mm: adjust final #endif position in mm/internal.h
[linux-2.6-block.git] / mm / huge_memory.c
CommitLineData
71e3aac0
AA
1/*
2 * Copyright (C) 2009 Red Hat, Inc.
3 *
4 * This work is licensed under the terms of the GNU GPL, version 2. See
5 * the COPYING file in the top-level directory.
6 */
7
8#include <linux/mm.h>
9#include <linux/sched.h>
10#include <linux/highmem.h>
11#include <linux/hugetlb.h>
12#include <linux/mmu_notifier.h>
13#include <linux/rmap.h>
14#include <linux/swap.h>
ba76149f
AA
15#include <linux/mm_inline.h>
16#include <linux/kthread.h>
17#include <linux/khugepaged.h>
878aee7d 18#include <linux/freezer.h>
a664b2d8 19#include <linux/mman.h>
71e3aac0
AA
20#include <asm/tlb.h>
21#include <asm/pgalloc.h>
22#include "internal.h"
23
ba76149f
AA
24/*
25 * By default transparent hugepage support is enabled for all mappings
26 * and khugepaged scans all mappings. Defrag is only invoked by
27 * khugepaged hugepage allocations and by page faults inside
28 * MADV_HUGEPAGE regions to avoid the risk of slowing down short lived
29 * allocations.
30 */
71e3aac0 31unsigned long transparent_hugepage_flags __read_mostly =
13ece886 32#ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
ba76149f 33 (1<<TRANSPARENT_HUGEPAGE_FLAG)|
13ece886
AA
34#endif
35#ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
36 (1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
37#endif
d39d33c3 38 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_FLAG)|
ba76149f
AA
39 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
40
41/* default scan 8*512 pte (or vmas) every 30 second */
42static unsigned int khugepaged_pages_to_scan __read_mostly = HPAGE_PMD_NR*8;
43static unsigned int khugepaged_pages_collapsed;
44static unsigned int khugepaged_full_scans;
45static unsigned int khugepaged_scan_sleep_millisecs __read_mostly = 10000;
46/* during fragmentation poll the hugepage allocator once every minute */
47static unsigned int khugepaged_alloc_sleep_millisecs __read_mostly = 60000;
48static struct task_struct *khugepaged_thread __read_mostly;
49static DEFINE_MUTEX(khugepaged_mutex);
50static DEFINE_SPINLOCK(khugepaged_mm_lock);
51static DECLARE_WAIT_QUEUE_HEAD(khugepaged_wait);
52/*
53 * default collapse hugepages if there is at least one pte mapped like
54 * it would have happened if the vma was large enough during page
55 * fault.
56 */
57static unsigned int khugepaged_max_ptes_none __read_mostly = HPAGE_PMD_NR-1;
58
59static int khugepaged(void *none);
60static int mm_slots_hash_init(void);
61static int khugepaged_slab_init(void);
62static void khugepaged_slab_free(void);
63
64#define MM_SLOTS_HASH_HEADS 1024
65static struct hlist_head *mm_slots_hash __read_mostly;
66static struct kmem_cache *mm_slot_cache __read_mostly;
67
68/**
69 * struct mm_slot - hash lookup from mm to mm_slot
70 * @hash: hash collision list
71 * @mm_node: khugepaged scan list headed in khugepaged_scan.mm_head
72 * @mm: the mm that this information is valid for
73 */
74struct mm_slot {
75 struct hlist_node hash;
76 struct list_head mm_node;
77 struct mm_struct *mm;
78};
79
80/**
81 * struct khugepaged_scan - cursor for scanning
82 * @mm_head: the head of the mm list to scan
83 * @mm_slot: the current mm_slot we are scanning
84 * @address: the next address inside that to be scanned
85 *
86 * There is only the one khugepaged_scan instance of this cursor structure.
87 */
88struct khugepaged_scan {
89 struct list_head mm_head;
90 struct mm_slot *mm_slot;
91 unsigned long address;
2f1da642
HS
92};
93static struct khugepaged_scan khugepaged_scan = {
ba76149f
AA
94 .mm_head = LIST_HEAD_INIT(khugepaged_scan.mm_head),
95};
96
f000565a
AA
97
98static int set_recommended_min_free_kbytes(void)
99{
100 struct zone *zone;
101 int nr_zones = 0;
102 unsigned long recommended_min;
103 extern int min_free_kbytes;
104
105 if (!test_bit(TRANSPARENT_HUGEPAGE_FLAG,
106 &transparent_hugepage_flags) &&
107 !test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
108 &transparent_hugepage_flags))
109 return 0;
110
111 for_each_populated_zone(zone)
112 nr_zones++;
113
114 /* Make sure at least 2 hugepages are free for MIGRATE_RESERVE */
115 recommended_min = pageblock_nr_pages * nr_zones * 2;
116
117 /*
118 * Make sure that on average at least two pageblocks are almost free
119 * of another type, one for a migratetype to fall back to and a
120 * second to avoid subsequent fallbacks of other types There are 3
121 * MIGRATE_TYPES we care about.
122 */
123 recommended_min += pageblock_nr_pages * nr_zones *
124 MIGRATE_PCPTYPES * MIGRATE_PCPTYPES;
125
126 /* don't ever allow to reserve more than 5% of the lowmem */
127 recommended_min = min(recommended_min,
128 (unsigned long) nr_free_buffer_pages() / 20);
129 recommended_min <<= (PAGE_SHIFT-10);
130
131 if (recommended_min > min_free_kbytes)
132 min_free_kbytes = recommended_min;
133 setup_per_zone_wmarks();
134 return 0;
135}
136late_initcall(set_recommended_min_free_kbytes);
137
ba76149f
AA
138static int start_khugepaged(void)
139{
140 int err = 0;
141 if (khugepaged_enabled()) {
142 int wakeup;
143 if (unlikely(!mm_slot_cache || !mm_slots_hash)) {
144 err = -ENOMEM;
145 goto out;
146 }
147 mutex_lock(&khugepaged_mutex);
148 if (!khugepaged_thread)
149 khugepaged_thread = kthread_run(khugepaged, NULL,
150 "khugepaged");
151 if (unlikely(IS_ERR(khugepaged_thread))) {
152 printk(KERN_ERR
153 "khugepaged: kthread_run(khugepaged) failed\n");
154 err = PTR_ERR(khugepaged_thread);
155 khugepaged_thread = NULL;
156 }
157 wakeup = !list_empty(&khugepaged_scan.mm_head);
158 mutex_unlock(&khugepaged_mutex);
159 if (wakeup)
160 wake_up_interruptible(&khugepaged_wait);
f000565a
AA
161
162 set_recommended_min_free_kbytes();
ba76149f
AA
163 } else
164 /* wakeup to exit */
165 wake_up_interruptible(&khugepaged_wait);
166out:
167 return err;
168}
71e3aac0
AA
169
170#ifdef CONFIG_SYSFS
ba76149f 171
71e3aac0
AA
172static ssize_t double_flag_show(struct kobject *kobj,
173 struct kobj_attribute *attr, char *buf,
174 enum transparent_hugepage_flag enabled,
175 enum transparent_hugepage_flag req_madv)
176{
177 if (test_bit(enabled, &transparent_hugepage_flags)) {
178 VM_BUG_ON(test_bit(req_madv, &transparent_hugepage_flags));
179 return sprintf(buf, "[always] madvise never\n");
180 } else if (test_bit(req_madv, &transparent_hugepage_flags))
181 return sprintf(buf, "always [madvise] never\n");
182 else
183 return sprintf(buf, "always madvise [never]\n");
184}
185static ssize_t double_flag_store(struct kobject *kobj,
186 struct kobj_attribute *attr,
187 const char *buf, size_t count,
188 enum transparent_hugepage_flag enabled,
189 enum transparent_hugepage_flag req_madv)
190{
191 if (!memcmp("always", buf,
192 min(sizeof("always")-1, count))) {
193 set_bit(enabled, &transparent_hugepage_flags);
194 clear_bit(req_madv, &transparent_hugepage_flags);
195 } else if (!memcmp("madvise", buf,
196 min(sizeof("madvise")-1, count))) {
197 clear_bit(enabled, &transparent_hugepage_flags);
198 set_bit(req_madv, &transparent_hugepage_flags);
199 } else if (!memcmp("never", buf,
200 min(sizeof("never")-1, count))) {
201 clear_bit(enabled, &transparent_hugepage_flags);
202 clear_bit(req_madv, &transparent_hugepage_flags);
203 } else
204 return -EINVAL;
205
206 return count;
207}
208
209static ssize_t enabled_show(struct kobject *kobj,
210 struct kobj_attribute *attr, char *buf)
211{
212 return double_flag_show(kobj, attr, buf,
213 TRANSPARENT_HUGEPAGE_FLAG,
214 TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
215}
216static ssize_t enabled_store(struct kobject *kobj,
217 struct kobj_attribute *attr,
218 const char *buf, size_t count)
219{
ba76149f
AA
220 ssize_t ret;
221
222 ret = double_flag_store(kobj, attr, buf, count,
223 TRANSPARENT_HUGEPAGE_FLAG,
224 TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
225
226 if (ret > 0) {
227 int err = start_khugepaged();
228 if (err)
229 ret = err;
230 }
231
f000565a
AA
232 if (ret > 0 &&
233 (test_bit(TRANSPARENT_HUGEPAGE_FLAG,
234 &transparent_hugepage_flags) ||
235 test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
236 &transparent_hugepage_flags)))
237 set_recommended_min_free_kbytes();
238
ba76149f 239 return ret;
71e3aac0
AA
240}
241static struct kobj_attribute enabled_attr =
242 __ATTR(enabled, 0644, enabled_show, enabled_store);
243
244static ssize_t single_flag_show(struct kobject *kobj,
245 struct kobj_attribute *attr, char *buf,
246 enum transparent_hugepage_flag flag)
247{
e27e6151
BH
248 return sprintf(buf, "%d\n",
249 !!test_bit(flag, &transparent_hugepage_flags));
71e3aac0 250}
e27e6151 251
71e3aac0
AA
252static ssize_t single_flag_store(struct kobject *kobj,
253 struct kobj_attribute *attr,
254 const char *buf, size_t count,
255 enum transparent_hugepage_flag flag)
256{
e27e6151
BH
257 unsigned long value;
258 int ret;
259
260 ret = kstrtoul(buf, 10, &value);
261 if (ret < 0)
262 return ret;
263 if (value > 1)
264 return -EINVAL;
265
266 if (value)
71e3aac0 267 set_bit(flag, &transparent_hugepage_flags);
e27e6151 268 else
71e3aac0 269 clear_bit(flag, &transparent_hugepage_flags);
71e3aac0
AA
270
271 return count;
272}
273
274/*
275 * Currently defrag only disables __GFP_NOWAIT for allocation. A blind
276 * __GFP_REPEAT is too aggressive, it's never worth swapping tons of
277 * memory just to allocate one more hugepage.
278 */
279static ssize_t defrag_show(struct kobject *kobj,
280 struct kobj_attribute *attr, char *buf)
281{
282 return double_flag_show(kobj, attr, buf,
283 TRANSPARENT_HUGEPAGE_DEFRAG_FLAG,
284 TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
285}
286static ssize_t defrag_store(struct kobject *kobj,
287 struct kobj_attribute *attr,
288 const char *buf, size_t count)
289{
290 return double_flag_store(kobj, attr, buf, count,
291 TRANSPARENT_HUGEPAGE_DEFRAG_FLAG,
292 TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
293}
294static struct kobj_attribute defrag_attr =
295 __ATTR(defrag, 0644, defrag_show, defrag_store);
296
297#ifdef CONFIG_DEBUG_VM
298static ssize_t debug_cow_show(struct kobject *kobj,
299 struct kobj_attribute *attr, char *buf)
300{
301 return single_flag_show(kobj, attr, buf,
302 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
303}
304static ssize_t debug_cow_store(struct kobject *kobj,
305 struct kobj_attribute *attr,
306 const char *buf, size_t count)
307{
308 return single_flag_store(kobj, attr, buf, count,
309 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
310}
311static struct kobj_attribute debug_cow_attr =
312 __ATTR(debug_cow, 0644, debug_cow_show, debug_cow_store);
313#endif /* CONFIG_DEBUG_VM */
314
315static struct attribute *hugepage_attr[] = {
316 &enabled_attr.attr,
317 &defrag_attr.attr,
318#ifdef CONFIG_DEBUG_VM
319 &debug_cow_attr.attr,
320#endif
321 NULL,
322};
323
324static struct attribute_group hugepage_attr_group = {
325 .attrs = hugepage_attr,
ba76149f
AA
326};
327
328static ssize_t scan_sleep_millisecs_show(struct kobject *kobj,
329 struct kobj_attribute *attr,
330 char *buf)
331{
332 return sprintf(buf, "%u\n", khugepaged_scan_sleep_millisecs);
333}
334
335static ssize_t scan_sleep_millisecs_store(struct kobject *kobj,
336 struct kobj_attribute *attr,
337 const char *buf, size_t count)
338{
339 unsigned long msecs;
340 int err;
341
342 err = strict_strtoul(buf, 10, &msecs);
343 if (err || msecs > UINT_MAX)
344 return -EINVAL;
345
346 khugepaged_scan_sleep_millisecs = msecs;
347 wake_up_interruptible(&khugepaged_wait);
348
349 return count;
350}
351static struct kobj_attribute scan_sleep_millisecs_attr =
352 __ATTR(scan_sleep_millisecs, 0644, scan_sleep_millisecs_show,
353 scan_sleep_millisecs_store);
354
355static ssize_t alloc_sleep_millisecs_show(struct kobject *kobj,
356 struct kobj_attribute *attr,
357 char *buf)
358{
359 return sprintf(buf, "%u\n", khugepaged_alloc_sleep_millisecs);
360}
361
362static ssize_t alloc_sleep_millisecs_store(struct kobject *kobj,
363 struct kobj_attribute *attr,
364 const char *buf, size_t count)
365{
366 unsigned long msecs;
367 int err;
368
369 err = strict_strtoul(buf, 10, &msecs);
370 if (err || msecs > UINT_MAX)
371 return -EINVAL;
372
373 khugepaged_alloc_sleep_millisecs = msecs;
374 wake_up_interruptible(&khugepaged_wait);
375
376 return count;
377}
378static struct kobj_attribute alloc_sleep_millisecs_attr =
379 __ATTR(alloc_sleep_millisecs, 0644, alloc_sleep_millisecs_show,
380 alloc_sleep_millisecs_store);
381
382static ssize_t pages_to_scan_show(struct kobject *kobj,
383 struct kobj_attribute *attr,
384 char *buf)
385{
386 return sprintf(buf, "%u\n", khugepaged_pages_to_scan);
387}
388static ssize_t pages_to_scan_store(struct kobject *kobj,
389 struct kobj_attribute *attr,
390 const char *buf, size_t count)
391{
392 int err;
393 unsigned long pages;
394
395 err = strict_strtoul(buf, 10, &pages);
396 if (err || !pages || pages > UINT_MAX)
397 return -EINVAL;
398
399 khugepaged_pages_to_scan = pages;
400
401 return count;
402}
403static struct kobj_attribute pages_to_scan_attr =
404 __ATTR(pages_to_scan, 0644, pages_to_scan_show,
405 pages_to_scan_store);
406
407static ssize_t pages_collapsed_show(struct kobject *kobj,
408 struct kobj_attribute *attr,
409 char *buf)
410{
411 return sprintf(buf, "%u\n", khugepaged_pages_collapsed);
412}
413static struct kobj_attribute pages_collapsed_attr =
414 __ATTR_RO(pages_collapsed);
415
416static ssize_t full_scans_show(struct kobject *kobj,
417 struct kobj_attribute *attr,
418 char *buf)
419{
420 return sprintf(buf, "%u\n", khugepaged_full_scans);
421}
422static struct kobj_attribute full_scans_attr =
423 __ATTR_RO(full_scans);
424
425static ssize_t khugepaged_defrag_show(struct kobject *kobj,
426 struct kobj_attribute *attr, char *buf)
427{
428 return single_flag_show(kobj, attr, buf,
429 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
430}
431static ssize_t khugepaged_defrag_store(struct kobject *kobj,
432 struct kobj_attribute *attr,
433 const char *buf, size_t count)
434{
435 return single_flag_store(kobj, attr, buf, count,
436 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
437}
438static struct kobj_attribute khugepaged_defrag_attr =
439 __ATTR(defrag, 0644, khugepaged_defrag_show,
440 khugepaged_defrag_store);
441
442/*
443 * max_ptes_none controls if khugepaged should collapse hugepages over
444 * any unmapped ptes in turn potentially increasing the memory
445 * footprint of the vmas. When max_ptes_none is 0 khugepaged will not
446 * reduce the available free memory in the system as it
447 * runs. Increasing max_ptes_none will instead potentially reduce the
448 * free memory in the system during the khugepaged scan.
449 */
450static ssize_t khugepaged_max_ptes_none_show(struct kobject *kobj,
451 struct kobj_attribute *attr,
452 char *buf)
453{
454 return sprintf(buf, "%u\n", khugepaged_max_ptes_none);
455}
456static ssize_t khugepaged_max_ptes_none_store(struct kobject *kobj,
457 struct kobj_attribute *attr,
458 const char *buf, size_t count)
459{
460 int err;
461 unsigned long max_ptes_none;
462
463 err = strict_strtoul(buf, 10, &max_ptes_none);
464 if (err || max_ptes_none > HPAGE_PMD_NR-1)
465 return -EINVAL;
466
467 khugepaged_max_ptes_none = max_ptes_none;
468
469 return count;
470}
471static struct kobj_attribute khugepaged_max_ptes_none_attr =
472 __ATTR(max_ptes_none, 0644, khugepaged_max_ptes_none_show,
473 khugepaged_max_ptes_none_store);
474
475static struct attribute *khugepaged_attr[] = {
476 &khugepaged_defrag_attr.attr,
477 &khugepaged_max_ptes_none_attr.attr,
478 &pages_to_scan_attr.attr,
479 &pages_collapsed_attr.attr,
480 &full_scans_attr.attr,
481 &scan_sleep_millisecs_attr.attr,
482 &alloc_sleep_millisecs_attr.attr,
483 NULL,
484};
485
486static struct attribute_group khugepaged_attr_group = {
487 .attrs = khugepaged_attr,
488 .name = "khugepaged",
71e3aac0 489};
71e3aac0 490
569e5590 491static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
71e3aac0 492{
71e3aac0
AA
493 int err;
494
569e5590
SL
495 *hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
496 if (unlikely(!*hugepage_kobj)) {
ba76149f 497 printk(KERN_ERR "hugepage: failed kobject create\n");
569e5590 498 return -ENOMEM;
ba76149f
AA
499 }
500
569e5590 501 err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
ba76149f
AA
502 if (err) {
503 printk(KERN_ERR "hugepage: failed register hugeage group\n");
569e5590 504 goto delete_obj;
ba76149f
AA
505 }
506
569e5590 507 err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
ba76149f
AA
508 if (err) {
509 printk(KERN_ERR "hugepage: failed register hugeage group\n");
569e5590 510 goto remove_hp_group;
ba76149f 511 }
569e5590
SL
512
513 return 0;
514
515remove_hp_group:
516 sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
517delete_obj:
518 kobject_put(*hugepage_kobj);
519 return err;
520}
521
522static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
523{
524 sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
525 sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
526 kobject_put(hugepage_kobj);
527}
528#else
529static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
530{
531 return 0;
532}
533
534static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
535{
536}
537#endif /* CONFIG_SYSFS */
538
539static int __init hugepage_init(void)
540{
541 int err;
542 struct kobject *hugepage_kobj;
543
544 if (!has_transparent_hugepage()) {
545 transparent_hugepage_flags = 0;
546 return -EINVAL;
547 }
548
549 err = hugepage_init_sysfs(&hugepage_kobj);
550 if (err)
551 return err;
ba76149f
AA
552
553 err = khugepaged_slab_init();
554 if (err)
555 goto out;
556
557 err = mm_slots_hash_init();
558 if (err) {
559 khugepaged_slab_free();
560 goto out;
561 }
562
97562cd2
RR
563 /*
564 * By default disable transparent hugepages on smaller systems,
565 * where the extra memory used could hurt more than TLB overhead
566 * is likely to save. The admin can still enable it through /sys.
567 */
568 if (totalram_pages < (512 << (20 - PAGE_SHIFT)))
569 transparent_hugepage_flags = 0;
570
ba76149f
AA
571 start_khugepaged();
572
f000565a
AA
573 set_recommended_min_free_kbytes();
574
569e5590 575 return 0;
ba76149f 576out:
569e5590 577 hugepage_exit_sysfs(hugepage_kobj);
ba76149f 578 return err;
71e3aac0
AA
579}
580module_init(hugepage_init)
581
582static int __init setup_transparent_hugepage(char *str)
583{
584 int ret = 0;
585 if (!str)
586 goto out;
587 if (!strcmp(str, "always")) {
588 set_bit(TRANSPARENT_HUGEPAGE_FLAG,
589 &transparent_hugepage_flags);
590 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
591 &transparent_hugepage_flags);
592 ret = 1;
593 } else if (!strcmp(str, "madvise")) {
594 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
595 &transparent_hugepage_flags);
596 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
597 &transparent_hugepage_flags);
598 ret = 1;
599 } else if (!strcmp(str, "never")) {
600 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
601 &transparent_hugepage_flags);
602 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
603 &transparent_hugepage_flags);
604 ret = 1;
605 }
606out:
607 if (!ret)
608 printk(KERN_WARNING
609 "transparent_hugepage= cannot parse, ignored\n");
610 return ret;
611}
612__setup("transparent_hugepage=", setup_transparent_hugepage);
613
614static void prepare_pmd_huge_pte(pgtable_t pgtable,
615 struct mm_struct *mm)
616{
617 assert_spin_locked(&mm->page_table_lock);
618
619 /* FIFO */
620 if (!mm->pmd_huge_pte)
621 INIT_LIST_HEAD(&pgtable->lru);
622 else
623 list_add(&pgtable->lru, &mm->pmd_huge_pte->lru);
624 mm->pmd_huge_pte = pgtable;
625}
626
627static inline pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
628{
629 if (likely(vma->vm_flags & VM_WRITE))
630 pmd = pmd_mkwrite(pmd);
631 return pmd;
632}
633
634static int __do_huge_pmd_anonymous_page(struct mm_struct *mm,
635 struct vm_area_struct *vma,
636 unsigned long haddr, pmd_t *pmd,
637 struct page *page)
638{
71e3aac0
AA
639 pgtable_t pgtable;
640
641 VM_BUG_ON(!PageCompound(page));
642 pgtable = pte_alloc_one(mm, haddr);
edad9d2c 643 if (unlikely(!pgtable))
71e3aac0 644 return VM_FAULT_OOM;
71e3aac0
AA
645
646 clear_huge_page(page, haddr, HPAGE_PMD_NR);
647 __SetPageUptodate(page);
648
649 spin_lock(&mm->page_table_lock);
650 if (unlikely(!pmd_none(*pmd))) {
651 spin_unlock(&mm->page_table_lock);
b9bbfbe3 652 mem_cgroup_uncharge_page(page);
71e3aac0
AA
653 put_page(page);
654 pte_free(mm, pgtable);
655 } else {
656 pmd_t entry;
657 entry = mk_pmd(page, vma->vm_page_prot);
658 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
659 entry = pmd_mkhuge(entry);
660 /*
661 * The spinlocking to take the lru_lock inside
662 * page_add_new_anon_rmap() acts as a full memory
663 * barrier to be sure clear_huge_page writes become
664 * visible after the set_pmd_at() write.
665 */
666 page_add_new_anon_rmap(page, vma, haddr);
667 set_pmd_at(mm, haddr, pmd, entry);
668 prepare_pmd_huge_pte(pgtable, mm);
669 add_mm_counter(mm, MM_ANONPAGES, HPAGE_PMD_NR);
1c641e84 670 mm->nr_ptes++;
71e3aac0
AA
671 spin_unlock(&mm->page_table_lock);
672 }
673
aa2e878e 674 return 0;
71e3aac0
AA
675}
676
cc5d462f 677static inline gfp_t alloc_hugepage_gfpmask(int defrag, gfp_t extra_gfp)
0bbbc0b3 678{
cc5d462f 679 return (GFP_TRANSHUGE & ~(defrag ? 0 : __GFP_WAIT)) | extra_gfp;
0bbbc0b3
AA
680}
681
682static inline struct page *alloc_hugepage_vma(int defrag,
683 struct vm_area_struct *vma,
cc5d462f
AK
684 unsigned long haddr, int nd,
685 gfp_t extra_gfp)
0bbbc0b3 686{
cc5d462f 687 return alloc_pages_vma(alloc_hugepage_gfpmask(defrag, extra_gfp),
5c4b4be3 688 HPAGE_PMD_ORDER, vma, haddr, nd);
0bbbc0b3
AA
689}
690
691#ifndef CONFIG_NUMA
71e3aac0
AA
692static inline struct page *alloc_hugepage(int defrag)
693{
cc5d462f 694 return alloc_pages(alloc_hugepage_gfpmask(defrag, 0),
71e3aac0
AA
695 HPAGE_PMD_ORDER);
696}
0bbbc0b3 697#endif
71e3aac0
AA
698
699int do_huge_pmd_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
700 unsigned long address, pmd_t *pmd,
701 unsigned int flags)
702{
703 struct page *page;
704 unsigned long haddr = address & HPAGE_PMD_MASK;
705 pte_t *pte;
706
707 if (haddr >= vma->vm_start && haddr + HPAGE_PMD_SIZE <= vma->vm_end) {
708 if (unlikely(anon_vma_prepare(vma)))
709 return VM_FAULT_OOM;
ba76149f
AA
710 if (unlikely(khugepaged_enter(vma)))
711 return VM_FAULT_OOM;
0bbbc0b3 712 page = alloc_hugepage_vma(transparent_hugepage_defrag(vma),
cc5d462f 713 vma, haddr, numa_node_id(), 0);
81ab4201
AK
714 if (unlikely(!page)) {
715 count_vm_event(THP_FAULT_FALLBACK);
71e3aac0 716 goto out;
81ab4201
AK
717 }
718 count_vm_event(THP_FAULT_ALLOC);
b9bbfbe3
AA
719 if (unlikely(mem_cgroup_newpage_charge(page, mm, GFP_KERNEL))) {
720 put_page(page);
721 goto out;
722 }
edad9d2c
DR
723 if (unlikely(__do_huge_pmd_anonymous_page(mm, vma, haddr, pmd,
724 page))) {
725 mem_cgroup_uncharge_page(page);
726 put_page(page);
727 goto out;
728 }
71e3aac0 729
edad9d2c 730 return 0;
71e3aac0
AA
731 }
732out:
733 /*
734 * Use __pte_alloc instead of pte_alloc_map, because we can't
735 * run pte_offset_map on the pmd, if an huge pmd could
736 * materialize from under us from a different thread.
737 */
738 if (unlikely(__pte_alloc(mm, vma, pmd, address)))
739 return VM_FAULT_OOM;
740 /* if an huge pmd materialized from under us just retry later */
741 if (unlikely(pmd_trans_huge(*pmd)))
742 return 0;
743 /*
744 * A regular pmd is established and it can't morph into a huge pmd
745 * from under us anymore at this point because we hold the mmap_sem
746 * read mode and khugepaged takes it in write mode. So now it's
747 * safe to run pte_offset_map().
748 */
749 pte = pte_offset_map(pmd, address);
750 return handle_pte_fault(mm, vma, address, pte, pmd, flags);
751}
752
753int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
754 pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
755 struct vm_area_struct *vma)
756{
757 struct page *src_page;
758 pmd_t pmd;
759 pgtable_t pgtable;
760 int ret;
761
762 ret = -ENOMEM;
763 pgtable = pte_alloc_one(dst_mm, addr);
764 if (unlikely(!pgtable))
765 goto out;
766
767 spin_lock(&dst_mm->page_table_lock);
768 spin_lock_nested(&src_mm->page_table_lock, SINGLE_DEPTH_NESTING);
769
770 ret = -EAGAIN;
771 pmd = *src_pmd;
772 if (unlikely(!pmd_trans_huge(pmd))) {
773 pte_free(dst_mm, pgtable);
774 goto out_unlock;
775 }
776 if (unlikely(pmd_trans_splitting(pmd))) {
777 /* split huge page running from under us */
778 spin_unlock(&src_mm->page_table_lock);
779 spin_unlock(&dst_mm->page_table_lock);
780 pte_free(dst_mm, pgtable);
781
782 wait_split_huge_page(vma->anon_vma, src_pmd); /* src_vma */
783 goto out;
784 }
785 src_page = pmd_page(pmd);
786 VM_BUG_ON(!PageHead(src_page));
787 get_page(src_page);
788 page_dup_rmap(src_page);
789 add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
790
791 pmdp_set_wrprotect(src_mm, addr, src_pmd);
792 pmd = pmd_mkold(pmd_wrprotect(pmd));
793 set_pmd_at(dst_mm, addr, dst_pmd, pmd);
794 prepare_pmd_huge_pte(pgtable, dst_mm);
1c641e84 795 dst_mm->nr_ptes++;
71e3aac0
AA
796
797 ret = 0;
798out_unlock:
799 spin_unlock(&src_mm->page_table_lock);
800 spin_unlock(&dst_mm->page_table_lock);
801out:
802 return ret;
803}
804
805/* no "address" argument so destroys page coloring of some arch */
806pgtable_t get_pmd_huge_pte(struct mm_struct *mm)
807{
808 pgtable_t pgtable;
809
810 assert_spin_locked(&mm->page_table_lock);
811
812 /* FIFO */
813 pgtable = mm->pmd_huge_pte;
814 if (list_empty(&pgtable->lru))
815 mm->pmd_huge_pte = NULL;
816 else {
817 mm->pmd_huge_pte = list_entry(pgtable->lru.next,
818 struct page, lru);
819 list_del(&pgtable->lru);
820 }
821 return pgtable;
822}
823
824static int do_huge_pmd_wp_page_fallback(struct mm_struct *mm,
825 struct vm_area_struct *vma,
826 unsigned long address,
827 pmd_t *pmd, pmd_t orig_pmd,
828 struct page *page,
829 unsigned long haddr)
830{
831 pgtable_t pgtable;
832 pmd_t _pmd;
833 int ret = 0, i;
834 struct page **pages;
835
836 pages = kmalloc(sizeof(struct page *) * HPAGE_PMD_NR,
837 GFP_KERNEL);
838 if (unlikely(!pages)) {
839 ret |= VM_FAULT_OOM;
840 goto out;
841 }
842
843 for (i = 0; i < HPAGE_PMD_NR; i++) {
cc5d462f
AK
844 pages[i] = alloc_page_vma_node(GFP_HIGHUSER_MOVABLE |
845 __GFP_OTHER_NODE,
19ee151e 846 vma, address, page_to_nid(page));
b9bbfbe3
AA
847 if (unlikely(!pages[i] ||
848 mem_cgroup_newpage_charge(pages[i], mm,
849 GFP_KERNEL))) {
850 if (pages[i])
71e3aac0 851 put_page(pages[i]);
b9bbfbe3
AA
852 mem_cgroup_uncharge_start();
853 while (--i >= 0) {
854 mem_cgroup_uncharge_page(pages[i]);
855 put_page(pages[i]);
856 }
857 mem_cgroup_uncharge_end();
71e3aac0
AA
858 kfree(pages);
859 ret |= VM_FAULT_OOM;
860 goto out;
861 }
862 }
863
864 for (i = 0; i < HPAGE_PMD_NR; i++) {
865 copy_user_highpage(pages[i], page + i,
0089e485 866 haddr + PAGE_SIZE * i, vma);
71e3aac0
AA
867 __SetPageUptodate(pages[i]);
868 cond_resched();
869 }
870
871 spin_lock(&mm->page_table_lock);
872 if (unlikely(!pmd_same(*pmd, orig_pmd)))
873 goto out_free_pages;
874 VM_BUG_ON(!PageHead(page));
875
876 pmdp_clear_flush_notify(vma, haddr, pmd);
877 /* leave pmd empty until pte is filled */
878
879 pgtable = get_pmd_huge_pte(mm);
880 pmd_populate(mm, &_pmd, pgtable);
881
882 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
883 pte_t *pte, entry;
884 entry = mk_pte(pages[i], vma->vm_page_prot);
885 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
886 page_add_new_anon_rmap(pages[i], vma, haddr);
887 pte = pte_offset_map(&_pmd, haddr);
888 VM_BUG_ON(!pte_none(*pte));
889 set_pte_at(mm, haddr, pte, entry);
890 pte_unmap(pte);
891 }
892 kfree(pages);
893
71e3aac0
AA
894 smp_wmb(); /* make pte visible before pmd */
895 pmd_populate(mm, pmd, pgtable);
896 page_remove_rmap(page);
897 spin_unlock(&mm->page_table_lock);
898
899 ret |= VM_FAULT_WRITE;
900 put_page(page);
901
902out:
903 return ret;
904
905out_free_pages:
906 spin_unlock(&mm->page_table_lock);
b9bbfbe3
AA
907 mem_cgroup_uncharge_start();
908 for (i = 0; i < HPAGE_PMD_NR; i++) {
909 mem_cgroup_uncharge_page(pages[i]);
71e3aac0 910 put_page(pages[i]);
b9bbfbe3
AA
911 }
912 mem_cgroup_uncharge_end();
71e3aac0
AA
913 kfree(pages);
914 goto out;
915}
916
917int do_huge_pmd_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
918 unsigned long address, pmd_t *pmd, pmd_t orig_pmd)
919{
920 int ret = 0;
921 struct page *page, *new_page;
922 unsigned long haddr;
923
924 VM_BUG_ON(!vma->anon_vma);
925 spin_lock(&mm->page_table_lock);
926 if (unlikely(!pmd_same(*pmd, orig_pmd)))
927 goto out_unlock;
928
929 page = pmd_page(orig_pmd);
930 VM_BUG_ON(!PageCompound(page) || !PageHead(page));
931 haddr = address & HPAGE_PMD_MASK;
932 if (page_mapcount(page) == 1) {
933 pmd_t entry;
934 entry = pmd_mkyoung(orig_pmd);
935 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
936 if (pmdp_set_access_flags(vma, haddr, pmd, entry, 1))
937 update_mmu_cache(vma, address, entry);
938 ret |= VM_FAULT_WRITE;
939 goto out_unlock;
940 }
941 get_page(page);
942 spin_unlock(&mm->page_table_lock);
943
944 if (transparent_hugepage_enabled(vma) &&
945 !transparent_hugepage_debug_cow())
0bbbc0b3 946 new_page = alloc_hugepage_vma(transparent_hugepage_defrag(vma),
cc5d462f 947 vma, haddr, numa_node_id(), 0);
71e3aac0
AA
948 else
949 new_page = NULL;
950
951 if (unlikely(!new_page)) {
81ab4201 952 count_vm_event(THP_FAULT_FALLBACK);
71e3aac0
AA
953 ret = do_huge_pmd_wp_page_fallback(mm, vma, address,
954 pmd, orig_pmd, page, haddr);
1f1d06c3
DR
955 if (ret & VM_FAULT_OOM)
956 split_huge_page(page);
71e3aac0
AA
957 put_page(page);
958 goto out;
959 }
81ab4201 960 count_vm_event(THP_FAULT_ALLOC);
71e3aac0 961
b9bbfbe3
AA
962 if (unlikely(mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL))) {
963 put_page(new_page);
1f1d06c3 964 split_huge_page(page);
b9bbfbe3
AA
965 put_page(page);
966 ret |= VM_FAULT_OOM;
967 goto out;
968 }
969
71e3aac0
AA
970 copy_user_huge_page(new_page, page, haddr, vma, HPAGE_PMD_NR);
971 __SetPageUptodate(new_page);
972
973 spin_lock(&mm->page_table_lock);
974 put_page(page);
b9bbfbe3 975 if (unlikely(!pmd_same(*pmd, orig_pmd))) {
6f60b69d 976 spin_unlock(&mm->page_table_lock);
b9bbfbe3 977 mem_cgroup_uncharge_page(new_page);
71e3aac0 978 put_page(new_page);
6f60b69d 979 goto out;
b9bbfbe3 980 } else {
71e3aac0
AA
981 pmd_t entry;
982 VM_BUG_ON(!PageHead(page));
983 entry = mk_pmd(new_page, vma->vm_page_prot);
984 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
985 entry = pmd_mkhuge(entry);
986 pmdp_clear_flush_notify(vma, haddr, pmd);
987 page_add_new_anon_rmap(new_page, vma, haddr);
988 set_pmd_at(mm, haddr, pmd, entry);
989 update_mmu_cache(vma, address, entry);
990 page_remove_rmap(page);
991 put_page(page);
992 ret |= VM_FAULT_WRITE;
993 }
994out_unlock:
995 spin_unlock(&mm->page_table_lock);
996out:
997 return ret;
998}
999
1000struct page *follow_trans_huge_pmd(struct mm_struct *mm,
1001 unsigned long addr,
1002 pmd_t *pmd,
1003 unsigned int flags)
1004{
1005 struct page *page = NULL;
1006
1007 assert_spin_locked(&mm->page_table_lock);
1008
1009 if (flags & FOLL_WRITE && !pmd_write(*pmd))
1010 goto out;
1011
1012 page = pmd_page(*pmd);
1013 VM_BUG_ON(!PageHead(page));
1014 if (flags & FOLL_TOUCH) {
1015 pmd_t _pmd;
1016 /*
1017 * We should set the dirty bit only for FOLL_WRITE but
1018 * for now the dirty bit in the pmd is meaningless.
1019 * And if the dirty bit will become meaningful and
1020 * we'll only set it with FOLL_WRITE, an atomic
1021 * set_bit will be required on the pmd to set the
1022 * young bit, instead of the current set_pmd_at.
1023 */
1024 _pmd = pmd_mkyoung(pmd_mkdirty(*pmd));
1025 set_pmd_at(mm, addr & HPAGE_PMD_MASK, pmd, _pmd);
1026 }
1027 page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
1028 VM_BUG_ON(!PageCompound(page));
1029 if (flags & FOLL_GET)
70b50f94 1030 get_page_foll(page);
71e3aac0
AA
1031
1032out:
1033 return page;
1034}
1035
1036int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
f21760b1 1037 pmd_t *pmd, unsigned long addr)
71e3aac0
AA
1038{
1039 int ret = 0;
1040
025c5b24
NH
1041 if (__pmd_trans_huge_lock(pmd, vma) == 1) {
1042 struct page *page;
1043 pgtable_t pgtable;
1044 pgtable = get_pmd_huge_pte(tlb->mm);
1045 page = pmd_page(*pmd);
1046 pmd_clear(pmd);
1047 tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1048 page_remove_rmap(page);
1049 VM_BUG_ON(page_mapcount(page) < 0);
1050 add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
1051 VM_BUG_ON(!PageHead(page));
1052 tlb->mm->nr_ptes--;
71e3aac0 1053 spin_unlock(&tlb->mm->page_table_lock);
025c5b24
NH
1054 tlb_remove_page(tlb, page);
1055 pte_free(tlb->mm, pgtable);
1056 ret = 1;
1057 }
71e3aac0
AA
1058 return ret;
1059}
1060
0ca1634d
JW
1061int mincore_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1062 unsigned long addr, unsigned long end,
1063 unsigned char *vec)
1064{
1065 int ret = 0;
1066
025c5b24
NH
1067 if (__pmd_trans_huge_lock(pmd, vma) == 1) {
1068 /*
1069 * All logical pages in the range are present
1070 * if backed by a huge page.
1071 */
0ca1634d 1072 spin_unlock(&vma->vm_mm->page_table_lock);
025c5b24
NH
1073 memset(vec, 1, (end - addr) >> PAGE_SHIFT);
1074 ret = 1;
1075 }
0ca1634d
JW
1076
1077 return ret;
1078}
1079
37a1c49a
AA
1080int move_huge_pmd(struct vm_area_struct *vma, struct vm_area_struct *new_vma,
1081 unsigned long old_addr,
1082 unsigned long new_addr, unsigned long old_end,
1083 pmd_t *old_pmd, pmd_t *new_pmd)
1084{
1085 int ret = 0;
1086 pmd_t pmd;
1087
1088 struct mm_struct *mm = vma->vm_mm;
1089
1090 if ((old_addr & ~HPAGE_PMD_MASK) ||
1091 (new_addr & ~HPAGE_PMD_MASK) ||
1092 old_end - old_addr < HPAGE_PMD_SIZE ||
1093 (new_vma->vm_flags & VM_NOHUGEPAGE))
1094 goto out;
1095
1096 /*
1097 * The destination pmd shouldn't be established, free_pgtables()
1098 * should have release it.
1099 */
1100 if (WARN_ON(!pmd_none(*new_pmd))) {
1101 VM_BUG_ON(pmd_trans_huge(*new_pmd));
1102 goto out;
1103 }
1104
025c5b24
NH
1105 ret = __pmd_trans_huge_lock(old_pmd, vma);
1106 if (ret == 1) {
1107 pmd = pmdp_get_and_clear(mm, old_addr, old_pmd);
1108 VM_BUG_ON(!pmd_none(*new_pmd));
1109 set_pmd_at(mm, new_addr, new_pmd, pmd);
37a1c49a
AA
1110 spin_unlock(&mm->page_table_lock);
1111 }
1112out:
1113 return ret;
1114}
1115
cd7548ab
JW
1116int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1117 unsigned long addr, pgprot_t newprot)
1118{
1119 struct mm_struct *mm = vma->vm_mm;
1120 int ret = 0;
1121
025c5b24
NH
1122 if (__pmd_trans_huge_lock(pmd, vma) == 1) {
1123 pmd_t entry;
1124 entry = pmdp_get_and_clear(mm, addr, pmd);
1125 entry = pmd_modify(entry, newprot);
1126 set_pmd_at(mm, addr, pmd, entry);
1127 spin_unlock(&vma->vm_mm->page_table_lock);
1128 ret = 1;
1129 }
1130
1131 return ret;
1132}
1133
1134/*
1135 * Returns 1 if a given pmd maps a stable (not under splitting) thp.
1136 * Returns -1 if it maps a thp under splitting. Returns 0 otherwise.
1137 *
1138 * Note that if it returns 1, this routine returns without unlocking page
1139 * table locks. So callers must unlock them.
1140 */
1141int __pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma)
1142{
1143 spin_lock(&vma->vm_mm->page_table_lock);
cd7548ab
JW
1144 if (likely(pmd_trans_huge(*pmd))) {
1145 if (unlikely(pmd_trans_splitting(*pmd))) {
025c5b24 1146 spin_unlock(&vma->vm_mm->page_table_lock);
cd7548ab 1147 wait_split_huge_page(vma->anon_vma, pmd);
025c5b24 1148 return -1;
cd7548ab 1149 } else {
025c5b24
NH
1150 /* Thp mapped by 'pmd' is stable, so we can
1151 * handle it as it is. */
1152 return 1;
cd7548ab 1153 }
025c5b24
NH
1154 }
1155 spin_unlock(&vma->vm_mm->page_table_lock);
1156 return 0;
cd7548ab
JW
1157}
1158
71e3aac0
AA
1159pmd_t *page_check_address_pmd(struct page *page,
1160 struct mm_struct *mm,
1161 unsigned long address,
1162 enum page_check_address_pmd_flag flag)
1163{
1164 pgd_t *pgd;
1165 pud_t *pud;
1166 pmd_t *pmd, *ret = NULL;
1167
1168 if (address & ~HPAGE_PMD_MASK)
1169 goto out;
1170
1171 pgd = pgd_offset(mm, address);
1172 if (!pgd_present(*pgd))
1173 goto out;
1174
1175 pud = pud_offset(pgd, address);
1176 if (!pud_present(*pud))
1177 goto out;
1178
1179 pmd = pmd_offset(pud, address);
1180 if (pmd_none(*pmd))
1181 goto out;
1182 if (pmd_page(*pmd) != page)
1183 goto out;
94fcc585
AA
1184 /*
1185 * split_vma() may create temporary aliased mappings. There is
1186 * no risk as long as all huge pmd are found and have their
1187 * splitting bit set before __split_huge_page_refcount
1188 * runs. Finding the same huge pmd more than once during the
1189 * same rmap walk is not a problem.
1190 */
1191 if (flag == PAGE_CHECK_ADDRESS_PMD_NOTSPLITTING_FLAG &&
1192 pmd_trans_splitting(*pmd))
1193 goto out;
71e3aac0
AA
1194 if (pmd_trans_huge(*pmd)) {
1195 VM_BUG_ON(flag == PAGE_CHECK_ADDRESS_PMD_SPLITTING_FLAG &&
1196 !pmd_trans_splitting(*pmd));
1197 ret = pmd;
1198 }
1199out:
1200 return ret;
1201}
1202
1203static int __split_huge_page_splitting(struct page *page,
1204 struct vm_area_struct *vma,
1205 unsigned long address)
1206{
1207 struct mm_struct *mm = vma->vm_mm;
1208 pmd_t *pmd;
1209 int ret = 0;
1210
1211 spin_lock(&mm->page_table_lock);
1212 pmd = page_check_address_pmd(page, mm, address,
1213 PAGE_CHECK_ADDRESS_PMD_NOTSPLITTING_FLAG);
1214 if (pmd) {
1215 /*
1216 * We can't temporarily set the pmd to null in order
1217 * to split it, the pmd must remain marked huge at all
1218 * times or the VM won't take the pmd_trans_huge paths
2b575eb6 1219 * and it won't wait on the anon_vma->root->mutex to
71e3aac0
AA
1220 * serialize against split_huge_page*.
1221 */
1222 pmdp_splitting_flush_notify(vma, address, pmd);
1223 ret = 1;
1224 }
1225 spin_unlock(&mm->page_table_lock);
1226
1227 return ret;
1228}
1229
1230static void __split_huge_page_refcount(struct page *page)
1231{
1232 int i;
71e3aac0 1233 struct zone *zone = page_zone(page);
fa9add64 1234 struct lruvec *lruvec;
70b50f94 1235 int tail_count = 0;
71e3aac0
AA
1236
1237 /* prevent PageLRU to go away from under us, and freeze lru stats */
1238 spin_lock_irq(&zone->lru_lock);
fa9add64
HD
1239 lruvec = mem_cgroup_page_lruvec(page, zone);
1240
71e3aac0 1241 compound_lock(page);
e94c8a9c
KH
1242 /* complete memcg works before add pages to LRU */
1243 mem_cgroup_split_huge_fixup(page);
71e3aac0 1244
45676885 1245 for (i = HPAGE_PMD_NR - 1; i >= 1; i--) {
71e3aac0
AA
1246 struct page *page_tail = page + i;
1247
70b50f94
AA
1248 /* tail_page->_mapcount cannot change */
1249 BUG_ON(page_mapcount(page_tail) < 0);
1250 tail_count += page_mapcount(page_tail);
1251 /* check for overflow */
1252 BUG_ON(tail_count < 0);
1253 BUG_ON(atomic_read(&page_tail->_count) != 0);
1254 /*
1255 * tail_page->_count is zero and not changing from
1256 * under us. But get_page_unless_zero() may be running
1257 * from under us on the tail_page. If we used
1258 * atomic_set() below instead of atomic_add(), we
1259 * would then run atomic_set() concurrently with
1260 * get_page_unless_zero(), and atomic_set() is
1261 * implemented in C not using locked ops. spin_unlock
1262 * on x86 sometime uses locked ops because of PPro
1263 * errata 66, 92, so unless somebody can guarantee
1264 * atomic_set() here would be safe on all archs (and
1265 * not only on x86), it's safer to use atomic_add().
1266 */
1267 atomic_add(page_mapcount(page) + page_mapcount(page_tail) + 1,
1268 &page_tail->_count);
71e3aac0
AA
1269
1270 /* after clearing PageTail the gup refcount can be released */
1271 smp_mb();
1272
a6d30ddd
JD
1273 /*
1274 * retain hwpoison flag of the poisoned tail page:
1275 * fix for the unsuitable process killed on Guest Machine(KVM)
1276 * by the memory-failure.
1277 */
1278 page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP | __PG_HWPOISON;
71e3aac0
AA
1279 page_tail->flags |= (page->flags &
1280 ((1L << PG_referenced) |
1281 (1L << PG_swapbacked) |
1282 (1L << PG_mlocked) |
1283 (1L << PG_uptodate)));
1284 page_tail->flags |= (1L << PG_dirty);
1285
70b50f94 1286 /* clear PageTail before overwriting first_page */
71e3aac0
AA
1287 smp_wmb();
1288
1289 /*
1290 * __split_huge_page_splitting() already set the
1291 * splitting bit in all pmd that could map this
1292 * hugepage, that will ensure no CPU can alter the
1293 * mapcount on the head page. The mapcount is only
1294 * accounted in the head page and it has to be
1295 * transferred to all tail pages in the below code. So
1296 * for this code to be safe, the split the mapcount
1297 * can't change. But that doesn't mean userland can't
1298 * keep changing and reading the page contents while
1299 * we transfer the mapcount, so the pmd splitting
1300 * status is achieved setting a reserved bit in the
1301 * pmd, not by clearing the present bit.
1302 */
71e3aac0
AA
1303 page_tail->_mapcount = page->_mapcount;
1304
1305 BUG_ON(page_tail->mapping);
1306 page_tail->mapping = page->mapping;
1307
45676885 1308 page_tail->index = page->index + i;
71e3aac0
AA
1309
1310 BUG_ON(!PageAnon(page_tail));
1311 BUG_ON(!PageUptodate(page_tail));
1312 BUG_ON(!PageDirty(page_tail));
1313 BUG_ON(!PageSwapBacked(page_tail));
1314
fa9add64 1315 lru_add_page_tail(page, page_tail, lruvec);
71e3aac0 1316 }
70b50f94
AA
1317 atomic_sub(tail_count, &page->_count);
1318 BUG_ON(atomic_read(&page->_count) <= 0);
71e3aac0 1319
fa9add64 1320 __mod_zone_page_state(zone, NR_ANON_TRANSPARENT_HUGEPAGES, -1);
79134171
AA
1321 __mod_zone_page_state(zone, NR_ANON_PAGES, HPAGE_PMD_NR);
1322
71e3aac0
AA
1323 ClearPageCompound(page);
1324 compound_unlock(page);
1325 spin_unlock_irq(&zone->lru_lock);
1326
1327 for (i = 1; i < HPAGE_PMD_NR; i++) {
1328 struct page *page_tail = page + i;
1329 BUG_ON(page_count(page_tail) <= 0);
1330 /*
1331 * Tail pages may be freed if there wasn't any mapping
1332 * like if add_to_swap() is running on a lru page that
1333 * had its mapping zapped. And freeing these pages
1334 * requires taking the lru_lock so we do the put_page
1335 * of the tail pages after the split is complete.
1336 */
1337 put_page(page_tail);
1338 }
1339
1340 /*
1341 * Only the head page (now become a regular page) is required
1342 * to be pinned by the caller.
1343 */
1344 BUG_ON(page_count(page) <= 0);
1345}
1346
1347static int __split_huge_page_map(struct page *page,
1348 struct vm_area_struct *vma,
1349 unsigned long address)
1350{
1351 struct mm_struct *mm = vma->vm_mm;
1352 pmd_t *pmd, _pmd;
1353 int ret = 0, i;
1354 pgtable_t pgtable;
1355 unsigned long haddr;
1356
1357 spin_lock(&mm->page_table_lock);
1358 pmd = page_check_address_pmd(page, mm, address,
1359 PAGE_CHECK_ADDRESS_PMD_SPLITTING_FLAG);
1360 if (pmd) {
1361 pgtable = get_pmd_huge_pte(mm);
1362 pmd_populate(mm, &_pmd, pgtable);
1363
1364 for (i = 0, haddr = address; i < HPAGE_PMD_NR;
1365 i++, haddr += PAGE_SIZE) {
1366 pte_t *pte, entry;
1367 BUG_ON(PageCompound(page+i));
1368 entry = mk_pte(page + i, vma->vm_page_prot);
1369 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1370 if (!pmd_write(*pmd))
1371 entry = pte_wrprotect(entry);
1372 else
1373 BUG_ON(page_mapcount(page) != 1);
1374 if (!pmd_young(*pmd))
1375 entry = pte_mkold(entry);
1376 pte = pte_offset_map(&_pmd, haddr);
1377 BUG_ON(!pte_none(*pte));
1378 set_pte_at(mm, haddr, pte, entry);
1379 pte_unmap(pte);
1380 }
1381
71e3aac0
AA
1382 smp_wmb(); /* make pte visible before pmd */
1383 /*
1384 * Up to this point the pmd is present and huge and
1385 * userland has the whole access to the hugepage
1386 * during the split (which happens in place). If we
1387 * overwrite the pmd with the not-huge version
1388 * pointing to the pte here (which of course we could
1389 * if all CPUs were bug free), userland could trigger
1390 * a small page size TLB miss on the small sized TLB
1391 * while the hugepage TLB entry is still established
1392 * in the huge TLB. Some CPU doesn't like that. See
1393 * http://support.amd.com/us/Processor_TechDocs/41322.pdf,
1394 * Erratum 383 on page 93. Intel should be safe but is
1395 * also warns that it's only safe if the permission
1396 * and cache attributes of the two entries loaded in
1397 * the two TLB is identical (which should be the case
1398 * here). But it is generally safer to never allow
1399 * small and huge TLB entries for the same virtual
1400 * address to be loaded simultaneously. So instead of
1401 * doing "pmd_populate(); flush_tlb_range();" we first
1402 * mark the current pmd notpresent (atomically because
1403 * here the pmd_trans_huge and pmd_trans_splitting
1404 * must remain set at all times on the pmd until the
1405 * split is complete for this pmd), then we flush the
1406 * SMP TLB and finally we write the non-huge version
1407 * of the pmd entry with pmd_populate.
1408 */
1409 set_pmd_at(mm, address, pmd, pmd_mknotpresent(*pmd));
1410 flush_tlb_range(vma, address, address + HPAGE_PMD_SIZE);
1411 pmd_populate(mm, pmd, pgtable);
1412 ret = 1;
1413 }
1414 spin_unlock(&mm->page_table_lock);
1415
1416 return ret;
1417}
1418
2b575eb6 1419/* must be called with anon_vma->root->mutex hold */
71e3aac0
AA
1420static void __split_huge_page(struct page *page,
1421 struct anon_vma *anon_vma)
1422{
1423 int mapcount, mapcount2;
1424 struct anon_vma_chain *avc;
1425
1426 BUG_ON(!PageHead(page));
1427 BUG_ON(PageTail(page));
1428
1429 mapcount = 0;
1430 list_for_each_entry(avc, &anon_vma->head, same_anon_vma) {
1431 struct vm_area_struct *vma = avc->vma;
1432 unsigned long addr = vma_address(page, vma);
1433 BUG_ON(is_vma_temporary_stack(vma));
1434 if (addr == -EFAULT)
1435 continue;
1436 mapcount += __split_huge_page_splitting(page, vma, addr);
1437 }
05759d38
AA
1438 /*
1439 * It is critical that new vmas are added to the tail of the
1440 * anon_vma list. This guarantes that if copy_huge_pmd() runs
1441 * and establishes a child pmd before
1442 * __split_huge_page_splitting() freezes the parent pmd (so if
1443 * we fail to prevent copy_huge_pmd() from running until the
1444 * whole __split_huge_page() is complete), we will still see
1445 * the newly established pmd of the child later during the
1446 * walk, to be able to set it as pmd_trans_splitting too.
1447 */
1448 if (mapcount != page_mapcount(page))
1449 printk(KERN_ERR "mapcount %d page_mapcount %d\n",
1450 mapcount, page_mapcount(page));
71e3aac0
AA
1451 BUG_ON(mapcount != page_mapcount(page));
1452
1453 __split_huge_page_refcount(page);
1454
1455 mapcount2 = 0;
1456 list_for_each_entry(avc, &anon_vma->head, same_anon_vma) {
1457 struct vm_area_struct *vma = avc->vma;
1458 unsigned long addr = vma_address(page, vma);
1459 BUG_ON(is_vma_temporary_stack(vma));
1460 if (addr == -EFAULT)
1461 continue;
1462 mapcount2 += __split_huge_page_map(page, vma, addr);
1463 }
05759d38
AA
1464 if (mapcount != mapcount2)
1465 printk(KERN_ERR "mapcount %d mapcount2 %d page_mapcount %d\n",
1466 mapcount, mapcount2, page_mapcount(page));
71e3aac0
AA
1467 BUG_ON(mapcount != mapcount2);
1468}
1469
1470int split_huge_page(struct page *page)
1471{
1472 struct anon_vma *anon_vma;
1473 int ret = 1;
1474
1475 BUG_ON(!PageAnon(page));
1476 anon_vma = page_lock_anon_vma(page);
1477 if (!anon_vma)
1478 goto out;
1479 ret = 0;
1480 if (!PageCompound(page))
1481 goto out_unlock;
1482
1483 BUG_ON(!PageSwapBacked(page));
1484 __split_huge_page(page, anon_vma);
81ab4201 1485 count_vm_event(THP_SPLIT);
71e3aac0
AA
1486
1487 BUG_ON(PageCompound(page));
1488out_unlock:
1489 page_unlock_anon_vma(anon_vma);
1490out:
1491 return ret;
1492}
1493
4b6e1e37 1494#define VM_NO_THP (VM_SPECIAL|VM_MIXEDMAP|VM_HUGETLB|VM_SHARED|VM_MAYSHARE)
78f11a25 1495
60ab3244
AA
1496int hugepage_madvise(struct vm_area_struct *vma,
1497 unsigned long *vm_flags, int advice)
0af4e98b 1498{
a664b2d8
AA
1499 switch (advice) {
1500 case MADV_HUGEPAGE:
1501 /*
1502 * Be somewhat over-protective like KSM for now!
1503 */
78f11a25 1504 if (*vm_flags & (VM_HUGEPAGE | VM_NO_THP))
a664b2d8
AA
1505 return -EINVAL;
1506 *vm_flags &= ~VM_NOHUGEPAGE;
1507 *vm_flags |= VM_HUGEPAGE;
60ab3244
AA
1508 /*
1509 * If the vma become good for khugepaged to scan,
1510 * register it here without waiting a page fault that
1511 * may not happen any time soon.
1512 */
1513 if (unlikely(khugepaged_enter_vma_merge(vma)))
1514 return -ENOMEM;
a664b2d8
AA
1515 break;
1516 case MADV_NOHUGEPAGE:
1517 /*
1518 * Be somewhat over-protective like KSM for now!
1519 */
78f11a25 1520 if (*vm_flags & (VM_NOHUGEPAGE | VM_NO_THP))
a664b2d8
AA
1521 return -EINVAL;
1522 *vm_flags &= ~VM_HUGEPAGE;
1523 *vm_flags |= VM_NOHUGEPAGE;
60ab3244
AA
1524 /*
1525 * Setting VM_NOHUGEPAGE will prevent khugepaged from scanning
1526 * this vma even if we leave the mm registered in khugepaged if
1527 * it got registered before VM_NOHUGEPAGE was set.
1528 */
a664b2d8
AA
1529 break;
1530 }
0af4e98b
AA
1531
1532 return 0;
1533}
1534
ba76149f
AA
1535static int __init khugepaged_slab_init(void)
1536{
1537 mm_slot_cache = kmem_cache_create("khugepaged_mm_slot",
1538 sizeof(struct mm_slot),
1539 __alignof__(struct mm_slot), 0, NULL);
1540 if (!mm_slot_cache)
1541 return -ENOMEM;
1542
1543 return 0;
1544}
1545
1546static void __init khugepaged_slab_free(void)
1547{
1548 kmem_cache_destroy(mm_slot_cache);
1549 mm_slot_cache = NULL;
1550}
1551
1552static inline struct mm_slot *alloc_mm_slot(void)
1553{
1554 if (!mm_slot_cache) /* initialization failed */
1555 return NULL;
1556 return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
1557}
1558
1559static inline void free_mm_slot(struct mm_slot *mm_slot)
1560{
1561 kmem_cache_free(mm_slot_cache, mm_slot);
1562}
1563
1564static int __init mm_slots_hash_init(void)
1565{
1566 mm_slots_hash = kzalloc(MM_SLOTS_HASH_HEADS * sizeof(struct hlist_head),
1567 GFP_KERNEL);
1568 if (!mm_slots_hash)
1569 return -ENOMEM;
1570 return 0;
1571}
1572
1573#if 0
1574static void __init mm_slots_hash_free(void)
1575{
1576 kfree(mm_slots_hash);
1577 mm_slots_hash = NULL;
1578}
1579#endif
1580
1581static struct mm_slot *get_mm_slot(struct mm_struct *mm)
1582{
1583 struct mm_slot *mm_slot;
1584 struct hlist_head *bucket;
1585 struct hlist_node *node;
1586
1587 bucket = &mm_slots_hash[((unsigned long)mm / sizeof(struct mm_struct))
1588 % MM_SLOTS_HASH_HEADS];
1589 hlist_for_each_entry(mm_slot, node, bucket, hash) {
1590 if (mm == mm_slot->mm)
1591 return mm_slot;
1592 }
1593 return NULL;
1594}
1595
1596static void insert_to_mm_slots_hash(struct mm_struct *mm,
1597 struct mm_slot *mm_slot)
1598{
1599 struct hlist_head *bucket;
1600
1601 bucket = &mm_slots_hash[((unsigned long)mm / sizeof(struct mm_struct))
1602 % MM_SLOTS_HASH_HEADS];
1603 mm_slot->mm = mm;
1604 hlist_add_head(&mm_slot->hash, bucket);
1605}
1606
1607static inline int khugepaged_test_exit(struct mm_struct *mm)
1608{
1609 return atomic_read(&mm->mm_users) == 0;
1610}
1611
1612int __khugepaged_enter(struct mm_struct *mm)
1613{
1614 struct mm_slot *mm_slot;
1615 int wakeup;
1616
1617 mm_slot = alloc_mm_slot();
1618 if (!mm_slot)
1619 return -ENOMEM;
1620
1621 /* __khugepaged_exit() must not run from under us */
1622 VM_BUG_ON(khugepaged_test_exit(mm));
1623 if (unlikely(test_and_set_bit(MMF_VM_HUGEPAGE, &mm->flags))) {
1624 free_mm_slot(mm_slot);
1625 return 0;
1626 }
1627
1628 spin_lock(&khugepaged_mm_lock);
1629 insert_to_mm_slots_hash(mm, mm_slot);
1630 /*
1631 * Insert just behind the scanning cursor, to let the area settle
1632 * down a little.
1633 */
1634 wakeup = list_empty(&khugepaged_scan.mm_head);
1635 list_add_tail(&mm_slot->mm_node, &khugepaged_scan.mm_head);
1636 spin_unlock(&khugepaged_mm_lock);
1637
1638 atomic_inc(&mm->mm_count);
1639 if (wakeup)
1640 wake_up_interruptible(&khugepaged_wait);
1641
1642 return 0;
1643}
1644
1645int khugepaged_enter_vma_merge(struct vm_area_struct *vma)
1646{
1647 unsigned long hstart, hend;
1648 if (!vma->anon_vma)
1649 /*
1650 * Not yet faulted in so we will register later in the
1651 * page fault if needed.
1652 */
1653 return 0;
78f11a25 1654 if (vma->vm_ops)
ba76149f
AA
1655 /* khugepaged not yet working on file or special mappings */
1656 return 0;
b3b9c293 1657 VM_BUG_ON(vma->vm_flags & VM_NO_THP);
ba76149f
AA
1658 hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
1659 hend = vma->vm_end & HPAGE_PMD_MASK;
1660 if (hstart < hend)
1661 return khugepaged_enter(vma);
1662 return 0;
1663}
1664
1665void __khugepaged_exit(struct mm_struct *mm)
1666{
1667 struct mm_slot *mm_slot;
1668 int free = 0;
1669
1670 spin_lock(&khugepaged_mm_lock);
1671 mm_slot = get_mm_slot(mm);
1672 if (mm_slot && khugepaged_scan.mm_slot != mm_slot) {
1673 hlist_del(&mm_slot->hash);
1674 list_del(&mm_slot->mm_node);
1675 free = 1;
1676 }
d788e80a 1677 spin_unlock(&khugepaged_mm_lock);
ba76149f
AA
1678
1679 if (free) {
ba76149f
AA
1680 clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
1681 free_mm_slot(mm_slot);
1682 mmdrop(mm);
1683 } else if (mm_slot) {
ba76149f
AA
1684 /*
1685 * This is required to serialize against
1686 * khugepaged_test_exit() (which is guaranteed to run
1687 * under mmap sem read mode). Stop here (after we
1688 * return all pagetables will be destroyed) until
1689 * khugepaged has finished working on the pagetables
1690 * under the mmap_sem.
1691 */
1692 down_write(&mm->mmap_sem);
1693 up_write(&mm->mmap_sem);
d788e80a 1694 }
ba76149f
AA
1695}
1696
1697static void release_pte_page(struct page *page)
1698{
1699 /* 0 stands for page_is_file_cache(page) == false */
1700 dec_zone_page_state(page, NR_ISOLATED_ANON + 0);
1701 unlock_page(page);
1702 putback_lru_page(page);
1703}
1704
1705static void release_pte_pages(pte_t *pte, pte_t *_pte)
1706{
1707 while (--_pte >= pte) {
1708 pte_t pteval = *_pte;
1709 if (!pte_none(pteval))
1710 release_pte_page(pte_page(pteval));
1711 }
1712}
1713
1714static void release_all_pte_pages(pte_t *pte)
1715{
1716 release_pte_pages(pte, pte + HPAGE_PMD_NR);
1717}
1718
1719static int __collapse_huge_page_isolate(struct vm_area_struct *vma,
1720 unsigned long address,
1721 pte_t *pte)
1722{
1723 struct page *page;
1724 pte_t *_pte;
1725 int referenced = 0, isolated = 0, none = 0;
1726 for (_pte = pte; _pte < pte+HPAGE_PMD_NR;
1727 _pte++, address += PAGE_SIZE) {
1728 pte_t pteval = *_pte;
1729 if (pte_none(pteval)) {
1730 if (++none <= khugepaged_max_ptes_none)
1731 continue;
1732 else {
1733 release_pte_pages(pte, _pte);
1734 goto out;
1735 }
1736 }
1737 if (!pte_present(pteval) || !pte_write(pteval)) {
1738 release_pte_pages(pte, _pte);
1739 goto out;
1740 }
1741 page = vm_normal_page(vma, address, pteval);
1742 if (unlikely(!page)) {
1743 release_pte_pages(pte, _pte);
1744 goto out;
1745 }
1746 VM_BUG_ON(PageCompound(page));
1747 BUG_ON(!PageAnon(page));
1748 VM_BUG_ON(!PageSwapBacked(page));
1749
1750 /* cannot use mapcount: can't collapse if there's a gup pin */
1751 if (page_count(page) != 1) {
1752 release_pte_pages(pte, _pte);
1753 goto out;
1754 }
1755 /*
1756 * We can do it before isolate_lru_page because the
1757 * page can't be freed from under us. NOTE: PG_lock
1758 * is needed to serialize against split_huge_page
1759 * when invoked from the VM.
1760 */
1761 if (!trylock_page(page)) {
1762 release_pte_pages(pte, _pte);
1763 goto out;
1764 }
1765 /*
1766 * Isolate the page to avoid collapsing an hugepage
1767 * currently in use by the VM.
1768 */
1769 if (isolate_lru_page(page)) {
1770 unlock_page(page);
1771 release_pte_pages(pte, _pte);
1772 goto out;
1773 }
1774 /* 0 stands for page_is_file_cache(page) == false */
1775 inc_zone_page_state(page, NR_ISOLATED_ANON + 0);
1776 VM_BUG_ON(!PageLocked(page));
1777 VM_BUG_ON(PageLRU(page));
1778
1779 /* If there is no mapped pte young don't collapse the page */
8ee53820
AA
1780 if (pte_young(pteval) || PageReferenced(page) ||
1781 mmu_notifier_test_young(vma->vm_mm, address))
ba76149f
AA
1782 referenced = 1;
1783 }
1784 if (unlikely(!referenced))
1785 release_all_pte_pages(pte);
1786 else
1787 isolated = 1;
1788out:
1789 return isolated;
1790}
1791
1792static void __collapse_huge_page_copy(pte_t *pte, struct page *page,
1793 struct vm_area_struct *vma,
1794 unsigned long address,
1795 spinlock_t *ptl)
1796{
1797 pte_t *_pte;
1798 for (_pte = pte; _pte < pte+HPAGE_PMD_NR; _pte++) {
1799 pte_t pteval = *_pte;
1800 struct page *src_page;
1801
1802 if (pte_none(pteval)) {
1803 clear_user_highpage(page, address);
1804 add_mm_counter(vma->vm_mm, MM_ANONPAGES, 1);
1805 } else {
1806 src_page = pte_page(pteval);
1807 copy_user_highpage(page, src_page, address, vma);
1808 VM_BUG_ON(page_mapcount(src_page) != 1);
ba76149f
AA
1809 release_pte_page(src_page);
1810 /*
1811 * ptl mostly unnecessary, but preempt has to
1812 * be disabled to update the per-cpu stats
1813 * inside page_remove_rmap().
1814 */
1815 spin_lock(ptl);
1816 /*
1817 * paravirt calls inside pte_clear here are
1818 * superfluous.
1819 */
1820 pte_clear(vma->vm_mm, address, _pte);
1821 page_remove_rmap(src_page);
1822 spin_unlock(ptl);
1823 free_page_and_swap_cache(src_page);
1824 }
1825
1826 address += PAGE_SIZE;
1827 page++;
1828 }
1829}
1830
1831static void collapse_huge_page(struct mm_struct *mm,
1832 unsigned long address,
ce83d217 1833 struct page **hpage,
5c4b4be3
AK
1834 struct vm_area_struct *vma,
1835 int node)
ba76149f 1836{
ba76149f
AA
1837 pgd_t *pgd;
1838 pud_t *pud;
1839 pmd_t *pmd, _pmd;
1840 pte_t *pte;
1841 pgtable_t pgtable;
1842 struct page *new_page;
1843 spinlock_t *ptl;
1844 int isolated;
1845 unsigned long hstart, hend;
1846
1847 VM_BUG_ON(address & ~HPAGE_PMD_MASK);
0bbbc0b3 1848#ifndef CONFIG_NUMA
692e0b35 1849 up_read(&mm->mmap_sem);
ba76149f 1850 VM_BUG_ON(!*hpage);
ce83d217 1851 new_page = *hpage;
0bbbc0b3
AA
1852#else
1853 VM_BUG_ON(*hpage);
ce83d217
AA
1854 /*
1855 * Allocate the page while the vma is still valid and under
1856 * the mmap_sem read mode so there is no memory allocation
1857 * later when we take the mmap_sem in write mode. This is more
1858 * friendly behavior (OTOH it may actually hide bugs) to
1859 * filesystems in userland with daemons allocating memory in
1860 * the userland I/O paths. Allocating memory with the
1861 * mmap_sem in read mode is good idea also to allow greater
1862 * scalability.
1863 */
5c4b4be3 1864 new_page = alloc_hugepage_vma(khugepaged_defrag(), vma, address,
cc5d462f 1865 node, __GFP_OTHER_NODE);
692e0b35
AA
1866
1867 /*
1868 * After allocating the hugepage, release the mmap_sem read lock in
1869 * preparation for taking it in write mode.
1870 */
1871 up_read(&mm->mmap_sem);
ce83d217 1872 if (unlikely(!new_page)) {
81ab4201 1873 count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
ce83d217
AA
1874 *hpage = ERR_PTR(-ENOMEM);
1875 return;
1876 }
692e0b35
AA
1877#endif
1878
81ab4201 1879 count_vm_event(THP_COLLAPSE_ALLOC);
ce83d217 1880 if (unlikely(mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL))) {
692e0b35 1881#ifdef CONFIG_NUMA
ce83d217 1882 put_page(new_page);
692e0b35 1883#endif
ce83d217
AA
1884 return;
1885 }
ba76149f
AA
1886
1887 /*
1888 * Prevent all access to pagetables with the exception of
1889 * gup_fast later hanlded by the ptep_clear_flush and the VM
1890 * handled by the anon_vma lock + PG_lock.
1891 */
1892 down_write(&mm->mmap_sem);
1893 if (unlikely(khugepaged_test_exit(mm)))
1894 goto out;
1895
1896 vma = find_vma(mm, address);
1897 hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
1898 hend = vma->vm_end & HPAGE_PMD_MASK;
1899 if (address < hstart || address + HPAGE_PMD_SIZE > hend)
1900 goto out;
1901
60ab3244
AA
1902 if ((!(vma->vm_flags & VM_HUGEPAGE) && !khugepaged_always()) ||
1903 (vma->vm_flags & VM_NOHUGEPAGE))
ba76149f
AA
1904 goto out;
1905
78f11a25 1906 if (!vma->anon_vma || vma->vm_ops)
ba76149f 1907 goto out;
a7d6e4ec
AA
1908 if (is_vma_temporary_stack(vma))
1909 goto out;
b3b9c293 1910 VM_BUG_ON(vma->vm_flags & VM_NO_THP);
ba76149f
AA
1911
1912 pgd = pgd_offset(mm, address);
1913 if (!pgd_present(*pgd))
1914 goto out;
1915
1916 pud = pud_offset(pgd, address);
1917 if (!pud_present(*pud))
1918 goto out;
1919
1920 pmd = pmd_offset(pud, address);
1921 /* pmd can't go away or become huge under us */
1922 if (!pmd_present(*pmd) || pmd_trans_huge(*pmd))
1923 goto out;
1924
ba76149f
AA
1925 anon_vma_lock(vma->anon_vma);
1926
1927 pte = pte_offset_map(pmd, address);
1928 ptl = pte_lockptr(mm, pmd);
1929
1930 spin_lock(&mm->page_table_lock); /* probably unnecessary */
1931 /*
1932 * After this gup_fast can't run anymore. This also removes
1933 * any huge TLB entry from the CPU so we won't allow
1934 * huge and small TLB entries for the same virtual address
1935 * to avoid the risk of CPU bugs in that area.
1936 */
1937 _pmd = pmdp_clear_flush_notify(vma, address, pmd);
1938 spin_unlock(&mm->page_table_lock);
1939
1940 spin_lock(ptl);
1941 isolated = __collapse_huge_page_isolate(vma, address, pte);
1942 spin_unlock(ptl);
ba76149f
AA
1943
1944 if (unlikely(!isolated)) {
453c7192 1945 pte_unmap(pte);
ba76149f
AA
1946 spin_lock(&mm->page_table_lock);
1947 BUG_ON(!pmd_none(*pmd));
1948 set_pmd_at(mm, address, pmd, _pmd);
1949 spin_unlock(&mm->page_table_lock);
1950 anon_vma_unlock(vma->anon_vma);
ce83d217 1951 goto out;
ba76149f
AA
1952 }
1953
1954 /*
1955 * All pages are isolated and locked so anon_vma rmap
1956 * can't run anymore.
1957 */
1958 anon_vma_unlock(vma->anon_vma);
1959
1960 __collapse_huge_page_copy(pte, new_page, vma, address, ptl);
453c7192 1961 pte_unmap(pte);
ba76149f
AA
1962 __SetPageUptodate(new_page);
1963 pgtable = pmd_pgtable(_pmd);
1964 VM_BUG_ON(page_count(pgtable) != 1);
1965 VM_BUG_ON(page_mapcount(pgtable) != 0);
1966
1967 _pmd = mk_pmd(new_page, vma->vm_page_prot);
1968 _pmd = maybe_pmd_mkwrite(pmd_mkdirty(_pmd), vma);
1969 _pmd = pmd_mkhuge(_pmd);
1970
1971 /*
1972 * spin_lock() below is not the equivalent of smp_wmb(), so
1973 * this is needed to avoid the copy_huge_page writes to become
1974 * visible after the set_pmd_at() write.
1975 */
1976 smp_wmb();
1977
1978 spin_lock(&mm->page_table_lock);
1979 BUG_ON(!pmd_none(*pmd));
1980 page_add_new_anon_rmap(new_page, vma, address);
1981 set_pmd_at(mm, address, pmd, _pmd);
35d8c7ad 1982 update_mmu_cache(vma, address, _pmd);
ba76149f 1983 prepare_pmd_huge_pte(pgtable, mm);
ba76149f
AA
1984 spin_unlock(&mm->page_table_lock);
1985
0bbbc0b3 1986#ifndef CONFIG_NUMA
ba76149f 1987 *hpage = NULL;
0bbbc0b3 1988#endif
ba76149f 1989 khugepaged_pages_collapsed++;
ce83d217 1990out_up_write:
ba76149f 1991 up_write(&mm->mmap_sem);
0bbbc0b3
AA
1992 return;
1993
ce83d217 1994out:
678ff896 1995 mem_cgroup_uncharge_page(new_page);
0bbbc0b3
AA
1996#ifdef CONFIG_NUMA
1997 put_page(new_page);
1998#endif
ce83d217 1999 goto out_up_write;
ba76149f
AA
2000}
2001
2002static int khugepaged_scan_pmd(struct mm_struct *mm,
2003 struct vm_area_struct *vma,
2004 unsigned long address,
2005 struct page **hpage)
2006{
2007 pgd_t *pgd;
2008 pud_t *pud;
2009 pmd_t *pmd;
2010 pte_t *pte, *_pte;
2011 int ret = 0, referenced = 0, none = 0;
2012 struct page *page;
2013 unsigned long _address;
2014 spinlock_t *ptl;
5c4b4be3 2015 int node = -1;
ba76149f
AA
2016
2017 VM_BUG_ON(address & ~HPAGE_PMD_MASK);
2018
2019 pgd = pgd_offset(mm, address);
2020 if (!pgd_present(*pgd))
2021 goto out;
2022
2023 pud = pud_offset(pgd, address);
2024 if (!pud_present(*pud))
2025 goto out;
2026
2027 pmd = pmd_offset(pud, address);
2028 if (!pmd_present(*pmd) || pmd_trans_huge(*pmd))
2029 goto out;
2030
2031 pte = pte_offset_map_lock(mm, pmd, address, &ptl);
2032 for (_address = address, _pte = pte; _pte < pte+HPAGE_PMD_NR;
2033 _pte++, _address += PAGE_SIZE) {
2034 pte_t pteval = *_pte;
2035 if (pte_none(pteval)) {
2036 if (++none <= khugepaged_max_ptes_none)
2037 continue;
2038 else
2039 goto out_unmap;
2040 }
2041 if (!pte_present(pteval) || !pte_write(pteval))
2042 goto out_unmap;
2043 page = vm_normal_page(vma, _address, pteval);
2044 if (unlikely(!page))
2045 goto out_unmap;
5c4b4be3
AK
2046 /*
2047 * Chose the node of the first page. This could
2048 * be more sophisticated and look at more pages,
2049 * but isn't for now.
2050 */
2051 if (node == -1)
2052 node = page_to_nid(page);
ba76149f
AA
2053 VM_BUG_ON(PageCompound(page));
2054 if (!PageLRU(page) || PageLocked(page) || !PageAnon(page))
2055 goto out_unmap;
2056 /* cannot use mapcount: can't collapse if there's a gup pin */
2057 if (page_count(page) != 1)
2058 goto out_unmap;
8ee53820
AA
2059 if (pte_young(pteval) || PageReferenced(page) ||
2060 mmu_notifier_test_young(vma->vm_mm, address))
ba76149f
AA
2061 referenced = 1;
2062 }
2063 if (referenced)
2064 ret = 1;
2065out_unmap:
2066 pte_unmap_unlock(pte, ptl);
ce83d217
AA
2067 if (ret)
2068 /* collapse_huge_page will return with the mmap_sem released */
5c4b4be3 2069 collapse_huge_page(mm, address, hpage, vma, node);
ba76149f
AA
2070out:
2071 return ret;
2072}
2073
2074static void collect_mm_slot(struct mm_slot *mm_slot)
2075{
2076 struct mm_struct *mm = mm_slot->mm;
2077
b9980cdc 2078 VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
ba76149f
AA
2079
2080 if (khugepaged_test_exit(mm)) {
2081 /* free mm_slot */
2082 hlist_del(&mm_slot->hash);
2083 list_del(&mm_slot->mm_node);
2084
2085 /*
2086 * Not strictly needed because the mm exited already.
2087 *
2088 * clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
2089 */
2090
2091 /* khugepaged_mm_lock actually not necessary for the below */
2092 free_mm_slot(mm_slot);
2093 mmdrop(mm);
2094 }
2095}
2096
2097static unsigned int khugepaged_scan_mm_slot(unsigned int pages,
2098 struct page **hpage)
2f1da642
HS
2099 __releases(&khugepaged_mm_lock)
2100 __acquires(&khugepaged_mm_lock)
ba76149f
AA
2101{
2102 struct mm_slot *mm_slot;
2103 struct mm_struct *mm;
2104 struct vm_area_struct *vma;
2105 int progress = 0;
2106
2107 VM_BUG_ON(!pages);
b9980cdc 2108 VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
ba76149f
AA
2109
2110 if (khugepaged_scan.mm_slot)
2111 mm_slot = khugepaged_scan.mm_slot;
2112 else {
2113 mm_slot = list_entry(khugepaged_scan.mm_head.next,
2114 struct mm_slot, mm_node);
2115 khugepaged_scan.address = 0;
2116 khugepaged_scan.mm_slot = mm_slot;
2117 }
2118 spin_unlock(&khugepaged_mm_lock);
2119
2120 mm = mm_slot->mm;
2121 down_read(&mm->mmap_sem);
2122 if (unlikely(khugepaged_test_exit(mm)))
2123 vma = NULL;
2124 else
2125 vma = find_vma(mm, khugepaged_scan.address);
2126
2127 progress++;
2128 for (; vma; vma = vma->vm_next) {
2129 unsigned long hstart, hend;
2130
2131 cond_resched();
2132 if (unlikely(khugepaged_test_exit(mm))) {
2133 progress++;
2134 break;
2135 }
2136
60ab3244
AA
2137 if ((!(vma->vm_flags & VM_HUGEPAGE) &&
2138 !khugepaged_always()) ||
2139 (vma->vm_flags & VM_NOHUGEPAGE)) {
a7d6e4ec 2140 skip:
ba76149f
AA
2141 progress++;
2142 continue;
2143 }
78f11a25 2144 if (!vma->anon_vma || vma->vm_ops)
a7d6e4ec
AA
2145 goto skip;
2146 if (is_vma_temporary_stack(vma))
2147 goto skip;
b3b9c293 2148 VM_BUG_ON(vma->vm_flags & VM_NO_THP);
ba76149f
AA
2149
2150 hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
2151 hend = vma->vm_end & HPAGE_PMD_MASK;
a7d6e4ec
AA
2152 if (hstart >= hend)
2153 goto skip;
2154 if (khugepaged_scan.address > hend)
2155 goto skip;
ba76149f
AA
2156 if (khugepaged_scan.address < hstart)
2157 khugepaged_scan.address = hstart;
a7d6e4ec 2158 VM_BUG_ON(khugepaged_scan.address & ~HPAGE_PMD_MASK);
ba76149f
AA
2159
2160 while (khugepaged_scan.address < hend) {
2161 int ret;
2162 cond_resched();
2163 if (unlikely(khugepaged_test_exit(mm)))
2164 goto breakouterloop;
2165
2166 VM_BUG_ON(khugepaged_scan.address < hstart ||
2167 khugepaged_scan.address + HPAGE_PMD_SIZE >
2168 hend);
2169 ret = khugepaged_scan_pmd(mm, vma,
2170 khugepaged_scan.address,
2171 hpage);
2172 /* move to next address */
2173 khugepaged_scan.address += HPAGE_PMD_SIZE;
2174 progress += HPAGE_PMD_NR;
2175 if (ret)
2176 /* we released mmap_sem so break loop */
2177 goto breakouterloop_mmap_sem;
2178 if (progress >= pages)
2179 goto breakouterloop;
2180 }
2181 }
2182breakouterloop:
2183 up_read(&mm->mmap_sem); /* exit_mmap will destroy ptes after this */
2184breakouterloop_mmap_sem:
2185
2186 spin_lock(&khugepaged_mm_lock);
a7d6e4ec 2187 VM_BUG_ON(khugepaged_scan.mm_slot != mm_slot);
ba76149f
AA
2188 /*
2189 * Release the current mm_slot if this mm is about to die, or
2190 * if we scanned all vmas of this mm.
2191 */
2192 if (khugepaged_test_exit(mm) || !vma) {
2193 /*
2194 * Make sure that if mm_users is reaching zero while
2195 * khugepaged runs here, khugepaged_exit will find
2196 * mm_slot not pointing to the exiting mm.
2197 */
2198 if (mm_slot->mm_node.next != &khugepaged_scan.mm_head) {
2199 khugepaged_scan.mm_slot = list_entry(
2200 mm_slot->mm_node.next,
2201 struct mm_slot, mm_node);
2202 khugepaged_scan.address = 0;
2203 } else {
2204 khugepaged_scan.mm_slot = NULL;
2205 khugepaged_full_scans++;
2206 }
2207
2208 collect_mm_slot(mm_slot);
2209 }
2210
2211 return progress;
2212}
2213
2214static int khugepaged_has_work(void)
2215{
2216 return !list_empty(&khugepaged_scan.mm_head) &&
2217 khugepaged_enabled();
2218}
2219
2220static int khugepaged_wait_event(void)
2221{
2222 return !list_empty(&khugepaged_scan.mm_head) ||
2223 !khugepaged_enabled();
2224}
2225
2226static void khugepaged_do_scan(struct page **hpage)
2227{
2228 unsigned int progress = 0, pass_through_head = 0;
2229 unsigned int pages = khugepaged_pages_to_scan;
2230
2231 barrier(); /* write khugepaged_pages_to_scan to local stack */
2232
2233 while (progress < pages) {
2234 cond_resched();
2235
0bbbc0b3 2236#ifndef CONFIG_NUMA
ba76149f
AA
2237 if (!*hpage) {
2238 *hpage = alloc_hugepage(khugepaged_defrag());
81ab4201
AK
2239 if (unlikely(!*hpage)) {
2240 count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
ba76149f 2241 break;
81ab4201
AK
2242 }
2243 count_vm_event(THP_COLLAPSE_ALLOC);
ba76149f 2244 }
0bbbc0b3
AA
2245#else
2246 if (IS_ERR(*hpage))
2247 break;
2248#endif
ba76149f 2249
878aee7d
AA
2250 if (unlikely(kthread_should_stop() || freezing(current)))
2251 break;
2252
ba76149f
AA
2253 spin_lock(&khugepaged_mm_lock);
2254 if (!khugepaged_scan.mm_slot)
2255 pass_through_head++;
2256 if (khugepaged_has_work() &&
2257 pass_through_head < 2)
2258 progress += khugepaged_scan_mm_slot(pages - progress,
2259 hpage);
2260 else
2261 progress = pages;
2262 spin_unlock(&khugepaged_mm_lock);
2263 }
2264}
2265
0bbbc0b3
AA
2266static void khugepaged_alloc_sleep(void)
2267{
1dfb059b
AA
2268 wait_event_freezable_timeout(khugepaged_wait, false,
2269 msecs_to_jiffies(khugepaged_alloc_sleep_millisecs));
0bbbc0b3
AA
2270}
2271
2272#ifndef CONFIG_NUMA
ba76149f
AA
2273static struct page *khugepaged_alloc_hugepage(void)
2274{
2275 struct page *hpage;
2276
2277 do {
2278 hpage = alloc_hugepage(khugepaged_defrag());
81ab4201
AK
2279 if (!hpage) {
2280 count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
0bbbc0b3 2281 khugepaged_alloc_sleep();
81ab4201
AK
2282 } else
2283 count_vm_event(THP_COLLAPSE_ALLOC);
ba76149f
AA
2284 } while (unlikely(!hpage) &&
2285 likely(khugepaged_enabled()));
2286 return hpage;
2287}
0bbbc0b3 2288#endif
ba76149f
AA
2289
2290static void khugepaged_loop(void)
2291{
2292 struct page *hpage;
2293
0bbbc0b3
AA
2294#ifdef CONFIG_NUMA
2295 hpage = NULL;
2296#endif
ba76149f 2297 while (likely(khugepaged_enabled())) {
0bbbc0b3 2298#ifndef CONFIG_NUMA
ba76149f 2299 hpage = khugepaged_alloc_hugepage();
f300ea49 2300 if (unlikely(!hpage))
ba76149f 2301 break;
0bbbc0b3
AA
2302#else
2303 if (IS_ERR(hpage)) {
2304 khugepaged_alloc_sleep();
2305 hpage = NULL;
2306 }
2307#endif
ba76149f
AA
2308
2309 khugepaged_do_scan(&hpage);
0bbbc0b3 2310#ifndef CONFIG_NUMA
ba76149f
AA
2311 if (hpage)
2312 put_page(hpage);
0bbbc0b3 2313#endif
878aee7d
AA
2314 try_to_freeze();
2315 if (unlikely(kthread_should_stop()))
2316 break;
ba76149f 2317 if (khugepaged_has_work()) {
ba76149f
AA
2318 if (!khugepaged_scan_sleep_millisecs)
2319 continue;
1dfb059b
AA
2320 wait_event_freezable_timeout(khugepaged_wait, false,
2321 msecs_to_jiffies(khugepaged_scan_sleep_millisecs));
ba76149f 2322 } else if (khugepaged_enabled())
878aee7d
AA
2323 wait_event_freezable(khugepaged_wait,
2324 khugepaged_wait_event());
ba76149f
AA
2325 }
2326}
2327
2328static int khugepaged(void *none)
2329{
2330 struct mm_slot *mm_slot;
2331
878aee7d 2332 set_freezable();
ba76149f
AA
2333 set_user_nice(current, 19);
2334
2335 /* serialize with start_khugepaged() */
2336 mutex_lock(&khugepaged_mutex);
2337
2338 for (;;) {
2339 mutex_unlock(&khugepaged_mutex);
a7d6e4ec 2340 VM_BUG_ON(khugepaged_thread != current);
ba76149f 2341 khugepaged_loop();
a7d6e4ec 2342 VM_BUG_ON(khugepaged_thread != current);
ba76149f
AA
2343
2344 mutex_lock(&khugepaged_mutex);
2345 if (!khugepaged_enabled())
2346 break;
878aee7d
AA
2347 if (unlikely(kthread_should_stop()))
2348 break;
ba76149f
AA
2349 }
2350
2351 spin_lock(&khugepaged_mm_lock);
2352 mm_slot = khugepaged_scan.mm_slot;
2353 khugepaged_scan.mm_slot = NULL;
2354 if (mm_slot)
2355 collect_mm_slot(mm_slot);
2356 spin_unlock(&khugepaged_mm_lock);
2357
2358 khugepaged_thread = NULL;
2359 mutex_unlock(&khugepaged_mutex);
2360
2361 return 0;
2362}
2363
71e3aac0
AA
2364void __split_huge_page_pmd(struct mm_struct *mm, pmd_t *pmd)
2365{
2366 struct page *page;
2367
2368 spin_lock(&mm->page_table_lock);
2369 if (unlikely(!pmd_trans_huge(*pmd))) {
2370 spin_unlock(&mm->page_table_lock);
2371 return;
2372 }
2373 page = pmd_page(*pmd);
2374 VM_BUG_ON(!page_count(page));
2375 get_page(page);
2376 spin_unlock(&mm->page_table_lock);
2377
2378 split_huge_page(page);
2379
2380 put_page(page);
2381 BUG_ON(pmd_trans_huge(*pmd));
2382}
94fcc585
AA
2383
2384static void split_huge_page_address(struct mm_struct *mm,
2385 unsigned long address)
2386{
2387 pgd_t *pgd;
2388 pud_t *pud;
2389 pmd_t *pmd;
2390
2391 VM_BUG_ON(!(address & ~HPAGE_PMD_MASK));
2392
2393 pgd = pgd_offset(mm, address);
2394 if (!pgd_present(*pgd))
2395 return;
2396
2397 pud = pud_offset(pgd, address);
2398 if (!pud_present(*pud))
2399 return;
2400
2401 pmd = pmd_offset(pud, address);
2402 if (!pmd_present(*pmd))
2403 return;
2404 /*
2405 * Caller holds the mmap_sem write mode, so a huge pmd cannot
2406 * materialize from under us.
2407 */
2408 split_huge_page_pmd(mm, pmd);
2409}
2410
2411void __vma_adjust_trans_huge(struct vm_area_struct *vma,
2412 unsigned long start,
2413 unsigned long end,
2414 long adjust_next)
2415{
2416 /*
2417 * If the new start address isn't hpage aligned and it could
2418 * previously contain an hugepage: check if we need to split
2419 * an huge pmd.
2420 */
2421 if (start & ~HPAGE_PMD_MASK &&
2422 (start & HPAGE_PMD_MASK) >= vma->vm_start &&
2423 (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2424 split_huge_page_address(vma->vm_mm, start);
2425
2426 /*
2427 * If the new end address isn't hpage aligned and it could
2428 * previously contain an hugepage: check if we need to split
2429 * an huge pmd.
2430 */
2431 if (end & ~HPAGE_PMD_MASK &&
2432 (end & HPAGE_PMD_MASK) >= vma->vm_start &&
2433 (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2434 split_huge_page_address(vma->vm_mm, end);
2435
2436 /*
2437 * If we're also updating the vma->vm_next->vm_start, if the new
2438 * vm_next->vm_start isn't page aligned and it could previously
2439 * contain an hugepage: check if we need to split an huge pmd.
2440 */
2441 if (adjust_next > 0) {
2442 struct vm_area_struct *next = vma->vm_next;
2443 unsigned long nstart = next->vm_start;
2444 nstart += adjust_next << PAGE_SHIFT;
2445 if (nstart & ~HPAGE_PMD_MASK &&
2446 (nstart & HPAGE_PMD_MASK) >= next->vm_start &&
2447 (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end)
2448 split_huge_page_address(next->vm_mm, nstart);
2449 }
2450}