thp: khugepaged_prealloc_page() forgot to reset the page alloc indicator
[linux-2.6-block.git] / mm / huge_memory.c
CommitLineData
71e3aac0
AA
1/*
2 * Copyright (C) 2009 Red Hat, Inc.
3 *
4 * This work is licensed under the terms of the GNU GPL, version 2. See
5 * the COPYING file in the top-level directory.
6 */
7
8#include <linux/mm.h>
9#include <linux/sched.h>
10#include <linux/highmem.h>
11#include <linux/hugetlb.h>
12#include <linux/mmu_notifier.h>
13#include <linux/rmap.h>
14#include <linux/swap.h>
ba76149f
AA
15#include <linux/mm_inline.h>
16#include <linux/kthread.h>
17#include <linux/khugepaged.h>
878aee7d 18#include <linux/freezer.h>
a664b2d8 19#include <linux/mman.h>
71e3aac0
AA
20#include <asm/tlb.h>
21#include <asm/pgalloc.h>
22#include "internal.h"
23
ba76149f
AA
24/*
25 * By default transparent hugepage support is enabled for all mappings
26 * and khugepaged scans all mappings. Defrag is only invoked by
27 * khugepaged hugepage allocations and by page faults inside
28 * MADV_HUGEPAGE regions to avoid the risk of slowing down short lived
29 * allocations.
30 */
71e3aac0 31unsigned long transparent_hugepage_flags __read_mostly =
13ece886 32#ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
ba76149f 33 (1<<TRANSPARENT_HUGEPAGE_FLAG)|
13ece886
AA
34#endif
35#ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
36 (1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
37#endif
d39d33c3 38 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_FLAG)|
ba76149f
AA
39 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
40
41/* default scan 8*512 pte (or vmas) every 30 second */
42static unsigned int khugepaged_pages_to_scan __read_mostly = HPAGE_PMD_NR*8;
43static unsigned int khugepaged_pages_collapsed;
44static unsigned int khugepaged_full_scans;
45static unsigned int khugepaged_scan_sleep_millisecs __read_mostly = 10000;
46/* during fragmentation poll the hugepage allocator once every minute */
47static unsigned int khugepaged_alloc_sleep_millisecs __read_mostly = 60000;
48static struct task_struct *khugepaged_thread __read_mostly;
49static DEFINE_MUTEX(khugepaged_mutex);
50static DEFINE_SPINLOCK(khugepaged_mm_lock);
51static DECLARE_WAIT_QUEUE_HEAD(khugepaged_wait);
52/*
53 * default collapse hugepages if there is at least one pte mapped like
54 * it would have happened if the vma was large enough during page
55 * fault.
56 */
57static unsigned int khugepaged_max_ptes_none __read_mostly = HPAGE_PMD_NR-1;
58
59static int khugepaged(void *none);
60static int mm_slots_hash_init(void);
61static int khugepaged_slab_init(void);
62static void khugepaged_slab_free(void);
63
64#define MM_SLOTS_HASH_HEADS 1024
65static struct hlist_head *mm_slots_hash __read_mostly;
66static struct kmem_cache *mm_slot_cache __read_mostly;
67
68/**
69 * struct mm_slot - hash lookup from mm to mm_slot
70 * @hash: hash collision list
71 * @mm_node: khugepaged scan list headed in khugepaged_scan.mm_head
72 * @mm: the mm that this information is valid for
73 */
74struct mm_slot {
75 struct hlist_node hash;
76 struct list_head mm_node;
77 struct mm_struct *mm;
78};
79
80/**
81 * struct khugepaged_scan - cursor for scanning
82 * @mm_head: the head of the mm list to scan
83 * @mm_slot: the current mm_slot we are scanning
84 * @address: the next address inside that to be scanned
85 *
86 * There is only the one khugepaged_scan instance of this cursor structure.
87 */
88struct khugepaged_scan {
89 struct list_head mm_head;
90 struct mm_slot *mm_slot;
91 unsigned long address;
2f1da642
HS
92};
93static struct khugepaged_scan khugepaged_scan = {
ba76149f
AA
94 .mm_head = LIST_HEAD_INIT(khugepaged_scan.mm_head),
95};
96
f000565a
AA
97
98static int set_recommended_min_free_kbytes(void)
99{
100 struct zone *zone;
101 int nr_zones = 0;
102 unsigned long recommended_min;
103 extern int min_free_kbytes;
104
17c230af 105 if (!khugepaged_enabled())
f000565a
AA
106 return 0;
107
108 for_each_populated_zone(zone)
109 nr_zones++;
110
111 /* Make sure at least 2 hugepages are free for MIGRATE_RESERVE */
112 recommended_min = pageblock_nr_pages * nr_zones * 2;
113
114 /*
115 * Make sure that on average at least two pageblocks are almost free
116 * of another type, one for a migratetype to fall back to and a
117 * second to avoid subsequent fallbacks of other types There are 3
118 * MIGRATE_TYPES we care about.
119 */
120 recommended_min += pageblock_nr_pages * nr_zones *
121 MIGRATE_PCPTYPES * MIGRATE_PCPTYPES;
122
123 /* don't ever allow to reserve more than 5% of the lowmem */
124 recommended_min = min(recommended_min,
125 (unsigned long) nr_free_buffer_pages() / 20);
126 recommended_min <<= (PAGE_SHIFT-10);
127
128 if (recommended_min > min_free_kbytes)
129 min_free_kbytes = recommended_min;
130 setup_per_zone_wmarks();
131 return 0;
132}
133late_initcall(set_recommended_min_free_kbytes);
134
ba76149f
AA
135static int start_khugepaged(void)
136{
137 int err = 0;
138 if (khugepaged_enabled()) {
ba76149f
AA
139 if (!khugepaged_thread)
140 khugepaged_thread = kthread_run(khugepaged, NULL,
141 "khugepaged");
142 if (unlikely(IS_ERR(khugepaged_thread))) {
143 printk(KERN_ERR
144 "khugepaged: kthread_run(khugepaged) failed\n");
145 err = PTR_ERR(khugepaged_thread);
146 khugepaged_thread = NULL;
147 }
911891af
XG
148
149 if (!list_empty(&khugepaged_scan.mm_head))
ba76149f 150 wake_up_interruptible(&khugepaged_wait);
f000565a
AA
151
152 set_recommended_min_free_kbytes();
911891af 153 } else if (khugepaged_thread) {
911891af
XG
154 kthread_stop(khugepaged_thread);
155 khugepaged_thread = NULL;
156 }
637e3a27 157
ba76149f
AA
158 return err;
159}
71e3aac0
AA
160
161#ifdef CONFIG_SYSFS
ba76149f 162
71e3aac0
AA
163static ssize_t double_flag_show(struct kobject *kobj,
164 struct kobj_attribute *attr, char *buf,
165 enum transparent_hugepage_flag enabled,
166 enum transparent_hugepage_flag req_madv)
167{
168 if (test_bit(enabled, &transparent_hugepage_flags)) {
169 VM_BUG_ON(test_bit(req_madv, &transparent_hugepage_flags));
170 return sprintf(buf, "[always] madvise never\n");
171 } else if (test_bit(req_madv, &transparent_hugepage_flags))
172 return sprintf(buf, "always [madvise] never\n");
173 else
174 return sprintf(buf, "always madvise [never]\n");
175}
176static ssize_t double_flag_store(struct kobject *kobj,
177 struct kobj_attribute *attr,
178 const char *buf, size_t count,
179 enum transparent_hugepage_flag enabled,
180 enum transparent_hugepage_flag req_madv)
181{
182 if (!memcmp("always", buf,
183 min(sizeof("always")-1, count))) {
184 set_bit(enabled, &transparent_hugepage_flags);
185 clear_bit(req_madv, &transparent_hugepage_flags);
186 } else if (!memcmp("madvise", buf,
187 min(sizeof("madvise")-1, count))) {
188 clear_bit(enabled, &transparent_hugepage_flags);
189 set_bit(req_madv, &transparent_hugepage_flags);
190 } else if (!memcmp("never", buf,
191 min(sizeof("never")-1, count))) {
192 clear_bit(enabled, &transparent_hugepage_flags);
193 clear_bit(req_madv, &transparent_hugepage_flags);
194 } else
195 return -EINVAL;
196
197 return count;
198}
199
200static ssize_t enabled_show(struct kobject *kobj,
201 struct kobj_attribute *attr, char *buf)
202{
203 return double_flag_show(kobj, attr, buf,
204 TRANSPARENT_HUGEPAGE_FLAG,
205 TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
206}
207static ssize_t enabled_store(struct kobject *kobj,
208 struct kobj_attribute *attr,
209 const char *buf, size_t count)
210{
ba76149f
AA
211 ssize_t ret;
212
213 ret = double_flag_store(kobj, attr, buf, count,
214 TRANSPARENT_HUGEPAGE_FLAG,
215 TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
216
217 if (ret > 0) {
911891af
XG
218 int err;
219
220 mutex_lock(&khugepaged_mutex);
221 err = start_khugepaged();
222 mutex_unlock(&khugepaged_mutex);
223
ba76149f
AA
224 if (err)
225 ret = err;
226 }
227
228 return ret;
71e3aac0
AA
229}
230static struct kobj_attribute enabled_attr =
231 __ATTR(enabled, 0644, enabled_show, enabled_store);
232
233static ssize_t single_flag_show(struct kobject *kobj,
234 struct kobj_attribute *attr, char *buf,
235 enum transparent_hugepage_flag flag)
236{
e27e6151
BH
237 return sprintf(buf, "%d\n",
238 !!test_bit(flag, &transparent_hugepage_flags));
71e3aac0 239}
e27e6151 240
71e3aac0
AA
241static ssize_t single_flag_store(struct kobject *kobj,
242 struct kobj_attribute *attr,
243 const char *buf, size_t count,
244 enum transparent_hugepage_flag flag)
245{
e27e6151
BH
246 unsigned long value;
247 int ret;
248
249 ret = kstrtoul(buf, 10, &value);
250 if (ret < 0)
251 return ret;
252 if (value > 1)
253 return -EINVAL;
254
255 if (value)
71e3aac0 256 set_bit(flag, &transparent_hugepage_flags);
e27e6151 257 else
71e3aac0 258 clear_bit(flag, &transparent_hugepage_flags);
71e3aac0
AA
259
260 return count;
261}
262
263/*
264 * Currently defrag only disables __GFP_NOWAIT for allocation. A blind
265 * __GFP_REPEAT is too aggressive, it's never worth swapping tons of
266 * memory just to allocate one more hugepage.
267 */
268static ssize_t defrag_show(struct kobject *kobj,
269 struct kobj_attribute *attr, char *buf)
270{
271 return double_flag_show(kobj, attr, buf,
272 TRANSPARENT_HUGEPAGE_DEFRAG_FLAG,
273 TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
274}
275static ssize_t defrag_store(struct kobject *kobj,
276 struct kobj_attribute *attr,
277 const char *buf, size_t count)
278{
279 return double_flag_store(kobj, attr, buf, count,
280 TRANSPARENT_HUGEPAGE_DEFRAG_FLAG,
281 TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
282}
283static struct kobj_attribute defrag_attr =
284 __ATTR(defrag, 0644, defrag_show, defrag_store);
285
286#ifdef CONFIG_DEBUG_VM
287static ssize_t debug_cow_show(struct kobject *kobj,
288 struct kobj_attribute *attr, char *buf)
289{
290 return single_flag_show(kobj, attr, buf,
291 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
292}
293static ssize_t debug_cow_store(struct kobject *kobj,
294 struct kobj_attribute *attr,
295 const char *buf, size_t count)
296{
297 return single_flag_store(kobj, attr, buf, count,
298 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
299}
300static struct kobj_attribute debug_cow_attr =
301 __ATTR(debug_cow, 0644, debug_cow_show, debug_cow_store);
302#endif /* CONFIG_DEBUG_VM */
303
304static struct attribute *hugepage_attr[] = {
305 &enabled_attr.attr,
306 &defrag_attr.attr,
307#ifdef CONFIG_DEBUG_VM
308 &debug_cow_attr.attr,
309#endif
310 NULL,
311};
312
313static struct attribute_group hugepage_attr_group = {
314 .attrs = hugepage_attr,
ba76149f
AA
315};
316
317static ssize_t scan_sleep_millisecs_show(struct kobject *kobj,
318 struct kobj_attribute *attr,
319 char *buf)
320{
321 return sprintf(buf, "%u\n", khugepaged_scan_sleep_millisecs);
322}
323
324static ssize_t scan_sleep_millisecs_store(struct kobject *kobj,
325 struct kobj_attribute *attr,
326 const char *buf, size_t count)
327{
328 unsigned long msecs;
329 int err;
330
331 err = strict_strtoul(buf, 10, &msecs);
332 if (err || msecs > UINT_MAX)
333 return -EINVAL;
334
335 khugepaged_scan_sleep_millisecs = msecs;
336 wake_up_interruptible(&khugepaged_wait);
337
338 return count;
339}
340static struct kobj_attribute scan_sleep_millisecs_attr =
341 __ATTR(scan_sleep_millisecs, 0644, scan_sleep_millisecs_show,
342 scan_sleep_millisecs_store);
343
344static ssize_t alloc_sleep_millisecs_show(struct kobject *kobj,
345 struct kobj_attribute *attr,
346 char *buf)
347{
348 return sprintf(buf, "%u\n", khugepaged_alloc_sleep_millisecs);
349}
350
351static ssize_t alloc_sleep_millisecs_store(struct kobject *kobj,
352 struct kobj_attribute *attr,
353 const char *buf, size_t count)
354{
355 unsigned long msecs;
356 int err;
357
358 err = strict_strtoul(buf, 10, &msecs);
359 if (err || msecs > UINT_MAX)
360 return -EINVAL;
361
362 khugepaged_alloc_sleep_millisecs = msecs;
363 wake_up_interruptible(&khugepaged_wait);
364
365 return count;
366}
367static struct kobj_attribute alloc_sleep_millisecs_attr =
368 __ATTR(alloc_sleep_millisecs, 0644, alloc_sleep_millisecs_show,
369 alloc_sleep_millisecs_store);
370
371static ssize_t pages_to_scan_show(struct kobject *kobj,
372 struct kobj_attribute *attr,
373 char *buf)
374{
375 return sprintf(buf, "%u\n", khugepaged_pages_to_scan);
376}
377static ssize_t pages_to_scan_store(struct kobject *kobj,
378 struct kobj_attribute *attr,
379 const char *buf, size_t count)
380{
381 int err;
382 unsigned long pages;
383
384 err = strict_strtoul(buf, 10, &pages);
385 if (err || !pages || pages > UINT_MAX)
386 return -EINVAL;
387
388 khugepaged_pages_to_scan = pages;
389
390 return count;
391}
392static struct kobj_attribute pages_to_scan_attr =
393 __ATTR(pages_to_scan, 0644, pages_to_scan_show,
394 pages_to_scan_store);
395
396static ssize_t pages_collapsed_show(struct kobject *kobj,
397 struct kobj_attribute *attr,
398 char *buf)
399{
400 return sprintf(buf, "%u\n", khugepaged_pages_collapsed);
401}
402static struct kobj_attribute pages_collapsed_attr =
403 __ATTR_RO(pages_collapsed);
404
405static ssize_t full_scans_show(struct kobject *kobj,
406 struct kobj_attribute *attr,
407 char *buf)
408{
409 return sprintf(buf, "%u\n", khugepaged_full_scans);
410}
411static struct kobj_attribute full_scans_attr =
412 __ATTR_RO(full_scans);
413
414static ssize_t khugepaged_defrag_show(struct kobject *kobj,
415 struct kobj_attribute *attr, char *buf)
416{
417 return single_flag_show(kobj, attr, buf,
418 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
419}
420static ssize_t khugepaged_defrag_store(struct kobject *kobj,
421 struct kobj_attribute *attr,
422 const char *buf, size_t count)
423{
424 return single_flag_store(kobj, attr, buf, count,
425 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
426}
427static struct kobj_attribute khugepaged_defrag_attr =
428 __ATTR(defrag, 0644, khugepaged_defrag_show,
429 khugepaged_defrag_store);
430
431/*
432 * max_ptes_none controls if khugepaged should collapse hugepages over
433 * any unmapped ptes in turn potentially increasing the memory
434 * footprint of the vmas. When max_ptes_none is 0 khugepaged will not
435 * reduce the available free memory in the system as it
436 * runs. Increasing max_ptes_none will instead potentially reduce the
437 * free memory in the system during the khugepaged scan.
438 */
439static ssize_t khugepaged_max_ptes_none_show(struct kobject *kobj,
440 struct kobj_attribute *attr,
441 char *buf)
442{
443 return sprintf(buf, "%u\n", khugepaged_max_ptes_none);
444}
445static ssize_t khugepaged_max_ptes_none_store(struct kobject *kobj,
446 struct kobj_attribute *attr,
447 const char *buf, size_t count)
448{
449 int err;
450 unsigned long max_ptes_none;
451
452 err = strict_strtoul(buf, 10, &max_ptes_none);
453 if (err || max_ptes_none > HPAGE_PMD_NR-1)
454 return -EINVAL;
455
456 khugepaged_max_ptes_none = max_ptes_none;
457
458 return count;
459}
460static struct kobj_attribute khugepaged_max_ptes_none_attr =
461 __ATTR(max_ptes_none, 0644, khugepaged_max_ptes_none_show,
462 khugepaged_max_ptes_none_store);
463
464static struct attribute *khugepaged_attr[] = {
465 &khugepaged_defrag_attr.attr,
466 &khugepaged_max_ptes_none_attr.attr,
467 &pages_to_scan_attr.attr,
468 &pages_collapsed_attr.attr,
469 &full_scans_attr.attr,
470 &scan_sleep_millisecs_attr.attr,
471 &alloc_sleep_millisecs_attr.attr,
472 NULL,
473};
474
475static struct attribute_group khugepaged_attr_group = {
476 .attrs = khugepaged_attr,
477 .name = "khugepaged",
71e3aac0 478};
71e3aac0 479
569e5590 480static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
71e3aac0 481{
71e3aac0
AA
482 int err;
483
569e5590
SL
484 *hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
485 if (unlikely(!*hugepage_kobj)) {
ba76149f 486 printk(KERN_ERR "hugepage: failed kobject create\n");
569e5590 487 return -ENOMEM;
ba76149f
AA
488 }
489
569e5590 490 err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
ba76149f
AA
491 if (err) {
492 printk(KERN_ERR "hugepage: failed register hugeage group\n");
569e5590 493 goto delete_obj;
ba76149f
AA
494 }
495
569e5590 496 err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
ba76149f
AA
497 if (err) {
498 printk(KERN_ERR "hugepage: failed register hugeage group\n");
569e5590 499 goto remove_hp_group;
ba76149f 500 }
569e5590
SL
501
502 return 0;
503
504remove_hp_group:
505 sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
506delete_obj:
507 kobject_put(*hugepage_kobj);
508 return err;
509}
510
511static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
512{
513 sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
514 sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
515 kobject_put(hugepage_kobj);
516}
517#else
518static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
519{
520 return 0;
521}
522
523static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
524{
525}
526#endif /* CONFIG_SYSFS */
527
528static int __init hugepage_init(void)
529{
530 int err;
531 struct kobject *hugepage_kobj;
532
533 if (!has_transparent_hugepage()) {
534 transparent_hugepage_flags = 0;
535 return -EINVAL;
536 }
537
538 err = hugepage_init_sysfs(&hugepage_kobj);
539 if (err)
540 return err;
ba76149f
AA
541
542 err = khugepaged_slab_init();
543 if (err)
544 goto out;
545
546 err = mm_slots_hash_init();
547 if (err) {
548 khugepaged_slab_free();
549 goto out;
550 }
551
97562cd2
RR
552 /*
553 * By default disable transparent hugepages on smaller systems,
554 * where the extra memory used could hurt more than TLB overhead
555 * is likely to save. The admin can still enable it through /sys.
556 */
557 if (totalram_pages < (512 << (20 - PAGE_SHIFT)))
558 transparent_hugepage_flags = 0;
559
ba76149f
AA
560 start_khugepaged();
561
569e5590 562 return 0;
ba76149f 563out:
569e5590 564 hugepage_exit_sysfs(hugepage_kobj);
ba76149f 565 return err;
71e3aac0
AA
566}
567module_init(hugepage_init)
568
569static int __init setup_transparent_hugepage(char *str)
570{
571 int ret = 0;
572 if (!str)
573 goto out;
574 if (!strcmp(str, "always")) {
575 set_bit(TRANSPARENT_HUGEPAGE_FLAG,
576 &transparent_hugepage_flags);
577 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
578 &transparent_hugepage_flags);
579 ret = 1;
580 } else if (!strcmp(str, "madvise")) {
581 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
582 &transparent_hugepage_flags);
583 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
584 &transparent_hugepage_flags);
585 ret = 1;
586 } else if (!strcmp(str, "never")) {
587 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
588 &transparent_hugepage_flags);
589 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
590 &transparent_hugepage_flags);
591 ret = 1;
592 }
593out:
594 if (!ret)
595 printk(KERN_WARNING
596 "transparent_hugepage= cannot parse, ignored\n");
597 return ret;
598}
599__setup("transparent_hugepage=", setup_transparent_hugepage);
600
71e3aac0
AA
601static inline pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
602{
603 if (likely(vma->vm_flags & VM_WRITE))
604 pmd = pmd_mkwrite(pmd);
605 return pmd;
606}
607
608static int __do_huge_pmd_anonymous_page(struct mm_struct *mm,
609 struct vm_area_struct *vma,
610 unsigned long haddr, pmd_t *pmd,
611 struct page *page)
612{
71e3aac0
AA
613 pgtable_t pgtable;
614
615 VM_BUG_ON(!PageCompound(page));
616 pgtable = pte_alloc_one(mm, haddr);
edad9d2c 617 if (unlikely(!pgtable))
71e3aac0 618 return VM_FAULT_OOM;
71e3aac0
AA
619
620 clear_huge_page(page, haddr, HPAGE_PMD_NR);
621 __SetPageUptodate(page);
622
623 spin_lock(&mm->page_table_lock);
624 if (unlikely(!pmd_none(*pmd))) {
625 spin_unlock(&mm->page_table_lock);
b9bbfbe3 626 mem_cgroup_uncharge_page(page);
71e3aac0
AA
627 put_page(page);
628 pte_free(mm, pgtable);
629 } else {
630 pmd_t entry;
631 entry = mk_pmd(page, vma->vm_page_prot);
632 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
633 entry = pmd_mkhuge(entry);
634 /*
635 * The spinlocking to take the lru_lock inside
636 * page_add_new_anon_rmap() acts as a full memory
637 * barrier to be sure clear_huge_page writes become
638 * visible after the set_pmd_at() write.
639 */
640 page_add_new_anon_rmap(page, vma, haddr);
641 set_pmd_at(mm, haddr, pmd, entry);
e3ebcf64 642 pgtable_trans_huge_deposit(mm, pgtable);
71e3aac0 643 add_mm_counter(mm, MM_ANONPAGES, HPAGE_PMD_NR);
1c641e84 644 mm->nr_ptes++;
71e3aac0
AA
645 spin_unlock(&mm->page_table_lock);
646 }
647
aa2e878e 648 return 0;
71e3aac0
AA
649}
650
cc5d462f 651static inline gfp_t alloc_hugepage_gfpmask(int defrag, gfp_t extra_gfp)
0bbbc0b3 652{
cc5d462f 653 return (GFP_TRANSHUGE & ~(defrag ? 0 : __GFP_WAIT)) | extra_gfp;
0bbbc0b3
AA
654}
655
656static inline struct page *alloc_hugepage_vma(int defrag,
657 struct vm_area_struct *vma,
cc5d462f
AK
658 unsigned long haddr, int nd,
659 gfp_t extra_gfp)
0bbbc0b3 660{
cc5d462f 661 return alloc_pages_vma(alloc_hugepage_gfpmask(defrag, extra_gfp),
5c4b4be3 662 HPAGE_PMD_ORDER, vma, haddr, nd);
0bbbc0b3
AA
663}
664
665#ifndef CONFIG_NUMA
71e3aac0
AA
666static inline struct page *alloc_hugepage(int defrag)
667{
cc5d462f 668 return alloc_pages(alloc_hugepage_gfpmask(defrag, 0),
71e3aac0
AA
669 HPAGE_PMD_ORDER);
670}
0bbbc0b3 671#endif
71e3aac0
AA
672
673int do_huge_pmd_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
674 unsigned long address, pmd_t *pmd,
675 unsigned int flags)
676{
677 struct page *page;
678 unsigned long haddr = address & HPAGE_PMD_MASK;
679 pte_t *pte;
680
681 if (haddr >= vma->vm_start && haddr + HPAGE_PMD_SIZE <= vma->vm_end) {
682 if (unlikely(anon_vma_prepare(vma)))
683 return VM_FAULT_OOM;
ba76149f
AA
684 if (unlikely(khugepaged_enter(vma)))
685 return VM_FAULT_OOM;
0bbbc0b3 686 page = alloc_hugepage_vma(transparent_hugepage_defrag(vma),
cc5d462f 687 vma, haddr, numa_node_id(), 0);
81ab4201
AK
688 if (unlikely(!page)) {
689 count_vm_event(THP_FAULT_FALLBACK);
71e3aac0 690 goto out;
81ab4201
AK
691 }
692 count_vm_event(THP_FAULT_ALLOC);
b9bbfbe3
AA
693 if (unlikely(mem_cgroup_newpage_charge(page, mm, GFP_KERNEL))) {
694 put_page(page);
695 goto out;
696 }
edad9d2c
DR
697 if (unlikely(__do_huge_pmd_anonymous_page(mm, vma, haddr, pmd,
698 page))) {
699 mem_cgroup_uncharge_page(page);
700 put_page(page);
701 goto out;
702 }
71e3aac0 703
edad9d2c 704 return 0;
71e3aac0
AA
705 }
706out:
707 /*
708 * Use __pte_alloc instead of pte_alloc_map, because we can't
709 * run pte_offset_map on the pmd, if an huge pmd could
710 * materialize from under us from a different thread.
711 */
712 if (unlikely(__pte_alloc(mm, vma, pmd, address)))
713 return VM_FAULT_OOM;
714 /* if an huge pmd materialized from under us just retry later */
715 if (unlikely(pmd_trans_huge(*pmd)))
716 return 0;
717 /*
718 * A regular pmd is established and it can't morph into a huge pmd
719 * from under us anymore at this point because we hold the mmap_sem
720 * read mode and khugepaged takes it in write mode. So now it's
721 * safe to run pte_offset_map().
722 */
723 pte = pte_offset_map(pmd, address);
724 return handle_pte_fault(mm, vma, address, pte, pmd, flags);
725}
726
727int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
728 pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
729 struct vm_area_struct *vma)
730{
731 struct page *src_page;
732 pmd_t pmd;
733 pgtable_t pgtable;
734 int ret;
735
736 ret = -ENOMEM;
737 pgtable = pte_alloc_one(dst_mm, addr);
738 if (unlikely(!pgtable))
739 goto out;
740
741 spin_lock(&dst_mm->page_table_lock);
742 spin_lock_nested(&src_mm->page_table_lock, SINGLE_DEPTH_NESTING);
743
744 ret = -EAGAIN;
745 pmd = *src_pmd;
746 if (unlikely(!pmd_trans_huge(pmd))) {
747 pte_free(dst_mm, pgtable);
748 goto out_unlock;
749 }
750 if (unlikely(pmd_trans_splitting(pmd))) {
751 /* split huge page running from under us */
752 spin_unlock(&src_mm->page_table_lock);
753 spin_unlock(&dst_mm->page_table_lock);
754 pte_free(dst_mm, pgtable);
755
756 wait_split_huge_page(vma->anon_vma, src_pmd); /* src_vma */
757 goto out;
758 }
759 src_page = pmd_page(pmd);
760 VM_BUG_ON(!PageHead(src_page));
761 get_page(src_page);
762 page_dup_rmap(src_page);
763 add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
764
765 pmdp_set_wrprotect(src_mm, addr, src_pmd);
766 pmd = pmd_mkold(pmd_wrprotect(pmd));
767 set_pmd_at(dst_mm, addr, dst_pmd, pmd);
e3ebcf64 768 pgtable_trans_huge_deposit(dst_mm, pgtable);
1c641e84 769 dst_mm->nr_ptes++;
71e3aac0
AA
770
771 ret = 0;
772out_unlock:
773 spin_unlock(&src_mm->page_table_lock);
774 spin_unlock(&dst_mm->page_table_lock);
775out:
776 return ret;
777}
778
71e3aac0
AA
779static int do_huge_pmd_wp_page_fallback(struct mm_struct *mm,
780 struct vm_area_struct *vma,
781 unsigned long address,
782 pmd_t *pmd, pmd_t orig_pmd,
783 struct page *page,
784 unsigned long haddr)
785{
786 pgtable_t pgtable;
787 pmd_t _pmd;
788 int ret = 0, i;
789 struct page **pages;
790
791 pages = kmalloc(sizeof(struct page *) * HPAGE_PMD_NR,
792 GFP_KERNEL);
793 if (unlikely(!pages)) {
794 ret |= VM_FAULT_OOM;
795 goto out;
796 }
797
798 for (i = 0; i < HPAGE_PMD_NR; i++) {
cc5d462f
AK
799 pages[i] = alloc_page_vma_node(GFP_HIGHUSER_MOVABLE |
800 __GFP_OTHER_NODE,
19ee151e 801 vma, address, page_to_nid(page));
b9bbfbe3
AA
802 if (unlikely(!pages[i] ||
803 mem_cgroup_newpage_charge(pages[i], mm,
804 GFP_KERNEL))) {
805 if (pages[i])
71e3aac0 806 put_page(pages[i]);
b9bbfbe3
AA
807 mem_cgroup_uncharge_start();
808 while (--i >= 0) {
809 mem_cgroup_uncharge_page(pages[i]);
810 put_page(pages[i]);
811 }
812 mem_cgroup_uncharge_end();
71e3aac0
AA
813 kfree(pages);
814 ret |= VM_FAULT_OOM;
815 goto out;
816 }
817 }
818
819 for (i = 0; i < HPAGE_PMD_NR; i++) {
820 copy_user_highpage(pages[i], page + i,
0089e485 821 haddr + PAGE_SIZE * i, vma);
71e3aac0
AA
822 __SetPageUptodate(pages[i]);
823 cond_resched();
824 }
825
826 spin_lock(&mm->page_table_lock);
827 if (unlikely(!pmd_same(*pmd, orig_pmd)))
828 goto out_free_pages;
829 VM_BUG_ON(!PageHead(page));
830
831 pmdp_clear_flush_notify(vma, haddr, pmd);
832 /* leave pmd empty until pte is filled */
833
e3ebcf64 834 pgtable = pgtable_trans_huge_withdraw(mm);
71e3aac0
AA
835 pmd_populate(mm, &_pmd, pgtable);
836
837 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
838 pte_t *pte, entry;
839 entry = mk_pte(pages[i], vma->vm_page_prot);
840 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
841 page_add_new_anon_rmap(pages[i], vma, haddr);
842 pte = pte_offset_map(&_pmd, haddr);
843 VM_BUG_ON(!pte_none(*pte));
844 set_pte_at(mm, haddr, pte, entry);
845 pte_unmap(pte);
846 }
847 kfree(pages);
848
71e3aac0
AA
849 smp_wmb(); /* make pte visible before pmd */
850 pmd_populate(mm, pmd, pgtable);
851 page_remove_rmap(page);
852 spin_unlock(&mm->page_table_lock);
853
854 ret |= VM_FAULT_WRITE;
855 put_page(page);
856
857out:
858 return ret;
859
860out_free_pages:
861 spin_unlock(&mm->page_table_lock);
b9bbfbe3
AA
862 mem_cgroup_uncharge_start();
863 for (i = 0; i < HPAGE_PMD_NR; i++) {
864 mem_cgroup_uncharge_page(pages[i]);
71e3aac0 865 put_page(pages[i]);
b9bbfbe3
AA
866 }
867 mem_cgroup_uncharge_end();
71e3aac0
AA
868 kfree(pages);
869 goto out;
870}
871
872int do_huge_pmd_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
873 unsigned long address, pmd_t *pmd, pmd_t orig_pmd)
874{
875 int ret = 0;
876 struct page *page, *new_page;
877 unsigned long haddr;
878
879 VM_BUG_ON(!vma->anon_vma);
880 spin_lock(&mm->page_table_lock);
881 if (unlikely(!pmd_same(*pmd, orig_pmd)))
882 goto out_unlock;
883
884 page = pmd_page(orig_pmd);
885 VM_BUG_ON(!PageCompound(page) || !PageHead(page));
886 haddr = address & HPAGE_PMD_MASK;
887 if (page_mapcount(page) == 1) {
888 pmd_t entry;
889 entry = pmd_mkyoung(orig_pmd);
890 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
891 if (pmdp_set_access_flags(vma, haddr, pmd, entry, 1))
892 update_mmu_cache(vma, address, entry);
893 ret |= VM_FAULT_WRITE;
894 goto out_unlock;
895 }
896 get_page(page);
897 spin_unlock(&mm->page_table_lock);
898
899 if (transparent_hugepage_enabled(vma) &&
900 !transparent_hugepage_debug_cow())
0bbbc0b3 901 new_page = alloc_hugepage_vma(transparent_hugepage_defrag(vma),
cc5d462f 902 vma, haddr, numa_node_id(), 0);
71e3aac0
AA
903 else
904 new_page = NULL;
905
906 if (unlikely(!new_page)) {
81ab4201 907 count_vm_event(THP_FAULT_FALLBACK);
71e3aac0
AA
908 ret = do_huge_pmd_wp_page_fallback(mm, vma, address,
909 pmd, orig_pmd, page, haddr);
1f1d06c3
DR
910 if (ret & VM_FAULT_OOM)
911 split_huge_page(page);
71e3aac0
AA
912 put_page(page);
913 goto out;
914 }
81ab4201 915 count_vm_event(THP_FAULT_ALLOC);
71e3aac0 916
b9bbfbe3
AA
917 if (unlikely(mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL))) {
918 put_page(new_page);
1f1d06c3 919 split_huge_page(page);
b9bbfbe3
AA
920 put_page(page);
921 ret |= VM_FAULT_OOM;
922 goto out;
923 }
924
71e3aac0
AA
925 copy_user_huge_page(new_page, page, haddr, vma, HPAGE_PMD_NR);
926 __SetPageUptodate(new_page);
927
928 spin_lock(&mm->page_table_lock);
929 put_page(page);
b9bbfbe3 930 if (unlikely(!pmd_same(*pmd, orig_pmd))) {
6f60b69d 931 spin_unlock(&mm->page_table_lock);
b9bbfbe3 932 mem_cgroup_uncharge_page(new_page);
71e3aac0 933 put_page(new_page);
6f60b69d 934 goto out;
b9bbfbe3 935 } else {
71e3aac0
AA
936 pmd_t entry;
937 VM_BUG_ON(!PageHead(page));
938 entry = mk_pmd(new_page, vma->vm_page_prot);
939 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
940 entry = pmd_mkhuge(entry);
941 pmdp_clear_flush_notify(vma, haddr, pmd);
942 page_add_new_anon_rmap(new_page, vma, haddr);
943 set_pmd_at(mm, haddr, pmd, entry);
944 update_mmu_cache(vma, address, entry);
945 page_remove_rmap(page);
946 put_page(page);
947 ret |= VM_FAULT_WRITE;
948 }
949out_unlock:
950 spin_unlock(&mm->page_table_lock);
951out:
952 return ret;
953}
954
955struct page *follow_trans_huge_pmd(struct mm_struct *mm,
956 unsigned long addr,
957 pmd_t *pmd,
958 unsigned int flags)
959{
960 struct page *page = NULL;
961
962 assert_spin_locked(&mm->page_table_lock);
963
964 if (flags & FOLL_WRITE && !pmd_write(*pmd))
965 goto out;
966
967 page = pmd_page(*pmd);
968 VM_BUG_ON(!PageHead(page));
969 if (flags & FOLL_TOUCH) {
970 pmd_t _pmd;
971 /*
972 * We should set the dirty bit only for FOLL_WRITE but
973 * for now the dirty bit in the pmd is meaningless.
974 * And if the dirty bit will become meaningful and
975 * we'll only set it with FOLL_WRITE, an atomic
976 * set_bit will be required on the pmd to set the
977 * young bit, instead of the current set_pmd_at.
978 */
979 _pmd = pmd_mkyoung(pmd_mkdirty(*pmd));
980 set_pmd_at(mm, addr & HPAGE_PMD_MASK, pmd, _pmd);
981 }
982 page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
983 VM_BUG_ON(!PageCompound(page));
984 if (flags & FOLL_GET)
70b50f94 985 get_page_foll(page);
71e3aac0
AA
986
987out:
988 return page;
989}
990
991int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
f21760b1 992 pmd_t *pmd, unsigned long addr)
71e3aac0
AA
993{
994 int ret = 0;
995
025c5b24
NH
996 if (__pmd_trans_huge_lock(pmd, vma) == 1) {
997 struct page *page;
998 pgtable_t pgtable;
e3ebcf64 999 pgtable = pgtable_trans_huge_withdraw(tlb->mm);
025c5b24
NH
1000 page = pmd_page(*pmd);
1001 pmd_clear(pmd);
1002 tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1003 page_remove_rmap(page);
1004 VM_BUG_ON(page_mapcount(page) < 0);
1005 add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
1006 VM_BUG_ON(!PageHead(page));
1007 tlb->mm->nr_ptes--;
71e3aac0 1008 spin_unlock(&tlb->mm->page_table_lock);
025c5b24
NH
1009 tlb_remove_page(tlb, page);
1010 pte_free(tlb->mm, pgtable);
1011 ret = 1;
1012 }
71e3aac0
AA
1013 return ret;
1014}
1015
0ca1634d
JW
1016int mincore_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1017 unsigned long addr, unsigned long end,
1018 unsigned char *vec)
1019{
1020 int ret = 0;
1021
025c5b24
NH
1022 if (__pmd_trans_huge_lock(pmd, vma) == 1) {
1023 /*
1024 * All logical pages in the range are present
1025 * if backed by a huge page.
1026 */
0ca1634d 1027 spin_unlock(&vma->vm_mm->page_table_lock);
025c5b24
NH
1028 memset(vec, 1, (end - addr) >> PAGE_SHIFT);
1029 ret = 1;
1030 }
0ca1634d
JW
1031
1032 return ret;
1033}
1034
37a1c49a
AA
1035int move_huge_pmd(struct vm_area_struct *vma, struct vm_area_struct *new_vma,
1036 unsigned long old_addr,
1037 unsigned long new_addr, unsigned long old_end,
1038 pmd_t *old_pmd, pmd_t *new_pmd)
1039{
1040 int ret = 0;
1041 pmd_t pmd;
1042
1043 struct mm_struct *mm = vma->vm_mm;
1044
1045 if ((old_addr & ~HPAGE_PMD_MASK) ||
1046 (new_addr & ~HPAGE_PMD_MASK) ||
1047 old_end - old_addr < HPAGE_PMD_SIZE ||
1048 (new_vma->vm_flags & VM_NOHUGEPAGE))
1049 goto out;
1050
1051 /*
1052 * The destination pmd shouldn't be established, free_pgtables()
1053 * should have release it.
1054 */
1055 if (WARN_ON(!pmd_none(*new_pmd))) {
1056 VM_BUG_ON(pmd_trans_huge(*new_pmd));
1057 goto out;
1058 }
1059
025c5b24
NH
1060 ret = __pmd_trans_huge_lock(old_pmd, vma);
1061 if (ret == 1) {
1062 pmd = pmdp_get_and_clear(mm, old_addr, old_pmd);
1063 VM_BUG_ON(!pmd_none(*new_pmd));
1064 set_pmd_at(mm, new_addr, new_pmd, pmd);
37a1c49a
AA
1065 spin_unlock(&mm->page_table_lock);
1066 }
1067out:
1068 return ret;
1069}
1070
cd7548ab
JW
1071int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1072 unsigned long addr, pgprot_t newprot)
1073{
1074 struct mm_struct *mm = vma->vm_mm;
1075 int ret = 0;
1076
025c5b24
NH
1077 if (__pmd_trans_huge_lock(pmd, vma) == 1) {
1078 pmd_t entry;
1079 entry = pmdp_get_and_clear(mm, addr, pmd);
1080 entry = pmd_modify(entry, newprot);
1081 set_pmd_at(mm, addr, pmd, entry);
1082 spin_unlock(&vma->vm_mm->page_table_lock);
1083 ret = 1;
1084 }
1085
1086 return ret;
1087}
1088
1089/*
1090 * Returns 1 if a given pmd maps a stable (not under splitting) thp.
1091 * Returns -1 if it maps a thp under splitting. Returns 0 otherwise.
1092 *
1093 * Note that if it returns 1, this routine returns without unlocking page
1094 * table locks. So callers must unlock them.
1095 */
1096int __pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma)
1097{
1098 spin_lock(&vma->vm_mm->page_table_lock);
cd7548ab
JW
1099 if (likely(pmd_trans_huge(*pmd))) {
1100 if (unlikely(pmd_trans_splitting(*pmd))) {
025c5b24 1101 spin_unlock(&vma->vm_mm->page_table_lock);
cd7548ab 1102 wait_split_huge_page(vma->anon_vma, pmd);
025c5b24 1103 return -1;
cd7548ab 1104 } else {
025c5b24
NH
1105 /* Thp mapped by 'pmd' is stable, so we can
1106 * handle it as it is. */
1107 return 1;
cd7548ab 1108 }
025c5b24
NH
1109 }
1110 spin_unlock(&vma->vm_mm->page_table_lock);
1111 return 0;
cd7548ab
JW
1112}
1113
71e3aac0
AA
1114pmd_t *page_check_address_pmd(struct page *page,
1115 struct mm_struct *mm,
1116 unsigned long address,
1117 enum page_check_address_pmd_flag flag)
1118{
1119 pgd_t *pgd;
1120 pud_t *pud;
1121 pmd_t *pmd, *ret = NULL;
1122
1123 if (address & ~HPAGE_PMD_MASK)
1124 goto out;
1125
1126 pgd = pgd_offset(mm, address);
1127 if (!pgd_present(*pgd))
1128 goto out;
1129
1130 pud = pud_offset(pgd, address);
1131 if (!pud_present(*pud))
1132 goto out;
1133
1134 pmd = pmd_offset(pud, address);
1135 if (pmd_none(*pmd))
1136 goto out;
1137 if (pmd_page(*pmd) != page)
1138 goto out;
94fcc585
AA
1139 /*
1140 * split_vma() may create temporary aliased mappings. There is
1141 * no risk as long as all huge pmd are found and have their
1142 * splitting bit set before __split_huge_page_refcount
1143 * runs. Finding the same huge pmd more than once during the
1144 * same rmap walk is not a problem.
1145 */
1146 if (flag == PAGE_CHECK_ADDRESS_PMD_NOTSPLITTING_FLAG &&
1147 pmd_trans_splitting(*pmd))
1148 goto out;
71e3aac0
AA
1149 if (pmd_trans_huge(*pmd)) {
1150 VM_BUG_ON(flag == PAGE_CHECK_ADDRESS_PMD_SPLITTING_FLAG &&
1151 !pmd_trans_splitting(*pmd));
1152 ret = pmd;
1153 }
1154out:
1155 return ret;
1156}
1157
1158static int __split_huge_page_splitting(struct page *page,
1159 struct vm_area_struct *vma,
1160 unsigned long address)
1161{
1162 struct mm_struct *mm = vma->vm_mm;
1163 pmd_t *pmd;
1164 int ret = 0;
1165
1166 spin_lock(&mm->page_table_lock);
1167 pmd = page_check_address_pmd(page, mm, address,
1168 PAGE_CHECK_ADDRESS_PMD_NOTSPLITTING_FLAG);
1169 if (pmd) {
1170 /*
1171 * We can't temporarily set the pmd to null in order
1172 * to split it, the pmd must remain marked huge at all
1173 * times or the VM won't take the pmd_trans_huge paths
2b575eb6 1174 * and it won't wait on the anon_vma->root->mutex to
71e3aac0
AA
1175 * serialize against split_huge_page*.
1176 */
1177 pmdp_splitting_flush_notify(vma, address, pmd);
1178 ret = 1;
1179 }
1180 spin_unlock(&mm->page_table_lock);
1181
1182 return ret;
1183}
1184
1185static void __split_huge_page_refcount(struct page *page)
1186{
1187 int i;
71e3aac0 1188 struct zone *zone = page_zone(page);
fa9add64 1189 struct lruvec *lruvec;
70b50f94 1190 int tail_count = 0;
71e3aac0
AA
1191
1192 /* prevent PageLRU to go away from under us, and freeze lru stats */
1193 spin_lock_irq(&zone->lru_lock);
fa9add64
HD
1194 lruvec = mem_cgroup_page_lruvec(page, zone);
1195
71e3aac0 1196 compound_lock(page);
e94c8a9c
KH
1197 /* complete memcg works before add pages to LRU */
1198 mem_cgroup_split_huge_fixup(page);
71e3aac0 1199
45676885 1200 for (i = HPAGE_PMD_NR - 1; i >= 1; i--) {
71e3aac0
AA
1201 struct page *page_tail = page + i;
1202
70b50f94
AA
1203 /* tail_page->_mapcount cannot change */
1204 BUG_ON(page_mapcount(page_tail) < 0);
1205 tail_count += page_mapcount(page_tail);
1206 /* check for overflow */
1207 BUG_ON(tail_count < 0);
1208 BUG_ON(atomic_read(&page_tail->_count) != 0);
1209 /*
1210 * tail_page->_count is zero and not changing from
1211 * under us. But get_page_unless_zero() may be running
1212 * from under us on the tail_page. If we used
1213 * atomic_set() below instead of atomic_add(), we
1214 * would then run atomic_set() concurrently with
1215 * get_page_unless_zero(), and atomic_set() is
1216 * implemented in C not using locked ops. spin_unlock
1217 * on x86 sometime uses locked ops because of PPro
1218 * errata 66, 92, so unless somebody can guarantee
1219 * atomic_set() here would be safe on all archs (and
1220 * not only on x86), it's safer to use atomic_add().
1221 */
1222 atomic_add(page_mapcount(page) + page_mapcount(page_tail) + 1,
1223 &page_tail->_count);
71e3aac0
AA
1224
1225 /* after clearing PageTail the gup refcount can be released */
1226 smp_mb();
1227
a6d30ddd
JD
1228 /*
1229 * retain hwpoison flag of the poisoned tail page:
1230 * fix for the unsuitable process killed on Guest Machine(KVM)
1231 * by the memory-failure.
1232 */
1233 page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP | __PG_HWPOISON;
71e3aac0
AA
1234 page_tail->flags |= (page->flags &
1235 ((1L << PG_referenced) |
1236 (1L << PG_swapbacked) |
1237 (1L << PG_mlocked) |
1238 (1L << PG_uptodate)));
1239 page_tail->flags |= (1L << PG_dirty);
1240
70b50f94 1241 /* clear PageTail before overwriting first_page */
71e3aac0
AA
1242 smp_wmb();
1243
1244 /*
1245 * __split_huge_page_splitting() already set the
1246 * splitting bit in all pmd that could map this
1247 * hugepage, that will ensure no CPU can alter the
1248 * mapcount on the head page. The mapcount is only
1249 * accounted in the head page and it has to be
1250 * transferred to all tail pages in the below code. So
1251 * for this code to be safe, the split the mapcount
1252 * can't change. But that doesn't mean userland can't
1253 * keep changing and reading the page contents while
1254 * we transfer the mapcount, so the pmd splitting
1255 * status is achieved setting a reserved bit in the
1256 * pmd, not by clearing the present bit.
1257 */
71e3aac0
AA
1258 page_tail->_mapcount = page->_mapcount;
1259
1260 BUG_ON(page_tail->mapping);
1261 page_tail->mapping = page->mapping;
1262
45676885 1263 page_tail->index = page->index + i;
71e3aac0
AA
1264
1265 BUG_ON(!PageAnon(page_tail));
1266 BUG_ON(!PageUptodate(page_tail));
1267 BUG_ON(!PageDirty(page_tail));
1268 BUG_ON(!PageSwapBacked(page_tail));
1269
fa9add64 1270 lru_add_page_tail(page, page_tail, lruvec);
71e3aac0 1271 }
70b50f94
AA
1272 atomic_sub(tail_count, &page->_count);
1273 BUG_ON(atomic_read(&page->_count) <= 0);
71e3aac0 1274
fa9add64 1275 __mod_zone_page_state(zone, NR_ANON_TRANSPARENT_HUGEPAGES, -1);
79134171
AA
1276 __mod_zone_page_state(zone, NR_ANON_PAGES, HPAGE_PMD_NR);
1277
71e3aac0
AA
1278 ClearPageCompound(page);
1279 compound_unlock(page);
1280 spin_unlock_irq(&zone->lru_lock);
1281
1282 for (i = 1; i < HPAGE_PMD_NR; i++) {
1283 struct page *page_tail = page + i;
1284 BUG_ON(page_count(page_tail) <= 0);
1285 /*
1286 * Tail pages may be freed if there wasn't any mapping
1287 * like if add_to_swap() is running on a lru page that
1288 * had its mapping zapped. And freeing these pages
1289 * requires taking the lru_lock so we do the put_page
1290 * of the tail pages after the split is complete.
1291 */
1292 put_page(page_tail);
1293 }
1294
1295 /*
1296 * Only the head page (now become a regular page) is required
1297 * to be pinned by the caller.
1298 */
1299 BUG_ON(page_count(page) <= 0);
1300}
1301
1302static int __split_huge_page_map(struct page *page,
1303 struct vm_area_struct *vma,
1304 unsigned long address)
1305{
1306 struct mm_struct *mm = vma->vm_mm;
1307 pmd_t *pmd, _pmd;
1308 int ret = 0, i;
1309 pgtable_t pgtable;
1310 unsigned long haddr;
1311
1312 spin_lock(&mm->page_table_lock);
1313 pmd = page_check_address_pmd(page, mm, address,
1314 PAGE_CHECK_ADDRESS_PMD_SPLITTING_FLAG);
1315 if (pmd) {
e3ebcf64 1316 pgtable = pgtable_trans_huge_withdraw(mm);
71e3aac0
AA
1317 pmd_populate(mm, &_pmd, pgtable);
1318
e3ebcf64
GS
1319 haddr = address;
1320 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
71e3aac0
AA
1321 pte_t *pte, entry;
1322 BUG_ON(PageCompound(page+i));
1323 entry = mk_pte(page + i, vma->vm_page_prot);
1324 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1325 if (!pmd_write(*pmd))
1326 entry = pte_wrprotect(entry);
1327 else
1328 BUG_ON(page_mapcount(page) != 1);
1329 if (!pmd_young(*pmd))
1330 entry = pte_mkold(entry);
1331 pte = pte_offset_map(&_pmd, haddr);
1332 BUG_ON(!pte_none(*pte));
1333 set_pte_at(mm, haddr, pte, entry);
1334 pte_unmap(pte);
1335 }
1336
71e3aac0
AA
1337 smp_wmb(); /* make pte visible before pmd */
1338 /*
1339 * Up to this point the pmd is present and huge and
1340 * userland has the whole access to the hugepage
1341 * during the split (which happens in place). If we
1342 * overwrite the pmd with the not-huge version
1343 * pointing to the pte here (which of course we could
1344 * if all CPUs were bug free), userland could trigger
1345 * a small page size TLB miss on the small sized TLB
1346 * while the hugepage TLB entry is still established
1347 * in the huge TLB. Some CPU doesn't like that. See
1348 * http://support.amd.com/us/Processor_TechDocs/41322.pdf,
1349 * Erratum 383 on page 93. Intel should be safe but is
1350 * also warns that it's only safe if the permission
1351 * and cache attributes of the two entries loaded in
1352 * the two TLB is identical (which should be the case
1353 * here). But it is generally safer to never allow
1354 * small and huge TLB entries for the same virtual
1355 * address to be loaded simultaneously. So instead of
1356 * doing "pmd_populate(); flush_tlb_range();" we first
1357 * mark the current pmd notpresent (atomically because
1358 * here the pmd_trans_huge and pmd_trans_splitting
1359 * must remain set at all times on the pmd until the
1360 * split is complete for this pmd), then we flush the
1361 * SMP TLB and finally we write the non-huge version
1362 * of the pmd entry with pmd_populate.
1363 */
46dcde73 1364 pmdp_invalidate(vma, address, pmd);
71e3aac0
AA
1365 pmd_populate(mm, pmd, pgtable);
1366 ret = 1;
1367 }
1368 spin_unlock(&mm->page_table_lock);
1369
1370 return ret;
1371}
1372
2b575eb6 1373/* must be called with anon_vma->root->mutex hold */
71e3aac0
AA
1374static void __split_huge_page(struct page *page,
1375 struct anon_vma *anon_vma)
1376{
1377 int mapcount, mapcount2;
bf181b9f 1378 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
71e3aac0
AA
1379 struct anon_vma_chain *avc;
1380
1381 BUG_ON(!PageHead(page));
1382 BUG_ON(PageTail(page));
1383
1384 mapcount = 0;
bf181b9f 1385 anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff, pgoff) {
71e3aac0
AA
1386 struct vm_area_struct *vma = avc->vma;
1387 unsigned long addr = vma_address(page, vma);
1388 BUG_ON(is_vma_temporary_stack(vma));
71e3aac0
AA
1389 mapcount += __split_huge_page_splitting(page, vma, addr);
1390 }
05759d38
AA
1391 /*
1392 * It is critical that new vmas are added to the tail of the
1393 * anon_vma list. This guarantes that if copy_huge_pmd() runs
1394 * and establishes a child pmd before
1395 * __split_huge_page_splitting() freezes the parent pmd (so if
1396 * we fail to prevent copy_huge_pmd() from running until the
1397 * whole __split_huge_page() is complete), we will still see
1398 * the newly established pmd of the child later during the
1399 * walk, to be able to set it as pmd_trans_splitting too.
1400 */
1401 if (mapcount != page_mapcount(page))
1402 printk(KERN_ERR "mapcount %d page_mapcount %d\n",
1403 mapcount, page_mapcount(page));
71e3aac0
AA
1404 BUG_ON(mapcount != page_mapcount(page));
1405
1406 __split_huge_page_refcount(page);
1407
1408 mapcount2 = 0;
bf181b9f 1409 anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff, pgoff) {
71e3aac0
AA
1410 struct vm_area_struct *vma = avc->vma;
1411 unsigned long addr = vma_address(page, vma);
1412 BUG_ON(is_vma_temporary_stack(vma));
71e3aac0
AA
1413 mapcount2 += __split_huge_page_map(page, vma, addr);
1414 }
05759d38
AA
1415 if (mapcount != mapcount2)
1416 printk(KERN_ERR "mapcount %d mapcount2 %d page_mapcount %d\n",
1417 mapcount, mapcount2, page_mapcount(page));
71e3aac0
AA
1418 BUG_ON(mapcount != mapcount2);
1419}
1420
1421int split_huge_page(struct page *page)
1422{
1423 struct anon_vma *anon_vma;
1424 int ret = 1;
1425
1426 BUG_ON(!PageAnon(page));
1427 anon_vma = page_lock_anon_vma(page);
1428 if (!anon_vma)
1429 goto out;
1430 ret = 0;
1431 if (!PageCompound(page))
1432 goto out_unlock;
1433
1434 BUG_ON(!PageSwapBacked(page));
1435 __split_huge_page(page, anon_vma);
81ab4201 1436 count_vm_event(THP_SPLIT);
71e3aac0
AA
1437
1438 BUG_ON(PageCompound(page));
1439out_unlock:
1440 page_unlock_anon_vma(anon_vma);
1441out:
1442 return ret;
1443}
1444
4b6e1e37 1445#define VM_NO_THP (VM_SPECIAL|VM_MIXEDMAP|VM_HUGETLB|VM_SHARED|VM_MAYSHARE)
78f11a25 1446
60ab3244
AA
1447int hugepage_madvise(struct vm_area_struct *vma,
1448 unsigned long *vm_flags, int advice)
0af4e98b 1449{
8e72033f
GS
1450 struct mm_struct *mm = vma->vm_mm;
1451
a664b2d8
AA
1452 switch (advice) {
1453 case MADV_HUGEPAGE:
1454 /*
1455 * Be somewhat over-protective like KSM for now!
1456 */
78f11a25 1457 if (*vm_flags & (VM_HUGEPAGE | VM_NO_THP))
a664b2d8 1458 return -EINVAL;
8e72033f
GS
1459 if (mm->def_flags & VM_NOHUGEPAGE)
1460 return -EINVAL;
a664b2d8
AA
1461 *vm_flags &= ~VM_NOHUGEPAGE;
1462 *vm_flags |= VM_HUGEPAGE;
60ab3244
AA
1463 /*
1464 * If the vma become good for khugepaged to scan,
1465 * register it here without waiting a page fault that
1466 * may not happen any time soon.
1467 */
1468 if (unlikely(khugepaged_enter_vma_merge(vma)))
1469 return -ENOMEM;
a664b2d8
AA
1470 break;
1471 case MADV_NOHUGEPAGE:
1472 /*
1473 * Be somewhat over-protective like KSM for now!
1474 */
78f11a25 1475 if (*vm_flags & (VM_NOHUGEPAGE | VM_NO_THP))
a664b2d8
AA
1476 return -EINVAL;
1477 *vm_flags &= ~VM_HUGEPAGE;
1478 *vm_flags |= VM_NOHUGEPAGE;
60ab3244
AA
1479 /*
1480 * Setting VM_NOHUGEPAGE will prevent khugepaged from scanning
1481 * this vma even if we leave the mm registered in khugepaged if
1482 * it got registered before VM_NOHUGEPAGE was set.
1483 */
a664b2d8
AA
1484 break;
1485 }
0af4e98b
AA
1486
1487 return 0;
1488}
1489
ba76149f
AA
1490static int __init khugepaged_slab_init(void)
1491{
1492 mm_slot_cache = kmem_cache_create("khugepaged_mm_slot",
1493 sizeof(struct mm_slot),
1494 __alignof__(struct mm_slot), 0, NULL);
1495 if (!mm_slot_cache)
1496 return -ENOMEM;
1497
1498 return 0;
1499}
1500
1501static void __init khugepaged_slab_free(void)
1502{
1503 kmem_cache_destroy(mm_slot_cache);
1504 mm_slot_cache = NULL;
1505}
1506
1507static inline struct mm_slot *alloc_mm_slot(void)
1508{
1509 if (!mm_slot_cache) /* initialization failed */
1510 return NULL;
1511 return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
1512}
1513
1514static inline void free_mm_slot(struct mm_slot *mm_slot)
1515{
1516 kmem_cache_free(mm_slot_cache, mm_slot);
1517}
1518
1519static int __init mm_slots_hash_init(void)
1520{
1521 mm_slots_hash = kzalloc(MM_SLOTS_HASH_HEADS * sizeof(struct hlist_head),
1522 GFP_KERNEL);
1523 if (!mm_slots_hash)
1524 return -ENOMEM;
1525 return 0;
1526}
1527
1528#if 0
1529static void __init mm_slots_hash_free(void)
1530{
1531 kfree(mm_slots_hash);
1532 mm_slots_hash = NULL;
1533}
1534#endif
1535
1536static struct mm_slot *get_mm_slot(struct mm_struct *mm)
1537{
1538 struct mm_slot *mm_slot;
1539 struct hlist_head *bucket;
1540 struct hlist_node *node;
1541
1542 bucket = &mm_slots_hash[((unsigned long)mm / sizeof(struct mm_struct))
1543 % MM_SLOTS_HASH_HEADS];
1544 hlist_for_each_entry(mm_slot, node, bucket, hash) {
1545 if (mm == mm_slot->mm)
1546 return mm_slot;
1547 }
1548 return NULL;
1549}
1550
1551static void insert_to_mm_slots_hash(struct mm_struct *mm,
1552 struct mm_slot *mm_slot)
1553{
1554 struct hlist_head *bucket;
1555
1556 bucket = &mm_slots_hash[((unsigned long)mm / sizeof(struct mm_struct))
1557 % MM_SLOTS_HASH_HEADS];
1558 mm_slot->mm = mm;
1559 hlist_add_head(&mm_slot->hash, bucket);
1560}
1561
1562static inline int khugepaged_test_exit(struct mm_struct *mm)
1563{
1564 return atomic_read(&mm->mm_users) == 0;
1565}
1566
1567int __khugepaged_enter(struct mm_struct *mm)
1568{
1569 struct mm_slot *mm_slot;
1570 int wakeup;
1571
1572 mm_slot = alloc_mm_slot();
1573 if (!mm_slot)
1574 return -ENOMEM;
1575
1576 /* __khugepaged_exit() must not run from under us */
1577 VM_BUG_ON(khugepaged_test_exit(mm));
1578 if (unlikely(test_and_set_bit(MMF_VM_HUGEPAGE, &mm->flags))) {
1579 free_mm_slot(mm_slot);
1580 return 0;
1581 }
1582
1583 spin_lock(&khugepaged_mm_lock);
1584 insert_to_mm_slots_hash(mm, mm_slot);
1585 /*
1586 * Insert just behind the scanning cursor, to let the area settle
1587 * down a little.
1588 */
1589 wakeup = list_empty(&khugepaged_scan.mm_head);
1590 list_add_tail(&mm_slot->mm_node, &khugepaged_scan.mm_head);
1591 spin_unlock(&khugepaged_mm_lock);
1592
1593 atomic_inc(&mm->mm_count);
1594 if (wakeup)
1595 wake_up_interruptible(&khugepaged_wait);
1596
1597 return 0;
1598}
1599
1600int khugepaged_enter_vma_merge(struct vm_area_struct *vma)
1601{
1602 unsigned long hstart, hend;
1603 if (!vma->anon_vma)
1604 /*
1605 * Not yet faulted in so we will register later in the
1606 * page fault if needed.
1607 */
1608 return 0;
78f11a25 1609 if (vma->vm_ops)
ba76149f
AA
1610 /* khugepaged not yet working on file or special mappings */
1611 return 0;
b3b9c293 1612 VM_BUG_ON(vma->vm_flags & VM_NO_THP);
ba76149f
AA
1613 hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
1614 hend = vma->vm_end & HPAGE_PMD_MASK;
1615 if (hstart < hend)
1616 return khugepaged_enter(vma);
1617 return 0;
1618}
1619
1620void __khugepaged_exit(struct mm_struct *mm)
1621{
1622 struct mm_slot *mm_slot;
1623 int free = 0;
1624
1625 spin_lock(&khugepaged_mm_lock);
1626 mm_slot = get_mm_slot(mm);
1627 if (mm_slot && khugepaged_scan.mm_slot != mm_slot) {
1628 hlist_del(&mm_slot->hash);
1629 list_del(&mm_slot->mm_node);
1630 free = 1;
1631 }
d788e80a 1632 spin_unlock(&khugepaged_mm_lock);
ba76149f
AA
1633
1634 if (free) {
ba76149f
AA
1635 clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
1636 free_mm_slot(mm_slot);
1637 mmdrop(mm);
1638 } else if (mm_slot) {
ba76149f
AA
1639 /*
1640 * This is required to serialize against
1641 * khugepaged_test_exit() (which is guaranteed to run
1642 * under mmap sem read mode). Stop here (after we
1643 * return all pagetables will be destroyed) until
1644 * khugepaged has finished working on the pagetables
1645 * under the mmap_sem.
1646 */
1647 down_write(&mm->mmap_sem);
1648 up_write(&mm->mmap_sem);
d788e80a 1649 }
ba76149f
AA
1650}
1651
1652static void release_pte_page(struct page *page)
1653{
1654 /* 0 stands for page_is_file_cache(page) == false */
1655 dec_zone_page_state(page, NR_ISOLATED_ANON + 0);
1656 unlock_page(page);
1657 putback_lru_page(page);
1658}
1659
1660static void release_pte_pages(pte_t *pte, pte_t *_pte)
1661{
1662 while (--_pte >= pte) {
1663 pte_t pteval = *_pte;
1664 if (!pte_none(pteval))
1665 release_pte_page(pte_page(pteval));
1666 }
1667}
1668
1669static void release_all_pte_pages(pte_t *pte)
1670{
1671 release_pte_pages(pte, pte + HPAGE_PMD_NR);
1672}
1673
1674static int __collapse_huge_page_isolate(struct vm_area_struct *vma,
1675 unsigned long address,
1676 pte_t *pte)
1677{
1678 struct page *page;
1679 pte_t *_pte;
1680 int referenced = 0, isolated = 0, none = 0;
1681 for (_pte = pte; _pte < pte+HPAGE_PMD_NR;
1682 _pte++, address += PAGE_SIZE) {
1683 pte_t pteval = *_pte;
1684 if (pte_none(pteval)) {
1685 if (++none <= khugepaged_max_ptes_none)
1686 continue;
1687 else {
1688 release_pte_pages(pte, _pte);
1689 goto out;
1690 }
1691 }
1692 if (!pte_present(pteval) || !pte_write(pteval)) {
1693 release_pte_pages(pte, _pte);
1694 goto out;
1695 }
1696 page = vm_normal_page(vma, address, pteval);
1697 if (unlikely(!page)) {
1698 release_pte_pages(pte, _pte);
1699 goto out;
1700 }
1701 VM_BUG_ON(PageCompound(page));
1702 BUG_ON(!PageAnon(page));
1703 VM_BUG_ON(!PageSwapBacked(page));
1704
1705 /* cannot use mapcount: can't collapse if there's a gup pin */
1706 if (page_count(page) != 1) {
1707 release_pte_pages(pte, _pte);
1708 goto out;
1709 }
1710 /*
1711 * We can do it before isolate_lru_page because the
1712 * page can't be freed from under us. NOTE: PG_lock
1713 * is needed to serialize against split_huge_page
1714 * when invoked from the VM.
1715 */
1716 if (!trylock_page(page)) {
1717 release_pte_pages(pte, _pte);
1718 goto out;
1719 }
1720 /*
1721 * Isolate the page to avoid collapsing an hugepage
1722 * currently in use by the VM.
1723 */
1724 if (isolate_lru_page(page)) {
1725 unlock_page(page);
1726 release_pte_pages(pte, _pte);
1727 goto out;
1728 }
1729 /* 0 stands for page_is_file_cache(page) == false */
1730 inc_zone_page_state(page, NR_ISOLATED_ANON + 0);
1731 VM_BUG_ON(!PageLocked(page));
1732 VM_BUG_ON(PageLRU(page));
1733
1734 /* If there is no mapped pte young don't collapse the page */
8ee53820
AA
1735 if (pte_young(pteval) || PageReferenced(page) ||
1736 mmu_notifier_test_young(vma->vm_mm, address))
ba76149f
AA
1737 referenced = 1;
1738 }
1739 if (unlikely(!referenced))
1740 release_all_pte_pages(pte);
1741 else
1742 isolated = 1;
1743out:
1744 return isolated;
1745}
1746
1747static void __collapse_huge_page_copy(pte_t *pte, struct page *page,
1748 struct vm_area_struct *vma,
1749 unsigned long address,
1750 spinlock_t *ptl)
1751{
1752 pte_t *_pte;
1753 for (_pte = pte; _pte < pte+HPAGE_PMD_NR; _pte++) {
1754 pte_t pteval = *_pte;
1755 struct page *src_page;
1756
1757 if (pte_none(pteval)) {
1758 clear_user_highpage(page, address);
1759 add_mm_counter(vma->vm_mm, MM_ANONPAGES, 1);
1760 } else {
1761 src_page = pte_page(pteval);
1762 copy_user_highpage(page, src_page, address, vma);
1763 VM_BUG_ON(page_mapcount(src_page) != 1);
ba76149f
AA
1764 release_pte_page(src_page);
1765 /*
1766 * ptl mostly unnecessary, but preempt has to
1767 * be disabled to update the per-cpu stats
1768 * inside page_remove_rmap().
1769 */
1770 spin_lock(ptl);
1771 /*
1772 * paravirt calls inside pte_clear here are
1773 * superfluous.
1774 */
1775 pte_clear(vma->vm_mm, address, _pte);
1776 page_remove_rmap(src_page);
1777 spin_unlock(ptl);
1778 free_page_and_swap_cache(src_page);
1779 }
1780
1781 address += PAGE_SIZE;
1782 page++;
1783 }
1784}
1785
26234f36 1786static void khugepaged_alloc_sleep(void)
ba76149f 1787{
26234f36
XG
1788 wait_event_freezable_timeout(khugepaged_wait, false,
1789 msecs_to_jiffies(khugepaged_alloc_sleep_millisecs));
1790}
ba76149f 1791
26234f36
XG
1792#ifdef CONFIG_NUMA
1793static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
1794{
1795 if (IS_ERR(*hpage)) {
1796 if (!*wait)
1797 return false;
1798
1799 *wait = false;
e3b4126c 1800 *hpage = NULL;
26234f36
XG
1801 khugepaged_alloc_sleep();
1802 } else if (*hpage) {
1803 put_page(*hpage);
1804 *hpage = NULL;
1805 }
1806
1807 return true;
1808}
1809
1810static struct page
1811*khugepaged_alloc_page(struct page **hpage, struct mm_struct *mm,
1812 struct vm_area_struct *vma, unsigned long address,
1813 int node)
1814{
0bbbc0b3 1815 VM_BUG_ON(*hpage);
ce83d217
AA
1816 /*
1817 * Allocate the page while the vma is still valid and under
1818 * the mmap_sem read mode so there is no memory allocation
1819 * later when we take the mmap_sem in write mode. This is more
1820 * friendly behavior (OTOH it may actually hide bugs) to
1821 * filesystems in userland with daemons allocating memory in
1822 * the userland I/O paths. Allocating memory with the
1823 * mmap_sem in read mode is good idea also to allow greater
1824 * scalability.
1825 */
26234f36 1826 *hpage = alloc_hugepage_vma(khugepaged_defrag(), vma, address,
cc5d462f 1827 node, __GFP_OTHER_NODE);
692e0b35
AA
1828
1829 /*
1830 * After allocating the hugepage, release the mmap_sem read lock in
1831 * preparation for taking it in write mode.
1832 */
1833 up_read(&mm->mmap_sem);
26234f36 1834 if (unlikely(!*hpage)) {
81ab4201 1835 count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
ce83d217 1836 *hpage = ERR_PTR(-ENOMEM);
26234f36 1837 return NULL;
ce83d217 1838 }
26234f36 1839
65b3c07b 1840 count_vm_event(THP_COLLAPSE_ALLOC);
26234f36
XG
1841 return *hpage;
1842}
1843#else
1844static struct page *khugepaged_alloc_hugepage(bool *wait)
1845{
1846 struct page *hpage;
1847
1848 do {
1849 hpage = alloc_hugepage(khugepaged_defrag());
1850 if (!hpage) {
1851 count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
1852 if (!*wait)
1853 return NULL;
1854
1855 *wait = false;
1856 khugepaged_alloc_sleep();
1857 } else
1858 count_vm_event(THP_COLLAPSE_ALLOC);
1859 } while (unlikely(!hpage) && likely(khugepaged_enabled()));
1860
1861 return hpage;
1862}
1863
1864static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
1865{
1866 if (!*hpage)
1867 *hpage = khugepaged_alloc_hugepage(wait);
1868
1869 if (unlikely(!*hpage))
1870 return false;
1871
1872 return true;
1873}
1874
1875static struct page
1876*khugepaged_alloc_page(struct page **hpage, struct mm_struct *mm,
1877 struct vm_area_struct *vma, unsigned long address,
1878 int node)
1879{
1880 up_read(&mm->mmap_sem);
1881 VM_BUG_ON(!*hpage);
1882 return *hpage;
1883}
692e0b35
AA
1884#endif
1885
26234f36
XG
1886static void collapse_huge_page(struct mm_struct *mm,
1887 unsigned long address,
1888 struct page **hpage,
1889 struct vm_area_struct *vma,
1890 int node)
1891{
1892 pgd_t *pgd;
1893 pud_t *pud;
1894 pmd_t *pmd, _pmd;
1895 pte_t *pte;
1896 pgtable_t pgtable;
1897 struct page *new_page;
1898 spinlock_t *ptl;
1899 int isolated;
1900 unsigned long hstart, hend;
1901
1902 VM_BUG_ON(address & ~HPAGE_PMD_MASK);
1903
1904 /* release the mmap_sem read lock. */
1905 new_page = khugepaged_alloc_page(hpage, mm, vma, address, node);
1906 if (!new_page)
1907 return;
1908
420256ef 1909 if (unlikely(mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL)))
ce83d217 1910 return;
ba76149f
AA
1911
1912 /*
1913 * Prevent all access to pagetables with the exception of
1914 * gup_fast later hanlded by the ptep_clear_flush and the VM
1915 * handled by the anon_vma lock + PG_lock.
1916 */
1917 down_write(&mm->mmap_sem);
1918 if (unlikely(khugepaged_test_exit(mm)))
1919 goto out;
1920
1921 vma = find_vma(mm, address);
1922 hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
1923 hend = vma->vm_end & HPAGE_PMD_MASK;
1924 if (address < hstart || address + HPAGE_PMD_SIZE > hend)
1925 goto out;
1926
60ab3244
AA
1927 if ((!(vma->vm_flags & VM_HUGEPAGE) && !khugepaged_always()) ||
1928 (vma->vm_flags & VM_NOHUGEPAGE))
ba76149f
AA
1929 goto out;
1930
78f11a25 1931 if (!vma->anon_vma || vma->vm_ops)
ba76149f 1932 goto out;
a7d6e4ec
AA
1933 if (is_vma_temporary_stack(vma))
1934 goto out;
b3b9c293 1935 VM_BUG_ON(vma->vm_flags & VM_NO_THP);
ba76149f
AA
1936
1937 pgd = pgd_offset(mm, address);
1938 if (!pgd_present(*pgd))
1939 goto out;
1940
1941 pud = pud_offset(pgd, address);
1942 if (!pud_present(*pud))
1943 goto out;
1944
1945 pmd = pmd_offset(pud, address);
1946 /* pmd can't go away or become huge under us */
1947 if (!pmd_present(*pmd) || pmd_trans_huge(*pmd))
1948 goto out;
1949
ba76149f
AA
1950 anon_vma_lock(vma->anon_vma);
1951
1952 pte = pte_offset_map(pmd, address);
1953 ptl = pte_lockptr(mm, pmd);
1954
1955 spin_lock(&mm->page_table_lock); /* probably unnecessary */
1956 /*
1957 * After this gup_fast can't run anymore. This also removes
1958 * any huge TLB entry from the CPU so we won't allow
1959 * huge and small TLB entries for the same virtual address
1960 * to avoid the risk of CPU bugs in that area.
1961 */
1962 _pmd = pmdp_clear_flush_notify(vma, address, pmd);
1963 spin_unlock(&mm->page_table_lock);
1964
1965 spin_lock(ptl);
1966 isolated = __collapse_huge_page_isolate(vma, address, pte);
1967 spin_unlock(ptl);
ba76149f
AA
1968
1969 if (unlikely(!isolated)) {
453c7192 1970 pte_unmap(pte);
ba76149f
AA
1971 spin_lock(&mm->page_table_lock);
1972 BUG_ON(!pmd_none(*pmd));
1973 set_pmd_at(mm, address, pmd, _pmd);
1974 spin_unlock(&mm->page_table_lock);
1975 anon_vma_unlock(vma->anon_vma);
ce83d217 1976 goto out;
ba76149f
AA
1977 }
1978
1979 /*
1980 * All pages are isolated and locked so anon_vma rmap
1981 * can't run anymore.
1982 */
1983 anon_vma_unlock(vma->anon_vma);
1984
1985 __collapse_huge_page_copy(pte, new_page, vma, address, ptl);
453c7192 1986 pte_unmap(pte);
ba76149f
AA
1987 __SetPageUptodate(new_page);
1988 pgtable = pmd_pgtable(_pmd);
ba76149f
AA
1989
1990 _pmd = mk_pmd(new_page, vma->vm_page_prot);
1991 _pmd = maybe_pmd_mkwrite(pmd_mkdirty(_pmd), vma);
1992 _pmd = pmd_mkhuge(_pmd);
1993
1994 /*
1995 * spin_lock() below is not the equivalent of smp_wmb(), so
1996 * this is needed to avoid the copy_huge_page writes to become
1997 * visible after the set_pmd_at() write.
1998 */
1999 smp_wmb();
2000
2001 spin_lock(&mm->page_table_lock);
2002 BUG_ON(!pmd_none(*pmd));
2003 page_add_new_anon_rmap(new_page, vma, address);
2004 set_pmd_at(mm, address, pmd, _pmd);
35d8c7ad 2005 update_mmu_cache(vma, address, _pmd);
e3ebcf64 2006 pgtable_trans_huge_deposit(mm, pgtable);
ba76149f
AA
2007 spin_unlock(&mm->page_table_lock);
2008
2009 *hpage = NULL;
420256ef 2010
ba76149f 2011 khugepaged_pages_collapsed++;
ce83d217 2012out_up_write:
ba76149f 2013 up_write(&mm->mmap_sem);
0bbbc0b3
AA
2014 return;
2015
ce83d217 2016out:
678ff896 2017 mem_cgroup_uncharge_page(new_page);
ce83d217 2018 goto out_up_write;
ba76149f
AA
2019}
2020
2021static int khugepaged_scan_pmd(struct mm_struct *mm,
2022 struct vm_area_struct *vma,
2023 unsigned long address,
2024 struct page **hpage)
2025{
2026 pgd_t *pgd;
2027 pud_t *pud;
2028 pmd_t *pmd;
2029 pte_t *pte, *_pte;
2030 int ret = 0, referenced = 0, none = 0;
2031 struct page *page;
2032 unsigned long _address;
2033 spinlock_t *ptl;
5c4b4be3 2034 int node = -1;
ba76149f
AA
2035
2036 VM_BUG_ON(address & ~HPAGE_PMD_MASK);
2037
2038 pgd = pgd_offset(mm, address);
2039 if (!pgd_present(*pgd))
2040 goto out;
2041
2042 pud = pud_offset(pgd, address);
2043 if (!pud_present(*pud))
2044 goto out;
2045
2046 pmd = pmd_offset(pud, address);
2047 if (!pmd_present(*pmd) || pmd_trans_huge(*pmd))
2048 goto out;
2049
2050 pte = pte_offset_map_lock(mm, pmd, address, &ptl);
2051 for (_address = address, _pte = pte; _pte < pte+HPAGE_PMD_NR;
2052 _pte++, _address += PAGE_SIZE) {
2053 pte_t pteval = *_pte;
2054 if (pte_none(pteval)) {
2055 if (++none <= khugepaged_max_ptes_none)
2056 continue;
2057 else
2058 goto out_unmap;
2059 }
2060 if (!pte_present(pteval) || !pte_write(pteval))
2061 goto out_unmap;
2062 page = vm_normal_page(vma, _address, pteval);
2063 if (unlikely(!page))
2064 goto out_unmap;
5c4b4be3
AK
2065 /*
2066 * Chose the node of the first page. This could
2067 * be more sophisticated and look at more pages,
2068 * but isn't for now.
2069 */
2070 if (node == -1)
2071 node = page_to_nid(page);
ba76149f
AA
2072 VM_BUG_ON(PageCompound(page));
2073 if (!PageLRU(page) || PageLocked(page) || !PageAnon(page))
2074 goto out_unmap;
2075 /* cannot use mapcount: can't collapse if there's a gup pin */
2076 if (page_count(page) != 1)
2077 goto out_unmap;
8ee53820
AA
2078 if (pte_young(pteval) || PageReferenced(page) ||
2079 mmu_notifier_test_young(vma->vm_mm, address))
ba76149f
AA
2080 referenced = 1;
2081 }
2082 if (referenced)
2083 ret = 1;
2084out_unmap:
2085 pte_unmap_unlock(pte, ptl);
ce83d217
AA
2086 if (ret)
2087 /* collapse_huge_page will return with the mmap_sem released */
5c4b4be3 2088 collapse_huge_page(mm, address, hpage, vma, node);
ba76149f
AA
2089out:
2090 return ret;
2091}
2092
2093static void collect_mm_slot(struct mm_slot *mm_slot)
2094{
2095 struct mm_struct *mm = mm_slot->mm;
2096
b9980cdc 2097 VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
ba76149f
AA
2098
2099 if (khugepaged_test_exit(mm)) {
2100 /* free mm_slot */
2101 hlist_del(&mm_slot->hash);
2102 list_del(&mm_slot->mm_node);
2103
2104 /*
2105 * Not strictly needed because the mm exited already.
2106 *
2107 * clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
2108 */
2109
2110 /* khugepaged_mm_lock actually not necessary for the below */
2111 free_mm_slot(mm_slot);
2112 mmdrop(mm);
2113 }
2114}
2115
2116static unsigned int khugepaged_scan_mm_slot(unsigned int pages,
2117 struct page **hpage)
2f1da642
HS
2118 __releases(&khugepaged_mm_lock)
2119 __acquires(&khugepaged_mm_lock)
ba76149f
AA
2120{
2121 struct mm_slot *mm_slot;
2122 struct mm_struct *mm;
2123 struct vm_area_struct *vma;
2124 int progress = 0;
2125
2126 VM_BUG_ON(!pages);
b9980cdc 2127 VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
ba76149f
AA
2128
2129 if (khugepaged_scan.mm_slot)
2130 mm_slot = khugepaged_scan.mm_slot;
2131 else {
2132 mm_slot = list_entry(khugepaged_scan.mm_head.next,
2133 struct mm_slot, mm_node);
2134 khugepaged_scan.address = 0;
2135 khugepaged_scan.mm_slot = mm_slot;
2136 }
2137 spin_unlock(&khugepaged_mm_lock);
2138
2139 mm = mm_slot->mm;
2140 down_read(&mm->mmap_sem);
2141 if (unlikely(khugepaged_test_exit(mm)))
2142 vma = NULL;
2143 else
2144 vma = find_vma(mm, khugepaged_scan.address);
2145
2146 progress++;
2147 for (; vma; vma = vma->vm_next) {
2148 unsigned long hstart, hend;
2149
2150 cond_resched();
2151 if (unlikely(khugepaged_test_exit(mm))) {
2152 progress++;
2153 break;
2154 }
2155
60ab3244
AA
2156 if ((!(vma->vm_flags & VM_HUGEPAGE) &&
2157 !khugepaged_always()) ||
2158 (vma->vm_flags & VM_NOHUGEPAGE)) {
a7d6e4ec 2159 skip:
ba76149f
AA
2160 progress++;
2161 continue;
2162 }
78f11a25 2163 if (!vma->anon_vma || vma->vm_ops)
a7d6e4ec
AA
2164 goto skip;
2165 if (is_vma_temporary_stack(vma))
2166 goto skip;
b3b9c293 2167 VM_BUG_ON(vma->vm_flags & VM_NO_THP);
ba76149f
AA
2168
2169 hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
2170 hend = vma->vm_end & HPAGE_PMD_MASK;
a7d6e4ec
AA
2171 if (hstart >= hend)
2172 goto skip;
2173 if (khugepaged_scan.address > hend)
2174 goto skip;
ba76149f
AA
2175 if (khugepaged_scan.address < hstart)
2176 khugepaged_scan.address = hstart;
a7d6e4ec 2177 VM_BUG_ON(khugepaged_scan.address & ~HPAGE_PMD_MASK);
ba76149f
AA
2178
2179 while (khugepaged_scan.address < hend) {
2180 int ret;
2181 cond_resched();
2182 if (unlikely(khugepaged_test_exit(mm)))
2183 goto breakouterloop;
2184
2185 VM_BUG_ON(khugepaged_scan.address < hstart ||
2186 khugepaged_scan.address + HPAGE_PMD_SIZE >
2187 hend);
2188 ret = khugepaged_scan_pmd(mm, vma,
2189 khugepaged_scan.address,
2190 hpage);
2191 /* move to next address */
2192 khugepaged_scan.address += HPAGE_PMD_SIZE;
2193 progress += HPAGE_PMD_NR;
2194 if (ret)
2195 /* we released mmap_sem so break loop */
2196 goto breakouterloop_mmap_sem;
2197 if (progress >= pages)
2198 goto breakouterloop;
2199 }
2200 }
2201breakouterloop:
2202 up_read(&mm->mmap_sem); /* exit_mmap will destroy ptes after this */
2203breakouterloop_mmap_sem:
2204
2205 spin_lock(&khugepaged_mm_lock);
a7d6e4ec 2206 VM_BUG_ON(khugepaged_scan.mm_slot != mm_slot);
ba76149f
AA
2207 /*
2208 * Release the current mm_slot if this mm is about to die, or
2209 * if we scanned all vmas of this mm.
2210 */
2211 if (khugepaged_test_exit(mm) || !vma) {
2212 /*
2213 * Make sure that if mm_users is reaching zero while
2214 * khugepaged runs here, khugepaged_exit will find
2215 * mm_slot not pointing to the exiting mm.
2216 */
2217 if (mm_slot->mm_node.next != &khugepaged_scan.mm_head) {
2218 khugepaged_scan.mm_slot = list_entry(
2219 mm_slot->mm_node.next,
2220 struct mm_slot, mm_node);
2221 khugepaged_scan.address = 0;
2222 } else {
2223 khugepaged_scan.mm_slot = NULL;
2224 khugepaged_full_scans++;
2225 }
2226
2227 collect_mm_slot(mm_slot);
2228 }
2229
2230 return progress;
2231}
2232
2233static int khugepaged_has_work(void)
2234{
2235 return !list_empty(&khugepaged_scan.mm_head) &&
2236 khugepaged_enabled();
2237}
2238
2239static int khugepaged_wait_event(void)
2240{
2241 return !list_empty(&khugepaged_scan.mm_head) ||
2017c0bf 2242 kthread_should_stop();
ba76149f
AA
2243}
2244
d516904b 2245static void khugepaged_do_scan(void)
ba76149f 2246{
d516904b 2247 struct page *hpage = NULL;
ba76149f
AA
2248 unsigned int progress = 0, pass_through_head = 0;
2249 unsigned int pages = khugepaged_pages_to_scan;
d516904b 2250 bool wait = true;
ba76149f
AA
2251
2252 barrier(); /* write khugepaged_pages_to_scan to local stack */
2253
2254 while (progress < pages) {
26234f36 2255 if (!khugepaged_prealloc_page(&hpage, &wait))
d516904b 2256 break;
26234f36 2257
420256ef 2258 cond_resched();
ba76149f 2259
878aee7d
AA
2260 if (unlikely(kthread_should_stop() || freezing(current)))
2261 break;
2262
ba76149f
AA
2263 spin_lock(&khugepaged_mm_lock);
2264 if (!khugepaged_scan.mm_slot)
2265 pass_through_head++;
2266 if (khugepaged_has_work() &&
2267 pass_through_head < 2)
2268 progress += khugepaged_scan_mm_slot(pages - progress,
d516904b 2269 &hpage);
ba76149f
AA
2270 else
2271 progress = pages;
2272 spin_unlock(&khugepaged_mm_lock);
2273 }
ba76149f 2274
d516904b
XG
2275 if (!IS_ERR_OR_NULL(hpage))
2276 put_page(hpage);
0bbbc0b3
AA
2277}
2278
2017c0bf
XG
2279static void khugepaged_wait_work(void)
2280{
2281 try_to_freeze();
2282
2283 if (khugepaged_has_work()) {
2284 if (!khugepaged_scan_sleep_millisecs)
2285 return;
2286
2287 wait_event_freezable_timeout(khugepaged_wait,
2288 kthread_should_stop(),
2289 msecs_to_jiffies(khugepaged_scan_sleep_millisecs));
2290 return;
2291 }
2292
2293 if (khugepaged_enabled())
2294 wait_event_freezable(khugepaged_wait, khugepaged_wait_event());
2295}
2296
ba76149f
AA
2297static int khugepaged(void *none)
2298{
2299 struct mm_slot *mm_slot;
2300
878aee7d 2301 set_freezable();
ba76149f
AA
2302 set_user_nice(current, 19);
2303
b7231789
XG
2304 while (!kthread_should_stop()) {
2305 khugepaged_do_scan();
2306 khugepaged_wait_work();
2307 }
ba76149f
AA
2308
2309 spin_lock(&khugepaged_mm_lock);
2310 mm_slot = khugepaged_scan.mm_slot;
2311 khugepaged_scan.mm_slot = NULL;
2312 if (mm_slot)
2313 collect_mm_slot(mm_slot);
2314 spin_unlock(&khugepaged_mm_lock);
ba76149f
AA
2315 return 0;
2316}
2317
71e3aac0
AA
2318void __split_huge_page_pmd(struct mm_struct *mm, pmd_t *pmd)
2319{
2320 struct page *page;
2321
2322 spin_lock(&mm->page_table_lock);
2323 if (unlikely(!pmd_trans_huge(*pmd))) {
2324 spin_unlock(&mm->page_table_lock);
2325 return;
2326 }
2327 page = pmd_page(*pmd);
2328 VM_BUG_ON(!page_count(page));
2329 get_page(page);
2330 spin_unlock(&mm->page_table_lock);
2331
2332 split_huge_page(page);
2333
2334 put_page(page);
2335 BUG_ON(pmd_trans_huge(*pmd));
2336}
94fcc585
AA
2337
2338static void split_huge_page_address(struct mm_struct *mm,
2339 unsigned long address)
2340{
2341 pgd_t *pgd;
2342 pud_t *pud;
2343 pmd_t *pmd;
2344
2345 VM_BUG_ON(!(address & ~HPAGE_PMD_MASK));
2346
2347 pgd = pgd_offset(mm, address);
2348 if (!pgd_present(*pgd))
2349 return;
2350
2351 pud = pud_offset(pgd, address);
2352 if (!pud_present(*pud))
2353 return;
2354
2355 pmd = pmd_offset(pud, address);
2356 if (!pmd_present(*pmd))
2357 return;
2358 /*
2359 * Caller holds the mmap_sem write mode, so a huge pmd cannot
2360 * materialize from under us.
2361 */
2362 split_huge_page_pmd(mm, pmd);
2363}
2364
2365void __vma_adjust_trans_huge(struct vm_area_struct *vma,
2366 unsigned long start,
2367 unsigned long end,
2368 long adjust_next)
2369{
2370 /*
2371 * If the new start address isn't hpage aligned and it could
2372 * previously contain an hugepage: check if we need to split
2373 * an huge pmd.
2374 */
2375 if (start & ~HPAGE_PMD_MASK &&
2376 (start & HPAGE_PMD_MASK) >= vma->vm_start &&
2377 (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2378 split_huge_page_address(vma->vm_mm, start);
2379
2380 /*
2381 * If the new end address isn't hpage aligned and it could
2382 * previously contain an hugepage: check if we need to split
2383 * an huge pmd.
2384 */
2385 if (end & ~HPAGE_PMD_MASK &&
2386 (end & HPAGE_PMD_MASK) >= vma->vm_start &&
2387 (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2388 split_huge_page_address(vma->vm_mm, end);
2389
2390 /*
2391 * If we're also updating the vma->vm_next->vm_start, if the new
2392 * vm_next->vm_start isn't page aligned and it could previously
2393 * contain an hugepage: check if we need to split an huge pmd.
2394 */
2395 if (adjust_next > 0) {
2396 struct vm_area_struct *next = vma->vm_next;
2397 unsigned long nstart = next->vm_start;
2398 nstart += adjust_next << PAGE_SHIFT;
2399 if (nstart & ~HPAGE_PMD_MASK &&
2400 (nstart & HPAGE_PMD_MASK) >= next->vm_start &&
2401 (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end)
2402 split_huge_page_address(next->vm_mm, nstart);
2403 }
2404}