PCI: dwc: pci-dra7xx: Enable errata i870 for both EP and RC mode
[linux-2.6-block.git] / mm / hugetlb.c
CommitLineData
1da177e4
LT
1/*
2 * Generic hugetlb support.
6d49e352 3 * (C) Nadia Yvette Chambers, April 2004
1da177e4 4 */
1da177e4
LT
5#include <linux/list.h>
6#include <linux/init.h>
1da177e4 7#include <linux/mm.h>
e1759c21 8#include <linux/seq_file.h>
1da177e4
LT
9#include <linux/sysctl.h>
10#include <linux/highmem.h>
cddb8a5c 11#include <linux/mmu_notifier.h>
1da177e4 12#include <linux/nodemask.h>
63551ae0 13#include <linux/pagemap.h>
5da7ca86 14#include <linux/mempolicy.h>
3b32123d 15#include <linux/compiler.h>
aea47ff3 16#include <linux/cpuset.h>
3935baa9 17#include <linux/mutex.h>
aa888a74 18#include <linux/bootmem.h>
a3437870 19#include <linux/sysfs.h>
5a0e3ad6 20#include <linux/slab.h>
63489f8e 21#include <linux/mmdebug.h>
174cd4b1 22#include <linux/sched/signal.h>
0fe6e20b 23#include <linux/rmap.h>
c6247f72 24#include <linux/string_helpers.h>
fd6a03ed
NH
25#include <linux/swap.h>
26#include <linux/swapops.h>
8382d914 27#include <linux/jhash.h>
d6606683 28
63551ae0
DG
29#include <asm/page.h>
30#include <asm/pgtable.h>
24669e58 31#include <asm/tlb.h>
63551ae0 32
24669e58 33#include <linux/io.h>
63551ae0 34#include <linux/hugetlb.h>
9dd540e2 35#include <linux/hugetlb_cgroup.h>
9a305230 36#include <linux/node.h>
1a1aad8a 37#include <linux/userfaultfd_k.h>
ab5ac90a 38#include <linux/page_owner.h>
7835e98b 39#include "internal.h"
1da177e4 40
c3f38a38 41int hugetlb_max_hstate __read_mostly;
e5ff2159
AK
42unsigned int default_hstate_idx;
43struct hstate hstates[HUGE_MAX_HSTATE];
641844f5
NH
44/*
45 * Minimum page order among possible hugepage sizes, set to a proper value
46 * at boot time.
47 */
48static unsigned int minimum_order __read_mostly = UINT_MAX;
e5ff2159 49
53ba51d2
JT
50__initdata LIST_HEAD(huge_boot_pages);
51
e5ff2159
AK
52/* for command line parsing */
53static struct hstate * __initdata parsed_hstate;
54static unsigned long __initdata default_hstate_max_huge_pages;
e11bfbfc 55static unsigned long __initdata default_hstate_size;
9fee021d 56static bool __initdata parsed_valid_hugepagesz = true;
e5ff2159 57
3935baa9 58/*
31caf665
NH
59 * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
60 * free_huge_pages, and surplus_huge_pages.
3935baa9 61 */
c3f38a38 62DEFINE_SPINLOCK(hugetlb_lock);
0bd0f9fb 63
8382d914
DB
64/*
65 * Serializes faults on the same logical page. This is used to
66 * prevent spurious OOMs when the hugepage pool is fully utilized.
67 */
68static int num_fault_mutexes;
c672c7f2 69struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp;
8382d914 70
7ca02d0a
MK
71/* Forward declaration */
72static int hugetlb_acct_memory(struct hstate *h, long delta);
73
90481622
DG
74static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
75{
76 bool free = (spool->count == 0) && (spool->used_hpages == 0);
77
78 spin_unlock(&spool->lock);
79
80 /* If no pages are used, and no other handles to the subpool
7ca02d0a
MK
81 * remain, give up any reservations mased on minimum size and
82 * free the subpool */
83 if (free) {
84 if (spool->min_hpages != -1)
85 hugetlb_acct_memory(spool->hstate,
86 -spool->min_hpages);
90481622 87 kfree(spool);
7ca02d0a 88 }
90481622
DG
89}
90
7ca02d0a
MK
91struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
92 long min_hpages)
90481622
DG
93{
94 struct hugepage_subpool *spool;
95
c6a91820 96 spool = kzalloc(sizeof(*spool), GFP_KERNEL);
90481622
DG
97 if (!spool)
98 return NULL;
99
100 spin_lock_init(&spool->lock);
101 spool->count = 1;
7ca02d0a
MK
102 spool->max_hpages = max_hpages;
103 spool->hstate = h;
104 spool->min_hpages = min_hpages;
105
106 if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
107 kfree(spool);
108 return NULL;
109 }
110 spool->rsv_hpages = min_hpages;
90481622
DG
111
112 return spool;
113}
114
115void hugepage_put_subpool(struct hugepage_subpool *spool)
116{
117 spin_lock(&spool->lock);
118 BUG_ON(!spool->count);
119 spool->count--;
120 unlock_or_release_subpool(spool);
121}
122
1c5ecae3
MK
123/*
124 * Subpool accounting for allocating and reserving pages.
125 * Return -ENOMEM if there are not enough resources to satisfy the
126 * the request. Otherwise, return the number of pages by which the
127 * global pools must be adjusted (upward). The returned value may
128 * only be different than the passed value (delta) in the case where
129 * a subpool minimum size must be manitained.
130 */
131static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
90481622
DG
132 long delta)
133{
1c5ecae3 134 long ret = delta;
90481622
DG
135
136 if (!spool)
1c5ecae3 137 return ret;
90481622
DG
138
139 spin_lock(&spool->lock);
1c5ecae3
MK
140
141 if (spool->max_hpages != -1) { /* maximum size accounting */
142 if ((spool->used_hpages + delta) <= spool->max_hpages)
143 spool->used_hpages += delta;
144 else {
145 ret = -ENOMEM;
146 goto unlock_ret;
147 }
90481622 148 }
90481622 149
09a95e29
MK
150 /* minimum size accounting */
151 if (spool->min_hpages != -1 && spool->rsv_hpages) {
1c5ecae3
MK
152 if (delta > spool->rsv_hpages) {
153 /*
154 * Asking for more reserves than those already taken on
155 * behalf of subpool. Return difference.
156 */
157 ret = delta - spool->rsv_hpages;
158 spool->rsv_hpages = 0;
159 } else {
160 ret = 0; /* reserves already accounted for */
161 spool->rsv_hpages -= delta;
162 }
163 }
164
165unlock_ret:
166 spin_unlock(&spool->lock);
90481622
DG
167 return ret;
168}
169
1c5ecae3
MK
170/*
171 * Subpool accounting for freeing and unreserving pages.
172 * Return the number of global page reservations that must be dropped.
173 * The return value may only be different than the passed value (delta)
174 * in the case where a subpool minimum size must be maintained.
175 */
176static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
90481622
DG
177 long delta)
178{
1c5ecae3
MK
179 long ret = delta;
180
90481622 181 if (!spool)
1c5ecae3 182 return delta;
90481622
DG
183
184 spin_lock(&spool->lock);
1c5ecae3
MK
185
186 if (spool->max_hpages != -1) /* maximum size accounting */
187 spool->used_hpages -= delta;
188
09a95e29
MK
189 /* minimum size accounting */
190 if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) {
1c5ecae3
MK
191 if (spool->rsv_hpages + delta <= spool->min_hpages)
192 ret = 0;
193 else
194 ret = spool->rsv_hpages + delta - spool->min_hpages;
195
196 spool->rsv_hpages += delta;
197 if (spool->rsv_hpages > spool->min_hpages)
198 spool->rsv_hpages = spool->min_hpages;
199 }
200
201 /*
202 * If hugetlbfs_put_super couldn't free spool due to an outstanding
203 * quota reference, free it now.
204 */
90481622 205 unlock_or_release_subpool(spool);
1c5ecae3
MK
206
207 return ret;
90481622
DG
208}
209
210static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
211{
212 return HUGETLBFS_SB(inode->i_sb)->spool;
213}
214
215static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
216{
496ad9aa 217 return subpool_inode(file_inode(vma->vm_file));
90481622
DG
218}
219
96822904
AW
220/*
221 * Region tracking -- allows tracking of reservations and instantiated pages
222 * across the pages in a mapping.
84afd99b 223 *
1dd308a7
MK
224 * The region data structures are embedded into a resv_map and protected
225 * by a resv_map's lock. The set of regions within the resv_map represent
226 * reservations for huge pages, or huge pages that have already been
227 * instantiated within the map. The from and to elements are huge page
228 * indicies into the associated mapping. from indicates the starting index
229 * of the region. to represents the first index past the end of the region.
230 *
231 * For example, a file region structure with from == 0 and to == 4 represents
232 * four huge pages in a mapping. It is important to note that the to element
233 * represents the first element past the end of the region. This is used in
234 * arithmetic as 4(to) - 0(from) = 4 huge pages in the region.
235 *
236 * Interval notation of the form [from, to) will be used to indicate that
237 * the endpoint from is inclusive and to is exclusive.
96822904
AW
238 */
239struct file_region {
240 struct list_head link;
241 long from;
242 long to;
243};
244
1dd308a7
MK
245/*
246 * Add the huge page range represented by [f, t) to the reserve
5e911373
MK
247 * map. In the normal case, existing regions will be expanded
248 * to accommodate the specified range. Sufficient regions should
249 * exist for expansion due to the previous call to region_chg
250 * with the same range. However, it is possible that region_del
251 * could have been called after region_chg and modifed the map
252 * in such a way that no region exists to be expanded. In this
253 * case, pull a region descriptor from the cache associated with
254 * the map and use that for the new range.
cf3ad20b
MK
255 *
256 * Return the number of new huge pages added to the map. This
257 * number is greater than or equal to zero.
1dd308a7 258 */
1406ec9b 259static long region_add(struct resv_map *resv, long f, long t)
96822904 260{
1406ec9b 261 struct list_head *head = &resv->regions;
96822904 262 struct file_region *rg, *nrg, *trg;
cf3ad20b 263 long add = 0;
96822904 264
7b24d861 265 spin_lock(&resv->lock);
96822904
AW
266 /* Locate the region we are either in or before. */
267 list_for_each_entry(rg, head, link)
268 if (f <= rg->to)
269 break;
270
5e911373
MK
271 /*
272 * If no region exists which can be expanded to include the
273 * specified range, the list must have been modified by an
274 * interleving call to region_del(). Pull a region descriptor
275 * from the cache and use it for this range.
276 */
277 if (&rg->link == head || t < rg->from) {
278 VM_BUG_ON(resv->region_cache_count <= 0);
279
280 resv->region_cache_count--;
281 nrg = list_first_entry(&resv->region_cache, struct file_region,
282 link);
283 list_del(&nrg->link);
284
285 nrg->from = f;
286 nrg->to = t;
287 list_add(&nrg->link, rg->link.prev);
288
289 add += t - f;
290 goto out_locked;
291 }
292
96822904
AW
293 /* Round our left edge to the current segment if it encloses us. */
294 if (f > rg->from)
295 f = rg->from;
296
297 /* Check for and consume any regions we now overlap with. */
298 nrg = rg;
299 list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
300 if (&rg->link == head)
301 break;
302 if (rg->from > t)
303 break;
304
305 /* If this area reaches higher then extend our area to
306 * include it completely. If this is not the first area
307 * which we intend to reuse, free it. */
308 if (rg->to > t)
309 t = rg->to;
310 if (rg != nrg) {
cf3ad20b
MK
311 /* Decrement return value by the deleted range.
312 * Another range will span this area so that by
313 * end of routine add will be >= zero
314 */
315 add -= (rg->to - rg->from);
96822904
AW
316 list_del(&rg->link);
317 kfree(rg);
318 }
319 }
cf3ad20b
MK
320
321 add += (nrg->from - f); /* Added to beginning of region */
96822904 322 nrg->from = f;
cf3ad20b 323 add += t - nrg->to; /* Added to end of region */
96822904 324 nrg->to = t;
cf3ad20b 325
5e911373
MK
326out_locked:
327 resv->adds_in_progress--;
7b24d861 328 spin_unlock(&resv->lock);
cf3ad20b
MK
329 VM_BUG_ON(add < 0);
330 return add;
96822904
AW
331}
332
1dd308a7
MK
333/*
334 * Examine the existing reserve map and determine how many
335 * huge pages in the specified range [f, t) are NOT currently
336 * represented. This routine is called before a subsequent
337 * call to region_add that will actually modify the reserve
338 * map to add the specified range [f, t). region_chg does
339 * not change the number of huge pages represented by the
340 * map. However, if the existing regions in the map can not
341 * be expanded to represent the new range, a new file_region
342 * structure is added to the map as a placeholder. This is
343 * so that the subsequent region_add call will have all the
344 * regions it needs and will not fail.
345 *
5e911373
MK
346 * Upon entry, region_chg will also examine the cache of region descriptors
347 * associated with the map. If there are not enough descriptors cached, one
348 * will be allocated for the in progress add operation.
349 *
350 * Returns the number of huge pages that need to be added to the existing
351 * reservation map for the range [f, t). This number is greater or equal to
352 * zero. -ENOMEM is returned if a new file_region structure or cache entry
353 * is needed and can not be allocated.
1dd308a7 354 */
1406ec9b 355static long region_chg(struct resv_map *resv, long f, long t)
96822904 356{
1406ec9b 357 struct list_head *head = &resv->regions;
7b24d861 358 struct file_region *rg, *nrg = NULL;
96822904
AW
359 long chg = 0;
360
7b24d861
DB
361retry:
362 spin_lock(&resv->lock);
5e911373
MK
363retry_locked:
364 resv->adds_in_progress++;
365
366 /*
367 * Check for sufficient descriptors in the cache to accommodate
368 * the number of in progress add operations.
369 */
370 if (resv->adds_in_progress > resv->region_cache_count) {
371 struct file_region *trg;
372
373 VM_BUG_ON(resv->adds_in_progress - resv->region_cache_count > 1);
374 /* Must drop lock to allocate a new descriptor. */
375 resv->adds_in_progress--;
376 spin_unlock(&resv->lock);
377
378 trg = kmalloc(sizeof(*trg), GFP_KERNEL);
dbe409e4
MK
379 if (!trg) {
380 kfree(nrg);
5e911373 381 return -ENOMEM;
dbe409e4 382 }
5e911373
MK
383
384 spin_lock(&resv->lock);
385 list_add(&trg->link, &resv->region_cache);
386 resv->region_cache_count++;
387 goto retry_locked;
388 }
389
96822904
AW
390 /* Locate the region we are before or in. */
391 list_for_each_entry(rg, head, link)
392 if (f <= rg->to)
393 break;
394
395 /* If we are below the current region then a new region is required.
396 * Subtle, allocate a new region at the position but make it zero
397 * size such that we can guarantee to record the reservation. */
398 if (&rg->link == head || t < rg->from) {
7b24d861 399 if (!nrg) {
5e911373 400 resv->adds_in_progress--;
7b24d861
DB
401 spin_unlock(&resv->lock);
402 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
403 if (!nrg)
404 return -ENOMEM;
405
406 nrg->from = f;
407 nrg->to = f;
408 INIT_LIST_HEAD(&nrg->link);
409 goto retry;
410 }
96822904 411
7b24d861
DB
412 list_add(&nrg->link, rg->link.prev);
413 chg = t - f;
414 goto out_nrg;
96822904
AW
415 }
416
417 /* Round our left edge to the current segment if it encloses us. */
418 if (f > rg->from)
419 f = rg->from;
420 chg = t - f;
421
422 /* Check for and consume any regions we now overlap with. */
423 list_for_each_entry(rg, rg->link.prev, link) {
424 if (&rg->link == head)
425 break;
426 if (rg->from > t)
7b24d861 427 goto out;
96822904 428
25985edc 429 /* We overlap with this area, if it extends further than
96822904
AW
430 * us then we must extend ourselves. Account for its
431 * existing reservation. */
432 if (rg->to > t) {
433 chg += rg->to - t;
434 t = rg->to;
435 }
436 chg -= rg->to - rg->from;
437 }
7b24d861
DB
438
439out:
440 spin_unlock(&resv->lock);
441 /* We already know we raced and no longer need the new region */
442 kfree(nrg);
443 return chg;
444out_nrg:
445 spin_unlock(&resv->lock);
96822904
AW
446 return chg;
447}
448
5e911373
MK
449/*
450 * Abort the in progress add operation. The adds_in_progress field
451 * of the resv_map keeps track of the operations in progress between
452 * calls to region_chg and region_add. Operations are sometimes
453 * aborted after the call to region_chg. In such cases, region_abort
454 * is called to decrement the adds_in_progress counter.
455 *
456 * NOTE: The range arguments [f, t) are not needed or used in this
457 * routine. They are kept to make reading the calling code easier as
458 * arguments will match the associated region_chg call.
459 */
460static void region_abort(struct resv_map *resv, long f, long t)
461{
462 spin_lock(&resv->lock);
463 VM_BUG_ON(!resv->region_cache_count);
464 resv->adds_in_progress--;
465 spin_unlock(&resv->lock);
466}
467
1dd308a7 468/*
feba16e2
MK
469 * Delete the specified range [f, t) from the reserve map. If the
470 * t parameter is LONG_MAX, this indicates that ALL regions after f
471 * should be deleted. Locate the regions which intersect [f, t)
472 * and either trim, delete or split the existing regions.
473 *
474 * Returns the number of huge pages deleted from the reserve map.
475 * In the normal case, the return value is zero or more. In the
476 * case where a region must be split, a new region descriptor must
477 * be allocated. If the allocation fails, -ENOMEM will be returned.
478 * NOTE: If the parameter t == LONG_MAX, then we will never split
479 * a region and possibly return -ENOMEM. Callers specifying
480 * t == LONG_MAX do not need to check for -ENOMEM error.
1dd308a7 481 */
feba16e2 482static long region_del(struct resv_map *resv, long f, long t)
96822904 483{
1406ec9b 484 struct list_head *head = &resv->regions;
96822904 485 struct file_region *rg, *trg;
feba16e2
MK
486 struct file_region *nrg = NULL;
487 long del = 0;
96822904 488
feba16e2 489retry:
7b24d861 490 spin_lock(&resv->lock);
feba16e2 491 list_for_each_entry_safe(rg, trg, head, link) {
dbe409e4
MK
492 /*
493 * Skip regions before the range to be deleted. file_region
494 * ranges are normally of the form [from, to). However, there
495 * may be a "placeholder" entry in the map which is of the form
496 * (from, to) with from == to. Check for placeholder entries
497 * at the beginning of the range to be deleted.
498 */
499 if (rg->to <= f && (rg->to != rg->from || rg->to != f))
feba16e2 500 continue;
dbe409e4 501
feba16e2 502 if (rg->from >= t)
96822904 503 break;
96822904 504
feba16e2
MK
505 if (f > rg->from && t < rg->to) { /* Must split region */
506 /*
507 * Check for an entry in the cache before dropping
508 * lock and attempting allocation.
509 */
510 if (!nrg &&
511 resv->region_cache_count > resv->adds_in_progress) {
512 nrg = list_first_entry(&resv->region_cache,
513 struct file_region,
514 link);
515 list_del(&nrg->link);
516 resv->region_cache_count--;
517 }
96822904 518
feba16e2
MK
519 if (!nrg) {
520 spin_unlock(&resv->lock);
521 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
522 if (!nrg)
523 return -ENOMEM;
524 goto retry;
525 }
526
527 del += t - f;
528
529 /* New entry for end of split region */
530 nrg->from = t;
531 nrg->to = rg->to;
532 INIT_LIST_HEAD(&nrg->link);
533
534 /* Original entry is trimmed */
535 rg->to = f;
536
537 list_add(&nrg->link, &rg->link);
538 nrg = NULL;
96822904 539 break;
feba16e2
MK
540 }
541
542 if (f <= rg->from && t >= rg->to) { /* Remove entire region */
543 del += rg->to - rg->from;
544 list_del(&rg->link);
545 kfree(rg);
546 continue;
547 }
548
549 if (f <= rg->from) { /* Trim beginning of region */
550 del += t - rg->from;
551 rg->from = t;
552 } else { /* Trim end of region */
553 del += rg->to - f;
554 rg->to = f;
555 }
96822904 556 }
7b24d861 557
7b24d861 558 spin_unlock(&resv->lock);
feba16e2
MK
559 kfree(nrg);
560 return del;
96822904
AW
561}
562
b5cec28d
MK
563/*
564 * A rare out of memory error was encountered which prevented removal of
565 * the reserve map region for a page. The huge page itself was free'ed
566 * and removed from the page cache. This routine will adjust the subpool
567 * usage count, and the global reserve count if needed. By incrementing
568 * these counts, the reserve map entry which could not be deleted will
569 * appear as a "reserved" entry instead of simply dangling with incorrect
570 * counts.
571 */
72e2936c 572void hugetlb_fix_reserve_counts(struct inode *inode)
b5cec28d
MK
573{
574 struct hugepage_subpool *spool = subpool_inode(inode);
575 long rsv_adjust;
576
577 rsv_adjust = hugepage_subpool_get_pages(spool, 1);
72e2936c 578 if (rsv_adjust) {
b5cec28d
MK
579 struct hstate *h = hstate_inode(inode);
580
581 hugetlb_acct_memory(h, 1);
582 }
583}
584
1dd308a7
MK
585/*
586 * Count and return the number of huge pages in the reserve map
587 * that intersect with the range [f, t).
588 */
1406ec9b 589static long region_count(struct resv_map *resv, long f, long t)
84afd99b 590{
1406ec9b 591 struct list_head *head = &resv->regions;
84afd99b
AW
592 struct file_region *rg;
593 long chg = 0;
594
7b24d861 595 spin_lock(&resv->lock);
84afd99b
AW
596 /* Locate each segment we overlap with, and count that overlap. */
597 list_for_each_entry(rg, head, link) {
f2135a4a
WSH
598 long seg_from;
599 long seg_to;
84afd99b
AW
600
601 if (rg->to <= f)
602 continue;
603 if (rg->from >= t)
604 break;
605
606 seg_from = max(rg->from, f);
607 seg_to = min(rg->to, t);
608
609 chg += seg_to - seg_from;
610 }
7b24d861 611 spin_unlock(&resv->lock);
84afd99b
AW
612
613 return chg;
614}
615
e7c4b0bf
AW
616/*
617 * Convert the address within this vma to the page offset within
618 * the mapping, in pagecache page units; huge pages here.
619 */
a5516438
AK
620static pgoff_t vma_hugecache_offset(struct hstate *h,
621 struct vm_area_struct *vma, unsigned long address)
e7c4b0bf 622{
a5516438
AK
623 return ((address - vma->vm_start) >> huge_page_shift(h)) +
624 (vma->vm_pgoff >> huge_page_order(h));
e7c4b0bf
AW
625}
626
0fe6e20b
NH
627pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
628 unsigned long address)
629{
630 return vma_hugecache_offset(hstate_vma(vma), vma, address);
631}
dee41079 632EXPORT_SYMBOL_GPL(linear_hugepage_index);
0fe6e20b 633
08fba699
MG
634/*
635 * Return the size of the pages allocated when backing a VMA. In the majority
636 * cases this will be same size as used by the page table entries.
637 */
638unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
639{
05ea8860
DW
640 if (vma->vm_ops && vma->vm_ops->pagesize)
641 return vma->vm_ops->pagesize(vma);
642 return PAGE_SIZE;
08fba699 643}
f340ca0f 644EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
08fba699 645
3340289d
MG
646/*
647 * Return the page size being used by the MMU to back a VMA. In the majority
648 * of cases, the page size used by the kernel matches the MMU size. On
09135cc5
DW
649 * architectures where it differs, an architecture-specific 'strong'
650 * version of this symbol is required.
3340289d 651 */
09135cc5 652__weak unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
3340289d
MG
653{
654 return vma_kernel_pagesize(vma);
655}
3340289d 656
84afd99b
AW
657/*
658 * Flags for MAP_PRIVATE reservations. These are stored in the bottom
659 * bits of the reservation map pointer, which are always clear due to
660 * alignment.
661 */
662#define HPAGE_RESV_OWNER (1UL << 0)
663#define HPAGE_RESV_UNMAPPED (1UL << 1)
04f2cbe3 664#define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
84afd99b 665
a1e78772
MG
666/*
667 * These helpers are used to track how many pages are reserved for
668 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
669 * is guaranteed to have their future faults succeed.
670 *
671 * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
672 * the reserve counters are updated with the hugetlb_lock held. It is safe
673 * to reset the VMA at fork() time as it is not in use yet and there is no
674 * chance of the global counters getting corrupted as a result of the values.
84afd99b
AW
675 *
676 * The private mapping reservation is represented in a subtly different
677 * manner to a shared mapping. A shared mapping has a region map associated
678 * with the underlying file, this region map represents the backing file
679 * pages which have ever had a reservation assigned which this persists even
680 * after the page is instantiated. A private mapping has a region map
681 * associated with the original mmap which is attached to all VMAs which
682 * reference it, this region map represents those offsets which have consumed
683 * reservation ie. where pages have been instantiated.
a1e78772 684 */
e7c4b0bf
AW
685static unsigned long get_vma_private_data(struct vm_area_struct *vma)
686{
687 return (unsigned long)vma->vm_private_data;
688}
689
690static void set_vma_private_data(struct vm_area_struct *vma,
691 unsigned long value)
692{
693 vma->vm_private_data = (void *)value;
694}
695
9119a41e 696struct resv_map *resv_map_alloc(void)
84afd99b
AW
697{
698 struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
5e911373
MK
699 struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);
700
701 if (!resv_map || !rg) {
702 kfree(resv_map);
703 kfree(rg);
84afd99b 704 return NULL;
5e911373 705 }
84afd99b
AW
706
707 kref_init(&resv_map->refs);
7b24d861 708 spin_lock_init(&resv_map->lock);
84afd99b
AW
709 INIT_LIST_HEAD(&resv_map->regions);
710
5e911373
MK
711 resv_map->adds_in_progress = 0;
712
713 INIT_LIST_HEAD(&resv_map->region_cache);
714 list_add(&rg->link, &resv_map->region_cache);
715 resv_map->region_cache_count = 1;
716
84afd99b
AW
717 return resv_map;
718}
719
9119a41e 720void resv_map_release(struct kref *ref)
84afd99b
AW
721{
722 struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
5e911373
MK
723 struct list_head *head = &resv_map->region_cache;
724 struct file_region *rg, *trg;
84afd99b
AW
725
726 /* Clear out any active regions before we release the map. */
feba16e2 727 region_del(resv_map, 0, LONG_MAX);
5e911373
MK
728
729 /* ... and any entries left in the cache */
730 list_for_each_entry_safe(rg, trg, head, link) {
731 list_del(&rg->link);
732 kfree(rg);
733 }
734
735 VM_BUG_ON(resv_map->adds_in_progress);
736
84afd99b
AW
737 kfree(resv_map);
738}
739
4e35f483
JK
740static inline struct resv_map *inode_resv_map(struct inode *inode)
741{
742 return inode->i_mapping->private_data;
743}
744
84afd99b 745static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
a1e78772 746{
81d1b09c 747 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
4e35f483
JK
748 if (vma->vm_flags & VM_MAYSHARE) {
749 struct address_space *mapping = vma->vm_file->f_mapping;
750 struct inode *inode = mapping->host;
751
752 return inode_resv_map(inode);
753
754 } else {
84afd99b
AW
755 return (struct resv_map *)(get_vma_private_data(vma) &
756 ~HPAGE_RESV_MASK);
4e35f483 757 }
a1e78772
MG
758}
759
84afd99b 760static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
a1e78772 761{
81d1b09c
SL
762 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
763 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
a1e78772 764
84afd99b
AW
765 set_vma_private_data(vma, (get_vma_private_data(vma) &
766 HPAGE_RESV_MASK) | (unsigned long)map);
04f2cbe3
MG
767}
768
769static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
770{
81d1b09c
SL
771 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
772 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
e7c4b0bf
AW
773
774 set_vma_private_data(vma, get_vma_private_data(vma) | flags);
04f2cbe3
MG
775}
776
777static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
778{
81d1b09c 779 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
e7c4b0bf
AW
780
781 return (get_vma_private_data(vma) & flag) != 0;
a1e78772
MG
782}
783
04f2cbe3 784/* Reset counters to 0 and clear all HPAGE_RESV_* flags */
a1e78772
MG
785void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
786{
81d1b09c 787 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
f83a275d 788 if (!(vma->vm_flags & VM_MAYSHARE))
a1e78772
MG
789 vma->vm_private_data = (void *)0;
790}
791
792/* Returns true if the VMA has associated reserve pages */
559ec2f8 793static bool vma_has_reserves(struct vm_area_struct *vma, long chg)
a1e78772 794{
af0ed73e
JK
795 if (vma->vm_flags & VM_NORESERVE) {
796 /*
797 * This address is already reserved by other process(chg == 0),
798 * so, we should decrement reserved count. Without decrementing,
799 * reserve count remains after releasing inode, because this
800 * allocated page will go into page cache and is regarded as
801 * coming from reserved pool in releasing step. Currently, we
802 * don't have any other solution to deal with this situation
803 * properly, so add work-around here.
804 */
805 if (vma->vm_flags & VM_MAYSHARE && chg == 0)
559ec2f8 806 return true;
af0ed73e 807 else
559ec2f8 808 return false;
af0ed73e 809 }
a63884e9
JK
810
811 /* Shared mappings always use reserves */
1fb1b0e9
MK
812 if (vma->vm_flags & VM_MAYSHARE) {
813 /*
814 * We know VM_NORESERVE is not set. Therefore, there SHOULD
815 * be a region map for all pages. The only situation where
816 * there is no region map is if a hole was punched via
817 * fallocate. In this case, there really are no reverves to
818 * use. This situation is indicated if chg != 0.
819 */
820 if (chg)
821 return false;
822 else
823 return true;
824 }
a63884e9
JK
825
826 /*
827 * Only the process that called mmap() has reserves for
828 * private mappings.
829 */
67961f9d
MK
830 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
831 /*
832 * Like the shared case above, a hole punch or truncate
833 * could have been performed on the private mapping.
834 * Examine the value of chg to determine if reserves
835 * actually exist or were previously consumed.
836 * Very Subtle - The value of chg comes from a previous
837 * call to vma_needs_reserves(). The reserve map for
838 * private mappings has different (opposite) semantics
839 * than that of shared mappings. vma_needs_reserves()
840 * has already taken this difference in semantics into
841 * account. Therefore, the meaning of chg is the same
842 * as in the shared case above. Code could easily be
843 * combined, but keeping it separate draws attention to
844 * subtle differences.
845 */
846 if (chg)
847 return false;
848 else
849 return true;
850 }
a63884e9 851
559ec2f8 852 return false;
a1e78772
MG
853}
854
a5516438 855static void enqueue_huge_page(struct hstate *h, struct page *page)
1da177e4
LT
856{
857 int nid = page_to_nid(page);
0edaecfa 858 list_move(&page->lru, &h->hugepage_freelists[nid]);
a5516438
AK
859 h->free_huge_pages++;
860 h->free_huge_pages_node[nid]++;
1da177e4
LT
861}
862
94310cbc 863static struct page *dequeue_huge_page_node_exact(struct hstate *h, int nid)
bf50bab2
NH
864{
865 struct page *page;
866
c8721bbb 867 list_for_each_entry(page, &h->hugepage_freelists[nid], lru)
243abd5b 868 if (!PageHWPoison(page))
c8721bbb
NH
869 break;
870 /*
871 * if 'non-isolated free hugepage' not found on the list,
872 * the allocation fails.
873 */
874 if (&h->hugepage_freelists[nid] == &page->lru)
bf50bab2 875 return NULL;
0edaecfa 876 list_move(&page->lru, &h->hugepage_activelist);
a9869b83 877 set_page_refcounted(page);
bf50bab2
NH
878 h->free_huge_pages--;
879 h->free_huge_pages_node[nid]--;
880 return page;
881}
882
3e59fcb0
MH
883static struct page *dequeue_huge_page_nodemask(struct hstate *h, gfp_t gfp_mask, int nid,
884 nodemask_t *nmask)
94310cbc 885{
3e59fcb0
MH
886 unsigned int cpuset_mems_cookie;
887 struct zonelist *zonelist;
888 struct zone *zone;
889 struct zoneref *z;
890 int node = -1;
94310cbc 891
3e59fcb0
MH
892 zonelist = node_zonelist(nid, gfp_mask);
893
894retry_cpuset:
895 cpuset_mems_cookie = read_mems_allowed_begin();
896 for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nmask) {
897 struct page *page;
898
899 if (!cpuset_zone_allowed(zone, gfp_mask))
900 continue;
901 /*
902 * no need to ask again on the same node. Pool is node rather than
903 * zone aware
904 */
905 if (zone_to_nid(zone) == node)
906 continue;
907 node = zone_to_nid(zone);
94310cbc 908
94310cbc
AK
909 page = dequeue_huge_page_node_exact(h, node);
910 if (page)
911 return page;
912 }
3e59fcb0
MH
913 if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie)))
914 goto retry_cpuset;
915
94310cbc
AK
916 return NULL;
917}
918
86cdb465
NH
919/* Movability of hugepages depends on migration support. */
920static inline gfp_t htlb_alloc_mask(struct hstate *h)
921{
d6cb41cc 922 if (hugepage_migration_supported(h))
86cdb465
NH
923 return GFP_HIGHUSER_MOVABLE;
924 else
925 return GFP_HIGHUSER;
926}
927
a5516438
AK
928static struct page *dequeue_huge_page_vma(struct hstate *h,
929 struct vm_area_struct *vma,
af0ed73e
JK
930 unsigned long address, int avoid_reserve,
931 long chg)
1da177e4 932{
3e59fcb0 933 struct page *page;
480eccf9 934 struct mempolicy *mpol;
04ec6264 935 gfp_t gfp_mask;
3e59fcb0 936 nodemask_t *nodemask;
04ec6264 937 int nid;
1da177e4 938
a1e78772
MG
939 /*
940 * A child process with MAP_PRIVATE mappings created by their parent
941 * have no page reserves. This check ensures that reservations are
942 * not "stolen". The child may still get SIGKILLed
943 */
af0ed73e 944 if (!vma_has_reserves(vma, chg) &&
a5516438 945 h->free_huge_pages - h->resv_huge_pages == 0)
c0ff7453 946 goto err;
a1e78772 947
04f2cbe3 948 /* If reserves cannot be used, ensure enough pages are in the pool */
a5516438 949 if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
6eab04a8 950 goto err;
04f2cbe3 951
04ec6264
VB
952 gfp_mask = htlb_alloc_mask(h);
953 nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
3e59fcb0
MH
954 page = dequeue_huge_page_nodemask(h, gfp_mask, nid, nodemask);
955 if (page && !avoid_reserve && vma_has_reserves(vma, chg)) {
956 SetPagePrivate(page);
957 h->resv_huge_pages--;
1da177e4 958 }
cc9a6c87 959
52cd3b07 960 mpol_cond_put(mpol);
1da177e4 961 return page;
cc9a6c87
MG
962
963err:
cc9a6c87 964 return NULL;
1da177e4
LT
965}
966
1cac6f2c
LC
967/*
968 * common helper functions for hstate_next_node_to_{alloc|free}.
969 * We may have allocated or freed a huge page based on a different
970 * nodes_allowed previously, so h->next_node_to_{alloc|free} might
971 * be outside of *nodes_allowed. Ensure that we use an allowed
972 * node for alloc or free.
973 */
974static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
975{
0edaf86c 976 nid = next_node_in(nid, *nodes_allowed);
1cac6f2c
LC
977 VM_BUG_ON(nid >= MAX_NUMNODES);
978
979 return nid;
980}
981
982static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
983{
984 if (!node_isset(nid, *nodes_allowed))
985 nid = next_node_allowed(nid, nodes_allowed);
986 return nid;
987}
988
989/*
990 * returns the previously saved node ["this node"] from which to
991 * allocate a persistent huge page for the pool and advance the
992 * next node from which to allocate, handling wrap at end of node
993 * mask.
994 */
995static int hstate_next_node_to_alloc(struct hstate *h,
996 nodemask_t *nodes_allowed)
997{
998 int nid;
999
1000 VM_BUG_ON(!nodes_allowed);
1001
1002 nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
1003 h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
1004
1005 return nid;
1006}
1007
1008/*
1009 * helper for free_pool_huge_page() - return the previously saved
1010 * node ["this node"] from which to free a huge page. Advance the
1011 * next node id whether or not we find a free huge page to free so
1012 * that the next attempt to free addresses the next node.
1013 */
1014static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
1015{
1016 int nid;
1017
1018 VM_BUG_ON(!nodes_allowed);
1019
1020 nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
1021 h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
1022
1023 return nid;
1024}
1025
1026#define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask) \
1027 for (nr_nodes = nodes_weight(*mask); \
1028 nr_nodes > 0 && \
1029 ((node = hstate_next_node_to_alloc(hs, mask)) || 1); \
1030 nr_nodes--)
1031
1032#define for_each_node_mask_to_free(hs, nr_nodes, node, mask) \
1033 for (nr_nodes = nodes_weight(*mask); \
1034 nr_nodes > 0 && \
1035 ((node = hstate_next_node_to_free(hs, mask)) || 1); \
1036 nr_nodes--)
1037
e1073d1e 1038#ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE
944d9fec 1039static void destroy_compound_gigantic_page(struct page *page,
d00181b9 1040 unsigned int order)
944d9fec
LC
1041{
1042 int i;
1043 int nr_pages = 1 << order;
1044 struct page *p = page + 1;
1045
c8cc708a 1046 atomic_set(compound_mapcount_ptr(page), 0);
944d9fec 1047 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1d798ca3 1048 clear_compound_head(p);
944d9fec 1049 set_page_refcounted(p);
944d9fec
LC
1050 }
1051
1052 set_compound_order(page, 0);
1053 __ClearPageHead(page);
1054}
1055
d00181b9 1056static void free_gigantic_page(struct page *page, unsigned int order)
944d9fec
LC
1057{
1058 free_contig_range(page_to_pfn(page), 1 << order);
1059}
1060
1061static int __alloc_gigantic_page(unsigned long start_pfn,
79b63f12 1062 unsigned long nr_pages, gfp_t gfp_mask)
944d9fec
LC
1063{
1064 unsigned long end_pfn = start_pfn + nr_pages;
ca96b625 1065 return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE,
79b63f12 1066 gfp_mask);
944d9fec
LC
1067}
1068
f44b2dda
JK
1069static bool pfn_range_valid_gigantic(struct zone *z,
1070 unsigned long start_pfn, unsigned long nr_pages)
944d9fec
LC
1071{
1072 unsigned long i, end_pfn = start_pfn + nr_pages;
1073 struct page *page;
1074
1075 for (i = start_pfn; i < end_pfn; i++) {
1076 if (!pfn_valid(i))
1077 return false;
1078
1079 page = pfn_to_page(i);
1080
f44b2dda
JK
1081 if (page_zone(page) != z)
1082 return false;
1083
944d9fec
LC
1084 if (PageReserved(page))
1085 return false;
1086
1087 if (page_count(page) > 0)
1088 return false;
1089
1090 if (PageHuge(page))
1091 return false;
1092 }
1093
1094 return true;
1095}
1096
1097static bool zone_spans_last_pfn(const struct zone *zone,
1098 unsigned long start_pfn, unsigned long nr_pages)
1099{
1100 unsigned long last_pfn = start_pfn + nr_pages - 1;
1101 return zone_spans_pfn(zone, last_pfn);
1102}
1103
d9cc948f
MH
1104static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1105 int nid, nodemask_t *nodemask)
944d9fec 1106{
79b63f12 1107 unsigned int order = huge_page_order(h);
944d9fec
LC
1108 unsigned long nr_pages = 1 << order;
1109 unsigned long ret, pfn, flags;
79b63f12
MH
1110 struct zonelist *zonelist;
1111 struct zone *zone;
1112 struct zoneref *z;
944d9fec 1113
79b63f12 1114 zonelist = node_zonelist(nid, gfp_mask);
d9cc948f 1115 for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nodemask) {
79b63f12 1116 spin_lock_irqsave(&zone->lock, flags);
944d9fec 1117
79b63f12
MH
1118 pfn = ALIGN(zone->zone_start_pfn, nr_pages);
1119 while (zone_spans_last_pfn(zone, pfn, nr_pages)) {
1120 if (pfn_range_valid_gigantic(zone, pfn, nr_pages)) {
944d9fec
LC
1121 /*
1122 * We release the zone lock here because
1123 * alloc_contig_range() will also lock the zone
1124 * at some point. If there's an allocation
1125 * spinning on this lock, it may win the race
1126 * and cause alloc_contig_range() to fail...
1127 */
79b63f12
MH
1128 spin_unlock_irqrestore(&zone->lock, flags);
1129 ret = __alloc_gigantic_page(pfn, nr_pages, gfp_mask);
944d9fec
LC
1130 if (!ret)
1131 return pfn_to_page(pfn);
79b63f12 1132 spin_lock_irqsave(&zone->lock, flags);
944d9fec
LC
1133 }
1134 pfn += nr_pages;
1135 }
1136
79b63f12 1137 spin_unlock_irqrestore(&zone->lock, flags);
944d9fec
LC
1138 }
1139
1140 return NULL;
1141}
1142
1143static void prep_new_huge_page(struct hstate *h, struct page *page, int nid);
d00181b9 1144static void prep_compound_gigantic_page(struct page *page, unsigned int order);
944d9fec 1145
e1073d1e 1146#else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */
944d9fec 1147static inline bool gigantic_page_supported(void) { return false; }
d9cc948f
MH
1148static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1149 int nid, nodemask_t *nodemask) { return NULL; }
d00181b9 1150static inline void free_gigantic_page(struct page *page, unsigned int order) { }
944d9fec 1151static inline void destroy_compound_gigantic_page(struct page *page,
d00181b9 1152 unsigned int order) { }
944d9fec
LC
1153#endif
1154
a5516438 1155static void update_and_free_page(struct hstate *h, struct page *page)
6af2acb6
AL
1156{
1157 int i;
a5516438 1158
944d9fec
LC
1159 if (hstate_is_gigantic(h) && !gigantic_page_supported())
1160 return;
18229df5 1161
a5516438
AK
1162 h->nr_huge_pages--;
1163 h->nr_huge_pages_node[page_to_nid(page)]--;
1164 for (i = 0; i < pages_per_huge_page(h); i++) {
32f84528
CF
1165 page[i].flags &= ~(1 << PG_locked | 1 << PG_error |
1166 1 << PG_referenced | 1 << PG_dirty |
a7407a27
LC
1167 1 << PG_active | 1 << PG_private |
1168 1 << PG_writeback);
6af2acb6 1169 }
309381fe 1170 VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page);
f1e61557 1171 set_compound_page_dtor(page, NULL_COMPOUND_DTOR);
6af2acb6 1172 set_page_refcounted(page);
944d9fec
LC
1173 if (hstate_is_gigantic(h)) {
1174 destroy_compound_gigantic_page(page, huge_page_order(h));
1175 free_gigantic_page(page, huge_page_order(h));
1176 } else {
944d9fec
LC
1177 __free_pages(page, huge_page_order(h));
1178 }
6af2acb6
AL
1179}
1180
e5ff2159
AK
1181struct hstate *size_to_hstate(unsigned long size)
1182{
1183 struct hstate *h;
1184
1185 for_each_hstate(h) {
1186 if (huge_page_size(h) == size)
1187 return h;
1188 }
1189 return NULL;
1190}
1191
bcc54222
NH
1192/*
1193 * Test to determine whether the hugepage is "active/in-use" (i.e. being linked
1194 * to hstate->hugepage_activelist.)
1195 *
1196 * This function can be called for tail pages, but never returns true for them.
1197 */
1198bool page_huge_active(struct page *page)
1199{
1200 VM_BUG_ON_PAGE(!PageHuge(page), page);
1201 return PageHead(page) && PagePrivate(&page[1]);
1202}
1203
1204/* never called for tail page */
1205static void set_page_huge_active(struct page *page)
1206{
1207 VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1208 SetPagePrivate(&page[1]);
1209}
1210
1211static void clear_page_huge_active(struct page *page)
1212{
1213 VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1214 ClearPagePrivate(&page[1]);
1215}
1216
ab5ac90a
MH
1217/*
1218 * Internal hugetlb specific page flag. Do not use outside of the hugetlb
1219 * code
1220 */
1221static inline bool PageHugeTemporary(struct page *page)
1222{
1223 if (!PageHuge(page))
1224 return false;
1225
1226 return (unsigned long)page[2].mapping == -1U;
1227}
1228
1229static inline void SetPageHugeTemporary(struct page *page)
1230{
1231 page[2].mapping = (void *)-1U;
1232}
1233
1234static inline void ClearPageHugeTemporary(struct page *page)
1235{
1236 page[2].mapping = NULL;
1237}
1238
8f1d26d0 1239void free_huge_page(struct page *page)
27a85ef1 1240{
a5516438
AK
1241 /*
1242 * Can't pass hstate in here because it is called from the
1243 * compound page destructor.
1244 */
e5ff2159 1245 struct hstate *h = page_hstate(page);
7893d1d5 1246 int nid = page_to_nid(page);
90481622
DG
1247 struct hugepage_subpool *spool =
1248 (struct hugepage_subpool *)page_private(page);
07443a85 1249 bool restore_reserve;
27a85ef1 1250
e5df70ab 1251 set_page_private(page, 0);
23be7468 1252 page->mapping = NULL;
b4330afb
MK
1253 VM_BUG_ON_PAGE(page_count(page), page);
1254 VM_BUG_ON_PAGE(page_mapcount(page), page);
07443a85 1255 restore_reserve = PagePrivate(page);
16c794b4 1256 ClearPagePrivate(page);
27a85ef1 1257
1c5ecae3
MK
1258 /*
1259 * A return code of zero implies that the subpool will be under its
1260 * minimum size if the reservation is not restored after page is free.
1261 * Therefore, force restore_reserve operation.
1262 */
1263 if (hugepage_subpool_put_pages(spool, 1) == 0)
1264 restore_reserve = true;
1265
27a85ef1 1266 spin_lock(&hugetlb_lock);
bcc54222 1267 clear_page_huge_active(page);
6d76dcf4
AK
1268 hugetlb_cgroup_uncharge_page(hstate_index(h),
1269 pages_per_huge_page(h), page);
07443a85
JK
1270 if (restore_reserve)
1271 h->resv_huge_pages++;
1272
ab5ac90a
MH
1273 if (PageHugeTemporary(page)) {
1274 list_del(&page->lru);
1275 ClearPageHugeTemporary(page);
1276 update_and_free_page(h, page);
1277 } else if (h->surplus_huge_pages_node[nid]) {
0edaecfa
AK
1278 /* remove the page from active list */
1279 list_del(&page->lru);
a5516438
AK
1280 update_and_free_page(h, page);
1281 h->surplus_huge_pages--;
1282 h->surplus_huge_pages_node[nid]--;
7893d1d5 1283 } else {
5d3a551c 1284 arch_clear_hugepage_flags(page);
a5516438 1285 enqueue_huge_page(h, page);
7893d1d5 1286 }
27a85ef1
DG
1287 spin_unlock(&hugetlb_lock);
1288}
1289
a5516438 1290static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
b7ba30c6 1291{
0edaecfa 1292 INIT_LIST_HEAD(&page->lru);
f1e61557 1293 set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
b7ba30c6 1294 spin_lock(&hugetlb_lock);
9dd540e2 1295 set_hugetlb_cgroup(page, NULL);
a5516438
AK
1296 h->nr_huge_pages++;
1297 h->nr_huge_pages_node[nid]++;
b7ba30c6 1298 spin_unlock(&hugetlb_lock);
b7ba30c6
AK
1299}
1300
d00181b9 1301static void prep_compound_gigantic_page(struct page *page, unsigned int order)
20a0307c
WF
1302{
1303 int i;
1304 int nr_pages = 1 << order;
1305 struct page *p = page + 1;
1306
1307 /* we rely on prep_new_huge_page to set the destructor */
1308 set_compound_order(page, order);
ef5a22be 1309 __ClearPageReserved(page);
de09d31d 1310 __SetPageHead(page);
20a0307c 1311 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
ef5a22be
AA
1312 /*
1313 * For gigantic hugepages allocated through bootmem at
1314 * boot, it's safer to be consistent with the not-gigantic
1315 * hugepages and clear the PG_reserved bit from all tail pages
1316 * too. Otherwse drivers using get_user_pages() to access tail
1317 * pages may get the reference counting wrong if they see
1318 * PG_reserved set on a tail page (despite the head page not
1319 * having PG_reserved set). Enforcing this consistency between
1320 * head and tail pages allows drivers to optimize away a check
1321 * on the head page when they need know if put_page() is needed
1322 * after get_user_pages().
1323 */
1324 __ClearPageReserved(p);
58a84aa9 1325 set_page_count(p, 0);
1d798ca3 1326 set_compound_head(p, page);
20a0307c 1327 }
b4330afb 1328 atomic_set(compound_mapcount_ptr(page), -1);
20a0307c
WF
1329}
1330
7795912c
AM
1331/*
1332 * PageHuge() only returns true for hugetlbfs pages, but not for normal or
1333 * transparent huge pages. See the PageTransHuge() documentation for more
1334 * details.
1335 */
20a0307c
WF
1336int PageHuge(struct page *page)
1337{
20a0307c
WF
1338 if (!PageCompound(page))
1339 return 0;
1340
1341 page = compound_head(page);
f1e61557 1342 return page[1].compound_dtor == HUGETLB_PAGE_DTOR;
20a0307c 1343}
43131e14
NH
1344EXPORT_SYMBOL_GPL(PageHuge);
1345
27c73ae7
AA
1346/*
1347 * PageHeadHuge() only returns true for hugetlbfs head page, but not for
1348 * normal or transparent huge pages.
1349 */
1350int PageHeadHuge(struct page *page_head)
1351{
27c73ae7
AA
1352 if (!PageHead(page_head))
1353 return 0;
1354
758f66a2 1355 return get_compound_page_dtor(page_head) == free_huge_page;
27c73ae7 1356}
27c73ae7 1357
13d60f4b
ZY
1358pgoff_t __basepage_index(struct page *page)
1359{
1360 struct page *page_head = compound_head(page);
1361 pgoff_t index = page_index(page_head);
1362 unsigned long compound_idx;
1363
1364 if (!PageHuge(page_head))
1365 return page_index(page);
1366
1367 if (compound_order(page_head) >= MAX_ORDER)
1368 compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
1369 else
1370 compound_idx = page - page_head;
1371
1372 return (index << compound_order(page_head)) + compound_idx;
1373}
1374
0c397dae 1375static struct page *alloc_buddy_huge_page(struct hstate *h,
af0fb9df 1376 gfp_t gfp_mask, int nid, nodemask_t *nmask)
1da177e4 1377{
af0fb9df 1378 int order = huge_page_order(h);
1da177e4 1379 struct page *page;
f96efd58 1380
af0fb9df
MH
1381 gfp_mask |= __GFP_COMP|__GFP_RETRY_MAYFAIL|__GFP_NOWARN;
1382 if (nid == NUMA_NO_NODE)
1383 nid = numa_mem_id();
1384 page = __alloc_pages_nodemask(gfp_mask, order, nid, nmask);
1385 if (page)
1386 __count_vm_event(HTLB_BUDDY_PGALLOC);
1387 else
1388 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
63b4613c
NA
1389
1390 return page;
1391}
1392
0c397dae
MH
1393/*
1394 * Common helper to allocate a fresh hugetlb page. All specific allocators
1395 * should use this function to get new hugetlb pages
1396 */
1397static struct page *alloc_fresh_huge_page(struct hstate *h,
1398 gfp_t gfp_mask, int nid, nodemask_t *nmask)
1399{
1400 struct page *page;
1401
1402 if (hstate_is_gigantic(h))
1403 page = alloc_gigantic_page(h, gfp_mask, nid, nmask);
1404 else
1405 page = alloc_buddy_huge_page(h, gfp_mask,
1406 nid, nmask);
1407 if (!page)
1408 return NULL;
1409
1410 if (hstate_is_gigantic(h))
1411 prep_compound_gigantic_page(page, huge_page_order(h));
1412 prep_new_huge_page(h, page, page_to_nid(page));
1413
1414 return page;
1415}
1416
af0fb9df
MH
1417/*
1418 * Allocates a fresh page to the hugetlb allocator pool in the node interleaved
1419 * manner.
1420 */
0c397dae 1421static int alloc_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
b2261026
JK
1422{
1423 struct page *page;
1424 int nr_nodes, node;
af0fb9df 1425 gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
b2261026
JK
1426
1427 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
0c397dae 1428 page = alloc_fresh_huge_page(h, gfp_mask, node, nodes_allowed);
af0fb9df 1429 if (page)
b2261026 1430 break;
b2261026
JK
1431 }
1432
af0fb9df
MH
1433 if (!page)
1434 return 0;
b2261026 1435
af0fb9df
MH
1436 put_page(page); /* free it into the hugepage allocator */
1437
1438 return 1;
b2261026
JK
1439}
1440
e8c5c824
LS
1441/*
1442 * Free huge page from pool from next node to free.
1443 * Attempt to keep persistent huge pages more or less
1444 * balanced over allowed nodes.
1445 * Called with hugetlb_lock locked.
1446 */
6ae11b27
LS
1447static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
1448 bool acct_surplus)
e8c5c824 1449{
b2261026 1450 int nr_nodes, node;
e8c5c824
LS
1451 int ret = 0;
1452
b2261026 1453 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
685f3457
LS
1454 /*
1455 * If we're returning unused surplus pages, only examine
1456 * nodes with surplus pages.
1457 */
b2261026
JK
1458 if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
1459 !list_empty(&h->hugepage_freelists[node])) {
e8c5c824 1460 struct page *page =
b2261026 1461 list_entry(h->hugepage_freelists[node].next,
e8c5c824
LS
1462 struct page, lru);
1463 list_del(&page->lru);
1464 h->free_huge_pages--;
b2261026 1465 h->free_huge_pages_node[node]--;
685f3457
LS
1466 if (acct_surplus) {
1467 h->surplus_huge_pages--;
b2261026 1468 h->surplus_huge_pages_node[node]--;
685f3457 1469 }
e8c5c824
LS
1470 update_and_free_page(h, page);
1471 ret = 1;
9a76db09 1472 break;
e8c5c824 1473 }
b2261026 1474 }
e8c5c824
LS
1475
1476 return ret;
1477}
1478
c8721bbb
NH
1479/*
1480 * Dissolve a given free hugepage into free buddy pages. This function does
082d5b6b 1481 * nothing for in-use (including surplus) hugepages. Returns -EBUSY if the
6bc9b564
NH
1482 * dissolution fails because a give page is not a free hugepage, or because
1483 * free hugepages are fully reserved.
c8721bbb 1484 */
c3114a84 1485int dissolve_free_huge_page(struct page *page)
c8721bbb 1486{
6bc9b564 1487 int rc = -EBUSY;
082d5b6b 1488
c8721bbb
NH
1489 spin_lock(&hugetlb_lock);
1490 if (PageHuge(page) && !page_count(page)) {
2247bb33
GS
1491 struct page *head = compound_head(page);
1492 struct hstate *h = page_hstate(head);
1493 int nid = page_to_nid(head);
6bc9b564 1494 if (h->free_huge_pages - h->resv_huge_pages == 0)
082d5b6b 1495 goto out;
c3114a84
AK
1496 /*
1497 * Move PageHWPoison flag from head page to the raw error page,
1498 * which makes any subpages rather than the error page reusable.
1499 */
1500 if (PageHWPoison(head) && page != head) {
1501 SetPageHWPoison(page);
1502 ClearPageHWPoison(head);
1503 }
2247bb33 1504 list_del(&head->lru);
c8721bbb
NH
1505 h->free_huge_pages--;
1506 h->free_huge_pages_node[nid]--;
c1470b33 1507 h->max_huge_pages--;
2247bb33 1508 update_and_free_page(h, head);
6bc9b564 1509 rc = 0;
c8721bbb 1510 }
082d5b6b 1511out:
c8721bbb 1512 spin_unlock(&hugetlb_lock);
082d5b6b 1513 return rc;
c8721bbb
NH
1514}
1515
1516/*
1517 * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
1518 * make specified memory blocks removable from the system.
2247bb33
GS
1519 * Note that this will dissolve a free gigantic hugepage completely, if any
1520 * part of it lies within the given range.
082d5b6b
GS
1521 * Also note that if dissolve_free_huge_page() returns with an error, all
1522 * free hugepages that were dissolved before that error are lost.
c8721bbb 1523 */
082d5b6b 1524int dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
c8721bbb 1525{
c8721bbb 1526 unsigned long pfn;
eb03aa00 1527 struct page *page;
082d5b6b 1528 int rc = 0;
c8721bbb 1529
d0177639 1530 if (!hugepages_supported())
082d5b6b 1531 return rc;
d0177639 1532
eb03aa00
GS
1533 for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << minimum_order) {
1534 page = pfn_to_page(pfn);
1535 if (PageHuge(page) && !page_count(page)) {
1536 rc = dissolve_free_huge_page(page);
1537 if (rc)
1538 break;
1539 }
1540 }
082d5b6b
GS
1541
1542 return rc;
c8721bbb
NH
1543}
1544
ab5ac90a
MH
1545/*
1546 * Allocates a fresh surplus page from the page allocator.
1547 */
0c397dae 1548static struct page *alloc_surplus_huge_page(struct hstate *h, gfp_t gfp_mask,
aaf14e40 1549 int nid, nodemask_t *nmask)
7893d1d5 1550{
9980d744 1551 struct page *page = NULL;
7893d1d5 1552
bae7f4ae 1553 if (hstate_is_gigantic(h))
aa888a74
AK
1554 return NULL;
1555
d1c3fb1f 1556 spin_lock(&hugetlb_lock);
9980d744
MH
1557 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages)
1558 goto out_unlock;
d1c3fb1f
NA
1559 spin_unlock(&hugetlb_lock);
1560
0c397dae 1561 page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask);
9980d744 1562 if (!page)
0c397dae 1563 return NULL;
d1c3fb1f
NA
1564
1565 spin_lock(&hugetlb_lock);
9980d744
MH
1566 /*
1567 * We could have raced with the pool size change.
1568 * Double check that and simply deallocate the new page
1569 * if we would end up overcommiting the surpluses. Abuse
1570 * temporary page to workaround the nasty free_huge_page
1571 * codeflow
1572 */
1573 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
1574 SetPageHugeTemporary(page);
1575 put_page(page);
1576 page = NULL;
1577 } else {
9980d744 1578 h->surplus_huge_pages++;
4704dea3 1579 h->surplus_huge_pages_node[page_to_nid(page)]++;
7893d1d5 1580 }
9980d744
MH
1581
1582out_unlock:
d1c3fb1f 1583 spin_unlock(&hugetlb_lock);
7893d1d5
AL
1584
1585 return page;
1586}
1587
0c397dae 1588static struct page *alloc_migrate_huge_page(struct hstate *h, gfp_t gfp_mask,
ab5ac90a
MH
1589 int nid, nodemask_t *nmask)
1590{
1591 struct page *page;
1592
1593 if (hstate_is_gigantic(h))
1594 return NULL;
1595
0c397dae 1596 page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask);
ab5ac90a
MH
1597 if (!page)
1598 return NULL;
1599
1600 /*
1601 * We do not account these pages as surplus because they are only
1602 * temporary and will be released properly on the last reference
1603 */
ab5ac90a
MH
1604 SetPageHugeTemporary(page);
1605
1606 return page;
1607}
1608
099730d6
DH
1609/*
1610 * Use the VMA's mpolicy to allocate a huge page from the buddy.
1611 */
e0ec90ee 1612static
0c397dae 1613struct page *alloc_buddy_huge_page_with_mpol(struct hstate *h,
099730d6
DH
1614 struct vm_area_struct *vma, unsigned long addr)
1615{
aaf14e40
MH
1616 struct page *page;
1617 struct mempolicy *mpol;
1618 gfp_t gfp_mask = htlb_alloc_mask(h);
1619 int nid;
1620 nodemask_t *nodemask;
1621
1622 nid = huge_node(vma, addr, gfp_mask, &mpol, &nodemask);
0c397dae 1623 page = alloc_surplus_huge_page(h, gfp_mask, nid, nodemask);
aaf14e40
MH
1624 mpol_cond_put(mpol);
1625
1626 return page;
099730d6
DH
1627}
1628
ab5ac90a 1629/* page migration callback function */
bf50bab2
NH
1630struct page *alloc_huge_page_node(struct hstate *h, int nid)
1631{
aaf14e40 1632 gfp_t gfp_mask = htlb_alloc_mask(h);
4ef91848 1633 struct page *page = NULL;
bf50bab2 1634
aaf14e40
MH
1635 if (nid != NUMA_NO_NODE)
1636 gfp_mask |= __GFP_THISNODE;
1637
bf50bab2 1638 spin_lock(&hugetlb_lock);
4ef91848 1639 if (h->free_huge_pages - h->resv_huge_pages > 0)
3e59fcb0 1640 page = dequeue_huge_page_nodemask(h, gfp_mask, nid, NULL);
bf50bab2
NH
1641 spin_unlock(&hugetlb_lock);
1642
94ae8ba7 1643 if (!page)
0c397dae 1644 page = alloc_migrate_huge_page(h, gfp_mask, nid, NULL);
bf50bab2
NH
1645
1646 return page;
1647}
1648
ab5ac90a 1649/* page migration callback function */
3e59fcb0
MH
1650struct page *alloc_huge_page_nodemask(struct hstate *h, int preferred_nid,
1651 nodemask_t *nmask)
4db9b2ef 1652{
aaf14e40 1653 gfp_t gfp_mask = htlb_alloc_mask(h);
4db9b2ef
MH
1654
1655 spin_lock(&hugetlb_lock);
1656 if (h->free_huge_pages - h->resv_huge_pages > 0) {
3e59fcb0
MH
1657 struct page *page;
1658
1659 page = dequeue_huge_page_nodemask(h, gfp_mask, preferred_nid, nmask);
1660 if (page) {
1661 spin_unlock(&hugetlb_lock);
1662 return page;
4db9b2ef
MH
1663 }
1664 }
1665 spin_unlock(&hugetlb_lock);
4db9b2ef 1666
0c397dae 1667 return alloc_migrate_huge_page(h, gfp_mask, preferred_nid, nmask);
4db9b2ef
MH
1668}
1669
ebd63723 1670/* mempolicy aware migration callback */
389c8178
MH
1671struct page *alloc_huge_page_vma(struct hstate *h, struct vm_area_struct *vma,
1672 unsigned long address)
ebd63723
MH
1673{
1674 struct mempolicy *mpol;
1675 nodemask_t *nodemask;
1676 struct page *page;
ebd63723
MH
1677 gfp_t gfp_mask;
1678 int node;
1679
ebd63723
MH
1680 gfp_mask = htlb_alloc_mask(h);
1681 node = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
1682 page = alloc_huge_page_nodemask(h, node, nodemask);
1683 mpol_cond_put(mpol);
1684
1685 return page;
1686}
1687
e4e574b7 1688/*
25985edc 1689 * Increase the hugetlb pool such that it can accommodate a reservation
e4e574b7
AL
1690 * of size 'delta'.
1691 */
a5516438 1692static int gather_surplus_pages(struct hstate *h, int delta)
e4e574b7
AL
1693{
1694 struct list_head surplus_list;
1695 struct page *page, *tmp;
1696 int ret, i;
1697 int needed, allocated;
28073b02 1698 bool alloc_ok = true;
e4e574b7 1699
a5516438 1700 needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
ac09b3a1 1701 if (needed <= 0) {
a5516438 1702 h->resv_huge_pages += delta;
e4e574b7 1703 return 0;
ac09b3a1 1704 }
e4e574b7
AL
1705
1706 allocated = 0;
1707 INIT_LIST_HEAD(&surplus_list);
1708
1709 ret = -ENOMEM;
1710retry:
1711 spin_unlock(&hugetlb_lock);
1712 for (i = 0; i < needed; i++) {
0c397dae 1713 page = alloc_surplus_huge_page(h, htlb_alloc_mask(h),
aaf14e40 1714 NUMA_NO_NODE, NULL);
28073b02
HD
1715 if (!page) {
1716 alloc_ok = false;
1717 break;
1718 }
e4e574b7 1719 list_add(&page->lru, &surplus_list);
69ed779a 1720 cond_resched();
e4e574b7 1721 }
28073b02 1722 allocated += i;
e4e574b7
AL
1723
1724 /*
1725 * After retaking hugetlb_lock, we need to recalculate 'needed'
1726 * because either resv_huge_pages or free_huge_pages may have changed.
1727 */
1728 spin_lock(&hugetlb_lock);
a5516438
AK
1729 needed = (h->resv_huge_pages + delta) -
1730 (h->free_huge_pages + allocated);
28073b02
HD
1731 if (needed > 0) {
1732 if (alloc_ok)
1733 goto retry;
1734 /*
1735 * We were not able to allocate enough pages to
1736 * satisfy the entire reservation so we free what
1737 * we've allocated so far.
1738 */
1739 goto free;
1740 }
e4e574b7
AL
1741 /*
1742 * The surplus_list now contains _at_least_ the number of extra pages
25985edc 1743 * needed to accommodate the reservation. Add the appropriate number
e4e574b7 1744 * of pages to the hugetlb pool and free the extras back to the buddy
ac09b3a1
AL
1745 * allocator. Commit the entire reservation here to prevent another
1746 * process from stealing the pages as they are added to the pool but
1747 * before they are reserved.
e4e574b7
AL
1748 */
1749 needed += allocated;
a5516438 1750 h->resv_huge_pages += delta;
e4e574b7 1751 ret = 0;
a9869b83 1752
19fc3f0a 1753 /* Free the needed pages to the hugetlb pool */
e4e574b7 1754 list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
19fc3f0a
AL
1755 if ((--needed) < 0)
1756 break;
a9869b83
NH
1757 /*
1758 * This page is now managed by the hugetlb allocator and has
1759 * no users -- drop the buddy allocator's reference.
1760 */
1761 put_page_testzero(page);
309381fe 1762 VM_BUG_ON_PAGE(page_count(page), page);
a5516438 1763 enqueue_huge_page(h, page);
19fc3f0a 1764 }
28073b02 1765free:
b0365c8d 1766 spin_unlock(&hugetlb_lock);
19fc3f0a
AL
1767
1768 /* Free unnecessary surplus pages to the buddy allocator */
c0d934ba
JK
1769 list_for_each_entry_safe(page, tmp, &surplus_list, lru)
1770 put_page(page);
a9869b83 1771 spin_lock(&hugetlb_lock);
e4e574b7
AL
1772
1773 return ret;
1774}
1775
1776/*
e5bbc8a6
MK
1777 * This routine has two main purposes:
1778 * 1) Decrement the reservation count (resv_huge_pages) by the value passed
1779 * in unused_resv_pages. This corresponds to the prior adjustments made
1780 * to the associated reservation map.
1781 * 2) Free any unused surplus pages that may have been allocated to satisfy
1782 * the reservation. As many as unused_resv_pages may be freed.
1783 *
1784 * Called with hugetlb_lock held. However, the lock could be dropped (and
1785 * reacquired) during calls to cond_resched_lock. Whenever dropping the lock,
1786 * we must make sure nobody else can claim pages we are in the process of
1787 * freeing. Do this by ensuring resv_huge_page always is greater than the
1788 * number of huge pages we plan to free when dropping the lock.
e4e574b7 1789 */
a5516438
AK
1790static void return_unused_surplus_pages(struct hstate *h,
1791 unsigned long unused_resv_pages)
e4e574b7 1792{
e4e574b7
AL
1793 unsigned long nr_pages;
1794
aa888a74 1795 /* Cannot return gigantic pages currently */
bae7f4ae 1796 if (hstate_is_gigantic(h))
e5bbc8a6 1797 goto out;
aa888a74 1798
e5bbc8a6
MK
1799 /*
1800 * Part (or even all) of the reservation could have been backed
1801 * by pre-allocated pages. Only free surplus pages.
1802 */
a5516438 1803 nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
e4e574b7 1804
685f3457
LS
1805 /*
1806 * We want to release as many surplus pages as possible, spread
9b5e5d0f
LS
1807 * evenly across all nodes with memory. Iterate across these nodes
1808 * until we can no longer free unreserved surplus pages. This occurs
1809 * when the nodes with surplus pages have no free pages.
1810 * free_pool_huge_page() will balance the the freed pages across the
1811 * on-line nodes with memory and will handle the hstate accounting.
e5bbc8a6
MK
1812 *
1813 * Note that we decrement resv_huge_pages as we free the pages. If
1814 * we drop the lock, resv_huge_pages will still be sufficiently large
1815 * to cover subsequent pages we may free.
685f3457
LS
1816 */
1817 while (nr_pages--) {
e5bbc8a6
MK
1818 h->resv_huge_pages--;
1819 unused_resv_pages--;
8cebfcd0 1820 if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1))
e5bbc8a6 1821 goto out;
7848a4bf 1822 cond_resched_lock(&hugetlb_lock);
e4e574b7 1823 }
e5bbc8a6
MK
1824
1825out:
1826 /* Fully uncommit the reservation */
1827 h->resv_huge_pages -= unused_resv_pages;
e4e574b7
AL
1828}
1829
5e911373 1830
c37f9fb1 1831/*
feba16e2 1832 * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
5e911373 1833 * are used by the huge page allocation routines to manage reservations.
cf3ad20b
MK
1834 *
1835 * vma_needs_reservation is called to determine if the huge page at addr
1836 * within the vma has an associated reservation. If a reservation is
1837 * needed, the value 1 is returned. The caller is then responsible for
1838 * managing the global reservation and subpool usage counts. After
1839 * the huge page has been allocated, vma_commit_reservation is called
feba16e2
MK
1840 * to add the page to the reservation map. If the page allocation fails,
1841 * the reservation must be ended instead of committed. vma_end_reservation
1842 * is called in such cases.
cf3ad20b
MK
1843 *
1844 * In the normal case, vma_commit_reservation returns the same value
1845 * as the preceding vma_needs_reservation call. The only time this
1846 * is not the case is if a reserve map was changed between calls. It
1847 * is the responsibility of the caller to notice the difference and
1848 * take appropriate action.
96b96a96
MK
1849 *
1850 * vma_add_reservation is used in error paths where a reservation must
1851 * be restored when a newly allocated huge page must be freed. It is
1852 * to be called after calling vma_needs_reservation to determine if a
1853 * reservation exists.
c37f9fb1 1854 */
5e911373
MK
1855enum vma_resv_mode {
1856 VMA_NEEDS_RESV,
1857 VMA_COMMIT_RESV,
feba16e2 1858 VMA_END_RESV,
96b96a96 1859 VMA_ADD_RESV,
5e911373 1860};
cf3ad20b
MK
1861static long __vma_reservation_common(struct hstate *h,
1862 struct vm_area_struct *vma, unsigned long addr,
5e911373 1863 enum vma_resv_mode mode)
c37f9fb1 1864{
4e35f483
JK
1865 struct resv_map *resv;
1866 pgoff_t idx;
cf3ad20b 1867 long ret;
c37f9fb1 1868
4e35f483
JK
1869 resv = vma_resv_map(vma);
1870 if (!resv)
84afd99b 1871 return 1;
c37f9fb1 1872
4e35f483 1873 idx = vma_hugecache_offset(h, vma, addr);
5e911373
MK
1874 switch (mode) {
1875 case VMA_NEEDS_RESV:
cf3ad20b 1876 ret = region_chg(resv, idx, idx + 1);
5e911373
MK
1877 break;
1878 case VMA_COMMIT_RESV:
1879 ret = region_add(resv, idx, idx + 1);
1880 break;
feba16e2 1881 case VMA_END_RESV:
5e911373
MK
1882 region_abort(resv, idx, idx + 1);
1883 ret = 0;
1884 break;
96b96a96
MK
1885 case VMA_ADD_RESV:
1886 if (vma->vm_flags & VM_MAYSHARE)
1887 ret = region_add(resv, idx, idx + 1);
1888 else {
1889 region_abort(resv, idx, idx + 1);
1890 ret = region_del(resv, idx, idx + 1);
1891 }
1892 break;
5e911373
MK
1893 default:
1894 BUG();
1895 }
84afd99b 1896
4e35f483 1897 if (vma->vm_flags & VM_MAYSHARE)
cf3ad20b 1898 return ret;
67961f9d
MK
1899 else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) && ret >= 0) {
1900 /*
1901 * In most cases, reserves always exist for private mappings.
1902 * However, a file associated with mapping could have been
1903 * hole punched or truncated after reserves were consumed.
1904 * As subsequent fault on such a range will not use reserves.
1905 * Subtle - The reserve map for private mappings has the
1906 * opposite meaning than that of shared mappings. If NO
1907 * entry is in the reserve map, it means a reservation exists.
1908 * If an entry exists in the reserve map, it means the
1909 * reservation has already been consumed. As a result, the
1910 * return value of this routine is the opposite of the
1911 * value returned from reserve map manipulation routines above.
1912 */
1913 if (ret)
1914 return 0;
1915 else
1916 return 1;
1917 }
4e35f483 1918 else
cf3ad20b 1919 return ret < 0 ? ret : 0;
c37f9fb1 1920}
cf3ad20b
MK
1921
1922static long vma_needs_reservation(struct hstate *h,
a5516438 1923 struct vm_area_struct *vma, unsigned long addr)
c37f9fb1 1924{
5e911373 1925 return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
cf3ad20b 1926}
84afd99b 1927
cf3ad20b
MK
1928static long vma_commit_reservation(struct hstate *h,
1929 struct vm_area_struct *vma, unsigned long addr)
1930{
5e911373
MK
1931 return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
1932}
1933
feba16e2 1934static void vma_end_reservation(struct hstate *h,
5e911373
MK
1935 struct vm_area_struct *vma, unsigned long addr)
1936{
feba16e2 1937 (void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
c37f9fb1
AW
1938}
1939
96b96a96
MK
1940static long vma_add_reservation(struct hstate *h,
1941 struct vm_area_struct *vma, unsigned long addr)
1942{
1943 return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV);
1944}
1945
1946/*
1947 * This routine is called to restore a reservation on error paths. In the
1948 * specific error paths, a huge page was allocated (via alloc_huge_page)
1949 * and is about to be freed. If a reservation for the page existed,
1950 * alloc_huge_page would have consumed the reservation and set PagePrivate
1951 * in the newly allocated page. When the page is freed via free_huge_page,
1952 * the global reservation count will be incremented if PagePrivate is set.
1953 * However, free_huge_page can not adjust the reserve map. Adjust the
1954 * reserve map here to be consistent with global reserve count adjustments
1955 * to be made by free_huge_page.
1956 */
1957static void restore_reserve_on_error(struct hstate *h,
1958 struct vm_area_struct *vma, unsigned long address,
1959 struct page *page)
1960{
1961 if (unlikely(PagePrivate(page))) {
1962 long rc = vma_needs_reservation(h, vma, address);
1963
1964 if (unlikely(rc < 0)) {
1965 /*
1966 * Rare out of memory condition in reserve map
1967 * manipulation. Clear PagePrivate so that
1968 * global reserve count will not be incremented
1969 * by free_huge_page. This will make it appear
1970 * as though the reservation for this page was
1971 * consumed. This may prevent the task from
1972 * faulting in the page at a later time. This
1973 * is better than inconsistent global huge page
1974 * accounting of reserve counts.
1975 */
1976 ClearPagePrivate(page);
1977 } else if (rc) {
1978 rc = vma_add_reservation(h, vma, address);
1979 if (unlikely(rc < 0))
1980 /*
1981 * See above comment about rare out of
1982 * memory condition.
1983 */
1984 ClearPagePrivate(page);
1985 } else
1986 vma_end_reservation(h, vma, address);
1987 }
1988}
1989
70c3547e 1990struct page *alloc_huge_page(struct vm_area_struct *vma,
04f2cbe3 1991 unsigned long addr, int avoid_reserve)
1da177e4 1992{
90481622 1993 struct hugepage_subpool *spool = subpool_vma(vma);
a5516438 1994 struct hstate *h = hstate_vma(vma);
348ea204 1995 struct page *page;
d85f69b0
MK
1996 long map_chg, map_commit;
1997 long gbl_chg;
6d76dcf4
AK
1998 int ret, idx;
1999 struct hugetlb_cgroup *h_cg;
a1e78772 2000
6d76dcf4 2001 idx = hstate_index(h);
a1e78772 2002 /*
d85f69b0
MK
2003 * Examine the region/reserve map to determine if the process
2004 * has a reservation for the page to be allocated. A return
2005 * code of zero indicates a reservation exists (no change).
a1e78772 2006 */
d85f69b0
MK
2007 map_chg = gbl_chg = vma_needs_reservation(h, vma, addr);
2008 if (map_chg < 0)
76dcee75 2009 return ERR_PTR(-ENOMEM);
d85f69b0
MK
2010
2011 /*
2012 * Processes that did not create the mapping will have no
2013 * reserves as indicated by the region/reserve map. Check
2014 * that the allocation will not exceed the subpool limit.
2015 * Allocations for MAP_NORESERVE mappings also need to be
2016 * checked against any subpool limit.
2017 */
2018 if (map_chg || avoid_reserve) {
2019 gbl_chg = hugepage_subpool_get_pages(spool, 1);
2020 if (gbl_chg < 0) {
feba16e2 2021 vma_end_reservation(h, vma, addr);
76dcee75 2022 return ERR_PTR(-ENOSPC);
5e911373 2023 }
1da177e4 2024
d85f69b0
MK
2025 /*
2026 * Even though there was no reservation in the region/reserve
2027 * map, there could be reservations associated with the
2028 * subpool that can be used. This would be indicated if the
2029 * return value of hugepage_subpool_get_pages() is zero.
2030 * However, if avoid_reserve is specified we still avoid even
2031 * the subpool reservations.
2032 */
2033 if (avoid_reserve)
2034 gbl_chg = 1;
2035 }
2036
6d76dcf4 2037 ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
8f34af6f
JZ
2038 if (ret)
2039 goto out_subpool_put;
2040
1da177e4 2041 spin_lock(&hugetlb_lock);
d85f69b0
MK
2042 /*
2043 * glb_chg is passed to indicate whether or not a page must be taken
2044 * from the global free pool (global change). gbl_chg == 0 indicates
2045 * a reservation exists for the allocation.
2046 */
2047 page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, gbl_chg);
81a6fcae 2048 if (!page) {
94ae8ba7 2049 spin_unlock(&hugetlb_lock);
0c397dae 2050 page = alloc_buddy_huge_page_with_mpol(h, vma, addr);
8f34af6f
JZ
2051 if (!page)
2052 goto out_uncharge_cgroup;
a88c7695
NH
2053 if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) {
2054 SetPagePrivate(page);
2055 h->resv_huge_pages--;
2056 }
79dbb236
AK
2057 spin_lock(&hugetlb_lock);
2058 list_move(&page->lru, &h->hugepage_activelist);
81a6fcae 2059 /* Fall through */
68842c9b 2060 }
81a6fcae
JK
2061 hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
2062 spin_unlock(&hugetlb_lock);
348ea204 2063
90481622 2064 set_page_private(page, (unsigned long)spool);
90d8b7e6 2065
d85f69b0
MK
2066 map_commit = vma_commit_reservation(h, vma, addr);
2067 if (unlikely(map_chg > map_commit)) {
33039678
MK
2068 /*
2069 * The page was added to the reservation map between
2070 * vma_needs_reservation and vma_commit_reservation.
2071 * This indicates a race with hugetlb_reserve_pages.
2072 * Adjust for the subpool count incremented above AND
2073 * in hugetlb_reserve_pages for the same page. Also,
2074 * the reservation count added in hugetlb_reserve_pages
2075 * no longer applies.
2076 */
2077 long rsv_adjust;
2078
2079 rsv_adjust = hugepage_subpool_put_pages(spool, 1);
2080 hugetlb_acct_memory(h, -rsv_adjust);
2081 }
90d8b7e6 2082 return page;
8f34af6f
JZ
2083
2084out_uncharge_cgroup:
2085 hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
2086out_subpool_put:
d85f69b0 2087 if (map_chg || avoid_reserve)
8f34af6f 2088 hugepage_subpool_put_pages(spool, 1);
feba16e2 2089 vma_end_reservation(h, vma, addr);
8f34af6f 2090 return ERR_PTR(-ENOSPC);
b45b5bd6
DG
2091}
2092
e24a1307
AK
2093int alloc_bootmem_huge_page(struct hstate *h)
2094 __attribute__ ((weak, alias("__alloc_bootmem_huge_page")));
2095int __alloc_bootmem_huge_page(struct hstate *h)
aa888a74
AK
2096{
2097 struct huge_bootmem_page *m;
b2261026 2098 int nr_nodes, node;
aa888a74 2099
b2261026 2100 for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
aa888a74
AK
2101 void *addr;
2102
330d6e48 2103 addr = memblock_virt_alloc_try_nid_raw(
8b89a116
GS
2104 huge_page_size(h), huge_page_size(h),
2105 0, BOOTMEM_ALLOC_ACCESSIBLE, node);
aa888a74
AK
2106 if (addr) {
2107 /*
2108 * Use the beginning of the huge page to store the
2109 * huge_bootmem_page struct (until gather_bootmem
2110 * puts them into the mem_map).
2111 */
2112 m = addr;
91f47662 2113 goto found;
aa888a74 2114 }
aa888a74
AK
2115 }
2116 return 0;
2117
2118found:
df994ead 2119 BUG_ON(!IS_ALIGNED(virt_to_phys(m), huge_page_size(h)));
aa888a74 2120 /* Put them into a private list first because mem_map is not up yet */
330d6e48 2121 INIT_LIST_HEAD(&m->list);
aa888a74
AK
2122 list_add(&m->list, &huge_boot_pages);
2123 m->hstate = h;
2124 return 1;
2125}
2126
d00181b9
KS
2127static void __init prep_compound_huge_page(struct page *page,
2128 unsigned int order)
18229df5
AW
2129{
2130 if (unlikely(order > (MAX_ORDER - 1)))
2131 prep_compound_gigantic_page(page, order);
2132 else
2133 prep_compound_page(page, order);
2134}
2135
aa888a74
AK
2136/* Put bootmem huge pages into the standard lists after mem_map is up */
2137static void __init gather_bootmem_prealloc(void)
2138{
2139 struct huge_bootmem_page *m;
2140
2141 list_for_each_entry(m, &huge_boot_pages, list) {
40d18ebf 2142 struct page *page = virt_to_page(m);
aa888a74 2143 struct hstate *h = m->hstate;
ee8f248d 2144
aa888a74 2145 WARN_ON(page_count(page) != 1);
18229df5 2146 prep_compound_huge_page(page, h->order);
ef5a22be 2147 WARN_ON(PageReserved(page));
aa888a74 2148 prep_new_huge_page(h, page, page_to_nid(page));
af0fb9df
MH
2149 put_page(page); /* free it into the hugepage allocator */
2150
b0320c7b
RA
2151 /*
2152 * If we had gigantic hugepages allocated at boot time, we need
2153 * to restore the 'stolen' pages to totalram_pages in order to
2154 * fix confusing memory reports from free(1) and another
2155 * side-effects, like CommitLimit going negative.
2156 */
bae7f4ae 2157 if (hstate_is_gigantic(h))
3dcc0571 2158 adjust_managed_page_count(page, 1 << h->order);
520495fe 2159 cond_resched();
aa888a74
AK
2160 }
2161}
2162
8faa8b07 2163static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
1da177e4
LT
2164{
2165 unsigned long i;
a5516438 2166
e5ff2159 2167 for (i = 0; i < h->max_huge_pages; ++i) {
bae7f4ae 2168 if (hstate_is_gigantic(h)) {
aa888a74
AK
2169 if (!alloc_bootmem_huge_page(h))
2170 break;
0c397dae 2171 } else if (!alloc_pool_huge_page(h,
8cebfcd0 2172 &node_states[N_MEMORY]))
1da177e4 2173 break;
69ed779a 2174 cond_resched();
1da177e4 2175 }
d715cf80
LH
2176 if (i < h->max_huge_pages) {
2177 char buf[32];
2178
c6247f72 2179 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
d715cf80
LH
2180 pr_warn("HugeTLB: allocating %lu of page size %s failed. Only allocated %lu hugepages.\n",
2181 h->max_huge_pages, buf, i);
2182 h->max_huge_pages = i;
2183 }
e5ff2159
AK
2184}
2185
2186static void __init hugetlb_init_hstates(void)
2187{
2188 struct hstate *h;
2189
2190 for_each_hstate(h) {
641844f5
NH
2191 if (minimum_order > huge_page_order(h))
2192 minimum_order = huge_page_order(h);
2193
8faa8b07 2194 /* oversize hugepages were init'ed in early boot */
bae7f4ae 2195 if (!hstate_is_gigantic(h))
8faa8b07 2196 hugetlb_hstate_alloc_pages(h);
e5ff2159 2197 }
641844f5 2198 VM_BUG_ON(minimum_order == UINT_MAX);
e5ff2159
AK
2199}
2200
2201static void __init report_hugepages(void)
2202{
2203 struct hstate *h;
2204
2205 for_each_hstate(h) {
4abd32db 2206 char buf[32];
c6247f72
MW
2207
2208 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
ffb22af5 2209 pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
c6247f72 2210 buf, h->free_huge_pages);
e5ff2159
AK
2211 }
2212}
2213
1da177e4 2214#ifdef CONFIG_HIGHMEM
6ae11b27
LS
2215static void try_to_free_low(struct hstate *h, unsigned long count,
2216 nodemask_t *nodes_allowed)
1da177e4 2217{
4415cc8d
CL
2218 int i;
2219
bae7f4ae 2220 if (hstate_is_gigantic(h))
aa888a74
AK
2221 return;
2222
6ae11b27 2223 for_each_node_mask(i, *nodes_allowed) {
1da177e4 2224 struct page *page, *next;
a5516438
AK
2225 struct list_head *freel = &h->hugepage_freelists[i];
2226 list_for_each_entry_safe(page, next, freel, lru) {
2227 if (count >= h->nr_huge_pages)
6b0c880d 2228 return;
1da177e4
LT
2229 if (PageHighMem(page))
2230 continue;
2231 list_del(&page->lru);
e5ff2159 2232 update_and_free_page(h, page);
a5516438
AK
2233 h->free_huge_pages--;
2234 h->free_huge_pages_node[page_to_nid(page)]--;
1da177e4
LT
2235 }
2236 }
2237}
2238#else
6ae11b27
LS
2239static inline void try_to_free_low(struct hstate *h, unsigned long count,
2240 nodemask_t *nodes_allowed)
1da177e4
LT
2241{
2242}
2243#endif
2244
20a0307c
WF
2245/*
2246 * Increment or decrement surplus_huge_pages. Keep node-specific counters
2247 * balanced by operating on them in a round-robin fashion.
2248 * Returns 1 if an adjustment was made.
2249 */
6ae11b27
LS
2250static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
2251 int delta)
20a0307c 2252{
b2261026 2253 int nr_nodes, node;
20a0307c
WF
2254
2255 VM_BUG_ON(delta != -1 && delta != 1);
20a0307c 2256
b2261026
JK
2257 if (delta < 0) {
2258 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
2259 if (h->surplus_huge_pages_node[node])
2260 goto found;
e8c5c824 2261 }
b2261026
JK
2262 } else {
2263 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
2264 if (h->surplus_huge_pages_node[node] <
2265 h->nr_huge_pages_node[node])
2266 goto found;
e8c5c824 2267 }
b2261026
JK
2268 }
2269 return 0;
20a0307c 2270
b2261026
JK
2271found:
2272 h->surplus_huge_pages += delta;
2273 h->surplus_huge_pages_node[node] += delta;
2274 return 1;
20a0307c
WF
2275}
2276
a5516438 2277#define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
6ae11b27
LS
2278static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count,
2279 nodemask_t *nodes_allowed)
1da177e4 2280{
7893d1d5 2281 unsigned long min_count, ret;
1da177e4 2282
944d9fec 2283 if (hstate_is_gigantic(h) && !gigantic_page_supported())
aa888a74
AK
2284 return h->max_huge_pages;
2285
7893d1d5
AL
2286 /*
2287 * Increase the pool size
2288 * First take pages out of surplus state. Then make up the
2289 * remaining difference by allocating fresh huge pages.
d1c3fb1f 2290 *
0c397dae 2291 * We might race with alloc_surplus_huge_page() here and be unable
d1c3fb1f
NA
2292 * to convert a surplus huge page to a normal huge page. That is
2293 * not critical, though, it just means the overall size of the
2294 * pool might be one hugepage larger than it needs to be, but
2295 * within all the constraints specified by the sysctls.
7893d1d5 2296 */
1da177e4 2297 spin_lock(&hugetlb_lock);
a5516438 2298 while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
6ae11b27 2299 if (!adjust_pool_surplus(h, nodes_allowed, -1))
7893d1d5
AL
2300 break;
2301 }
2302
a5516438 2303 while (count > persistent_huge_pages(h)) {
7893d1d5
AL
2304 /*
2305 * If this allocation races such that we no longer need the
2306 * page, free_huge_page will handle it by freeing the page
2307 * and reducing the surplus.
2308 */
2309 spin_unlock(&hugetlb_lock);
649920c6
JH
2310
2311 /* yield cpu to avoid soft lockup */
2312 cond_resched();
2313
0c397dae 2314 ret = alloc_pool_huge_page(h, nodes_allowed);
7893d1d5
AL
2315 spin_lock(&hugetlb_lock);
2316 if (!ret)
2317 goto out;
2318
536240f2
MG
2319 /* Bail for signals. Probably ctrl-c from user */
2320 if (signal_pending(current))
2321 goto out;
7893d1d5 2322 }
7893d1d5
AL
2323
2324 /*
2325 * Decrease the pool size
2326 * First return free pages to the buddy allocator (being careful
2327 * to keep enough around to satisfy reservations). Then place
2328 * pages into surplus state as needed so the pool will shrink
2329 * to the desired size as pages become free.
d1c3fb1f
NA
2330 *
2331 * By placing pages into the surplus state independent of the
2332 * overcommit value, we are allowing the surplus pool size to
2333 * exceed overcommit. There are few sane options here. Since
0c397dae 2334 * alloc_surplus_huge_page() is checking the global counter,
d1c3fb1f
NA
2335 * though, we'll note that we're not allowed to exceed surplus
2336 * and won't grow the pool anywhere else. Not until one of the
2337 * sysctls are changed, or the surplus pages go out of use.
7893d1d5 2338 */
a5516438 2339 min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
6b0c880d 2340 min_count = max(count, min_count);
6ae11b27 2341 try_to_free_low(h, min_count, nodes_allowed);
a5516438 2342 while (min_count < persistent_huge_pages(h)) {
6ae11b27 2343 if (!free_pool_huge_page(h, nodes_allowed, 0))
1da177e4 2344 break;
55f67141 2345 cond_resched_lock(&hugetlb_lock);
1da177e4 2346 }
a5516438 2347 while (count < persistent_huge_pages(h)) {
6ae11b27 2348 if (!adjust_pool_surplus(h, nodes_allowed, 1))
7893d1d5
AL
2349 break;
2350 }
2351out:
a5516438 2352 ret = persistent_huge_pages(h);
1da177e4 2353 spin_unlock(&hugetlb_lock);
7893d1d5 2354 return ret;
1da177e4
LT
2355}
2356
a3437870
NA
2357#define HSTATE_ATTR_RO(_name) \
2358 static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
2359
2360#define HSTATE_ATTR(_name) \
2361 static struct kobj_attribute _name##_attr = \
2362 __ATTR(_name, 0644, _name##_show, _name##_store)
2363
2364static struct kobject *hugepages_kobj;
2365static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
2366
9a305230
LS
2367static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
2368
2369static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
a3437870
NA
2370{
2371 int i;
9a305230 2372
a3437870 2373 for (i = 0; i < HUGE_MAX_HSTATE; i++)
9a305230
LS
2374 if (hstate_kobjs[i] == kobj) {
2375 if (nidp)
2376 *nidp = NUMA_NO_NODE;
a3437870 2377 return &hstates[i];
9a305230
LS
2378 }
2379
2380 return kobj_to_node_hstate(kobj, nidp);
a3437870
NA
2381}
2382
06808b08 2383static ssize_t nr_hugepages_show_common(struct kobject *kobj,
a3437870
NA
2384 struct kobj_attribute *attr, char *buf)
2385{
9a305230
LS
2386 struct hstate *h;
2387 unsigned long nr_huge_pages;
2388 int nid;
2389
2390 h = kobj_to_hstate(kobj, &nid);
2391 if (nid == NUMA_NO_NODE)
2392 nr_huge_pages = h->nr_huge_pages;
2393 else
2394 nr_huge_pages = h->nr_huge_pages_node[nid];
2395
2396 return sprintf(buf, "%lu\n", nr_huge_pages);
a3437870 2397}
adbe8726 2398
238d3c13
DR
2399static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
2400 struct hstate *h, int nid,
2401 unsigned long count, size_t len)
a3437870
NA
2402{
2403 int err;
bad44b5b 2404 NODEMASK_ALLOC(nodemask_t, nodes_allowed, GFP_KERNEL | __GFP_NORETRY);
a3437870 2405
944d9fec 2406 if (hstate_is_gigantic(h) && !gigantic_page_supported()) {
adbe8726
EM
2407 err = -EINVAL;
2408 goto out;
2409 }
2410
9a305230
LS
2411 if (nid == NUMA_NO_NODE) {
2412 /*
2413 * global hstate attribute
2414 */
2415 if (!(obey_mempolicy &&
2416 init_nodemask_of_mempolicy(nodes_allowed))) {
2417 NODEMASK_FREE(nodes_allowed);
8cebfcd0 2418 nodes_allowed = &node_states[N_MEMORY];
9a305230
LS
2419 }
2420 } else if (nodes_allowed) {
2421 /*
2422 * per node hstate attribute: adjust count to global,
2423 * but restrict alloc/free to the specified node.
2424 */
2425 count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
2426 init_nodemask_of_node(nodes_allowed, nid);
2427 } else
8cebfcd0 2428 nodes_allowed = &node_states[N_MEMORY];
9a305230 2429
06808b08 2430 h->max_huge_pages = set_max_huge_pages(h, count, nodes_allowed);
a3437870 2431
8cebfcd0 2432 if (nodes_allowed != &node_states[N_MEMORY])
06808b08
LS
2433 NODEMASK_FREE(nodes_allowed);
2434
2435 return len;
adbe8726
EM
2436out:
2437 NODEMASK_FREE(nodes_allowed);
2438 return err;
06808b08
LS
2439}
2440
238d3c13
DR
2441static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
2442 struct kobject *kobj, const char *buf,
2443 size_t len)
2444{
2445 struct hstate *h;
2446 unsigned long count;
2447 int nid;
2448 int err;
2449
2450 err = kstrtoul(buf, 10, &count);
2451 if (err)
2452 return err;
2453
2454 h = kobj_to_hstate(kobj, &nid);
2455 return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
2456}
2457
06808b08
LS
2458static ssize_t nr_hugepages_show(struct kobject *kobj,
2459 struct kobj_attribute *attr, char *buf)
2460{
2461 return nr_hugepages_show_common(kobj, attr, buf);
2462}
2463
2464static ssize_t nr_hugepages_store(struct kobject *kobj,
2465 struct kobj_attribute *attr, const char *buf, size_t len)
2466{
238d3c13 2467 return nr_hugepages_store_common(false, kobj, buf, len);
a3437870
NA
2468}
2469HSTATE_ATTR(nr_hugepages);
2470
06808b08
LS
2471#ifdef CONFIG_NUMA
2472
2473/*
2474 * hstate attribute for optionally mempolicy-based constraint on persistent
2475 * huge page alloc/free.
2476 */
2477static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
2478 struct kobj_attribute *attr, char *buf)
2479{
2480 return nr_hugepages_show_common(kobj, attr, buf);
2481}
2482
2483static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
2484 struct kobj_attribute *attr, const char *buf, size_t len)
2485{
238d3c13 2486 return nr_hugepages_store_common(true, kobj, buf, len);
06808b08
LS
2487}
2488HSTATE_ATTR(nr_hugepages_mempolicy);
2489#endif
2490
2491
a3437870
NA
2492static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
2493 struct kobj_attribute *attr, char *buf)
2494{
9a305230 2495 struct hstate *h = kobj_to_hstate(kobj, NULL);
a3437870
NA
2496 return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
2497}
adbe8726 2498
a3437870
NA
2499static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
2500 struct kobj_attribute *attr, const char *buf, size_t count)
2501{
2502 int err;
2503 unsigned long input;
9a305230 2504 struct hstate *h = kobj_to_hstate(kobj, NULL);
a3437870 2505
bae7f4ae 2506 if (hstate_is_gigantic(h))
adbe8726
EM
2507 return -EINVAL;
2508
3dbb95f7 2509 err = kstrtoul(buf, 10, &input);
a3437870 2510 if (err)
73ae31e5 2511 return err;
a3437870
NA
2512
2513 spin_lock(&hugetlb_lock);
2514 h->nr_overcommit_huge_pages = input;
2515 spin_unlock(&hugetlb_lock);
2516
2517 return count;
2518}
2519HSTATE_ATTR(nr_overcommit_hugepages);
2520
2521static ssize_t free_hugepages_show(struct kobject *kobj,
2522 struct kobj_attribute *attr, char *buf)
2523{
9a305230
LS
2524 struct hstate *h;
2525 unsigned long free_huge_pages;
2526 int nid;
2527
2528 h = kobj_to_hstate(kobj, &nid);
2529 if (nid == NUMA_NO_NODE)
2530 free_huge_pages = h->free_huge_pages;
2531 else
2532 free_huge_pages = h->free_huge_pages_node[nid];
2533
2534 return sprintf(buf, "%lu\n", free_huge_pages);
a3437870
NA
2535}
2536HSTATE_ATTR_RO(free_hugepages);
2537
2538static ssize_t resv_hugepages_show(struct kobject *kobj,
2539 struct kobj_attribute *attr, char *buf)
2540{
9a305230 2541 struct hstate *h = kobj_to_hstate(kobj, NULL);
a3437870
NA
2542 return sprintf(buf, "%lu\n", h->resv_huge_pages);
2543}
2544HSTATE_ATTR_RO(resv_hugepages);
2545
2546static ssize_t surplus_hugepages_show(struct kobject *kobj,
2547 struct kobj_attribute *attr, char *buf)
2548{
9a305230
LS
2549 struct hstate *h;
2550 unsigned long surplus_huge_pages;
2551 int nid;
2552
2553 h = kobj_to_hstate(kobj, &nid);
2554 if (nid == NUMA_NO_NODE)
2555 surplus_huge_pages = h->surplus_huge_pages;
2556 else
2557 surplus_huge_pages = h->surplus_huge_pages_node[nid];
2558
2559 return sprintf(buf, "%lu\n", surplus_huge_pages);
a3437870
NA
2560}
2561HSTATE_ATTR_RO(surplus_hugepages);
2562
2563static struct attribute *hstate_attrs[] = {
2564 &nr_hugepages_attr.attr,
2565 &nr_overcommit_hugepages_attr.attr,
2566 &free_hugepages_attr.attr,
2567 &resv_hugepages_attr.attr,
2568 &surplus_hugepages_attr.attr,
06808b08
LS
2569#ifdef CONFIG_NUMA
2570 &nr_hugepages_mempolicy_attr.attr,
2571#endif
a3437870
NA
2572 NULL,
2573};
2574
67e5ed96 2575static const struct attribute_group hstate_attr_group = {
a3437870
NA
2576 .attrs = hstate_attrs,
2577};
2578
094e9539
JM
2579static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
2580 struct kobject **hstate_kobjs,
67e5ed96 2581 const struct attribute_group *hstate_attr_group)
a3437870
NA
2582{
2583 int retval;
972dc4de 2584 int hi = hstate_index(h);
a3437870 2585
9a305230
LS
2586 hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
2587 if (!hstate_kobjs[hi])
a3437870
NA
2588 return -ENOMEM;
2589
9a305230 2590 retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
a3437870 2591 if (retval)
9a305230 2592 kobject_put(hstate_kobjs[hi]);
a3437870
NA
2593
2594 return retval;
2595}
2596
2597static void __init hugetlb_sysfs_init(void)
2598{
2599 struct hstate *h;
2600 int err;
2601
2602 hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
2603 if (!hugepages_kobj)
2604 return;
2605
2606 for_each_hstate(h) {
9a305230
LS
2607 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
2608 hstate_kobjs, &hstate_attr_group);
a3437870 2609 if (err)
ffb22af5 2610 pr_err("Hugetlb: Unable to add hstate %s", h->name);
a3437870
NA
2611 }
2612}
2613
9a305230
LS
2614#ifdef CONFIG_NUMA
2615
2616/*
2617 * node_hstate/s - associate per node hstate attributes, via their kobjects,
10fbcf4c
KS
2618 * with node devices in node_devices[] using a parallel array. The array
2619 * index of a node device or _hstate == node id.
2620 * This is here to avoid any static dependency of the node device driver, in
9a305230
LS
2621 * the base kernel, on the hugetlb module.
2622 */
2623struct node_hstate {
2624 struct kobject *hugepages_kobj;
2625 struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
2626};
b4e289a6 2627static struct node_hstate node_hstates[MAX_NUMNODES];
9a305230
LS
2628
2629/*
10fbcf4c 2630 * A subset of global hstate attributes for node devices
9a305230
LS
2631 */
2632static struct attribute *per_node_hstate_attrs[] = {
2633 &nr_hugepages_attr.attr,
2634 &free_hugepages_attr.attr,
2635 &surplus_hugepages_attr.attr,
2636 NULL,
2637};
2638
67e5ed96 2639static const struct attribute_group per_node_hstate_attr_group = {
9a305230
LS
2640 .attrs = per_node_hstate_attrs,
2641};
2642
2643/*
10fbcf4c 2644 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
9a305230
LS
2645 * Returns node id via non-NULL nidp.
2646 */
2647static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
2648{
2649 int nid;
2650
2651 for (nid = 0; nid < nr_node_ids; nid++) {
2652 struct node_hstate *nhs = &node_hstates[nid];
2653 int i;
2654 for (i = 0; i < HUGE_MAX_HSTATE; i++)
2655 if (nhs->hstate_kobjs[i] == kobj) {
2656 if (nidp)
2657 *nidp = nid;
2658 return &hstates[i];
2659 }
2660 }
2661
2662 BUG();
2663 return NULL;
2664}
2665
2666/*
10fbcf4c 2667 * Unregister hstate attributes from a single node device.
9a305230
LS
2668 * No-op if no hstate attributes attached.
2669 */
3cd8b44f 2670static void hugetlb_unregister_node(struct node *node)
9a305230
LS
2671{
2672 struct hstate *h;
10fbcf4c 2673 struct node_hstate *nhs = &node_hstates[node->dev.id];
9a305230
LS
2674
2675 if (!nhs->hugepages_kobj)
9b5e5d0f 2676 return; /* no hstate attributes */
9a305230 2677
972dc4de
AK
2678 for_each_hstate(h) {
2679 int idx = hstate_index(h);
2680 if (nhs->hstate_kobjs[idx]) {
2681 kobject_put(nhs->hstate_kobjs[idx]);
2682 nhs->hstate_kobjs[idx] = NULL;
9a305230 2683 }
972dc4de 2684 }
9a305230
LS
2685
2686 kobject_put(nhs->hugepages_kobj);
2687 nhs->hugepages_kobj = NULL;
2688}
2689
9a305230
LS
2690
2691/*
10fbcf4c 2692 * Register hstate attributes for a single node device.
9a305230
LS
2693 * No-op if attributes already registered.
2694 */
3cd8b44f 2695static void hugetlb_register_node(struct node *node)
9a305230
LS
2696{
2697 struct hstate *h;
10fbcf4c 2698 struct node_hstate *nhs = &node_hstates[node->dev.id];
9a305230
LS
2699 int err;
2700
2701 if (nhs->hugepages_kobj)
2702 return; /* already allocated */
2703
2704 nhs->hugepages_kobj = kobject_create_and_add("hugepages",
10fbcf4c 2705 &node->dev.kobj);
9a305230
LS
2706 if (!nhs->hugepages_kobj)
2707 return;
2708
2709 for_each_hstate(h) {
2710 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
2711 nhs->hstate_kobjs,
2712 &per_node_hstate_attr_group);
2713 if (err) {
ffb22af5
AM
2714 pr_err("Hugetlb: Unable to add hstate %s for node %d\n",
2715 h->name, node->dev.id);
9a305230
LS
2716 hugetlb_unregister_node(node);
2717 break;
2718 }
2719 }
2720}
2721
2722/*
9b5e5d0f 2723 * hugetlb init time: register hstate attributes for all registered node
10fbcf4c
KS
2724 * devices of nodes that have memory. All on-line nodes should have
2725 * registered their associated device by this time.
9a305230 2726 */
7d9ca000 2727static void __init hugetlb_register_all_nodes(void)
9a305230
LS
2728{
2729 int nid;
2730
8cebfcd0 2731 for_each_node_state(nid, N_MEMORY) {
8732794b 2732 struct node *node = node_devices[nid];
10fbcf4c 2733 if (node->dev.id == nid)
9a305230
LS
2734 hugetlb_register_node(node);
2735 }
2736
2737 /*
10fbcf4c 2738 * Let the node device driver know we're here so it can
9a305230
LS
2739 * [un]register hstate attributes on node hotplug.
2740 */
2741 register_hugetlbfs_with_node(hugetlb_register_node,
2742 hugetlb_unregister_node);
2743}
2744#else /* !CONFIG_NUMA */
2745
2746static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
2747{
2748 BUG();
2749 if (nidp)
2750 *nidp = -1;
2751 return NULL;
2752}
2753
9a305230
LS
2754static void hugetlb_register_all_nodes(void) { }
2755
2756#endif
2757
a3437870
NA
2758static int __init hugetlb_init(void)
2759{
8382d914
DB
2760 int i;
2761
457c1b27 2762 if (!hugepages_supported())
0ef89d25 2763 return 0;
a3437870 2764
e11bfbfc 2765 if (!size_to_hstate(default_hstate_size)) {
d715cf80
LH
2766 if (default_hstate_size != 0) {
2767 pr_err("HugeTLB: unsupported default_hugepagesz %lu. Reverting to %lu\n",
2768 default_hstate_size, HPAGE_SIZE);
2769 }
2770
e11bfbfc
NP
2771 default_hstate_size = HPAGE_SIZE;
2772 if (!size_to_hstate(default_hstate_size))
2773 hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
a3437870 2774 }
972dc4de 2775 default_hstate_idx = hstate_index(size_to_hstate(default_hstate_size));
f8b74815
VT
2776 if (default_hstate_max_huge_pages) {
2777 if (!default_hstate.max_huge_pages)
2778 default_hstate.max_huge_pages = default_hstate_max_huge_pages;
2779 }
a3437870
NA
2780
2781 hugetlb_init_hstates();
aa888a74 2782 gather_bootmem_prealloc();
a3437870
NA
2783 report_hugepages();
2784
2785 hugetlb_sysfs_init();
9a305230 2786 hugetlb_register_all_nodes();
7179e7bf 2787 hugetlb_cgroup_file_init();
9a305230 2788
8382d914
DB
2789#ifdef CONFIG_SMP
2790 num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
2791#else
2792 num_fault_mutexes = 1;
2793#endif
c672c7f2 2794 hugetlb_fault_mutex_table =
6da2ec56
KC
2795 kmalloc_array(num_fault_mutexes, sizeof(struct mutex),
2796 GFP_KERNEL);
c672c7f2 2797 BUG_ON(!hugetlb_fault_mutex_table);
8382d914
DB
2798
2799 for (i = 0; i < num_fault_mutexes; i++)
c672c7f2 2800 mutex_init(&hugetlb_fault_mutex_table[i]);
a3437870
NA
2801 return 0;
2802}
3e89e1c5 2803subsys_initcall(hugetlb_init);
a3437870
NA
2804
2805/* Should be called on processing a hugepagesz=... option */
9fee021d
VT
2806void __init hugetlb_bad_size(void)
2807{
2808 parsed_valid_hugepagesz = false;
2809}
2810
d00181b9 2811void __init hugetlb_add_hstate(unsigned int order)
a3437870
NA
2812{
2813 struct hstate *h;
8faa8b07
AK
2814 unsigned long i;
2815
a3437870 2816 if (size_to_hstate(PAGE_SIZE << order)) {
598d8091 2817 pr_warn("hugepagesz= specified twice, ignoring\n");
a3437870
NA
2818 return;
2819 }
47d38344 2820 BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
a3437870 2821 BUG_ON(order == 0);
47d38344 2822 h = &hstates[hugetlb_max_hstate++];
a3437870
NA
2823 h->order = order;
2824 h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
8faa8b07
AK
2825 h->nr_huge_pages = 0;
2826 h->free_huge_pages = 0;
2827 for (i = 0; i < MAX_NUMNODES; ++i)
2828 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
0edaecfa 2829 INIT_LIST_HEAD(&h->hugepage_activelist);
54f18d35
AM
2830 h->next_nid_to_alloc = first_memory_node;
2831 h->next_nid_to_free = first_memory_node;
a3437870
NA
2832 snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
2833 huge_page_size(h)/1024);
8faa8b07 2834
a3437870
NA
2835 parsed_hstate = h;
2836}
2837
e11bfbfc 2838static int __init hugetlb_nrpages_setup(char *s)
a3437870
NA
2839{
2840 unsigned long *mhp;
8faa8b07 2841 static unsigned long *last_mhp;
a3437870 2842
9fee021d
VT
2843 if (!parsed_valid_hugepagesz) {
2844 pr_warn("hugepages = %s preceded by "
2845 "an unsupported hugepagesz, ignoring\n", s);
2846 parsed_valid_hugepagesz = true;
2847 return 1;
2848 }
a3437870 2849 /*
47d38344 2850 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter yet,
a3437870
NA
2851 * so this hugepages= parameter goes to the "default hstate".
2852 */
9fee021d 2853 else if (!hugetlb_max_hstate)
a3437870
NA
2854 mhp = &default_hstate_max_huge_pages;
2855 else
2856 mhp = &parsed_hstate->max_huge_pages;
2857
8faa8b07 2858 if (mhp == last_mhp) {
598d8091 2859 pr_warn("hugepages= specified twice without interleaving hugepagesz=, ignoring\n");
8faa8b07
AK
2860 return 1;
2861 }
2862
a3437870
NA
2863 if (sscanf(s, "%lu", mhp) <= 0)
2864 *mhp = 0;
2865
8faa8b07
AK
2866 /*
2867 * Global state is always initialized later in hugetlb_init.
2868 * But we need to allocate >= MAX_ORDER hstates here early to still
2869 * use the bootmem allocator.
2870 */
47d38344 2871 if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER)
8faa8b07
AK
2872 hugetlb_hstate_alloc_pages(parsed_hstate);
2873
2874 last_mhp = mhp;
2875
a3437870
NA
2876 return 1;
2877}
e11bfbfc
NP
2878__setup("hugepages=", hugetlb_nrpages_setup);
2879
2880static int __init hugetlb_default_setup(char *s)
2881{
2882 default_hstate_size = memparse(s, &s);
2883 return 1;
2884}
2885__setup("default_hugepagesz=", hugetlb_default_setup);
a3437870 2886
8a213460
NA
2887static unsigned int cpuset_mems_nr(unsigned int *array)
2888{
2889 int node;
2890 unsigned int nr = 0;
2891
2892 for_each_node_mask(node, cpuset_current_mems_allowed)
2893 nr += array[node];
2894
2895 return nr;
2896}
2897
2898#ifdef CONFIG_SYSCTL
06808b08
LS
2899static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
2900 struct ctl_table *table, int write,
2901 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 2902{
e5ff2159 2903 struct hstate *h = &default_hstate;
238d3c13 2904 unsigned long tmp = h->max_huge_pages;
08d4a246 2905 int ret;
e5ff2159 2906
457c1b27 2907 if (!hugepages_supported())
86613628 2908 return -EOPNOTSUPP;
457c1b27 2909
e5ff2159
AK
2910 table->data = &tmp;
2911 table->maxlen = sizeof(unsigned long);
08d4a246
MH
2912 ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2913 if (ret)
2914 goto out;
e5ff2159 2915
238d3c13
DR
2916 if (write)
2917 ret = __nr_hugepages_store_common(obey_mempolicy, h,
2918 NUMA_NO_NODE, tmp, *length);
08d4a246
MH
2919out:
2920 return ret;
1da177e4 2921}
396faf03 2922
06808b08
LS
2923int hugetlb_sysctl_handler(struct ctl_table *table, int write,
2924 void __user *buffer, size_t *length, loff_t *ppos)
2925{
2926
2927 return hugetlb_sysctl_handler_common(false, table, write,
2928 buffer, length, ppos);
2929}
2930
2931#ifdef CONFIG_NUMA
2932int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
2933 void __user *buffer, size_t *length, loff_t *ppos)
2934{
2935 return hugetlb_sysctl_handler_common(true, table, write,
2936 buffer, length, ppos);
2937}
2938#endif /* CONFIG_NUMA */
2939
a3d0c6aa 2940int hugetlb_overcommit_handler(struct ctl_table *table, int write,
8d65af78 2941 void __user *buffer,
a3d0c6aa
NA
2942 size_t *length, loff_t *ppos)
2943{
a5516438 2944 struct hstate *h = &default_hstate;
e5ff2159 2945 unsigned long tmp;
08d4a246 2946 int ret;
e5ff2159 2947
457c1b27 2948 if (!hugepages_supported())
86613628 2949 return -EOPNOTSUPP;
457c1b27 2950
c033a93c 2951 tmp = h->nr_overcommit_huge_pages;
e5ff2159 2952
bae7f4ae 2953 if (write && hstate_is_gigantic(h))
adbe8726
EM
2954 return -EINVAL;
2955
e5ff2159
AK
2956 table->data = &tmp;
2957 table->maxlen = sizeof(unsigned long);
08d4a246
MH
2958 ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2959 if (ret)
2960 goto out;
e5ff2159
AK
2961
2962 if (write) {
2963 spin_lock(&hugetlb_lock);
2964 h->nr_overcommit_huge_pages = tmp;
2965 spin_unlock(&hugetlb_lock);
2966 }
08d4a246
MH
2967out:
2968 return ret;
a3d0c6aa
NA
2969}
2970
1da177e4
LT
2971#endif /* CONFIG_SYSCTL */
2972
e1759c21 2973void hugetlb_report_meminfo(struct seq_file *m)
1da177e4 2974{
fcb2b0c5
RG
2975 struct hstate *h;
2976 unsigned long total = 0;
2977
457c1b27
NA
2978 if (!hugepages_supported())
2979 return;
fcb2b0c5
RG
2980
2981 for_each_hstate(h) {
2982 unsigned long count = h->nr_huge_pages;
2983
2984 total += (PAGE_SIZE << huge_page_order(h)) * count;
2985
2986 if (h == &default_hstate)
2987 seq_printf(m,
2988 "HugePages_Total: %5lu\n"
2989 "HugePages_Free: %5lu\n"
2990 "HugePages_Rsvd: %5lu\n"
2991 "HugePages_Surp: %5lu\n"
2992 "Hugepagesize: %8lu kB\n",
2993 count,
2994 h->free_huge_pages,
2995 h->resv_huge_pages,
2996 h->surplus_huge_pages,
2997 (PAGE_SIZE << huge_page_order(h)) / 1024);
2998 }
2999
3000 seq_printf(m, "Hugetlb: %8lu kB\n", total / 1024);
1da177e4
LT
3001}
3002
3003int hugetlb_report_node_meminfo(int nid, char *buf)
3004{
a5516438 3005 struct hstate *h = &default_hstate;
457c1b27
NA
3006 if (!hugepages_supported())
3007 return 0;
1da177e4
LT
3008 return sprintf(buf,
3009 "Node %d HugePages_Total: %5u\n"
a1de0919
NA
3010 "Node %d HugePages_Free: %5u\n"
3011 "Node %d HugePages_Surp: %5u\n",
a5516438
AK
3012 nid, h->nr_huge_pages_node[nid],
3013 nid, h->free_huge_pages_node[nid],
3014 nid, h->surplus_huge_pages_node[nid]);
1da177e4
LT
3015}
3016
949f7ec5
DR
3017void hugetlb_show_meminfo(void)
3018{
3019 struct hstate *h;
3020 int nid;
3021
457c1b27
NA
3022 if (!hugepages_supported())
3023 return;
3024
949f7ec5
DR
3025 for_each_node_state(nid, N_MEMORY)
3026 for_each_hstate(h)
3027 pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
3028 nid,
3029 h->nr_huge_pages_node[nid],
3030 h->free_huge_pages_node[nid],
3031 h->surplus_huge_pages_node[nid],
3032 1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
3033}
3034
5d317b2b
NH
3035void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
3036{
3037 seq_printf(m, "HugetlbPages:\t%8lu kB\n",
3038 atomic_long_read(&mm->hugetlb_usage) << (PAGE_SHIFT - 10));
3039}
3040
1da177e4
LT
3041/* Return the number pages of memory we physically have, in PAGE_SIZE units. */
3042unsigned long hugetlb_total_pages(void)
3043{
d0028588
WL
3044 struct hstate *h;
3045 unsigned long nr_total_pages = 0;
3046
3047 for_each_hstate(h)
3048 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
3049 return nr_total_pages;
1da177e4 3050}
1da177e4 3051
a5516438 3052static int hugetlb_acct_memory(struct hstate *h, long delta)
fc1b8a73
MG
3053{
3054 int ret = -ENOMEM;
3055
3056 spin_lock(&hugetlb_lock);
3057 /*
3058 * When cpuset is configured, it breaks the strict hugetlb page
3059 * reservation as the accounting is done on a global variable. Such
3060 * reservation is completely rubbish in the presence of cpuset because
3061 * the reservation is not checked against page availability for the
3062 * current cpuset. Application can still potentially OOM'ed by kernel
3063 * with lack of free htlb page in cpuset that the task is in.
3064 * Attempt to enforce strict accounting with cpuset is almost
3065 * impossible (or too ugly) because cpuset is too fluid that
3066 * task or memory node can be dynamically moved between cpusets.
3067 *
3068 * The change of semantics for shared hugetlb mapping with cpuset is
3069 * undesirable. However, in order to preserve some of the semantics,
3070 * we fall back to check against current free page availability as
3071 * a best attempt and hopefully to minimize the impact of changing
3072 * semantics that cpuset has.
3073 */
3074 if (delta > 0) {
a5516438 3075 if (gather_surplus_pages(h, delta) < 0)
fc1b8a73
MG
3076 goto out;
3077
a5516438
AK
3078 if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
3079 return_unused_surplus_pages(h, delta);
fc1b8a73
MG
3080 goto out;
3081 }
3082 }
3083
3084 ret = 0;
3085 if (delta < 0)
a5516438 3086 return_unused_surplus_pages(h, (unsigned long) -delta);
fc1b8a73
MG
3087
3088out:
3089 spin_unlock(&hugetlb_lock);
3090 return ret;
3091}
3092
84afd99b
AW
3093static void hugetlb_vm_op_open(struct vm_area_struct *vma)
3094{
f522c3ac 3095 struct resv_map *resv = vma_resv_map(vma);
84afd99b
AW
3096
3097 /*
3098 * This new VMA should share its siblings reservation map if present.
3099 * The VMA will only ever have a valid reservation map pointer where
3100 * it is being copied for another still existing VMA. As that VMA
25985edc 3101 * has a reference to the reservation map it cannot disappear until
84afd99b
AW
3102 * after this open call completes. It is therefore safe to take a
3103 * new reference here without additional locking.
3104 */
4e35f483 3105 if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
f522c3ac 3106 kref_get(&resv->refs);
84afd99b
AW
3107}
3108
a1e78772
MG
3109static void hugetlb_vm_op_close(struct vm_area_struct *vma)
3110{
a5516438 3111 struct hstate *h = hstate_vma(vma);
f522c3ac 3112 struct resv_map *resv = vma_resv_map(vma);
90481622 3113 struct hugepage_subpool *spool = subpool_vma(vma);
4e35f483 3114 unsigned long reserve, start, end;
1c5ecae3 3115 long gbl_reserve;
84afd99b 3116
4e35f483
JK
3117 if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
3118 return;
84afd99b 3119
4e35f483
JK
3120 start = vma_hugecache_offset(h, vma, vma->vm_start);
3121 end = vma_hugecache_offset(h, vma, vma->vm_end);
84afd99b 3122
4e35f483 3123 reserve = (end - start) - region_count(resv, start, end);
84afd99b 3124
4e35f483
JK
3125 kref_put(&resv->refs, resv_map_release);
3126
3127 if (reserve) {
1c5ecae3
MK
3128 /*
3129 * Decrement reserve counts. The global reserve count may be
3130 * adjusted if the subpool has a minimum size.
3131 */
3132 gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
3133 hugetlb_acct_memory(h, -gbl_reserve);
84afd99b 3134 }
a1e78772
MG
3135}
3136
31383c68
DW
3137static int hugetlb_vm_op_split(struct vm_area_struct *vma, unsigned long addr)
3138{
3139 if (addr & ~(huge_page_mask(hstate_vma(vma))))
3140 return -EINVAL;
3141 return 0;
3142}
3143
05ea8860
DW
3144static unsigned long hugetlb_vm_op_pagesize(struct vm_area_struct *vma)
3145{
3146 struct hstate *hstate = hstate_vma(vma);
3147
3148 return 1UL << huge_page_shift(hstate);
3149}
3150
1da177e4
LT
3151/*
3152 * We cannot handle pagefaults against hugetlb pages at all. They cause
3153 * handle_mm_fault() to try to instantiate regular-sized pages in the
3154 * hugegpage VMA. do_page_fault() is supposed to trap this, so BUG is we get
3155 * this far.
3156 */
b3ec9f33 3157static vm_fault_t hugetlb_vm_op_fault(struct vm_fault *vmf)
1da177e4
LT
3158{
3159 BUG();
d0217ac0 3160 return 0;
1da177e4
LT
3161}
3162
eec3636a
JC
3163/*
3164 * When a new function is introduced to vm_operations_struct and added
3165 * to hugetlb_vm_ops, please consider adding the function to shm_vm_ops.
3166 * This is because under System V memory model, mappings created via
3167 * shmget/shmat with "huge page" specified are backed by hugetlbfs files,
3168 * their original vm_ops are overwritten with shm_vm_ops.
3169 */
f0f37e2f 3170const struct vm_operations_struct hugetlb_vm_ops = {
d0217ac0 3171 .fault = hugetlb_vm_op_fault,
84afd99b 3172 .open = hugetlb_vm_op_open,
a1e78772 3173 .close = hugetlb_vm_op_close,
31383c68 3174 .split = hugetlb_vm_op_split,
05ea8860 3175 .pagesize = hugetlb_vm_op_pagesize,
1da177e4
LT
3176};
3177
1e8f889b
DG
3178static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
3179 int writable)
63551ae0
DG
3180{
3181 pte_t entry;
3182
1e8f889b 3183 if (writable) {
106c992a
GS
3184 entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
3185 vma->vm_page_prot)));
63551ae0 3186 } else {
106c992a
GS
3187 entry = huge_pte_wrprotect(mk_huge_pte(page,
3188 vma->vm_page_prot));
63551ae0
DG
3189 }
3190 entry = pte_mkyoung(entry);
3191 entry = pte_mkhuge(entry);
d9ed9faa 3192 entry = arch_make_huge_pte(entry, vma, page, writable);
63551ae0
DG
3193
3194 return entry;
3195}
3196
1e8f889b
DG
3197static void set_huge_ptep_writable(struct vm_area_struct *vma,
3198 unsigned long address, pte_t *ptep)
3199{
3200 pte_t entry;
3201
106c992a 3202 entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
32f84528 3203 if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
4b3073e1 3204 update_mmu_cache(vma, address, ptep);
1e8f889b
DG
3205}
3206
d5ed7444 3207bool is_hugetlb_entry_migration(pte_t pte)
4a705fef
NH
3208{
3209 swp_entry_t swp;
3210
3211 if (huge_pte_none(pte) || pte_present(pte))
d5ed7444 3212 return false;
4a705fef
NH
3213 swp = pte_to_swp_entry(pte);
3214 if (non_swap_entry(swp) && is_migration_entry(swp))
d5ed7444 3215 return true;
4a705fef 3216 else
d5ed7444 3217 return false;
4a705fef
NH
3218}
3219
3220static int is_hugetlb_entry_hwpoisoned(pte_t pte)
3221{
3222 swp_entry_t swp;
3223
3224 if (huge_pte_none(pte) || pte_present(pte))
3225 return 0;
3226 swp = pte_to_swp_entry(pte);
3227 if (non_swap_entry(swp) && is_hwpoison_entry(swp))
3228 return 1;
3229 else
3230 return 0;
3231}
1e8f889b 3232
63551ae0
DG
3233int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
3234 struct vm_area_struct *vma)
3235{
3236 pte_t *src_pte, *dst_pte, entry;
3237 struct page *ptepage;
1c59827d 3238 unsigned long addr;
1e8f889b 3239 int cow;
a5516438
AK
3240 struct hstate *h = hstate_vma(vma);
3241 unsigned long sz = huge_page_size(h);
e8569dd2
AS
3242 unsigned long mmun_start; /* For mmu_notifiers */
3243 unsigned long mmun_end; /* For mmu_notifiers */
3244 int ret = 0;
1e8f889b
DG
3245
3246 cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
63551ae0 3247
e8569dd2
AS
3248 mmun_start = vma->vm_start;
3249 mmun_end = vma->vm_end;
3250 if (cow)
3251 mmu_notifier_invalidate_range_start(src, mmun_start, mmun_end);
3252
a5516438 3253 for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
cb900f41 3254 spinlock_t *src_ptl, *dst_ptl;
7868a208 3255 src_pte = huge_pte_offset(src, addr, sz);
c74df32c
HD
3256 if (!src_pte)
3257 continue;
a5516438 3258 dst_pte = huge_pte_alloc(dst, addr, sz);
e8569dd2
AS
3259 if (!dst_pte) {
3260 ret = -ENOMEM;
3261 break;
3262 }
c5c99429
LW
3263
3264 /* If the pagetables are shared don't copy or take references */
3265 if (dst_pte == src_pte)
3266 continue;
3267
cb900f41
KS
3268 dst_ptl = huge_pte_lock(h, dst, dst_pte);
3269 src_ptl = huge_pte_lockptr(h, src, src_pte);
3270 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
4a705fef
NH
3271 entry = huge_ptep_get(src_pte);
3272 if (huge_pte_none(entry)) { /* skip none entry */
3273 ;
3274 } else if (unlikely(is_hugetlb_entry_migration(entry) ||
3275 is_hugetlb_entry_hwpoisoned(entry))) {
3276 swp_entry_t swp_entry = pte_to_swp_entry(entry);
3277
3278 if (is_write_migration_entry(swp_entry) && cow) {
3279 /*
3280 * COW mappings require pages in both
3281 * parent and child to be set to read.
3282 */
3283 make_migration_entry_read(&swp_entry);
3284 entry = swp_entry_to_pte(swp_entry);
e5251fd4
PA
3285 set_huge_swap_pte_at(src, addr, src_pte,
3286 entry, sz);
4a705fef 3287 }
e5251fd4 3288 set_huge_swap_pte_at(dst, addr, dst_pte, entry, sz);
4a705fef 3289 } else {
34ee645e 3290 if (cow) {
0f10851e
JG
3291 /*
3292 * No need to notify as we are downgrading page
3293 * table protection not changing it to point
3294 * to a new page.
3295 *
ad56b738 3296 * See Documentation/vm/mmu_notifier.rst
0f10851e 3297 */
7f2e9525 3298 huge_ptep_set_wrprotect(src, addr, src_pte);
34ee645e 3299 }
0253d634 3300 entry = huge_ptep_get(src_pte);
1c59827d
HD
3301 ptepage = pte_page(entry);
3302 get_page(ptepage);
53f9263b 3303 page_dup_rmap(ptepage, true);
1c59827d 3304 set_huge_pte_at(dst, addr, dst_pte, entry);
5d317b2b 3305 hugetlb_count_add(pages_per_huge_page(h), dst);
1c59827d 3306 }
cb900f41
KS
3307 spin_unlock(src_ptl);
3308 spin_unlock(dst_ptl);
63551ae0 3309 }
63551ae0 3310
e8569dd2
AS
3311 if (cow)
3312 mmu_notifier_invalidate_range_end(src, mmun_start, mmun_end);
3313
3314 return ret;
63551ae0
DG
3315}
3316
24669e58
AK
3317void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
3318 unsigned long start, unsigned long end,
3319 struct page *ref_page)
63551ae0
DG
3320{
3321 struct mm_struct *mm = vma->vm_mm;
3322 unsigned long address;
c7546f8f 3323 pte_t *ptep;
63551ae0 3324 pte_t pte;
cb900f41 3325 spinlock_t *ptl;
63551ae0 3326 struct page *page;
a5516438
AK
3327 struct hstate *h = hstate_vma(vma);
3328 unsigned long sz = huge_page_size(h);
2ec74c3e
SG
3329 const unsigned long mmun_start = start; /* For mmu_notifiers */
3330 const unsigned long mmun_end = end; /* For mmu_notifiers */
a5516438 3331
63551ae0 3332 WARN_ON(!is_vm_hugetlb_page(vma));
a5516438
AK
3333 BUG_ON(start & ~huge_page_mask(h));
3334 BUG_ON(end & ~huge_page_mask(h));
63551ae0 3335
07e32661
AK
3336 /*
3337 * This is a hugetlb vma, all the pte entries should point
3338 * to huge page.
3339 */
3340 tlb_remove_check_page_size_change(tlb, sz);
24669e58 3341 tlb_start_vma(tlb, vma);
2ec74c3e 3342 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
569f48b8 3343 address = start;
569f48b8 3344 for (; address < end; address += sz) {
7868a208 3345 ptep = huge_pte_offset(mm, address, sz);
4c887265 3346 if (!ptep)
c7546f8f
DG
3347 continue;
3348
cb900f41 3349 ptl = huge_pte_lock(h, mm, ptep);
31d49da5
AK
3350 if (huge_pmd_unshare(mm, &address, ptep)) {
3351 spin_unlock(ptl);
3352 continue;
3353 }
39dde65c 3354
6629326b 3355 pte = huge_ptep_get(ptep);
31d49da5
AK
3356 if (huge_pte_none(pte)) {
3357 spin_unlock(ptl);
3358 continue;
3359 }
6629326b
HD
3360
3361 /*
9fbc1f63
NH
3362 * Migrating hugepage or HWPoisoned hugepage is already
3363 * unmapped and its refcount is dropped, so just clear pte here.
6629326b 3364 */
9fbc1f63 3365 if (unlikely(!pte_present(pte))) {
9386fac3 3366 huge_pte_clear(mm, address, ptep, sz);
31d49da5
AK
3367 spin_unlock(ptl);
3368 continue;
8c4894c6 3369 }
6629326b
HD
3370
3371 page = pte_page(pte);
04f2cbe3
MG
3372 /*
3373 * If a reference page is supplied, it is because a specific
3374 * page is being unmapped, not a range. Ensure the page we
3375 * are about to unmap is the actual page of interest.
3376 */
3377 if (ref_page) {
31d49da5
AK
3378 if (page != ref_page) {
3379 spin_unlock(ptl);
3380 continue;
3381 }
04f2cbe3
MG
3382 /*
3383 * Mark the VMA as having unmapped its page so that
3384 * future faults in this VMA will fail rather than
3385 * looking like data was lost
3386 */
3387 set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
3388 }
3389
c7546f8f 3390 pte = huge_ptep_get_and_clear(mm, address, ptep);
b528e4b6 3391 tlb_remove_huge_tlb_entry(h, tlb, ptep, address);
106c992a 3392 if (huge_pte_dirty(pte))
6649a386 3393 set_page_dirty(page);
9e81130b 3394
5d317b2b 3395 hugetlb_count_sub(pages_per_huge_page(h), mm);
d281ee61 3396 page_remove_rmap(page, true);
31d49da5 3397
cb900f41 3398 spin_unlock(ptl);
e77b0852 3399 tlb_remove_page_size(tlb, page, huge_page_size(h));
31d49da5
AK
3400 /*
3401 * Bail out after unmapping reference page if supplied
3402 */
3403 if (ref_page)
3404 break;
fe1668ae 3405 }
2ec74c3e 3406 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
24669e58 3407 tlb_end_vma(tlb, vma);
1da177e4 3408}
63551ae0 3409
d833352a
MG
3410void __unmap_hugepage_range_final(struct mmu_gather *tlb,
3411 struct vm_area_struct *vma, unsigned long start,
3412 unsigned long end, struct page *ref_page)
3413{
3414 __unmap_hugepage_range(tlb, vma, start, end, ref_page);
3415
3416 /*
3417 * Clear this flag so that x86's huge_pmd_share page_table_shareable
3418 * test will fail on a vma being torn down, and not grab a page table
3419 * on its way out. We're lucky that the flag has such an appropriate
3420 * name, and can in fact be safely cleared here. We could clear it
3421 * before the __unmap_hugepage_range above, but all that's necessary
c8c06efa 3422 * is to clear it before releasing the i_mmap_rwsem. This works
d833352a 3423 * because in the context this is called, the VMA is about to be
c8c06efa 3424 * destroyed and the i_mmap_rwsem is held.
d833352a
MG
3425 */
3426 vma->vm_flags &= ~VM_MAYSHARE;
3427}
3428
502717f4 3429void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
04f2cbe3 3430 unsigned long end, struct page *ref_page)
502717f4 3431{
24669e58
AK
3432 struct mm_struct *mm;
3433 struct mmu_gather tlb;
3434
3435 mm = vma->vm_mm;
3436
2b047252 3437 tlb_gather_mmu(&tlb, mm, start, end);
24669e58
AK
3438 __unmap_hugepage_range(&tlb, vma, start, end, ref_page);
3439 tlb_finish_mmu(&tlb, start, end);
502717f4
CK
3440}
3441
04f2cbe3
MG
3442/*
3443 * This is called when the original mapper is failing to COW a MAP_PRIVATE
3444 * mappping it owns the reserve page for. The intention is to unmap the page
3445 * from other VMAs and let the children be SIGKILLed if they are faulting the
3446 * same region.
3447 */
2f4612af
DB
3448static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
3449 struct page *page, unsigned long address)
04f2cbe3 3450{
7526674d 3451 struct hstate *h = hstate_vma(vma);
04f2cbe3
MG
3452 struct vm_area_struct *iter_vma;
3453 struct address_space *mapping;
04f2cbe3
MG
3454 pgoff_t pgoff;
3455
3456 /*
3457 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
3458 * from page cache lookup which is in HPAGE_SIZE units.
3459 */
7526674d 3460 address = address & huge_page_mask(h);
36e4f20a
MH
3461 pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
3462 vma->vm_pgoff;
93c76a3d 3463 mapping = vma->vm_file->f_mapping;
04f2cbe3 3464
4eb2b1dc
MG
3465 /*
3466 * Take the mapping lock for the duration of the table walk. As
3467 * this mapping should be shared between all the VMAs,
3468 * __unmap_hugepage_range() is called as the lock is already held
3469 */
83cde9e8 3470 i_mmap_lock_write(mapping);
6b2dbba8 3471 vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
04f2cbe3
MG
3472 /* Do not unmap the current VMA */
3473 if (iter_vma == vma)
3474 continue;
3475
2f84a899
MG
3476 /*
3477 * Shared VMAs have their own reserves and do not affect
3478 * MAP_PRIVATE accounting but it is possible that a shared
3479 * VMA is using the same page so check and skip such VMAs.
3480 */
3481 if (iter_vma->vm_flags & VM_MAYSHARE)
3482 continue;
3483
04f2cbe3
MG
3484 /*
3485 * Unmap the page from other VMAs without their own reserves.
3486 * They get marked to be SIGKILLed if they fault in these
3487 * areas. This is because a future no-page fault on this VMA
3488 * could insert a zeroed page instead of the data existing
3489 * from the time of fork. This would look like data corruption
3490 */
3491 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
24669e58
AK
3492 unmap_hugepage_range(iter_vma, address,
3493 address + huge_page_size(h), page);
04f2cbe3 3494 }
83cde9e8 3495 i_mmap_unlock_write(mapping);
04f2cbe3
MG
3496}
3497
0fe6e20b
NH
3498/*
3499 * Hugetlb_cow() should be called with page lock of the original hugepage held.
ef009b25
MH
3500 * Called with hugetlb_instantiation_mutex held and pte_page locked so we
3501 * cannot race with other handlers or page migration.
3502 * Keep the pte_same checks anyway to make transition from the mutex easier.
0fe6e20b 3503 */
2b740303 3504static vm_fault_t hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
974e6d66 3505 unsigned long address, pte_t *ptep,
3999f52e 3506 struct page *pagecache_page, spinlock_t *ptl)
1e8f889b 3507{
3999f52e 3508 pte_t pte;
a5516438 3509 struct hstate *h = hstate_vma(vma);
1e8f889b 3510 struct page *old_page, *new_page;
2b740303
SJ
3511 int outside_reserve = 0;
3512 vm_fault_t ret = 0;
2ec74c3e
SG
3513 unsigned long mmun_start; /* For mmu_notifiers */
3514 unsigned long mmun_end; /* For mmu_notifiers */
974e6d66 3515 unsigned long haddr = address & huge_page_mask(h);
1e8f889b 3516
3999f52e 3517 pte = huge_ptep_get(ptep);
1e8f889b
DG
3518 old_page = pte_page(pte);
3519
04f2cbe3 3520retry_avoidcopy:
1e8f889b
DG
3521 /* If no-one else is actually using this page, avoid the copy
3522 * and just make the page writable */
37a2140d 3523 if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
5a49973d 3524 page_move_anon_rmap(old_page, vma);
5b7a1d40 3525 set_huge_ptep_writable(vma, haddr, ptep);
83c54070 3526 return 0;
1e8f889b
DG
3527 }
3528
04f2cbe3
MG
3529 /*
3530 * If the process that created a MAP_PRIVATE mapping is about to
3531 * perform a COW due to a shared page count, attempt to satisfy
3532 * the allocation without using the existing reserves. The pagecache
3533 * page is used to determine if the reserve at this address was
3534 * consumed or not. If reserves were used, a partial faulted mapping
3535 * at the time of fork() could consume its reserves on COW instead
3536 * of the full address range.
3537 */
5944d011 3538 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
04f2cbe3
MG
3539 old_page != pagecache_page)
3540 outside_reserve = 1;
3541
09cbfeaf 3542 get_page(old_page);
b76c8cfb 3543
ad4404a2
DB
3544 /*
3545 * Drop page table lock as buddy allocator may be called. It will
3546 * be acquired again before returning to the caller, as expected.
3547 */
cb900f41 3548 spin_unlock(ptl);
5b7a1d40 3549 new_page = alloc_huge_page(vma, haddr, outside_reserve);
1e8f889b 3550
2fc39cec 3551 if (IS_ERR(new_page)) {
04f2cbe3
MG
3552 /*
3553 * If a process owning a MAP_PRIVATE mapping fails to COW,
3554 * it is due to references held by a child and an insufficient
3555 * huge page pool. To guarantee the original mappers
3556 * reliability, unmap the page from child processes. The child
3557 * may get SIGKILLed if it later faults.
3558 */
3559 if (outside_reserve) {
09cbfeaf 3560 put_page(old_page);
04f2cbe3 3561 BUG_ON(huge_pte_none(pte));
5b7a1d40 3562 unmap_ref_private(mm, vma, old_page, haddr);
2f4612af
DB
3563 BUG_ON(huge_pte_none(pte));
3564 spin_lock(ptl);
5b7a1d40 3565 ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
2f4612af
DB
3566 if (likely(ptep &&
3567 pte_same(huge_ptep_get(ptep), pte)))
3568 goto retry_avoidcopy;
3569 /*
3570 * race occurs while re-acquiring page table
3571 * lock, and our job is done.
3572 */
3573 return 0;
04f2cbe3
MG
3574 }
3575
2b740303 3576 ret = vmf_error(PTR_ERR(new_page));
ad4404a2 3577 goto out_release_old;
1e8f889b
DG
3578 }
3579
0fe6e20b
NH
3580 /*
3581 * When the original hugepage is shared one, it does not have
3582 * anon_vma prepared.
3583 */
44e2aa93 3584 if (unlikely(anon_vma_prepare(vma))) {
ad4404a2
DB
3585 ret = VM_FAULT_OOM;
3586 goto out_release_all;
44e2aa93 3587 }
0fe6e20b 3588
974e6d66 3589 copy_user_huge_page(new_page, old_page, address, vma,
47ad8475 3590 pages_per_huge_page(h));
0ed361de 3591 __SetPageUptodate(new_page);
bcc54222 3592 set_page_huge_active(new_page);
1e8f889b 3593
5b7a1d40 3594 mmun_start = haddr;
2ec74c3e
SG
3595 mmun_end = mmun_start + huge_page_size(h);
3596 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
ad4404a2 3597
b76c8cfb 3598 /*
cb900f41 3599 * Retake the page table lock to check for racing updates
b76c8cfb
LW
3600 * before the page tables are altered
3601 */
cb900f41 3602 spin_lock(ptl);
5b7a1d40 3603 ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
a9af0c5d 3604 if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
07443a85
JK
3605 ClearPagePrivate(new_page);
3606
1e8f889b 3607 /* Break COW */
5b7a1d40 3608 huge_ptep_clear_flush(vma, haddr, ptep);
34ee645e 3609 mmu_notifier_invalidate_range(mm, mmun_start, mmun_end);
5b7a1d40 3610 set_huge_pte_at(mm, haddr, ptep,
1e8f889b 3611 make_huge_pte(vma, new_page, 1));
d281ee61 3612 page_remove_rmap(old_page, true);
5b7a1d40 3613 hugepage_add_new_anon_rmap(new_page, vma, haddr);
1e8f889b
DG
3614 /* Make the old page be freed below */
3615 new_page = old_page;
3616 }
cb900f41 3617 spin_unlock(ptl);
2ec74c3e 3618 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
ad4404a2 3619out_release_all:
5b7a1d40 3620 restore_reserve_on_error(h, vma, haddr, new_page);
09cbfeaf 3621 put_page(new_page);
ad4404a2 3622out_release_old:
09cbfeaf 3623 put_page(old_page);
8312034f 3624
ad4404a2
DB
3625 spin_lock(ptl); /* Caller expects lock to be held */
3626 return ret;
1e8f889b
DG
3627}
3628
04f2cbe3 3629/* Return the pagecache page at a given address within a VMA */
a5516438
AK
3630static struct page *hugetlbfs_pagecache_page(struct hstate *h,
3631 struct vm_area_struct *vma, unsigned long address)
04f2cbe3
MG
3632{
3633 struct address_space *mapping;
e7c4b0bf 3634 pgoff_t idx;
04f2cbe3
MG
3635
3636 mapping = vma->vm_file->f_mapping;
a5516438 3637 idx = vma_hugecache_offset(h, vma, address);
04f2cbe3
MG
3638
3639 return find_lock_page(mapping, idx);
3640}
3641
3ae77f43
HD
3642/*
3643 * Return whether there is a pagecache page to back given address within VMA.
3644 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
3645 */
3646static bool hugetlbfs_pagecache_present(struct hstate *h,
2a15efc9
HD
3647 struct vm_area_struct *vma, unsigned long address)
3648{
3649 struct address_space *mapping;
3650 pgoff_t idx;
3651 struct page *page;
3652
3653 mapping = vma->vm_file->f_mapping;
3654 idx = vma_hugecache_offset(h, vma, address);
3655
3656 page = find_get_page(mapping, idx);
3657 if (page)
3658 put_page(page);
3659 return page != NULL;
3660}
3661
ab76ad54
MK
3662int huge_add_to_page_cache(struct page *page, struct address_space *mapping,
3663 pgoff_t idx)
3664{
3665 struct inode *inode = mapping->host;
3666 struct hstate *h = hstate_inode(inode);
3667 int err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
3668
3669 if (err)
3670 return err;
3671 ClearPagePrivate(page);
3672
3673 spin_lock(&inode->i_lock);
3674 inode->i_blocks += blocks_per_huge_page(h);
3675 spin_unlock(&inode->i_lock);
3676 return 0;
3677}
3678
2b740303
SJ
3679static vm_fault_t hugetlb_no_page(struct mm_struct *mm,
3680 struct vm_area_struct *vma,
3681 struct address_space *mapping, pgoff_t idx,
3682 unsigned long address, pte_t *ptep, unsigned int flags)
ac9b9c66 3683{
a5516438 3684 struct hstate *h = hstate_vma(vma);
2b740303 3685 vm_fault_t ret = VM_FAULT_SIGBUS;
409eb8c2 3686 int anon_rmap = 0;
4c887265 3687 unsigned long size;
4c887265 3688 struct page *page;
1e8f889b 3689 pte_t new_pte;
cb900f41 3690 spinlock_t *ptl;
285b8dca 3691 unsigned long haddr = address & huge_page_mask(h);
4c887265 3692
04f2cbe3
MG
3693 /*
3694 * Currently, we are forced to kill the process in the event the
3695 * original mapper has unmapped pages from the child due to a failed
25985edc 3696 * COW. Warn that such a situation has occurred as it may not be obvious
04f2cbe3
MG
3697 */
3698 if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
910154d5 3699 pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n",
ffb22af5 3700 current->pid);
04f2cbe3
MG
3701 return ret;
3702 }
3703
4c887265
AL
3704 /*
3705 * Use page lock to guard against racing truncation
3706 * before we get page_table_lock.
3707 */
6bda666a
CL
3708retry:
3709 page = find_lock_page(mapping, idx);
3710 if (!page) {
a5516438 3711 size = i_size_read(mapping->host) >> huge_page_shift(h);
ebed4bfc
HD
3712 if (idx >= size)
3713 goto out;
1a1aad8a
MK
3714
3715 /*
3716 * Check for page in userfault range
3717 */
3718 if (userfaultfd_missing(vma)) {
3719 u32 hash;
3720 struct vm_fault vmf = {
3721 .vma = vma,
285b8dca 3722 .address = haddr,
1a1aad8a
MK
3723 .flags = flags,
3724 /*
3725 * Hard to debug if it ends up being
3726 * used by a callee that assumes
3727 * something about the other
3728 * uninitialized fields... same as in
3729 * memory.c
3730 */
3731 };
3732
3733 /*
3734 * hugetlb_fault_mutex must be dropped before
3735 * handling userfault. Reacquire after handling
3736 * fault to make calling code simpler.
3737 */
3738 hash = hugetlb_fault_mutex_hash(h, mm, vma, mapping,
285b8dca 3739 idx, haddr);
1a1aad8a
MK
3740 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
3741 ret = handle_userfault(&vmf, VM_UFFD_MISSING);
3742 mutex_lock(&hugetlb_fault_mutex_table[hash]);
3743 goto out;
3744 }
3745
285b8dca 3746 page = alloc_huge_page(vma, haddr, 0);
2fc39cec 3747 if (IS_ERR(page)) {
2b740303 3748 ret = vmf_error(PTR_ERR(page));
6bda666a
CL
3749 goto out;
3750 }
47ad8475 3751 clear_huge_page(page, address, pages_per_huge_page(h));
0ed361de 3752 __SetPageUptodate(page);
bcc54222 3753 set_page_huge_active(page);
ac9b9c66 3754
f83a275d 3755 if (vma->vm_flags & VM_MAYSHARE) {
ab76ad54 3756 int err = huge_add_to_page_cache(page, mapping, idx);
6bda666a
CL
3757 if (err) {
3758 put_page(page);
6bda666a
CL
3759 if (err == -EEXIST)
3760 goto retry;
3761 goto out;
3762 }
23be7468 3763 } else {
6bda666a 3764 lock_page(page);
0fe6e20b
NH
3765 if (unlikely(anon_vma_prepare(vma))) {
3766 ret = VM_FAULT_OOM;
3767 goto backout_unlocked;
3768 }
409eb8c2 3769 anon_rmap = 1;
23be7468 3770 }
0fe6e20b 3771 } else {
998b4382
NH
3772 /*
3773 * If memory error occurs between mmap() and fault, some process
3774 * don't have hwpoisoned swap entry for errored virtual address.
3775 * So we need to block hugepage fault by PG_hwpoison bit check.
3776 */
3777 if (unlikely(PageHWPoison(page))) {
32f84528 3778 ret = VM_FAULT_HWPOISON |
972dc4de 3779 VM_FAULT_SET_HINDEX(hstate_index(h));
998b4382
NH
3780 goto backout_unlocked;
3781 }
6bda666a 3782 }
1e8f889b 3783
57303d80
AW
3784 /*
3785 * If we are going to COW a private mapping later, we examine the
3786 * pending reservations for this page now. This will ensure that
3787 * any allocations necessary to record that reservation occur outside
3788 * the spinlock.
3789 */
5e911373 3790 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
285b8dca 3791 if (vma_needs_reservation(h, vma, haddr) < 0) {
2b26736c
AW
3792 ret = VM_FAULT_OOM;
3793 goto backout_unlocked;
3794 }
5e911373 3795 /* Just decrements count, does not deallocate */
285b8dca 3796 vma_end_reservation(h, vma, haddr);
5e911373 3797 }
57303d80 3798
8bea8052 3799 ptl = huge_pte_lock(h, mm, ptep);
a5516438 3800 size = i_size_read(mapping->host) >> huge_page_shift(h);
4c887265
AL
3801 if (idx >= size)
3802 goto backout;
3803
83c54070 3804 ret = 0;
7f2e9525 3805 if (!huge_pte_none(huge_ptep_get(ptep)))
4c887265
AL
3806 goto backout;
3807
07443a85
JK
3808 if (anon_rmap) {
3809 ClearPagePrivate(page);
285b8dca 3810 hugepage_add_new_anon_rmap(page, vma, haddr);
ac714904 3811 } else
53f9263b 3812 page_dup_rmap(page, true);
1e8f889b
DG
3813 new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
3814 && (vma->vm_flags & VM_SHARED)));
285b8dca 3815 set_huge_pte_at(mm, haddr, ptep, new_pte);
1e8f889b 3816
5d317b2b 3817 hugetlb_count_add(pages_per_huge_page(h), mm);
788c7df4 3818 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
1e8f889b 3819 /* Optimization, do the COW without a second fault */
974e6d66 3820 ret = hugetlb_cow(mm, vma, address, ptep, page, ptl);
1e8f889b
DG
3821 }
3822
cb900f41 3823 spin_unlock(ptl);
4c887265
AL
3824 unlock_page(page);
3825out:
ac9b9c66 3826 return ret;
4c887265
AL
3827
3828backout:
cb900f41 3829 spin_unlock(ptl);
2b26736c 3830backout_unlocked:
4c887265 3831 unlock_page(page);
285b8dca 3832 restore_reserve_on_error(h, vma, haddr, page);
4c887265
AL
3833 put_page(page);
3834 goto out;
ac9b9c66
HD
3835}
3836
8382d914 3837#ifdef CONFIG_SMP
c672c7f2 3838u32 hugetlb_fault_mutex_hash(struct hstate *h, struct mm_struct *mm,
8382d914
DB
3839 struct vm_area_struct *vma,
3840 struct address_space *mapping,
3841 pgoff_t idx, unsigned long address)
3842{
3843 unsigned long key[2];
3844 u32 hash;
3845
3846 if (vma->vm_flags & VM_SHARED) {
3847 key[0] = (unsigned long) mapping;
3848 key[1] = idx;
3849 } else {
3850 key[0] = (unsigned long) mm;
3851 key[1] = address >> huge_page_shift(h);
3852 }
3853
3854 hash = jhash2((u32 *)&key, sizeof(key)/sizeof(u32), 0);
3855
3856 return hash & (num_fault_mutexes - 1);
3857}
3858#else
3859/*
3860 * For uniprocesor systems we always use a single mutex, so just
3861 * return 0 and avoid the hashing overhead.
3862 */
c672c7f2 3863u32 hugetlb_fault_mutex_hash(struct hstate *h, struct mm_struct *mm,
8382d914
DB
3864 struct vm_area_struct *vma,
3865 struct address_space *mapping,
3866 pgoff_t idx, unsigned long address)
3867{
3868 return 0;
3869}
3870#endif
3871
2b740303 3872vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
788c7df4 3873 unsigned long address, unsigned int flags)
86e5216f 3874{
8382d914 3875 pte_t *ptep, entry;
cb900f41 3876 spinlock_t *ptl;
2b740303 3877 vm_fault_t ret;
8382d914
DB
3878 u32 hash;
3879 pgoff_t idx;
0fe6e20b 3880 struct page *page = NULL;
57303d80 3881 struct page *pagecache_page = NULL;
a5516438 3882 struct hstate *h = hstate_vma(vma);
8382d914 3883 struct address_space *mapping;
0f792cf9 3884 int need_wait_lock = 0;
285b8dca 3885 unsigned long haddr = address & huge_page_mask(h);
86e5216f 3886
285b8dca 3887 ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
fd6a03ed
NH
3888 if (ptep) {
3889 entry = huge_ptep_get(ptep);
290408d4 3890 if (unlikely(is_hugetlb_entry_migration(entry))) {
cb900f41 3891 migration_entry_wait_huge(vma, mm, ptep);
290408d4
NH
3892 return 0;
3893 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
32f84528 3894 return VM_FAULT_HWPOISON_LARGE |
972dc4de 3895 VM_FAULT_SET_HINDEX(hstate_index(h));
0d777df5 3896 } else {
285b8dca 3897 ptep = huge_pte_alloc(mm, haddr, huge_page_size(h));
0d777df5
NH
3898 if (!ptep)
3899 return VM_FAULT_OOM;
fd6a03ed
NH
3900 }
3901
8382d914 3902 mapping = vma->vm_file->f_mapping;
285b8dca 3903 idx = vma_hugecache_offset(h, vma, haddr);
8382d914 3904
3935baa9
DG
3905 /*
3906 * Serialize hugepage allocation and instantiation, so that we don't
3907 * get spurious allocation failures if two CPUs race to instantiate
3908 * the same page in the page cache.
3909 */
285b8dca 3910 hash = hugetlb_fault_mutex_hash(h, mm, vma, mapping, idx, haddr);
c672c7f2 3911 mutex_lock(&hugetlb_fault_mutex_table[hash]);
8382d914 3912
7f2e9525
GS
3913 entry = huge_ptep_get(ptep);
3914 if (huge_pte_none(entry)) {
8382d914 3915 ret = hugetlb_no_page(mm, vma, mapping, idx, address, ptep, flags);
b4d1d99f 3916 goto out_mutex;
3935baa9 3917 }
86e5216f 3918
83c54070 3919 ret = 0;
1e8f889b 3920
0f792cf9
NH
3921 /*
3922 * entry could be a migration/hwpoison entry at this point, so this
3923 * check prevents the kernel from going below assuming that we have
3924 * a active hugepage in pagecache. This goto expects the 2nd page fault,
3925 * and is_hugetlb_entry_(migration|hwpoisoned) check will properly
3926 * handle it.
3927 */
3928 if (!pte_present(entry))
3929 goto out_mutex;
3930
57303d80
AW
3931 /*
3932 * If we are going to COW the mapping later, we examine the pending
3933 * reservations for this page now. This will ensure that any
3934 * allocations necessary to record that reservation occur outside the
3935 * spinlock. For private mappings, we also lookup the pagecache
3936 * page now as it is used to determine if a reservation has been
3937 * consumed.
3938 */
106c992a 3939 if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
285b8dca 3940 if (vma_needs_reservation(h, vma, haddr) < 0) {
2b26736c 3941 ret = VM_FAULT_OOM;
b4d1d99f 3942 goto out_mutex;
2b26736c 3943 }
5e911373 3944 /* Just decrements count, does not deallocate */
285b8dca 3945 vma_end_reservation(h, vma, haddr);
57303d80 3946
f83a275d 3947 if (!(vma->vm_flags & VM_MAYSHARE))
57303d80 3948 pagecache_page = hugetlbfs_pagecache_page(h,
285b8dca 3949 vma, haddr);
57303d80
AW
3950 }
3951
0f792cf9
NH
3952 ptl = huge_pte_lock(h, mm, ptep);
3953
3954 /* Check for a racing update before calling hugetlb_cow */
3955 if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
3956 goto out_ptl;
3957
56c9cfb1
NH
3958 /*
3959 * hugetlb_cow() requires page locks of pte_page(entry) and
3960 * pagecache_page, so here we need take the former one
3961 * when page != pagecache_page or !pagecache_page.
56c9cfb1
NH
3962 */
3963 page = pte_page(entry);
3964 if (page != pagecache_page)
0f792cf9
NH
3965 if (!trylock_page(page)) {
3966 need_wait_lock = 1;
3967 goto out_ptl;
3968 }
b4d1d99f 3969
0f792cf9 3970 get_page(page);
b4d1d99f 3971
788c7df4 3972 if (flags & FAULT_FLAG_WRITE) {
106c992a 3973 if (!huge_pte_write(entry)) {
974e6d66 3974 ret = hugetlb_cow(mm, vma, address, ptep,
3999f52e 3975 pagecache_page, ptl);
0f792cf9 3976 goto out_put_page;
b4d1d99f 3977 }
106c992a 3978 entry = huge_pte_mkdirty(entry);
b4d1d99f
DG
3979 }
3980 entry = pte_mkyoung(entry);
285b8dca 3981 if (huge_ptep_set_access_flags(vma, haddr, ptep, entry,
788c7df4 3982 flags & FAULT_FLAG_WRITE))
285b8dca 3983 update_mmu_cache(vma, haddr, ptep);
0f792cf9
NH
3984out_put_page:
3985 if (page != pagecache_page)
3986 unlock_page(page);
3987 put_page(page);
cb900f41
KS
3988out_ptl:
3989 spin_unlock(ptl);
57303d80
AW
3990
3991 if (pagecache_page) {
3992 unlock_page(pagecache_page);
3993 put_page(pagecache_page);
3994 }
b4d1d99f 3995out_mutex:
c672c7f2 3996 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
0f792cf9
NH
3997 /*
3998 * Generally it's safe to hold refcount during waiting page lock. But
3999 * here we just wait to defer the next page fault to avoid busy loop and
4000 * the page is not used after unlocked before returning from the current
4001 * page fault. So we are safe from accessing freed page, even if we wait
4002 * here without taking refcount.
4003 */
4004 if (need_wait_lock)
4005 wait_on_page_locked(page);
1e8f889b 4006 return ret;
86e5216f
AL
4007}
4008
8fb5debc
MK
4009/*
4010 * Used by userfaultfd UFFDIO_COPY. Based on mcopy_atomic_pte with
4011 * modifications for huge pages.
4012 */
4013int hugetlb_mcopy_atomic_pte(struct mm_struct *dst_mm,
4014 pte_t *dst_pte,
4015 struct vm_area_struct *dst_vma,
4016 unsigned long dst_addr,
4017 unsigned long src_addr,
4018 struct page **pagep)
4019{
1e392147
AA
4020 struct address_space *mapping;
4021 pgoff_t idx;
4022 unsigned long size;
1c9e8def 4023 int vm_shared = dst_vma->vm_flags & VM_SHARED;
8fb5debc
MK
4024 struct hstate *h = hstate_vma(dst_vma);
4025 pte_t _dst_pte;
4026 spinlock_t *ptl;
4027 int ret;
4028 struct page *page;
4029
4030 if (!*pagep) {
4031 ret = -ENOMEM;
4032 page = alloc_huge_page(dst_vma, dst_addr, 0);
4033 if (IS_ERR(page))
4034 goto out;
4035
4036 ret = copy_huge_page_from_user(page,
4037 (const void __user *) src_addr,
810a56b9 4038 pages_per_huge_page(h), false);
8fb5debc
MK
4039
4040 /* fallback to copy_from_user outside mmap_sem */
4041 if (unlikely(ret)) {
4042 ret = -EFAULT;
4043 *pagep = page;
4044 /* don't free the page */
4045 goto out;
4046 }
4047 } else {
4048 page = *pagep;
4049 *pagep = NULL;
4050 }
4051
4052 /*
4053 * The memory barrier inside __SetPageUptodate makes sure that
4054 * preceding stores to the page contents become visible before
4055 * the set_pte_at() write.
4056 */
4057 __SetPageUptodate(page);
4058 set_page_huge_active(page);
4059
1e392147
AA
4060 mapping = dst_vma->vm_file->f_mapping;
4061 idx = vma_hugecache_offset(h, dst_vma, dst_addr);
4062
1c9e8def
MK
4063 /*
4064 * If shared, add to page cache
4065 */
4066 if (vm_shared) {
1e392147
AA
4067 size = i_size_read(mapping->host) >> huge_page_shift(h);
4068 ret = -EFAULT;
4069 if (idx >= size)
4070 goto out_release_nounlock;
1c9e8def 4071
1e392147
AA
4072 /*
4073 * Serialization between remove_inode_hugepages() and
4074 * huge_add_to_page_cache() below happens through the
4075 * hugetlb_fault_mutex_table that here must be hold by
4076 * the caller.
4077 */
1c9e8def
MK
4078 ret = huge_add_to_page_cache(page, mapping, idx);
4079 if (ret)
4080 goto out_release_nounlock;
4081 }
4082
8fb5debc
MK
4083 ptl = huge_pte_lockptr(h, dst_mm, dst_pte);
4084 spin_lock(ptl);
4085
1e392147
AA
4086 /*
4087 * Recheck the i_size after holding PT lock to make sure not
4088 * to leave any page mapped (as page_mapped()) beyond the end
4089 * of the i_size (remove_inode_hugepages() is strict about
4090 * enforcing that). If we bail out here, we'll also leave a
4091 * page in the radix tree in the vm_shared case beyond the end
4092 * of the i_size, but remove_inode_hugepages() will take care
4093 * of it as soon as we drop the hugetlb_fault_mutex_table.
4094 */
4095 size = i_size_read(mapping->host) >> huge_page_shift(h);
4096 ret = -EFAULT;
4097 if (idx >= size)
4098 goto out_release_unlock;
4099
8fb5debc
MK
4100 ret = -EEXIST;
4101 if (!huge_pte_none(huge_ptep_get(dst_pte)))
4102 goto out_release_unlock;
4103
1c9e8def
MK
4104 if (vm_shared) {
4105 page_dup_rmap(page, true);
4106 } else {
4107 ClearPagePrivate(page);
4108 hugepage_add_new_anon_rmap(page, dst_vma, dst_addr);
4109 }
8fb5debc
MK
4110
4111 _dst_pte = make_huge_pte(dst_vma, page, dst_vma->vm_flags & VM_WRITE);
4112 if (dst_vma->vm_flags & VM_WRITE)
4113 _dst_pte = huge_pte_mkdirty(_dst_pte);
4114 _dst_pte = pte_mkyoung(_dst_pte);
4115
4116 set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
4117
4118 (void)huge_ptep_set_access_flags(dst_vma, dst_addr, dst_pte, _dst_pte,
4119 dst_vma->vm_flags & VM_WRITE);
4120 hugetlb_count_add(pages_per_huge_page(h), dst_mm);
4121
4122 /* No need to invalidate - it was non-present before */
4123 update_mmu_cache(dst_vma, dst_addr, dst_pte);
4124
4125 spin_unlock(ptl);
1c9e8def
MK
4126 if (vm_shared)
4127 unlock_page(page);
8fb5debc
MK
4128 ret = 0;
4129out:
4130 return ret;
4131out_release_unlock:
4132 spin_unlock(ptl);
1c9e8def
MK
4133 if (vm_shared)
4134 unlock_page(page);
5af10dfd 4135out_release_nounlock:
8fb5debc
MK
4136 put_page(page);
4137 goto out;
4138}
4139
28a35716
ML
4140long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
4141 struct page **pages, struct vm_area_struct **vmas,
4142 unsigned long *position, unsigned long *nr_pages,
87ffc118 4143 long i, unsigned int flags, int *nonblocking)
63551ae0 4144{
d5d4b0aa
CK
4145 unsigned long pfn_offset;
4146 unsigned long vaddr = *position;
28a35716 4147 unsigned long remainder = *nr_pages;
a5516438 4148 struct hstate *h = hstate_vma(vma);
2be7cfed 4149 int err = -EFAULT;
63551ae0 4150
63551ae0 4151 while (vaddr < vma->vm_end && remainder) {
4c887265 4152 pte_t *pte;
cb900f41 4153 spinlock_t *ptl = NULL;
2a15efc9 4154 int absent;
4c887265 4155 struct page *page;
63551ae0 4156
02057967
DR
4157 /*
4158 * If we have a pending SIGKILL, don't keep faulting pages and
4159 * potentially allocating memory.
4160 */
4161 if (unlikely(fatal_signal_pending(current))) {
4162 remainder = 0;
4163 break;
4164 }
4165
4c887265
AL
4166 /*
4167 * Some archs (sparc64, sh*) have multiple pte_ts to
2a15efc9 4168 * each hugepage. We have to make sure we get the
4c887265 4169 * first, for the page indexing below to work.
cb900f41
KS
4170 *
4171 * Note that page table lock is not held when pte is null.
4c887265 4172 */
7868a208
PA
4173 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h),
4174 huge_page_size(h));
cb900f41
KS
4175 if (pte)
4176 ptl = huge_pte_lock(h, mm, pte);
2a15efc9
HD
4177 absent = !pte || huge_pte_none(huge_ptep_get(pte));
4178
4179 /*
4180 * When coredumping, it suits get_dump_page if we just return
3ae77f43
HD
4181 * an error where there's an empty slot with no huge pagecache
4182 * to back it. This way, we avoid allocating a hugepage, and
4183 * the sparse dumpfile avoids allocating disk blocks, but its
4184 * huge holes still show up with zeroes where they need to be.
2a15efc9 4185 */
3ae77f43
HD
4186 if (absent && (flags & FOLL_DUMP) &&
4187 !hugetlbfs_pagecache_present(h, vma, vaddr)) {
cb900f41
KS
4188 if (pte)
4189 spin_unlock(ptl);
2a15efc9
HD
4190 remainder = 0;
4191 break;
4192 }
63551ae0 4193
9cc3a5bd
NH
4194 /*
4195 * We need call hugetlb_fault for both hugepages under migration
4196 * (in which case hugetlb_fault waits for the migration,) and
4197 * hwpoisoned hugepages (in which case we need to prevent the
4198 * caller from accessing to them.) In order to do this, we use
4199 * here is_swap_pte instead of is_hugetlb_entry_migration and
4200 * is_hugetlb_entry_hwpoisoned. This is because it simply covers
4201 * both cases, and because we can't follow correct pages
4202 * directly from any kind of swap entries.
4203 */
4204 if (absent || is_swap_pte(huge_ptep_get(pte)) ||
106c992a
GS
4205 ((flags & FOLL_WRITE) &&
4206 !huge_pte_write(huge_ptep_get(pte)))) {
2b740303 4207 vm_fault_t ret;
87ffc118 4208 unsigned int fault_flags = 0;
63551ae0 4209
cb900f41
KS
4210 if (pte)
4211 spin_unlock(ptl);
87ffc118
AA
4212 if (flags & FOLL_WRITE)
4213 fault_flags |= FAULT_FLAG_WRITE;
4214 if (nonblocking)
4215 fault_flags |= FAULT_FLAG_ALLOW_RETRY;
4216 if (flags & FOLL_NOWAIT)
4217 fault_flags |= FAULT_FLAG_ALLOW_RETRY |
4218 FAULT_FLAG_RETRY_NOWAIT;
4219 if (flags & FOLL_TRIED) {
4220 VM_WARN_ON_ONCE(fault_flags &
4221 FAULT_FLAG_ALLOW_RETRY);
4222 fault_flags |= FAULT_FLAG_TRIED;
4223 }
4224 ret = hugetlb_fault(mm, vma, vaddr, fault_flags);
4225 if (ret & VM_FAULT_ERROR) {
2be7cfed 4226 err = vm_fault_to_errno(ret, flags);
87ffc118
AA
4227 remainder = 0;
4228 break;
4229 }
4230 if (ret & VM_FAULT_RETRY) {
4231 if (nonblocking)
4232 *nonblocking = 0;
4233 *nr_pages = 0;
4234 /*
4235 * VM_FAULT_RETRY must not return an
4236 * error, it will return zero
4237 * instead.
4238 *
4239 * No need to update "position" as the
4240 * caller will not check it after
4241 * *nr_pages is set to 0.
4242 */
4243 return i;
4244 }
4245 continue;
4c887265
AL
4246 }
4247
a5516438 4248 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
7f2e9525 4249 page = pte_page(huge_ptep_get(pte));
d5d4b0aa 4250same_page:
d6692183 4251 if (pages) {
2a15efc9 4252 pages[i] = mem_map_offset(page, pfn_offset);
ddc58f27 4253 get_page(pages[i]);
d6692183 4254 }
63551ae0
DG
4255
4256 if (vmas)
4257 vmas[i] = vma;
4258
4259 vaddr += PAGE_SIZE;
d5d4b0aa 4260 ++pfn_offset;
63551ae0
DG
4261 --remainder;
4262 ++i;
d5d4b0aa 4263 if (vaddr < vma->vm_end && remainder &&
a5516438 4264 pfn_offset < pages_per_huge_page(h)) {
d5d4b0aa
CK
4265 /*
4266 * We use pfn_offset to avoid touching the pageframes
4267 * of this compound page.
4268 */
4269 goto same_page;
4270 }
cb900f41 4271 spin_unlock(ptl);
63551ae0 4272 }
28a35716 4273 *nr_pages = remainder;
87ffc118
AA
4274 /*
4275 * setting position is actually required only if remainder is
4276 * not zero but it's faster not to add a "if (remainder)"
4277 * branch.
4278 */
63551ae0
DG
4279 *position = vaddr;
4280
2be7cfed 4281 return i ? i : err;
63551ae0 4282}
8f860591 4283
5491ae7b
AK
4284#ifndef __HAVE_ARCH_FLUSH_HUGETLB_TLB_RANGE
4285/*
4286 * ARCHes with special requirements for evicting HUGETLB backing TLB entries can
4287 * implement this.
4288 */
4289#define flush_hugetlb_tlb_range(vma, addr, end) flush_tlb_range(vma, addr, end)
4290#endif
4291
7da4d641 4292unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
8f860591
ZY
4293 unsigned long address, unsigned long end, pgprot_t newprot)
4294{
4295 struct mm_struct *mm = vma->vm_mm;
4296 unsigned long start = address;
4297 pte_t *ptep;
4298 pte_t pte;
a5516438 4299 struct hstate *h = hstate_vma(vma);
7da4d641 4300 unsigned long pages = 0;
8f860591
ZY
4301
4302 BUG_ON(address >= end);
4303 flush_cache_range(vma, address, end);
4304
a5338093 4305 mmu_notifier_invalidate_range_start(mm, start, end);
83cde9e8 4306 i_mmap_lock_write(vma->vm_file->f_mapping);
a5516438 4307 for (; address < end; address += huge_page_size(h)) {
cb900f41 4308 spinlock_t *ptl;
7868a208 4309 ptep = huge_pte_offset(mm, address, huge_page_size(h));
8f860591
ZY
4310 if (!ptep)
4311 continue;
cb900f41 4312 ptl = huge_pte_lock(h, mm, ptep);
7da4d641
PZ
4313 if (huge_pmd_unshare(mm, &address, ptep)) {
4314 pages++;
cb900f41 4315 spin_unlock(ptl);
39dde65c 4316 continue;
7da4d641 4317 }
a8bda28d
NH
4318 pte = huge_ptep_get(ptep);
4319 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
4320 spin_unlock(ptl);
4321 continue;
4322 }
4323 if (unlikely(is_hugetlb_entry_migration(pte))) {
4324 swp_entry_t entry = pte_to_swp_entry(pte);
4325
4326 if (is_write_migration_entry(entry)) {
4327 pte_t newpte;
4328
4329 make_migration_entry_read(&entry);
4330 newpte = swp_entry_to_pte(entry);
e5251fd4
PA
4331 set_huge_swap_pte_at(mm, address, ptep,
4332 newpte, huge_page_size(h));
a8bda28d
NH
4333 pages++;
4334 }
4335 spin_unlock(ptl);
4336 continue;
4337 }
4338 if (!huge_pte_none(pte)) {
8f860591 4339 pte = huge_ptep_get_and_clear(mm, address, ptep);
106c992a 4340 pte = pte_mkhuge(huge_pte_modify(pte, newprot));
be7517d6 4341 pte = arch_make_huge_pte(pte, vma, NULL, 0);
8f860591 4342 set_huge_pte_at(mm, address, ptep, pte);
7da4d641 4343 pages++;
8f860591 4344 }
cb900f41 4345 spin_unlock(ptl);
8f860591 4346 }
d833352a 4347 /*
c8c06efa 4348 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
d833352a 4349 * may have cleared our pud entry and done put_page on the page table:
c8c06efa 4350 * once we release i_mmap_rwsem, another task can do the final put_page
d833352a
MG
4351 * and that page table be reused and filled with junk.
4352 */
5491ae7b 4353 flush_hugetlb_tlb_range(vma, start, end);
0f10851e
JG
4354 /*
4355 * No need to call mmu_notifier_invalidate_range() we are downgrading
4356 * page table protection not changing it to point to a new page.
4357 *
ad56b738 4358 * See Documentation/vm/mmu_notifier.rst
0f10851e 4359 */
83cde9e8 4360 i_mmap_unlock_write(vma->vm_file->f_mapping);
a5338093 4361 mmu_notifier_invalidate_range_end(mm, start, end);
7da4d641
PZ
4362
4363 return pages << h->order;
8f860591
ZY
4364}
4365
a1e78772
MG
4366int hugetlb_reserve_pages(struct inode *inode,
4367 long from, long to,
5a6fe125 4368 struct vm_area_struct *vma,
ca16d140 4369 vm_flags_t vm_flags)
e4e574b7 4370{
17c9d12e 4371 long ret, chg;
a5516438 4372 struct hstate *h = hstate_inode(inode);
90481622 4373 struct hugepage_subpool *spool = subpool_inode(inode);
9119a41e 4374 struct resv_map *resv_map;
1c5ecae3 4375 long gbl_reserve;
e4e574b7 4376
63489f8e
MK
4377 /* This should never happen */
4378 if (from > to) {
4379 VM_WARN(1, "%s called with a negative range\n", __func__);
4380 return -EINVAL;
4381 }
4382
17c9d12e
MG
4383 /*
4384 * Only apply hugepage reservation if asked. At fault time, an
4385 * attempt will be made for VM_NORESERVE to allocate a page
90481622 4386 * without using reserves
17c9d12e 4387 */
ca16d140 4388 if (vm_flags & VM_NORESERVE)
17c9d12e
MG
4389 return 0;
4390
a1e78772
MG
4391 /*
4392 * Shared mappings base their reservation on the number of pages that
4393 * are already allocated on behalf of the file. Private mappings need
4394 * to reserve the full area even if read-only as mprotect() may be
4395 * called to make the mapping read-write. Assume !vma is a shm mapping
4396 */
9119a41e 4397 if (!vma || vma->vm_flags & VM_MAYSHARE) {
4e35f483 4398 resv_map = inode_resv_map(inode);
9119a41e 4399
1406ec9b 4400 chg = region_chg(resv_map, from, to);
9119a41e
JK
4401
4402 } else {
4403 resv_map = resv_map_alloc();
17c9d12e
MG
4404 if (!resv_map)
4405 return -ENOMEM;
4406
a1e78772 4407 chg = to - from;
84afd99b 4408
17c9d12e
MG
4409 set_vma_resv_map(vma, resv_map);
4410 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
4411 }
4412
c50ac050
DH
4413 if (chg < 0) {
4414 ret = chg;
4415 goto out_err;
4416 }
8a630112 4417
1c5ecae3
MK
4418 /*
4419 * There must be enough pages in the subpool for the mapping. If
4420 * the subpool has a minimum size, there may be some global
4421 * reservations already in place (gbl_reserve).
4422 */
4423 gbl_reserve = hugepage_subpool_get_pages(spool, chg);
4424 if (gbl_reserve < 0) {
c50ac050
DH
4425 ret = -ENOSPC;
4426 goto out_err;
4427 }
5a6fe125
MG
4428
4429 /*
17c9d12e 4430 * Check enough hugepages are available for the reservation.
90481622 4431 * Hand the pages back to the subpool if there are not
5a6fe125 4432 */
1c5ecae3 4433 ret = hugetlb_acct_memory(h, gbl_reserve);
68842c9b 4434 if (ret < 0) {
1c5ecae3
MK
4435 /* put back original number of pages, chg */
4436 (void)hugepage_subpool_put_pages(spool, chg);
c50ac050 4437 goto out_err;
68842c9b 4438 }
17c9d12e
MG
4439
4440 /*
4441 * Account for the reservations made. Shared mappings record regions
4442 * that have reservations as they are shared by multiple VMAs.
4443 * When the last VMA disappears, the region map says how much
4444 * the reservation was and the page cache tells how much of
4445 * the reservation was consumed. Private mappings are per-VMA and
4446 * only the consumed reservations are tracked. When the VMA
4447 * disappears, the original reservation is the VMA size and the
4448 * consumed reservations are stored in the map. Hence, nothing
4449 * else has to be done for private mappings here
4450 */
33039678
MK
4451 if (!vma || vma->vm_flags & VM_MAYSHARE) {
4452 long add = region_add(resv_map, from, to);
4453
4454 if (unlikely(chg > add)) {
4455 /*
4456 * pages in this range were added to the reserve
4457 * map between region_chg and region_add. This
4458 * indicates a race with alloc_huge_page. Adjust
4459 * the subpool and reserve counts modified above
4460 * based on the difference.
4461 */
4462 long rsv_adjust;
4463
4464 rsv_adjust = hugepage_subpool_put_pages(spool,
4465 chg - add);
4466 hugetlb_acct_memory(h, -rsv_adjust);
4467 }
4468 }
a43a8c39 4469 return 0;
c50ac050 4470out_err:
5e911373 4471 if (!vma || vma->vm_flags & VM_MAYSHARE)
ff8c0c53
MK
4472 /* Don't call region_abort if region_chg failed */
4473 if (chg >= 0)
4474 region_abort(resv_map, from, to);
f031dd27
JK
4475 if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
4476 kref_put(&resv_map->refs, resv_map_release);
c50ac050 4477 return ret;
a43a8c39
CK
4478}
4479
b5cec28d
MK
4480long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
4481 long freed)
a43a8c39 4482{
a5516438 4483 struct hstate *h = hstate_inode(inode);
4e35f483 4484 struct resv_map *resv_map = inode_resv_map(inode);
9119a41e 4485 long chg = 0;
90481622 4486 struct hugepage_subpool *spool = subpool_inode(inode);
1c5ecae3 4487 long gbl_reserve;
45c682a6 4488
b5cec28d
MK
4489 if (resv_map) {
4490 chg = region_del(resv_map, start, end);
4491 /*
4492 * region_del() can fail in the rare case where a region
4493 * must be split and another region descriptor can not be
4494 * allocated. If end == LONG_MAX, it will not fail.
4495 */
4496 if (chg < 0)
4497 return chg;
4498 }
4499
45c682a6 4500 spin_lock(&inode->i_lock);
e4c6f8be 4501 inode->i_blocks -= (blocks_per_huge_page(h) * freed);
45c682a6
KC
4502 spin_unlock(&inode->i_lock);
4503
1c5ecae3
MK
4504 /*
4505 * If the subpool has a minimum size, the number of global
4506 * reservations to be released may be adjusted.
4507 */
4508 gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
4509 hugetlb_acct_memory(h, -gbl_reserve);
b5cec28d
MK
4510
4511 return 0;
a43a8c39 4512}
93f70f90 4513
3212b535
SC
4514#ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
4515static unsigned long page_table_shareable(struct vm_area_struct *svma,
4516 struct vm_area_struct *vma,
4517 unsigned long addr, pgoff_t idx)
4518{
4519 unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
4520 svma->vm_start;
4521 unsigned long sbase = saddr & PUD_MASK;
4522 unsigned long s_end = sbase + PUD_SIZE;
4523
4524 /* Allow segments to share if only one is marked locked */
de60f5f1
EM
4525 unsigned long vm_flags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
4526 unsigned long svm_flags = svma->vm_flags & VM_LOCKED_CLEAR_MASK;
3212b535
SC
4527
4528 /*
4529 * match the virtual addresses, permission and the alignment of the
4530 * page table page.
4531 */
4532 if (pmd_index(addr) != pmd_index(saddr) ||
4533 vm_flags != svm_flags ||
4534 sbase < svma->vm_start || svma->vm_end < s_end)
4535 return 0;
4536
4537 return saddr;
4538}
4539
31aafb45 4540static bool vma_shareable(struct vm_area_struct *vma, unsigned long addr)
3212b535
SC
4541{
4542 unsigned long base = addr & PUD_MASK;
4543 unsigned long end = base + PUD_SIZE;
4544
4545 /*
4546 * check on proper vm_flags and page table alignment
4547 */
4548 if (vma->vm_flags & VM_MAYSHARE &&
4549 vma->vm_start <= base && end <= vma->vm_end)
31aafb45
NK
4550 return true;
4551 return false;
3212b535
SC
4552}
4553
4554/*
4555 * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
4556 * and returns the corresponding pte. While this is not necessary for the
4557 * !shared pmd case because we can allocate the pmd later as well, it makes the
4558 * code much cleaner. pmd allocation is essential for the shared case because
c8c06efa 4559 * pud has to be populated inside the same i_mmap_rwsem section - otherwise
3212b535
SC
4560 * racing tasks could either miss the sharing (see huge_pte_offset) or select a
4561 * bad pmd for sharing.
4562 */
4563pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
4564{
4565 struct vm_area_struct *vma = find_vma(mm, addr);
4566 struct address_space *mapping = vma->vm_file->f_mapping;
4567 pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
4568 vma->vm_pgoff;
4569 struct vm_area_struct *svma;
4570 unsigned long saddr;
4571 pte_t *spte = NULL;
4572 pte_t *pte;
cb900f41 4573 spinlock_t *ptl;
3212b535
SC
4574
4575 if (!vma_shareable(vma, addr))
4576 return (pte_t *)pmd_alloc(mm, pud, addr);
4577
83cde9e8 4578 i_mmap_lock_write(mapping);
3212b535
SC
4579 vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
4580 if (svma == vma)
4581 continue;
4582
4583 saddr = page_table_shareable(svma, vma, addr, idx);
4584 if (saddr) {
7868a208
PA
4585 spte = huge_pte_offset(svma->vm_mm, saddr,
4586 vma_mmu_pagesize(svma));
3212b535
SC
4587 if (spte) {
4588 get_page(virt_to_page(spte));
4589 break;
4590 }
4591 }
4592 }
4593
4594 if (!spte)
4595 goto out;
4596
8bea8052 4597 ptl = huge_pte_lock(hstate_vma(vma), mm, spte);
dc6c9a35 4598 if (pud_none(*pud)) {
3212b535
SC
4599 pud_populate(mm, pud,
4600 (pmd_t *)((unsigned long)spte & PAGE_MASK));
c17b1f42 4601 mm_inc_nr_pmds(mm);
dc6c9a35 4602 } else {
3212b535 4603 put_page(virt_to_page(spte));
dc6c9a35 4604 }
cb900f41 4605 spin_unlock(ptl);
3212b535
SC
4606out:
4607 pte = (pte_t *)pmd_alloc(mm, pud, addr);
83cde9e8 4608 i_mmap_unlock_write(mapping);
3212b535
SC
4609 return pte;
4610}
4611
4612/*
4613 * unmap huge page backed by shared pte.
4614 *
4615 * Hugetlb pte page is ref counted at the time of mapping. If pte is shared
4616 * indicated by page_count > 1, unmap is achieved by clearing pud and
4617 * decrementing the ref count. If count == 1, the pte page is not shared.
4618 *
cb900f41 4619 * called with page table lock held.
3212b535
SC
4620 *
4621 * returns: 1 successfully unmapped a shared pte page
4622 * 0 the underlying pte page is not shared, or it is the last user
4623 */
4624int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
4625{
4626 pgd_t *pgd = pgd_offset(mm, *addr);
c2febafc
KS
4627 p4d_t *p4d = p4d_offset(pgd, *addr);
4628 pud_t *pud = pud_offset(p4d, *addr);
3212b535
SC
4629
4630 BUG_ON(page_count(virt_to_page(ptep)) == 0);
4631 if (page_count(virt_to_page(ptep)) == 1)
4632 return 0;
4633
4634 pud_clear(pud);
4635 put_page(virt_to_page(ptep));
dc6c9a35 4636 mm_dec_nr_pmds(mm);
3212b535
SC
4637 *addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE;
4638 return 1;
4639}
9e5fc74c
SC
4640#define want_pmd_share() (1)
4641#else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
4642pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
4643{
4644 return NULL;
4645}
e81f2d22
ZZ
4646
4647int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
4648{
4649 return 0;
4650}
9e5fc74c 4651#define want_pmd_share() (0)
3212b535
SC
4652#endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
4653
9e5fc74c
SC
4654#ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
4655pte_t *huge_pte_alloc(struct mm_struct *mm,
4656 unsigned long addr, unsigned long sz)
4657{
4658 pgd_t *pgd;
c2febafc 4659 p4d_t *p4d;
9e5fc74c
SC
4660 pud_t *pud;
4661 pte_t *pte = NULL;
4662
4663 pgd = pgd_offset(mm, addr);
f4f0a3d8
KS
4664 p4d = p4d_alloc(mm, pgd, addr);
4665 if (!p4d)
4666 return NULL;
c2febafc 4667 pud = pud_alloc(mm, p4d, addr);
9e5fc74c
SC
4668 if (pud) {
4669 if (sz == PUD_SIZE) {
4670 pte = (pte_t *)pud;
4671 } else {
4672 BUG_ON(sz != PMD_SIZE);
4673 if (want_pmd_share() && pud_none(*pud))
4674 pte = huge_pmd_share(mm, addr, pud);
4675 else
4676 pte = (pte_t *)pmd_alloc(mm, pud, addr);
4677 }
4678 }
4e666314 4679 BUG_ON(pte && pte_present(*pte) && !pte_huge(*pte));
9e5fc74c
SC
4680
4681 return pte;
4682}
4683
9b19df29
PA
4684/*
4685 * huge_pte_offset() - Walk the page table to resolve the hugepage
4686 * entry at address @addr
4687 *
4688 * Return: Pointer to page table or swap entry (PUD or PMD) for
4689 * address @addr, or NULL if a p*d_none() entry is encountered and the
4690 * size @sz doesn't match the hugepage size at this level of the page
4691 * table.
4692 */
7868a208
PA
4693pte_t *huge_pte_offset(struct mm_struct *mm,
4694 unsigned long addr, unsigned long sz)
9e5fc74c
SC
4695{
4696 pgd_t *pgd;
c2febafc 4697 p4d_t *p4d;
9e5fc74c 4698 pud_t *pud;
c2febafc 4699 pmd_t *pmd;
9e5fc74c
SC
4700
4701 pgd = pgd_offset(mm, addr);
c2febafc
KS
4702 if (!pgd_present(*pgd))
4703 return NULL;
4704 p4d = p4d_offset(pgd, addr);
4705 if (!p4d_present(*p4d))
4706 return NULL;
9b19df29 4707
c2febafc 4708 pud = pud_offset(p4d, addr);
9b19df29 4709 if (sz != PUD_SIZE && pud_none(*pud))
c2febafc 4710 return NULL;
9b19df29
PA
4711 /* hugepage or swap? */
4712 if (pud_huge(*pud) || !pud_present(*pud))
c2febafc 4713 return (pte_t *)pud;
9b19df29 4714
c2febafc 4715 pmd = pmd_offset(pud, addr);
9b19df29
PA
4716 if (sz != PMD_SIZE && pmd_none(*pmd))
4717 return NULL;
4718 /* hugepage or swap? */
4719 if (pmd_huge(*pmd) || !pmd_present(*pmd))
4720 return (pte_t *)pmd;
4721
4722 return NULL;
9e5fc74c
SC
4723}
4724
61f77eda
NH
4725#endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
4726
4727/*
4728 * These functions are overwritable if your architecture needs its own
4729 * behavior.
4730 */
4731struct page * __weak
4732follow_huge_addr(struct mm_struct *mm, unsigned long address,
4733 int write)
4734{
4735 return ERR_PTR(-EINVAL);
4736}
4737
4dc71451
AK
4738struct page * __weak
4739follow_huge_pd(struct vm_area_struct *vma,
4740 unsigned long address, hugepd_t hpd, int flags, int pdshift)
4741{
4742 WARN(1, "hugepd follow called with no support for hugepage directory format\n");
4743 return NULL;
4744}
4745
61f77eda 4746struct page * __weak
9e5fc74c 4747follow_huge_pmd(struct mm_struct *mm, unsigned long address,
e66f17ff 4748 pmd_t *pmd, int flags)
9e5fc74c 4749{
e66f17ff
NH
4750 struct page *page = NULL;
4751 spinlock_t *ptl;
c9d398fa 4752 pte_t pte;
e66f17ff
NH
4753retry:
4754 ptl = pmd_lockptr(mm, pmd);
4755 spin_lock(ptl);
4756 /*
4757 * make sure that the address range covered by this pmd is not
4758 * unmapped from other threads.
4759 */
4760 if (!pmd_huge(*pmd))
4761 goto out;
c9d398fa
NH
4762 pte = huge_ptep_get((pte_t *)pmd);
4763 if (pte_present(pte)) {
97534127 4764 page = pmd_page(*pmd) + ((address & ~PMD_MASK) >> PAGE_SHIFT);
e66f17ff
NH
4765 if (flags & FOLL_GET)
4766 get_page(page);
4767 } else {
c9d398fa 4768 if (is_hugetlb_entry_migration(pte)) {
e66f17ff
NH
4769 spin_unlock(ptl);
4770 __migration_entry_wait(mm, (pte_t *)pmd, ptl);
4771 goto retry;
4772 }
4773 /*
4774 * hwpoisoned entry is treated as no_page_table in
4775 * follow_page_mask().
4776 */
4777 }
4778out:
4779 spin_unlock(ptl);
9e5fc74c
SC
4780 return page;
4781}
4782
61f77eda 4783struct page * __weak
9e5fc74c 4784follow_huge_pud(struct mm_struct *mm, unsigned long address,
e66f17ff 4785 pud_t *pud, int flags)
9e5fc74c 4786{
e66f17ff
NH
4787 if (flags & FOLL_GET)
4788 return NULL;
9e5fc74c 4789
e66f17ff 4790 return pte_page(*(pte_t *)pud) + ((address & ~PUD_MASK) >> PAGE_SHIFT);
9e5fc74c
SC
4791}
4792
faaa5b62
AK
4793struct page * __weak
4794follow_huge_pgd(struct mm_struct *mm, unsigned long address, pgd_t *pgd, int flags)
4795{
4796 if (flags & FOLL_GET)
4797 return NULL;
4798
4799 return pte_page(*(pte_t *)pgd) + ((address & ~PGDIR_MASK) >> PAGE_SHIFT);
4800}
4801
31caf665
NH
4802bool isolate_huge_page(struct page *page, struct list_head *list)
4803{
bcc54222
NH
4804 bool ret = true;
4805
309381fe 4806 VM_BUG_ON_PAGE(!PageHead(page), page);
31caf665 4807 spin_lock(&hugetlb_lock);
bcc54222
NH
4808 if (!page_huge_active(page) || !get_page_unless_zero(page)) {
4809 ret = false;
4810 goto unlock;
4811 }
4812 clear_page_huge_active(page);
31caf665 4813 list_move_tail(&page->lru, list);
bcc54222 4814unlock:
31caf665 4815 spin_unlock(&hugetlb_lock);
bcc54222 4816 return ret;
31caf665
NH
4817}
4818
4819void putback_active_hugepage(struct page *page)
4820{
309381fe 4821 VM_BUG_ON_PAGE(!PageHead(page), page);
31caf665 4822 spin_lock(&hugetlb_lock);
bcc54222 4823 set_page_huge_active(page);
31caf665
NH
4824 list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
4825 spin_unlock(&hugetlb_lock);
4826 put_page(page);
4827}
ab5ac90a
MH
4828
4829void move_hugetlb_state(struct page *oldpage, struct page *newpage, int reason)
4830{
4831 struct hstate *h = page_hstate(oldpage);
4832
4833 hugetlb_cgroup_migrate(oldpage, newpage);
4834 set_page_owner_migrate_reason(newpage, reason);
4835
4836 /*
4837 * transfer temporary state of the new huge page. This is
4838 * reverse to other transitions because the newpage is going to
4839 * be final while the old one will be freed so it takes over
4840 * the temporary status.
4841 *
4842 * Also note that we have to transfer the per-node surplus state
4843 * here as well otherwise the global surplus count will not match
4844 * the per-node's.
4845 */
4846 if (PageHugeTemporary(newpage)) {
4847 int old_nid = page_to_nid(oldpage);
4848 int new_nid = page_to_nid(newpage);
4849
4850 SetPageHugeTemporary(oldpage);
4851 ClearPageHugeTemporary(newpage);
4852
4853 spin_lock(&hugetlb_lock);
4854 if (h->surplus_huge_pages_node[old_nid]) {
4855 h->surplus_huge_pages_node[old_nid]--;
4856 h->surplus_huge_pages_node[new_nid]++;
4857 }
4858 spin_unlock(&hugetlb_lock);
4859 }
4860}