net: ipv6 bind to device issue
[linux-2.6-block.git] / mm / hugetlb.c
CommitLineData
1da177e4
LT
1/*
2 * Generic hugetlb support.
3 * (C) William Irwin, April 2004
4 */
1da177e4
LT
5#include <linux/list.h>
6#include <linux/init.h>
7#include <linux/module.h>
8#include <linux/mm.h>
e1759c21 9#include <linux/seq_file.h>
1da177e4
LT
10#include <linux/sysctl.h>
11#include <linux/highmem.h>
cddb8a5c 12#include <linux/mmu_notifier.h>
1da177e4 13#include <linux/nodemask.h>
63551ae0 14#include <linux/pagemap.h>
5da7ca86 15#include <linux/mempolicy.h>
aea47ff3 16#include <linux/cpuset.h>
3935baa9 17#include <linux/mutex.h>
aa888a74 18#include <linux/bootmem.h>
a3437870 19#include <linux/sysfs.h>
5a0e3ad6 20#include <linux/slab.h>
d6606683 21
63551ae0
DG
22#include <asm/page.h>
23#include <asm/pgtable.h>
78a34ae2 24#include <asm/io.h>
63551ae0
DG
25
26#include <linux/hugetlb.h>
9a305230 27#include <linux/node.h>
7835e98b 28#include "internal.h"
1da177e4
LT
29
30const unsigned long hugetlb_zero = 0, hugetlb_infinity = ~0UL;
396faf03
MG
31static gfp_t htlb_alloc_mask = GFP_HIGHUSER;
32unsigned long hugepages_treat_as_movable;
a5516438 33
e5ff2159
AK
34static int max_hstate;
35unsigned int default_hstate_idx;
36struct hstate hstates[HUGE_MAX_HSTATE];
37
53ba51d2
JT
38__initdata LIST_HEAD(huge_boot_pages);
39
e5ff2159
AK
40/* for command line parsing */
41static struct hstate * __initdata parsed_hstate;
42static unsigned long __initdata default_hstate_max_huge_pages;
e11bfbfc 43static unsigned long __initdata default_hstate_size;
e5ff2159
AK
44
45#define for_each_hstate(h) \
46 for ((h) = hstates; (h) < &hstates[max_hstate]; (h)++)
396faf03 47
3935baa9
DG
48/*
49 * Protects updates to hugepage_freelists, nr_huge_pages, and free_huge_pages
50 */
51static DEFINE_SPINLOCK(hugetlb_lock);
0bd0f9fb 52
96822904
AW
53/*
54 * Region tracking -- allows tracking of reservations and instantiated pages
55 * across the pages in a mapping.
84afd99b
AW
56 *
57 * The region data structures are protected by a combination of the mmap_sem
58 * and the hugetlb_instantion_mutex. To access or modify a region the caller
59 * must either hold the mmap_sem for write, or the mmap_sem for read and
60 * the hugetlb_instantiation mutex:
61 *
62 * down_write(&mm->mmap_sem);
63 * or
64 * down_read(&mm->mmap_sem);
65 * mutex_lock(&hugetlb_instantiation_mutex);
96822904
AW
66 */
67struct file_region {
68 struct list_head link;
69 long from;
70 long to;
71};
72
73static long region_add(struct list_head *head, long f, long t)
74{
75 struct file_region *rg, *nrg, *trg;
76
77 /* Locate the region we are either in or before. */
78 list_for_each_entry(rg, head, link)
79 if (f <= rg->to)
80 break;
81
82 /* Round our left edge to the current segment if it encloses us. */
83 if (f > rg->from)
84 f = rg->from;
85
86 /* Check for and consume any regions we now overlap with. */
87 nrg = rg;
88 list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
89 if (&rg->link == head)
90 break;
91 if (rg->from > t)
92 break;
93
94 /* If this area reaches higher then extend our area to
95 * include it completely. If this is not the first area
96 * which we intend to reuse, free it. */
97 if (rg->to > t)
98 t = rg->to;
99 if (rg != nrg) {
100 list_del(&rg->link);
101 kfree(rg);
102 }
103 }
104 nrg->from = f;
105 nrg->to = t;
106 return 0;
107}
108
109static long region_chg(struct list_head *head, long f, long t)
110{
111 struct file_region *rg, *nrg;
112 long chg = 0;
113
114 /* Locate the region we are before or in. */
115 list_for_each_entry(rg, head, link)
116 if (f <= rg->to)
117 break;
118
119 /* If we are below the current region then a new region is required.
120 * Subtle, allocate a new region at the position but make it zero
121 * size such that we can guarantee to record the reservation. */
122 if (&rg->link == head || t < rg->from) {
123 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
124 if (!nrg)
125 return -ENOMEM;
126 nrg->from = f;
127 nrg->to = f;
128 INIT_LIST_HEAD(&nrg->link);
129 list_add(&nrg->link, rg->link.prev);
130
131 return t - f;
132 }
133
134 /* Round our left edge to the current segment if it encloses us. */
135 if (f > rg->from)
136 f = rg->from;
137 chg = t - f;
138
139 /* Check for and consume any regions we now overlap with. */
140 list_for_each_entry(rg, rg->link.prev, link) {
141 if (&rg->link == head)
142 break;
143 if (rg->from > t)
144 return chg;
145
146 /* We overlap with this area, if it extends futher than
147 * us then we must extend ourselves. Account for its
148 * existing reservation. */
149 if (rg->to > t) {
150 chg += rg->to - t;
151 t = rg->to;
152 }
153 chg -= rg->to - rg->from;
154 }
155 return chg;
156}
157
158static long region_truncate(struct list_head *head, long end)
159{
160 struct file_region *rg, *trg;
161 long chg = 0;
162
163 /* Locate the region we are either in or before. */
164 list_for_each_entry(rg, head, link)
165 if (end <= rg->to)
166 break;
167 if (&rg->link == head)
168 return 0;
169
170 /* If we are in the middle of a region then adjust it. */
171 if (end > rg->from) {
172 chg = rg->to - end;
173 rg->to = end;
174 rg = list_entry(rg->link.next, typeof(*rg), link);
175 }
176
177 /* Drop any remaining regions. */
178 list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
179 if (&rg->link == head)
180 break;
181 chg += rg->to - rg->from;
182 list_del(&rg->link);
183 kfree(rg);
184 }
185 return chg;
186}
187
84afd99b
AW
188static long region_count(struct list_head *head, long f, long t)
189{
190 struct file_region *rg;
191 long chg = 0;
192
193 /* Locate each segment we overlap with, and count that overlap. */
194 list_for_each_entry(rg, head, link) {
195 int seg_from;
196 int seg_to;
197
198 if (rg->to <= f)
199 continue;
200 if (rg->from >= t)
201 break;
202
203 seg_from = max(rg->from, f);
204 seg_to = min(rg->to, t);
205
206 chg += seg_to - seg_from;
207 }
208
209 return chg;
210}
211
e7c4b0bf
AW
212/*
213 * Convert the address within this vma to the page offset within
214 * the mapping, in pagecache page units; huge pages here.
215 */
a5516438
AK
216static pgoff_t vma_hugecache_offset(struct hstate *h,
217 struct vm_area_struct *vma, unsigned long address)
e7c4b0bf 218{
a5516438
AK
219 return ((address - vma->vm_start) >> huge_page_shift(h)) +
220 (vma->vm_pgoff >> huge_page_order(h));
e7c4b0bf
AW
221}
222
08fba699
MG
223/*
224 * Return the size of the pages allocated when backing a VMA. In the majority
225 * cases this will be same size as used by the page table entries.
226 */
227unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
228{
229 struct hstate *hstate;
230
231 if (!is_vm_hugetlb_page(vma))
232 return PAGE_SIZE;
233
234 hstate = hstate_vma(vma);
235
236 return 1UL << (hstate->order + PAGE_SHIFT);
237}
f340ca0f 238EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
08fba699 239
3340289d
MG
240/*
241 * Return the page size being used by the MMU to back a VMA. In the majority
242 * of cases, the page size used by the kernel matches the MMU size. On
243 * architectures where it differs, an architecture-specific version of this
244 * function is required.
245 */
246#ifndef vma_mmu_pagesize
247unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
248{
249 return vma_kernel_pagesize(vma);
250}
251#endif
252
84afd99b
AW
253/*
254 * Flags for MAP_PRIVATE reservations. These are stored in the bottom
255 * bits of the reservation map pointer, which are always clear due to
256 * alignment.
257 */
258#define HPAGE_RESV_OWNER (1UL << 0)
259#define HPAGE_RESV_UNMAPPED (1UL << 1)
04f2cbe3 260#define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
84afd99b 261
a1e78772
MG
262/*
263 * These helpers are used to track how many pages are reserved for
264 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
265 * is guaranteed to have their future faults succeed.
266 *
267 * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
268 * the reserve counters are updated with the hugetlb_lock held. It is safe
269 * to reset the VMA at fork() time as it is not in use yet and there is no
270 * chance of the global counters getting corrupted as a result of the values.
84afd99b
AW
271 *
272 * The private mapping reservation is represented in a subtly different
273 * manner to a shared mapping. A shared mapping has a region map associated
274 * with the underlying file, this region map represents the backing file
275 * pages which have ever had a reservation assigned which this persists even
276 * after the page is instantiated. A private mapping has a region map
277 * associated with the original mmap which is attached to all VMAs which
278 * reference it, this region map represents those offsets which have consumed
279 * reservation ie. where pages have been instantiated.
a1e78772 280 */
e7c4b0bf
AW
281static unsigned long get_vma_private_data(struct vm_area_struct *vma)
282{
283 return (unsigned long)vma->vm_private_data;
284}
285
286static void set_vma_private_data(struct vm_area_struct *vma,
287 unsigned long value)
288{
289 vma->vm_private_data = (void *)value;
290}
291
84afd99b
AW
292struct resv_map {
293 struct kref refs;
294 struct list_head regions;
295};
296
2a4b3ded 297static struct resv_map *resv_map_alloc(void)
84afd99b
AW
298{
299 struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
300 if (!resv_map)
301 return NULL;
302
303 kref_init(&resv_map->refs);
304 INIT_LIST_HEAD(&resv_map->regions);
305
306 return resv_map;
307}
308
2a4b3ded 309static void resv_map_release(struct kref *ref)
84afd99b
AW
310{
311 struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
312
313 /* Clear out any active regions before we release the map. */
314 region_truncate(&resv_map->regions, 0);
315 kfree(resv_map);
316}
317
318static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
a1e78772
MG
319{
320 VM_BUG_ON(!is_vm_hugetlb_page(vma));
f83a275d 321 if (!(vma->vm_flags & VM_MAYSHARE))
84afd99b
AW
322 return (struct resv_map *)(get_vma_private_data(vma) &
323 ~HPAGE_RESV_MASK);
2a4b3ded 324 return NULL;
a1e78772
MG
325}
326
84afd99b 327static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
a1e78772
MG
328{
329 VM_BUG_ON(!is_vm_hugetlb_page(vma));
f83a275d 330 VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
a1e78772 331
84afd99b
AW
332 set_vma_private_data(vma, (get_vma_private_data(vma) &
333 HPAGE_RESV_MASK) | (unsigned long)map);
04f2cbe3
MG
334}
335
336static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
337{
04f2cbe3 338 VM_BUG_ON(!is_vm_hugetlb_page(vma));
f83a275d 339 VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
e7c4b0bf
AW
340
341 set_vma_private_data(vma, get_vma_private_data(vma) | flags);
04f2cbe3
MG
342}
343
344static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
345{
346 VM_BUG_ON(!is_vm_hugetlb_page(vma));
e7c4b0bf
AW
347
348 return (get_vma_private_data(vma) & flag) != 0;
a1e78772
MG
349}
350
351/* Decrement the reserved pages in the hugepage pool by one */
a5516438
AK
352static void decrement_hugepage_resv_vma(struct hstate *h,
353 struct vm_area_struct *vma)
a1e78772 354{
c37f9fb1
AW
355 if (vma->vm_flags & VM_NORESERVE)
356 return;
357
f83a275d 358 if (vma->vm_flags & VM_MAYSHARE) {
a1e78772 359 /* Shared mappings always use reserves */
a5516438 360 h->resv_huge_pages--;
84afd99b 361 } else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
a1e78772
MG
362 /*
363 * Only the process that called mmap() has reserves for
364 * private mappings.
365 */
a5516438 366 h->resv_huge_pages--;
a1e78772
MG
367 }
368}
369
04f2cbe3 370/* Reset counters to 0 and clear all HPAGE_RESV_* flags */
a1e78772
MG
371void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
372{
373 VM_BUG_ON(!is_vm_hugetlb_page(vma));
f83a275d 374 if (!(vma->vm_flags & VM_MAYSHARE))
a1e78772
MG
375 vma->vm_private_data = (void *)0;
376}
377
378/* Returns true if the VMA has associated reserve pages */
7f09ca51 379static int vma_has_reserves(struct vm_area_struct *vma)
a1e78772 380{
f83a275d 381 if (vma->vm_flags & VM_MAYSHARE)
7f09ca51
MG
382 return 1;
383 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER))
384 return 1;
385 return 0;
a1e78772
MG
386}
387
69d177c2
AW
388static void clear_gigantic_page(struct page *page,
389 unsigned long addr, unsigned long sz)
390{
391 int i;
392 struct page *p = page;
393
394 might_sleep();
395 for (i = 0; i < sz/PAGE_SIZE; i++, p = mem_map_next(p, page, i)) {
396 cond_resched();
397 clear_user_highpage(p, addr + i * PAGE_SIZE);
398 }
399}
a5516438
AK
400static void clear_huge_page(struct page *page,
401 unsigned long addr, unsigned long sz)
79ac6ba4
DG
402{
403 int i;
404
74dbdd23 405 if (unlikely(sz/PAGE_SIZE > MAX_ORDER_NR_PAGES)) {
ebdd4aea
HE
406 clear_gigantic_page(page, addr, sz);
407 return;
408 }
69d177c2 409
79ac6ba4 410 might_sleep();
a5516438 411 for (i = 0; i < sz/PAGE_SIZE; i++) {
79ac6ba4 412 cond_resched();
281e0e3b 413 clear_user_highpage(page + i, addr + i * PAGE_SIZE);
79ac6ba4
DG
414 }
415}
416
69d177c2
AW
417static void copy_gigantic_page(struct page *dst, struct page *src,
418 unsigned long addr, struct vm_area_struct *vma)
419{
420 int i;
421 struct hstate *h = hstate_vma(vma);
422 struct page *dst_base = dst;
423 struct page *src_base = src;
424 might_sleep();
425 for (i = 0; i < pages_per_huge_page(h); ) {
426 cond_resched();
427 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
428
429 i++;
430 dst = mem_map_next(dst, dst_base, i);
431 src = mem_map_next(src, src_base, i);
432 }
433}
79ac6ba4 434static void copy_huge_page(struct page *dst, struct page *src,
9de455b2 435 unsigned long addr, struct vm_area_struct *vma)
79ac6ba4
DG
436{
437 int i;
a5516438 438 struct hstate *h = hstate_vma(vma);
79ac6ba4 439
ebdd4aea
HE
440 if (unlikely(pages_per_huge_page(h) > MAX_ORDER_NR_PAGES)) {
441 copy_gigantic_page(dst, src, addr, vma);
442 return;
443 }
69d177c2 444
79ac6ba4 445 might_sleep();
a5516438 446 for (i = 0; i < pages_per_huge_page(h); i++) {
79ac6ba4 447 cond_resched();
9de455b2 448 copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
79ac6ba4
DG
449 }
450}
451
a5516438 452static void enqueue_huge_page(struct hstate *h, struct page *page)
1da177e4
LT
453{
454 int nid = page_to_nid(page);
a5516438
AK
455 list_add(&page->lru, &h->hugepage_freelists[nid]);
456 h->free_huge_pages++;
457 h->free_huge_pages_node[nid]++;
1da177e4
LT
458}
459
a5516438
AK
460static struct page *dequeue_huge_page_vma(struct hstate *h,
461 struct vm_area_struct *vma,
04f2cbe3 462 unsigned long address, int avoid_reserve)
1da177e4 463{
31a5c6e4 464 int nid;
1da177e4 465 struct page *page = NULL;
480eccf9 466 struct mempolicy *mpol;
19770b32 467 nodemask_t *nodemask;
396faf03 468 struct zonelist *zonelist = huge_zonelist(vma, address,
19770b32 469 htlb_alloc_mask, &mpol, &nodemask);
dd1a239f
MG
470 struct zone *zone;
471 struct zoneref *z;
1da177e4 472
a1e78772
MG
473 /*
474 * A child process with MAP_PRIVATE mappings created by their parent
475 * have no page reserves. This check ensures that reservations are
476 * not "stolen". The child may still get SIGKILLed
477 */
7f09ca51 478 if (!vma_has_reserves(vma) &&
a5516438 479 h->free_huge_pages - h->resv_huge_pages == 0)
a1e78772
MG
480 return NULL;
481
04f2cbe3 482 /* If reserves cannot be used, ensure enough pages are in the pool */
a5516438 483 if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
04f2cbe3
MG
484 return NULL;
485
19770b32
MG
486 for_each_zone_zonelist_nodemask(zone, z, zonelist,
487 MAX_NR_ZONES - 1, nodemask) {
54a6eb5c
MG
488 nid = zone_to_nid(zone);
489 if (cpuset_zone_allowed_softwall(zone, htlb_alloc_mask) &&
a5516438
AK
490 !list_empty(&h->hugepage_freelists[nid])) {
491 page = list_entry(h->hugepage_freelists[nid].next,
3abf7afd
AM
492 struct page, lru);
493 list_del(&page->lru);
a5516438
AK
494 h->free_huge_pages--;
495 h->free_huge_pages_node[nid]--;
04f2cbe3
MG
496
497 if (!avoid_reserve)
a5516438 498 decrement_hugepage_resv_vma(h, vma);
a1e78772 499
5ab3ee7b 500 break;
3abf7afd 501 }
1da177e4 502 }
52cd3b07 503 mpol_cond_put(mpol);
1da177e4
LT
504 return page;
505}
506
a5516438 507static void update_and_free_page(struct hstate *h, struct page *page)
6af2acb6
AL
508{
509 int i;
a5516438 510
18229df5
AW
511 VM_BUG_ON(h->order >= MAX_ORDER);
512
a5516438
AK
513 h->nr_huge_pages--;
514 h->nr_huge_pages_node[page_to_nid(page)]--;
515 for (i = 0; i < pages_per_huge_page(h); i++) {
6af2acb6
AL
516 page[i].flags &= ~(1 << PG_locked | 1 << PG_error | 1 << PG_referenced |
517 1 << PG_dirty | 1 << PG_active | 1 << PG_reserved |
518 1 << PG_private | 1<< PG_writeback);
519 }
520 set_compound_page_dtor(page, NULL);
521 set_page_refcounted(page);
7f2e9525 522 arch_release_hugepage(page);
a5516438 523 __free_pages(page, huge_page_order(h));
6af2acb6
AL
524}
525
e5ff2159
AK
526struct hstate *size_to_hstate(unsigned long size)
527{
528 struct hstate *h;
529
530 for_each_hstate(h) {
531 if (huge_page_size(h) == size)
532 return h;
533 }
534 return NULL;
535}
536
27a85ef1
DG
537static void free_huge_page(struct page *page)
538{
a5516438
AK
539 /*
540 * Can't pass hstate in here because it is called from the
541 * compound page destructor.
542 */
e5ff2159 543 struct hstate *h = page_hstate(page);
7893d1d5 544 int nid = page_to_nid(page);
c79fb75e 545 struct address_space *mapping;
27a85ef1 546
c79fb75e 547 mapping = (struct address_space *) page_private(page);
e5df70ab 548 set_page_private(page, 0);
7893d1d5 549 BUG_ON(page_count(page));
27a85ef1
DG
550 INIT_LIST_HEAD(&page->lru);
551
552 spin_lock(&hugetlb_lock);
aa888a74 553 if (h->surplus_huge_pages_node[nid] && huge_page_order(h) < MAX_ORDER) {
a5516438
AK
554 update_and_free_page(h, page);
555 h->surplus_huge_pages--;
556 h->surplus_huge_pages_node[nid]--;
7893d1d5 557 } else {
a5516438 558 enqueue_huge_page(h, page);
7893d1d5 559 }
27a85ef1 560 spin_unlock(&hugetlb_lock);
c79fb75e 561 if (mapping)
9a119c05 562 hugetlb_put_quota(mapping, 1);
27a85ef1
DG
563}
564
a5516438 565static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
b7ba30c6
AK
566{
567 set_compound_page_dtor(page, free_huge_page);
568 spin_lock(&hugetlb_lock);
a5516438
AK
569 h->nr_huge_pages++;
570 h->nr_huge_pages_node[nid]++;
b7ba30c6
AK
571 spin_unlock(&hugetlb_lock);
572 put_page(page); /* free it into the hugepage allocator */
573}
574
20a0307c
WF
575static void prep_compound_gigantic_page(struct page *page, unsigned long order)
576{
577 int i;
578 int nr_pages = 1 << order;
579 struct page *p = page + 1;
580
581 /* we rely on prep_new_huge_page to set the destructor */
582 set_compound_order(page, order);
583 __SetPageHead(page);
584 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
585 __SetPageTail(p);
586 p->first_page = page;
587 }
588}
589
590int PageHuge(struct page *page)
591{
592 compound_page_dtor *dtor;
593
594 if (!PageCompound(page))
595 return 0;
596
597 page = compound_head(page);
598 dtor = get_compound_page_dtor(page);
599
600 return dtor == free_huge_page;
601}
602
a5516438 603static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid)
1da177e4 604{
1da177e4 605 struct page *page;
f96efd58 606
aa888a74
AK
607 if (h->order >= MAX_ORDER)
608 return NULL;
609
6484eb3e 610 page = alloc_pages_exact_node(nid,
551883ae
NA
611 htlb_alloc_mask|__GFP_COMP|__GFP_THISNODE|
612 __GFP_REPEAT|__GFP_NOWARN,
a5516438 613 huge_page_order(h));
1da177e4 614 if (page) {
7f2e9525 615 if (arch_prepare_hugepage(page)) {
caff3a2c 616 __free_pages(page, huge_page_order(h));
7b8ee84d 617 return NULL;
7f2e9525 618 }
a5516438 619 prep_new_huge_page(h, page, nid);
1da177e4 620 }
63b4613c
NA
621
622 return page;
623}
624
9a76db09 625/*
6ae11b27
LS
626 * common helper functions for hstate_next_node_to_{alloc|free}.
627 * We may have allocated or freed a huge page based on a different
628 * nodes_allowed previously, so h->next_node_to_{alloc|free} might
629 * be outside of *nodes_allowed. Ensure that we use an allowed
630 * node for alloc or free.
9a76db09 631 */
6ae11b27 632static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
9a76db09 633{
6ae11b27 634 nid = next_node(nid, *nodes_allowed);
9a76db09 635 if (nid == MAX_NUMNODES)
6ae11b27 636 nid = first_node(*nodes_allowed);
9a76db09
LS
637 VM_BUG_ON(nid >= MAX_NUMNODES);
638
639 return nid;
640}
641
6ae11b27
LS
642static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
643{
644 if (!node_isset(nid, *nodes_allowed))
645 nid = next_node_allowed(nid, nodes_allowed);
646 return nid;
647}
648
5ced66c9 649/*
6ae11b27
LS
650 * returns the previously saved node ["this node"] from which to
651 * allocate a persistent huge page for the pool and advance the
652 * next node from which to allocate, handling wrap at end of node
653 * mask.
5ced66c9 654 */
6ae11b27
LS
655static int hstate_next_node_to_alloc(struct hstate *h,
656 nodemask_t *nodes_allowed)
5ced66c9 657{
6ae11b27
LS
658 int nid;
659
660 VM_BUG_ON(!nodes_allowed);
661
662 nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
663 h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
9a76db09 664
9a76db09 665 return nid;
5ced66c9
AK
666}
667
6ae11b27 668static int alloc_fresh_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
63b4613c
NA
669{
670 struct page *page;
671 int start_nid;
672 int next_nid;
673 int ret = 0;
674
6ae11b27 675 start_nid = hstate_next_node_to_alloc(h, nodes_allowed);
e8c5c824 676 next_nid = start_nid;
63b4613c
NA
677
678 do {
e8c5c824 679 page = alloc_fresh_huge_page_node(h, next_nid);
9a76db09 680 if (page) {
63b4613c 681 ret = 1;
9a76db09
LS
682 break;
683 }
6ae11b27 684 next_nid = hstate_next_node_to_alloc(h, nodes_allowed);
9a76db09 685 } while (next_nid != start_nid);
63b4613c 686
3b116300
AL
687 if (ret)
688 count_vm_event(HTLB_BUDDY_PGALLOC);
689 else
690 count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
691
63b4613c 692 return ret;
1da177e4
LT
693}
694
e8c5c824 695/*
6ae11b27
LS
696 * helper for free_pool_huge_page() - return the previously saved
697 * node ["this node"] from which to free a huge page. Advance the
698 * next node id whether or not we find a free huge page to free so
699 * that the next attempt to free addresses the next node.
e8c5c824 700 */
6ae11b27 701static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
e8c5c824 702{
6ae11b27
LS
703 int nid;
704
705 VM_BUG_ON(!nodes_allowed);
706
707 nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
708 h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
9a76db09 709
9a76db09 710 return nid;
e8c5c824
LS
711}
712
713/*
714 * Free huge page from pool from next node to free.
715 * Attempt to keep persistent huge pages more or less
716 * balanced over allowed nodes.
717 * Called with hugetlb_lock locked.
718 */
6ae11b27
LS
719static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
720 bool acct_surplus)
e8c5c824
LS
721{
722 int start_nid;
723 int next_nid;
724 int ret = 0;
725
6ae11b27 726 start_nid = hstate_next_node_to_free(h, nodes_allowed);
e8c5c824
LS
727 next_nid = start_nid;
728
729 do {
685f3457
LS
730 /*
731 * If we're returning unused surplus pages, only examine
732 * nodes with surplus pages.
733 */
734 if ((!acct_surplus || h->surplus_huge_pages_node[next_nid]) &&
735 !list_empty(&h->hugepage_freelists[next_nid])) {
e8c5c824
LS
736 struct page *page =
737 list_entry(h->hugepage_freelists[next_nid].next,
738 struct page, lru);
739 list_del(&page->lru);
740 h->free_huge_pages--;
741 h->free_huge_pages_node[next_nid]--;
685f3457
LS
742 if (acct_surplus) {
743 h->surplus_huge_pages--;
744 h->surplus_huge_pages_node[next_nid]--;
745 }
e8c5c824
LS
746 update_and_free_page(h, page);
747 ret = 1;
9a76db09 748 break;
e8c5c824 749 }
6ae11b27 750 next_nid = hstate_next_node_to_free(h, nodes_allowed);
9a76db09 751 } while (next_nid != start_nid);
e8c5c824
LS
752
753 return ret;
754}
755
a5516438
AK
756static struct page *alloc_buddy_huge_page(struct hstate *h,
757 struct vm_area_struct *vma, unsigned long address)
7893d1d5
AL
758{
759 struct page *page;
d1c3fb1f 760 unsigned int nid;
7893d1d5 761
aa888a74
AK
762 if (h->order >= MAX_ORDER)
763 return NULL;
764
d1c3fb1f
NA
765 /*
766 * Assume we will successfully allocate the surplus page to
767 * prevent racing processes from causing the surplus to exceed
768 * overcommit
769 *
770 * This however introduces a different race, where a process B
771 * tries to grow the static hugepage pool while alloc_pages() is
772 * called by process A. B will only examine the per-node
773 * counters in determining if surplus huge pages can be
774 * converted to normal huge pages in adjust_pool_surplus(). A
775 * won't be able to increment the per-node counter, until the
776 * lock is dropped by B, but B doesn't drop hugetlb_lock until
777 * no more huge pages can be converted from surplus to normal
778 * state (and doesn't try to convert again). Thus, we have a
779 * case where a surplus huge page exists, the pool is grown, and
780 * the surplus huge page still exists after, even though it
781 * should just have been converted to a normal huge page. This
782 * does not leak memory, though, as the hugepage will be freed
783 * once it is out of use. It also does not allow the counters to
784 * go out of whack in adjust_pool_surplus() as we don't modify
785 * the node values until we've gotten the hugepage and only the
786 * per-node value is checked there.
787 */
788 spin_lock(&hugetlb_lock);
a5516438 789 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
d1c3fb1f
NA
790 spin_unlock(&hugetlb_lock);
791 return NULL;
792 } else {
a5516438
AK
793 h->nr_huge_pages++;
794 h->surplus_huge_pages++;
d1c3fb1f
NA
795 }
796 spin_unlock(&hugetlb_lock);
797
551883ae
NA
798 page = alloc_pages(htlb_alloc_mask|__GFP_COMP|
799 __GFP_REPEAT|__GFP_NOWARN,
a5516438 800 huge_page_order(h));
d1c3fb1f 801
caff3a2c
GS
802 if (page && arch_prepare_hugepage(page)) {
803 __free_pages(page, huge_page_order(h));
804 return NULL;
805 }
806
d1c3fb1f 807 spin_lock(&hugetlb_lock);
7893d1d5 808 if (page) {
2668db91
AL
809 /*
810 * This page is now managed by the hugetlb allocator and has
811 * no users -- drop the buddy allocator's reference.
812 */
813 put_page_testzero(page);
814 VM_BUG_ON(page_count(page));
d1c3fb1f 815 nid = page_to_nid(page);
7893d1d5 816 set_compound_page_dtor(page, free_huge_page);
d1c3fb1f
NA
817 /*
818 * We incremented the global counters already
819 */
a5516438
AK
820 h->nr_huge_pages_node[nid]++;
821 h->surplus_huge_pages_node[nid]++;
3b116300 822 __count_vm_event(HTLB_BUDDY_PGALLOC);
d1c3fb1f 823 } else {
a5516438
AK
824 h->nr_huge_pages--;
825 h->surplus_huge_pages--;
3b116300 826 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
7893d1d5 827 }
d1c3fb1f 828 spin_unlock(&hugetlb_lock);
7893d1d5
AL
829
830 return page;
831}
832
e4e574b7
AL
833/*
834 * Increase the hugetlb pool such that it can accomodate a reservation
835 * of size 'delta'.
836 */
a5516438 837static int gather_surplus_pages(struct hstate *h, int delta)
e4e574b7
AL
838{
839 struct list_head surplus_list;
840 struct page *page, *tmp;
841 int ret, i;
842 int needed, allocated;
843
a5516438 844 needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
ac09b3a1 845 if (needed <= 0) {
a5516438 846 h->resv_huge_pages += delta;
e4e574b7 847 return 0;
ac09b3a1 848 }
e4e574b7
AL
849
850 allocated = 0;
851 INIT_LIST_HEAD(&surplus_list);
852
853 ret = -ENOMEM;
854retry:
855 spin_unlock(&hugetlb_lock);
856 for (i = 0; i < needed; i++) {
a5516438 857 page = alloc_buddy_huge_page(h, NULL, 0);
e4e574b7
AL
858 if (!page) {
859 /*
860 * We were not able to allocate enough pages to
861 * satisfy the entire reservation so we free what
862 * we've allocated so far.
863 */
864 spin_lock(&hugetlb_lock);
865 needed = 0;
866 goto free;
867 }
868
869 list_add(&page->lru, &surplus_list);
870 }
871 allocated += needed;
872
873 /*
874 * After retaking hugetlb_lock, we need to recalculate 'needed'
875 * because either resv_huge_pages or free_huge_pages may have changed.
876 */
877 spin_lock(&hugetlb_lock);
a5516438
AK
878 needed = (h->resv_huge_pages + delta) -
879 (h->free_huge_pages + allocated);
e4e574b7
AL
880 if (needed > 0)
881 goto retry;
882
883 /*
884 * The surplus_list now contains _at_least_ the number of extra pages
885 * needed to accomodate the reservation. Add the appropriate number
886 * of pages to the hugetlb pool and free the extras back to the buddy
ac09b3a1
AL
887 * allocator. Commit the entire reservation here to prevent another
888 * process from stealing the pages as they are added to the pool but
889 * before they are reserved.
e4e574b7
AL
890 */
891 needed += allocated;
a5516438 892 h->resv_huge_pages += delta;
e4e574b7
AL
893 ret = 0;
894free:
19fc3f0a 895 /* Free the needed pages to the hugetlb pool */
e4e574b7 896 list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
19fc3f0a
AL
897 if ((--needed) < 0)
898 break;
e4e574b7 899 list_del(&page->lru);
a5516438 900 enqueue_huge_page(h, page);
19fc3f0a
AL
901 }
902
903 /* Free unnecessary surplus pages to the buddy allocator */
904 if (!list_empty(&surplus_list)) {
905 spin_unlock(&hugetlb_lock);
906 list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
907 list_del(&page->lru);
af767cbd 908 /*
2668db91
AL
909 * The page has a reference count of zero already, so
910 * call free_huge_page directly instead of using
911 * put_page. This must be done with hugetlb_lock
af767cbd
AL
912 * unlocked which is safe because free_huge_page takes
913 * hugetlb_lock before deciding how to free the page.
914 */
2668db91 915 free_huge_page(page);
af767cbd 916 }
19fc3f0a 917 spin_lock(&hugetlb_lock);
e4e574b7
AL
918 }
919
920 return ret;
921}
922
923/*
924 * When releasing a hugetlb pool reservation, any surplus pages that were
925 * allocated to satisfy the reservation must be explicitly freed if they were
926 * never used.
685f3457 927 * Called with hugetlb_lock held.
e4e574b7 928 */
a5516438
AK
929static void return_unused_surplus_pages(struct hstate *h,
930 unsigned long unused_resv_pages)
e4e574b7 931{
e4e574b7
AL
932 unsigned long nr_pages;
933
ac09b3a1 934 /* Uncommit the reservation */
a5516438 935 h->resv_huge_pages -= unused_resv_pages;
ac09b3a1 936
aa888a74
AK
937 /* Cannot return gigantic pages currently */
938 if (h->order >= MAX_ORDER)
939 return;
940
a5516438 941 nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
e4e574b7 942
685f3457
LS
943 /*
944 * We want to release as many surplus pages as possible, spread
9b5e5d0f
LS
945 * evenly across all nodes with memory. Iterate across these nodes
946 * until we can no longer free unreserved surplus pages. This occurs
947 * when the nodes with surplus pages have no free pages.
948 * free_pool_huge_page() will balance the the freed pages across the
949 * on-line nodes with memory and will handle the hstate accounting.
685f3457
LS
950 */
951 while (nr_pages--) {
9b5e5d0f 952 if (!free_pool_huge_page(h, &node_states[N_HIGH_MEMORY], 1))
685f3457 953 break;
e4e574b7
AL
954 }
955}
956
c37f9fb1
AW
957/*
958 * Determine if the huge page at addr within the vma has an associated
959 * reservation. Where it does not we will need to logically increase
960 * reservation and actually increase quota before an allocation can occur.
961 * Where any new reservation would be required the reservation change is
962 * prepared, but not committed. Once the page has been quota'd allocated
963 * an instantiated the change should be committed via vma_commit_reservation.
964 * No action is required on failure.
965 */
e2f17d94 966static long vma_needs_reservation(struct hstate *h,
a5516438 967 struct vm_area_struct *vma, unsigned long addr)
c37f9fb1
AW
968{
969 struct address_space *mapping = vma->vm_file->f_mapping;
970 struct inode *inode = mapping->host;
971
f83a275d 972 if (vma->vm_flags & VM_MAYSHARE) {
a5516438 973 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
c37f9fb1
AW
974 return region_chg(&inode->i_mapping->private_list,
975 idx, idx + 1);
976
84afd99b
AW
977 } else if (!is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
978 return 1;
c37f9fb1 979
84afd99b 980 } else {
e2f17d94 981 long err;
a5516438 982 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
84afd99b
AW
983 struct resv_map *reservations = vma_resv_map(vma);
984
985 err = region_chg(&reservations->regions, idx, idx + 1);
986 if (err < 0)
987 return err;
988 return 0;
989 }
c37f9fb1 990}
a5516438
AK
991static void vma_commit_reservation(struct hstate *h,
992 struct vm_area_struct *vma, unsigned long addr)
c37f9fb1
AW
993{
994 struct address_space *mapping = vma->vm_file->f_mapping;
995 struct inode *inode = mapping->host;
996
f83a275d 997 if (vma->vm_flags & VM_MAYSHARE) {
a5516438 998 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
c37f9fb1 999 region_add(&inode->i_mapping->private_list, idx, idx + 1);
84afd99b
AW
1000
1001 } else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
a5516438 1002 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
84afd99b
AW
1003 struct resv_map *reservations = vma_resv_map(vma);
1004
1005 /* Mark this page used in the map. */
1006 region_add(&reservations->regions, idx, idx + 1);
c37f9fb1
AW
1007 }
1008}
1009
a1e78772 1010static struct page *alloc_huge_page(struct vm_area_struct *vma,
04f2cbe3 1011 unsigned long addr, int avoid_reserve)
1da177e4 1012{
a5516438 1013 struct hstate *h = hstate_vma(vma);
348ea204 1014 struct page *page;
a1e78772
MG
1015 struct address_space *mapping = vma->vm_file->f_mapping;
1016 struct inode *inode = mapping->host;
e2f17d94 1017 long chg;
a1e78772
MG
1018
1019 /*
1020 * Processes that did not create the mapping will have no reserves and
1021 * will not have accounted against quota. Check that the quota can be
1022 * made before satisfying the allocation
c37f9fb1
AW
1023 * MAP_NORESERVE mappings may also need pages and quota allocated
1024 * if no reserve mapping overlaps.
a1e78772 1025 */
a5516438 1026 chg = vma_needs_reservation(h, vma, addr);
c37f9fb1
AW
1027 if (chg < 0)
1028 return ERR_PTR(chg);
1029 if (chg)
a1e78772
MG
1030 if (hugetlb_get_quota(inode->i_mapping, chg))
1031 return ERR_PTR(-ENOSPC);
1da177e4
LT
1032
1033 spin_lock(&hugetlb_lock);
a5516438 1034 page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve);
1da177e4 1035 spin_unlock(&hugetlb_lock);
b45b5bd6 1036
68842c9b 1037 if (!page) {
a5516438 1038 page = alloc_buddy_huge_page(h, vma, addr);
68842c9b 1039 if (!page) {
a1e78772 1040 hugetlb_put_quota(inode->i_mapping, chg);
68842c9b
KC
1041 return ERR_PTR(-VM_FAULT_OOM);
1042 }
1043 }
348ea204 1044
a1e78772
MG
1045 set_page_refcounted(page);
1046 set_page_private(page, (unsigned long) mapping);
90d8b7e6 1047
a5516438 1048 vma_commit_reservation(h, vma, addr);
c37f9fb1 1049
90d8b7e6 1050 return page;
b45b5bd6
DG
1051}
1052
91f47662 1053int __weak alloc_bootmem_huge_page(struct hstate *h)
aa888a74
AK
1054{
1055 struct huge_bootmem_page *m;
9b5e5d0f 1056 int nr_nodes = nodes_weight(node_states[N_HIGH_MEMORY]);
aa888a74
AK
1057
1058 while (nr_nodes) {
1059 void *addr;
1060
1061 addr = __alloc_bootmem_node_nopanic(
6ae11b27 1062 NODE_DATA(hstate_next_node_to_alloc(h,
9b5e5d0f 1063 &node_states[N_HIGH_MEMORY])),
aa888a74
AK
1064 huge_page_size(h), huge_page_size(h), 0);
1065
1066 if (addr) {
1067 /*
1068 * Use the beginning of the huge page to store the
1069 * huge_bootmem_page struct (until gather_bootmem
1070 * puts them into the mem_map).
1071 */
1072 m = addr;
91f47662 1073 goto found;
aa888a74 1074 }
aa888a74
AK
1075 nr_nodes--;
1076 }
1077 return 0;
1078
1079found:
1080 BUG_ON((unsigned long)virt_to_phys(m) & (huge_page_size(h) - 1));
1081 /* Put them into a private list first because mem_map is not up yet */
1082 list_add(&m->list, &huge_boot_pages);
1083 m->hstate = h;
1084 return 1;
1085}
1086
18229df5
AW
1087static void prep_compound_huge_page(struct page *page, int order)
1088{
1089 if (unlikely(order > (MAX_ORDER - 1)))
1090 prep_compound_gigantic_page(page, order);
1091 else
1092 prep_compound_page(page, order);
1093}
1094
aa888a74
AK
1095/* Put bootmem huge pages into the standard lists after mem_map is up */
1096static void __init gather_bootmem_prealloc(void)
1097{
1098 struct huge_bootmem_page *m;
1099
1100 list_for_each_entry(m, &huge_boot_pages, list) {
1101 struct page *page = virt_to_page(m);
1102 struct hstate *h = m->hstate;
1103 __ClearPageReserved(page);
1104 WARN_ON(page_count(page) != 1);
18229df5 1105 prep_compound_huge_page(page, h->order);
aa888a74
AK
1106 prep_new_huge_page(h, page, page_to_nid(page));
1107 }
1108}
1109
8faa8b07 1110static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
1da177e4
LT
1111{
1112 unsigned long i;
a5516438 1113
e5ff2159 1114 for (i = 0; i < h->max_huge_pages; ++i) {
aa888a74
AK
1115 if (h->order >= MAX_ORDER) {
1116 if (!alloc_bootmem_huge_page(h))
1117 break;
9b5e5d0f
LS
1118 } else if (!alloc_fresh_huge_page(h,
1119 &node_states[N_HIGH_MEMORY]))
1da177e4 1120 break;
1da177e4 1121 }
8faa8b07 1122 h->max_huge_pages = i;
e5ff2159
AK
1123}
1124
1125static void __init hugetlb_init_hstates(void)
1126{
1127 struct hstate *h;
1128
1129 for_each_hstate(h) {
8faa8b07
AK
1130 /* oversize hugepages were init'ed in early boot */
1131 if (h->order < MAX_ORDER)
1132 hugetlb_hstate_alloc_pages(h);
e5ff2159
AK
1133 }
1134}
1135
4abd32db
AK
1136static char * __init memfmt(char *buf, unsigned long n)
1137{
1138 if (n >= (1UL << 30))
1139 sprintf(buf, "%lu GB", n >> 30);
1140 else if (n >= (1UL << 20))
1141 sprintf(buf, "%lu MB", n >> 20);
1142 else
1143 sprintf(buf, "%lu KB", n >> 10);
1144 return buf;
1145}
1146
e5ff2159
AK
1147static void __init report_hugepages(void)
1148{
1149 struct hstate *h;
1150
1151 for_each_hstate(h) {
4abd32db
AK
1152 char buf[32];
1153 printk(KERN_INFO "HugeTLB registered %s page size, "
1154 "pre-allocated %ld pages\n",
1155 memfmt(buf, huge_page_size(h)),
1156 h->free_huge_pages);
e5ff2159
AK
1157 }
1158}
1159
1da177e4 1160#ifdef CONFIG_HIGHMEM
6ae11b27
LS
1161static void try_to_free_low(struct hstate *h, unsigned long count,
1162 nodemask_t *nodes_allowed)
1da177e4 1163{
4415cc8d
CL
1164 int i;
1165
aa888a74
AK
1166 if (h->order >= MAX_ORDER)
1167 return;
1168
6ae11b27 1169 for_each_node_mask(i, *nodes_allowed) {
1da177e4 1170 struct page *page, *next;
a5516438
AK
1171 struct list_head *freel = &h->hugepage_freelists[i];
1172 list_for_each_entry_safe(page, next, freel, lru) {
1173 if (count >= h->nr_huge_pages)
6b0c880d 1174 return;
1da177e4
LT
1175 if (PageHighMem(page))
1176 continue;
1177 list_del(&page->lru);
e5ff2159 1178 update_and_free_page(h, page);
a5516438
AK
1179 h->free_huge_pages--;
1180 h->free_huge_pages_node[page_to_nid(page)]--;
1da177e4
LT
1181 }
1182 }
1183}
1184#else
6ae11b27
LS
1185static inline void try_to_free_low(struct hstate *h, unsigned long count,
1186 nodemask_t *nodes_allowed)
1da177e4
LT
1187{
1188}
1189#endif
1190
20a0307c
WF
1191/*
1192 * Increment or decrement surplus_huge_pages. Keep node-specific counters
1193 * balanced by operating on them in a round-robin fashion.
1194 * Returns 1 if an adjustment was made.
1195 */
6ae11b27
LS
1196static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
1197 int delta)
20a0307c 1198{
e8c5c824 1199 int start_nid, next_nid;
20a0307c
WF
1200 int ret = 0;
1201
1202 VM_BUG_ON(delta != -1 && delta != 1);
20a0307c 1203
e8c5c824 1204 if (delta < 0)
6ae11b27 1205 start_nid = hstate_next_node_to_alloc(h, nodes_allowed);
e8c5c824 1206 else
6ae11b27 1207 start_nid = hstate_next_node_to_free(h, nodes_allowed);
e8c5c824
LS
1208 next_nid = start_nid;
1209
1210 do {
1211 int nid = next_nid;
1212 if (delta < 0) {
e8c5c824
LS
1213 /*
1214 * To shrink on this node, there must be a surplus page
1215 */
9a76db09 1216 if (!h->surplus_huge_pages_node[nid]) {
6ae11b27
LS
1217 next_nid = hstate_next_node_to_alloc(h,
1218 nodes_allowed);
e8c5c824 1219 continue;
9a76db09 1220 }
e8c5c824
LS
1221 }
1222 if (delta > 0) {
e8c5c824
LS
1223 /*
1224 * Surplus cannot exceed the total number of pages
1225 */
1226 if (h->surplus_huge_pages_node[nid] >=
9a76db09 1227 h->nr_huge_pages_node[nid]) {
6ae11b27
LS
1228 next_nid = hstate_next_node_to_free(h,
1229 nodes_allowed);
e8c5c824 1230 continue;
9a76db09 1231 }
e8c5c824 1232 }
20a0307c
WF
1233
1234 h->surplus_huge_pages += delta;
1235 h->surplus_huge_pages_node[nid] += delta;
1236 ret = 1;
1237 break;
e8c5c824 1238 } while (next_nid != start_nid);
20a0307c 1239
20a0307c
WF
1240 return ret;
1241}
1242
a5516438 1243#define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
6ae11b27
LS
1244static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count,
1245 nodemask_t *nodes_allowed)
1da177e4 1246{
7893d1d5 1247 unsigned long min_count, ret;
1da177e4 1248
aa888a74
AK
1249 if (h->order >= MAX_ORDER)
1250 return h->max_huge_pages;
1251
7893d1d5
AL
1252 /*
1253 * Increase the pool size
1254 * First take pages out of surplus state. Then make up the
1255 * remaining difference by allocating fresh huge pages.
d1c3fb1f
NA
1256 *
1257 * We might race with alloc_buddy_huge_page() here and be unable
1258 * to convert a surplus huge page to a normal huge page. That is
1259 * not critical, though, it just means the overall size of the
1260 * pool might be one hugepage larger than it needs to be, but
1261 * within all the constraints specified by the sysctls.
7893d1d5 1262 */
1da177e4 1263 spin_lock(&hugetlb_lock);
a5516438 1264 while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
6ae11b27 1265 if (!adjust_pool_surplus(h, nodes_allowed, -1))
7893d1d5
AL
1266 break;
1267 }
1268
a5516438 1269 while (count > persistent_huge_pages(h)) {
7893d1d5
AL
1270 /*
1271 * If this allocation races such that we no longer need the
1272 * page, free_huge_page will handle it by freeing the page
1273 * and reducing the surplus.
1274 */
1275 spin_unlock(&hugetlb_lock);
6ae11b27 1276 ret = alloc_fresh_huge_page(h, nodes_allowed);
7893d1d5
AL
1277 spin_lock(&hugetlb_lock);
1278 if (!ret)
1279 goto out;
1280
536240f2
MG
1281 /* Bail for signals. Probably ctrl-c from user */
1282 if (signal_pending(current))
1283 goto out;
7893d1d5 1284 }
7893d1d5
AL
1285
1286 /*
1287 * Decrease the pool size
1288 * First return free pages to the buddy allocator (being careful
1289 * to keep enough around to satisfy reservations). Then place
1290 * pages into surplus state as needed so the pool will shrink
1291 * to the desired size as pages become free.
d1c3fb1f
NA
1292 *
1293 * By placing pages into the surplus state independent of the
1294 * overcommit value, we are allowing the surplus pool size to
1295 * exceed overcommit. There are few sane options here. Since
1296 * alloc_buddy_huge_page() is checking the global counter,
1297 * though, we'll note that we're not allowed to exceed surplus
1298 * and won't grow the pool anywhere else. Not until one of the
1299 * sysctls are changed, or the surplus pages go out of use.
7893d1d5 1300 */
a5516438 1301 min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
6b0c880d 1302 min_count = max(count, min_count);
6ae11b27 1303 try_to_free_low(h, min_count, nodes_allowed);
a5516438 1304 while (min_count < persistent_huge_pages(h)) {
6ae11b27 1305 if (!free_pool_huge_page(h, nodes_allowed, 0))
1da177e4 1306 break;
1da177e4 1307 }
a5516438 1308 while (count < persistent_huge_pages(h)) {
6ae11b27 1309 if (!adjust_pool_surplus(h, nodes_allowed, 1))
7893d1d5
AL
1310 break;
1311 }
1312out:
a5516438 1313 ret = persistent_huge_pages(h);
1da177e4 1314 spin_unlock(&hugetlb_lock);
7893d1d5 1315 return ret;
1da177e4
LT
1316}
1317
a3437870
NA
1318#define HSTATE_ATTR_RO(_name) \
1319 static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
1320
1321#define HSTATE_ATTR(_name) \
1322 static struct kobj_attribute _name##_attr = \
1323 __ATTR(_name, 0644, _name##_show, _name##_store)
1324
1325static struct kobject *hugepages_kobj;
1326static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
1327
9a305230
LS
1328static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
1329
1330static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
a3437870
NA
1331{
1332 int i;
9a305230 1333
a3437870 1334 for (i = 0; i < HUGE_MAX_HSTATE; i++)
9a305230
LS
1335 if (hstate_kobjs[i] == kobj) {
1336 if (nidp)
1337 *nidp = NUMA_NO_NODE;
a3437870 1338 return &hstates[i];
9a305230
LS
1339 }
1340
1341 return kobj_to_node_hstate(kobj, nidp);
a3437870
NA
1342}
1343
06808b08 1344static ssize_t nr_hugepages_show_common(struct kobject *kobj,
a3437870
NA
1345 struct kobj_attribute *attr, char *buf)
1346{
9a305230
LS
1347 struct hstate *h;
1348 unsigned long nr_huge_pages;
1349 int nid;
1350
1351 h = kobj_to_hstate(kobj, &nid);
1352 if (nid == NUMA_NO_NODE)
1353 nr_huge_pages = h->nr_huge_pages;
1354 else
1355 nr_huge_pages = h->nr_huge_pages_node[nid];
1356
1357 return sprintf(buf, "%lu\n", nr_huge_pages);
a3437870 1358}
06808b08
LS
1359static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
1360 struct kobject *kobj, struct kobj_attribute *attr,
1361 const char *buf, size_t len)
a3437870
NA
1362{
1363 int err;
9a305230 1364 int nid;
06808b08 1365 unsigned long count;
9a305230 1366 struct hstate *h;
bad44b5b 1367 NODEMASK_ALLOC(nodemask_t, nodes_allowed, GFP_KERNEL | __GFP_NORETRY);
a3437870 1368
06808b08 1369 err = strict_strtoul(buf, 10, &count);
a3437870
NA
1370 if (err)
1371 return 0;
1372
9a305230
LS
1373 h = kobj_to_hstate(kobj, &nid);
1374 if (nid == NUMA_NO_NODE) {
1375 /*
1376 * global hstate attribute
1377 */
1378 if (!(obey_mempolicy &&
1379 init_nodemask_of_mempolicy(nodes_allowed))) {
1380 NODEMASK_FREE(nodes_allowed);
1381 nodes_allowed = &node_states[N_HIGH_MEMORY];
1382 }
1383 } else if (nodes_allowed) {
1384 /*
1385 * per node hstate attribute: adjust count to global,
1386 * but restrict alloc/free to the specified node.
1387 */
1388 count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
1389 init_nodemask_of_node(nodes_allowed, nid);
1390 } else
1391 nodes_allowed = &node_states[N_HIGH_MEMORY];
1392
06808b08 1393 h->max_huge_pages = set_max_huge_pages(h, count, nodes_allowed);
a3437870 1394
9b5e5d0f 1395 if (nodes_allowed != &node_states[N_HIGH_MEMORY])
06808b08
LS
1396 NODEMASK_FREE(nodes_allowed);
1397
1398 return len;
1399}
1400
1401static ssize_t nr_hugepages_show(struct kobject *kobj,
1402 struct kobj_attribute *attr, char *buf)
1403{
1404 return nr_hugepages_show_common(kobj, attr, buf);
1405}
1406
1407static ssize_t nr_hugepages_store(struct kobject *kobj,
1408 struct kobj_attribute *attr, const char *buf, size_t len)
1409{
1410 return nr_hugepages_store_common(false, kobj, attr, buf, len);
a3437870
NA
1411}
1412HSTATE_ATTR(nr_hugepages);
1413
06808b08
LS
1414#ifdef CONFIG_NUMA
1415
1416/*
1417 * hstate attribute for optionally mempolicy-based constraint on persistent
1418 * huge page alloc/free.
1419 */
1420static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
1421 struct kobj_attribute *attr, char *buf)
1422{
1423 return nr_hugepages_show_common(kobj, attr, buf);
1424}
1425
1426static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
1427 struct kobj_attribute *attr, const char *buf, size_t len)
1428{
1429 return nr_hugepages_store_common(true, kobj, attr, buf, len);
1430}
1431HSTATE_ATTR(nr_hugepages_mempolicy);
1432#endif
1433
1434
a3437870
NA
1435static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
1436 struct kobj_attribute *attr, char *buf)
1437{
9a305230 1438 struct hstate *h = kobj_to_hstate(kobj, NULL);
a3437870
NA
1439 return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
1440}
1441static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
1442 struct kobj_attribute *attr, const char *buf, size_t count)
1443{
1444 int err;
1445 unsigned long input;
9a305230 1446 struct hstate *h = kobj_to_hstate(kobj, NULL);
a3437870
NA
1447
1448 err = strict_strtoul(buf, 10, &input);
1449 if (err)
1450 return 0;
1451
1452 spin_lock(&hugetlb_lock);
1453 h->nr_overcommit_huge_pages = input;
1454 spin_unlock(&hugetlb_lock);
1455
1456 return count;
1457}
1458HSTATE_ATTR(nr_overcommit_hugepages);
1459
1460static ssize_t free_hugepages_show(struct kobject *kobj,
1461 struct kobj_attribute *attr, char *buf)
1462{
9a305230
LS
1463 struct hstate *h;
1464 unsigned long free_huge_pages;
1465 int nid;
1466
1467 h = kobj_to_hstate(kobj, &nid);
1468 if (nid == NUMA_NO_NODE)
1469 free_huge_pages = h->free_huge_pages;
1470 else
1471 free_huge_pages = h->free_huge_pages_node[nid];
1472
1473 return sprintf(buf, "%lu\n", free_huge_pages);
a3437870
NA
1474}
1475HSTATE_ATTR_RO(free_hugepages);
1476
1477static ssize_t resv_hugepages_show(struct kobject *kobj,
1478 struct kobj_attribute *attr, char *buf)
1479{
9a305230 1480 struct hstate *h = kobj_to_hstate(kobj, NULL);
a3437870
NA
1481 return sprintf(buf, "%lu\n", h->resv_huge_pages);
1482}
1483HSTATE_ATTR_RO(resv_hugepages);
1484
1485static ssize_t surplus_hugepages_show(struct kobject *kobj,
1486 struct kobj_attribute *attr, char *buf)
1487{
9a305230
LS
1488 struct hstate *h;
1489 unsigned long surplus_huge_pages;
1490 int nid;
1491
1492 h = kobj_to_hstate(kobj, &nid);
1493 if (nid == NUMA_NO_NODE)
1494 surplus_huge_pages = h->surplus_huge_pages;
1495 else
1496 surplus_huge_pages = h->surplus_huge_pages_node[nid];
1497
1498 return sprintf(buf, "%lu\n", surplus_huge_pages);
a3437870
NA
1499}
1500HSTATE_ATTR_RO(surplus_hugepages);
1501
1502static struct attribute *hstate_attrs[] = {
1503 &nr_hugepages_attr.attr,
1504 &nr_overcommit_hugepages_attr.attr,
1505 &free_hugepages_attr.attr,
1506 &resv_hugepages_attr.attr,
1507 &surplus_hugepages_attr.attr,
06808b08
LS
1508#ifdef CONFIG_NUMA
1509 &nr_hugepages_mempolicy_attr.attr,
1510#endif
a3437870
NA
1511 NULL,
1512};
1513
1514static struct attribute_group hstate_attr_group = {
1515 .attrs = hstate_attrs,
1516};
1517
094e9539
JM
1518static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
1519 struct kobject **hstate_kobjs,
1520 struct attribute_group *hstate_attr_group)
a3437870
NA
1521{
1522 int retval;
9a305230 1523 int hi = h - hstates;
a3437870 1524
9a305230
LS
1525 hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
1526 if (!hstate_kobjs[hi])
a3437870
NA
1527 return -ENOMEM;
1528
9a305230 1529 retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
a3437870 1530 if (retval)
9a305230 1531 kobject_put(hstate_kobjs[hi]);
a3437870
NA
1532
1533 return retval;
1534}
1535
1536static void __init hugetlb_sysfs_init(void)
1537{
1538 struct hstate *h;
1539 int err;
1540
1541 hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
1542 if (!hugepages_kobj)
1543 return;
1544
1545 for_each_hstate(h) {
9a305230
LS
1546 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
1547 hstate_kobjs, &hstate_attr_group);
a3437870
NA
1548 if (err)
1549 printk(KERN_ERR "Hugetlb: Unable to add hstate %s",
1550 h->name);
1551 }
1552}
1553
9a305230
LS
1554#ifdef CONFIG_NUMA
1555
1556/*
1557 * node_hstate/s - associate per node hstate attributes, via their kobjects,
1558 * with node sysdevs in node_devices[] using a parallel array. The array
1559 * index of a node sysdev or _hstate == node id.
1560 * This is here to avoid any static dependency of the node sysdev driver, in
1561 * the base kernel, on the hugetlb module.
1562 */
1563struct node_hstate {
1564 struct kobject *hugepages_kobj;
1565 struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
1566};
1567struct node_hstate node_hstates[MAX_NUMNODES];
1568
1569/*
1570 * A subset of global hstate attributes for node sysdevs
1571 */
1572static struct attribute *per_node_hstate_attrs[] = {
1573 &nr_hugepages_attr.attr,
1574 &free_hugepages_attr.attr,
1575 &surplus_hugepages_attr.attr,
1576 NULL,
1577};
1578
1579static struct attribute_group per_node_hstate_attr_group = {
1580 .attrs = per_node_hstate_attrs,
1581};
1582
1583/*
1584 * kobj_to_node_hstate - lookup global hstate for node sysdev hstate attr kobj.
1585 * Returns node id via non-NULL nidp.
1586 */
1587static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
1588{
1589 int nid;
1590
1591 for (nid = 0; nid < nr_node_ids; nid++) {
1592 struct node_hstate *nhs = &node_hstates[nid];
1593 int i;
1594 for (i = 0; i < HUGE_MAX_HSTATE; i++)
1595 if (nhs->hstate_kobjs[i] == kobj) {
1596 if (nidp)
1597 *nidp = nid;
1598 return &hstates[i];
1599 }
1600 }
1601
1602 BUG();
1603 return NULL;
1604}
1605
1606/*
1607 * Unregister hstate attributes from a single node sysdev.
1608 * No-op if no hstate attributes attached.
1609 */
1610void hugetlb_unregister_node(struct node *node)
1611{
1612 struct hstate *h;
1613 struct node_hstate *nhs = &node_hstates[node->sysdev.id];
1614
1615 if (!nhs->hugepages_kobj)
9b5e5d0f 1616 return; /* no hstate attributes */
9a305230
LS
1617
1618 for_each_hstate(h)
1619 if (nhs->hstate_kobjs[h - hstates]) {
1620 kobject_put(nhs->hstate_kobjs[h - hstates]);
1621 nhs->hstate_kobjs[h - hstates] = NULL;
1622 }
1623
1624 kobject_put(nhs->hugepages_kobj);
1625 nhs->hugepages_kobj = NULL;
1626}
1627
1628/*
1629 * hugetlb module exit: unregister hstate attributes from node sysdevs
1630 * that have them.
1631 */
1632static void hugetlb_unregister_all_nodes(void)
1633{
1634 int nid;
1635
1636 /*
1637 * disable node sysdev registrations.
1638 */
1639 register_hugetlbfs_with_node(NULL, NULL);
1640
1641 /*
1642 * remove hstate attributes from any nodes that have them.
1643 */
1644 for (nid = 0; nid < nr_node_ids; nid++)
1645 hugetlb_unregister_node(&node_devices[nid]);
1646}
1647
1648/*
1649 * Register hstate attributes for a single node sysdev.
1650 * No-op if attributes already registered.
1651 */
1652void hugetlb_register_node(struct node *node)
1653{
1654 struct hstate *h;
1655 struct node_hstate *nhs = &node_hstates[node->sysdev.id];
1656 int err;
1657
1658 if (nhs->hugepages_kobj)
1659 return; /* already allocated */
1660
1661 nhs->hugepages_kobj = kobject_create_and_add("hugepages",
1662 &node->sysdev.kobj);
1663 if (!nhs->hugepages_kobj)
1664 return;
1665
1666 for_each_hstate(h) {
1667 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
1668 nhs->hstate_kobjs,
1669 &per_node_hstate_attr_group);
1670 if (err) {
1671 printk(KERN_ERR "Hugetlb: Unable to add hstate %s"
1672 " for node %d\n",
1673 h->name, node->sysdev.id);
1674 hugetlb_unregister_node(node);
1675 break;
1676 }
1677 }
1678}
1679
1680/*
9b5e5d0f
LS
1681 * hugetlb init time: register hstate attributes for all registered node
1682 * sysdevs of nodes that have memory. All on-line nodes should have
1683 * registered their associated sysdev by this time.
9a305230
LS
1684 */
1685static void hugetlb_register_all_nodes(void)
1686{
1687 int nid;
1688
9b5e5d0f 1689 for_each_node_state(nid, N_HIGH_MEMORY) {
9a305230
LS
1690 struct node *node = &node_devices[nid];
1691 if (node->sysdev.id == nid)
1692 hugetlb_register_node(node);
1693 }
1694
1695 /*
1696 * Let the node sysdev driver know we're here so it can
1697 * [un]register hstate attributes on node hotplug.
1698 */
1699 register_hugetlbfs_with_node(hugetlb_register_node,
1700 hugetlb_unregister_node);
1701}
1702#else /* !CONFIG_NUMA */
1703
1704static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
1705{
1706 BUG();
1707 if (nidp)
1708 *nidp = -1;
1709 return NULL;
1710}
1711
1712static void hugetlb_unregister_all_nodes(void) { }
1713
1714static void hugetlb_register_all_nodes(void) { }
1715
1716#endif
1717
a3437870
NA
1718static void __exit hugetlb_exit(void)
1719{
1720 struct hstate *h;
1721
9a305230
LS
1722 hugetlb_unregister_all_nodes();
1723
a3437870
NA
1724 for_each_hstate(h) {
1725 kobject_put(hstate_kobjs[h - hstates]);
1726 }
1727
1728 kobject_put(hugepages_kobj);
1729}
1730module_exit(hugetlb_exit);
1731
1732static int __init hugetlb_init(void)
1733{
0ef89d25
BH
1734 /* Some platform decide whether they support huge pages at boot
1735 * time. On these, such as powerpc, HPAGE_SHIFT is set to 0 when
1736 * there is no such support
1737 */
1738 if (HPAGE_SHIFT == 0)
1739 return 0;
a3437870 1740
e11bfbfc
NP
1741 if (!size_to_hstate(default_hstate_size)) {
1742 default_hstate_size = HPAGE_SIZE;
1743 if (!size_to_hstate(default_hstate_size))
1744 hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
a3437870 1745 }
e11bfbfc
NP
1746 default_hstate_idx = size_to_hstate(default_hstate_size) - hstates;
1747 if (default_hstate_max_huge_pages)
1748 default_hstate.max_huge_pages = default_hstate_max_huge_pages;
a3437870
NA
1749
1750 hugetlb_init_hstates();
1751
aa888a74
AK
1752 gather_bootmem_prealloc();
1753
a3437870
NA
1754 report_hugepages();
1755
1756 hugetlb_sysfs_init();
1757
9a305230
LS
1758 hugetlb_register_all_nodes();
1759
a3437870
NA
1760 return 0;
1761}
1762module_init(hugetlb_init);
1763
1764/* Should be called on processing a hugepagesz=... option */
1765void __init hugetlb_add_hstate(unsigned order)
1766{
1767 struct hstate *h;
8faa8b07
AK
1768 unsigned long i;
1769
a3437870
NA
1770 if (size_to_hstate(PAGE_SIZE << order)) {
1771 printk(KERN_WARNING "hugepagesz= specified twice, ignoring\n");
1772 return;
1773 }
1774 BUG_ON(max_hstate >= HUGE_MAX_HSTATE);
1775 BUG_ON(order == 0);
1776 h = &hstates[max_hstate++];
1777 h->order = order;
1778 h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
8faa8b07
AK
1779 h->nr_huge_pages = 0;
1780 h->free_huge_pages = 0;
1781 for (i = 0; i < MAX_NUMNODES; ++i)
1782 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
9b5e5d0f
LS
1783 h->next_nid_to_alloc = first_node(node_states[N_HIGH_MEMORY]);
1784 h->next_nid_to_free = first_node(node_states[N_HIGH_MEMORY]);
a3437870
NA
1785 snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
1786 huge_page_size(h)/1024);
8faa8b07 1787
a3437870
NA
1788 parsed_hstate = h;
1789}
1790
e11bfbfc 1791static int __init hugetlb_nrpages_setup(char *s)
a3437870
NA
1792{
1793 unsigned long *mhp;
8faa8b07 1794 static unsigned long *last_mhp;
a3437870
NA
1795
1796 /*
1797 * !max_hstate means we haven't parsed a hugepagesz= parameter yet,
1798 * so this hugepages= parameter goes to the "default hstate".
1799 */
1800 if (!max_hstate)
1801 mhp = &default_hstate_max_huge_pages;
1802 else
1803 mhp = &parsed_hstate->max_huge_pages;
1804
8faa8b07
AK
1805 if (mhp == last_mhp) {
1806 printk(KERN_WARNING "hugepages= specified twice without "
1807 "interleaving hugepagesz=, ignoring\n");
1808 return 1;
1809 }
1810
a3437870
NA
1811 if (sscanf(s, "%lu", mhp) <= 0)
1812 *mhp = 0;
1813
8faa8b07
AK
1814 /*
1815 * Global state is always initialized later in hugetlb_init.
1816 * But we need to allocate >= MAX_ORDER hstates here early to still
1817 * use the bootmem allocator.
1818 */
1819 if (max_hstate && parsed_hstate->order >= MAX_ORDER)
1820 hugetlb_hstate_alloc_pages(parsed_hstate);
1821
1822 last_mhp = mhp;
1823
a3437870
NA
1824 return 1;
1825}
e11bfbfc
NP
1826__setup("hugepages=", hugetlb_nrpages_setup);
1827
1828static int __init hugetlb_default_setup(char *s)
1829{
1830 default_hstate_size = memparse(s, &s);
1831 return 1;
1832}
1833__setup("default_hugepagesz=", hugetlb_default_setup);
a3437870 1834
8a213460
NA
1835static unsigned int cpuset_mems_nr(unsigned int *array)
1836{
1837 int node;
1838 unsigned int nr = 0;
1839
1840 for_each_node_mask(node, cpuset_current_mems_allowed)
1841 nr += array[node];
1842
1843 return nr;
1844}
1845
1846#ifdef CONFIG_SYSCTL
06808b08
LS
1847static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
1848 struct ctl_table *table, int write,
1849 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 1850{
e5ff2159
AK
1851 struct hstate *h = &default_hstate;
1852 unsigned long tmp;
1853
1854 if (!write)
1855 tmp = h->max_huge_pages;
1856
1857 table->data = &tmp;
1858 table->maxlen = sizeof(unsigned long);
8d65af78 1859 proc_doulongvec_minmax(table, write, buffer, length, ppos);
e5ff2159 1860
06808b08 1861 if (write) {
bad44b5b
DR
1862 NODEMASK_ALLOC(nodemask_t, nodes_allowed,
1863 GFP_KERNEL | __GFP_NORETRY);
06808b08
LS
1864 if (!(obey_mempolicy &&
1865 init_nodemask_of_mempolicy(nodes_allowed))) {
1866 NODEMASK_FREE(nodes_allowed);
1867 nodes_allowed = &node_states[N_HIGH_MEMORY];
1868 }
1869 h->max_huge_pages = set_max_huge_pages(h, tmp, nodes_allowed);
1870
1871 if (nodes_allowed != &node_states[N_HIGH_MEMORY])
1872 NODEMASK_FREE(nodes_allowed);
1873 }
e5ff2159 1874
1da177e4
LT
1875 return 0;
1876}
396faf03 1877
06808b08
LS
1878int hugetlb_sysctl_handler(struct ctl_table *table, int write,
1879 void __user *buffer, size_t *length, loff_t *ppos)
1880{
1881
1882 return hugetlb_sysctl_handler_common(false, table, write,
1883 buffer, length, ppos);
1884}
1885
1886#ifdef CONFIG_NUMA
1887int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
1888 void __user *buffer, size_t *length, loff_t *ppos)
1889{
1890 return hugetlb_sysctl_handler_common(true, table, write,
1891 buffer, length, ppos);
1892}
1893#endif /* CONFIG_NUMA */
1894
396faf03 1895int hugetlb_treat_movable_handler(struct ctl_table *table, int write,
8d65af78 1896 void __user *buffer,
396faf03
MG
1897 size_t *length, loff_t *ppos)
1898{
8d65af78 1899 proc_dointvec(table, write, buffer, length, ppos);
396faf03
MG
1900 if (hugepages_treat_as_movable)
1901 htlb_alloc_mask = GFP_HIGHUSER_MOVABLE;
1902 else
1903 htlb_alloc_mask = GFP_HIGHUSER;
1904 return 0;
1905}
1906
a3d0c6aa 1907int hugetlb_overcommit_handler(struct ctl_table *table, int write,
8d65af78 1908 void __user *buffer,
a3d0c6aa
NA
1909 size_t *length, loff_t *ppos)
1910{
a5516438 1911 struct hstate *h = &default_hstate;
e5ff2159
AK
1912 unsigned long tmp;
1913
1914 if (!write)
1915 tmp = h->nr_overcommit_huge_pages;
1916
1917 table->data = &tmp;
1918 table->maxlen = sizeof(unsigned long);
8d65af78 1919 proc_doulongvec_minmax(table, write, buffer, length, ppos);
e5ff2159
AK
1920
1921 if (write) {
1922 spin_lock(&hugetlb_lock);
1923 h->nr_overcommit_huge_pages = tmp;
1924 spin_unlock(&hugetlb_lock);
1925 }
1926
a3d0c6aa
NA
1927 return 0;
1928}
1929
1da177e4
LT
1930#endif /* CONFIG_SYSCTL */
1931
e1759c21 1932void hugetlb_report_meminfo(struct seq_file *m)
1da177e4 1933{
a5516438 1934 struct hstate *h = &default_hstate;
e1759c21 1935 seq_printf(m,
4f98a2fe
RR
1936 "HugePages_Total: %5lu\n"
1937 "HugePages_Free: %5lu\n"
1938 "HugePages_Rsvd: %5lu\n"
1939 "HugePages_Surp: %5lu\n"
1940 "Hugepagesize: %8lu kB\n",
a5516438
AK
1941 h->nr_huge_pages,
1942 h->free_huge_pages,
1943 h->resv_huge_pages,
1944 h->surplus_huge_pages,
1945 1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
1da177e4
LT
1946}
1947
1948int hugetlb_report_node_meminfo(int nid, char *buf)
1949{
a5516438 1950 struct hstate *h = &default_hstate;
1da177e4
LT
1951 return sprintf(buf,
1952 "Node %d HugePages_Total: %5u\n"
a1de0919
NA
1953 "Node %d HugePages_Free: %5u\n"
1954 "Node %d HugePages_Surp: %5u\n",
a5516438
AK
1955 nid, h->nr_huge_pages_node[nid],
1956 nid, h->free_huge_pages_node[nid],
1957 nid, h->surplus_huge_pages_node[nid]);
1da177e4
LT
1958}
1959
1da177e4
LT
1960/* Return the number pages of memory we physically have, in PAGE_SIZE units. */
1961unsigned long hugetlb_total_pages(void)
1962{
a5516438
AK
1963 struct hstate *h = &default_hstate;
1964 return h->nr_huge_pages * pages_per_huge_page(h);
1da177e4 1965}
1da177e4 1966
a5516438 1967static int hugetlb_acct_memory(struct hstate *h, long delta)
fc1b8a73
MG
1968{
1969 int ret = -ENOMEM;
1970
1971 spin_lock(&hugetlb_lock);
1972 /*
1973 * When cpuset is configured, it breaks the strict hugetlb page
1974 * reservation as the accounting is done on a global variable. Such
1975 * reservation is completely rubbish in the presence of cpuset because
1976 * the reservation is not checked against page availability for the
1977 * current cpuset. Application can still potentially OOM'ed by kernel
1978 * with lack of free htlb page in cpuset that the task is in.
1979 * Attempt to enforce strict accounting with cpuset is almost
1980 * impossible (or too ugly) because cpuset is too fluid that
1981 * task or memory node can be dynamically moved between cpusets.
1982 *
1983 * The change of semantics for shared hugetlb mapping with cpuset is
1984 * undesirable. However, in order to preserve some of the semantics,
1985 * we fall back to check against current free page availability as
1986 * a best attempt and hopefully to minimize the impact of changing
1987 * semantics that cpuset has.
1988 */
1989 if (delta > 0) {
a5516438 1990 if (gather_surplus_pages(h, delta) < 0)
fc1b8a73
MG
1991 goto out;
1992
a5516438
AK
1993 if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
1994 return_unused_surplus_pages(h, delta);
fc1b8a73
MG
1995 goto out;
1996 }
1997 }
1998
1999 ret = 0;
2000 if (delta < 0)
a5516438 2001 return_unused_surplus_pages(h, (unsigned long) -delta);
fc1b8a73
MG
2002
2003out:
2004 spin_unlock(&hugetlb_lock);
2005 return ret;
2006}
2007
84afd99b
AW
2008static void hugetlb_vm_op_open(struct vm_area_struct *vma)
2009{
2010 struct resv_map *reservations = vma_resv_map(vma);
2011
2012 /*
2013 * This new VMA should share its siblings reservation map if present.
2014 * The VMA will only ever have a valid reservation map pointer where
2015 * it is being copied for another still existing VMA. As that VMA
2016 * has a reference to the reservation map it cannot dissappear until
2017 * after this open call completes. It is therefore safe to take a
2018 * new reference here without additional locking.
2019 */
2020 if (reservations)
2021 kref_get(&reservations->refs);
2022}
2023
a1e78772
MG
2024static void hugetlb_vm_op_close(struct vm_area_struct *vma)
2025{
a5516438 2026 struct hstate *h = hstate_vma(vma);
84afd99b
AW
2027 struct resv_map *reservations = vma_resv_map(vma);
2028 unsigned long reserve;
2029 unsigned long start;
2030 unsigned long end;
2031
2032 if (reservations) {
a5516438
AK
2033 start = vma_hugecache_offset(h, vma, vma->vm_start);
2034 end = vma_hugecache_offset(h, vma, vma->vm_end);
84afd99b
AW
2035
2036 reserve = (end - start) -
2037 region_count(&reservations->regions, start, end);
2038
2039 kref_put(&reservations->refs, resv_map_release);
2040
7251ff78 2041 if (reserve) {
a5516438 2042 hugetlb_acct_memory(h, -reserve);
7251ff78
AL
2043 hugetlb_put_quota(vma->vm_file->f_mapping, reserve);
2044 }
84afd99b 2045 }
a1e78772
MG
2046}
2047
1da177e4
LT
2048/*
2049 * We cannot handle pagefaults against hugetlb pages at all. They cause
2050 * handle_mm_fault() to try to instantiate regular-sized pages in the
2051 * hugegpage VMA. do_page_fault() is supposed to trap this, so BUG is we get
2052 * this far.
2053 */
d0217ac0 2054static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1da177e4
LT
2055{
2056 BUG();
d0217ac0 2057 return 0;
1da177e4
LT
2058}
2059
f0f37e2f 2060const struct vm_operations_struct hugetlb_vm_ops = {
d0217ac0 2061 .fault = hugetlb_vm_op_fault,
84afd99b 2062 .open = hugetlb_vm_op_open,
a1e78772 2063 .close = hugetlb_vm_op_close,
1da177e4
LT
2064};
2065
1e8f889b
DG
2066static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
2067 int writable)
63551ae0
DG
2068{
2069 pte_t entry;
2070
1e8f889b 2071 if (writable) {
63551ae0
DG
2072 entry =
2073 pte_mkwrite(pte_mkdirty(mk_pte(page, vma->vm_page_prot)));
2074 } else {
7f2e9525 2075 entry = huge_pte_wrprotect(mk_pte(page, vma->vm_page_prot));
63551ae0
DG
2076 }
2077 entry = pte_mkyoung(entry);
2078 entry = pte_mkhuge(entry);
2079
2080 return entry;
2081}
2082
1e8f889b
DG
2083static void set_huge_ptep_writable(struct vm_area_struct *vma,
2084 unsigned long address, pte_t *ptep)
2085{
2086 pte_t entry;
2087
7f2e9525
GS
2088 entry = pte_mkwrite(pte_mkdirty(huge_ptep_get(ptep)));
2089 if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1)) {
4b3073e1 2090 update_mmu_cache(vma, address, ptep);
8dab5241 2091 }
1e8f889b
DG
2092}
2093
2094
63551ae0
DG
2095int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
2096 struct vm_area_struct *vma)
2097{
2098 pte_t *src_pte, *dst_pte, entry;
2099 struct page *ptepage;
1c59827d 2100 unsigned long addr;
1e8f889b 2101 int cow;
a5516438
AK
2102 struct hstate *h = hstate_vma(vma);
2103 unsigned long sz = huge_page_size(h);
1e8f889b
DG
2104
2105 cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
63551ae0 2106
a5516438 2107 for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
c74df32c
HD
2108 src_pte = huge_pte_offset(src, addr);
2109 if (!src_pte)
2110 continue;
a5516438 2111 dst_pte = huge_pte_alloc(dst, addr, sz);
63551ae0
DG
2112 if (!dst_pte)
2113 goto nomem;
c5c99429
LW
2114
2115 /* If the pagetables are shared don't copy or take references */
2116 if (dst_pte == src_pte)
2117 continue;
2118
c74df32c 2119 spin_lock(&dst->page_table_lock);
46478758 2120 spin_lock_nested(&src->page_table_lock, SINGLE_DEPTH_NESTING);
7f2e9525 2121 if (!huge_pte_none(huge_ptep_get(src_pte))) {
1e8f889b 2122 if (cow)
7f2e9525
GS
2123 huge_ptep_set_wrprotect(src, addr, src_pte);
2124 entry = huge_ptep_get(src_pte);
1c59827d
HD
2125 ptepage = pte_page(entry);
2126 get_page(ptepage);
1c59827d
HD
2127 set_huge_pte_at(dst, addr, dst_pte, entry);
2128 }
2129 spin_unlock(&src->page_table_lock);
c74df32c 2130 spin_unlock(&dst->page_table_lock);
63551ae0
DG
2131 }
2132 return 0;
2133
2134nomem:
2135 return -ENOMEM;
2136}
2137
502717f4 2138void __unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
04f2cbe3 2139 unsigned long end, struct page *ref_page)
63551ae0
DG
2140{
2141 struct mm_struct *mm = vma->vm_mm;
2142 unsigned long address;
c7546f8f 2143 pte_t *ptep;
63551ae0
DG
2144 pte_t pte;
2145 struct page *page;
fe1668ae 2146 struct page *tmp;
a5516438
AK
2147 struct hstate *h = hstate_vma(vma);
2148 unsigned long sz = huge_page_size(h);
2149
c0a499c2
CK
2150 /*
2151 * A page gathering list, protected by per file i_mmap_lock. The
2152 * lock is used to avoid list corruption from multiple unmapping
2153 * of the same page since we are using page->lru.
2154 */
fe1668ae 2155 LIST_HEAD(page_list);
63551ae0
DG
2156
2157 WARN_ON(!is_vm_hugetlb_page(vma));
a5516438
AK
2158 BUG_ON(start & ~huge_page_mask(h));
2159 BUG_ON(end & ~huge_page_mask(h));
63551ae0 2160
cddb8a5c 2161 mmu_notifier_invalidate_range_start(mm, start, end);
508034a3 2162 spin_lock(&mm->page_table_lock);
a5516438 2163 for (address = start; address < end; address += sz) {
c7546f8f 2164 ptep = huge_pte_offset(mm, address);
4c887265 2165 if (!ptep)
c7546f8f
DG
2166 continue;
2167
39dde65c
CK
2168 if (huge_pmd_unshare(mm, &address, ptep))
2169 continue;
2170
04f2cbe3
MG
2171 /*
2172 * If a reference page is supplied, it is because a specific
2173 * page is being unmapped, not a range. Ensure the page we
2174 * are about to unmap is the actual page of interest.
2175 */
2176 if (ref_page) {
2177 pte = huge_ptep_get(ptep);
2178 if (huge_pte_none(pte))
2179 continue;
2180 page = pte_page(pte);
2181 if (page != ref_page)
2182 continue;
2183
2184 /*
2185 * Mark the VMA as having unmapped its page so that
2186 * future faults in this VMA will fail rather than
2187 * looking like data was lost
2188 */
2189 set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
2190 }
2191
c7546f8f 2192 pte = huge_ptep_get_and_clear(mm, address, ptep);
7f2e9525 2193 if (huge_pte_none(pte))
63551ae0 2194 continue;
c7546f8f 2195
63551ae0 2196 page = pte_page(pte);
6649a386
KC
2197 if (pte_dirty(pte))
2198 set_page_dirty(page);
fe1668ae 2199 list_add(&page->lru, &page_list);
63551ae0 2200 }
1da177e4 2201 spin_unlock(&mm->page_table_lock);
508034a3 2202 flush_tlb_range(vma, start, end);
cddb8a5c 2203 mmu_notifier_invalidate_range_end(mm, start, end);
fe1668ae
CK
2204 list_for_each_entry_safe(page, tmp, &page_list, lru) {
2205 list_del(&page->lru);
2206 put_page(page);
2207 }
1da177e4 2208}
63551ae0 2209
502717f4 2210void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
04f2cbe3 2211 unsigned long end, struct page *ref_page)
502717f4 2212{
a137e1cc
AK
2213 spin_lock(&vma->vm_file->f_mapping->i_mmap_lock);
2214 __unmap_hugepage_range(vma, start, end, ref_page);
2215 spin_unlock(&vma->vm_file->f_mapping->i_mmap_lock);
502717f4
CK
2216}
2217
04f2cbe3
MG
2218/*
2219 * This is called when the original mapper is failing to COW a MAP_PRIVATE
2220 * mappping it owns the reserve page for. The intention is to unmap the page
2221 * from other VMAs and let the children be SIGKILLed if they are faulting the
2222 * same region.
2223 */
2a4b3ded
HH
2224static int unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
2225 struct page *page, unsigned long address)
04f2cbe3 2226{
7526674d 2227 struct hstate *h = hstate_vma(vma);
04f2cbe3
MG
2228 struct vm_area_struct *iter_vma;
2229 struct address_space *mapping;
2230 struct prio_tree_iter iter;
2231 pgoff_t pgoff;
2232
2233 /*
2234 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
2235 * from page cache lookup which is in HPAGE_SIZE units.
2236 */
7526674d 2237 address = address & huge_page_mask(h);
04f2cbe3
MG
2238 pgoff = ((address - vma->vm_start) >> PAGE_SHIFT)
2239 + (vma->vm_pgoff >> PAGE_SHIFT);
2240 mapping = (struct address_space *)page_private(page);
2241
4eb2b1dc
MG
2242 /*
2243 * Take the mapping lock for the duration of the table walk. As
2244 * this mapping should be shared between all the VMAs,
2245 * __unmap_hugepage_range() is called as the lock is already held
2246 */
2247 spin_lock(&mapping->i_mmap_lock);
04f2cbe3
MG
2248 vma_prio_tree_foreach(iter_vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
2249 /* Do not unmap the current VMA */
2250 if (iter_vma == vma)
2251 continue;
2252
2253 /*
2254 * Unmap the page from other VMAs without their own reserves.
2255 * They get marked to be SIGKILLed if they fault in these
2256 * areas. This is because a future no-page fault on this VMA
2257 * could insert a zeroed page instead of the data existing
2258 * from the time of fork. This would look like data corruption
2259 */
2260 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
4eb2b1dc 2261 __unmap_hugepage_range(iter_vma,
7526674d 2262 address, address + huge_page_size(h),
04f2cbe3
MG
2263 page);
2264 }
4eb2b1dc 2265 spin_unlock(&mapping->i_mmap_lock);
04f2cbe3
MG
2266
2267 return 1;
2268}
2269
1e8f889b 2270static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
04f2cbe3
MG
2271 unsigned long address, pte_t *ptep, pte_t pte,
2272 struct page *pagecache_page)
1e8f889b 2273{
a5516438 2274 struct hstate *h = hstate_vma(vma);
1e8f889b 2275 struct page *old_page, *new_page;
79ac6ba4 2276 int avoidcopy;
04f2cbe3 2277 int outside_reserve = 0;
1e8f889b
DG
2278
2279 old_page = pte_page(pte);
2280
04f2cbe3 2281retry_avoidcopy:
1e8f889b
DG
2282 /* If no-one else is actually using this page, avoid the copy
2283 * and just make the page writable */
2284 avoidcopy = (page_count(old_page) == 1);
2285 if (avoidcopy) {
2286 set_huge_ptep_writable(vma, address, ptep);
83c54070 2287 return 0;
1e8f889b
DG
2288 }
2289
04f2cbe3
MG
2290 /*
2291 * If the process that created a MAP_PRIVATE mapping is about to
2292 * perform a COW due to a shared page count, attempt to satisfy
2293 * the allocation without using the existing reserves. The pagecache
2294 * page is used to determine if the reserve at this address was
2295 * consumed or not. If reserves were used, a partial faulted mapping
2296 * at the time of fork() could consume its reserves on COW instead
2297 * of the full address range.
2298 */
f83a275d 2299 if (!(vma->vm_flags & VM_MAYSHARE) &&
04f2cbe3
MG
2300 is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
2301 old_page != pagecache_page)
2302 outside_reserve = 1;
2303
1e8f889b 2304 page_cache_get(old_page);
b76c8cfb
LW
2305
2306 /* Drop page_table_lock as buddy allocator may be called */
2307 spin_unlock(&mm->page_table_lock);
04f2cbe3 2308 new_page = alloc_huge_page(vma, address, outside_reserve);
1e8f889b 2309
2fc39cec 2310 if (IS_ERR(new_page)) {
1e8f889b 2311 page_cache_release(old_page);
04f2cbe3
MG
2312
2313 /*
2314 * If a process owning a MAP_PRIVATE mapping fails to COW,
2315 * it is due to references held by a child and an insufficient
2316 * huge page pool. To guarantee the original mappers
2317 * reliability, unmap the page from child processes. The child
2318 * may get SIGKILLed if it later faults.
2319 */
2320 if (outside_reserve) {
2321 BUG_ON(huge_pte_none(pte));
2322 if (unmap_ref_private(mm, vma, old_page, address)) {
2323 BUG_ON(page_count(old_page) != 1);
2324 BUG_ON(huge_pte_none(pte));
b76c8cfb 2325 spin_lock(&mm->page_table_lock);
04f2cbe3
MG
2326 goto retry_avoidcopy;
2327 }
2328 WARN_ON_ONCE(1);
2329 }
2330
b76c8cfb
LW
2331 /* Caller expects lock to be held */
2332 spin_lock(&mm->page_table_lock);
2fc39cec 2333 return -PTR_ERR(new_page);
1e8f889b
DG
2334 }
2335
9de455b2 2336 copy_huge_page(new_page, old_page, address, vma);
0ed361de 2337 __SetPageUptodate(new_page);
1e8f889b 2338
b76c8cfb
LW
2339 /*
2340 * Retake the page_table_lock to check for racing updates
2341 * before the page tables are altered
2342 */
2343 spin_lock(&mm->page_table_lock);
a5516438 2344 ptep = huge_pte_offset(mm, address & huge_page_mask(h));
7f2e9525 2345 if (likely(pte_same(huge_ptep_get(ptep), pte))) {
1e8f889b 2346 /* Break COW */
8fe627ec 2347 huge_ptep_clear_flush(vma, address, ptep);
1e8f889b
DG
2348 set_huge_pte_at(mm, address, ptep,
2349 make_huge_pte(vma, new_page, 1));
2350 /* Make the old page be freed below */
2351 new_page = old_page;
2352 }
2353 page_cache_release(new_page);
2354 page_cache_release(old_page);
83c54070 2355 return 0;
1e8f889b
DG
2356}
2357
04f2cbe3 2358/* Return the pagecache page at a given address within a VMA */
a5516438
AK
2359static struct page *hugetlbfs_pagecache_page(struct hstate *h,
2360 struct vm_area_struct *vma, unsigned long address)
04f2cbe3
MG
2361{
2362 struct address_space *mapping;
e7c4b0bf 2363 pgoff_t idx;
04f2cbe3
MG
2364
2365 mapping = vma->vm_file->f_mapping;
a5516438 2366 idx = vma_hugecache_offset(h, vma, address);
04f2cbe3
MG
2367
2368 return find_lock_page(mapping, idx);
2369}
2370
3ae77f43
HD
2371/*
2372 * Return whether there is a pagecache page to back given address within VMA.
2373 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
2374 */
2375static bool hugetlbfs_pagecache_present(struct hstate *h,
2a15efc9
HD
2376 struct vm_area_struct *vma, unsigned long address)
2377{
2378 struct address_space *mapping;
2379 pgoff_t idx;
2380 struct page *page;
2381
2382 mapping = vma->vm_file->f_mapping;
2383 idx = vma_hugecache_offset(h, vma, address);
2384
2385 page = find_get_page(mapping, idx);
2386 if (page)
2387 put_page(page);
2388 return page != NULL;
2389}
2390
a1ed3dda 2391static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
788c7df4 2392 unsigned long address, pte_t *ptep, unsigned int flags)
ac9b9c66 2393{
a5516438 2394 struct hstate *h = hstate_vma(vma);
ac9b9c66 2395 int ret = VM_FAULT_SIGBUS;
e7c4b0bf 2396 pgoff_t idx;
4c887265 2397 unsigned long size;
4c887265
AL
2398 struct page *page;
2399 struct address_space *mapping;
1e8f889b 2400 pte_t new_pte;
4c887265 2401
04f2cbe3
MG
2402 /*
2403 * Currently, we are forced to kill the process in the event the
2404 * original mapper has unmapped pages from the child due to a failed
2405 * COW. Warn that such a situation has occured as it may not be obvious
2406 */
2407 if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
2408 printk(KERN_WARNING
2409 "PID %d killed due to inadequate hugepage pool\n",
2410 current->pid);
2411 return ret;
2412 }
2413
4c887265 2414 mapping = vma->vm_file->f_mapping;
a5516438 2415 idx = vma_hugecache_offset(h, vma, address);
4c887265
AL
2416
2417 /*
2418 * Use page lock to guard against racing truncation
2419 * before we get page_table_lock.
2420 */
6bda666a
CL
2421retry:
2422 page = find_lock_page(mapping, idx);
2423 if (!page) {
a5516438 2424 size = i_size_read(mapping->host) >> huge_page_shift(h);
ebed4bfc
HD
2425 if (idx >= size)
2426 goto out;
04f2cbe3 2427 page = alloc_huge_page(vma, address, 0);
2fc39cec
AL
2428 if (IS_ERR(page)) {
2429 ret = -PTR_ERR(page);
6bda666a
CL
2430 goto out;
2431 }
a5516438 2432 clear_huge_page(page, address, huge_page_size(h));
0ed361de 2433 __SetPageUptodate(page);
ac9b9c66 2434
f83a275d 2435 if (vma->vm_flags & VM_MAYSHARE) {
6bda666a 2436 int err;
45c682a6 2437 struct inode *inode = mapping->host;
6bda666a
CL
2438
2439 err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
2440 if (err) {
2441 put_page(page);
6bda666a
CL
2442 if (err == -EEXIST)
2443 goto retry;
2444 goto out;
2445 }
45c682a6
KC
2446
2447 spin_lock(&inode->i_lock);
a5516438 2448 inode->i_blocks += blocks_per_huge_page(h);
45c682a6 2449 spin_unlock(&inode->i_lock);
6bda666a
CL
2450 } else
2451 lock_page(page);
2452 }
1e8f889b 2453
57303d80
AW
2454 /*
2455 * If we are going to COW a private mapping later, we examine the
2456 * pending reservations for this page now. This will ensure that
2457 * any allocations necessary to record that reservation occur outside
2458 * the spinlock.
2459 */
788c7df4 2460 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED))
2b26736c
AW
2461 if (vma_needs_reservation(h, vma, address) < 0) {
2462 ret = VM_FAULT_OOM;
2463 goto backout_unlocked;
2464 }
57303d80 2465
ac9b9c66 2466 spin_lock(&mm->page_table_lock);
a5516438 2467 size = i_size_read(mapping->host) >> huge_page_shift(h);
4c887265
AL
2468 if (idx >= size)
2469 goto backout;
2470
83c54070 2471 ret = 0;
7f2e9525 2472 if (!huge_pte_none(huge_ptep_get(ptep)))
4c887265
AL
2473 goto backout;
2474
1e8f889b
DG
2475 new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
2476 && (vma->vm_flags & VM_SHARED)));
2477 set_huge_pte_at(mm, address, ptep, new_pte);
2478
788c7df4 2479 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
1e8f889b 2480 /* Optimization, do the COW without a second fault */
04f2cbe3 2481 ret = hugetlb_cow(mm, vma, address, ptep, new_pte, page);
1e8f889b
DG
2482 }
2483
ac9b9c66 2484 spin_unlock(&mm->page_table_lock);
4c887265
AL
2485 unlock_page(page);
2486out:
ac9b9c66 2487 return ret;
4c887265
AL
2488
2489backout:
2490 spin_unlock(&mm->page_table_lock);
2b26736c 2491backout_unlocked:
4c887265
AL
2492 unlock_page(page);
2493 put_page(page);
2494 goto out;
ac9b9c66
HD
2495}
2496
86e5216f 2497int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
788c7df4 2498 unsigned long address, unsigned int flags)
86e5216f
AL
2499{
2500 pte_t *ptep;
2501 pte_t entry;
1e8f889b 2502 int ret;
57303d80 2503 struct page *pagecache_page = NULL;
3935baa9 2504 static DEFINE_MUTEX(hugetlb_instantiation_mutex);
a5516438 2505 struct hstate *h = hstate_vma(vma);
86e5216f 2506
a5516438 2507 ptep = huge_pte_alloc(mm, address, huge_page_size(h));
86e5216f
AL
2508 if (!ptep)
2509 return VM_FAULT_OOM;
2510
3935baa9
DG
2511 /*
2512 * Serialize hugepage allocation and instantiation, so that we don't
2513 * get spurious allocation failures if two CPUs race to instantiate
2514 * the same page in the page cache.
2515 */
2516 mutex_lock(&hugetlb_instantiation_mutex);
7f2e9525
GS
2517 entry = huge_ptep_get(ptep);
2518 if (huge_pte_none(entry)) {
788c7df4 2519 ret = hugetlb_no_page(mm, vma, address, ptep, flags);
b4d1d99f 2520 goto out_mutex;
3935baa9 2521 }
86e5216f 2522
83c54070 2523 ret = 0;
1e8f889b 2524
57303d80
AW
2525 /*
2526 * If we are going to COW the mapping later, we examine the pending
2527 * reservations for this page now. This will ensure that any
2528 * allocations necessary to record that reservation occur outside the
2529 * spinlock. For private mappings, we also lookup the pagecache
2530 * page now as it is used to determine if a reservation has been
2531 * consumed.
2532 */
788c7df4 2533 if ((flags & FAULT_FLAG_WRITE) && !pte_write(entry)) {
2b26736c
AW
2534 if (vma_needs_reservation(h, vma, address) < 0) {
2535 ret = VM_FAULT_OOM;
b4d1d99f 2536 goto out_mutex;
2b26736c 2537 }
57303d80 2538
f83a275d 2539 if (!(vma->vm_flags & VM_MAYSHARE))
57303d80
AW
2540 pagecache_page = hugetlbfs_pagecache_page(h,
2541 vma, address);
2542 }
2543
1e8f889b
DG
2544 spin_lock(&mm->page_table_lock);
2545 /* Check for a racing update before calling hugetlb_cow */
b4d1d99f
DG
2546 if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
2547 goto out_page_table_lock;
2548
2549
788c7df4 2550 if (flags & FAULT_FLAG_WRITE) {
b4d1d99f 2551 if (!pte_write(entry)) {
57303d80
AW
2552 ret = hugetlb_cow(mm, vma, address, ptep, entry,
2553 pagecache_page);
b4d1d99f
DG
2554 goto out_page_table_lock;
2555 }
2556 entry = pte_mkdirty(entry);
2557 }
2558 entry = pte_mkyoung(entry);
788c7df4
HD
2559 if (huge_ptep_set_access_flags(vma, address, ptep, entry,
2560 flags & FAULT_FLAG_WRITE))
4b3073e1 2561 update_mmu_cache(vma, address, ptep);
b4d1d99f
DG
2562
2563out_page_table_lock:
1e8f889b 2564 spin_unlock(&mm->page_table_lock);
57303d80
AW
2565
2566 if (pagecache_page) {
2567 unlock_page(pagecache_page);
2568 put_page(pagecache_page);
2569 }
2570
b4d1d99f 2571out_mutex:
3935baa9 2572 mutex_unlock(&hugetlb_instantiation_mutex);
1e8f889b
DG
2573
2574 return ret;
86e5216f
AL
2575}
2576
ceb86879
AK
2577/* Can be overriden by architectures */
2578__attribute__((weak)) struct page *
2579follow_huge_pud(struct mm_struct *mm, unsigned long address,
2580 pud_t *pud, int write)
2581{
2582 BUG();
2583 return NULL;
2584}
2585
63551ae0
DG
2586int follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
2587 struct page **pages, struct vm_area_struct **vmas,
5b23dbe8 2588 unsigned long *position, int *length, int i,
2a15efc9 2589 unsigned int flags)
63551ae0 2590{
d5d4b0aa
CK
2591 unsigned long pfn_offset;
2592 unsigned long vaddr = *position;
63551ae0 2593 int remainder = *length;
a5516438 2594 struct hstate *h = hstate_vma(vma);
63551ae0 2595
1c59827d 2596 spin_lock(&mm->page_table_lock);
63551ae0 2597 while (vaddr < vma->vm_end && remainder) {
4c887265 2598 pte_t *pte;
2a15efc9 2599 int absent;
4c887265 2600 struct page *page;
63551ae0 2601
4c887265
AL
2602 /*
2603 * Some archs (sparc64, sh*) have multiple pte_ts to
2a15efc9 2604 * each hugepage. We have to make sure we get the
4c887265
AL
2605 * first, for the page indexing below to work.
2606 */
a5516438 2607 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h));
2a15efc9
HD
2608 absent = !pte || huge_pte_none(huge_ptep_get(pte));
2609
2610 /*
2611 * When coredumping, it suits get_dump_page if we just return
3ae77f43
HD
2612 * an error where there's an empty slot with no huge pagecache
2613 * to back it. This way, we avoid allocating a hugepage, and
2614 * the sparse dumpfile avoids allocating disk blocks, but its
2615 * huge holes still show up with zeroes where they need to be.
2a15efc9 2616 */
3ae77f43
HD
2617 if (absent && (flags & FOLL_DUMP) &&
2618 !hugetlbfs_pagecache_present(h, vma, vaddr)) {
2a15efc9
HD
2619 remainder = 0;
2620 break;
2621 }
63551ae0 2622
2a15efc9
HD
2623 if (absent ||
2624 ((flags & FOLL_WRITE) && !pte_write(huge_ptep_get(pte)))) {
4c887265 2625 int ret;
63551ae0 2626
4c887265 2627 spin_unlock(&mm->page_table_lock);
2a15efc9
HD
2628 ret = hugetlb_fault(mm, vma, vaddr,
2629 (flags & FOLL_WRITE) ? FAULT_FLAG_WRITE : 0);
4c887265 2630 spin_lock(&mm->page_table_lock);
a89182c7 2631 if (!(ret & VM_FAULT_ERROR))
4c887265 2632 continue;
63551ae0 2633
4c887265 2634 remainder = 0;
4c887265
AL
2635 break;
2636 }
2637
a5516438 2638 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
7f2e9525 2639 page = pte_page(huge_ptep_get(pte));
d5d4b0aa 2640same_page:
d6692183 2641 if (pages) {
2a15efc9 2642 pages[i] = mem_map_offset(page, pfn_offset);
4b2e38ad 2643 get_page(pages[i]);
d6692183 2644 }
63551ae0
DG
2645
2646 if (vmas)
2647 vmas[i] = vma;
2648
2649 vaddr += PAGE_SIZE;
d5d4b0aa 2650 ++pfn_offset;
63551ae0
DG
2651 --remainder;
2652 ++i;
d5d4b0aa 2653 if (vaddr < vma->vm_end && remainder &&
a5516438 2654 pfn_offset < pages_per_huge_page(h)) {
d5d4b0aa
CK
2655 /*
2656 * We use pfn_offset to avoid touching the pageframes
2657 * of this compound page.
2658 */
2659 goto same_page;
2660 }
63551ae0 2661 }
1c59827d 2662 spin_unlock(&mm->page_table_lock);
63551ae0
DG
2663 *length = remainder;
2664 *position = vaddr;
2665
2a15efc9 2666 return i ? i : -EFAULT;
63551ae0 2667}
8f860591
ZY
2668
2669void hugetlb_change_protection(struct vm_area_struct *vma,
2670 unsigned long address, unsigned long end, pgprot_t newprot)
2671{
2672 struct mm_struct *mm = vma->vm_mm;
2673 unsigned long start = address;
2674 pte_t *ptep;
2675 pte_t pte;
a5516438 2676 struct hstate *h = hstate_vma(vma);
8f860591
ZY
2677
2678 BUG_ON(address >= end);
2679 flush_cache_range(vma, address, end);
2680
39dde65c 2681 spin_lock(&vma->vm_file->f_mapping->i_mmap_lock);
8f860591 2682 spin_lock(&mm->page_table_lock);
a5516438 2683 for (; address < end; address += huge_page_size(h)) {
8f860591
ZY
2684 ptep = huge_pte_offset(mm, address);
2685 if (!ptep)
2686 continue;
39dde65c
CK
2687 if (huge_pmd_unshare(mm, &address, ptep))
2688 continue;
7f2e9525 2689 if (!huge_pte_none(huge_ptep_get(ptep))) {
8f860591
ZY
2690 pte = huge_ptep_get_and_clear(mm, address, ptep);
2691 pte = pte_mkhuge(pte_modify(pte, newprot));
2692 set_huge_pte_at(mm, address, ptep, pte);
8f860591
ZY
2693 }
2694 }
2695 spin_unlock(&mm->page_table_lock);
39dde65c 2696 spin_unlock(&vma->vm_file->f_mapping->i_mmap_lock);
8f860591
ZY
2697
2698 flush_tlb_range(vma, start, end);
2699}
2700
a1e78772
MG
2701int hugetlb_reserve_pages(struct inode *inode,
2702 long from, long to,
5a6fe125
MG
2703 struct vm_area_struct *vma,
2704 int acctflag)
e4e574b7 2705{
17c9d12e 2706 long ret, chg;
a5516438 2707 struct hstate *h = hstate_inode(inode);
e4e574b7 2708
17c9d12e
MG
2709 /*
2710 * Only apply hugepage reservation if asked. At fault time, an
2711 * attempt will be made for VM_NORESERVE to allocate a page
2712 * and filesystem quota without using reserves
2713 */
2714 if (acctflag & VM_NORESERVE)
2715 return 0;
2716
a1e78772
MG
2717 /*
2718 * Shared mappings base their reservation on the number of pages that
2719 * are already allocated on behalf of the file. Private mappings need
2720 * to reserve the full area even if read-only as mprotect() may be
2721 * called to make the mapping read-write. Assume !vma is a shm mapping
2722 */
f83a275d 2723 if (!vma || vma->vm_flags & VM_MAYSHARE)
a1e78772 2724 chg = region_chg(&inode->i_mapping->private_list, from, to);
17c9d12e
MG
2725 else {
2726 struct resv_map *resv_map = resv_map_alloc();
2727 if (!resv_map)
2728 return -ENOMEM;
2729
a1e78772 2730 chg = to - from;
84afd99b 2731
17c9d12e
MG
2732 set_vma_resv_map(vma, resv_map);
2733 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
2734 }
2735
e4e574b7
AL
2736 if (chg < 0)
2737 return chg;
8a630112 2738
17c9d12e 2739 /* There must be enough filesystem quota for the mapping */
90d8b7e6
AL
2740 if (hugetlb_get_quota(inode->i_mapping, chg))
2741 return -ENOSPC;
5a6fe125
MG
2742
2743 /*
17c9d12e
MG
2744 * Check enough hugepages are available for the reservation.
2745 * Hand back the quota if there are not
5a6fe125 2746 */
a5516438 2747 ret = hugetlb_acct_memory(h, chg);
68842c9b
KC
2748 if (ret < 0) {
2749 hugetlb_put_quota(inode->i_mapping, chg);
a43a8c39 2750 return ret;
68842c9b 2751 }
17c9d12e
MG
2752
2753 /*
2754 * Account for the reservations made. Shared mappings record regions
2755 * that have reservations as they are shared by multiple VMAs.
2756 * When the last VMA disappears, the region map says how much
2757 * the reservation was and the page cache tells how much of
2758 * the reservation was consumed. Private mappings are per-VMA and
2759 * only the consumed reservations are tracked. When the VMA
2760 * disappears, the original reservation is the VMA size and the
2761 * consumed reservations are stored in the map. Hence, nothing
2762 * else has to be done for private mappings here
2763 */
f83a275d 2764 if (!vma || vma->vm_flags & VM_MAYSHARE)
a1e78772 2765 region_add(&inode->i_mapping->private_list, from, to);
a43a8c39
CK
2766 return 0;
2767}
2768
2769void hugetlb_unreserve_pages(struct inode *inode, long offset, long freed)
2770{
a5516438 2771 struct hstate *h = hstate_inode(inode);
a43a8c39 2772 long chg = region_truncate(&inode->i_mapping->private_list, offset);
45c682a6
KC
2773
2774 spin_lock(&inode->i_lock);
e4c6f8be 2775 inode->i_blocks -= (blocks_per_huge_page(h) * freed);
45c682a6
KC
2776 spin_unlock(&inode->i_lock);
2777
90d8b7e6 2778 hugetlb_put_quota(inode->i_mapping, (chg - freed));
a5516438 2779 hugetlb_acct_memory(h, -(chg - freed));
a43a8c39 2780}