);
1632
1633 return page;
099730d6
DH
1634}
1635
ab5ac90a 1636/* page migration callback function */
bf50bab2
NH
1637struct page *alloc_huge_page_node(struct hstate *h, int nid)
1638{
aaf14e40 1639 gfp_t gfp_mask = htlb_alloc_mask(h);
4ef91848 1640 struct page *page = NULL;
bf50bab2 1641
aaf14e40
MH
1642 if (nid != NUMA_NO_NODE)
1643 gfp_mask |= __GFP_THISNODE;
1644
bf50bab2 1645 spin_lock(&hugetlb_lock);
4ef91848 1646 if (h->free_huge_pages - h->resv_huge_pages > 0)
3e59fcb0 1647 page = dequeue_huge_page_nodemask(h, gfp_mask, nid, NULL);
bf50bab2
NH
1648 spin_unlock(&hugetlb_lock);
1649
94ae8ba7 1650 if (!page)
0c397dae 1651 page = alloc_migrate_huge_page(h, gfp_mask, nid, NULL);
bf50bab2
NH
1652
1653 return page;
1654}
1655
ab5ac90a 1656/* page migration callback function */
3e59fcb0
MH
1657struct page *alloc_huge_page_nodemask(struct hstate *h, int preferred_nid,
1658 nodemask_t *nmask)
4db9b2ef 1659{
aaf14e40 1660 gfp_t gfp_mask = htlb_alloc_mask(h);
4db9b2ef
MH
1661
1662 spin_lock(&hugetlb_lock);
1663 if (h->free_huge_pages - h->resv_huge_pages > 0) {
3e59fcb0
MH
1664 struct page *page;
1665
1666 page = dequeue_huge_page_nodemask(h, gfp_mask, preferred_nid, nmask);
1667 if (page) {
1668 spin_unlock(&hugetlb_lock);
1669 return page;
4db9b2ef
MH
1670 }
1671 }
1672 spin_unlock(&hugetlb_lock);
4db9b2ef 1673
0c397dae 1674 return alloc_migrate_huge_page(h, gfp_mask, preferred_nid, nmask);
4db9b2ef
MH
1675}
1676
ebd63723 1677/* mempolicy aware migration callback */
389c8178
MH
1678struct page *alloc_huge_page_vma(struct hstate *h, struct vm_area_struct *vma,
1679 unsigned long address)
ebd63723
MH
1680{
1681 struct mempolicy *mpol;
1682 nodemask_t *nodemask;
1683 struct page *page;
ebd63723
MH
1684 gfp_t gfp_mask;
1685 int node;
1686
ebd63723
MH
1687 gfp_mask = htlb_alloc_mask(h);
1688 node = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
1689 page = alloc_huge_page_nodemask(h, node, nodemask);
1690 mpol_cond_put(mpol);
1691
1692 return page;
1693}
1694
e4e574b7 1695/*
25985edc 1696 * Increase the hugetlb pool such that it can accommodate a reservation
e4e574b7
AL
1697 * of size 'delta'.
1698 */
a5516438 1699static int gather_surplus_pages(struct hstate *h, int delta)
e4e574b7
AL
1700{
1701 struct list_head surplus_list;
1702 struct page *page, *tmp;
1703 int ret, i;
1704 int needed, allocated;
28073b02 1705 bool alloc_ok = true;
e4e574b7 1706
a5516438 1707 needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
ac09b3a1 1708 if (needed <= 0) {
a5516438 1709 h->resv_huge_pages += delta;
e4e574b7 1710 return 0;
ac09b3a1 1711 }
e4e574b7
AL
1712
1713 allocated = 0;
1714 INIT_LIST_HEAD(&surplus_list);
1715
1716 ret = -ENOMEM;
1717retry:
1718 spin_unlock(&hugetlb_lock);
1719 for (i = 0; i < needed; i++) {
0c397dae 1720 page = alloc_surplus_huge_page(h, htlb_alloc_mask(h),
aaf14e40 1721 NUMA_NO_NODE, NULL);
28073b02
HD
1722 if (!page) {
1723 alloc_ok = false;
1724 break;
1725 }
e4e574b7 1726 list_add(&page->lru, &surplus_list);
69ed779a 1727 cond_resched();
e4e574b7 1728 }
28073b02 1729 allocated += i;
e4e574b7
AL
1730
1731 /*
1732 * After retaking hugetlb_lock, we need to recalculate 'needed'
1733 * because either resv_huge_pages or free_huge_pages may have changed.
1734 */
1735 spin_lock(&hugetlb_lock);
a5516438
AK
1736 needed = (h->resv_huge_pages + delta) -
1737 (h->free_huge_pages + allocated);
28073b02
HD
1738 if (needed > 0) {
1739 if (alloc_ok)
1740 goto retry;
1741 /*
1742 * We were not able to allocate enough pages to
1743 * satisfy the entire reservation so we free what
1744 * we've allocated so far.
1745 */
1746 goto free;
1747 }
e4e574b7
AL
1748 /*
1749 * The surplus_list now contains _at_least_ the number of extra pages
25985edc 1750 * needed to accommodate the reservation. Add the appropriate number
e4e574b7 1751 * of pages to the hugetlb pool and free the extras back to the buddy
ac09b3a1
AL
1752 * allocator. Commit the entire reservation here to prevent another
1753 * process from stealing the pages as they are added to the pool but
1754 * before they are reserved.
e4e574b7
AL
1755 */
1756 needed += allocated;
a5516438 1757 h->resv_huge_pages += delta;
e4e574b7 1758 ret = 0;
a9869b83 1759
19fc3f0a 1760 /* Free the needed pages to the hugetlb pool */
e4e574b7 1761 list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
19fc3f0a
AL
1762 if ((--needed) < 0)
1763 break;
a9869b83
NH
1764 /*
1765 * This page is now managed by the hugetlb allocator and has
1766 * no users -- drop the buddy allocator's reference.
1767 */
1768 put_page_testzero(page);
309381fe 1769 VM_BUG_ON_PAGE(page_count(page), page);
a5516438 1770 enqueue_huge_page(h, page);
19fc3f0a 1771 }
28073b02 1772free:
b0365c8d 1773 spin_unlock(&hugetlb_lock);
19fc3f0a
AL
1774
1775 /* Free unnecessary surplus pages to the buddy allocator */
c0d934ba
JK
1776 list_for_each_entry_safe(page, tmp, &surplus_list, lru)
1777 put_page(page);
a9869b83 1778 spin_lock(&hugetlb_lock);
e4e574b7
AL
1779
1780 return ret;
1781}
1782
1783/*
e5bbc8a6
MK
1784 * This routine has two main purposes:
1785 * 1) Decrement the reservation count (resv_huge_pages) by the value passed
1786 * in unused_resv_pages. This corresponds to the prior adjustments made
1787 * to the associated reservation map.
1788 * 2) Free any unused surplus pages that may have been allocated to satisfy
1789 * the reservation. As many as unused_resv_pages may be freed.
1790 *
1791 * Called with hugetlb_lock held. However, the lock could be dropped (and
1792 * reacquired) during calls to cond_resched_lock. Whenever dropping the lock,
1793 * we must make sure nobody else can claim pages we are in the process of
1794 * freeing. Do this by ensuring resv_huge_page always is greater than the
1795 * number of huge pages we plan to free when dropping the lock.
e4e574b7 1796 */
a5516438
AK
1797static void return_unused_surplus_pages(struct hstate *h,
1798 unsigned long unused_resv_pages)
e4e574b7 1799{
e4e574b7
AL
1800 unsigned long nr_pages;
1801
aa888a74 1802 /* Cannot return gigantic pages currently */
bae7f4ae 1803 if (hstate_is_gigantic(h))
e5bbc8a6 1804 goto out;
aa888a74 1805
e5bbc8a6
MK
1806 /*
1807 * Part (or even all) of the reservation could have been backed
1808 * by pre-allocated pages. Only free surplus pages.
1809 */
a5516438 1810 nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
e4e574b7 1811
685f3457
LS
1812 /*
1813 * We want to release as many surplus pages as possible, spread
9b5e5d0f
LS
1814 * evenly across all nodes with memory. Iterate across these nodes
1815 * until we can no longer free unreserved surplus pages. This occurs
1816 * when the nodes with surplus pages have no free pages.
1817 * free_pool_huge_page() will balance the the freed pages across the
1818 * on-line nodes with memory and will handle the hstate accounting.
e5bbc8a6
MK
1819 *
1820 * Note that we decrement resv_huge_pages as we free the pages. If
1821 * we drop the lock, resv_huge_pages will still be sufficiently large
1822 * to cover subsequent pages we may free.
685f3457
LS
1823 */
1824 while (nr_pages--) {
e5bbc8a6
MK
1825 h->resv_huge_pages--;
1826 unused_resv_pages--;
8cebfcd0 1827 if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1))
e5bbc8a6 1828 goto out;
7848a4bf 1829 cond_resched_lock(&hugetlb_lock);
e4e574b7 1830 }
e5bbc8a6
MK
1831
1832out:
1833 /* Fully uncommit the reservation */
1834 h->resv_huge_pages -= unused_resv_pages;
e4e574b7
AL
1835}
1836
5e911373 1837
c37f9fb1 1838/*
feba16e2 1839 * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
5e911373 1840 * are used by the huge page allocation routines to manage reservations.
cf3ad20b
MK
1841 *
1842 * vma_needs_reservation is called to determine if the huge page at addr
1843 * within the vma has an associated reservation. If a reservation is
1844 * needed, the value 1 is returned. The caller is then responsible for
1845 * managing the global reservation and subpool usage counts. After
1846 * the huge page has been allocated, vma_commit_reservation is called
feba16e2
MK
1847 * to add the page to the reservation map. If the page allocation fails,
1848 * the reservation must be ended instead of committed. vma_end_reservation
1849 * is called in such cases.
cf3ad20b
MK
1850 *
1851 * In the normal case, vma_commit_reservation returns the same value
1852 * as the preceding vma_needs_reservation call. The only time this
1853 * is not the case is if a reserve map was changed between calls. It
1854 * is the responsibility of the caller to notice the difference and
1855 * take appropriate action.
96b96a96
MK
1856 *
1857 * vma_add_reservation is used in error paths where a reservation must
1858 * be restored when a newly allocated huge page must be freed. It is
1859 * to be called after calling vma_needs_reservation to determine if a
1860 * reservation exists.
c37f9fb1 1861 */
5e911373
MK
1862enum vma_resv_mode {
1863 VMA_NEEDS_RESV,
1864 VMA_COMMIT_RESV,
feba16e2 1865 VMA_END_RESV,
96b96a96 1866 VMA_ADD_RESV,
5e911373 1867};
cf3ad20b
MK
1868static long __vma_reservation_common(struct hstate *h,
1869 struct vm_area_struct *vma, unsigned long addr,
5e911373 1870 enum vma_resv_mode mode)
c37f9fb1 1871{
4e35f483
JK
1872 struct resv_map *resv;
1873 pgoff_t idx;
cf3ad20b 1874 long ret;
c37f9fb1 1875
4e35f483
JK
1876 resv = vma_resv_map(vma);
1877 if (!resv)
84afd99b 1878 return 1;
c37f9fb1 1879
4e35f483 1880 idx = vma_hugecache_offset(h, vma, addr);
5e911373
MK
1881 switch (mode) {
1882 case VMA_NEEDS_RESV:
cf3ad20b 1883 ret = region_chg(resv, idx, idx + 1);
5e911373
MK
1884 break;
1885 case VMA_COMMIT_RESV:
1886 ret = region_add(resv, idx, idx + 1);
1887 break;
feba16e2 1888 case VMA_END_RESV:
5e911373
MK
1889 region_abort(resv, idx, idx + 1);
1890 ret = 0;
1891 break;
96b96a96
MK
1892 case VMA_ADD_RESV:
1893 if (vma->vm_flags & VM_MAYSHARE)
1894 ret = region_add(resv, idx, idx + 1);
1895 else {
1896 region_abort(resv, idx, idx + 1);
1897 ret = region_del(resv, idx, idx + 1);
1898 }
1899 break;
5e911373
MK
1900 default:
1901 BUG();
1902 }
84afd99b 1903
4e35f483 1904 if (vma->vm_flags & VM_MAYSHARE)
cf3ad20b 1905 return ret;
67961f9d
MK
1906 else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) && ret >= 0) {
1907 /*
1908 * In most cases, reserves always exist for private mappings.
1909 * However, a file associated with mapping could have been
1910 * hole punched or truncated after reserves were consumed.
1911 * As subsequent fault on such a range will not use reserves.
1912 * Subtle - The reserve map for private mappings has the
1913 * opposite meaning than that of shared mappings. If NO
1914 * entry is in the reserve map, it means a reservation exists.
1915 * If an entry exists in the reserve map, it means the
1916 * reservation has already been consumed. As a result, the
1917 * return value of this routine is the opposite of the
1918 * value returned from reserve map manipulation routines above.
1919 */
1920 if (ret)
1921 return 0;
1922 else
1923 return 1;
1924 }
4e35f483 1925 else
cf3ad20b 1926 return ret < 0 ? ret : 0;
c37f9fb1 1927}
cf3ad20b
MK
1928
1929static long vma_needs_reservation(struct hstate *h,
a5516438 1930 struct vm_area_struct *vma, unsigned long addr)
c37f9fb1 1931{
5e911373 1932 return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
cf3ad20b 1933}
84afd99b 1934
cf3ad20b
MK
1935static long vma_commit_reservation(struct hstate *h,
1936 struct vm_area_struct *vma, unsigned long addr)
1937{
5e911373
MK
1938 return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
1939}
1940
feba16e2 1941static void vma_end_reservation(struct hstate *h,
5e911373
MK
1942 struct vm_area_struct *vma, unsigned long addr)
1943{
feba16e2 1944 (void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
c37f9fb1
AW
1945}
1946
96b96a96
MK
1947static long vma_add_reservation(struct hstate *h,
1948 struct vm_area_struct *vma, unsigned long addr)
1949{
1950 return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV);
1951}
1952
1953/*
1954 * This routine is called to restore a reservation on error paths. In the
1955 * specific error paths, a huge page was allocated (via alloc_huge_page)
1956 * and is about to be freed. If a reservation for the page existed,
1957 * alloc_huge_page would have consumed the reservation and set PagePrivate
1958 * in the newly allocated page. When the page is freed via free_huge_page,
1959 * the global reservation count will be incremented if PagePrivate is set.
1960 * However, free_huge_page can not adjust the reserve map. Adjust the
1961 * reserve map here to be consistent with global reserve count adjustments
1962 * to be made by free_huge_page.
1963 */
1964static void restore_reserve_on_error(struct hstate *h,
1965 struct vm_area_struct *vma, unsigned long address,
1966 struct page *page)
1967{
1968 if (unlikely(PagePrivate(page))) {
1969 long rc = vma_needs_reservation(h, vma, address);
1970
1971 if (unlikely(rc < 0)) {
1972 /*
1973 * Rare out of memory condition in reserve map
1974 * manipulation. Clear PagePrivate so that
1975 * global reserve count will not be incremented
1976 * by free_huge_page. This will make it appear
1977 * as though the reservation for this page was
1978 * consumed. This may prevent the task from
1979 * faulting in the page at a later time. This
1980 * is better than inconsistent global huge page
1981 * accounting of reserve counts.
1982 */
1983 ClearPagePrivate(page);
1984 } else if (rc) {
1985 rc = vma_add_reservation(h, vma, address);
1986 if (unlikely(rc < 0))
1987 /*
1988 * See above comment about rare out of
1989 * memory condition.
1990 */
1991 ClearPagePrivate(page);
1992 } else
1993 vma_end_reservation(h, vma, address);
1994 }
1995}
1996
70c3547e 1997struct page *alloc_huge_page(struct vm_area_struct *vma,
04f2cbe3 1998 unsigned long addr, int avoid_reserve)
1da177e4 1999{
90481622 2000 struct hugepage_subpool *spool = subpool_vma(vma);
a5516438 2001 struct hstate *h = hstate_vma(vma);
348ea204 2002 struct page *page;
d85f69b0
MK
2003 long map_chg, map_commit;
2004 long gbl_chg;
6d76dcf4
AK
2005 int ret, idx;
2006 struct hugetlb_cgroup *h_cg;
a1e78772 2007
6d76dcf4 2008 idx = hstate_index(h);
a1e78772 2009 /*
d85f69b0
MK
2010 * Examine the region/reserve map to determine if the process
2011 * has a reservation for the page to be allocated. A return
2012 * code of zero indicates a reservation exists (no change).
a1e78772 2013 */
d85f69b0
MK
2014 map_chg = gbl_chg = vma_needs_reservation(h, vma, addr);
2015 if (map_chg < 0)
76dcee75 2016 return ERR_PTR(-ENOMEM);
d85f69b0
MK
2017
2018 /*
2019 * Processes that did not create the mapping will have no
2020 * reserves as indicated by the region/reserve map. Check
2021 * that the allocation will not exceed the subpool limit.
2022 * Allocations for MAP_NORESERVE mappings also need to be
2023 * checked against any subpool limit.
2024 */
2025 if (map_chg || avoid_reserve) {
2026 gbl_chg = hugepage_subpool_get_pages(spool, 1);
2027 if (gbl_chg < 0) {
feba16e2 2028 vma_end_reservation(h, vma, addr);
76dcee75 2029 return ERR_PTR(-ENOSPC);
5e911373 2030 }
1da177e4 2031
d85f69b0
MK
2032 /*
2033 * Even though there was no reservation in the region/reserve
2034 * map, there could be reservations associated with the
2035 * subpool that can be used. This would be indicated if the
2036 * return value of hugepage_subpool_get_pages() is zero.
2037 * However, if avoid_reserve is specified we still avoid even
2038 * the subpool reservations.
2039 */
2040 if (avoid_reserve)
2041 gbl_chg = 1;
2042 }
2043
6d76dcf4 2044 ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
8f34af6f
JZ
2045 if (ret)
2046 goto out_subpool_put;
2047
1da177e4 2048 spin_lock(&hugetlb_lock);
d85f69b0
MK
2049 /*
2050 * glb_chg is passed to indicate whether or not a page must be taken
2051 * from the global free pool (global change). gbl_chg == 0 indicates
2052 * a reservation exists for the allocation.
2053 */
2054 page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, gbl_chg);
81a6fcae 2055 if (!page) {
94ae8ba7 2056 spin_unlock(&hugetlb_lock);
0c397dae 2057 page = alloc_buddy_huge_page_with_mpol(h, vma, addr);
8f34af6f
JZ
2058 if (!page)
2059 goto out_uncharge_cgroup;
a88c7695
NH
2060 if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) {
2061 SetPagePrivate(page);
2062 h->resv_huge_pages--;
2063 }
79dbb236
AK
2064 spin_lock(&hugetlb_lock);
2065 list_move(&page->lru, &h->hugepage_activelist);
81a6fcae 2066 /* Fall through */
68842c9b 2067 }
81a6fcae
JK
2068 hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
2069 spin_unlock(&hugetlb_lock);
348ea204 2070
90481622 2071 set_page_private(page, (unsigned long)spool);
90d8b7e6 2072
d85f69b0
MK
2073 map_commit = vma_commit_reservation(h, vma, addr);
2074 if (unlikely(map_chg > map_commit)) {
33039678
MK
2075 /*
2076 * The page was added to the reservation map between
2077 * vma_needs_reservation and vma_commit_reservation.
2078 * This indicates a race with hugetlb_reserve_pages.
2079 * Adjust for the subpool count incremented above AND
2080 * in hugetlb_reserve_pages for the same page. Also,
2081 * the reservation count added in hugetlb_reserve_pages
2082 * no longer applies.
2083 */
2084 long rsv_adjust;
2085
2086 rsv_adjust = hugepage_subpool_put_pages(spool, 1);
2087 hugetlb_acct_memory(h, -rsv_adjust);
2088 }
90d8b7e6 2089 return page;
8f34af6f
JZ
2090
2091out_uncharge_cgroup:
2092 hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
2093out_subpool_put:
d85f69b0 2094 if (map_chg || avoid_reserve)
8f34af6f 2095 hugepage_subpool_put_pages(spool, 1);
feba16e2 2096 vma_end_reservation(h, vma, addr);
8f34af6f 2097 return ERR_PTR(-ENOSPC);
b45b5bd6
DG
2098}
2099
e24a1307
AK
2100int alloc_bootmem_huge_page(struct hstate *h)
2101 __attribute__ ((weak, alias("__alloc_bootmem_huge_page")));
2102int __alloc_bootmem_huge_page(struct hstate *h)
aa888a74
AK
2103{
2104 struct huge_bootmem_page *m;
b2261026 2105 int nr_nodes, node;
aa888a74 2106
b2261026 2107 for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
aa888a74
AK
2108 void *addr;
2109
8b89a116
GS
2110 addr = memblock_virt_alloc_try_nid_nopanic(
2111 huge_page_size(h), huge_page_size(h),
2112 0, BOOTMEM_ALLOC_ACCESSIBLE, node);
aa888a74
AK
2113 if (addr) {
2114 /*
2115 * Use the beginning of the huge page to store the
2116 * huge_bootmem_page struct (until gather_bootmem
2117 * puts them into the mem_map).
2118 */
2119 m = addr;
91f47662 2120 goto found;
aa888a74 2121 }
aa888a74
AK
2122 }
2123 return 0;
2124
2125found:
df994ead 2126 BUG_ON(!IS_ALIGNED(virt_to_phys(m), huge_page_size(h)));
aa888a74
AK
2127 /* Put them into a private list first because mem_map is not up yet */
2128 list_add(&m->list, &huge_boot_pages);
2129 m->hstate = h;
2130 return 1;
2131}
2132
d00181b9
KS
2133static void __init prep_compound_huge_page(struct page *page,
2134 unsigned int order)
18229df5
AW
2135{
2136 if (unlikely(order > (MAX_ORDER - 1)))
2137 prep_compound_gigantic_page(page, order);
2138 else
2139 prep_compound_page(page, order);
2140}
2141
aa888a74
AK
2142/* Put bootmem huge pages into the standard lists after mem_map is up */
2143static void __init gather_bootmem_prealloc(void)
2144{
2145 struct huge_bootmem_page *m;
2146
2147 list_for_each_entry(m, &huge_boot_pages, list) {
aa888a74 2148 struct hstate *h = m->hstate;
ee8f248d
BB
2149 struct page *page;
2150
2151#ifdef CONFIG_HIGHMEM
2152 page = pfn_to_page(m->phys >> PAGE_SHIFT);
8b89a116
GS
2153 memblock_free_late(__pa(m),
2154 sizeof(struct huge_bootmem_page));
ee8f248d
BB
2155#else
2156 page = virt_to_page(m);
2157#endif
aa888a74 2158 WARN_ON(page_count(page) != 1);
18229df5 2159 prep_compound_huge_page(page, h->order);
ef5a22be 2160 WARN_ON(PageReserved(page));
aa888a74 2161 prep_new_huge_page(h, page, page_to_nid(page));
af0fb9df
MH
2162 put_page(page); /* free it into the hugepage allocator */
2163
b0320c7b
RA
2164 /*
2165 * If we had gigantic hugepages allocated at boot time, we need
2166 * to restore the 'stolen' pages to totalram_pages in order to
2167 * fix confusing memory reports from free(1) and another
2168 * side-effects, like CommitLimit going negative.
2169 */
bae7f4ae 2170 if (hstate_is_gigantic(h))
3dcc0571 2171 adjust_managed_page_count(page, 1 << h->order);
aa888a74
AK
2172 }
2173}
2174
8faa8b07 2175static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
1da177e4
LT
2176{
2177 unsigned long i;
a5516438 2178
e5ff2159 2179 for (i = 0; i < h->max_huge_pages; ++i) {
bae7f4ae 2180 if (hstate_is_gigantic(h)) {
aa888a74
AK
2181 if (!alloc_bootmem_huge_page(h))
2182 break;
0c397dae 2183 } else if (!alloc_pool_huge_page(h,
8cebfcd0 2184 &node_states[N_MEMORY]))
1da177e4 2185 break;
69ed779a 2186 cond_resched();
1da177e4 2187 }
d715cf80
LH
2188 if (i < h->max_huge_pages) {
2189 char buf[32];
2190
c6247f72 2191 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
d715cf80
LH
2192 pr_warn("HugeTLB: allocating %lu of page size %s failed. Only allocated %lu hugepages.\n",
2193 h->max_huge_pages, buf, i);
2194 h->max_huge_pages = i;
2195 }
e5ff2159
AK
2196}
2197
2198static void __init hugetlb_init_hstates(void)
2199{
2200 struct hstate *h;
2201
2202 for_each_hstate(h) {
641844f5
NH
2203 if (minimum_order > huge_page_order(h))
2204 minimum_order = huge_page_order(h);
2205
8faa8b07 2206 /* oversize hugepages were init'ed in early boot */
bae7f4ae 2207 if (!hstate_is_gigantic(h))
8faa8b07 2208 hugetlb_hstate_alloc_pages(h);
e5ff2159 2209 }
641844f5 2210 VM_BUG_ON(minimum_order == UINT_MAX);
e5ff2159
AK
2211}
2212
2213static void __init report_hugepages(void)
2214{
2215 struct hstate *h;
2216
2217 for_each_hstate(h) {
4abd32db 2218 char buf[32];
c6247f72
MW
2219
2220 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
ffb22af5 2221 pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
c6247f72 2222 buf, h->free_huge_pages);
e5ff2159
AK
2223 }
2224}
2225
1da177e4 2226#ifdef CONFIG_HIGHMEM
6ae11b27
LS
2227static void try_to_free_low(struct hstate *h, unsigned long count,
2228 nodemask_t *nodes_allowed)
1da177e4 2229{
4415cc8d
CL
2230 int i;
2231
bae7f4ae 2232 if (hstate_is_gigantic(h))
aa888a74
AK
2233 return;
2234
6ae11b27 2235 for_each_node_mask(i, *nodes_allowed) {
1da177e4 2236 struct page *page, *next;
a5516438
AK
2237 struct list_head *freel = &h->hugepage_freelists[i];
2238 list_for_each_entry_safe(page, next, freel, lru) {
2239 if (count >= h->nr_huge_pages)
6b0c880d 2240 return;
1da177e4
LT
2241 if (PageHighMem(page))
2242 continue;
2243 list_del(&page->lru);
e5ff2159 2244 update_and_free_page(h, page);
a5516438
AK
2245 h->free_huge_pages--;
2246 h->free_huge_pages_node[page_to_nid(page)]--;
1da177e4
LT
2247 }
2248 }
2249}
2250#else
6ae11b27
LS
2251static inline void try_to_free_low(struct hstate *h, unsigned long count,
2252 nodemask_t *nodes_allowed)
1da177e4
LT
2253{
2254}
2255#endif
2256
20a0307c
WF
2257/*
2258 * Increment or decrement surplus_huge_pages. Keep node-specific counters
2259 * balanced by operating on them in a round-robin fashion.
2260 * Returns 1 if an adjustment was made.
2261 */
6ae11b27
LS
2262static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
2263 int delta)
20a0307c 2264{
b2261026 2265 int nr_nodes, node;
20a0307c
WF
2266
2267 VM_BUG_ON(delta != -1 && delta != 1);
20a0307c 2268
b2261026
JK
2269 if (delta < 0) {
2270 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
2271 if (h->surplus_huge_pages_node[node])
2272 goto found;
e8c5c824 2273 }
b2261026
JK
2274 } else {
2275 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
2276 if (h->surplus_huge_pages_node[node] <
2277 h->nr_huge_pages_node[node])
2278 goto found;
e8c5c824 2279 }
b2261026
JK
2280 }
2281 return 0;
20a0307c 2282
b2261026
JK
2283found:
2284 h->surplus_huge_pages += delta;
2285 h->surplus_huge_pages_node[node] += delta;
2286 return 1;
20a0307c
WF
2287}
2288
a5516438 2289#define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
6ae11b27
LS
2290static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count,
2291 nodemask_t *nodes_allowed)
1da177e4 2292{
7893d1d5 2293 unsigned long min_count, ret;
1da177e4 2294
944d9fec 2295 if (hstate_is_gigantic(h) && !gigantic_page_supported())
aa888a74
AK
2296 return h->max_huge_pages;
2297
7893d1d5
AL
2298 /*
2299 * Increase the pool size
2300 * First take pages out of surplus state. Then make up the
2301 * remaining difference by allocating fresh huge pages.
d1c3fb1f 2302 *
0c397dae 2303 * We might race with alloc_surplus_huge_page() here and be unable
d1c3fb1f
NA
2304 * to convert a surplus huge page to a normal huge page. That is
2305 * not critical, though, it just means the overall size of the
2306 * pool might be one hugepage larger than it needs to be, but
2307 * within all the constraints specified by the sysctls.
7893d1d5 2308 */
1da177e4 2309 spin_lock(&hugetlb_lock);
a5516438 2310 while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
6ae11b27 2311 if (!adjust_pool_surplus(h, nodes_allowed, -1))
7893d1d5
AL
2312 break;
2313 }
2314
a5516438 2315 while (count > persistent_huge_pages(h)) {
7893d1d5
AL
2316 /*
2317 * If this allocation races such that we no longer need the
2318 * page, free_huge_page will handle it by freeing the page
2319 * and reducing the surplus.
2320 */
2321 spin_unlock(&hugetlb_lock);
649920c6
JH
2322
2323 /* yield cpu to avoid soft lockup */
2324 cond_resched();
2325
0c397dae 2326 ret = alloc_pool_huge_page(h, nodes_allowed);
7893d1d5
AL
2327 spin_lock(&hugetlb_lock);
2328 if (!ret)
2329 goto out;
2330
536240f2
MG
2331 /* Bail for signals. Probably ctrl-c from user */
2332 if (signal_pending(current))
2333 goto out;
7893d1d5 2334 }
7893d1d5
AL
2335
2336 /*
2337 * Decrease the pool size
2338 * First return free pages to the buddy allocator (being careful
2339 * to keep enough around to satisfy reservations). Then place
2340 * pages into surplus state as needed so the pool will shrink
2341 * to the desired size as pages become free.
d1c3fb1f
NA
2342 *
2343 * By placing pages into the surplus state independent of the
2344 * overcommit value, we are allowing the surplus pool size to
2345 * exceed overcommit. There are few sane options here. Since
0c397dae 2346 * alloc_surplus_huge_page() is checking the global counter,
d1c3fb1f
NA
2347 * though, we'll note that we're not allowed to exceed surplus
2348 * and won't grow the pool anywhere else. Not until one of the
2349 * sysctls are changed, or the surplus pages go out of use.
7893d1d5 2350 */
a5516438 2351 min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
6b0c880d 2352 min_count = max(count, min_count);
6ae11b27 2353 try_to_free_low(h, min_count, nodes_allowed);
a5516438 2354 while (min_count < persistent_huge_pages(h)) {
6ae11b27 2355 if (!free_pool_huge_page(h, nodes_allowed, 0))
1da177e4 2356 break;
55f67141 2357 cond_resched_lock(&hugetlb_lock);
1da177e4 2358 }
a5516438 2359 while (count < persistent_huge_pages(h)) {
6ae11b27 2360 if (!adjust_pool_surplus(h, nodes_allowed, 1))
7893d1d5
AL
2361 break;
2362 }
2363out:
a5516438 2364 ret = persistent_huge_pages(h);
1da177e4 2365 spin_unlock(&hugetlb_lock);
7893d1d5 2366 return ret;
1da177e4
LT
2367}
2368
a3437870
NA
2369#define HSTATE_ATTR_RO(_name) \
2370 static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
2371
2372#define HSTATE_ATTR(_name) \
2373 static struct kobj_attribute _name##_attr = \
2374 __ATTR(_name, 0644, _name##_show, _name##_store)
2375
2376static struct kobject *hugepages_kobj;
2377static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
2378
9a305230
LS
2379static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
2380
2381static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
a3437870
NA
2382{
2383 int i;
9a305230 2384
a3437870 2385 for (i = 0; i < HUGE_MAX_HSTATE; i++)
9a305230
LS
2386 if (hstate_kobjs[i] == kobj) {
2387 if (nidp)
2388 *nidp = NUMA_NO_NODE;
a3437870 2389 return &hstates[i];
9a305230
LS
2390 }
2391
2392 return kobj_to_node_hstate(kobj, nidp);
a3437870
NA
2393}
2394
06808b08 2395static ssize_t nr_hugepages_show_common(struct kobject *kobj,
a3437870
NA
2396 struct kobj_attribute *attr, char *buf)
2397{
9a305230
LS
2398 struct hstate *h;
2399 unsigned long nr_huge_pages;
2400 int nid;
2401
2402 h = kobj_to_hstate(kobj, &nid);
2403 if (nid == NUMA_NO_NODE)
2404 nr_huge_pages = h->nr_huge_pages;
2405 else
2406 nr_huge_pages = h->nr_huge_pages_node[nid];
2407
2408 return sprintf(buf, "%lu\n", nr_huge_pages);
a3437870 2409}
adbe8726 2410
238d3c13
DR
2411static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
2412 struct hstate *h, int nid,
2413 unsigned long count, size_t len)
a3437870
NA
2414{
2415 int err;
bad44b5b 2416 NODEMASK_ALLOC(nodemask_t, nodes_allowed, GFP_KERNEL | __GFP_NORETRY);
a3437870 2417
944d9fec 2418 if (hstate_is_gigantic(h) && !gigantic_page_supported()) {
adbe8726
EM
2419 err = -EINVAL;
2420 goto out;
2421 }
2422
9a305230
LS
2423 if (nid == NUMA_NO_NODE) {
2424 /*
2425 * global hstate attribute
2426 */
2427 if (!(obey_mempolicy &&
2428 init_nodemask_of_mempolicy(nodes_allowed))) {
2429 NODEMASK_FREE(nodes_allowed);
8cebfcd0 2430 nodes_allowed = &node_states[N_MEMORY];
9a305230
LS
2431 }
2432 } else if (nodes_allowed) {
2433 /*
2434 * per node hstate attribute: adjust count to global,
2435 * but restrict alloc/free to the specified node.
2436 */
2437 count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
2438 init_nodemask_of_node(nodes_allowed, nid);
2439 } else
8cebfcd0 2440 nodes_allowed = &node_states[N_MEMORY];
9a305230 2441
06808b08 2442 h->max_huge_pages = set_max_huge_pages(h, count, nodes_allowed);
a3437870 2443
8cebfcd0 2444 if (nodes_allowed != &node_states[N_MEMORY])
06808b08
LS
2445 NODEMASK_FREE(nodes_allowed);
2446
2447 return len;
adbe8726
EM
2448out:
2449 NODEMASK_FREE(nodes_allowed);
2450 return err;
06808b08
LS
2451}
2452
238d3c13
DR
2453static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
2454 struct kobject *kobj, const char *buf,
2455 size_t len)
2456{
2457 struct hstate *h;
2458 unsigned long count;
2459 int nid;
2460 int err;
2461
2462 err = kstrtoul(buf, 10, &count);
2463 if (err)
2464 return err;
2465
2466 h = kobj_to_hstate(kobj, &nid);
2467 return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
2468}
2469
06808b08
LS
2470static ssize_t nr_hugepages_show(struct kobject *kobj,
2471 struct kobj_attribute *attr, char *buf)
2472{
2473 return nr_hugepages_show_common(kobj, attr, buf);
2474}
2475
2476static ssize_t nr_hugepages_store(struct kobject *kobj,
2477 struct kobj_attribute *attr, const char *buf, size_t len)
2478{
238d3c13 2479 return nr_hugepages_store_common(false, kobj, buf, len);
a3437870
NA
2480}
2481HSTATE_ATTR(nr_hugepages);
2482
06808b08
LS
2483#ifdef CONFIG_NUMA
2484
2485/*
2486 * hstate attribute for optionally mempolicy-based constraint on persistent
2487 * huge page alloc/free.
2488 */
2489static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
2490 struct kobj_attribute *attr, char *buf)
2491{
2492 return nr_hugepages_show_common(kobj, attr, buf);
2493}
2494
2495static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
2496 struct kobj_attribute *attr, const char *buf, size_t len)
2497{
238d3c13 2498 return nr_hugepages_store_common(true, kobj, buf, len);
06808b08
LS
2499}
2500HSTATE_ATTR(nr_hugepages_mempolicy);
2501#endif
2502
2503
a3437870
NA
2504static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
2505 struct kobj_attribute *attr, char *buf)
2506{
9a305230 2507 struct hstate *h = kobj_to_hstate(kobj, NULL);
a3437870
NA
2508 return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
2509}
adbe8726 2510
a3437870
NA
2511static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
2512 struct kobj_attribute *attr, const char *buf, size_t count)
2513{
2514 int err;
2515 unsigned long input;
9a305230 2516 struct hstate *h = kobj_to_hstate(kobj, NULL);
a3437870 2517
bae7f4ae 2518 if (hstate_is_gigantic(h))
adbe8726
EM
2519 return -EINVAL;
2520
3dbb95f7 2521 err = kstrtoul(buf, 10, &input);
a3437870 2522 if (err)
73ae31e5 2523 return err;
a3437870
NA
2524
2525 spin_lock(&hugetlb_lock);
2526 h->nr_overcommit_huge_pages = input;
2527 spin_unlock(&hugetlb_lock);
2528
2529 return count;
2530}
2531HSTATE_ATTR(nr_overcommit_hugepages);
2532
2533static ssize_t free_hugepages_show(struct kobject *kobj,
2534 struct kobj_attribute *attr, char *buf)
2535{
9a305230
LS
2536 struct hstate *h;
2537 unsigned long free_huge_pages;
2538 int nid;
2539
2540 h = kobj_to_hstate(kobj, &nid);
2541 if (nid == NUMA_NO_NODE)
2542 free_huge_pages = h->free_huge_pages;
2543 else
2544 free_huge_pages = h->free_huge_pages_node[nid];
2545
2546 return sprintf(buf, "%lu\n", free_huge_pages);
a3437870
NA
2547}
2548HSTATE_ATTR_RO(free_hugepages);
2549
2550static ssize_t resv_hugepages_show(struct kobject *kobj,
2551 struct kobj_attribute *attr, char *buf)
2552{
9a305230 2553 struct hstate *h = kobj_to_hstate(kobj, NULL);
a3437870
NA
2554 return sprintf(buf, "%lu\n", h->resv_huge_pages);
2555}
2556HSTATE_ATTR_RO(resv_hugepages);
2557
2558static ssize_t surplus_hugepages_show(struct kobject *kobj,
2559 struct kobj_attribute *attr, char *buf)
2560{
9a305230
LS
2561 struct hstate *h;
2562 unsigned long surplus_huge_pages;
2563 int nid;
2564
2565 h = kobj_to_hstate(kobj, &nid);
2566 if (nid == NUMA_NO_NODE)
2567 surplus_huge_pages = h->surplus_huge_pages;
2568 else
2569 surplus_huge_pages = h->surplus_huge_pages_node[nid];
2570
2571 return sprintf(buf, "%lu\n", surplus_huge_pages);
a3437870
NA
2572}
2573HSTATE_ATTR_RO(surplus_hugepages);
2574
2575static struct attribute *hstate_attrs[] = {
2576 &nr_hugepages_attr.attr,
2577 &nr_overcommit_hugepages_attr.attr,
2578 &free_hugepages_attr.attr,
2579 &resv_hugepages_attr.attr,
2580 &surplus_hugepages_attr.attr,
06808b08
LS
2581#ifdef CONFIG_NUMA
2582 &nr_hugepages_mempolicy_attr.attr,
2583#endif
a3437870
NA
2584 NULL,
2585};
2586
67e5ed96 2587static const struct attribute_group hstate_attr_group = {
a3437870
NA
2588 .attrs = hstate_attrs,
2589};
2590
094e9539
JM
2591static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
2592 struct kobject **hstate_kobjs,
67e5ed96 2593 const struct attribute_group *hstate_attr_group)
a3437870
NA
2594{
2595 int retval;
972dc4de 2596 int hi = hstate_index(h);
a3437870 2597
9a305230
LS
2598 hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
2599 if (!hstate_kobjs[hi])
a3437870
NA
2600 return -ENOMEM;
2601
9a305230 2602 retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
a3437870 2603 if (retval)
9a305230 2604 kobject_put(hstate_kobjs[hi]);
a3437870
NA
2605
2606 return retval;
2607}
2608
2609static void __init hugetlb_sysfs_init(void)
2610{
2611 struct hstate *h;
2612 int err;
2613
2614 hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
2615 if (!hugepages_kobj)
2616 return;
2617
2618 for_each_hstate(h) {
9a305230
LS
2619 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
2620 hstate_kobjs, &hstate_attr_group);
a3437870 2621 if (err)
ffb22af5 2622 pr_err("Hugetlb: Unable to add hstate %s", h->name);
a3437870
NA
2623 }
2624}
2625
9a305230
LS
2626#ifdef CONFIG_NUMA
2627
2628/*
2629 * node_hstate/s - associate per node hstate attributes, via their kobjects,
10fbcf4c
KS
2630 * with node devices in node_devices[] using a parallel array. The array
2631 * index of a node device or _hstate == node id.
2632 * This is here to avoid any static dependency of the node device driver, in
9a305230
LS
2633 * the base kernel, on the hugetlb module.
2634 */
2635struct node_hstate {
2636 struct kobject *hugepages_kobj;
2637 struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
2638};
b4e289a6 2639static struct node_hstate node_hstates[MAX_NUMNODES];
9a305230
LS
2640
2641/*
10fbcf4c 2642 * A subset of global hstate attributes for node devices
9a305230
LS
2643 */
2644static struct attribute *per_node_hstate_attrs[] = {
2645 &nr_hugepages_attr.attr,
2646 &free_hugepages_attr.attr,
2647 &surplus_hugepages_attr.attr,
2648 NULL,
2649};
2650
67e5ed96 2651static const struct attribute_group per_node_hstate_attr_group = {
9a305230
LS
2652 .attrs = per_node_hstate_attrs,
2653};
2654
2655/*
10fbcf4c 2656 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
9a305230
LS
2657 * Returns node id via non-NULL nidp.
2658 */
2659static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
2660{
2661 int nid;
2662
2663 for (nid = 0; nid < nr_node_ids; nid++) {
2664 struct node_hstate *nhs = &node_hstates[nid];
2665 int i;
2666 for (i = 0; i < HUGE_MAX_HSTATE; i++)
2667 if (nhs->hstate_kobjs[i] == kobj) {
2668 if (nidp)
2669 *nidp = nid;
2670 return &hstates[i];
2671 }
2672 }
2673
2674 BUG();
2675 return NULL;
2676}
2677
2678/*
10fbcf4c 2679 * Unregister hstate attributes from a single node device.
9a305230
LS
2680 * No-op if no hstate attributes attached.
2681 */
3cd8b44f 2682static void hugetlb_unregister_node(struct node *node)
9a305230
LS
2683{
2684 struct hstate *h;
10fbcf4c 2685 struct node_hstate *nhs = &node_hstates[node->dev.id];
9a305230
LS
2686
2687 if (!nhs->hugepages_kobj)
9b5e5d0f 2688 return; /* no hstate attributes */
9a305230 2689
972dc4de
AK
2690 for_each_hstate(h) {
2691 int idx = hstate_index(h);
2692 if (nhs->hstate_kobjs[idx]) {
2693 kobject_put(nhs->hstate_kobjs[idx]);
2694 nhs->hstate_kobjs[idx] = NULL;
9a305230 2695 }
972dc4de 2696 }
9a305230
LS
2697
2698 kobject_put(nhs->hugepages_kobj);
2699 nhs->hugepages_kobj = NULL;
2700}
2701
9a305230
LS
2702
2703/*
10fbcf4c 2704 * Register hstate attributes for a single node device.
9a305230
LS
2705 * No-op if attributes already registered.
2706 */
3cd8b44f 2707static void hugetlb_register_node(struct node *node)
9a305230
LS
2708{
2709 struct hstate *h;
10fbcf4c 2710 struct node_hstate *nhs = &node_hstates[node->dev.id];
9a305230
LS
2711 int err;
2712
2713 if (nhs->hugepages_kobj)
2714 return; /* already allocated */
2715
2716 nhs->hugepages_kobj = kobject_create_and_add("hugepages",
10fbcf4c 2717 &node->dev.kobj);
9a305230
LS
2718 if (!nhs->hugepages_kobj)
2719 return;
2720
2721 for_each_hstate(h) {
2722 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
2723 nhs->hstate_kobjs,
2724 &per_node_hstate_attr_group);
2725 if (err) {
ffb22af5
AM
2726 pr_err("Hugetlb: Unable to add hstate %s for node %d\n",
2727 h->name, node->dev.id);
9a305230
LS
2728 hugetlb_unregister_node(node);
2729 break;
2730 }
2731 }
2732}
2733
2734/*
9b5e5d0f 2735 * hugetlb init time: register hstate attributes for all registered node
10fbcf4c
KS
2736 * devices of nodes that have memory. All on-line nodes should have
2737 * registered their associated device by this time.
9a305230 2738 */
7d9ca000 2739static void __init hugetlb_register_all_nodes(void)
9a305230
LS
2740{
2741 int nid;
2742
8cebfcd0 2743 for_each_node_state(nid, N_MEMORY) {
8732794b 2744 struct node *node = node_devices[nid];
10fbcf4c 2745 if (node->dev.id == nid)
9a305230
LS
2746 hugetlb_register_node(node);
2747 }
2748
2749 /*
10fbcf4c 2750 * Let the node device driver know we're here so it can
9a305230
LS
2751 * [un]register hstate attributes on node hotplug.
2752 */
2753 register_hugetlbfs_with_node(hugetlb_register_node,
2754 hugetlb_unregister_node);
2755}
2756#else /* !CONFIG_NUMA */
2757
2758static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
2759{
2760 BUG();
2761 if (nidp)
2762 *nidp = -1;
2763 return NULL;
2764}
2765
9a305230
LS
2766static void hugetlb_register_all_nodes(void) { }
2767
2768#endif
2769
a3437870
NA
2770static int __init hugetlb_init(void)
2771{
8382d914
DB
2772 int i;
2773
457c1b27 2774 if (!hugepages_supported())
0ef89d25 2775 return 0;
a3437870 2776
e11bfbfc 2777 if (!size_to_hstate(default_hstate_size)) {
d715cf80
LH
2778 if (default_hstate_size != 0) {
2779 pr_err("HugeTLB: unsupported default_hugepagesz %lu. Reverting to %lu\n",
2780 default_hstate_size, HPAGE_SIZE);
2781 }
2782
e11bfbfc
NP
2783 default_hstate_size = HPAGE_SIZE;
2784 if (!size_to_hstate(default_hstate_size))
2785 hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
a3437870 2786 }
972dc4de 2787 default_hstate_idx = hstate_index(size_to_hstate(default_hstate_size));
f8b74815
VT
2788 if (default_hstate_max_huge_pages) {
2789 if (!default_hstate.max_huge_pages)
2790 default_hstate.max_huge_pages = default_hstate_max_huge_pages;
2791 }
a3437870
NA
2792
2793 hugetlb_init_hstates();
aa888a74 2794 gather_bootmem_prealloc();
a3437870
NA
2795 report_hugepages();
2796
2797 hugetlb_sysfs_init();
9a305230 2798 hugetlb_register_all_nodes();
7179e7bf 2799 hugetlb_cgroup_file_init();
9a305230 2800
8382d914
DB
2801#ifdef CONFIG_SMP
2802 num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
2803#else
2804 num_fault_mutexes = 1;
2805#endif
c672c7f2 2806 hugetlb_fault_mutex_table =
8382d914 2807 kmalloc(sizeof(struct mutex) * num_fault_mutexes, GFP_KERNEL);
c672c7f2 2808 BUG_ON(!hugetlb_fault_mutex_table);
8382d914
DB
2809
2810 for (i = 0; i < num_fault_mutexes; i++)
c672c7f2 2811 mutex_init(&hugetlb_fault_mutex_table[i]);
a3437870
NA
2812 return 0;
2813}
3e89e1c5 2814subsys_initcall(hugetlb_init);
a3437870
NA
2815
2816/* Should be called on processing a hugepagesz=... option */
9fee021d
VT
2817void __init hugetlb_bad_size(void)
2818{
2819 parsed_valid_hugepagesz = false;
2820}
2821
d00181b9 2822void __init hugetlb_add_hstate(unsigned int order)
a3437870
NA
2823{
2824 struct hstate *h;
8faa8b07
AK
2825 unsigned long i;
2826
a3437870 2827 if (size_to_hstate(PAGE_SIZE << order)) {
598d8091 2828 pr_warn("hugepagesz= specified twice, ignoring\n");
a3437870
NA
2829 return;
2830 }
47d38344 2831 BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
a3437870 2832 BUG_ON(order == 0);
47d38344 2833 h = &hstates[hugetlb_max_hstate++];
a3437870
NA
2834 h->order = order;
2835 h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
8faa8b07
AK
2836 h->nr_huge_pages = 0;
2837 h->free_huge_pages = 0;
2838 for (i = 0; i < MAX_NUMNODES; ++i)
2839 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
0edaecfa 2840 INIT_LIST_HEAD(&h->hugepage_activelist);
54f18d35
AM
2841 h->next_nid_to_alloc = first_memory_node;
2842 h->next_nid_to_free = first_memory_node;
a3437870
NA
2843 snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
2844 huge_page_size(h)/1024);
8faa8b07 2845
a3437870
NA
2846 parsed_hstate = h;
2847}
2848
e11bfbfc 2849static int __init hugetlb_nrpages_setup(char *s)
a3437870
NA
2850{
2851 unsigned long *mhp;
8faa8b07 2852 static unsigned long *last_mhp;
a3437870 2853
9fee021d
VT
2854 if (!parsed_valid_hugepagesz) {
2855 pr_warn("hugepages = %s preceded by "
2856 "an unsupported hugepagesz, ignoring\n", s);
2857 parsed_valid_hugepagesz = true;
2858 return 1;
2859 }
a3437870 2860 /*
47d38344 2861 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter yet,
a3437870
NA
2862 * so this hugepages= parameter goes to the "default hstate".
2863 */
9fee021d 2864 else if (!hugetlb_max_hstate)
a3437870
NA
2865 mhp = &default_hstate_max_huge_pages;
2866 else
2867 mhp = &parsed_hstate->max_huge_pages;
2868
8faa8b07 2869 if (mhp == last_mhp) {
598d8091 2870 pr_warn("hugepages= specified twice without interleaving hugepagesz=, ignoring\n");
8faa8b07
AK
2871 return 1;
2872 }
2873
a3437870
NA
2874 if (sscanf(s, "%lu", mhp) <= 0)
2875 *mhp = 0;
2876
8faa8b07
AK
2877 /*
2878 * Global state is always initialized later in hugetlb_init.
2879 * But we need to allocate >= MAX_ORDER hstates here early to still
2880 * use the bootmem allocator.
2881 */
47d38344 2882 if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER)
8faa8b07
AK
2883 hugetlb_hstate_alloc_pages(parsed_hstate);
2884
2885 last_mhp = mhp;
2886
a3437870
NA
2887 return 1;
2888}
e11bfbfc
NP
2889__setup("hugepages=", hugetlb_nrpages_setup);
2890
2891static int __init hugetlb_default_setup(char *s)
2892{
2893 default_hstate_size = memparse(s, &s);
2894 return 1;
2895}
2896__setup("default_hugepagesz=", hugetlb_default_setup);
a3437870 2897
8a213460
NA
2898static unsigned int cpuset_mems_nr(unsigned int *array)
2899{
2900 int node;
2901 unsigned int nr = 0;
2902
2903 for_each_node_mask(node, cpuset_current_mems_allowed)
2904 nr += array[node];
2905
2906 return nr;
2907}
2908
2909#ifdef CONFIG_SYSCTL
06808b08
LS
2910static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
2911 struct ctl_table *table, int write,
2912 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 2913{
e5ff2159 2914 struct hstate *h = &default_hstate;
238d3c13 2915 unsigned long tmp = h->max_huge_pages;
08d4a246 2916 int ret;
e5ff2159 2917
457c1b27 2918 if (!hugepages_supported())
86613628 2919 return -EOPNOTSUPP;
457c1b27 2920
e5ff2159
AK
2921 table->data = &tmp;
2922 table->maxlen = sizeof(unsigned long);
08d4a246
MH
2923 ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2924 if (ret)
2925 goto out;
e5ff2159 2926
238d3c13
DR
2927 if (write)
2928 ret = __nr_hugepages_store_common(obey_mempolicy, h,
2929 NUMA_NO_NODE, tmp, *length);
08d4a246
MH
2930out:
2931 return ret;
1da177e4 2932}
396faf03 2933
06808b08
LS
2934int hugetlb_sysctl_handler(struct ctl_table *table, int write,
2935 void __user *buffer, size_t *length, loff_t *ppos)
2936{
2937
2938 return hugetlb_sysctl_handler_common(false, table, write,
2939 buffer, length, ppos);
2940}
2941
2942#ifdef CONFIG_NUMA
2943int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
2944 void __user *buffer, size_t *length, loff_t *ppos)
2945{
2946 return hugetlb_sysctl_handler_common(true, table, write,
2947 buffer, length, ppos);
2948}
2949#endif /* CONFIG_NUMA */
2950
a3d0c6aa 2951int hugetlb_overcommit_handler(struct ctl_table *table, int write,
8d65af78 2952 void __user *buffer,
a3d0c6aa
NA
2953 size_t *length, loff_t *ppos)
2954{
a5516438 2955 struct hstate *h = &default_hstate;
e5ff2159 2956 unsigned long tmp;
08d4a246 2957 int ret;
e5ff2159 2958
457c1b27 2959 if (!hugepages_supported())
86613628 2960 return -EOPNOTSUPP;
457c1b27 2961
c033a93c 2962 tmp = h->nr_overcommit_huge_pages;
e5ff2159 2963
bae7f4ae 2964 if (write && hstate_is_gigantic(h))
adbe8726
EM
2965 return -EINVAL;
2966
e5ff2159
AK
2967 table->data = &tmp;
2968 table->maxlen = sizeof(unsigned long);
08d4a246
MH
2969 ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2970 if (ret)
2971 goto out;
e5ff2159
AK
2972
2973 if (write) {
2974 spin_lock(&hugetlb_lock);
2975 h->nr_overcommit_huge_pages = tmp;
2976 spin_unlock(&hugetlb_lock);
2977 }
08d4a246
MH
2978out:
2979 return ret;
a3d0c6aa
NA
2980}
2981
1da177e4
LT
2982#endif /* CONFIG_SYSCTL */
2983
e1759c21 2984void hugetlb_report_meminfo(struct seq_file *m)
1da177e4 2985{
fcb2b0c5
RG
2986 struct hstate *h;
2987 unsigned long total = 0;
2988
457c1b27
NA
2989 if (!hugepages_supported())
2990 return;
fcb2b0c5
RG
2991
2992 for_each_hstate(h) {
2993 unsigned long count = h->nr_huge_pages;
2994
2995 total += (PAGE_SIZE << huge_page_order(h)) * count;
2996
2997 if (h == &default_hstate)
2998 seq_printf(m,
2999 "HugePages_Total: %5lu\n"
3000 "HugePages_Free: %5lu\n"
3001 "HugePages_Rsvd: %5lu\n"
3002 "HugePages_Surp: %5lu\n"
3003 "Hugepagesize: %8lu kB\n",
3004 count,
3005 h->free_huge_pages,
3006 h->resv_huge_pages,
3007 h->surplus_huge_pages,
3008 (PAGE_SIZE << huge_page_order(h)) / 1024);
3009 }
3010
3011 seq_printf(m, "Hugetlb: %8lu kB\n", total / 1024);
1da177e4
LT
3012}
3013
3014int hugetlb_report_node_meminfo(int nid, char *buf)
3015{
a5516438 3016 struct hstate *h = &default_hstate;
457c1b27
NA
3017 if (!hugepages_supported())
3018 return 0;
1da177e4
LT
3019 return sprintf(buf,
3020 "Node %d HugePages_Total: %5u\n"
a1de0919
NA
3021 "Node %d HugePages_Free: %5u\n"
3022 "Node %d HugePages_Surp: %5u\n",
a5516438
AK
3023 nid, h->nr_huge_pages_node[nid],
3024 nid, h->free_huge_pages_node[nid],
3025 nid, h->surplus_huge_pages_node[nid]);
1da177e4
LT
3026}
3027
949f7ec5
DR
3028void hugetlb_show_meminfo(void)
3029{
3030 struct hstate *h;
3031 int nid;
3032
457c1b27
NA
3033 if (!hugepages_supported())
3034 return;
3035
949f7ec5
DR
3036 for_each_node_state(nid, N_MEMORY)
3037 for_each_hstate(h)
3038 pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
3039 nid,
3040 h->nr_huge_pages_node[nid],
3041 h->free_huge_pages_node[nid],
3042 h->surplus_huge_pages_node[nid],
3043 1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
3044}
3045
5d317b2b
NH
3046void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
3047{
3048 seq_printf(m, "HugetlbPages:\t%8lu kB\n",
3049 atomic_long_read(&mm->hugetlb_usage) << (PAGE_SHIFT - 10));
3050}
3051
1da177e4
LT
3052/* Return the number pages of memory we physically have, in PAGE_SIZE units. */
3053unsigned long hugetlb_total_pages(void)
3054{
d0028588
WL
3055 struct hstate *h;
3056 unsigned long nr_total_pages = 0;
3057
3058 for_each_hstate(h)
3059 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
3060 return nr_total_pages;
1da177e4 3061}
1da177e4 3062
a5516438 3063static int hugetlb_acct_memory(struct hstate *h, long delta)
fc1b8a73
MG
3064{
3065 int ret = -ENOMEM;
3066
3067 spin_lock(&hugetlb_lock);
3068 /*
3069 * When cpuset is configured, it breaks the strict hugetlb page
3070 * reservation as the accounting is done on a global variable. Such
3071 * reservation is completely rubbish in the presence of cpuset because
3072 * the reservation is not checked against page availability for the
3073 * current cpuset. Application can still potentially OOM'ed by kernel
3074 * with lack of free htlb page in cpuset that the task is in.
3075 * Attempt to enforce strict accounting with cpuset is almost
3076 * impossible (or too ugly) because cpuset is too fluid that
3077 * task or memory node can be dynamically moved between cpusets.
3078 *
3079 * The change of semantics for shared hugetlb mapping with cpuset is
3080 * undesirable. However, in order to preserve some of the semantics,
3081 * we fall back to check against current free page availability as
3082 * a best attempt and hopefully to minimize the impact of changing
3083 * semantics that cpuset has.
3084 */
3085 if (delta > 0) {
a5516438 3086 if (gather_surplus_pages(h, delta) < 0)
fc1b8a73
MG
3087 goto out;
3088
a5516438
AK
3089 if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
3090 return_unused_surplus_pages(h, delta);
fc1b8a73
MG
3091 goto out;
3092 }
3093 }
3094
3095 ret = 0;
3096 if (delta < 0)
a5516438 3097 return_unused_surplus_pages(h, (unsigned long) -delta);
fc1b8a73
MG
3098
3099out:
3100 spin_unlock(&hugetlb_lock);
3101 return ret;
3102}
3103
84afd99b
AW
3104static void hugetlb_vm_op_open(struct vm_area_struct *vma)
3105{
f522c3ac 3106 struct resv_map *resv = vma_resv_map(vma);
84afd99b
AW
3107
3108 /*
3109 * This new VMA should share its siblings reservation map if present.
3110 * The VMA will only ever have a valid reservation map pointer where
3111 * it is being copied for another still existing VMA. As that VMA
25985edc 3112 * has a reference to the reservation map it cannot disappear until
84afd99b
AW
3113 * after this open call completes. It is therefore safe to take a
3114 * new reference here without additional locking.
3115 */
4e35f483 3116 if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
f522c3ac 3117 kref_get(&resv->refs);
84afd99b
AW
3118}
3119
a1e78772
MG
3120static void hugetlb_vm_op_close(struct vm_area_struct *vma)
3121{
a5516438 3122 struct hstate *h = hstate_vma(vma);
f522c3ac 3123 struct resv_map *resv = vma_resv_map(vma);
90481622 3124 struct hugepage_subpool *spool = subpool_vma(vma);
4e35f483 3125 unsigned long reserve, start, end;
1c5ecae3 3126 long gbl_reserve;
84afd99b 3127
4e35f483
JK
3128 if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
3129 return;
84afd99b 3130
4e35f483
JK
3131 start = vma_hugecache_offset(h, vma, vma->vm_start);
3132 end = vma_hugecache_offset(h, vma, vma->vm_end);
84afd99b 3133
4e35f483 3134 reserve = (end - start) - region_count(resv, start, end);
84afd99b 3135
4e35f483
JK
3136 kref_put(&resv->refs, resv_map_release);
3137
3138 if (reserve) {
1c5ecae3
MK
3139 /*
3140 * Decrement reserve counts. The global reserve count may be
3141 * adjusted if the subpool has a minimum size.
3142 */
3143 gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
3144 hugetlb_acct_memory(h, -gbl_reserve);
84afd99b 3145 }
a1e78772
MG
3146}
3147
31383c68
DW
3148static int hugetlb_vm_op_split(struct vm_area_struct *vma, unsigned long addr)
3149{
3150 if (addr & ~(huge_page_mask(hstate_vma(vma))))
3151 return -EINVAL;
3152 return 0;
3153}
3154
1da177e4
LT
3155/*
3156 * We cannot handle pagefaults against hugetlb pages at all. They cause
3157 * handle_mm_fault() to try to instantiate regular-sized pages in the
3158 * hugegpage VMA. do_page_fault() is supposed to trap this, so BUG is we get
3159 * this far.
3160 */
11bac800 3161static int hugetlb_vm_op_fault(struct vm_fault *vmf)
1da177e4
LT
3162{
3163 BUG();
d0217ac0 3164 return 0;
1da177e4
LT
3165}
3166
f0f37e2f 3167const struct vm_operations_struct hugetlb_vm_ops = {
d0217ac0 3168 .fault = hugetlb_vm_op_fault,
84afd99b 3169 .open = hugetlb_vm_op_open,
a1e78772 3170 .close = hugetlb_vm_op_close,
31383c68 3171 .split = hugetlb_vm_op_split,
1da177e4
LT
3172};
3173
1e8f889b
DG
3174static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
3175 int writable)
63551ae0
DG
3176{
3177 pte_t entry;
3178
1e8f889b 3179 if (writable) {
106c992a
GS
3180 entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
3181 vma->vm_page_prot)));
63551ae0 3182 } else {
106c992a
GS
3183 entry = huge_pte_wrprotect(mk_huge_pte(page,
3184 vma->vm_page_prot));
63551ae0
DG
3185 }
3186 entry = pte_mkyoung(entry);
3187 entry = pte_mkhuge(entry);
d9ed9faa 3188 entry = arch_make_huge_pte(entry, vma, page, writable);
63551ae0
DG
3189
3190 return entry;
3191}
3192
1e8f889b
DG
3193static void set_huge_ptep_writable(struct vm_area_struct *vma,
3194 unsigned long address, pte_t *ptep)
3195{
3196 pte_t entry;
3197
106c992a 3198 entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
32f84528 3199 if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
4b3073e1 3200 update_mmu_cache(vma, address, ptep);
1e8f889b
DG
3201}
3202
d5ed7444 3203bool is_hugetlb_entry_migration(pte_t pte)
4a705fef
NH
3204{
3205 swp_entry_t swp;
3206
3207 if (huge_pte_none(pte) || pte_present(pte))
d5ed7444 3208 return false;
4a705fef
NH
3209 swp = pte_to_swp_entry(pte);
3210 if (non_swap_entry(swp) && is_migration_entry(swp))
d5ed7444 3211 return true;
4a705fef 3212 else
d5ed7444 3213 return false;
4a705fef
NH
3214}
3215
3216static int is_hugetlb_entry_hwpoisoned(pte_t pte)
3217{
3218 swp_entry_t swp;
3219
3220 if (huge_pte_none(pte) || pte_present(pte))
3221 return 0;
3222 swp = pte_to_swp_entry(pte);
3223 if (non_swap_entry(swp) && is_hwpoison_entry(swp))
3224 return 1;
3225 else
3226 return 0;
3227}
1e8f889b 3228
63551ae0
DG
3229int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
3230 struct vm_area_struct *vma)
3231{
3232 pte_t *src_pte, *dst_pte, entry;
3233 struct page *ptepage;
1c59827d 3234 unsigned long addr;
1e8f889b 3235 int cow;
a5516438
AK
3236 struct hstate *h = hstate_vma(vma);
3237 unsigned long sz = huge_page_size(h);
e8569dd2
AS
3238 unsigned long mmun_start; /* For mmu_notifiers */
3239 unsigned long mmun_end; /* For mmu_notifiers */
3240 int ret = 0;
1e8f889b
DG
3241
3242 cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
63551ae0 3243
e8569dd2
AS
3244 mmun_start = vma->vm_start;
3245 mmun_end = vma->vm_end;
3246 if (cow)
3247 mmu_notifier_invalidate_range_start(src, mmun_start, mmun_end);
3248
a5516438 3249 for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
cb900f41 3250 spinlock_t *src_ptl, *dst_ptl;
7868a208 3251 src_pte = huge_pte_offset(src, addr, sz);
c74df32c
HD
3252 if (!src_pte)
3253 continue;
a5516438 3254 dst_pte = huge_pte_alloc(dst, addr, sz);
e8569dd2
AS
3255 if (!dst_pte) {
3256 ret = -ENOMEM;
3257 break;
3258 }
c5c99429
LW
3259
3260 /* If the pagetables are shared don't copy or take references */
3261 if (dst_pte == src_pte)
3262 continue;
3263
cb900f41
KS
3264 dst_ptl = huge_pte_lock(h, dst, dst_pte);
3265 src_ptl = huge_pte_lockptr(h, src, src_pte);
3266 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
4a705fef
NH
3267 entry = huge_ptep_get(src_pte);
3268 if (huge_pte_none(entry)) { /* skip none entry */
3269 ;
3270 } else if (unlikely(is_hugetlb_entry_migration(entry) ||
3271 is_hugetlb_entry_hwpoisoned(entry))) {
3272 swp_entry_t swp_entry = pte_to_swp_entry(entry);
3273
3274 if (is_write_migration_entry(swp_entry) && cow) {
3275 /*
3276 * COW mappings require pages in both
3277 * parent and child to be set to read.
3278 */
3279 make_migration_entry_read(&swp_entry);
3280 entry = swp_entry_to_pte(swp_entry);
e5251fd4
PA
3281 set_huge_swap_pte_at(src, addr, src_pte,
3282 entry, sz);
4a705fef 3283 }
e5251fd4 3284 set_huge_swap_pte_at(dst, addr, dst_pte, entry, sz);
4a705fef 3285 } else {
34ee645e 3286 if (cow) {
0f10851e
JG
3287 /*
3288 * No need to notify as we are downgrading page
3289 * table protection not changing it to point
3290 * to a new page.
3291 *
3292 * See Documentation/vm/mmu_notifier.txt
3293 */
7f2e9525 3294 huge_ptep_set_wrprotect(src, addr, src_pte);
34ee645e 3295 }
0253d634 3296 entry = huge_ptep_get(src_pte);
1c59827d
HD
3297 ptepage = pte_page(entry);
3298 get_page(ptepage);
53f9263b 3299 page_dup_rmap(ptepage, true);
1c59827d 3300 set_huge_pte_at(dst, addr, dst_pte, entry);
5d317b2b 3301 hugetlb_count_add(pages_per_huge_page(h), dst);
1c59827d 3302 }
cb900f41
KS
3303 spin_unlock(src_ptl);
3304 spin_unlock(dst_ptl);
63551ae0 3305 }
63551ae0 3306
e8569dd2
AS
3307 if (cow)
3308 mmu_notifier_invalidate_range_end(src, mmun_start, mmun_end);
3309
3310 return ret;
63551ae0
DG
3311}
3312
24669e58
AK
3313void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
3314 unsigned long start, unsigned long end,
3315 struct page *ref_page)
63551ae0
DG
3316{
3317 struct mm_struct *mm = vma->vm_mm;
3318 unsigned long address;
c7546f8f 3319 pte_t *ptep;
63551ae0 3320 pte_t pte;
cb900f41 3321 spinlock_t *ptl;
63551ae0 3322 struct page *page;
a5516438
AK
3323 struct hstate *h = hstate_vma(vma);
3324 unsigned long sz = huge_page_size(h);
2ec74c3e
SG
3325 const unsigned long mmun_start = start; /* For mmu_notifiers */
3326 const unsigned long mmun_end = end; /* For mmu_notifiers */
a5516438 3327
63551ae0 3328 WARN_ON(!is_vm_hugetlb_page(vma));
a5516438
AK
3329 BUG_ON(start & ~huge_page_mask(h));
3330 BUG_ON(end & ~huge_page_mask(h));
63551ae0 3331
07e32661
AK
3332 /*
3333 * This is a hugetlb vma, all the pte entries should point
3334 * to huge page.
3335 */
3336 tlb_remove_check_page_size_change(tlb, sz);
24669e58 3337 tlb_start_vma(tlb, vma);
2ec74c3e 3338 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
569f48b8 3339 address = start;
569f48b8 3340 for (; address < end; address += sz) {
7868a208 3341 ptep = huge_pte_offset(mm, address, sz);
4c887265 3342 if (!ptep)
c7546f8f
DG
3343 continue;
3344
cb900f41 3345 ptl = huge_pte_lock(h, mm, ptep);
31d49da5
AK
3346 if (huge_pmd_unshare(mm, &address, ptep)) {
3347 spin_unlock(ptl);
3348 continue;
3349 }
39dde65c 3350
6629326b 3351 pte = huge_ptep_get(ptep);
31d49da5
AK
3352 if (huge_pte_none(pte)) {
3353 spin_unlock(ptl);
3354 continue;
3355 }
6629326b
HD
3356
3357 /*
9fbc1f63
NH
3358 * Migrating hugepage or HWPoisoned hugepage is already
3359 * unmapped and its refcount is dropped, so just clear pte here.
6629326b 3360 */
9fbc1f63 3361 if (unlikely(!pte_present(pte))) {
9386fac3 3362 huge_pte_clear(mm, address, ptep, sz);
31d49da5
AK
3363 spin_unlock(ptl);
3364 continue;
8c4894c6 3365 }
6629326b
HD
3366
3367 page = pte_page(pte);
04f2cbe3
MG
3368 /*
3369 * If a reference page is supplied, it is because a specific
3370 * page is being unmapped, not a range. Ensure the page we
3371 * are about to unmap is the actual page of interest.
3372 */
3373 if (ref_page) {
31d49da5
AK
3374 if (page != ref_page) {
3375 spin_unlock(ptl);
3376 continue;
3377 }
04f2cbe3
MG
3378 /*
3379 * Mark the VMA as having unmapped its page so that
3380 * future faults in this VMA will fail rather than
3381 * looking like data was lost
3382 */
3383 set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
3384 }
3385
c7546f8f 3386 pte = huge_ptep_get_and_clear(mm, address, ptep);
b528e4b6 3387 tlb_remove_huge_tlb_entry(h, tlb, ptep, address);
106c992a 3388 if (huge_pte_dirty(pte))
6649a386 3389 set_page_dirty(page);
9e81130b 3390
5d317b2b 3391 hugetlb_count_sub(pages_per_huge_page(h), mm);
d281ee61 3392 page_remove_rmap(page, true);
31d49da5 3393
cb900f41 3394 spin_unlock(ptl);
e77b0852 3395 tlb_remove_page_size(tlb, page, huge_page_size(h));
31d49da5
AK
3396 /*
3397 * Bail out after unmapping reference page if supplied
3398 */
3399 if (ref_page)
3400 break;
fe1668ae 3401 }
2ec74c3e 3402 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
24669e58 3403 tlb_end_vma(tlb, vma);
1da177e4 3404}
63551ae0 3405
d833352a
MG
3406void __unmap_hugepage_range_final(struct mmu_gather *tlb,
3407 struct vm_area_struct *vma, unsigned long start,
3408 unsigned long end, struct page *ref_page)
3409{
3410 __unmap_hugepage_range(tlb, vma, start, end, ref_page);
3411
3412 /*
3413 * Clear this flag so that x86's huge_pmd_share page_table_shareable
3414 * test will fail on a vma being torn down, and not grab a page table
3415 * on its way out. We're lucky that the flag has such an appropriate
3416 * name, and can in fact be safely cleared here. We could clear it
3417 * before the __unmap_hugepage_range above, but all that's necessary
c8c06efa 3418 * is to clear it before releasing the i_mmap_rwsem. This works
d833352a 3419 * because in the context this is called, the VMA is about to be
c8c06efa 3420 * destroyed and the i_mmap_rwsem is held.
d833352a
MG
3421 */
3422 vma->vm_flags &= ~VM_MAYSHARE;
3423}
3424
502717f4 3425void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
04f2cbe3 3426 unsigned long end, struct page *ref_page)
502717f4 3427{
24669e58
AK
3428 struct mm_struct *mm;
3429 struct mmu_gather tlb;
3430
3431 mm = vma->vm_mm;
3432
2b047252 3433 tlb_gather_mmu(&tlb, mm, start, end);
24669e58
AK
3434 __unmap_hugepage_range(&tlb, vma, start, end, ref_page);
3435 tlb_finish_mmu(&tlb, start, end);
502717f4
CK
3436}
3437
04f2cbe3
MG
3438/*
3439 * This is called when the original mapper is failing to COW a MAP_PRIVATE
3440 * mappping it owns the reserve page for. The intention is to unmap the page
3441 * from other VMAs and let the children be SIGKILLed if they are faulting the
3442 * same region.
3443 */
2f4612af
DB
3444static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
3445 struct page *page, unsigned long address)
04f2cbe3 3446{
7526674d 3447 struct hstate *h = hstate_vma(vma);
04f2cbe3
MG
3448 struct vm_area_struct *iter_vma;
3449 struct address_space *mapping;
04f2cbe3
MG
3450 pgoff_t pgoff;
3451
3452 /*
3453 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
3454 * from page cache lookup which is in HPAGE_SIZE units.
3455 */
7526674d 3456 address = address & huge_page_mask(h);
36e4f20a
MH
3457 pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
3458 vma->vm_pgoff;
93c76a3d 3459 mapping = vma->vm_file->f_mapping;
04f2cbe3 3460
4eb2b1dc
MG
3461 /*
3462 * Take the mapping lock for the duration of the table walk. As
3463 * this mapping should be shared between all the VMAs,
3464 * __unmap_hugepage_range() is called as the lock is already held
3465 */
83cde9e8 3466 i_mmap_lock_write(mapping);
6b2dbba8 3467 vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
04f2cbe3
MG
3468 /* Do not unmap the current VMA */
3469 if (iter_vma == vma)
3470 continue;
3471
2f84a899
MG
3472 /*
3473 * Shared VMAs have their own reserves and do not affect
3474 * MAP_PRIVATE accounting but it is possible that a shared
3475 * VMA is using the same page so check and skip such VMAs.
3476 */
3477 if (iter_vma->vm_flags & VM_MAYSHARE)
3478 continue;
3479
04f2cbe3
MG
3480 /*
3481 * Unmap the page from other VMAs without their own reserves.
3482 * They get marked to be SIGKILLed if they fault in these
3483 * areas. This is because a future no-page fault on this VMA
3484 * could insert a zeroed page instead of the data existing
3485 * from the time of fork. This would look like data corruption
3486 */
3487 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
24669e58
AK
3488 unmap_hugepage_range(iter_vma, address,
3489 address + huge_page_size(h), page);
04f2cbe3 3490 }
83cde9e8 3491 i_mmap_unlock_write(mapping);
04f2cbe3
MG
3492}
3493
0fe6e20b
NH
3494/*
3495 * Hugetlb_cow() should be called with page lock of the original hugepage held.
ef009b25
MH
3496 * Called with hugetlb_instantiation_mutex held and pte_page locked so we
3497 * cannot race with other handlers or page migration.
3498 * Keep the pte_same checks anyway to make transition from the mutex easier.
0fe6e20b 3499 */
1e8f889b 3500static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
3999f52e
AK
3501 unsigned long address, pte_t *ptep,
3502 struct page *pagecache_page, spinlock_t *ptl)
1e8f889b 3503{
3999f52e 3504 pte_t pte;
a5516438 3505 struct hstate *h = hstate_vma(vma);
1e8f889b 3506 struct page *old_page, *new_page;
ad4404a2 3507 int ret = 0, outside_reserve = 0;
2ec74c3e
SG
3508 unsigned long mmun_start; /* For mmu_notifiers */
3509 unsigned long mmun_end; /* For mmu_notifiers */
1e8f889b 3510
3999f52e 3511 pte = huge_ptep_get(ptep);
1e8f889b
DG
3512 old_page = pte_page(pte);
3513
04f2cbe3 3514retry_avoidcopy:
1e8f889b
DG
3515 /* If no-one else is actually using this page, avoid the copy
3516 * and just make the page writable */
37a2140d 3517 if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
5a49973d 3518 page_move_anon_rmap(old_page, vma);
1e8f889b 3519 set_huge_ptep_writable(vma, address, ptep);
83c54070 3520 return 0;
1e8f889b
DG
3521 }
3522
04f2cbe3
MG
3523 /*
3524 * If the process that created a MAP_PRIVATE mapping is about to
3525 * perform a COW due to a shared page count, attempt to satisfy
3526 * the allocation without using the existing reserves. The pagecache
3527 * page is used to determine if the reserve at this address was
3528 * consumed or not. If reserves were used, a partial faulted mapping
3529 * at the time of fork() could consume its reserves on COW instead
3530 * of the full address range.
3531 */
5944d011 3532 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
04f2cbe3
MG
3533 old_page != pagecache_page)
3534 outside_reserve = 1;
3535
09cbfeaf 3536 get_page(old_page);
b76c8cfb 3537
ad4404a2
DB
3538 /*
3539 * Drop page table lock as buddy allocator may be called. It will
3540 * be acquired again before returning to the caller, as expected.
3541 */
cb900f41 3542 spin_unlock(ptl);
04f2cbe3 3543 new_page = alloc_huge_page(vma, address, outside_reserve);
1e8f889b 3544
2fc39cec 3545 if (IS_ERR(new_page)) {
04f2cbe3
MG
3546 /*
3547 * If a process owning a MAP_PRIVATE mapping fails to COW,
3548 * it is due to references held by a child and an insufficient
3549 * huge page pool. To guarantee the original mappers
3550 * reliability, unmap the page from child processes. The child
3551 * may get SIGKILLed if it later faults.
3552 */
3553 if (outside_reserve) {
09cbfeaf 3554 put_page(old_page);
04f2cbe3 3555 BUG_ON(huge_pte_none(pte));
2f4612af
DB
3556 unmap_ref_private(mm, vma, old_page, address);
3557 BUG_ON(huge_pte_none(pte));
3558 spin_lock(ptl);
7868a208
PA
3559 ptep = huge_pte_offset(mm, address & huge_page_mask(h),
3560 huge_page_size(h));
2f4612af
DB
3561 if (likely(ptep &&
3562 pte_same(huge_ptep_get(ptep), pte)))
3563 goto retry_avoidcopy;
3564 /*
3565 * race occurs while re-acquiring page table
3566 * lock, and our job is done.
3567 */
3568 return 0;
04f2cbe3
MG
3569 }
3570
ad4404a2
DB
3571 ret = (PTR_ERR(new_page) == -ENOMEM) ?
3572 VM_FAULT_OOM : VM_FAULT_SIGBUS;
3573 goto out_release_old;
1e8f889b
DG
3574 }
3575
0fe6e20b
NH
3576 /*
3577 * When the original hugepage is shared one, it does not have
3578 * anon_vma prepared.
3579 */
44e2aa93 3580 if (unlikely(anon_vma_prepare(vma))) {
ad4404a2
DB
3581 ret = VM_FAULT_OOM;
3582 goto out_release_all;
44e2aa93 3583 }
0fe6e20b 3584
47ad8475
AA
3585 copy_user_huge_page(new_page, old_page, address, vma,
3586 pages_per_huge_page(h));
0ed361de 3587 __SetPageUptodate(new_page);
bcc54222 3588 set_page_huge_active(new_page);
1e8f889b 3589
2ec74c3e
SG
3590 mmun_start = address & huge_page_mask(h);
3591 mmun_end = mmun_start + huge_page_size(h);
3592 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
ad4404a2 3593
b76c8cfb 3594 /*
cb900f41 3595 * Retake the page table lock to check for racing updates
b76c8cfb
LW
3596 * before the page tables are altered
3597 */
cb900f41 3598 spin_lock(ptl);
7868a208
PA
3599 ptep = huge_pte_offset(mm, address & huge_page_mask(h),
3600 huge_page_size(h));
a9af0c5d 3601 if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
07443a85
JK
3602 ClearPagePrivate(new_page);
3603
1e8f889b 3604 /* Break COW */
8fe627ec 3605 huge_ptep_clear_flush(vma, address, ptep);
34ee645e 3606 mmu_notifier_invalidate_range(mm, mmun_start, mmun_end);
1e8f889b
DG
3607 set_huge_pte_at(mm, address, ptep,
3608 make_huge_pte(vma, new_page, 1));
d281ee61 3609 page_remove_rmap(old_page, true);
cd67f0d2 3610 hugepage_add_new_anon_rmap(new_page, vma, address);
1e8f889b
DG
3611 /* Make the old page be freed below */
3612 new_page = old_page;
3613 }
cb900f41 3614 spin_unlock(ptl);
2ec74c3e 3615 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
ad4404a2 3616out_release_all:
96b96a96 3617 restore_reserve_on_error(h, vma, address, new_page);
09cbfeaf 3618 put_page(new_page);
ad4404a2 3619out_release_old:
09cbfeaf 3620 put_page(old_page);
8312034f 3621
ad4404a2
DB
3622 spin_lock(ptl); /* Caller expects lock to be held */
3623 return ret;
1e8f889b
DG
3624}
3625
04f2cbe3 3626/* Return the pagecache page at a given address within a VMA */
a5516438
AK
3627static struct page *hugetlbfs_pagecache_page(struct hstate *h,
3628 struct vm_area_struct *vma, unsigned long address)
04f2cbe3
MG
3629{
3630 struct address_space *mapping;
e7c4b0bf 3631 pgoff_t idx;
04f2cbe3
MG
3632
3633 mapping = vma->vm_file->f_mapping;
a5516438 3634 idx = vma_hugecache_offset(h, vma, address);
04f2cbe3
MG
3635
3636 return find_lock_page(mapping, idx);
3637}
3638
3ae77f43
HD
3639/*
3640 * Return whether there is a pagecache page to back given address within VMA.
3641 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
3642 */
3643static bool hugetlbfs_pagecache_present(struct hstate *h,
2a15efc9
HD
3644 struct vm_area_struct *vma, unsigned long address)
3645{
3646 struct address_space *mapping;
3647 pgoff_t idx;
3648 struct page *page;
3649
3650 mapping = vma->vm_file->f_mapping;
3651 idx = vma_hugecache_offset(h, vma, address);
3652
3653 page = find_get_page(mapping, idx);
3654 if (page)
3655 put_page(page);
3656 return page != NULL;
3657}
3658
ab76ad54
MK
3659int huge_add_to_page_cache(struct page *page, struct address_space *mapping,
3660 pgoff_t idx)
3661{
3662 struct inode *inode = mapping->host;
3663 struct hstate *h = hstate_inode(inode);
3664 int err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
3665
3666 if (err)
3667 return err;
3668 ClearPagePrivate(page);
3669
3670 spin_lock(&inode->i_lock);
3671 inode->i_blocks += blocks_per_huge_page(h);
3672 spin_unlock(&inode->i_lock);
3673 return 0;
3674}
3675
a1ed3dda 3676static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
8382d914
DB
3677 struct address_space *mapping, pgoff_t idx,
3678 unsigned long address, pte_t *ptep, unsigned int flags)
ac9b9c66 3679{
a5516438 3680 struct hstate *h = hstate_vma(vma);
ac9b9c66 3681 int ret = VM_FAULT_SIGBUS;
409eb8c2 3682 int anon_rmap = 0;
4c887265 3683 unsigned long size;
4c887265 3684 struct page *page;
1e8f889b 3685 pte_t new_pte;
cb900f41 3686 spinlock_t *ptl;
4c887265 3687
04f2cbe3
MG
3688 /*
3689 * Currently, we are forced to kill the process in the event the
3690 * original mapper has unmapped pages from the child due to a failed
25985edc 3691 * COW. Warn that such a situation has occurred as it may not be obvious
04f2cbe3
MG
3692 */
3693 if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
910154d5 3694 pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n",
ffb22af5 3695 current->pid);
04f2cbe3
MG
3696 return ret;
3697 }
3698
4c887265
AL
3699 /*
3700 * Use page lock to guard against racing truncation
3701 * before we get page_table_lock.
3702 */
6bda666a
CL
3703retry:
3704 page = find_lock_page(mapping, idx);
3705 if (!page) {
a5516438 3706 size = i_size_read(mapping->host) >> huge_page_shift(h);
ebed4bfc
HD
3707 if (idx >= size)
3708 goto out;
1a1aad8a
MK
3709
3710 /*
3711 * Check for page in userfault range
3712 */
3713 if (userfaultfd_missing(vma)) {
3714 u32 hash;
3715 struct vm_fault vmf = {
3716 .vma = vma,
3717 .address = address,
3718 .flags = flags,
3719 /*
3720 * Hard to debug if it ends up being
3721 * used by a callee that assumes
3722 * something about the other
3723 * uninitialized fields... same as in
3724 * memory.c
3725 */
3726 };
3727
3728 /*
3729 * hugetlb_fault_mutex must be dropped before
3730 * handling userfault. Reacquire after handling
3731 * fault to make calling code simpler.
3732 */
3733 hash = hugetlb_fault_mutex_hash(h, mm, vma, mapping,
3734 idx, address);
3735 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
3736 ret = handle_userfault(&vmf, VM_UFFD_MISSING);
3737 mutex_lock(&hugetlb_fault_mutex_table[hash]);
3738 goto out;
3739 }
3740
04f2cbe3 3741 page = alloc_huge_page(vma, address, 0);
2fc39cec 3742 if (IS_ERR(page)) {
76dcee75
AK
3743 ret = PTR_ERR(page);
3744 if (ret == -ENOMEM)
3745 ret = VM_FAULT_OOM;
3746 else
3747 ret = VM_FAULT_SIGBUS;
6bda666a
CL
3748 goto out;
3749 }
47ad8475 3750 clear_huge_page(page, address, pages_per_huge_page(h));
0ed361de 3751 __SetPageUptodate(page);
bcc54222 3752 set_page_huge_active(page);
ac9b9c66 3753
f83a275d 3754 if (vma->vm_flags & VM_MAYSHARE) {
ab76ad54 3755 int err = huge_add_to_page_cache(page, mapping, idx);
6bda666a
CL
3756 if (err) {
3757 put_page(page);
6bda666a
CL
3758 if (err == -EEXIST)
3759 goto retry;
3760 goto out;
3761 }
23be7468 3762 } else {
6bda666a 3763 lock_page(page);
0fe6e20b
NH
3764 if (unlikely(anon_vma_prepare(vma))) {
3765 ret = VM_FAULT_OOM;
3766 goto backout_unlocked;
3767 }
409eb8c2 3768 anon_rmap = 1;
23be7468 3769 }
0fe6e20b 3770 } else {
998b4382
NH
3771 /*
3772 * If memory error occurs between mmap() and fault, some process
3773 * don't have hwpoisoned swap entry for errored virtual address.
3774 * So we need to block hugepage fault by PG_hwpoison bit check.
3775 */
3776 if (unlikely(PageHWPoison(page))) {
32f84528 3777 ret = VM_FAULT_HWPOISON |
972dc4de 3778 VM_FAULT_SET_HINDEX(hstate_index(h));
998b4382
NH
3779 goto backout_unlocked;
3780 }
6bda666a 3781 }
1e8f889b 3782
57303d80
AW
3783 /*
3784 * If we are going to COW a private mapping later, we examine the
3785 * pending reservations for this page now. This will ensure that
3786 * any allocations necessary to record that reservation occur outside
3787 * the spinlock.
3788 */
5e911373 3789 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
2b26736c
AW
3790 if (vma_needs_reservation(h, vma, address) < 0) {
3791 ret = VM_FAULT_OOM;
3792 goto backout_unlocked;
3793 }
5e911373 3794 /* Just decrements count, does not deallocate */
feba16e2 3795 vma_end_reservation(h, vma, address);
5e911373 3796 }
57303d80 3797
8bea8052 3798 ptl = huge_pte_lock(h, mm, ptep);
a5516438 3799 size = i_size_read(mapping->host) >> huge_page_shift(h);
4c887265
AL
3800 if (idx >= size)
3801 goto backout;
3802
83c54070 3803 ret = 0;
7f2e9525 3804 if (!huge_pte_none(huge_ptep_get(ptep)))
4c887265
AL
3805 goto backout;
3806
07443a85
JK
3807 if (anon_rmap) {
3808 ClearPagePrivate(page);
409eb8c2 3809 hugepage_add_new_anon_rmap(page, vma, address);
ac714904 3810 } else
53f9263b 3811 page_dup_rmap(page, true);
1e8f889b
DG
3812 new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
3813 && (vma->vm_flags & VM_SHARED)));
3814 set_huge_pte_at(mm, address, ptep, new_pte);
3815
5d317b2b 3816 hugetlb_count_add(pages_per_huge_page(h), mm);
788c7df4 3817 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
1e8f889b 3818 /* Optimization, do the COW without a second fault */
3999f52e 3819 ret = hugetlb_cow(mm, vma, address, ptep, page, ptl);
1e8f889b
DG
3820 }
3821
cb900f41 3822 spin_unlock(ptl);
4c887265
AL
3823 unlock_page(page);
3824out:
ac9b9c66 3825 return ret;
4c887265
AL
3826
3827backout:
cb900f41 3828 spin_unlock(ptl);
2b26736c 3829backout_unlocked:
4c887265 3830 unlock_page(page);
96b96a96 3831 restore_reserve_on_error(h, vma, address, page);
4c887265
AL
3832 put_page(page);
3833 goto out;
ac9b9c66
HD
3834}
3835
8382d914 3836#ifdef CONFIG_SMP
c672c7f2 3837u32 hugetlb_fault_mutex_hash(struct hstate *h, struct mm_struct *mm,
8382d914
DB
3838 struct vm_area_struct *vma,
3839 struct address_space *mapping,
3840 pgoff_t idx, unsigned long address)
3841{
3842 unsigned long key[2];
3843 u32 hash;
3844
3845 if (vma->vm_flags & VM_SHARED) {
3846 key[0] = (unsigned long) mapping;
3847 key[1] = idx;
3848 } else {
3849 key[0] = (unsigned long) mm;
3850 key[1] = address >> huge_page_shift(h);
3851 }
3852
3853 hash = jhash2((u32 *)&key, sizeof(key)/sizeof(u32), 0);
3854
3855 return hash & (num_fault_mutexes - 1);
3856}
3857#else
3858/*
3859 * For uniprocesor systems we always use a single mutex, so just
3860 * return 0 and avoid the hashing overhead.
3861 */
c672c7f2 3862u32 hugetlb_fault_mutex_hash(struct hstate *h, struct mm_struct *mm,
8382d914
DB
3863 struct vm_area_struct *vma,
3864 struct address_space *mapping,
3865 pgoff_t idx, unsigned long address)
3866{
3867 return 0;
3868}
3869#endif
3870
86e5216f 3871int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
788c7df4 3872 unsigned long address, unsigned int flags)
86e5216f 3873{
8382d914 3874 pte_t *ptep, entry;
cb900f41 3875 spinlock_t *ptl;
1e8f889b 3876 int ret;
8382d914
DB
3877 u32 hash;
3878 pgoff_t idx;
0fe6e20b 3879 struct page *page = NULL;
57303d80 3880 struct page *pagecache_page = NULL;
a5516438 3881 struct hstate *h = hstate_vma(vma);
8382d914 3882 struct address_space *mapping;
0f792cf9 3883 int need_wait_lock = 0;
86e5216f 3884
1e16a539
KH
3885 address &= huge_page_mask(h);
3886
7868a208 3887 ptep = huge_pte_offset(mm, address, huge_page_size(h));
fd6a03ed
NH
3888 if (ptep) {
3889 entry = huge_ptep_get(ptep);
290408d4 3890 if (unlikely(is_hugetlb_entry_migration(entry))) {
cb900f41 3891 migration_entry_wait_huge(vma, mm, ptep);
290408d4
NH
3892 return 0;
3893 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
32f84528 3894 return VM_FAULT_HWPOISON_LARGE |
972dc4de 3895 VM_FAULT_SET_HINDEX(hstate_index(h));
0d777df5
NH
3896 } else {
3897 ptep = huge_pte_alloc(mm, address, huge_page_size(h));
3898 if (!ptep)
3899 return VM_FAULT_OOM;
fd6a03ed
NH
3900 }
3901
8382d914
DB
3902 mapping = vma->vm_file->f_mapping;
3903 idx = vma_hugecache_offset(h, vma, address);
3904
3935baa9
DG
3905 /*
3906 * Serialize hugepage allocation and instantiation, so that we don't
3907 * get spurious allocation failures if two CPUs race to instantiate
3908 * the same page in the page cache.
3909 */
c672c7f2
MK
3910 hash = hugetlb_fault_mutex_hash(h, mm, vma, mapping, idx, address);
3911 mutex_lock(&hugetlb_fault_mutex_table[hash]);
8382d914 3912
7f2e9525
GS
3913 entry = huge_ptep_get(ptep);
3914 if (huge_pte_none(entry)) {
8382d914 3915 ret = hugetlb_no_page(mm, vma, mapping, idx, address, ptep, flags);
b4d1d99f 3916 goto out_mutex;
3935baa9 3917 }
86e5216f 3918
83c54070 3919 ret = 0;
1e8f889b 3920
0f792cf9
NH
3921 /*
3922 * entry could be a migration/hwpoison entry at this point, so this
3923 * check prevents the kernel from going below assuming that we have
3924 * a active hugepage in pagecache. This goto expects the 2nd page fault,
3925 * and is_hugetlb_entry_(migration|hwpoisoned) check will properly
3926 * handle it.
3927 */
3928 if (!pte_present(entry))
3929 goto out_mutex;
3930
57303d80
AW
3931 /*
3932 * If we are going to COW the mapping later, we examine the pending
3933 * reservations for this page now. This will ensure that any
3934 * allocations necessary to record that reservation occur outside the
3935 * spinlock. For private mappings, we also lookup the pagecache
3936 * page now as it is used to determine if a reservation has been
3937 * consumed.
3938 */
106c992a 3939 if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
2b26736c
AW
3940 if (vma_needs_reservation(h, vma, address) < 0) {
3941 ret = VM_FAULT_OOM;
b4d1d99f 3942 goto out_mutex;
2b26736c 3943 }
5e911373 3944 /* Just decrements count, does not deallocate */
feba16e2 3945 vma_end_reservation(h, vma, address);
57303d80 3946
f83a275d 3947 if (!(vma->vm_flags & VM_MAYSHARE))
57303d80
AW
3948 pagecache_page = hugetlbfs_pagecache_page(h,
3949 vma, address);
3950 }
3951
0f792cf9
NH
3952 ptl = huge_pte_lock(h, mm, ptep);
3953
3954 /* Check for a racing update before calling hugetlb_cow */
3955 if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
3956 goto out_ptl;
3957
56c9cfb1
NH
3958 /*
3959 * hugetlb_cow() requires page locks of pte_page(entry) and
3960 * pagecache_page, so here we need take the former one
3961 * when page != pagecache_page or !pagecache_page.
56c9cfb1
NH
3962 */
3963 page = pte_page(entry);
3964 if (page != pagecache_page)
0f792cf9
NH
3965 if (!trylock_page(page)) {
3966 need_wait_lock = 1;
3967 goto out_ptl;
3968 }
b4d1d99f 3969
0f792cf9 3970 get_page(page);
b4d1d99f 3971
788c7df4 3972 if (flags & FAULT_FLAG_WRITE) {
106c992a 3973 if (!huge_pte_write(entry)) {
3999f52e
AK
3974 ret = hugetlb_cow(mm, vma, address, ptep,
3975 pagecache_page, ptl);
0f792cf9 3976 goto out_put_page;
b4d1d99f 3977 }
106c992a 3978 entry = huge_pte_mkdirty(entry);
b4d1d99f
DG
3979 }
3980 entry = pte_mkyoung(entry);
788c7df4
HD
3981 if (huge_ptep_set_access_flags(vma, address, ptep, entry,
3982 flags & FAULT_FLAG_WRITE))
4b3073e1 3983 update_mmu_cache(vma, address, ptep);
0f792cf9
NH
3984out_put_page:
3985 if (page != pagecache_page)
3986 unlock_page(page);
3987 put_page(page);
cb900f41
KS
3988out_ptl:
3989 spin_unlock(ptl);
57303d80
AW
3990
3991 if (pagecache_page) {
3992 unlock_page(pagecache_page);
3993 put_page(pagecache_page);
3994 }
b4d1d99f 3995out_mutex:
c672c7f2 3996 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
0f792cf9
NH
3997 /*
3998 * Generally it's safe to hold refcount during waiting page lock. But
3999 * here we just wait to defer the next page fault to avoid busy loop and
4000 * the page is not used after unlocked before returning from the current
4001 * page fault. So we are safe from accessing freed page, even if we wait
4002 * here without taking refcount.
4003 */
4004 if (need_wait_lock)
4005 wait_on_page_locked(page);
1e8f889b 4006 return ret;
86e5216f
AL
4007}
4008
8fb5debc
MK
4009/*
4010 * Used by userfaultfd UFFDIO_COPY. Based on mcopy_atomic_pte with
4011 * modifications for huge pages.
4012 */
4013int hugetlb_mcopy_atomic_pte(struct mm_struct *dst_mm,
4014 pte_t *dst_pte,
4015 struct vm_area_struct *dst_vma,
4016 unsigned long dst_addr,
4017 unsigned long src_addr,
4018 struct page **pagep)
4019{
1e392147
AA
4020 struct address_space *mapping;
4021 pgoff_t idx;
4022 unsigned long size;
1c9e8def 4023 int vm_shared = dst_vma->vm_flags & VM_SHARED;
8fb5debc
MK
4024 struct hstate *h = hstate_vma(dst_vma);
4025 pte_t _dst_pte;
4026 spinlock_t *ptl;
4027 int ret;
4028 struct page *page;
4029
4030 if (!*pagep) {
4031 ret = -ENOMEM;
4032 page = alloc_huge_page(dst_vma, dst_addr, 0);
4033 if (IS_ERR(page))
4034 goto out;
4035
4036 ret = copy_huge_page_from_user(page,
4037 (const void __user *) src_addr,
810a56b9 4038 pages_per_huge_page(h), false);
8fb5debc
MK
4039
4040 /* fallback to copy_from_user outside mmap_sem */
4041 if (unlikely(ret)) {
4042 ret = -EFAULT;
4043 *pagep = page;
4044 /* don't free the page */
4045 goto out;
4046 }
4047 } else {
4048 page = *pagep;
4049 *pagep = NULL;
4050 }
4051
4052 /*
4053 * The memory barrier inside __SetPageUptodate makes sure that
4054 * preceding stores to the page contents become visible before
4055 * the set_pte_at() write.
4056 */
4057 __SetPageUptodate(page);
4058 set_page_huge_active(page);
4059
1e392147
AA
4060 mapping = dst_vma->vm_file->f_mapping;
4061 idx = vma_hugecache_offset(h, dst_vma, dst_addr);
4062
1c9e8def
MK
4063 /*
4064 * If shared, add to page cache
4065 */
4066 if (vm_shared) {
1e392147
AA
4067 size = i_size_read(mapping->host) >> huge_page_shift(h);
4068 ret = -EFAULT;
4069 if (idx >= size)
4070 goto out_release_nounlock;
1c9e8def 4071
1e392147
AA
4072 /*
4073 * Serialization between remove_inode_hugepages() and
4074 * huge_add_to_page_cache() below happens through the
4075 * hugetlb_fault_mutex_table that here must be hold by
4076 * the caller.
4077 */
1c9e8def
MK
4078 ret = huge_add_to_page_cache(page, mapping, idx);
4079 if (ret)
4080 goto out_release_nounlock;
4081 }
4082
8fb5debc
MK
4083 ptl = huge_pte_lockptr(h, dst_mm, dst_pte);
4084 spin_lock(ptl);
4085
1e392147
AA
4086 /*
4087 * Recheck the i_size after holding PT lock to make sure not
4088 * to leave any page mapped (as page_mapped()) beyond the end
4089 * of the i_size (remove_inode_hugepages() is strict about
4090 * enforcing that). If we bail out here, we'll also leave a
4091 * page in the radix tree in the vm_shared case beyond the end
4092 * of the i_size, but remove_inode_hugepages() will take care
4093 * of it as soon as we drop the hugetlb_fault_mutex_table.
4094 */
4095 size = i_size_read(mapping->host) >> huge_page_shift(h);
4096 ret = -EFAULT;
4097 if (idx >= size)
4098 goto out_release_unlock;
4099
8fb5debc
MK
4100 ret = -EEXIST;
4101 if (!huge_pte_none(huge_ptep_get(dst_pte)))
4102 goto out_release_unlock;
4103
1c9e8def
MK
4104 if (vm_shared) {
4105 page_dup_rmap(page, true);
4106 } else {
4107 ClearPagePrivate(page);
4108 hugepage_add_new_anon_rmap(page, dst_vma, dst_addr);
4109 }
8fb5debc
MK
4110
4111 _dst_pte = make_huge_pte(dst_vma, page, dst_vma->vm_flags & VM_WRITE);
4112 if (dst_vma->vm_flags & VM_WRITE)
4113 _dst_pte = huge_pte_mkdirty(_dst_pte);
4114 _dst_pte = pte_mkyoung(_dst_pte);
4115
4116 set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
4117
4118 (void)huge_ptep_set_access_flags(dst_vma, dst_addr, dst_pte, _dst_pte,
4119 dst_vma->vm_flags & VM_WRITE);
4120 hugetlb_count_add(pages_per_huge_page(h), dst_mm);
4121
4122 /* No need to invalidate - it was non-present before */
4123 update_mmu_cache(dst_vma, dst_addr, dst_pte);
4124
4125 spin_unlock(ptl);
1c9e8def
MK
4126 if (vm_shared)
4127 unlock_page(page);
8fb5debc
MK
4128 ret = 0;
4129out:
4130 return ret;
4131out_release_unlock:
4132 spin_unlock(ptl);
1c9e8def
MK
4133 if (vm_shared)
4134 unlock_page(page);
5af10dfd 4135out_release_nounlock:
8fb5debc
MK
4136 put_page(page);
4137 goto out;
4138}
4139
28a35716
ML
4140long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
4141 struct page **pages, struct vm_area_struct **vmas,
4142 unsigned long *position, unsigned long *nr_pages,
87ffc118 4143 long i, unsigned int flags, int *nonblocking)
63551ae0 4144{
d5d4b0aa
CK
4145 unsigned long pfn_offset;
4146 unsigned long vaddr = *position;
28a35716 4147 unsigned long remainder = *nr_pages;
a5516438 4148 struct hstate *h = hstate_vma(vma);
2be7cfed 4149 int err = -EFAULT;
63551ae0 4150
63551ae0 4151 while (vaddr < vma->vm_end && remainder) {
4c887265 4152 pte_t *pte;
cb900f41 4153 spinlock_t *ptl = NULL;
2a15efc9 4154 int absent;
4c887265 4155 struct page *page;
63551ae0 4156
02057967
DR
4157 /*
4158 * If we have a pending SIGKILL, don't keep faulting pages and
4159 * potentially allocating memory.
4160 */
4161 if (unlikely(fatal_signal_pending(current))) {
4162 remainder = 0;
4163 break;
4164 }
4165
4c887265
AL
4166 /*
4167 * Some archs (sparc64, sh*) have multiple pte_ts to
2a15efc9 4168 * each hugepage. We have to make sure we get the
4c887265 4169 * first, for the page indexing below to work.
cb900f41
KS
4170 *
4171 * Note that page table lock is not held when pte is null.
4c887265 4172 */
7868a208
PA
4173 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h),
4174 huge_page_size(h));
cb900f41
KS
4175 if (pte)
4176 ptl = huge_pte_lock(h, mm, pte);
2a15efc9
HD
4177 absent = !pte || huge_pte_none(huge_ptep_get(pte));
4178
4179 /*
4180 * When coredumping, it suits get_dump_page if we just return
3ae77f43
HD
4181 * an error where there's an empty slot with no huge pagecache
4182 * to back it. This way, we avoid allocating a hugepage, and
4183 * the sparse dumpfile avoids allocating disk blocks, but its
4184 * huge holes still show up with zeroes where they need to be.
2a15efc9 4185 */
3ae77f43
HD
4186 if (absent && (flags & FOLL_DUMP) &&
4187 !hugetlbfs_pagecache_present(h, vma, vaddr)) {
cb900f41
KS
4188 if (pte)
4189 spin_unlock(ptl);
2a15efc9
HD
4190 remainder = 0;
4191 break;
4192 }
63551ae0 4193
9cc3a5bd
NH
4194 /*
4195 * We need call hugetlb_fault for both hugepages under migration
4196 * (in which case hugetlb_fault waits for the migration,) and
4197 * hwpoisoned hugepages (in which case we need to prevent the
4198 * caller from accessing to them.) In order to do this, we use
4199 * here is_swap_pte instead of is_hugetlb_entry_migration and
4200 * is_hugetlb_entry_hwpoisoned. This is because it simply covers
4201 * both cases, and because we can't follow correct pages
4202 * directly from any kind of swap entries.
4203 */
4204 if (absent || is_swap_pte(huge_ptep_get(pte)) ||
106c992a
GS
4205 ((flags & FOLL_WRITE) &&
4206 !huge_pte_write(huge_ptep_get(pte)))) {
4c887265 4207 int ret;
87ffc118 4208 unsigned int fault_flags = 0;
63551ae0 4209
cb900f41
KS
4210 if (pte)
4211 spin_unlock(ptl);
87ffc118
AA
4212 if (flags & FOLL_WRITE)
4213 fault_flags |= FAULT_FLAG_WRITE;
4214 if (nonblocking)
4215 fault_flags |= FAULT_FLAG_ALLOW_RETRY;
4216 if (flags & FOLL_NOWAIT)
4217 fault_flags |= FAULT_FLAG_ALLOW_RETRY |
4218 FAULT_FLAG_RETRY_NOWAIT;
4219 if (flags & FOLL_TRIED) {
4220 VM_WARN_ON_ONCE(fault_flags &
4221 FAULT_FLAG_ALLOW_RETRY);
4222 fault_flags |= FAULT_FLAG_TRIED;
4223 }
4224 ret = hugetlb_fault(mm, vma, vaddr, fault_flags);
4225 if (ret & VM_FAULT_ERROR) {
2be7cfed 4226 err = vm_fault_to_errno(ret, flags);
87ffc118
AA
4227 remainder = 0;
4228 break;
4229 }
4230 if (ret & VM_FAULT_RETRY) {
4231 if (nonblocking)
4232 *nonblocking = 0;
4233 *nr_pages = 0;
4234 /*
4235 * VM_FAULT_RETRY must not return an
4236 * error, it will return zero
4237 * instead.
4238 *
4239 * No need to update "position" as the
4240 * caller will not check it after
4241 * *nr_pages is set to 0.
4242 */
4243 return i;
4244 }
4245 continue;
4c887265
AL
4246 }
4247
a5516438 4248 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
7f2e9525 4249 page = pte_page(huge_ptep_get(pte));
d5d4b0aa 4250same_page:
d6692183 4251 if (pages) {
2a15efc9 4252 pages[i] = mem_map_offset(page, pfn_offset);
ddc58f27 4253 get_page(pages[i]);
d6692183 4254 }
63551ae0
DG
4255
4256 if (vmas)
4257 vmas[i] = vma;
4258
4259 vaddr += PAGE_SIZE;
d5d4b0aa 4260 ++pfn_offset;
63551ae0
DG
4261 --remainder;
4262 ++i;
d5d4b0aa 4263 if (vaddr < vma->vm_end && remainder &&
a5516438 4264 pfn_offset < pages_per_huge_page(h)) {
d5d4b0aa
CK
4265 /*
4266 * We use pfn_offset to avoid touching the pageframes
4267 * of this compound page.
4268 */
4269 goto same_page;
4270 }
cb900f41 4271 spin_unlock(ptl);
63551ae0 4272 }
28a35716 4273 *nr_pages = remainder;
87ffc118
AA
4274 /*
4275 * setting position is actually required only if remainder is
4276 * not zero but it's faster not to add a "if (remainder)"
4277 * branch.
4278 */
63551ae0
DG
4279 *position = vaddr;
4280
2be7cfed 4281 return i ? i : err;
63551ae0 4282}
8f860591 4283
5491ae7b
AK
4284#ifndef __HAVE_ARCH_FLUSH_HUGETLB_TLB_RANGE
4285/*
4286 * ARCHes with special requirements for evicting HUGETLB backing TLB entries can
4287 * implement this.
4288 */
4289#define flush_hugetlb_tlb_range(vma, addr, end) flush_tlb_range(vma, addr, end)
4290#endif
4291
7da4d641 4292unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
8f860591
ZY
4293 unsigned long address, unsigned long end, pgprot_t newprot)
4294{
4295 struct mm_struct *mm = vma->vm_mm;
4296 unsigned long start = address;
4297 pte_t *ptep;
4298 pte_t pte;
a5516438 4299 struct hstate *h = hstate_vma(vma);
7da4d641 4300 unsigned long pages = 0;
8f860591
ZY
4301
4302 BUG_ON(address >= end);
4303 flush_cache_range(vma, address, end);
4304
a5338093 4305 mmu_notifier_invalidate_range_start(mm, start, end);
83cde9e8 4306 i_mmap_lock_write(vma->vm_file->f_mapping);
a5516438 4307 for (; address < end; address += huge_page_size(h)) {
cb900f41 4308 spinlock_t *ptl;
7868a208 4309 ptep = huge_pte_offset(mm, address, huge_page_size(h));
8f860591
ZY
4310 if (!ptep)
4311 continue;
cb900f41 4312 ptl = huge_pte_lock(h, mm, ptep);
7da4d641
PZ
4313 if (huge_pmd_unshare(mm, &address, ptep)) {
4314 pages++;
cb900f41 4315 spin_unlock(ptl);
39dde65c 4316 continue;
7da4d641 4317 }
a8bda28d
NH
4318 pte = huge_ptep_get(ptep);
4319 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
4320 spin_unlock(ptl);
4321 continue;
4322 }
4323 if (unlikely(is_hugetlb_entry_migration(pte))) {
4324 swp_entry_t entry = pte_to_swp_entry(pte);
4325
4326 if (is_write_migration_entry(entry)) {
4327 pte_t newpte;
4328
4329 make_migration_entry_read(&entry);
4330 newpte = swp_entry_to_pte(entry);
e5251fd4
PA
4331 set_huge_swap_pte_at(mm, address, ptep,
4332 newpte, huge_page_size(h));
a8bda28d
NH
4333 pages++;
4334 }
4335 spin_unlock(ptl);
4336 continue;
4337 }
4338 if (!huge_pte_none(pte)) {
8f860591 4339 pte = huge_ptep_get_and_clear(mm, address, ptep);
106c992a 4340 pte = pte_mkhuge(huge_pte_modify(pte, newprot));
be7517d6 4341 pte = arch_make_huge_pte(pte, vma, NULL, 0);
8f860591 4342 set_huge_pte_at(mm, address, ptep, pte);
7da4d641 4343 pages++;
8f860591 4344 }
cb900f41 4345 spin_unlock(ptl);
8f860591 4346 }
d833352a 4347 /*
c8c06efa 4348 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
d833352a 4349 * may have cleared our pud entry and done put_page on the page table:
c8c06efa 4350 * once we release i_mmap_rwsem, another task can do the final put_page
d833352a
MG
4351 * and that page table be reused and filled with junk.
4352 */
5491ae7b 4353 flush_hugetlb_tlb_range(vma, start, end);
0f10851e
JG
4354 /*
4355 * No need to call mmu_notifier_invalidate_range() we are downgrading
4356 * page table protection not changing it to point to a new page.
4357 *
4358 * See Documentation/vm/mmu_notifier.txt
4359 */
83cde9e8 4360 i_mmap_unlock_write(vma->vm_file->f_mapping);
a5338093 4361 mmu_notifier_invalidate_range_end(mm, start, end);
7da4d641
PZ
4362
4363 return pages << h->order;
8f860591
ZY
4364}
4365
a1e78772
MG
4366int hugetlb_reserve_pages(struct inode *inode,
4367 long from, long to,
5a6fe125 4368 struct vm_area_struct *vma,
ca16d140 4369 vm_flags_t vm_flags)
e4e574b7 4370{
17c9d12e 4371 long ret, chg;
a5516438 4372 struct hstate *h = hstate_inode(inode);
90481622 4373 struct hugepage_subpool *spool = subpool_inode(inode);
9119a41e 4374 struct resv_map *resv_map;
1c5ecae3 4375 long gbl_reserve;
e4e574b7 4376
17c9d12e
MG
4377 /*
4378 * Only apply hugepage reservation if asked. At fault time, an
4379 * attempt will be made for VM_NORESERVE to allocate a page
90481622 4380 * without using reserves
17c9d12e 4381 */
ca16d140 4382 if (vm_flags & VM_NORESERVE)
17c9d12e
MG
4383 return 0;
4384
a1e78772
MG
4385 /*
4386 * Shared mappings base their reservation on the number of pages that
4387 * are already allocated on behalf of the file. Private mappings need
4388 * to reserve the full area even if read-only as mprotect() may be
4389 * called to make the mapping read-write. Assume !vma is a shm mapping
4390 */
9119a41e 4391 if (!vma || vma->vm_flags & VM_MAYSHARE) {
4e35f483 4392 resv_map = inode_resv_map(inode);
9119a41e 4393
1406ec9b 4394 chg = region_chg(resv_map, from, to);
9119a41e
JK
4395
4396 } else {
4397 resv_map = resv_map_alloc();
17c9d12e
MG
4398 if (!resv_map)
4399 return -ENOMEM;
4400
a1e78772 4401 chg = to - from;
84afd99b 4402
17c9d12e
MG
4403 set_vma_resv_map(vma, resv_map);
4404 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
4405 }
4406
c50ac050
DH
4407 if (chg < 0) {
4408 ret = chg;
4409 goto out_err;
4410 }
8a630112 4411
1c5ecae3
MK
4412 /*
4413 * There must be enough pages in the subpool for the mapping. If
4414 * the subpool has a minimum size, there may be some global
4415 * reservations already in place (gbl_reserve).
4416 */
4417 gbl_reserve = hugepage_subpool_get_pages(spool, chg);
4418 if (gbl_reserve < 0) {
c50ac050
DH
4419 ret = -ENOSPC;
4420 goto out_err;
4421 }
5a6fe125
MG
4422
4423 /*
17c9d12e 4424 * Check enough hugepages are available for the reservation.
90481622 4425 * Hand the pages back to the subpool if there are not
5a6fe125 4426 */
1c5ecae3 4427 ret = hugetlb_acct_memory(h, gbl_reserve);
68842c9b 4428 if (ret < 0) {
1c5ecae3
MK
4429 /* put back original number of pages, chg */
4430 (void)hugepage_subpool_put_pages(spool, chg);
c50ac050 4431 goto out_err;
68842c9b 4432 }
17c9d12e
MG
4433
4434 /*
4435 * Account for the reservations made. Shared mappings record regions
4436 * that have reservations as they are shared by multiple VMAs.
4437 * When the last VMA disappears, the region map says how much
4438 * the reservation was and the page cache tells how much of
4439 * the reservation was consumed. Private mappings are per-VMA and
4440 * only the consumed reservations are tracked. When the VMA
4441 * disappears, the original reservation is the VMA size and the
4442 * consumed reservations are stored in the map. Hence, nothing
4443 * else has to be done for private mappings here
4444 */
33039678
MK
4445 if (!vma || vma->vm_flags & VM_MAYSHARE) {
4446 long add = region_add(resv_map, from, to);
4447
4448 if (unlikely(chg > add)) {
4449 /*
4450 * pages in this range were added to the reserve
4451 * map between region_chg and region_add. This
4452 * indicates a race with alloc_huge_page. Adjust
4453 * the subpool and reserve counts modified above
4454 * based on the difference.
4455 */
4456 long rsv_adjust;
4457
4458 rsv_adjust = hugepage_subpool_put_pages(spool,
4459 chg - add);
4460 hugetlb_acct_memory(h, -rsv_adjust);
4461 }
4462 }
a43a8c39 4463 return 0;
c50ac050 4464out_err:
5e911373 4465 if (!vma || vma->vm_flags & VM_MAYSHARE)
ff8c0c53
MK
4466 /* Don't call region_abort if region_chg failed */
4467 if (chg >= 0)
4468 region_abort(resv_map, from, to);
f031dd27
JK
4469 if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
4470 kref_put(&resv_map->refs, resv_map_release);
c50ac050 4471 return ret;
a43a8c39
CK
4472}
4473
b5cec28d
MK
4474long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
4475 long freed)
a43a8c39 4476{
a5516438 4477 struct hstate *h = hstate_inode(inode);
4e35f483 4478 struct resv_map *resv_map = inode_resv_map(inode);
9119a41e 4479 long chg = 0;
90481622 4480 struct hugepage_subpool *spool = subpool_inode(inode);
1c5ecae3 4481 long gbl_reserve;
45c682a6 4482
b5cec28d
MK
4483 if (resv_map) {
4484 chg = region_del(resv_map, start, end);
4485 /*
4486 * region_del() can fail in the rare case where a region
4487 * must be split and another region descriptor can not be
4488 * allocated. If end == LONG_MAX, it will not fail.
4489 */
4490 if (chg < 0)
4491 return chg;
4492 }
4493
45c682a6 4494 spin_lock(&inode->i_lock);
e4c6f8be 4495 inode->i_blocks -= (blocks_per_huge_page(h) * freed);
45c682a6
KC
4496 spin_unlock(&inode->i_lock);
4497
1c5ecae3
MK
4498 /*
4499 * If the subpool has a minimum size, the number of global
4500 * reservations to be released may be adjusted.
4501 */
4502 gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
4503 hugetlb_acct_memory(h, -gbl_reserve);
b5cec28d
MK
4504
4505 return 0;
a43a8c39 4506}
93f70f90 4507
3212b535
SC
4508#ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
4509static unsigned long page_table_shareable(struct vm_area_struct *svma,
4510 struct vm_area_struct *vma,
4511 unsigned long addr, pgoff_t idx)
4512{
4513 unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
4514 svma->vm_start;
4515 unsigned long sbase = saddr & PUD_MASK;
4516 unsigned long s_end = sbase + PUD_SIZE;
4517
4518 /* Allow segments to share if only one is marked locked */
de60f5f1
EM
4519 unsigned long vm_flags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
4520 unsigned long svm_flags = svma->vm_flags & VM_LOCKED_CLEAR_MASK;
3212b535
SC
4521
4522 /*
4523 * match the virtual addresses, permission and the alignment of the
4524 * page table page.
4525 */
4526 if (pmd_index(addr) != pmd_index(saddr) ||
4527 vm_flags != svm_flags ||
4528 sbase < svma->vm_start || svma->vm_end < s_end)
4529 return 0;
4530
4531 return saddr;
4532}
4533
31aafb45 4534static bool vma_shareable(struct vm_area_struct *vma, unsigned long addr)
3212b535
SC
4535{
4536 unsigned long base = addr & PUD_MASK;
4537 unsigned long end = base + PUD_SIZE;
4538
4539 /*
4540 * check on proper vm_flags and page table alignment
4541 */
4542 if (vma->vm_flags & VM_MAYSHARE &&
4543 vma->vm_start <= base && end <= vma->vm_end)
31aafb45
NK
4544 return true;
4545 return false;
3212b535
SC
4546}
4547
4548/*
4549 * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
4550 * and returns the corresponding pte. While this is not necessary for the
4551 * !shared pmd case because we can allocate the pmd later as well, it makes the
4552 * code much cleaner. pmd allocation is essential for the shared case because
c8c06efa 4553 * pud has to be populated inside the same i_mmap_rwsem section - otherwise
3212b535
SC
4554 * racing tasks could either miss the sharing (see huge_pte_offset) or select a
4555 * bad pmd for sharing.
4556 */
4557pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
4558{
4559 struct vm_area_struct *vma = find_vma(mm, addr);
4560 struct address_space *mapping = vma->vm_file->f_mapping;
4561 pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
4562 vma->vm_pgoff;
4563 struct vm_area_struct *svma;
4564 unsigned long saddr;
4565 pte_t *spte = NULL;
4566 pte_t *pte;
cb900f41 4567 spinlock_t *ptl;
3212b535
SC
4568
4569 if (!vma_shareable(vma, addr))
4570 return (pte_t *)pmd_alloc(mm, pud, addr);
4571
83cde9e8 4572 i_mmap_lock_write(mapping);
3212b535
SC
4573 vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
4574 if (svma == vma)
4575 continue;
4576
4577 saddr = page_table_shareable(svma, vma, addr, idx);
4578 if (saddr) {
7868a208
PA
4579 spte = huge_pte_offset(svma->vm_mm, saddr,
4580 vma_mmu_pagesize(svma));
3212b535
SC
4581 if (spte) {
4582 get_page(virt_to_page(spte));
4583 break;
4584 }
4585 }
4586 }
4587
4588 if (!spte)
4589 goto out;
4590
8bea8052 4591 ptl = huge_pte_lock(hstate_vma(vma), mm, spte);
dc6c9a35 4592 if (pud_none(*pud)) {
3212b535
SC
4593 pud_populate(mm, pud,
4594 (pmd_t *)((unsigned long)spte & PAGE_MASK));
c17b1f42 4595 mm_inc_nr_pmds(mm);
dc6c9a35 4596 } else {
3212b535 4597 put_page(virt_to_page(spte));
dc6c9a35 4598 }
cb900f41 4599 spin_unlock(ptl);
3212b535
SC
4600out:
4601 pte = (pte_t *)pmd_alloc(mm, pud, addr);
83cde9e8 4602 i_mmap_unlock_write(mapping);
3212b535
SC
4603 return pte;
4604}
4605
4606/*
4607 * unmap huge page backed by shared pte.
4608 *
4609 * Hugetlb pte page is ref counted at the time of mapping. If pte is shared
4610 * indicated by page_count > 1, unmap is achieved by clearing pud and
4611 * decrementing the ref count. If count == 1, the pte page is not shared.
4612 *
cb900f41 4613 * called with page table lock held.
3212b535
SC
4614 *
4615 * returns: 1 successfully unmapped a shared pte page
4616 * 0 the underlying pte page is not shared, or it is the last user
4617 */
4618int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
4619{
4620 pgd_t *pgd = pgd_offset(mm, *addr);
c2febafc
KS
4621 p4d_t *p4d = p4d_offset(pgd, *addr);
4622 pud_t *pud = pud_offset(p4d, *addr);
3212b535
SC
4623
4624 BUG_ON(page_count(virt_to_page(ptep)) == 0);
4625 if (page_count(virt_to_page(ptep)) == 1)
4626 return 0;
4627
4628 pud_clear(pud);
4629 put_page(virt_to_page(ptep));
dc6c9a35 4630 mm_dec_nr_pmds(mm);
3212b535
SC
4631 *addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE;
4632 return 1;
4633}
9e5fc74c
SC
4634#define want_pmd_share() (1)
4635#else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
4636pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
4637{
4638 return NULL;
4639}
e81f2d22
ZZ
4640
4641int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
4642{
4643 return 0;
4644}
9e5fc74c 4645#define want_pmd_share() (0)
3212b535
SC
4646#endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
4647
9e5fc74c
SC
4648#ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
4649pte_t *huge_pte_alloc(struct mm_struct *mm,
4650 unsigned long addr, unsigned long sz)
4651{
4652 pgd_t *pgd;
c2febafc 4653 p4d_t *p4d;
9e5fc74c
SC
4654 pud_t *pud;
4655 pte_t *pte = NULL;
4656
4657 pgd = pgd_offset(mm, addr);
f4f0a3d8
KS
4658 p4d = p4d_alloc(mm, pgd, addr);
4659 if (!p4d)
4660 return NULL;
c2febafc 4661 pud = pud_alloc(mm, p4d, addr);
9e5fc74c
SC
4662 if (pud) {
4663 if (sz == PUD_SIZE) {
4664 pte = (pte_t *)pud;
4665 } else {
4666 BUG_ON(sz != PMD_SIZE);
4667 if (want_pmd_share() && pud_none(*pud))
4668 pte = huge_pmd_share(mm, addr, pud);
4669 else
4670 pte = (pte_t *)pmd_alloc(mm, pud, addr);
4671 }
4672 }
4e666314 4673 BUG_ON(pte && pte_present(*pte) && !pte_huge(*pte));
9e5fc74c
SC
4674
4675 return pte;
4676}
4677
9b19df29
PA
4678/*
4679 * huge_pte_offset() - Walk the page table to resolve the hugepage
4680 * entry at address @addr
4681 *
4682 * Return: Pointer to page table or swap entry (PUD or PMD) for
4683 * address @addr, or NULL if a p*d_none() entry is encountered and the
4684 * size @sz doesn't match the hugepage size at this level of the page
4685 * table.
4686 */
7868a208
PA
4687pte_t *huge_pte_offset(struct mm_struct *mm,
4688 unsigned long addr, unsigned long sz)
9e5fc74c
SC
4689{
4690 pgd_t *pgd;
c2febafc 4691 p4d_t *p4d;
9e5fc74c 4692 pud_t *pud;
c2febafc 4693 pmd_t *pmd;
9e5fc74c
SC
4694
4695 pgd = pgd_offset(mm, addr);
c2febafc
KS
4696 if (!pgd_present(*pgd))
4697 return NULL;
4698 p4d = p4d_offset(pgd, addr);
4699 if (!p4d_present(*p4d))
4700 return NULL;
9b19df29 4701
c2febafc 4702 pud = pud_offset(p4d, addr);
9b19df29 4703 if (sz != PUD_SIZE && pud_none(*pud))
c2febafc 4704 return NULL;
9b19df29
PA
4705 /* hugepage or swap? */
4706 if (pud_huge(*pud) || !pud_present(*pud))
c2febafc 4707 return (pte_t *)pud;
9b19df29 4708
c2febafc 4709 pmd = pmd_offset(pud, addr);
9b19df29
PA
4710 if (sz != PMD_SIZE && pmd_none(*pmd))
4711 return NULL;
4712 /* hugepage or swap? */
4713 if (pmd_huge(*pmd) || !pmd_present(*pmd))
4714 return (pte_t *)pmd;
4715
4716 return NULL;
9e5fc74c
SC
4717}
4718
61f77eda
NH
4719#endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
4720
4721/*
4722 * These functions are overwritable if your architecture needs its own
4723 * behavior.
4724 */
4725struct page * __weak
4726follow_huge_addr(struct mm_struct *mm, unsigned long address,
4727 int write)
4728{
4729 return ERR_PTR(-EINVAL);
4730}
4731
4dc71451
AK
4732struct page * __weak
4733follow_huge_pd(struct vm_area_struct *vma,
4734 unsigned long address, hugepd_t hpd, int flags, int pdshift)
4735{
4736 WARN(1, "hugepd follow called with no support for hugepage directory format\n");
4737 return NULL;
4738}
4739
61f77eda 4740struct page * __weak
9e5fc74c 4741follow_huge_pmd(struct mm_struct *mm, unsigned long address,
e66f17ff 4742 pmd_t *pmd, int flags)
9e5fc74c 4743{
e66f17ff
NH
4744 struct page *page = NULL;
4745 spinlock_t *ptl;
c9d398fa 4746 pte_t pte;
e66f17ff
NH
4747retry:
4748 ptl = pmd_lockptr(mm, pmd);
4749 spin_lock(ptl);
4750 /*
4751 * make sure that the address range covered by this pmd is not
4752 * unmapped from other threads.
4753 */
4754 if (!pmd_huge(*pmd))
4755 goto out;
c9d398fa
NH
4756 pte = huge_ptep_get((pte_t *)pmd);
4757 if (pte_present(pte)) {
97534127 4758 page = pmd_page(*pmd) + ((address & ~PMD_MASK) >> PAGE_SHIFT);
e66f17ff
NH
4759 if (flags & FOLL_GET)
4760 get_page(page);
4761 } else {
c9d398fa 4762 if (is_hugetlb_entry_migration(pte)) {
e66f17ff
NH
4763 spin_unlock(ptl);
4764 __migration_entry_wait(mm, (pte_t *)pmd, ptl);
4765 goto retry;
4766 }
4767 /*
4768 * hwpoisoned entry is treated as no_page_table in
4769 * follow_page_mask().
4770 */
4771 }
4772out:
4773 spin_unlock(ptl);
9e5fc74c
SC
4774 return page;
4775}
4776
61f77eda 4777struct page * __weak
9e5fc74c 4778follow_huge_pud(struct mm_struct *mm, unsigned long address,
e66f17ff 4779 pud_t *pud, int flags)
9e5fc74c 4780{
e66f17ff
NH
4781 if (flags & FOLL_GET)
4782 return NULL;
9e5fc74c 4783
e66f17ff 4784 return pte_page(*(pte_t *)pud) + ((address & ~PUD_MASK) >> PAGE_SHIFT);
9e5fc74c
SC
4785}
4786
faaa5b62
AK
4787struct page * __weak
4788follow_huge_pgd(struct mm_struct *mm, unsigned long address, pgd_t *pgd, int flags)
4789{
4790 if (flags & FOLL_GET)
4791 return NULL;
4792
4793 return pte_page(*(pte_t *)pgd) + ((address & ~PGDIR_MASK) >> PAGE_SHIFT);
4794}
4795
31caf665
NH
4796bool isolate_huge_page(struct page *page, struct list_head *list)
4797{
bcc54222
NH
4798 bool ret = true;
4799
309381fe 4800 VM_BUG_ON_PAGE(!PageHead(page), page);
31caf665 4801 spin_lock(&hugetlb_lock);
bcc54222
NH
4802 if (!page_huge_active(page) || !get_page_unless_zero(page)) {
4803 ret = false;
4804 goto unlock;
4805 }
4806 clear_page_huge_active(page);
31caf665 4807 list_move_tail(&page->lru, list);
bcc54222 4808unlock:
31caf665 4809 spin_unlock(&hugetlb_lock);
bcc54222 4810 return ret;
31caf665
NH
4811}
4812
4813void putback_active_hugepage(struct page *page)
4814{
309381fe 4815 VM_BUG_ON_PAGE(!PageHead(page), page);
31caf665 4816 spin_lock(&hugetlb_lock);
bcc54222 4817 set_page_huge_active(page);
31caf665
NH
4818 list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
4819 spin_unlock(&hugetlb_lock);
4820 put_page(page);
4821}
ab5ac90a
MH
4822
4823void move_hugetlb_state(struct page *oldpage, struct page *newpage, int reason)
4824{
4825 struct hstate *h = page_hstate(oldpage);
4826
4827 hugetlb_cgroup_migrate(oldpage, newpage);
4828 set_page_owner_migrate_reason(newpage, reason);
4829
4830 /*
4831 * transfer temporary state of the new huge page. This is
4832 * reverse to other transitions because the newpage is going to
4833 * be final while the old one will be freed so it takes over
4834 * the temporary status.
4835 *
4836 * Also note that we have to transfer the per-node surplus state
4837 * here as well otherwise the global surplus count will not match
4838 * the per-node's.
4839 */
4840 if (PageHugeTemporary(newpage)) {
4841 int old_nid = page_to_nid(oldpage);
4842 int new_nid = page_to_nid(newpage);
4843
4844 SetPageHugeTemporary(oldpage);
4845 ClearPageHugeTemporary(newpage);
4846
4847 spin_lock(&hugetlb_lock);
4848 if (h->surplus_huge_pages_node[old_nid]) {
4849 h->surplus_huge_pages_node[old_nid]--;
4850 h->surplus_huge_pages_node[new_nid]++;
4851 }
4852 spin_unlock(&hugetlb_lock);
4853 }
4854}