hugetlbfs: kill applications that use MAP_NORESERVE with SIGBUS instead of OOM-killer
[linux-2.6-block.git] / mm / hugetlb.c
CommitLineData
1da177e4
LT
1/*
2 * Generic hugetlb support.
3 * (C) William Irwin, April 2004
4 */
1da177e4
LT
5#include <linux/list.h>
6#include <linux/init.h>
7#include <linux/module.h>
8#include <linux/mm.h>
e1759c21 9#include <linux/seq_file.h>
1da177e4
LT
10#include <linux/sysctl.h>
11#include <linux/highmem.h>
cddb8a5c 12#include <linux/mmu_notifier.h>
1da177e4 13#include <linux/nodemask.h>
63551ae0 14#include <linux/pagemap.h>
5da7ca86 15#include <linux/mempolicy.h>
aea47ff3 16#include <linux/cpuset.h>
3935baa9 17#include <linux/mutex.h>
aa888a74 18#include <linux/bootmem.h>
a3437870 19#include <linux/sysfs.h>
5a0e3ad6 20#include <linux/slab.h>
d6606683 21
63551ae0
DG
22#include <asm/page.h>
23#include <asm/pgtable.h>
78a34ae2 24#include <asm/io.h>
63551ae0
DG
25
26#include <linux/hugetlb.h>
9a305230 27#include <linux/node.h>
7835e98b 28#include "internal.h"
1da177e4
LT
29
30const unsigned long hugetlb_zero = 0, hugetlb_infinity = ~0UL;
396faf03
MG
31static gfp_t htlb_alloc_mask = GFP_HIGHUSER;
32unsigned long hugepages_treat_as_movable;
a5516438 33
e5ff2159
AK
34static int max_hstate;
35unsigned int default_hstate_idx;
36struct hstate hstates[HUGE_MAX_HSTATE];
37
53ba51d2
JT
38__initdata LIST_HEAD(huge_boot_pages);
39
e5ff2159
AK
40/* for command line parsing */
41static struct hstate * __initdata parsed_hstate;
42static unsigned long __initdata default_hstate_max_huge_pages;
e11bfbfc 43static unsigned long __initdata default_hstate_size;
e5ff2159
AK
44
45#define for_each_hstate(h) \
46 for ((h) = hstates; (h) < &hstates[max_hstate]; (h)++)
396faf03 47
3935baa9
DG
48/*
49 * Protects updates to hugepage_freelists, nr_huge_pages, and free_huge_pages
50 */
51static DEFINE_SPINLOCK(hugetlb_lock);
0bd0f9fb 52
96822904
AW
53/*
54 * Region tracking -- allows tracking of reservations and instantiated pages
55 * across the pages in a mapping.
84afd99b
AW
56 *
57 * The region data structures are protected by a combination of the mmap_sem
58 * and the hugetlb_instantion_mutex. To access or modify a region the caller
59 * must either hold the mmap_sem for write, or the mmap_sem for read and
60 * the hugetlb_instantiation mutex:
61 *
62 * down_write(&mm->mmap_sem);
63 * or
64 * down_read(&mm->mmap_sem);
65 * mutex_lock(&hugetlb_instantiation_mutex);
96822904
AW
66 */
67struct file_region {
68 struct list_head link;
69 long from;
70 long to;
71};
72
73static long region_add(struct list_head *head, long f, long t)
74{
75 struct file_region *rg, *nrg, *trg;
76
77 /* Locate the region we are either in or before. */
78 list_for_each_entry(rg, head, link)
79 if (f <= rg->to)
80 break;
81
82 /* Round our left edge to the current segment if it encloses us. */
83 if (f > rg->from)
84 f = rg->from;
85
86 /* Check for and consume any regions we now overlap with. */
87 nrg = rg;
88 list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
89 if (&rg->link == head)
90 break;
91 if (rg->from > t)
92 break;
93
94 /* If this area reaches higher then extend our area to
95 * include it completely. If this is not the first area
96 * which we intend to reuse, free it. */
97 if (rg->to > t)
98 t = rg->to;
99 if (rg != nrg) {
100 list_del(&rg->link);
101 kfree(rg);
102 }
103 }
104 nrg->from = f;
105 nrg->to = t;
106 return 0;
107}
108
109static long region_chg(struct list_head *head, long f, long t)
110{
111 struct file_region *rg, *nrg;
112 long chg = 0;
113
114 /* Locate the region we are before or in. */
115 list_for_each_entry(rg, head, link)
116 if (f <= rg->to)
117 break;
118
119 /* If we are below the current region then a new region is required.
120 * Subtle, allocate a new region at the position but make it zero
121 * size such that we can guarantee to record the reservation. */
122 if (&rg->link == head || t < rg->from) {
123 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
124 if (!nrg)
125 return -ENOMEM;
126 nrg->from = f;
127 nrg->to = f;
128 INIT_LIST_HEAD(&nrg->link);
129 list_add(&nrg->link, rg->link.prev);
130
131 return t - f;
132 }
133
134 /* Round our left edge to the current segment if it encloses us. */
135 if (f > rg->from)
136 f = rg->from;
137 chg = t - f;
138
139 /* Check for and consume any regions we now overlap with. */
140 list_for_each_entry(rg, rg->link.prev, link) {
141 if (&rg->link == head)
142 break;
143 if (rg->from > t)
144 return chg;
145
146 /* We overlap with this area, if it extends futher than
147 * us then we must extend ourselves. Account for its
148 * existing reservation. */
149 if (rg->to > t) {
150 chg += rg->to - t;
151 t = rg->to;
152 }
153 chg -= rg->to - rg->from;
154 }
155 return chg;
156}
157
158static long region_truncate(struct list_head *head, long end)
159{
160 struct file_region *rg, *trg;
161 long chg = 0;
162
163 /* Locate the region we are either in or before. */
164 list_for_each_entry(rg, head, link)
165 if (end <= rg->to)
166 break;
167 if (&rg->link == head)
168 return 0;
169
170 /* If we are in the middle of a region then adjust it. */
171 if (end > rg->from) {
172 chg = rg->to - end;
173 rg->to = end;
174 rg = list_entry(rg->link.next, typeof(*rg), link);
175 }
176
177 /* Drop any remaining regions. */
178 list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
179 if (&rg->link == head)
180 break;
181 chg += rg->to - rg->from;
182 list_del(&rg->link);
183 kfree(rg);
184 }
185 return chg;
186}
187
84afd99b
AW
188static long region_count(struct list_head *head, long f, long t)
189{
190 struct file_region *rg;
191 long chg = 0;
192
193 /* Locate each segment we overlap with, and count that overlap. */
194 list_for_each_entry(rg, head, link) {
195 int seg_from;
196 int seg_to;
197
198 if (rg->to <= f)
199 continue;
200 if (rg->from >= t)
201 break;
202
203 seg_from = max(rg->from, f);
204 seg_to = min(rg->to, t);
205
206 chg += seg_to - seg_from;
207 }
208
209 return chg;
210}
211
e7c4b0bf
AW
212/*
213 * Convert the address within this vma to the page offset within
214 * the mapping, in pagecache page units; huge pages here.
215 */
a5516438
AK
216static pgoff_t vma_hugecache_offset(struct hstate *h,
217 struct vm_area_struct *vma, unsigned long address)
e7c4b0bf 218{
a5516438
AK
219 return ((address - vma->vm_start) >> huge_page_shift(h)) +
220 (vma->vm_pgoff >> huge_page_order(h));
e7c4b0bf
AW
221}
222
08fba699
MG
223/*
224 * Return the size of the pages allocated when backing a VMA. In the majority
225 * cases this will be same size as used by the page table entries.
226 */
227unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
228{
229 struct hstate *hstate;
230
231 if (!is_vm_hugetlb_page(vma))
232 return PAGE_SIZE;
233
234 hstate = hstate_vma(vma);
235
236 return 1UL << (hstate->order + PAGE_SHIFT);
237}
f340ca0f 238EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
08fba699 239
3340289d
MG
240/*
241 * Return the page size being used by the MMU to back a VMA. In the majority
242 * of cases, the page size used by the kernel matches the MMU size. On
243 * architectures where it differs, an architecture-specific version of this
244 * function is required.
245 */
246#ifndef vma_mmu_pagesize
247unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
248{
249 return vma_kernel_pagesize(vma);
250}
251#endif
252
84afd99b
AW
253/*
254 * Flags for MAP_PRIVATE reservations. These are stored in the bottom
255 * bits of the reservation map pointer, which are always clear due to
256 * alignment.
257 */
258#define HPAGE_RESV_OWNER (1UL << 0)
259#define HPAGE_RESV_UNMAPPED (1UL << 1)
04f2cbe3 260#define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
84afd99b 261
a1e78772
MG
262/*
263 * These helpers are used to track how many pages are reserved for
264 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
265 * is guaranteed to have their future faults succeed.
266 *
267 * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
268 * the reserve counters are updated with the hugetlb_lock held. It is safe
269 * to reset the VMA at fork() time as it is not in use yet and there is no
270 * chance of the global counters getting corrupted as a result of the values.
84afd99b
AW
271 *
272 * The private mapping reservation is represented in a subtly different
273 * manner to a shared mapping. A shared mapping has a region map associated
274 * with the underlying file, this region map represents the backing file
275 * pages which have ever had a reservation assigned which this persists even
276 * after the page is instantiated. A private mapping has a region map
277 * associated with the original mmap which is attached to all VMAs which
278 * reference it, this region map represents those offsets which have consumed
279 * reservation ie. where pages have been instantiated.
a1e78772 280 */
e7c4b0bf
AW
281static unsigned long get_vma_private_data(struct vm_area_struct *vma)
282{
283 return (unsigned long)vma->vm_private_data;
284}
285
286static void set_vma_private_data(struct vm_area_struct *vma,
287 unsigned long value)
288{
289 vma->vm_private_data = (void *)value;
290}
291
84afd99b
AW
292struct resv_map {
293 struct kref refs;
294 struct list_head regions;
295};
296
2a4b3ded 297static struct resv_map *resv_map_alloc(void)
84afd99b
AW
298{
299 struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
300 if (!resv_map)
301 return NULL;
302
303 kref_init(&resv_map->refs);
304 INIT_LIST_HEAD(&resv_map->regions);
305
306 return resv_map;
307}
308
2a4b3ded 309static void resv_map_release(struct kref *ref)
84afd99b
AW
310{
311 struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
312
313 /* Clear out any active regions before we release the map. */
314 region_truncate(&resv_map->regions, 0);
315 kfree(resv_map);
316}
317
318static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
a1e78772
MG
319{
320 VM_BUG_ON(!is_vm_hugetlb_page(vma));
f83a275d 321 if (!(vma->vm_flags & VM_MAYSHARE))
84afd99b
AW
322 return (struct resv_map *)(get_vma_private_data(vma) &
323 ~HPAGE_RESV_MASK);
2a4b3ded 324 return NULL;
a1e78772
MG
325}
326
84afd99b 327static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
a1e78772
MG
328{
329 VM_BUG_ON(!is_vm_hugetlb_page(vma));
f83a275d 330 VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
a1e78772 331
84afd99b
AW
332 set_vma_private_data(vma, (get_vma_private_data(vma) &
333 HPAGE_RESV_MASK) | (unsigned long)map);
04f2cbe3
MG
334}
335
336static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
337{
04f2cbe3 338 VM_BUG_ON(!is_vm_hugetlb_page(vma));
f83a275d 339 VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
e7c4b0bf
AW
340
341 set_vma_private_data(vma, get_vma_private_data(vma) | flags);
04f2cbe3
MG
342}
343
344static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
345{
346 VM_BUG_ON(!is_vm_hugetlb_page(vma));
e7c4b0bf
AW
347
348 return (get_vma_private_data(vma) & flag) != 0;
a1e78772
MG
349}
350
351/* Decrement the reserved pages in the hugepage pool by one */
a5516438
AK
352static void decrement_hugepage_resv_vma(struct hstate *h,
353 struct vm_area_struct *vma)
a1e78772 354{
c37f9fb1
AW
355 if (vma->vm_flags & VM_NORESERVE)
356 return;
357
f83a275d 358 if (vma->vm_flags & VM_MAYSHARE) {
a1e78772 359 /* Shared mappings always use reserves */
a5516438 360 h->resv_huge_pages--;
84afd99b 361 } else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
a1e78772
MG
362 /*
363 * Only the process that called mmap() has reserves for
364 * private mappings.
365 */
a5516438 366 h->resv_huge_pages--;
a1e78772
MG
367 }
368}
369
04f2cbe3 370/* Reset counters to 0 and clear all HPAGE_RESV_* flags */
a1e78772
MG
371void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
372{
373 VM_BUG_ON(!is_vm_hugetlb_page(vma));
f83a275d 374 if (!(vma->vm_flags & VM_MAYSHARE))
a1e78772
MG
375 vma->vm_private_data = (void *)0;
376}
377
378/* Returns true if the VMA has associated reserve pages */
7f09ca51 379static int vma_has_reserves(struct vm_area_struct *vma)
a1e78772 380{
f83a275d 381 if (vma->vm_flags & VM_MAYSHARE)
7f09ca51
MG
382 return 1;
383 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER))
384 return 1;
385 return 0;
a1e78772
MG
386}
387
69d177c2
AW
388static void clear_gigantic_page(struct page *page,
389 unsigned long addr, unsigned long sz)
390{
391 int i;
392 struct page *p = page;
393
394 might_sleep();
395 for (i = 0; i < sz/PAGE_SIZE; i++, p = mem_map_next(p, page, i)) {
396 cond_resched();
397 clear_user_highpage(p, addr + i * PAGE_SIZE);
398 }
399}
a5516438
AK
400static void clear_huge_page(struct page *page,
401 unsigned long addr, unsigned long sz)
79ac6ba4
DG
402{
403 int i;
404
74dbdd23 405 if (unlikely(sz/PAGE_SIZE > MAX_ORDER_NR_PAGES)) {
ebdd4aea
HE
406 clear_gigantic_page(page, addr, sz);
407 return;
408 }
69d177c2 409
79ac6ba4 410 might_sleep();
a5516438 411 for (i = 0; i < sz/PAGE_SIZE; i++) {
79ac6ba4 412 cond_resched();
281e0e3b 413 clear_user_highpage(page + i, addr + i * PAGE_SIZE);
79ac6ba4
DG
414 }
415}
416
69d177c2
AW
417static void copy_gigantic_page(struct page *dst, struct page *src,
418 unsigned long addr, struct vm_area_struct *vma)
419{
420 int i;
421 struct hstate *h = hstate_vma(vma);
422 struct page *dst_base = dst;
423 struct page *src_base = src;
424 might_sleep();
425 for (i = 0; i < pages_per_huge_page(h); ) {
426 cond_resched();
427 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
428
429 i++;
430 dst = mem_map_next(dst, dst_base, i);
431 src = mem_map_next(src, src_base, i);
432 }
433}
79ac6ba4 434static void copy_huge_page(struct page *dst, struct page *src,
9de455b2 435 unsigned long addr, struct vm_area_struct *vma)
79ac6ba4
DG
436{
437 int i;
a5516438 438 struct hstate *h = hstate_vma(vma);
79ac6ba4 439
ebdd4aea
HE
440 if (unlikely(pages_per_huge_page(h) > MAX_ORDER_NR_PAGES)) {
441 copy_gigantic_page(dst, src, addr, vma);
442 return;
443 }
69d177c2 444
79ac6ba4 445 might_sleep();
a5516438 446 for (i = 0; i < pages_per_huge_page(h); i++) {
79ac6ba4 447 cond_resched();
9de455b2 448 copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
79ac6ba4
DG
449 }
450}
451
a5516438 452static void enqueue_huge_page(struct hstate *h, struct page *page)
1da177e4
LT
453{
454 int nid = page_to_nid(page);
a5516438
AK
455 list_add(&page->lru, &h->hugepage_freelists[nid]);
456 h->free_huge_pages++;
457 h->free_huge_pages_node[nid]++;
1da177e4
LT
458}
459
a5516438
AK
460static struct page *dequeue_huge_page_vma(struct hstate *h,
461 struct vm_area_struct *vma,
04f2cbe3 462 unsigned long address, int avoid_reserve)
1da177e4 463{
31a5c6e4 464 int nid;
1da177e4 465 struct page *page = NULL;
480eccf9 466 struct mempolicy *mpol;
19770b32 467 nodemask_t *nodemask;
396faf03 468 struct zonelist *zonelist = huge_zonelist(vma, address,
19770b32 469 htlb_alloc_mask, &mpol, &nodemask);
dd1a239f
MG
470 struct zone *zone;
471 struct zoneref *z;
1da177e4 472
a1e78772
MG
473 /*
474 * A child process with MAP_PRIVATE mappings created by their parent
475 * have no page reserves. This check ensures that reservations are
476 * not "stolen". The child may still get SIGKILLed
477 */
7f09ca51 478 if (!vma_has_reserves(vma) &&
a5516438 479 h->free_huge_pages - h->resv_huge_pages == 0)
a1e78772
MG
480 return NULL;
481
04f2cbe3 482 /* If reserves cannot be used, ensure enough pages are in the pool */
a5516438 483 if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
04f2cbe3
MG
484 return NULL;
485
19770b32
MG
486 for_each_zone_zonelist_nodemask(zone, z, zonelist,
487 MAX_NR_ZONES - 1, nodemask) {
54a6eb5c
MG
488 nid = zone_to_nid(zone);
489 if (cpuset_zone_allowed_softwall(zone, htlb_alloc_mask) &&
a5516438
AK
490 !list_empty(&h->hugepage_freelists[nid])) {
491 page = list_entry(h->hugepage_freelists[nid].next,
3abf7afd
AM
492 struct page, lru);
493 list_del(&page->lru);
a5516438
AK
494 h->free_huge_pages--;
495 h->free_huge_pages_node[nid]--;
04f2cbe3
MG
496
497 if (!avoid_reserve)
a5516438 498 decrement_hugepage_resv_vma(h, vma);
a1e78772 499
5ab3ee7b 500 break;
3abf7afd 501 }
1da177e4 502 }
52cd3b07 503 mpol_cond_put(mpol);
1da177e4
LT
504 return page;
505}
506
a5516438 507static void update_and_free_page(struct hstate *h, struct page *page)
6af2acb6
AL
508{
509 int i;
a5516438 510
18229df5
AW
511 VM_BUG_ON(h->order >= MAX_ORDER);
512
a5516438
AK
513 h->nr_huge_pages--;
514 h->nr_huge_pages_node[page_to_nid(page)]--;
515 for (i = 0; i < pages_per_huge_page(h); i++) {
6af2acb6
AL
516 page[i].flags &= ~(1 << PG_locked | 1 << PG_error | 1 << PG_referenced |
517 1 << PG_dirty | 1 << PG_active | 1 << PG_reserved |
518 1 << PG_private | 1<< PG_writeback);
519 }
520 set_compound_page_dtor(page, NULL);
521 set_page_refcounted(page);
7f2e9525 522 arch_release_hugepage(page);
a5516438 523 __free_pages(page, huge_page_order(h));
6af2acb6
AL
524}
525
e5ff2159
AK
526struct hstate *size_to_hstate(unsigned long size)
527{
528 struct hstate *h;
529
530 for_each_hstate(h) {
531 if (huge_page_size(h) == size)
532 return h;
533 }
534 return NULL;
535}
536
27a85ef1
DG
537static void free_huge_page(struct page *page)
538{
a5516438
AK
539 /*
540 * Can't pass hstate in here because it is called from the
541 * compound page destructor.
542 */
e5ff2159 543 struct hstate *h = page_hstate(page);
7893d1d5 544 int nid = page_to_nid(page);
c79fb75e 545 struct address_space *mapping;
27a85ef1 546
c79fb75e 547 mapping = (struct address_space *) page_private(page);
e5df70ab 548 set_page_private(page, 0);
23be7468 549 page->mapping = NULL;
7893d1d5 550 BUG_ON(page_count(page));
27a85ef1
DG
551 INIT_LIST_HEAD(&page->lru);
552
553 spin_lock(&hugetlb_lock);
aa888a74 554 if (h->surplus_huge_pages_node[nid] && huge_page_order(h) < MAX_ORDER) {
a5516438
AK
555 update_and_free_page(h, page);
556 h->surplus_huge_pages--;
557 h->surplus_huge_pages_node[nid]--;
7893d1d5 558 } else {
a5516438 559 enqueue_huge_page(h, page);
7893d1d5 560 }
27a85ef1 561 spin_unlock(&hugetlb_lock);
c79fb75e 562 if (mapping)
9a119c05 563 hugetlb_put_quota(mapping, 1);
27a85ef1
DG
564}
565
a5516438 566static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
b7ba30c6
AK
567{
568 set_compound_page_dtor(page, free_huge_page);
569 spin_lock(&hugetlb_lock);
a5516438
AK
570 h->nr_huge_pages++;
571 h->nr_huge_pages_node[nid]++;
b7ba30c6
AK
572 spin_unlock(&hugetlb_lock);
573 put_page(page); /* free it into the hugepage allocator */
574}
575
20a0307c
WF
576static void prep_compound_gigantic_page(struct page *page, unsigned long order)
577{
578 int i;
579 int nr_pages = 1 << order;
580 struct page *p = page + 1;
581
582 /* we rely on prep_new_huge_page to set the destructor */
583 set_compound_order(page, order);
584 __SetPageHead(page);
585 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
586 __SetPageTail(p);
587 p->first_page = page;
588 }
589}
590
591int PageHuge(struct page *page)
592{
593 compound_page_dtor *dtor;
594
595 if (!PageCompound(page))
596 return 0;
597
598 page = compound_head(page);
599 dtor = get_compound_page_dtor(page);
600
601 return dtor == free_huge_page;
602}
603
a5516438 604static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid)
1da177e4 605{
1da177e4 606 struct page *page;
f96efd58 607
aa888a74
AK
608 if (h->order >= MAX_ORDER)
609 return NULL;
610
6484eb3e 611 page = alloc_pages_exact_node(nid,
551883ae
NA
612 htlb_alloc_mask|__GFP_COMP|__GFP_THISNODE|
613 __GFP_REPEAT|__GFP_NOWARN,
a5516438 614 huge_page_order(h));
1da177e4 615 if (page) {
7f2e9525 616 if (arch_prepare_hugepage(page)) {
caff3a2c 617 __free_pages(page, huge_page_order(h));
7b8ee84d 618 return NULL;
7f2e9525 619 }
a5516438 620 prep_new_huge_page(h, page, nid);
1da177e4 621 }
63b4613c
NA
622
623 return page;
624}
625
9a76db09 626/*
6ae11b27
LS
627 * common helper functions for hstate_next_node_to_{alloc|free}.
628 * We may have allocated or freed a huge page based on a different
629 * nodes_allowed previously, so h->next_node_to_{alloc|free} might
630 * be outside of *nodes_allowed. Ensure that we use an allowed
631 * node for alloc or free.
9a76db09 632 */
6ae11b27 633static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
9a76db09 634{
6ae11b27 635 nid = next_node(nid, *nodes_allowed);
9a76db09 636 if (nid == MAX_NUMNODES)
6ae11b27 637 nid = first_node(*nodes_allowed);
9a76db09
LS
638 VM_BUG_ON(nid >= MAX_NUMNODES);
639
640 return nid;
641}
642
6ae11b27
LS
643static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
644{
645 if (!node_isset(nid, *nodes_allowed))
646 nid = next_node_allowed(nid, nodes_allowed);
647 return nid;
648}
649
5ced66c9 650/*
6ae11b27
LS
651 * returns the previously saved node ["this node"] from which to
652 * allocate a persistent huge page for the pool and advance the
653 * next node from which to allocate, handling wrap at end of node
654 * mask.
5ced66c9 655 */
6ae11b27
LS
656static int hstate_next_node_to_alloc(struct hstate *h,
657 nodemask_t *nodes_allowed)
5ced66c9 658{
6ae11b27
LS
659 int nid;
660
661 VM_BUG_ON(!nodes_allowed);
662
663 nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
664 h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
9a76db09 665
9a76db09 666 return nid;
5ced66c9
AK
667}
668
6ae11b27 669static int alloc_fresh_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
63b4613c
NA
670{
671 struct page *page;
672 int start_nid;
673 int next_nid;
674 int ret = 0;
675
6ae11b27 676 start_nid = hstate_next_node_to_alloc(h, nodes_allowed);
e8c5c824 677 next_nid = start_nid;
63b4613c
NA
678
679 do {
e8c5c824 680 page = alloc_fresh_huge_page_node(h, next_nid);
9a76db09 681 if (page) {
63b4613c 682 ret = 1;
9a76db09
LS
683 break;
684 }
6ae11b27 685 next_nid = hstate_next_node_to_alloc(h, nodes_allowed);
9a76db09 686 } while (next_nid != start_nid);
63b4613c 687
3b116300
AL
688 if (ret)
689 count_vm_event(HTLB_BUDDY_PGALLOC);
690 else
691 count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
692
63b4613c 693 return ret;
1da177e4
LT
694}
695
e8c5c824 696/*
6ae11b27
LS
697 * helper for free_pool_huge_page() - return the previously saved
698 * node ["this node"] from which to free a huge page. Advance the
699 * next node id whether or not we find a free huge page to free so
700 * that the next attempt to free addresses the next node.
e8c5c824 701 */
6ae11b27 702static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
e8c5c824 703{
6ae11b27
LS
704 int nid;
705
706 VM_BUG_ON(!nodes_allowed);
707
708 nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
709 h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
9a76db09 710
9a76db09 711 return nid;
e8c5c824
LS
712}
713
714/*
715 * Free huge page from pool from next node to free.
716 * Attempt to keep persistent huge pages more or less
717 * balanced over allowed nodes.
718 * Called with hugetlb_lock locked.
719 */
6ae11b27
LS
720static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
721 bool acct_surplus)
e8c5c824
LS
722{
723 int start_nid;
724 int next_nid;
725 int ret = 0;
726
6ae11b27 727 start_nid = hstate_next_node_to_free(h, nodes_allowed);
e8c5c824
LS
728 next_nid = start_nid;
729
730 do {
685f3457
LS
731 /*
732 * If we're returning unused surplus pages, only examine
733 * nodes with surplus pages.
734 */
735 if ((!acct_surplus || h->surplus_huge_pages_node[next_nid]) &&
736 !list_empty(&h->hugepage_freelists[next_nid])) {
e8c5c824
LS
737 struct page *page =
738 list_entry(h->hugepage_freelists[next_nid].next,
739 struct page, lru);
740 list_del(&page->lru);
741 h->free_huge_pages--;
742 h->free_huge_pages_node[next_nid]--;
685f3457
LS
743 if (acct_surplus) {
744 h->surplus_huge_pages--;
745 h->surplus_huge_pages_node[next_nid]--;
746 }
e8c5c824
LS
747 update_and_free_page(h, page);
748 ret = 1;
9a76db09 749 break;
e8c5c824 750 }
6ae11b27 751 next_nid = hstate_next_node_to_free(h, nodes_allowed);
9a76db09 752 } while (next_nid != start_nid);
e8c5c824
LS
753
754 return ret;
755}
756
a5516438
AK
757static struct page *alloc_buddy_huge_page(struct hstate *h,
758 struct vm_area_struct *vma, unsigned long address)
7893d1d5
AL
759{
760 struct page *page;
d1c3fb1f 761 unsigned int nid;
7893d1d5 762
aa888a74
AK
763 if (h->order >= MAX_ORDER)
764 return NULL;
765
d1c3fb1f
NA
766 /*
767 * Assume we will successfully allocate the surplus page to
768 * prevent racing processes from causing the surplus to exceed
769 * overcommit
770 *
771 * This however introduces a different race, where a process B
772 * tries to grow the static hugepage pool while alloc_pages() is
773 * called by process A. B will only examine the per-node
774 * counters in determining if surplus huge pages can be
775 * converted to normal huge pages in adjust_pool_surplus(). A
776 * won't be able to increment the per-node counter, until the
777 * lock is dropped by B, but B doesn't drop hugetlb_lock until
778 * no more huge pages can be converted from surplus to normal
779 * state (and doesn't try to convert again). Thus, we have a
780 * case where a surplus huge page exists, the pool is grown, and
781 * the surplus huge page still exists after, even though it
782 * should just have been converted to a normal huge page. This
783 * does not leak memory, though, as the hugepage will be freed
784 * once it is out of use. It also does not allow the counters to
785 * go out of whack in adjust_pool_surplus() as we don't modify
786 * the node values until we've gotten the hugepage and only the
787 * per-node value is checked there.
788 */
789 spin_lock(&hugetlb_lock);
a5516438 790 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
d1c3fb1f
NA
791 spin_unlock(&hugetlb_lock);
792 return NULL;
793 } else {
a5516438
AK
794 h->nr_huge_pages++;
795 h->surplus_huge_pages++;
d1c3fb1f
NA
796 }
797 spin_unlock(&hugetlb_lock);
798
551883ae
NA
799 page = alloc_pages(htlb_alloc_mask|__GFP_COMP|
800 __GFP_REPEAT|__GFP_NOWARN,
a5516438 801 huge_page_order(h));
d1c3fb1f 802
caff3a2c
GS
803 if (page && arch_prepare_hugepage(page)) {
804 __free_pages(page, huge_page_order(h));
805 return NULL;
806 }
807
d1c3fb1f 808 spin_lock(&hugetlb_lock);
7893d1d5 809 if (page) {
2668db91
AL
810 /*
811 * This page is now managed by the hugetlb allocator and has
812 * no users -- drop the buddy allocator's reference.
813 */
814 put_page_testzero(page);
815 VM_BUG_ON(page_count(page));
d1c3fb1f 816 nid = page_to_nid(page);
7893d1d5 817 set_compound_page_dtor(page, free_huge_page);
d1c3fb1f
NA
818 /*
819 * We incremented the global counters already
820 */
a5516438
AK
821 h->nr_huge_pages_node[nid]++;
822 h->surplus_huge_pages_node[nid]++;
3b116300 823 __count_vm_event(HTLB_BUDDY_PGALLOC);
d1c3fb1f 824 } else {
a5516438
AK
825 h->nr_huge_pages--;
826 h->surplus_huge_pages--;
3b116300 827 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
7893d1d5 828 }
d1c3fb1f 829 spin_unlock(&hugetlb_lock);
7893d1d5
AL
830
831 return page;
832}
833
e4e574b7
AL
834/*
835 * Increase the hugetlb pool such that it can accomodate a reservation
836 * of size 'delta'.
837 */
a5516438 838static int gather_surplus_pages(struct hstate *h, int delta)
e4e574b7
AL
839{
840 struct list_head surplus_list;
841 struct page *page, *tmp;
842 int ret, i;
843 int needed, allocated;
844
a5516438 845 needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
ac09b3a1 846 if (needed <= 0) {
a5516438 847 h->resv_huge_pages += delta;
e4e574b7 848 return 0;
ac09b3a1 849 }
e4e574b7
AL
850
851 allocated = 0;
852 INIT_LIST_HEAD(&surplus_list);
853
854 ret = -ENOMEM;
855retry:
856 spin_unlock(&hugetlb_lock);
857 for (i = 0; i < needed; i++) {
a5516438 858 page = alloc_buddy_huge_page(h, NULL, 0);
e4e574b7
AL
859 if (!page) {
860 /*
861 * We were not able to allocate enough pages to
862 * satisfy the entire reservation so we free what
863 * we've allocated so far.
864 */
865 spin_lock(&hugetlb_lock);
866 needed = 0;
867 goto free;
868 }
869
870 list_add(&page->lru, &surplus_list);
871 }
872 allocated += needed;
873
874 /*
875 * After retaking hugetlb_lock, we need to recalculate 'needed'
876 * because either resv_huge_pages or free_huge_pages may have changed.
877 */
878 spin_lock(&hugetlb_lock);
a5516438
AK
879 needed = (h->resv_huge_pages + delta) -
880 (h->free_huge_pages + allocated);
e4e574b7
AL
881 if (needed > 0)
882 goto retry;
883
884 /*
885 * The surplus_list now contains _at_least_ the number of extra pages
886 * needed to accomodate the reservation. Add the appropriate number
887 * of pages to the hugetlb pool and free the extras back to the buddy
ac09b3a1
AL
888 * allocator. Commit the entire reservation here to prevent another
889 * process from stealing the pages as they are added to the pool but
890 * before they are reserved.
e4e574b7
AL
891 */
892 needed += allocated;
a5516438 893 h->resv_huge_pages += delta;
e4e574b7
AL
894 ret = 0;
895free:
19fc3f0a 896 /* Free the needed pages to the hugetlb pool */
e4e574b7 897 list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
19fc3f0a
AL
898 if ((--needed) < 0)
899 break;
e4e574b7 900 list_del(&page->lru);
a5516438 901 enqueue_huge_page(h, page);
19fc3f0a
AL
902 }
903
904 /* Free unnecessary surplus pages to the buddy allocator */
905 if (!list_empty(&surplus_list)) {
906 spin_unlock(&hugetlb_lock);
907 list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
908 list_del(&page->lru);
af767cbd 909 /*
2668db91
AL
910 * The page has a reference count of zero already, so
911 * call free_huge_page directly instead of using
912 * put_page. This must be done with hugetlb_lock
af767cbd
AL
913 * unlocked which is safe because free_huge_page takes
914 * hugetlb_lock before deciding how to free the page.
915 */
2668db91 916 free_huge_page(page);
af767cbd 917 }
19fc3f0a 918 spin_lock(&hugetlb_lock);
e4e574b7
AL
919 }
920
921 return ret;
922}
923
924/*
925 * When releasing a hugetlb pool reservation, any surplus pages that were
926 * allocated to satisfy the reservation must be explicitly freed if they were
927 * never used.
685f3457 928 * Called with hugetlb_lock held.
e4e574b7 929 */
a5516438
AK
930static void return_unused_surplus_pages(struct hstate *h,
931 unsigned long unused_resv_pages)
e4e574b7 932{
e4e574b7
AL
933 unsigned long nr_pages;
934
ac09b3a1 935 /* Uncommit the reservation */
a5516438 936 h->resv_huge_pages -= unused_resv_pages;
ac09b3a1 937
aa888a74
AK
938 /* Cannot return gigantic pages currently */
939 if (h->order >= MAX_ORDER)
940 return;
941
a5516438 942 nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
e4e574b7 943
685f3457
LS
944 /*
945 * We want to release as many surplus pages as possible, spread
9b5e5d0f
LS
946 * evenly across all nodes with memory. Iterate across these nodes
947 * until we can no longer free unreserved surplus pages. This occurs
948 * when the nodes with surplus pages have no free pages.
949 * free_pool_huge_page() will balance the the freed pages across the
950 * on-line nodes with memory and will handle the hstate accounting.
685f3457
LS
951 */
952 while (nr_pages--) {
9b5e5d0f 953 if (!free_pool_huge_page(h, &node_states[N_HIGH_MEMORY], 1))
685f3457 954 break;
e4e574b7
AL
955 }
956}
957
c37f9fb1
AW
958/*
959 * Determine if the huge page at addr within the vma has an associated
960 * reservation. Where it does not we will need to logically increase
961 * reservation and actually increase quota before an allocation can occur.
962 * Where any new reservation would be required the reservation change is
963 * prepared, but not committed. Once the page has been quota'd allocated
964 * an instantiated the change should be committed via vma_commit_reservation.
965 * No action is required on failure.
966 */
e2f17d94 967static long vma_needs_reservation(struct hstate *h,
a5516438 968 struct vm_area_struct *vma, unsigned long addr)
c37f9fb1
AW
969{
970 struct address_space *mapping = vma->vm_file->f_mapping;
971 struct inode *inode = mapping->host;
972
f83a275d 973 if (vma->vm_flags & VM_MAYSHARE) {
a5516438 974 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
c37f9fb1
AW
975 return region_chg(&inode->i_mapping->private_list,
976 idx, idx + 1);
977
84afd99b
AW
978 } else if (!is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
979 return 1;
c37f9fb1 980
84afd99b 981 } else {
e2f17d94 982 long err;
a5516438 983 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
84afd99b
AW
984 struct resv_map *reservations = vma_resv_map(vma);
985
986 err = region_chg(&reservations->regions, idx, idx + 1);
987 if (err < 0)
988 return err;
989 return 0;
990 }
c37f9fb1 991}
a5516438
AK
992static void vma_commit_reservation(struct hstate *h,
993 struct vm_area_struct *vma, unsigned long addr)
c37f9fb1
AW
994{
995 struct address_space *mapping = vma->vm_file->f_mapping;
996 struct inode *inode = mapping->host;
997
f83a275d 998 if (vma->vm_flags & VM_MAYSHARE) {
a5516438 999 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
c37f9fb1 1000 region_add(&inode->i_mapping->private_list, idx, idx + 1);
84afd99b
AW
1001
1002 } else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
a5516438 1003 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
84afd99b
AW
1004 struct resv_map *reservations = vma_resv_map(vma);
1005
1006 /* Mark this page used in the map. */
1007 region_add(&reservations->regions, idx, idx + 1);
c37f9fb1
AW
1008 }
1009}
1010
a1e78772 1011static struct page *alloc_huge_page(struct vm_area_struct *vma,
04f2cbe3 1012 unsigned long addr, int avoid_reserve)
1da177e4 1013{
a5516438 1014 struct hstate *h = hstate_vma(vma);
348ea204 1015 struct page *page;
a1e78772
MG
1016 struct address_space *mapping = vma->vm_file->f_mapping;
1017 struct inode *inode = mapping->host;
e2f17d94 1018 long chg;
a1e78772
MG
1019
1020 /*
1021 * Processes that did not create the mapping will have no reserves and
1022 * will not have accounted against quota. Check that the quota can be
1023 * made before satisfying the allocation
c37f9fb1
AW
1024 * MAP_NORESERVE mappings may also need pages and quota allocated
1025 * if no reserve mapping overlaps.
a1e78772 1026 */
a5516438 1027 chg = vma_needs_reservation(h, vma, addr);
c37f9fb1
AW
1028 if (chg < 0)
1029 return ERR_PTR(chg);
1030 if (chg)
a1e78772
MG
1031 if (hugetlb_get_quota(inode->i_mapping, chg))
1032 return ERR_PTR(-ENOSPC);
1da177e4
LT
1033
1034 spin_lock(&hugetlb_lock);
a5516438 1035 page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve);
1da177e4 1036 spin_unlock(&hugetlb_lock);
b45b5bd6 1037
68842c9b 1038 if (!page) {
a5516438 1039 page = alloc_buddy_huge_page(h, vma, addr);
68842c9b 1040 if (!page) {
a1e78772 1041 hugetlb_put_quota(inode->i_mapping, chg);
4a6018f7 1042 return ERR_PTR(-VM_FAULT_SIGBUS);
68842c9b
KC
1043 }
1044 }
348ea204 1045
a1e78772
MG
1046 set_page_refcounted(page);
1047 set_page_private(page, (unsigned long) mapping);
90d8b7e6 1048
a5516438 1049 vma_commit_reservation(h, vma, addr);
c37f9fb1 1050
90d8b7e6 1051 return page;
b45b5bd6
DG
1052}
1053
91f47662 1054int __weak alloc_bootmem_huge_page(struct hstate *h)
aa888a74
AK
1055{
1056 struct huge_bootmem_page *m;
9b5e5d0f 1057 int nr_nodes = nodes_weight(node_states[N_HIGH_MEMORY]);
aa888a74
AK
1058
1059 while (nr_nodes) {
1060 void *addr;
1061
1062 addr = __alloc_bootmem_node_nopanic(
6ae11b27 1063 NODE_DATA(hstate_next_node_to_alloc(h,
9b5e5d0f 1064 &node_states[N_HIGH_MEMORY])),
aa888a74
AK
1065 huge_page_size(h), huge_page_size(h), 0);
1066
1067 if (addr) {
1068 /*
1069 * Use the beginning of the huge page to store the
1070 * huge_bootmem_page struct (until gather_bootmem
1071 * puts them into the mem_map).
1072 */
1073 m = addr;
91f47662 1074 goto found;
aa888a74 1075 }
aa888a74
AK
1076 nr_nodes--;
1077 }
1078 return 0;
1079
1080found:
1081 BUG_ON((unsigned long)virt_to_phys(m) & (huge_page_size(h) - 1));
1082 /* Put them into a private list first because mem_map is not up yet */
1083 list_add(&m->list, &huge_boot_pages);
1084 m->hstate = h;
1085 return 1;
1086}
1087
18229df5
AW
1088static void prep_compound_huge_page(struct page *page, int order)
1089{
1090 if (unlikely(order > (MAX_ORDER - 1)))
1091 prep_compound_gigantic_page(page, order);
1092 else
1093 prep_compound_page(page, order);
1094}
1095
aa888a74
AK
1096/* Put bootmem huge pages into the standard lists after mem_map is up */
1097static void __init gather_bootmem_prealloc(void)
1098{
1099 struct huge_bootmem_page *m;
1100
1101 list_for_each_entry(m, &huge_boot_pages, list) {
1102 struct page *page = virt_to_page(m);
1103 struct hstate *h = m->hstate;
1104 __ClearPageReserved(page);
1105 WARN_ON(page_count(page) != 1);
18229df5 1106 prep_compound_huge_page(page, h->order);
aa888a74
AK
1107 prep_new_huge_page(h, page, page_to_nid(page));
1108 }
1109}
1110
8faa8b07 1111static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
1da177e4
LT
1112{
1113 unsigned long i;
a5516438 1114
e5ff2159 1115 for (i = 0; i < h->max_huge_pages; ++i) {
aa888a74
AK
1116 if (h->order >= MAX_ORDER) {
1117 if (!alloc_bootmem_huge_page(h))
1118 break;
9b5e5d0f
LS
1119 } else if (!alloc_fresh_huge_page(h,
1120 &node_states[N_HIGH_MEMORY]))
1da177e4 1121 break;
1da177e4 1122 }
8faa8b07 1123 h->max_huge_pages = i;
e5ff2159
AK
1124}
1125
1126static void __init hugetlb_init_hstates(void)
1127{
1128 struct hstate *h;
1129
1130 for_each_hstate(h) {
8faa8b07
AK
1131 /* oversize hugepages were init'ed in early boot */
1132 if (h->order < MAX_ORDER)
1133 hugetlb_hstate_alloc_pages(h);
e5ff2159
AK
1134 }
1135}
1136
4abd32db
AK
1137static char * __init memfmt(char *buf, unsigned long n)
1138{
1139 if (n >= (1UL << 30))
1140 sprintf(buf, "%lu GB", n >> 30);
1141 else if (n >= (1UL << 20))
1142 sprintf(buf, "%lu MB", n >> 20);
1143 else
1144 sprintf(buf, "%lu KB", n >> 10);
1145 return buf;
1146}
1147
e5ff2159
AK
1148static void __init report_hugepages(void)
1149{
1150 struct hstate *h;
1151
1152 for_each_hstate(h) {
4abd32db
AK
1153 char buf[32];
1154 printk(KERN_INFO "HugeTLB registered %s page size, "
1155 "pre-allocated %ld pages\n",
1156 memfmt(buf, huge_page_size(h)),
1157 h->free_huge_pages);
e5ff2159
AK
1158 }
1159}
1160
1da177e4 1161#ifdef CONFIG_HIGHMEM
6ae11b27
LS
1162static void try_to_free_low(struct hstate *h, unsigned long count,
1163 nodemask_t *nodes_allowed)
1da177e4 1164{
4415cc8d
CL
1165 int i;
1166
aa888a74
AK
1167 if (h->order >= MAX_ORDER)
1168 return;
1169
6ae11b27 1170 for_each_node_mask(i, *nodes_allowed) {
1da177e4 1171 struct page *page, *next;
a5516438
AK
1172 struct list_head *freel = &h->hugepage_freelists[i];
1173 list_for_each_entry_safe(page, next, freel, lru) {
1174 if (count >= h->nr_huge_pages)
6b0c880d 1175 return;
1da177e4
LT
1176 if (PageHighMem(page))
1177 continue;
1178 list_del(&page->lru);
e5ff2159 1179 update_and_free_page(h, page);
a5516438
AK
1180 h->free_huge_pages--;
1181 h->free_huge_pages_node[page_to_nid(page)]--;
1da177e4
LT
1182 }
1183 }
1184}
1185#else
6ae11b27
LS
1186static inline void try_to_free_low(struct hstate *h, unsigned long count,
1187 nodemask_t *nodes_allowed)
1da177e4
LT
1188{
1189}
1190#endif
1191
20a0307c
WF
1192/*
1193 * Increment or decrement surplus_huge_pages. Keep node-specific counters
1194 * balanced by operating on them in a round-robin fashion.
1195 * Returns 1 if an adjustment was made.
1196 */
6ae11b27
LS
1197static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
1198 int delta)
20a0307c 1199{
e8c5c824 1200 int start_nid, next_nid;
20a0307c
WF
1201 int ret = 0;
1202
1203 VM_BUG_ON(delta != -1 && delta != 1);
20a0307c 1204
e8c5c824 1205 if (delta < 0)
6ae11b27 1206 start_nid = hstate_next_node_to_alloc(h, nodes_allowed);
e8c5c824 1207 else
6ae11b27 1208 start_nid = hstate_next_node_to_free(h, nodes_allowed);
e8c5c824
LS
1209 next_nid = start_nid;
1210
1211 do {
1212 int nid = next_nid;
1213 if (delta < 0) {
e8c5c824
LS
1214 /*
1215 * To shrink on this node, there must be a surplus page
1216 */
9a76db09 1217 if (!h->surplus_huge_pages_node[nid]) {
6ae11b27
LS
1218 next_nid = hstate_next_node_to_alloc(h,
1219 nodes_allowed);
e8c5c824 1220 continue;
9a76db09 1221 }
e8c5c824
LS
1222 }
1223 if (delta > 0) {
e8c5c824
LS
1224 /*
1225 * Surplus cannot exceed the total number of pages
1226 */
1227 if (h->surplus_huge_pages_node[nid] >=
9a76db09 1228 h->nr_huge_pages_node[nid]) {
6ae11b27
LS
1229 next_nid = hstate_next_node_to_free(h,
1230 nodes_allowed);
e8c5c824 1231 continue;
9a76db09 1232 }
e8c5c824 1233 }
20a0307c
WF
1234
1235 h->surplus_huge_pages += delta;
1236 h->surplus_huge_pages_node[nid] += delta;
1237 ret = 1;
1238 break;
e8c5c824 1239 } while (next_nid != start_nid);
20a0307c 1240
20a0307c
WF
1241 return ret;
1242}
1243
a5516438 1244#define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
6ae11b27
LS
1245static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count,
1246 nodemask_t *nodes_allowed)
1da177e4 1247{
7893d1d5 1248 unsigned long min_count, ret;
1da177e4 1249
aa888a74
AK
1250 if (h->order >= MAX_ORDER)
1251 return h->max_huge_pages;
1252
7893d1d5
AL
1253 /*
1254 * Increase the pool size
1255 * First take pages out of surplus state. Then make up the
1256 * remaining difference by allocating fresh huge pages.
d1c3fb1f
NA
1257 *
1258 * We might race with alloc_buddy_huge_page() here and be unable
1259 * to convert a surplus huge page to a normal huge page. That is
1260 * not critical, though, it just means the overall size of the
1261 * pool might be one hugepage larger than it needs to be, but
1262 * within all the constraints specified by the sysctls.
7893d1d5 1263 */
1da177e4 1264 spin_lock(&hugetlb_lock);
a5516438 1265 while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
6ae11b27 1266 if (!adjust_pool_surplus(h, nodes_allowed, -1))
7893d1d5
AL
1267 break;
1268 }
1269
a5516438 1270 while (count > persistent_huge_pages(h)) {
7893d1d5
AL
1271 /*
1272 * If this allocation races such that we no longer need the
1273 * page, free_huge_page will handle it by freeing the page
1274 * and reducing the surplus.
1275 */
1276 spin_unlock(&hugetlb_lock);
6ae11b27 1277 ret = alloc_fresh_huge_page(h, nodes_allowed);
7893d1d5
AL
1278 spin_lock(&hugetlb_lock);
1279 if (!ret)
1280 goto out;
1281
536240f2
MG
1282 /* Bail for signals. Probably ctrl-c from user */
1283 if (signal_pending(current))
1284 goto out;
7893d1d5 1285 }
7893d1d5
AL
1286
1287 /*
1288 * Decrease the pool size
1289 * First return free pages to the buddy allocator (being careful
1290 * to keep enough around to satisfy reservations). Then place
1291 * pages into surplus state as needed so the pool will shrink
1292 * to the desired size as pages become free.
d1c3fb1f
NA
1293 *
1294 * By placing pages into the surplus state independent of the
1295 * overcommit value, we are allowing the surplus pool size to
1296 * exceed overcommit. There are few sane options here. Since
1297 * alloc_buddy_huge_page() is checking the global counter,
1298 * though, we'll note that we're not allowed to exceed surplus
1299 * and won't grow the pool anywhere else. Not until one of the
1300 * sysctls are changed, or the surplus pages go out of use.
7893d1d5 1301 */
a5516438 1302 min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
6b0c880d 1303 min_count = max(count, min_count);
6ae11b27 1304 try_to_free_low(h, min_count, nodes_allowed);
a5516438 1305 while (min_count < persistent_huge_pages(h)) {
6ae11b27 1306 if (!free_pool_huge_page(h, nodes_allowed, 0))
1da177e4 1307 break;
1da177e4 1308 }
a5516438 1309 while (count < persistent_huge_pages(h)) {
6ae11b27 1310 if (!adjust_pool_surplus(h, nodes_allowed, 1))
7893d1d5
AL
1311 break;
1312 }
1313out:
a5516438 1314 ret = persistent_huge_pages(h);
1da177e4 1315 spin_unlock(&hugetlb_lock);
7893d1d5 1316 return ret;
1da177e4
LT
1317}
1318
a3437870
NA
1319#define HSTATE_ATTR_RO(_name) \
1320 static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
1321
1322#define HSTATE_ATTR(_name) \
1323 static struct kobj_attribute _name##_attr = \
1324 __ATTR(_name, 0644, _name##_show, _name##_store)
1325
1326static struct kobject *hugepages_kobj;
1327static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
1328
9a305230
LS
1329static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
1330
1331static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
a3437870
NA
1332{
1333 int i;
9a305230 1334
a3437870 1335 for (i = 0; i < HUGE_MAX_HSTATE; i++)
9a305230
LS
1336 if (hstate_kobjs[i] == kobj) {
1337 if (nidp)
1338 *nidp = NUMA_NO_NODE;
a3437870 1339 return &hstates[i];
9a305230
LS
1340 }
1341
1342 return kobj_to_node_hstate(kobj, nidp);
a3437870
NA
1343}
1344
06808b08 1345static ssize_t nr_hugepages_show_common(struct kobject *kobj,
a3437870
NA
1346 struct kobj_attribute *attr, char *buf)
1347{
9a305230
LS
1348 struct hstate *h;
1349 unsigned long nr_huge_pages;
1350 int nid;
1351
1352 h = kobj_to_hstate(kobj, &nid);
1353 if (nid == NUMA_NO_NODE)
1354 nr_huge_pages = h->nr_huge_pages;
1355 else
1356 nr_huge_pages = h->nr_huge_pages_node[nid];
1357
1358 return sprintf(buf, "%lu\n", nr_huge_pages);
a3437870 1359}
06808b08
LS
1360static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
1361 struct kobject *kobj, struct kobj_attribute *attr,
1362 const char *buf, size_t len)
a3437870
NA
1363{
1364 int err;
9a305230 1365 int nid;
06808b08 1366 unsigned long count;
9a305230 1367 struct hstate *h;
bad44b5b 1368 NODEMASK_ALLOC(nodemask_t, nodes_allowed, GFP_KERNEL | __GFP_NORETRY);
a3437870 1369
06808b08 1370 err = strict_strtoul(buf, 10, &count);
a3437870
NA
1371 if (err)
1372 return 0;
1373
9a305230
LS
1374 h = kobj_to_hstate(kobj, &nid);
1375 if (nid == NUMA_NO_NODE) {
1376 /*
1377 * global hstate attribute
1378 */
1379 if (!(obey_mempolicy &&
1380 init_nodemask_of_mempolicy(nodes_allowed))) {
1381 NODEMASK_FREE(nodes_allowed);
1382 nodes_allowed = &node_states[N_HIGH_MEMORY];
1383 }
1384 } else if (nodes_allowed) {
1385 /*
1386 * per node hstate attribute: adjust count to global,
1387 * but restrict alloc/free to the specified node.
1388 */
1389 count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
1390 init_nodemask_of_node(nodes_allowed, nid);
1391 } else
1392 nodes_allowed = &node_states[N_HIGH_MEMORY];
1393
06808b08 1394 h->max_huge_pages = set_max_huge_pages(h, count, nodes_allowed);
a3437870 1395
9b5e5d0f 1396 if (nodes_allowed != &node_states[N_HIGH_MEMORY])
06808b08
LS
1397 NODEMASK_FREE(nodes_allowed);
1398
1399 return len;
1400}
1401
1402static ssize_t nr_hugepages_show(struct kobject *kobj,
1403 struct kobj_attribute *attr, char *buf)
1404{
1405 return nr_hugepages_show_common(kobj, attr, buf);
1406}
1407
1408static ssize_t nr_hugepages_store(struct kobject *kobj,
1409 struct kobj_attribute *attr, const char *buf, size_t len)
1410{
1411 return nr_hugepages_store_common(false, kobj, attr, buf, len);
a3437870
NA
1412}
1413HSTATE_ATTR(nr_hugepages);
1414
06808b08
LS
1415#ifdef CONFIG_NUMA
1416
1417/*
1418 * hstate attribute for optionally mempolicy-based constraint on persistent
1419 * huge page alloc/free.
1420 */
1421static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
1422 struct kobj_attribute *attr, char *buf)
1423{
1424 return nr_hugepages_show_common(kobj, attr, buf);
1425}
1426
1427static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
1428 struct kobj_attribute *attr, const char *buf, size_t len)
1429{
1430 return nr_hugepages_store_common(true, kobj, attr, buf, len);
1431}
1432HSTATE_ATTR(nr_hugepages_mempolicy);
1433#endif
1434
1435
a3437870
NA
1436static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
1437 struct kobj_attribute *attr, char *buf)
1438{
9a305230 1439 struct hstate *h = kobj_to_hstate(kobj, NULL);
a3437870
NA
1440 return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
1441}
1442static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
1443 struct kobj_attribute *attr, const char *buf, size_t count)
1444{
1445 int err;
1446 unsigned long input;
9a305230 1447 struct hstate *h = kobj_to_hstate(kobj, NULL);
a3437870
NA
1448
1449 err = strict_strtoul(buf, 10, &input);
1450 if (err)
1451 return 0;
1452
1453 spin_lock(&hugetlb_lock);
1454 h->nr_overcommit_huge_pages = input;
1455 spin_unlock(&hugetlb_lock);
1456
1457 return count;
1458}
1459HSTATE_ATTR(nr_overcommit_hugepages);
1460
1461static ssize_t free_hugepages_show(struct kobject *kobj,
1462 struct kobj_attribute *attr, char *buf)
1463{
9a305230
LS
1464 struct hstate *h;
1465 unsigned long free_huge_pages;
1466 int nid;
1467
1468 h = kobj_to_hstate(kobj, &nid);
1469 if (nid == NUMA_NO_NODE)
1470 free_huge_pages = h->free_huge_pages;
1471 else
1472 free_huge_pages = h->free_huge_pages_node[nid];
1473
1474 return sprintf(buf, "%lu\n", free_huge_pages);
a3437870
NA
1475}
1476HSTATE_ATTR_RO(free_hugepages);
1477
1478static ssize_t resv_hugepages_show(struct kobject *kobj,
1479 struct kobj_attribute *attr, char *buf)
1480{
9a305230 1481 struct hstate *h = kobj_to_hstate(kobj, NULL);
a3437870
NA
1482 return sprintf(buf, "%lu\n", h->resv_huge_pages);
1483}
1484HSTATE_ATTR_RO(resv_hugepages);
1485
1486static ssize_t surplus_hugepages_show(struct kobject *kobj,
1487 struct kobj_attribute *attr, char *buf)
1488{
9a305230
LS
1489 struct hstate *h;
1490 unsigned long surplus_huge_pages;
1491 int nid;
1492
1493 h = kobj_to_hstate(kobj, &nid);
1494 if (nid == NUMA_NO_NODE)
1495 surplus_huge_pages = h->surplus_huge_pages;
1496 else
1497 surplus_huge_pages = h->surplus_huge_pages_node[nid];
1498
1499 return sprintf(buf, "%lu\n", surplus_huge_pages);
a3437870
NA
1500}
1501HSTATE_ATTR_RO(surplus_hugepages);
1502
1503static struct attribute *hstate_attrs[] = {
1504 &nr_hugepages_attr.attr,
1505 &nr_overcommit_hugepages_attr.attr,
1506 &free_hugepages_attr.attr,
1507 &resv_hugepages_attr.attr,
1508 &surplus_hugepages_attr.attr,
06808b08
LS
1509#ifdef CONFIG_NUMA
1510 &nr_hugepages_mempolicy_attr.attr,
1511#endif
a3437870
NA
1512 NULL,
1513};
1514
1515static struct attribute_group hstate_attr_group = {
1516 .attrs = hstate_attrs,
1517};
1518
094e9539
JM
1519static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
1520 struct kobject **hstate_kobjs,
1521 struct attribute_group *hstate_attr_group)
a3437870
NA
1522{
1523 int retval;
9a305230 1524 int hi = h - hstates;
a3437870 1525
9a305230
LS
1526 hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
1527 if (!hstate_kobjs[hi])
a3437870
NA
1528 return -ENOMEM;
1529
9a305230 1530 retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
a3437870 1531 if (retval)
9a305230 1532 kobject_put(hstate_kobjs[hi]);
a3437870
NA
1533
1534 return retval;
1535}
1536
1537static void __init hugetlb_sysfs_init(void)
1538{
1539 struct hstate *h;
1540 int err;
1541
1542 hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
1543 if (!hugepages_kobj)
1544 return;
1545
1546 for_each_hstate(h) {
9a305230
LS
1547 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
1548 hstate_kobjs, &hstate_attr_group);
a3437870
NA
1549 if (err)
1550 printk(KERN_ERR "Hugetlb: Unable to add hstate %s",
1551 h->name);
1552 }
1553}
1554
9a305230
LS
1555#ifdef CONFIG_NUMA
1556
1557/*
1558 * node_hstate/s - associate per node hstate attributes, via their kobjects,
1559 * with node sysdevs in node_devices[] using a parallel array. The array
1560 * index of a node sysdev or _hstate == node id.
1561 * This is here to avoid any static dependency of the node sysdev driver, in
1562 * the base kernel, on the hugetlb module.
1563 */
1564struct node_hstate {
1565 struct kobject *hugepages_kobj;
1566 struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
1567};
1568struct node_hstate node_hstates[MAX_NUMNODES];
1569
1570/*
1571 * A subset of global hstate attributes for node sysdevs
1572 */
1573static struct attribute *per_node_hstate_attrs[] = {
1574 &nr_hugepages_attr.attr,
1575 &free_hugepages_attr.attr,
1576 &surplus_hugepages_attr.attr,
1577 NULL,
1578};
1579
1580static struct attribute_group per_node_hstate_attr_group = {
1581 .attrs = per_node_hstate_attrs,
1582};
1583
1584/*
1585 * kobj_to_node_hstate - lookup global hstate for node sysdev hstate attr kobj.
1586 * Returns node id via non-NULL nidp.
1587 */
1588static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
1589{
1590 int nid;
1591
1592 for (nid = 0; nid < nr_node_ids; nid++) {
1593 struct node_hstate *nhs = &node_hstates[nid];
1594 int i;
1595 for (i = 0; i < HUGE_MAX_HSTATE; i++)
1596 if (nhs->hstate_kobjs[i] == kobj) {
1597 if (nidp)
1598 *nidp = nid;
1599 return &hstates[i];
1600 }
1601 }
1602
1603 BUG();
1604 return NULL;
1605}
1606
1607/*
1608 * Unregister hstate attributes from a single node sysdev.
1609 * No-op if no hstate attributes attached.
1610 */
1611void hugetlb_unregister_node(struct node *node)
1612{
1613 struct hstate *h;
1614 struct node_hstate *nhs = &node_hstates[node->sysdev.id];
1615
1616 if (!nhs->hugepages_kobj)
9b5e5d0f 1617 return; /* no hstate attributes */
9a305230
LS
1618
1619 for_each_hstate(h)
1620 if (nhs->hstate_kobjs[h - hstates]) {
1621 kobject_put(nhs->hstate_kobjs[h - hstates]);
1622 nhs->hstate_kobjs[h - hstates] = NULL;
1623 }
1624
1625 kobject_put(nhs->hugepages_kobj);
1626 nhs->hugepages_kobj = NULL;
1627}
1628
1629/*
1630 * hugetlb module exit: unregister hstate attributes from node sysdevs
1631 * that have them.
1632 */
1633static void hugetlb_unregister_all_nodes(void)
1634{
1635 int nid;
1636
1637 /*
1638 * disable node sysdev registrations.
1639 */
1640 register_hugetlbfs_with_node(NULL, NULL);
1641
1642 /*
1643 * remove hstate attributes from any nodes that have them.
1644 */
1645 for (nid = 0; nid < nr_node_ids; nid++)
1646 hugetlb_unregister_node(&node_devices[nid]);
1647}
1648
1649/*
1650 * Register hstate attributes for a single node sysdev.
1651 * No-op if attributes already registered.
1652 */
1653void hugetlb_register_node(struct node *node)
1654{
1655 struct hstate *h;
1656 struct node_hstate *nhs = &node_hstates[node->sysdev.id];
1657 int err;
1658
1659 if (nhs->hugepages_kobj)
1660 return; /* already allocated */
1661
1662 nhs->hugepages_kobj = kobject_create_and_add("hugepages",
1663 &node->sysdev.kobj);
1664 if (!nhs->hugepages_kobj)
1665 return;
1666
1667 for_each_hstate(h) {
1668 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
1669 nhs->hstate_kobjs,
1670 &per_node_hstate_attr_group);
1671 if (err) {
1672 printk(KERN_ERR "Hugetlb: Unable to add hstate %s"
1673 " for node %d\n",
1674 h->name, node->sysdev.id);
1675 hugetlb_unregister_node(node);
1676 break;
1677 }
1678 }
1679}
1680
1681/*
9b5e5d0f
LS
1682 * hugetlb init time: register hstate attributes for all registered node
1683 * sysdevs of nodes that have memory. All on-line nodes should have
1684 * registered their associated sysdev by this time.
9a305230
LS
1685 */
1686static void hugetlb_register_all_nodes(void)
1687{
1688 int nid;
1689
9b5e5d0f 1690 for_each_node_state(nid, N_HIGH_MEMORY) {
9a305230
LS
1691 struct node *node = &node_devices[nid];
1692 if (node->sysdev.id == nid)
1693 hugetlb_register_node(node);
1694 }
1695
1696 /*
1697 * Let the node sysdev driver know we're here so it can
1698 * [un]register hstate attributes on node hotplug.
1699 */
1700 register_hugetlbfs_with_node(hugetlb_register_node,
1701 hugetlb_unregister_node);
1702}
1703#else /* !CONFIG_NUMA */
1704
1705static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
1706{
1707 BUG();
1708 if (nidp)
1709 *nidp = -1;
1710 return NULL;
1711}
1712
1713static void hugetlb_unregister_all_nodes(void) { }
1714
1715static void hugetlb_register_all_nodes(void) { }
1716
1717#endif
1718
a3437870
NA
1719static void __exit hugetlb_exit(void)
1720{
1721 struct hstate *h;
1722
9a305230
LS
1723 hugetlb_unregister_all_nodes();
1724
a3437870
NA
1725 for_each_hstate(h) {
1726 kobject_put(hstate_kobjs[h - hstates]);
1727 }
1728
1729 kobject_put(hugepages_kobj);
1730}
1731module_exit(hugetlb_exit);
1732
1733static int __init hugetlb_init(void)
1734{
0ef89d25
BH
1735 /* Some platform decide whether they support huge pages at boot
1736 * time. On these, such as powerpc, HPAGE_SHIFT is set to 0 when
1737 * there is no such support
1738 */
1739 if (HPAGE_SHIFT == 0)
1740 return 0;
a3437870 1741
e11bfbfc
NP
1742 if (!size_to_hstate(default_hstate_size)) {
1743 default_hstate_size = HPAGE_SIZE;
1744 if (!size_to_hstate(default_hstate_size))
1745 hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
a3437870 1746 }
e11bfbfc
NP
1747 default_hstate_idx = size_to_hstate(default_hstate_size) - hstates;
1748 if (default_hstate_max_huge_pages)
1749 default_hstate.max_huge_pages = default_hstate_max_huge_pages;
a3437870
NA
1750
1751 hugetlb_init_hstates();
1752
aa888a74
AK
1753 gather_bootmem_prealloc();
1754
a3437870
NA
1755 report_hugepages();
1756
1757 hugetlb_sysfs_init();
1758
9a305230
LS
1759 hugetlb_register_all_nodes();
1760
a3437870
NA
1761 return 0;
1762}
1763module_init(hugetlb_init);
1764
1765/* Should be called on processing a hugepagesz=... option */
1766void __init hugetlb_add_hstate(unsigned order)
1767{
1768 struct hstate *h;
8faa8b07
AK
1769 unsigned long i;
1770
a3437870
NA
1771 if (size_to_hstate(PAGE_SIZE << order)) {
1772 printk(KERN_WARNING "hugepagesz= specified twice, ignoring\n");
1773 return;
1774 }
1775 BUG_ON(max_hstate >= HUGE_MAX_HSTATE);
1776 BUG_ON(order == 0);
1777 h = &hstates[max_hstate++];
1778 h->order = order;
1779 h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
8faa8b07
AK
1780 h->nr_huge_pages = 0;
1781 h->free_huge_pages = 0;
1782 for (i = 0; i < MAX_NUMNODES; ++i)
1783 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
9b5e5d0f
LS
1784 h->next_nid_to_alloc = first_node(node_states[N_HIGH_MEMORY]);
1785 h->next_nid_to_free = first_node(node_states[N_HIGH_MEMORY]);
a3437870
NA
1786 snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
1787 huge_page_size(h)/1024);
8faa8b07 1788
a3437870
NA
1789 parsed_hstate = h;
1790}
1791
e11bfbfc 1792static int __init hugetlb_nrpages_setup(char *s)
a3437870
NA
1793{
1794 unsigned long *mhp;
8faa8b07 1795 static unsigned long *last_mhp;
a3437870
NA
1796
1797 /*
1798 * !max_hstate means we haven't parsed a hugepagesz= parameter yet,
1799 * so this hugepages= parameter goes to the "default hstate".
1800 */
1801 if (!max_hstate)
1802 mhp = &default_hstate_max_huge_pages;
1803 else
1804 mhp = &parsed_hstate->max_huge_pages;
1805
8faa8b07
AK
1806 if (mhp == last_mhp) {
1807 printk(KERN_WARNING "hugepages= specified twice without "
1808 "interleaving hugepagesz=, ignoring\n");
1809 return 1;
1810 }
1811
a3437870
NA
1812 if (sscanf(s, "%lu", mhp) <= 0)
1813 *mhp = 0;
1814
8faa8b07
AK
1815 /*
1816 * Global state is always initialized later in hugetlb_init.
1817 * But we need to allocate >= MAX_ORDER hstates here early to still
1818 * use the bootmem allocator.
1819 */
1820 if (max_hstate && parsed_hstate->order >= MAX_ORDER)
1821 hugetlb_hstate_alloc_pages(parsed_hstate);
1822
1823 last_mhp = mhp;
1824
a3437870
NA
1825 return 1;
1826}
e11bfbfc
NP
1827__setup("hugepages=", hugetlb_nrpages_setup);
1828
1829static int __init hugetlb_default_setup(char *s)
1830{
1831 default_hstate_size = memparse(s, &s);
1832 return 1;
1833}
1834__setup("default_hugepagesz=", hugetlb_default_setup);
a3437870 1835
8a213460
NA
1836static unsigned int cpuset_mems_nr(unsigned int *array)
1837{
1838 int node;
1839 unsigned int nr = 0;
1840
1841 for_each_node_mask(node, cpuset_current_mems_allowed)
1842 nr += array[node];
1843
1844 return nr;
1845}
1846
1847#ifdef CONFIG_SYSCTL
06808b08
LS
1848static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
1849 struct ctl_table *table, int write,
1850 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 1851{
e5ff2159
AK
1852 struct hstate *h = &default_hstate;
1853 unsigned long tmp;
1854
1855 if (!write)
1856 tmp = h->max_huge_pages;
1857
1858 table->data = &tmp;
1859 table->maxlen = sizeof(unsigned long);
8d65af78 1860 proc_doulongvec_minmax(table, write, buffer, length, ppos);
e5ff2159 1861
06808b08 1862 if (write) {
bad44b5b
DR
1863 NODEMASK_ALLOC(nodemask_t, nodes_allowed,
1864 GFP_KERNEL | __GFP_NORETRY);
06808b08
LS
1865 if (!(obey_mempolicy &&
1866 init_nodemask_of_mempolicy(nodes_allowed))) {
1867 NODEMASK_FREE(nodes_allowed);
1868 nodes_allowed = &node_states[N_HIGH_MEMORY];
1869 }
1870 h->max_huge_pages = set_max_huge_pages(h, tmp, nodes_allowed);
1871
1872 if (nodes_allowed != &node_states[N_HIGH_MEMORY])
1873 NODEMASK_FREE(nodes_allowed);
1874 }
e5ff2159 1875
1da177e4
LT
1876 return 0;
1877}
396faf03 1878
06808b08
LS
1879int hugetlb_sysctl_handler(struct ctl_table *table, int write,
1880 void __user *buffer, size_t *length, loff_t *ppos)
1881{
1882
1883 return hugetlb_sysctl_handler_common(false, table, write,
1884 buffer, length, ppos);
1885}
1886
1887#ifdef CONFIG_NUMA
1888int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
1889 void __user *buffer, size_t *length, loff_t *ppos)
1890{
1891 return hugetlb_sysctl_handler_common(true, table, write,
1892 buffer, length, ppos);
1893}
1894#endif /* CONFIG_NUMA */
1895
396faf03 1896int hugetlb_treat_movable_handler(struct ctl_table *table, int write,
8d65af78 1897 void __user *buffer,
396faf03
MG
1898 size_t *length, loff_t *ppos)
1899{
8d65af78 1900 proc_dointvec(table, write, buffer, length, ppos);
396faf03
MG
1901 if (hugepages_treat_as_movable)
1902 htlb_alloc_mask = GFP_HIGHUSER_MOVABLE;
1903 else
1904 htlb_alloc_mask = GFP_HIGHUSER;
1905 return 0;
1906}
1907
a3d0c6aa 1908int hugetlb_overcommit_handler(struct ctl_table *table, int write,
8d65af78 1909 void __user *buffer,
a3d0c6aa
NA
1910 size_t *length, loff_t *ppos)
1911{
a5516438 1912 struct hstate *h = &default_hstate;
e5ff2159
AK
1913 unsigned long tmp;
1914
1915 if (!write)
1916 tmp = h->nr_overcommit_huge_pages;
1917
1918 table->data = &tmp;
1919 table->maxlen = sizeof(unsigned long);
8d65af78 1920 proc_doulongvec_minmax(table, write, buffer, length, ppos);
e5ff2159
AK
1921
1922 if (write) {
1923 spin_lock(&hugetlb_lock);
1924 h->nr_overcommit_huge_pages = tmp;
1925 spin_unlock(&hugetlb_lock);
1926 }
1927
a3d0c6aa
NA
1928 return 0;
1929}
1930
1da177e4
LT
1931#endif /* CONFIG_SYSCTL */
1932
e1759c21 1933void hugetlb_report_meminfo(struct seq_file *m)
1da177e4 1934{
a5516438 1935 struct hstate *h = &default_hstate;
e1759c21 1936 seq_printf(m,
4f98a2fe
RR
1937 "HugePages_Total: %5lu\n"
1938 "HugePages_Free: %5lu\n"
1939 "HugePages_Rsvd: %5lu\n"
1940 "HugePages_Surp: %5lu\n"
1941 "Hugepagesize: %8lu kB\n",
a5516438
AK
1942 h->nr_huge_pages,
1943 h->free_huge_pages,
1944 h->resv_huge_pages,
1945 h->surplus_huge_pages,
1946 1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
1da177e4
LT
1947}
1948
1949int hugetlb_report_node_meminfo(int nid, char *buf)
1950{
a5516438 1951 struct hstate *h = &default_hstate;
1da177e4
LT
1952 return sprintf(buf,
1953 "Node %d HugePages_Total: %5u\n"
a1de0919
NA
1954 "Node %d HugePages_Free: %5u\n"
1955 "Node %d HugePages_Surp: %5u\n",
a5516438
AK
1956 nid, h->nr_huge_pages_node[nid],
1957 nid, h->free_huge_pages_node[nid],
1958 nid, h->surplus_huge_pages_node[nid]);
1da177e4
LT
1959}
1960
1da177e4
LT
1961/* Return the number pages of memory we physically have, in PAGE_SIZE units. */
1962unsigned long hugetlb_total_pages(void)
1963{
a5516438
AK
1964 struct hstate *h = &default_hstate;
1965 return h->nr_huge_pages * pages_per_huge_page(h);
1da177e4 1966}
1da177e4 1967
a5516438 1968static int hugetlb_acct_memory(struct hstate *h, long delta)
fc1b8a73
MG
1969{
1970 int ret = -ENOMEM;
1971
1972 spin_lock(&hugetlb_lock);
1973 /*
1974 * When cpuset is configured, it breaks the strict hugetlb page
1975 * reservation as the accounting is done on a global variable. Such
1976 * reservation is completely rubbish in the presence of cpuset because
1977 * the reservation is not checked against page availability for the
1978 * current cpuset. Application can still potentially OOM'ed by kernel
1979 * with lack of free htlb page in cpuset that the task is in.
1980 * Attempt to enforce strict accounting with cpuset is almost
1981 * impossible (or too ugly) because cpuset is too fluid that
1982 * task or memory node can be dynamically moved between cpusets.
1983 *
1984 * The change of semantics for shared hugetlb mapping with cpuset is
1985 * undesirable. However, in order to preserve some of the semantics,
1986 * we fall back to check against current free page availability as
1987 * a best attempt and hopefully to minimize the impact of changing
1988 * semantics that cpuset has.
1989 */
1990 if (delta > 0) {
a5516438 1991 if (gather_surplus_pages(h, delta) < 0)
fc1b8a73
MG
1992 goto out;
1993
a5516438
AK
1994 if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
1995 return_unused_surplus_pages(h, delta);
fc1b8a73
MG
1996 goto out;
1997 }
1998 }
1999
2000 ret = 0;
2001 if (delta < 0)
a5516438 2002 return_unused_surplus_pages(h, (unsigned long) -delta);
fc1b8a73
MG
2003
2004out:
2005 spin_unlock(&hugetlb_lock);
2006 return ret;
2007}
2008
84afd99b
AW
2009static void hugetlb_vm_op_open(struct vm_area_struct *vma)
2010{
2011 struct resv_map *reservations = vma_resv_map(vma);
2012
2013 /*
2014 * This new VMA should share its siblings reservation map if present.
2015 * The VMA will only ever have a valid reservation map pointer where
2016 * it is being copied for another still existing VMA. As that VMA
2017 * has a reference to the reservation map it cannot dissappear until
2018 * after this open call completes. It is therefore safe to take a
2019 * new reference here without additional locking.
2020 */
2021 if (reservations)
2022 kref_get(&reservations->refs);
2023}
2024
a1e78772
MG
2025static void hugetlb_vm_op_close(struct vm_area_struct *vma)
2026{
a5516438 2027 struct hstate *h = hstate_vma(vma);
84afd99b
AW
2028 struct resv_map *reservations = vma_resv_map(vma);
2029 unsigned long reserve;
2030 unsigned long start;
2031 unsigned long end;
2032
2033 if (reservations) {
a5516438
AK
2034 start = vma_hugecache_offset(h, vma, vma->vm_start);
2035 end = vma_hugecache_offset(h, vma, vma->vm_end);
84afd99b
AW
2036
2037 reserve = (end - start) -
2038 region_count(&reservations->regions, start, end);
2039
2040 kref_put(&reservations->refs, resv_map_release);
2041
7251ff78 2042 if (reserve) {
a5516438 2043 hugetlb_acct_memory(h, -reserve);
7251ff78
AL
2044 hugetlb_put_quota(vma->vm_file->f_mapping, reserve);
2045 }
84afd99b 2046 }
a1e78772
MG
2047}
2048
1da177e4
LT
2049/*
2050 * We cannot handle pagefaults against hugetlb pages at all. They cause
2051 * handle_mm_fault() to try to instantiate regular-sized pages in the
2052 * hugegpage VMA. do_page_fault() is supposed to trap this, so BUG is we get
2053 * this far.
2054 */
d0217ac0 2055static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1da177e4
LT
2056{
2057 BUG();
d0217ac0 2058 return 0;
1da177e4
LT
2059}
2060
f0f37e2f 2061const struct vm_operations_struct hugetlb_vm_ops = {
d0217ac0 2062 .fault = hugetlb_vm_op_fault,
84afd99b 2063 .open = hugetlb_vm_op_open,
a1e78772 2064 .close = hugetlb_vm_op_close,
1da177e4
LT
2065};
2066
1e8f889b
DG
2067static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
2068 int writable)
63551ae0
DG
2069{
2070 pte_t entry;
2071
1e8f889b 2072 if (writable) {
63551ae0
DG
2073 entry =
2074 pte_mkwrite(pte_mkdirty(mk_pte(page, vma->vm_page_prot)));
2075 } else {
7f2e9525 2076 entry = huge_pte_wrprotect(mk_pte(page, vma->vm_page_prot));
63551ae0
DG
2077 }
2078 entry = pte_mkyoung(entry);
2079 entry = pte_mkhuge(entry);
2080
2081 return entry;
2082}
2083
1e8f889b
DG
2084static void set_huge_ptep_writable(struct vm_area_struct *vma,
2085 unsigned long address, pte_t *ptep)
2086{
2087 pte_t entry;
2088
7f2e9525
GS
2089 entry = pte_mkwrite(pte_mkdirty(huge_ptep_get(ptep)));
2090 if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1)) {
4b3073e1 2091 update_mmu_cache(vma, address, ptep);
8dab5241 2092 }
1e8f889b
DG
2093}
2094
2095
63551ae0
DG
2096int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
2097 struct vm_area_struct *vma)
2098{
2099 pte_t *src_pte, *dst_pte, entry;
2100 struct page *ptepage;
1c59827d 2101 unsigned long addr;
1e8f889b 2102 int cow;
a5516438
AK
2103 struct hstate *h = hstate_vma(vma);
2104 unsigned long sz = huge_page_size(h);
1e8f889b
DG
2105
2106 cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
63551ae0 2107
a5516438 2108 for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
c74df32c
HD
2109 src_pte = huge_pte_offset(src, addr);
2110 if (!src_pte)
2111 continue;
a5516438 2112 dst_pte = huge_pte_alloc(dst, addr, sz);
63551ae0
DG
2113 if (!dst_pte)
2114 goto nomem;
c5c99429
LW
2115
2116 /* If the pagetables are shared don't copy or take references */
2117 if (dst_pte == src_pte)
2118 continue;
2119
c74df32c 2120 spin_lock(&dst->page_table_lock);
46478758 2121 spin_lock_nested(&src->page_table_lock, SINGLE_DEPTH_NESTING);
7f2e9525 2122 if (!huge_pte_none(huge_ptep_get(src_pte))) {
1e8f889b 2123 if (cow)
7f2e9525
GS
2124 huge_ptep_set_wrprotect(src, addr, src_pte);
2125 entry = huge_ptep_get(src_pte);
1c59827d
HD
2126 ptepage = pte_page(entry);
2127 get_page(ptepage);
1c59827d
HD
2128 set_huge_pte_at(dst, addr, dst_pte, entry);
2129 }
2130 spin_unlock(&src->page_table_lock);
c74df32c 2131 spin_unlock(&dst->page_table_lock);
63551ae0
DG
2132 }
2133 return 0;
2134
2135nomem:
2136 return -ENOMEM;
2137}
2138
502717f4 2139void __unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
04f2cbe3 2140 unsigned long end, struct page *ref_page)
63551ae0
DG
2141{
2142 struct mm_struct *mm = vma->vm_mm;
2143 unsigned long address;
c7546f8f 2144 pte_t *ptep;
63551ae0
DG
2145 pte_t pte;
2146 struct page *page;
fe1668ae 2147 struct page *tmp;
a5516438
AK
2148 struct hstate *h = hstate_vma(vma);
2149 unsigned long sz = huge_page_size(h);
2150
c0a499c2
CK
2151 /*
2152 * A page gathering list, protected by per file i_mmap_lock. The
2153 * lock is used to avoid list corruption from multiple unmapping
2154 * of the same page since we are using page->lru.
2155 */
fe1668ae 2156 LIST_HEAD(page_list);
63551ae0
DG
2157
2158 WARN_ON(!is_vm_hugetlb_page(vma));
a5516438
AK
2159 BUG_ON(start & ~huge_page_mask(h));
2160 BUG_ON(end & ~huge_page_mask(h));
63551ae0 2161
cddb8a5c 2162 mmu_notifier_invalidate_range_start(mm, start, end);
508034a3 2163 spin_lock(&mm->page_table_lock);
a5516438 2164 for (address = start; address < end; address += sz) {
c7546f8f 2165 ptep = huge_pte_offset(mm, address);
4c887265 2166 if (!ptep)
c7546f8f
DG
2167 continue;
2168
39dde65c
CK
2169 if (huge_pmd_unshare(mm, &address, ptep))
2170 continue;
2171
04f2cbe3
MG
2172 /*
2173 * If a reference page is supplied, it is because a specific
2174 * page is being unmapped, not a range. Ensure the page we
2175 * are about to unmap is the actual page of interest.
2176 */
2177 if (ref_page) {
2178 pte = huge_ptep_get(ptep);
2179 if (huge_pte_none(pte))
2180 continue;
2181 page = pte_page(pte);
2182 if (page != ref_page)
2183 continue;
2184
2185 /*
2186 * Mark the VMA as having unmapped its page so that
2187 * future faults in this VMA will fail rather than
2188 * looking like data was lost
2189 */
2190 set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
2191 }
2192
c7546f8f 2193 pte = huge_ptep_get_and_clear(mm, address, ptep);
7f2e9525 2194 if (huge_pte_none(pte))
63551ae0 2195 continue;
c7546f8f 2196
63551ae0 2197 page = pte_page(pte);
6649a386
KC
2198 if (pte_dirty(pte))
2199 set_page_dirty(page);
fe1668ae 2200 list_add(&page->lru, &page_list);
63551ae0 2201 }
1da177e4 2202 spin_unlock(&mm->page_table_lock);
508034a3 2203 flush_tlb_range(vma, start, end);
cddb8a5c 2204 mmu_notifier_invalidate_range_end(mm, start, end);
fe1668ae
CK
2205 list_for_each_entry_safe(page, tmp, &page_list, lru) {
2206 list_del(&page->lru);
2207 put_page(page);
2208 }
1da177e4 2209}
63551ae0 2210
502717f4 2211void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
04f2cbe3 2212 unsigned long end, struct page *ref_page)
502717f4 2213{
a137e1cc
AK
2214 spin_lock(&vma->vm_file->f_mapping->i_mmap_lock);
2215 __unmap_hugepage_range(vma, start, end, ref_page);
2216 spin_unlock(&vma->vm_file->f_mapping->i_mmap_lock);
502717f4
CK
2217}
2218
04f2cbe3
MG
2219/*
2220 * This is called when the original mapper is failing to COW a MAP_PRIVATE
2221 * mappping it owns the reserve page for. The intention is to unmap the page
2222 * from other VMAs and let the children be SIGKILLed if they are faulting the
2223 * same region.
2224 */
2a4b3ded
HH
2225static int unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
2226 struct page *page, unsigned long address)
04f2cbe3 2227{
7526674d 2228 struct hstate *h = hstate_vma(vma);
04f2cbe3
MG
2229 struct vm_area_struct *iter_vma;
2230 struct address_space *mapping;
2231 struct prio_tree_iter iter;
2232 pgoff_t pgoff;
2233
2234 /*
2235 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
2236 * from page cache lookup which is in HPAGE_SIZE units.
2237 */
7526674d 2238 address = address & huge_page_mask(h);
04f2cbe3
MG
2239 pgoff = ((address - vma->vm_start) >> PAGE_SHIFT)
2240 + (vma->vm_pgoff >> PAGE_SHIFT);
2241 mapping = (struct address_space *)page_private(page);
2242
4eb2b1dc
MG
2243 /*
2244 * Take the mapping lock for the duration of the table walk. As
2245 * this mapping should be shared between all the VMAs,
2246 * __unmap_hugepage_range() is called as the lock is already held
2247 */
2248 spin_lock(&mapping->i_mmap_lock);
04f2cbe3
MG
2249 vma_prio_tree_foreach(iter_vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
2250 /* Do not unmap the current VMA */
2251 if (iter_vma == vma)
2252 continue;
2253
2254 /*
2255 * Unmap the page from other VMAs without their own reserves.
2256 * They get marked to be SIGKILLed if they fault in these
2257 * areas. This is because a future no-page fault on this VMA
2258 * could insert a zeroed page instead of the data existing
2259 * from the time of fork. This would look like data corruption
2260 */
2261 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
4eb2b1dc 2262 __unmap_hugepage_range(iter_vma,
7526674d 2263 address, address + huge_page_size(h),
04f2cbe3
MG
2264 page);
2265 }
4eb2b1dc 2266 spin_unlock(&mapping->i_mmap_lock);
04f2cbe3
MG
2267
2268 return 1;
2269}
2270
1e8f889b 2271static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
04f2cbe3
MG
2272 unsigned long address, pte_t *ptep, pte_t pte,
2273 struct page *pagecache_page)
1e8f889b 2274{
a5516438 2275 struct hstate *h = hstate_vma(vma);
1e8f889b 2276 struct page *old_page, *new_page;
79ac6ba4 2277 int avoidcopy;
04f2cbe3 2278 int outside_reserve = 0;
1e8f889b
DG
2279
2280 old_page = pte_page(pte);
2281
04f2cbe3 2282retry_avoidcopy:
1e8f889b
DG
2283 /* If no-one else is actually using this page, avoid the copy
2284 * and just make the page writable */
2285 avoidcopy = (page_count(old_page) == 1);
2286 if (avoidcopy) {
2287 set_huge_ptep_writable(vma, address, ptep);
83c54070 2288 return 0;
1e8f889b
DG
2289 }
2290
04f2cbe3
MG
2291 /*
2292 * If the process that created a MAP_PRIVATE mapping is about to
2293 * perform a COW due to a shared page count, attempt to satisfy
2294 * the allocation without using the existing reserves. The pagecache
2295 * page is used to determine if the reserve at this address was
2296 * consumed or not. If reserves were used, a partial faulted mapping
2297 * at the time of fork() could consume its reserves on COW instead
2298 * of the full address range.
2299 */
f83a275d 2300 if (!(vma->vm_flags & VM_MAYSHARE) &&
04f2cbe3
MG
2301 is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
2302 old_page != pagecache_page)
2303 outside_reserve = 1;
2304
1e8f889b 2305 page_cache_get(old_page);
b76c8cfb
LW
2306
2307 /* Drop page_table_lock as buddy allocator may be called */
2308 spin_unlock(&mm->page_table_lock);
04f2cbe3 2309 new_page = alloc_huge_page(vma, address, outside_reserve);
1e8f889b 2310
2fc39cec 2311 if (IS_ERR(new_page)) {
1e8f889b 2312 page_cache_release(old_page);
04f2cbe3
MG
2313
2314 /*
2315 * If a process owning a MAP_PRIVATE mapping fails to COW,
2316 * it is due to references held by a child and an insufficient
2317 * huge page pool. To guarantee the original mappers
2318 * reliability, unmap the page from child processes. The child
2319 * may get SIGKILLed if it later faults.
2320 */
2321 if (outside_reserve) {
2322 BUG_ON(huge_pte_none(pte));
2323 if (unmap_ref_private(mm, vma, old_page, address)) {
2324 BUG_ON(page_count(old_page) != 1);
2325 BUG_ON(huge_pte_none(pte));
b76c8cfb 2326 spin_lock(&mm->page_table_lock);
04f2cbe3
MG
2327 goto retry_avoidcopy;
2328 }
2329 WARN_ON_ONCE(1);
2330 }
2331
b76c8cfb
LW
2332 /* Caller expects lock to be held */
2333 spin_lock(&mm->page_table_lock);
2fc39cec 2334 return -PTR_ERR(new_page);
1e8f889b
DG
2335 }
2336
9de455b2 2337 copy_huge_page(new_page, old_page, address, vma);
0ed361de 2338 __SetPageUptodate(new_page);
1e8f889b 2339
b76c8cfb
LW
2340 /*
2341 * Retake the page_table_lock to check for racing updates
2342 * before the page tables are altered
2343 */
2344 spin_lock(&mm->page_table_lock);
a5516438 2345 ptep = huge_pte_offset(mm, address & huge_page_mask(h));
7f2e9525 2346 if (likely(pte_same(huge_ptep_get(ptep), pte))) {
1e8f889b 2347 /* Break COW */
8fe627ec 2348 huge_ptep_clear_flush(vma, address, ptep);
1e8f889b
DG
2349 set_huge_pte_at(mm, address, ptep,
2350 make_huge_pte(vma, new_page, 1));
2351 /* Make the old page be freed below */
2352 new_page = old_page;
2353 }
2354 page_cache_release(new_page);
2355 page_cache_release(old_page);
83c54070 2356 return 0;
1e8f889b
DG
2357}
2358
04f2cbe3 2359/* Return the pagecache page at a given address within a VMA */
a5516438
AK
2360static struct page *hugetlbfs_pagecache_page(struct hstate *h,
2361 struct vm_area_struct *vma, unsigned long address)
04f2cbe3
MG
2362{
2363 struct address_space *mapping;
e7c4b0bf 2364 pgoff_t idx;
04f2cbe3
MG
2365
2366 mapping = vma->vm_file->f_mapping;
a5516438 2367 idx = vma_hugecache_offset(h, vma, address);
04f2cbe3
MG
2368
2369 return find_lock_page(mapping, idx);
2370}
2371
3ae77f43
HD
2372/*
2373 * Return whether there is a pagecache page to back given address within VMA.
2374 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
2375 */
2376static bool hugetlbfs_pagecache_present(struct hstate *h,
2a15efc9
HD
2377 struct vm_area_struct *vma, unsigned long address)
2378{
2379 struct address_space *mapping;
2380 pgoff_t idx;
2381 struct page *page;
2382
2383 mapping = vma->vm_file->f_mapping;
2384 idx = vma_hugecache_offset(h, vma, address);
2385
2386 page = find_get_page(mapping, idx);
2387 if (page)
2388 put_page(page);
2389 return page != NULL;
2390}
2391
a1ed3dda 2392static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
788c7df4 2393 unsigned long address, pte_t *ptep, unsigned int flags)
ac9b9c66 2394{
a5516438 2395 struct hstate *h = hstate_vma(vma);
ac9b9c66 2396 int ret = VM_FAULT_SIGBUS;
e7c4b0bf 2397 pgoff_t idx;
4c887265 2398 unsigned long size;
4c887265
AL
2399 struct page *page;
2400 struct address_space *mapping;
1e8f889b 2401 pte_t new_pte;
4c887265 2402
04f2cbe3
MG
2403 /*
2404 * Currently, we are forced to kill the process in the event the
2405 * original mapper has unmapped pages from the child due to a failed
2406 * COW. Warn that such a situation has occured as it may not be obvious
2407 */
2408 if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
2409 printk(KERN_WARNING
2410 "PID %d killed due to inadequate hugepage pool\n",
2411 current->pid);
2412 return ret;
2413 }
2414
4c887265 2415 mapping = vma->vm_file->f_mapping;
a5516438 2416 idx = vma_hugecache_offset(h, vma, address);
4c887265
AL
2417
2418 /*
2419 * Use page lock to guard against racing truncation
2420 * before we get page_table_lock.
2421 */
6bda666a
CL
2422retry:
2423 page = find_lock_page(mapping, idx);
2424 if (!page) {
a5516438 2425 size = i_size_read(mapping->host) >> huge_page_shift(h);
ebed4bfc
HD
2426 if (idx >= size)
2427 goto out;
04f2cbe3 2428 page = alloc_huge_page(vma, address, 0);
2fc39cec
AL
2429 if (IS_ERR(page)) {
2430 ret = -PTR_ERR(page);
6bda666a
CL
2431 goto out;
2432 }
a5516438 2433 clear_huge_page(page, address, huge_page_size(h));
0ed361de 2434 __SetPageUptodate(page);
ac9b9c66 2435
f83a275d 2436 if (vma->vm_flags & VM_MAYSHARE) {
6bda666a 2437 int err;
45c682a6 2438 struct inode *inode = mapping->host;
6bda666a
CL
2439
2440 err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
2441 if (err) {
2442 put_page(page);
6bda666a
CL
2443 if (err == -EEXIST)
2444 goto retry;
2445 goto out;
2446 }
45c682a6
KC
2447
2448 spin_lock(&inode->i_lock);
a5516438 2449 inode->i_blocks += blocks_per_huge_page(h);
45c682a6 2450 spin_unlock(&inode->i_lock);
23be7468 2451 } else {
6bda666a 2452 lock_page(page);
23be7468
MG
2453 page->mapping = HUGETLB_POISON;
2454 }
6bda666a 2455 }
1e8f889b 2456
57303d80
AW
2457 /*
2458 * If we are going to COW a private mapping later, we examine the
2459 * pending reservations for this page now. This will ensure that
2460 * any allocations necessary to record that reservation occur outside
2461 * the spinlock.
2462 */
788c7df4 2463 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED))
2b26736c
AW
2464 if (vma_needs_reservation(h, vma, address) < 0) {
2465 ret = VM_FAULT_OOM;
2466 goto backout_unlocked;
2467 }
57303d80 2468
ac9b9c66 2469 spin_lock(&mm->page_table_lock);
a5516438 2470 size = i_size_read(mapping->host) >> huge_page_shift(h);
4c887265
AL
2471 if (idx >= size)
2472 goto backout;
2473
83c54070 2474 ret = 0;
7f2e9525 2475 if (!huge_pte_none(huge_ptep_get(ptep)))
4c887265
AL
2476 goto backout;
2477
1e8f889b
DG
2478 new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
2479 && (vma->vm_flags & VM_SHARED)));
2480 set_huge_pte_at(mm, address, ptep, new_pte);
2481
788c7df4 2482 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
1e8f889b 2483 /* Optimization, do the COW without a second fault */
04f2cbe3 2484 ret = hugetlb_cow(mm, vma, address, ptep, new_pte, page);
1e8f889b
DG
2485 }
2486
ac9b9c66 2487 spin_unlock(&mm->page_table_lock);
4c887265
AL
2488 unlock_page(page);
2489out:
ac9b9c66 2490 return ret;
4c887265
AL
2491
2492backout:
2493 spin_unlock(&mm->page_table_lock);
2b26736c 2494backout_unlocked:
4c887265
AL
2495 unlock_page(page);
2496 put_page(page);
2497 goto out;
ac9b9c66
HD
2498}
2499
86e5216f 2500int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
788c7df4 2501 unsigned long address, unsigned int flags)
86e5216f
AL
2502{
2503 pte_t *ptep;
2504 pte_t entry;
1e8f889b 2505 int ret;
57303d80 2506 struct page *pagecache_page = NULL;
3935baa9 2507 static DEFINE_MUTEX(hugetlb_instantiation_mutex);
a5516438 2508 struct hstate *h = hstate_vma(vma);
86e5216f 2509
a5516438 2510 ptep = huge_pte_alloc(mm, address, huge_page_size(h));
86e5216f
AL
2511 if (!ptep)
2512 return VM_FAULT_OOM;
2513
3935baa9
DG
2514 /*
2515 * Serialize hugepage allocation and instantiation, so that we don't
2516 * get spurious allocation failures if two CPUs race to instantiate
2517 * the same page in the page cache.
2518 */
2519 mutex_lock(&hugetlb_instantiation_mutex);
7f2e9525
GS
2520 entry = huge_ptep_get(ptep);
2521 if (huge_pte_none(entry)) {
788c7df4 2522 ret = hugetlb_no_page(mm, vma, address, ptep, flags);
b4d1d99f 2523 goto out_mutex;
3935baa9 2524 }
86e5216f 2525
83c54070 2526 ret = 0;
1e8f889b 2527
57303d80
AW
2528 /*
2529 * If we are going to COW the mapping later, we examine the pending
2530 * reservations for this page now. This will ensure that any
2531 * allocations necessary to record that reservation occur outside the
2532 * spinlock. For private mappings, we also lookup the pagecache
2533 * page now as it is used to determine if a reservation has been
2534 * consumed.
2535 */
788c7df4 2536 if ((flags & FAULT_FLAG_WRITE) && !pte_write(entry)) {
2b26736c
AW
2537 if (vma_needs_reservation(h, vma, address) < 0) {
2538 ret = VM_FAULT_OOM;
b4d1d99f 2539 goto out_mutex;
2b26736c 2540 }
57303d80 2541
f83a275d 2542 if (!(vma->vm_flags & VM_MAYSHARE))
57303d80
AW
2543 pagecache_page = hugetlbfs_pagecache_page(h,
2544 vma, address);
2545 }
2546
1e8f889b
DG
2547 spin_lock(&mm->page_table_lock);
2548 /* Check for a racing update before calling hugetlb_cow */
b4d1d99f
DG
2549 if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
2550 goto out_page_table_lock;
2551
2552
788c7df4 2553 if (flags & FAULT_FLAG_WRITE) {
b4d1d99f 2554 if (!pte_write(entry)) {
57303d80
AW
2555 ret = hugetlb_cow(mm, vma, address, ptep, entry,
2556 pagecache_page);
b4d1d99f
DG
2557 goto out_page_table_lock;
2558 }
2559 entry = pte_mkdirty(entry);
2560 }
2561 entry = pte_mkyoung(entry);
788c7df4
HD
2562 if (huge_ptep_set_access_flags(vma, address, ptep, entry,
2563 flags & FAULT_FLAG_WRITE))
4b3073e1 2564 update_mmu_cache(vma, address, ptep);
b4d1d99f
DG
2565
2566out_page_table_lock:
1e8f889b 2567 spin_unlock(&mm->page_table_lock);
57303d80
AW
2568
2569 if (pagecache_page) {
2570 unlock_page(pagecache_page);
2571 put_page(pagecache_page);
2572 }
2573
b4d1d99f 2574out_mutex:
3935baa9 2575 mutex_unlock(&hugetlb_instantiation_mutex);
1e8f889b
DG
2576
2577 return ret;
86e5216f
AL
2578}
2579
ceb86879
AK
2580/* Can be overriden by architectures */
2581__attribute__((weak)) struct page *
2582follow_huge_pud(struct mm_struct *mm, unsigned long address,
2583 pud_t *pud, int write)
2584{
2585 BUG();
2586 return NULL;
2587}
2588
63551ae0
DG
2589int follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
2590 struct page **pages, struct vm_area_struct **vmas,
5b23dbe8 2591 unsigned long *position, int *length, int i,
2a15efc9 2592 unsigned int flags)
63551ae0 2593{
d5d4b0aa
CK
2594 unsigned long pfn_offset;
2595 unsigned long vaddr = *position;
63551ae0 2596 int remainder = *length;
a5516438 2597 struct hstate *h = hstate_vma(vma);
63551ae0 2598
1c59827d 2599 spin_lock(&mm->page_table_lock);
63551ae0 2600 while (vaddr < vma->vm_end && remainder) {
4c887265 2601 pte_t *pte;
2a15efc9 2602 int absent;
4c887265 2603 struct page *page;
63551ae0 2604
4c887265
AL
2605 /*
2606 * Some archs (sparc64, sh*) have multiple pte_ts to
2a15efc9 2607 * each hugepage. We have to make sure we get the
4c887265
AL
2608 * first, for the page indexing below to work.
2609 */
a5516438 2610 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h));
2a15efc9
HD
2611 absent = !pte || huge_pte_none(huge_ptep_get(pte));
2612
2613 /*
2614 * When coredumping, it suits get_dump_page if we just return
3ae77f43
HD
2615 * an error where there's an empty slot with no huge pagecache
2616 * to back it. This way, we avoid allocating a hugepage, and
2617 * the sparse dumpfile avoids allocating disk blocks, but its
2618 * huge holes still show up with zeroes where they need to be.
2a15efc9 2619 */
3ae77f43
HD
2620 if (absent && (flags & FOLL_DUMP) &&
2621 !hugetlbfs_pagecache_present(h, vma, vaddr)) {
2a15efc9
HD
2622 remainder = 0;
2623 break;
2624 }
63551ae0 2625
2a15efc9
HD
2626 if (absent ||
2627 ((flags & FOLL_WRITE) && !pte_write(huge_ptep_get(pte)))) {
4c887265 2628 int ret;
63551ae0 2629
4c887265 2630 spin_unlock(&mm->page_table_lock);
2a15efc9
HD
2631 ret = hugetlb_fault(mm, vma, vaddr,
2632 (flags & FOLL_WRITE) ? FAULT_FLAG_WRITE : 0);
4c887265 2633 spin_lock(&mm->page_table_lock);
a89182c7 2634 if (!(ret & VM_FAULT_ERROR))
4c887265 2635 continue;
63551ae0 2636
4c887265 2637 remainder = 0;
4c887265
AL
2638 break;
2639 }
2640
a5516438 2641 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
7f2e9525 2642 page = pte_page(huge_ptep_get(pte));
d5d4b0aa 2643same_page:
d6692183 2644 if (pages) {
2a15efc9 2645 pages[i] = mem_map_offset(page, pfn_offset);
4b2e38ad 2646 get_page(pages[i]);
d6692183 2647 }
63551ae0
DG
2648
2649 if (vmas)
2650 vmas[i] = vma;
2651
2652 vaddr += PAGE_SIZE;
d5d4b0aa 2653 ++pfn_offset;
63551ae0
DG
2654 --remainder;
2655 ++i;
d5d4b0aa 2656 if (vaddr < vma->vm_end && remainder &&
a5516438 2657 pfn_offset < pages_per_huge_page(h)) {
d5d4b0aa
CK
2658 /*
2659 * We use pfn_offset to avoid touching the pageframes
2660 * of this compound page.
2661 */
2662 goto same_page;
2663 }
63551ae0 2664 }
1c59827d 2665 spin_unlock(&mm->page_table_lock);
63551ae0
DG
2666 *length = remainder;
2667 *position = vaddr;
2668
2a15efc9 2669 return i ? i : -EFAULT;
63551ae0 2670}
8f860591
ZY
2671
2672void hugetlb_change_protection(struct vm_area_struct *vma,
2673 unsigned long address, unsigned long end, pgprot_t newprot)
2674{
2675 struct mm_struct *mm = vma->vm_mm;
2676 unsigned long start = address;
2677 pte_t *ptep;
2678 pte_t pte;
a5516438 2679 struct hstate *h = hstate_vma(vma);
8f860591
ZY
2680
2681 BUG_ON(address >= end);
2682 flush_cache_range(vma, address, end);
2683
39dde65c 2684 spin_lock(&vma->vm_file->f_mapping->i_mmap_lock);
8f860591 2685 spin_lock(&mm->page_table_lock);
a5516438 2686 for (; address < end; address += huge_page_size(h)) {
8f860591
ZY
2687 ptep = huge_pte_offset(mm, address);
2688 if (!ptep)
2689 continue;
39dde65c
CK
2690 if (huge_pmd_unshare(mm, &address, ptep))
2691 continue;
7f2e9525 2692 if (!huge_pte_none(huge_ptep_get(ptep))) {
8f860591
ZY
2693 pte = huge_ptep_get_and_clear(mm, address, ptep);
2694 pte = pte_mkhuge(pte_modify(pte, newprot));
2695 set_huge_pte_at(mm, address, ptep, pte);
8f860591
ZY
2696 }
2697 }
2698 spin_unlock(&mm->page_table_lock);
39dde65c 2699 spin_unlock(&vma->vm_file->f_mapping->i_mmap_lock);
8f860591
ZY
2700
2701 flush_tlb_range(vma, start, end);
2702}
2703
a1e78772
MG
2704int hugetlb_reserve_pages(struct inode *inode,
2705 long from, long to,
5a6fe125
MG
2706 struct vm_area_struct *vma,
2707 int acctflag)
e4e574b7 2708{
17c9d12e 2709 long ret, chg;
a5516438 2710 struct hstate *h = hstate_inode(inode);
e4e574b7 2711
17c9d12e
MG
2712 /*
2713 * Only apply hugepage reservation if asked. At fault time, an
2714 * attempt will be made for VM_NORESERVE to allocate a page
2715 * and filesystem quota without using reserves
2716 */
2717 if (acctflag & VM_NORESERVE)
2718 return 0;
2719
a1e78772
MG
2720 /*
2721 * Shared mappings base their reservation on the number of pages that
2722 * are already allocated on behalf of the file. Private mappings need
2723 * to reserve the full area even if read-only as mprotect() may be
2724 * called to make the mapping read-write. Assume !vma is a shm mapping
2725 */
f83a275d 2726 if (!vma || vma->vm_flags & VM_MAYSHARE)
a1e78772 2727 chg = region_chg(&inode->i_mapping->private_list, from, to);
17c9d12e
MG
2728 else {
2729 struct resv_map *resv_map = resv_map_alloc();
2730 if (!resv_map)
2731 return -ENOMEM;
2732
a1e78772 2733 chg = to - from;
84afd99b 2734
17c9d12e
MG
2735 set_vma_resv_map(vma, resv_map);
2736 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
2737 }
2738
e4e574b7
AL
2739 if (chg < 0)
2740 return chg;
8a630112 2741
17c9d12e 2742 /* There must be enough filesystem quota for the mapping */
90d8b7e6
AL
2743 if (hugetlb_get_quota(inode->i_mapping, chg))
2744 return -ENOSPC;
5a6fe125
MG
2745
2746 /*
17c9d12e
MG
2747 * Check enough hugepages are available for the reservation.
2748 * Hand back the quota if there are not
5a6fe125 2749 */
a5516438 2750 ret = hugetlb_acct_memory(h, chg);
68842c9b
KC
2751 if (ret < 0) {
2752 hugetlb_put_quota(inode->i_mapping, chg);
a43a8c39 2753 return ret;
68842c9b 2754 }
17c9d12e
MG
2755
2756 /*
2757 * Account for the reservations made. Shared mappings record regions
2758 * that have reservations as they are shared by multiple VMAs.
2759 * When the last VMA disappears, the region map says how much
2760 * the reservation was and the page cache tells how much of
2761 * the reservation was consumed. Private mappings are per-VMA and
2762 * only the consumed reservations are tracked. When the VMA
2763 * disappears, the original reservation is the VMA size and the
2764 * consumed reservations are stored in the map. Hence, nothing
2765 * else has to be done for private mappings here
2766 */
f83a275d 2767 if (!vma || vma->vm_flags & VM_MAYSHARE)
a1e78772 2768 region_add(&inode->i_mapping->private_list, from, to);
a43a8c39
CK
2769 return 0;
2770}
2771
2772void hugetlb_unreserve_pages(struct inode *inode, long offset, long freed)
2773{
a5516438 2774 struct hstate *h = hstate_inode(inode);
a43a8c39 2775 long chg = region_truncate(&inode->i_mapping->private_list, offset);
45c682a6
KC
2776
2777 spin_lock(&inode->i_lock);
e4c6f8be 2778 inode->i_blocks -= (blocks_per_huge_page(h) * freed);
45c682a6
KC
2779 spin_unlock(&inode->i_lock);
2780
90d8b7e6 2781 hugetlb_put_quota(inode->i_mapping, (chg - freed));
a5516438 2782 hugetlb_acct_memory(h, -(chg - freed));
a43a8c39 2783}