vmstat: do not use deferrable delayed work for vmstat_update
[linux-2.6-block.git] / mm / huge_memory.c
CommitLineData
71e3aac0
AA
1/*
2 * Copyright (C) 2009 Red Hat, Inc.
3 *
4 * This work is licensed under the terms of the GNU GPL, version 2. See
5 * the COPYING file in the top-level directory.
6 */
7
ae3a8c1c
AM
8#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
9
71e3aac0
AA
10#include <linux/mm.h>
11#include <linux/sched.h>
12#include <linux/highmem.h>
13#include <linux/hugetlb.h>
14#include <linux/mmu_notifier.h>
15#include <linux/rmap.h>
16#include <linux/swap.h>
97ae1749 17#include <linux/shrinker.h>
ba76149f
AA
18#include <linux/mm_inline.h>
19#include <linux/kthread.h>
20#include <linux/khugepaged.h>
878aee7d 21#include <linux/freezer.h>
a664b2d8 22#include <linux/mman.h>
325adeb5 23#include <linux/pagemap.h>
4daae3b4 24#include <linux/migrate.h>
43b5fbbd 25#include <linux/hashtable.h>
97ae1749 26
71e3aac0
AA
27#include <asm/tlb.h>
28#include <asm/pgalloc.h>
29#include "internal.h"
30
ba76149f 31/*
8bfa3f9a
JW
32 * By default transparent hugepage support is disabled in order that avoid
33 * to risk increase the memory footprint of applications without a guaranteed
34 * benefit. When transparent hugepage support is enabled, is for all mappings,
35 * and khugepaged scans all mappings.
36 * Defrag is invoked by khugepaged hugepage allocations and by page faults
37 * for all hugepage allocations.
ba76149f 38 */
71e3aac0 39unsigned long transparent_hugepage_flags __read_mostly =
13ece886 40#ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
ba76149f 41 (1<<TRANSPARENT_HUGEPAGE_FLAG)|
13ece886
AA
42#endif
43#ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
44 (1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
45#endif
d39d33c3 46 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_FLAG)|
79da5407
KS
47 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)|
48 (1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
ba76149f
AA
49
50/* default scan 8*512 pte (or vmas) every 30 second */
51static unsigned int khugepaged_pages_to_scan __read_mostly = HPAGE_PMD_NR*8;
52static unsigned int khugepaged_pages_collapsed;
53static unsigned int khugepaged_full_scans;
54static unsigned int khugepaged_scan_sleep_millisecs __read_mostly = 10000;
55/* during fragmentation poll the hugepage allocator once every minute */
56static unsigned int khugepaged_alloc_sleep_millisecs __read_mostly = 60000;
57static struct task_struct *khugepaged_thread __read_mostly;
58static DEFINE_MUTEX(khugepaged_mutex);
59static DEFINE_SPINLOCK(khugepaged_mm_lock);
60static DECLARE_WAIT_QUEUE_HEAD(khugepaged_wait);
61/*
62 * default collapse hugepages if there is at least one pte mapped like
63 * it would have happened if the vma was large enough during page
64 * fault.
65 */
66static unsigned int khugepaged_max_ptes_none __read_mostly = HPAGE_PMD_NR-1;
67
68static int khugepaged(void *none);
ba76149f 69static int khugepaged_slab_init(void);
ba76149f 70
43b5fbbd
SL
71#define MM_SLOTS_HASH_BITS 10
72static __read_mostly DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);
73
ba76149f
AA
74static struct kmem_cache *mm_slot_cache __read_mostly;
75
76/**
77 * struct mm_slot - hash lookup from mm to mm_slot
78 * @hash: hash collision list
79 * @mm_node: khugepaged scan list headed in khugepaged_scan.mm_head
80 * @mm: the mm that this information is valid for
81 */
82struct mm_slot {
83 struct hlist_node hash;
84 struct list_head mm_node;
85 struct mm_struct *mm;
86};
87
88/**
89 * struct khugepaged_scan - cursor for scanning
90 * @mm_head: the head of the mm list to scan
91 * @mm_slot: the current mm_slot we are scanning
92 * @address: the next address inside that to be scanned
93 *
94 * There is only the one khugepaged_scan instance of this cursor structure.
95 */
96struct khugepaged_scan {
97 struct list_head mm_head;
98 struct mm_slot *mm_slot;
99 unsigned long address;
2f1da642
HS
100};
101static struct khugepaged_scan khugepaged_scan = {
ba76149f
AA
102 .mm_head = LIST_HEAD_INIT(khugepaged_scan.mm_head),
103};
104
f000565a
AA
105
106static int set_recommended_min_free_kbytes(void)
107{
108 struct zone *zone;
109 int nr_zones = 0;
110 unsigned long recommended_min;
f000565a 111
17c230af 112 if (!khugepaged_enabled())
f000565a
AA
113 return 0;
114
115 for_each_populated_zone(zone)
116 nr_zones++;
117
118 /* Make sure at least 2 hugepages are free for MIGRATE_RESERVE */
119 recommended_min = pageblock_nr_pages * nr_zones * 2;
120
121 /*
122 * Make sure that on average at least two pageblocks are almost free
123 * of another type, one for a migratetype to fall back to and a
124 * second to avoid subsequent fallbacks of other types There are 3
125 * MIGRATE_TYPES we care about.
126 */
127 recommended_min += pageblock_nr_pages * nr_zones *
128 MIGRATE_PCPTYPES * MIGRATE_PCPTYPES;
129
130 /* don't ever allow to reserve more than 5% of the lowmem */
131 recommended_min = min(recommended_min,
132 (unsigned long) nr_free_buffer_pages() / 20);
133 recommended_min <<= (PAGE_SHIFT-10);
134
42aa83cb
HP
135 if (recommended_min > min_free_kbytes) {
136 if (user_min_free_kbytes >= 0)
137 pr_info("raising min_free_kbytes from %d to %lu "
138 "to help transparent hugepage allocations\n",
139 min_free_kbytes, recommended_min);
140
f000565a 141 min_free_kbytes = recommended_min;
42aa83cb 142 }
f000565a
AA
143 setup_per_zone_wmarks();
144 return 0;
145}
146late_initcall(set_recommended_min_free_kbytes);
147
ba76149f
AA
148static int start_khugepaged(void)
149{
150 int err = 0;
151 if (khugepaged_enabled()) {
ba76149f
AA
152 if (!khugepaged_thread)
153 khugepaged_thread = kthread_run(khugepaged, NULL,
154 "khugepaged");
155 if (unlikely(IS_ERR(khugepaged_thread))) {
ae3a8c1c 156 pr_err("khugepaged: kthread_run(khugepaged) failed\n");
ba76149f
AA
157 err = PTR_ERR(khugepaged_thread);
158 khugepaged_thread = NULL;
159 }
911891af
XG
160
161 if (!list_empty(&khugepaged_scan.mm_head))
ba76149f 162 wake_up_interruptible(&khugepaged_wait);
f000565a
AA
163
164 set_recommended_min_free_kbytes();
911891af 165 } else if (khugepaged_thread) {
911891af
XG
166 kthread_stop(khugepaged_thread);
167 khugepaged_thread = NULL;
168 }
637e3a27 169
ba76149f
AA
170 return err;
171}
71e3aac0 172
97ae1749 173static atomic_t huge_zero_refcount;
56873f43 174struct page *huge_zero_page __read_mostly;
4a6c1297 175
97ae1749
KS
176static inline bool is_huge_zero_pmd(pmd_t pmd)
177{
5918d10a 178 return is_huge_zero_page(pmd_page(pmd));
97ae1749
KS
179}
180
5918d10a 181static struct page *get_huge_zero_page(void)
97ae1749
KS
182{
183 struct page *zero_page;
184retry:
185 if (likely(atomic_inc_not_zero(&huge_zero_refcount)))
5918d10a 186 return ACCESS_ONCE(huge_zero_page);
97ae1749
KS
187
188 zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE,
4a6c1297 189 HPAGE_PMD_ORDER);
d8a8e1f0
KS
190 if (!zero_page) {
191 count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED);
5918d10a 192 return NULL;
d8a8e1f0
KS
193 }
194 count_vm_event(THP_ZERO_PAGE_ALLOC);
97ae1749 195 preempt_disable();
5918d10a 196 if (cmpxchg(&huge_zero_page, NULL, zero_page)) {
97ae1749 197 preempt_enable();
5ddacbe9 198 __free_pages(zero_page, compound_order(zero_page));
97ae1749
KS
199 goto retry;
200 }
201
202 /* We take additional reference here. It will be put back by shrinker */
203 atomic_set(&huge_zero_refcount, 2);
204 preempt_enable();
5918d10a 205 return ACCESS_ONCE(huge_zero_page);
4a6c1297
KS
206}
207
97ae1749 208static void put_huge_zero_page(void)
4a6c1297 209{
97ae1749
KS
210 /*
211 * Counter should never go to zero here. Only shrinker can put
212 * last reference.
213 */
214 BUG_ON(atomic_dec_and_test(&huge_zero_refcount));
4a6c1297
KS
215}
216
48896466
GC
217static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink,
218 struct shrink_control *sc)
4a6c1297 219{
48896466
GC
220 /* we can free zero page only if last reference remains */
221 return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0;
222}
97ae1749 223
48896466
GC
224static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink,
225 struct shrink_control *sc)
226{
97ae1749 227 if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) {
5918d10a
KS
228 struct page *zero_page = xchg(&huge_zero_page, NULL);
229 BUG_ON(zero_page == NULL);
5ddacbe9 230 __free_pages(zero_page, compound_order(zero_page));
48896466 231 return HPAGE_PMD_NR;
97ae1749
KS
232 }
233
234 return 0;
4a6c1297
KS
235}
236
97ae1749 237static struct shrinker huge_zero_page_shrinker = {
48896466
GC
238 .count_objects = shrink_huge_zero_page_count,
239 .scan_objects = shrink_huge_zero_page_scan,
97ae1749
KS
240 .seeks = DEFAULT_SEEKS,
241};
242
71e3aac0 243#ifdef CONFIG_SYSFS
ba76149f 244
71e3aac0
AA
245static ssize_t double_flag_show(struct kobject *kobj,
246 struct kobj_attribute *attr, char *buf,
247 enum transparent_hugepage_flag enabled,
248 enum transparent_hugepage_flag req_madv)
249{
250 if (test_bit(enabled, &transparent_hugepage_flags)) {
251 VM_BUG_ON(test_bit(req_madv, &transparent_hugepage_flags));
252 return sprintf(buf, "[always] madvise never\n");
253 } else if (test_bit(req_madv, &transparent_hugepage_flags))
254 return sprintf(buf, "always [madvise] never\n");
255 else
256 return sprintf(buf, "always madvise [never]\n");
257}
258static ssize_t double_flag_store(struct kobject *kobj,
259 struct kobj_attribute *attr,
260 const char *buf, size_t count,
261 enum transparent_hugepage_flag enabled,
262 enum transparent_hugepage_flag req_madv)
263{
264 if (!memcmp("always", buf,
265 min(sizeof("always")-1, count))) {
266 set_bit(enabled, &transparent_hugepage_flags);
267 clear_bit(req_madv, &transparent_hugepage_flags);
268 } else if (!memcmp("madvise", buf,
269 min(sizeof("madvise")-1, count))) {
270 clear_bit(enabled, &transparent_hugepage_flags);
271 set_bit(req_madv, &transparent_hugepage_flags);
272 } else if (!memcmp("never", buf,
273 min(sizeof("never")-1, count))) {
274 clear_bit(enabled, &transparent_hugepage_flags);
275 clear_bit(req_madv, &transparent_hugepage_flags);
276 } else
277 return -EINVAL;
278
279 return count;
280}
281
282static ssize_t enabled_show(struct kobject *kobj,
283 struct kobj_attribute *attr, char *buf)
284{
285 return double_flag_show(kobj, attr, buf,
286 TRANSPARENT_HUGEPAGE_FLAG,
287 TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
288}
289static ssize_t enabled_store(struct kobject *kobj,
290 struct kobj_attribute *attr,
291 const char *buf, size_t count)
292{
ba76149f
AA
293 ssize_t ret;
294
295 ret = double_flag_store(kobj, attr, buf, count,
296 TRANSPARENT_HUGEPAGE_FLAG,
297 TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
298
299 if (ret > 0) {
911891af
XG
300 int err;
301
302 mutex_lock(&khugepaged_mutex);
303 err = start_khugepaged();
304 mutex_unlock(&khugepaged_mutex);
305
ba76149f
AA
306 if (err)
307 ret = err;
308 }
309
310 return ret;
71e3aac0
AA
311}
312static struct kobj_attribute enabled_attr =
313 __ATTR(enabled, 0644, enabled_show, enabled_store);
314
315static ssize_t single_flag_show(struct kobject *kobj,
316 struct kobj_attribute *attr, char *buf,
317 enum transparent_hugepage_flag flag)
318{
e27e6151
BH
319 return sprintf(buf, "%d\n",
320 !!test_bit(flag, &transparent_hugepage_flags));
71e3aac0 321}
e27e6151 322
71e3aac0
AA
323static ssize_t single_flag_store(struct kobject *kobj,
324 struct kobj_attribute *attr,
325 const char *buf, size_t count,
326 enum transparent_hugepage_flag flag)
327{
e27e6151
BH
328 unsigned long value;
329 int ret;
330
331 ret = kstrtoul(buf, 10, &value);
332 if (ret < 0)
333 return ret;
334 if (value > 1)
335 return -EINVAL;
336
337 if (value)
71e3aac0 338 set_bit(flag, &transparent_hugepage_flags);
e27e6151 339 else
71e3aac0 340 clear_bit(flag, &transparent_hugepage_flags);
71e3aac0
AA
341
342 return count;
343}
344
345/*
346 * Currently defrag only disables __GFP_NOWAIT for allocation. A blind
347 * __GFP_REPEAT is too aggressive, it's never worth swapping tons of
348 * memory just to allocate one more hugepage.
349 */
350static ssize_t defrag_show(struct kobject *kobj,
351 struct kobj_attribute *attr, char *buf)
352{
353 return double_flag_show(kobj, attr, buf,
354 TRANSPARENT_HUGEPAGE_DEFRAG_FLAG,
355 TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
356}
357static ssize_t defrag_store(struct kobject *kobj,
358 struct kobj_attribute *attr,
359 const char *buf, size_t count)
360{
361 return double_flag_store(kobj, attr, buf, count,
362 TRANSPARENT_HUGEPAGE_DEFRAG_FLAG,
363 TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
364}
365static struct kobj_attribute defrag_attr =
366 __ATTR(defrag, 0644, defrag_show, defrag_store);
367
79da5407
KS
368static ssize_t use_zero_page_show(struct kobject *kobj,
369 struct kobj_attribute *attr, char *buf)
370{
371 return single_flag_show(kobj, attr, buf,
372 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
373}
374static ssize_t use_zero_page_store(struct kobject *kobj,
375 struct kobj_attribute *attr, const char *buf, size_t count)
376{
377 return single_flag_store(kobj, attr, buf, count,
378 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
379}
380static struct kobj_attribute use_zero_page_attr =
381 __ATTR(use_zero_page, 0644, use_zero_page_show, use_zero_page_store);
71e3aac0
AA
382#ifdef CONFIG_DEBUG_VM
383static ssize_t debug_cow_show(struct kobject *kobj,
384 struct kobj_attribute *attr, char *buf)
385{
386 return single_flag_show(kobj, attr, buf,
387 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
388}
389static ssize_t debug_cow_store(struct kobject *kobj,
390 struct kobj_attribute *attr,
391 const char *buf, size_t count)
392{
393 return single_flag_store(kobj, attr, buf, count,
394 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
395}
396static struct kobj_attribute debug_cow_attr =
397 __ATTR(debug_cow, 0644, debug_cow_show, debug_cow_store);
398#endif /* CONFIG_DEBUG_VM */
399
400static struct attribute *hugepage_attr[] = {
401 &enabled_attr.attr,
402 &defrag_attr.attr,
79da5407 403 &use_zero_page_attr.attr,
71e3aac0
AA
404#ifdef CONFIG_DEBUG_VM
405 &debug_cow_attr.attr,
406#endif
407 NULL,
408};
409
410static struct attribute_group hugepage_attr_group = {
411 .attrs = hugepage_attr,
ba76149f
AA
412};
413
414static ssize_t scan_sleep_millisecs_show(struct kobject *kobj,
415 struct kobj_attribute *attr,
416 char *buf)
417{
418 return sprintf(buf, "%u\n", khugepaged_scan_sleep_millisecs);
419}
420
421static ssize_t scan_sleep_millisecs_store(struct kobject *kobj,
422 struct kobj_attribute *attr,
423 const char *buf, size_t count)
424{
425 unsigned long msecs;
426 int err;
427
3dbb95f7 428 err = kstrtoul(buf, 10, &msecs);
ba76149f
AA
429 if (err || msecs > UINT_MAX)
430 return -EINVAL;
431
432 khugepaged_scan_sleep_millisecs = msecs;
433 wake_up_interruptible(&khugepaged_wait);
434
435 return count;
436}
437static struct kobj_attribute scan_sleep_millisecs_attr =
438 __ATTR(scan_sleep_millisecs, 0644, scan_sleep_millisecs_show,
439 scan_sleep_millisecs_store);
440
441static ssize_t alloc_sleep_millisecs_show(struct kobject *kobj,
442 struct kobj_attribute *attr,
443 char *buf)
444{
445 return sprintf(buf, "%u\n", khugepaged_alloc_sleep_millisecs);
446}
447
448static ssize_t alloc_sleep_millisecs_store(struct kobject *kobj,
449 struct kobj_attribute *attr,
450 const char *buf, size_t count)
451{
452 unsigned long msecs;
453 int err;
454
3dbb95f7 455 err = kstrtoul(buf, 10, &msecs);
ba76149f
AA
456 if (err || msecs > UINT_MAX)
457 return -EINVAL;
458
459 khugepaged_alloc_sleep_millisecs = msecs;
460 wake_up_interruptible(&khugepaged_wait);
461
462 return count;
463}
464static struct kobj_attribute alloc_sleep_millisecs_attr =
465 __ATTR(alloc_sleep_millisecs, 0644, alloc_sleep_millisecs_show,
466 alloc_sleep_millisecs_store);
467
468static ssize_t pages_to_scan_show(struct kobject *kobj,
469 struct kobj_attribute *attr,
470 char *buf)
471{
472 return sprintf(buf, "%u\n", khugepaged_pages_to_scan);
473}
474static ssize_t pages_to_scan_store(struct kobject *kobj,
475 struct kobj_attribute *attr,
476 const char *buf, size_t count)
477{
478 int err;
479 unsigned long pages;
480
3dbb95f7 481 err = kstrtoul(buf, 10, &pages);
ba76149f
AA
482 if (err || !pages || pages > UINT_MAX)
483 return -EINVAL;
484
485 khugepaged_pages_to_scan = pages;
486
487 return count;
488}
489static struct kobj_attribute pages_to_scan_attr =
490 __ATTR(pages_to_scan, 0644, pages_to_scan_show,
491 pages_to_scan_store);
492
493static ssize_t pages_collapsed_show(struct kobject *kobj,
494 struct kobj_attribute *attr,
495 char *buf)
496{
497 return sprintf(buf, "%u\n", khugepaged_pages_collapsed);
498}
499static struct kobj_attribute pages_collapsed_attr =
500 __ATTR_RO(pages_collapsed);
501
502static ssize_t full_scans_show(struct kobject *kobj,
503 struct kobj_attribute *attr,
504 char *buf)
505{
506 return sprintf(buf, "%u\n", khugepaged_full_scans);
507}
508static struct kobj_attribute full_scans_attr =
509 __ATTR_RO(full_scans);
510
511static ssize_t khugepaged_defrag_show(struct kobject *kobj,
512 struct kobj_attribute *attr, char *buf)
513{
514 return single_flag_show(kobj, attr, buf,
515 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
516}
517static ssize_t khugepaged_defrag_store(struct kobject *kobj,
518 struct kobj_attribute *attr,
519 const char *buf, size_t count)
520{
521 return single_flag_store(kobj, attr, buf, count,
522 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
523}
524static struct kobj_attribute khugepaged_defrag_attr =
525 __ATTR(defrag, 0644, khugepaged_defrag_show,
526 khugepaged_defrag_store);
527
528/*
529 * max_ptes_none controls if khugepaged should collapse hugepages over
530 * any unmapped ptes in turn potentially increasing the memory
531 * footprint of the vmas. When max_ptes_none is 0 khugepaged will not
532 * reduce the available free memory in the system as it
533 * runs. Increasing max_ptes_none will instead potentially reduce the
534 * free memory in the system during the khugepaged scan.
535 */
536static ssize_t khugepaged_max_ptes_none_show(struct kobject *kobj,
537 struct kobj_attribute *attr,
538 char *buf)
539{
540 return sprintf(buf, "%u\n", khugepaged_max_ptes_none);
541}
542static ssize_t khugepaged_max_ptes_none_store(struct kobject *kobj,
543 struct kobj_attribute *attr,
544 const char *buf, size_t count)
545{
546 int err;
547 unsigned long max_ptes_none;
548
3dbb95f7 549 err = kstrtoul(buf, 10, &max_ptes_none);
ba76149f
AA
550 if (err || max_ptes_none > HPAGE_PMD_NR-1)
551 return -EINVAL;
552
553 khugepaged_max_ptes_none = max_ptes_none;
554
555 return count;
556}
557static struct kobj_attribute khugepaged_max_ptes_none_attr =
558 __ATTR(max_ptes_none, 0644, khugepaged_max_ptes_none_show,
559 khugepaged_max_ptes_none_store);
560
561static struct attribute *khugepaged_attr[] = {
562 &khugepaged_defrag_attr.attr,
563 &khugepaged_max_ptes_none_attr.attr,
564 &pages_to_scan_attr.attr,
565 &pages_collapsed_attr.attr,
566 &full_scans_attr.attr,
567 &scan_sleep_millisecs_attr.attr,
568 &alloc_sleep_millisecs_attr.attr,
569 NULL,
570};
571
572static struct attribute_group khugepaged_attr_group = {
573 .attrs = khugepaged_attr,
574 .name = "khugepaged",
71e3aac0 575};
71e3aac0 576
569e5590 577static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
71e3aac0 578{
71e3aac0
AA
579 int err;
580
569e5590
SL
581 *hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
582 if (unlikely(!*hugepage_kobj)) {
ae3a8c1c 583 pr_err("failed to create transparent hugepage kobject\n");
569e5590 584 return -ENOMEM;
ba76149f
AA
585 }
586
569e5590 587 err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
ba76149f 588 if (err) {
ae3a8c1c 589 pr_err("failed to register transparent hugepage group\n");
569e5590 590 goto delete_obj;
ba76149f
AA
591 }
592
569e5590 593 err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
ba76149f 594 if (err) {
ae3a8c1c 595 pr_err("failed to register transparent hugepage group\n");
569e5590 596 goto remove_hp_group;
ba76149f 597 }
569e5590
SL
598
599 return 0;
600
601remove_hp_group:
602 sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
603delete_obj:
604 kobject_put(*hugepage_kobj);
605 return err;
606}
607
608static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
609{
610 sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
611 sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
612 kobject_put(hugepage_kobj);
613}
614#else
615static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
616{
617 return 0;
618}
619
620static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
621{
622}
623#endif /* CONFIG_SYSFS */
624
625static int __init hugepage_init(void)
626{
627 int err;
628 struct kobject *hugepage_kobj;
629
630 if (!has_transparent_hugepage()) {
631 transparent_hugepage_flags = 0;
632 return -EINVAL;
633 }
634
635 err = hugepage_init_sysfs(&hugepage_kobj);
636 if (err)
637 return err;
ba76149f
AA
638
639 err = khugepaged_slab_init();
640 if (err)
641 goto out;
642
97ae1749
KS
643 register_shrinker(&huge_zero_page_shrinker);
644
97562cd2
RR
645 /*
646 * By default disable transparent hugepages on smaller systems,
647 * where the extra memory used could hurt more than TLB overhead
648 * is likely to save. The admin can still enable it through /sys.
649 */
650 if (totalram_pages < (512 << (20 - PAGE_SHIFT)))
651 transparent_hugepage_flags = 0;
652
ba76149f
AA
653 start_khugepaged();
654
569e5590 655 return 0;
ba76149f 656out:
569e5590 657 hugepage_exit_sysfs(hugepage_kobj);
ba76149f 658 return err;
71e3aac0 659}
a64fb3cd 660subsys_initcall(hugepage_init);
71e3aac0
AA
661
662static int __init setup_transparent_hugepage(char *str)
663{
664 int ret = 0;
665 if (!str)
666 goto out;
667 if (!strcmp(str, "always")) {
668 set_bit(TRANSPARENT_HUGEPAGE_FLAG,
669 &transparent_hugepage_flags);
670 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
671 &transparent_hugepage_flags);
672 ret = 1;
673 } else if (!strcmp(str, "madvise")) {
674 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
675 &transparent_hugepage_flags);
676 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
677 &transparent_hugepage_flags);
678 ret = 1;
679 } else if (!strcmp(str, "never")) {
680 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
681 &transparent_hugepage_flags);
682 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
683 &transparent_hugepage_flags);
684 ret = 1;
685 }
686out:
687 if (!ret)
ae3a8c1c 688 pr_warn("transparent_hugepage= cannot parse, ignored\n");
71e3aac0
AA
689 return ret;
690}
691__setup("transparent_hugepage=", setup_transparent_hugepage);
692
b32967ff 693pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
71e3aac0
AA
694{
695 if (likely(vma->vm_flags & VM_WRITE))
696 pmd = pmd_mkwrite(pmd);
697 return pmd;
698}
699
3122359a 700static inline pmd_t mk_huge_pmd(struct page *page, pgprot_t prot)
b3092b3b
BL
701{
702 pmd_t entry;
3122359a 703 entry = mk_pmd(page, prot);
b3092b3b
BL
704 entry = pmd_mkhuge(entry);
705 return entry;
706}
707
71e3aac0
AA
708static int __do_huge_pmd_anonymous_page(struct mm_struct *mm,
709 struct vm_area_struct *vma,
710 unsigned long haddr, pmd_t *pmd,
711 struct page *page)
712{
00501b53 713 struct mem_cgroup *memcg;
71e3aac0 714 pgtable_t pgtable;
c4088ebd 715 spinlock_t *ptl;
71e3aac0 716
309381fe 717 VM_BUG_ON_PAGE(!PageCompound(page), page);
00501b53
JW
718
719 if (mem_cgroup_try_charge(page, mm, GFP_TRANSHUGE, &memcg))
720 return VM_FAULT_OOM;
721
71e3aac0 722 pgtable = pte_alloc_one(mm, haddr);
00501b53
JW
723 if (unlikely(!pgtable)) {
724 mem_cgroup_cancel_charge(page, memcg);
71e3aac0 725 return VM_FAULT_OOM;
00501b53 726 }
71e3aac0
AA
727
728 clear_huge_page(page, haddr, HPAGE_PMD_NR);
52f37629
MK
729 /*
730 * The memory barrier inside __SetPageUptodate makes sure that
731 * clear_huge_page writes become visible before the set_pmd_at()
732 * write.
733 */
71e3aac0
AA
734 __SetPageUptodate(page);
735
c4088ebd 736 ptl = pmd_lock(mm, pmd);
71e3aac0 737 if (unlikely(!pmd_none(*pmd))) {
c4088ebd 738 spin_unlock(ptl);
00501b53 739 mem_cgroup_cancel_charge(page, memcg);
71e3aac0
AA
740 put_page(page);
741 pte_free(mm, pgtable);
742 } else {
743 pmd_t entry;
3122359a
KS
744 entry = mk_huge_pmd(page, vma->vm_page_prot);
745 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
71e3aac0 746 page_add_new_anon_rmap(page, vma, haddr);
00501b53
JW
747 mem_cgroup_commit_charge(page, memcg, false);
748 lru_cache_add_active_or_unevictable(page, vma);
6b0b50b0 749 pgtable_trans_huge_deposit(mm, pmd, pgtable);
71e3aac0 750 set_pmd_at(mm, haddr, pmd, entry);
71e3aac0 751 add_mm_counter(mm, MM_ANONPAGES, HPAGE_PMD_NR);
e1f56c89 752 atomic_long_inc(&mm->nr_ptes);
c4088ebd 753 spin_unlock(ptl);
71e3aac0
AA
754 }
755
aa2e878e 756 return 0;
71e3aac0
AA
757}
758
cc5d462f 759static inline gfp_t alloc_hugepage_gfpmask(int defrag, gfp_t extra_gfp)
0bbbc0b3 760{
cc5d462f 761 return (GFP_TRANSHUGE & ~(defrag ? 0 : __GFP_WAIT)) | extra_gfp;
0bbbc0b3
AA
762}
763
c4088ebd 764/* Caller must hold page table lock. */
3ea41e62 765static bool set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm,
97ae1749 766 struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd,
5918d10a 767 struct page *zero_page)
fc9fe822
KS
768{
769 pmd_t entry;
3ea41e62
KS
770 if (!pmd_none(*pmd))
771 return false;
5918d10a 772 entry = mk_pmd(zero_page, vma->vm_page_prot);
fc9fe822 773 entry = pmd_mkhuge(entry);
6b0b50b0 774 pgtable_trans_huge_deposit(mm, pmd, pgtable);
fc9fe822 775 set_pmd_at(mm, haddr, pmd, entry);
e1f56c89 776 atomic_long_inc(&mm->nr_ptes);
3ea41e62 777 return true;
fc9fe822
KS
778}
779
71e3aac0
AA
780int do_huge_pmd_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
781 unsigned long address, pmd_t *pmd,
782 unsigned int flags)
783{
077fcf11 784 gfp_t gfp;
71e3aac0
AA
785 struct page *page;
786 unsigned long haddr = address & HPAGE_PMD_MASK;
71e3aac0 787
128ec037 788 if (haddr < vma->vm_start || haddr + HPAGE_PMD_SIZE > vma->vm_end)
c0292554 789 return VM_FAULT_FALLBACK;
128ec037
KS
790 if (unlikely(anon_vma_prepare(vma)))
791 return VM_FAULT_OOM;
6d50e60c 792 if (unlikely(khugepaged_enter(vma, vma->vm_flags)))
128ec037 793 return VM_FAULT_OOM;
593befa6 794 if (!(flags & FAULT_FLAG_WRITE) && !mm_forbids_zeropage(mm) &&
128ec037 795 transparent_hugepage_use_zero_page()) {
c4088ebd 796 spinlock_t *ptl;
128ec037
KS
797 pgtable_t pgtable;
798 struct page *zero_page;
799 bool set;
800 pgtable = pte_alloc_one(mm, haddr);
801 if (unlikely(!pgtable))
ba76149f 802 return VM_FAULT_OOM;
128ec037
KS
803 zero_page = get_huge_zero_page();
804 if (unlikely(!zero_page)) {
805 pte_free(mm, pgtable);
81ab4201 806 count_vm_event(THP_FAULT_FALLBACK);
c0292554 807 return VM_FAULT_FALLBACK;
b9bbfbe3 808 }
c4088ebd 809 ptl = pmd_lock(mm, pmd);
128ec037
KS
810 set = set_huge_zero_page(pgtable, mm, vma, haddr, pmd,
811 zero_page);
c4088ebd 812 spin_unlock(ptl);
128ec037
KS
813 if (!set) {
814 pte_free(mm, pgtable);
815 put_huge_zero_page();
edad9d2c 816 }
edad9d2c 817 return 0;
71e3aac0 818 }
077fcf11
AK
819 gfp = alloc_hugepage_gfpmask(transparent_hugepage_defrag(vma), 0);
820 page = alloc_hugepage_vma(gfp, vma, haddr, HPAGE_PMD_ORDER);
128ec037
KS
821 if (unlikely(!page)) {
822 count_vm_event(THP_FAULT_FALLBACK);
c0292554 823 return VM_FAULT_FALLBACK;
128ec037 824 }
128ec037 825 if (unlikely(__do_huge_pmd_anonymous_page(mm, vma, haddr, pmd, page))) {
128ec037 826 put_page(page);
17766dde 827 count_vm_event(THP_FAULT_FALLBACK);
c0292554 828 return VM_FAULT_FALLBACK;
128ec037
KS
829 }
830
17766dde 831 count_vm_event(THP_FAULT_ALLOC);
128ec037 832 return 0;
71e3aac0
AA
833}
834
835int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
836 pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
837 struct vm_area_struct *vma)
838{
c4088ebd 839 spinlock_t *dst_ptl, *src_ptl;
71e3aac0
AA
840 struct page *src_page;
841 pmd_t pmd;
842 pgtable_t pgtable;
843 int ret;
844
845 ret = -ENOMEM;
846 pgtable = pte_alloc_one(dst_mm, addr);
847 if (unlikely(!pgtable))
848 goto out;
849
c4088ebd
KS
850 dst_ptl = pmd_lock(dst_mm, dst_pmd);
851 src_ptl = pmd_lockptr(src_mm, src_pmd);
852 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
71e3aac0
AA
853
854 ret = -EAGAIN;
855 pmd = *src_pmd;
856 if (unlikely(!pmd_trans_huge(pmd))) {
857 pte_free(dst_mm, pgtable);
858 goto out_unlock;
859 }
fc9fe822 860 /*
c4088ebd 861 * When page table lock is held, the huge zero pmd should not be
fc9fe822
KS
862 * under splitting since we don't split the page itself, only pmd to
863 * a page table.
864 */
865 if (is_huge_zero_pmd(pmd)) {
5918d10a 866 struct page *zero_page;
3ea41e62 867 bool set;
97ae1749
KS
868 /*
869 * get_huge_zero_page() will never allocate a new page here,
870 * since we already have a zero page to copy. It just takes a
871 * reference.
872 */
5918d10a 873 zero_page = get_huge_zero_page();
3ea41e62 874 set = set_huge_zero_page(pgtable, dst_mm, vma, addr, dst_pmd,
5918d10a 875 zero_page);
3ea41e62 876 BUG_ON(!set); /* unexpected !pmd_none(dst_pmd) */
fc9fe822
KS
877 ret = 0;
878 goto out_unlock;
879 }
de466bd6 880
71e3aac0
AA
881 if (unlikely(pmd_trans_splitting(pmd))) {
882 /* split huge page running from under us */
c4088ebd
KS
883 spin_unlock(src_ptl);
884 spin_unlock(dst_ptl);
71e3aac0
AA
885 pte_free(dst_mm, pgtable);
886
887 wait_split_huge_page(vma->anon_vma, src_pmd); /* src_vma */
888 goto out;
889 }
890 src_page = pmd_page(pmd);
309381fe 891 VM_BUG_ON_PAGE(!PageHead(src_page), src_page);
71e3aac0
AA
892 get_page(src_page);
893 page_dup_rmap(src_page);
894 add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
895
896 pmdp_set_wrprotect(src_mm, addr, src_pmd);
897 pmd = pmd_mkold(pmd_wrprotect(pmd));
6b0b50b0 898 pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
71e3aac0 899 set_pmd_at(dst_mm, addr, dst_pmd, pmd);
e1f56c89 900 atomic_long_inc(&dst_mm->nr_ptes);
71e3aac0
AA
901
902 ret = 0;
903out_unlock:
c4088ebd
KS
904 spin_unlock(src_ptl);
905 spin_unlock(dst_ptl);
71e3aac0
AA
906out:
907 return ret;
908}
909
a1dd450b
WD
910void huge_pmd_set_accessed(struct mm_struct *mm,
911 struct vm_area_struct *vma,
912 unsigned long address,
913 pmd_t *pmd, pmd_t orig_pmd,
914 int dirty)
915{
c4088ebd 916 spinlock_t *ptl;
a1dd450b
WD
917 pmd_t entry;
918 unsigned long haddr;
919
c4088ebd 920 ptl = pmd_lock(mm, pmd);
a1dd450b
WD
921 if (unlikely(!pmd_same(*pmd, orig_pmd)))
922 goto unlock;
923
924 entry = pmd_mkyoung(orig_pmd);
925 haddr = address & HPAGE_PMD_MASK;
926 if (pmdp_set_access_flags(vma, haddr, pmd, entry, dirty))
927 update_mmu_cache_pmd(vma, address, pmd);
928
929unlock:
c4088ebd 930 spin_unlock(ptl);
a1dd450b
WD
931}
932
5338a937
HD
933/*
934 * Save CONFIG_DEBUG_PAGEALLOC from faulting falsely on tail pages
935 * during copy_user_huge_page()'s copy_page_rep(): in the case when
936 * the source page gets split and a tail freed before copy completes.
937 * Called under pmd_lock of checked pmd, so safe from splitting itself.
938 */
939static void get_user_huge_page(struct page *page)
940{
941 if (IS_ENABLED(CONFIG_DEBUG_PAGEALLOC)) {
942 struct page *endpage = page + HPAGE_PMD_NR;
943
944 atomic_add(HPAGE_PMD_NR, &page->_count);
945 while (++page < endpage)
946 get_huge_page_tail(page);
947 } else {
948 get_page(page);
949 }
950}
951
952static void put_user_huge_page(struct page *page)
953{
954 if (IS_ENABLED(CONFIG_DEBUG_PAGEALLOC)) {
955 struct page *endpage = page + HPAGE_PMD_NR;
956
957 while (page < endpage)
958 put_page(page++);
959 } else {
960 put_page(page);
961 }
962}
963
71e3aac0
AA
964static int do_huge_pmd_wp_page_fallback(struct mm_struct *mm,
965 struct vm_area_struct *vma,
966 unsigned long address,
967 pmd_t *pmd, pmd_t orig_pmd,
968 struct page *page,
969 unsigned long haddr)
970{
00501b53 971 struct mem_cgroup *memcg;
c4088ebd 972 spinlock_t *ptl;
71e3aac0
AA
973 pgtable_t pgtable;
974 pmd_t _pmd;
975 int ret = 0, i;
976 struct page **pages;
2ec74c3e
SG
977 unsigned long mmun_start; /* For mmu_notifiers */
978 unsigned long mmun_end; /* For mmu_notifiers */
71e3aac0
AA
979
980 pages = kmalloc(sizeof(struct page *) * HPAGE_PMD_NR,
981 GFP_KERNEL);
982 if (unlikely(!pages)) {
983 ret |= VM_FAULT_OOM;
984 goto out;
985 }
986
987 for (i = 0; i < HPAGE_PMD_NR; i++) {
cc5d462f
AK
988 pages[i] = alloc_page_vma_node(GFP_HIGHUSER_MOVABLE |
989 __GFP_OTHER_NODE,
19ee151e 990 vma, address, page_to_nid(page));
b9bbfbe3 991 if (unlikely(!pages[i] ||
00501b53
JW
992 mem_cgroup_try_charge(pages[i], mm, GFP_KERNEL,
993 &memcg))) {
b9bbfbe3 994 if (pages[i])
71e3aac0 995 put_page(pages[i]);
b9bbfbe3 996 while (--i >= 0) {
00501b53
JW
997 memcg = (void *)page_private(pages[i]);
998 set_page_private(pages[i], 0);
999 mem_cgroup_cancel_charge(pages[i], memcg);
b9bbfbe3
AA
1000 put_page(pages[i]);
1001 }
71e3aac0
AA
1002 kfree(pages);
1003 ret |= VM_FAULT_OOM;
1004 goto out;
1005 }
00501b53 1006 set_page_private(pages[i], (unsigned long)memcg);
71e3aac0
AA
1007 }
1008
1009 for (i = 0; i < HPAGE_PMD_NR; i++) {
1010 copy_user_highpage(pages[i], page + i,
0089e485 1011 haddr + PAGE_SIZE * i, vma);
71e3aac0
AA
1012 __SetPageUptodate(pages[i]);
1013 cond_resched();
1014 }
1015
2ec74c3e
SG
1016 mmun_start = haddr;
1017 mmun_end = haddr + HPAGE_PMD_SIZE;
1018 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1019
c4088ebd 1020 ptl = pmd_lock(mm, pmd);
71e3aac0
AA
1021 if (unlikely(!pmd_same(*pmd, orig_pmd)))
1022 goto out_free_pages;
309381fe 1023 VM_BUG_ON_PAGE(!PageHead(page), page);
71e3aac0 1024
34ee645e 1025 pmdp_clear_flush_notify(vma, haddr, pmd);
71e3aac0
AA
1026 /* leave pmd empty until pte is filled */
1027
6b0b50b0 1028 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
71e3aac0
AA
1029 pmd_populate(mm, &_pmd, pgtable);
1030
1031 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
1032 pte_t *pte, entry;
1033 entry = mk_pte(pages[i], vma->vm_page_prot);
1034 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
00501b53
JW
1035 memcg = (void *)page_private(pages[i]);
1036 set_page_private(pages[i], 0);
71e3aac0 1037 page_add_new_anon_rmap(pages[i], vma, haddr);
00501b53
JW
1038 mem_cgroup_commit_charge(pages[i], memcg, false);
1039 lru_cache_add_active_or_unevictable(pages[i], vma);
71e3aac0
AA
1040 pte = pte_offset_map(&_pmd, haddr);
1041 VM_BUG_ON(!pte_none(*pte));
1042 set_pte_at(mm, haddr, pte, entry);
1043 pte_unmap(pte);
1044 }
1045 kfree(pages);
1046
71e3aac0
AA
1047 smp_wmb(); /* make pte visible before pmd */
1048 pmd_populate(mm, pmd, pgtable);
1049 page_remove_rmap(page);
c4088ebd 1050 spin_unlock(ptl);
71e3aac0 1051
2ec74c3e
SG
1052 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1053
71e3aac0
AA
1054 ret |= VM_FAULT_WRITE;
1055 put_page(page);
1056
1057out:
1058 return ret;
1059
1060out_free_pages:
c4088ebd 1061 spin_unlock(ptl);
2ec74c3e 1062 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
b9bbfbe3 1063 for (i = 0; i < HPAGE_PMD_NR; i++) {
00501b53
JW
1064 memcg = (void *)page_private(pages[i]);
1065 set_page_private(pages[i], 0);
1066 mem_cgroup_cancel_charge(pages[i], memcg);
71e3aac0 1067 put_page(pages[i]);
b9bbfbe3 1068 }
71e3aac0
AA
1069 kfree(pages);
1070 goto out;
1071}
1072
1073int do_huge_pmd_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
1074 unsigned long address, pmd_t *pmd, pmd_t orig_pmd)
1075{
c4088ebd 1076 spinlock_t *ptl;
71e3aac0 1077 int ret = 0;
93b4796d 1078 struct page *page = NULL, *new_page;
00501b53 1079 struct mem_cgroup *memcg;
71e3aac0 1080 unsigned long haddr;
2ec74c3e
SG
1081 unsigned long mmun_start; /* For mmu_notifiers */
1082 unsigned long mmun_end; /* For mmu_notifiers */
71e3aac0 1083
c4088ebd 1084 ptl = pmd_lockptr(mm, pmd);
81d1b09c 1085 VM_BUG_ON_VMA(!vma->anon_vma, vma);
93b4796d
KS
1086 haddr = address & HPAGE_PMD_MASK;
1087 if (is_huge_zero_pmd(orig_pmd))
1088 goto alloc;
c4088ebd 1089 spin_lock(ptl);
71e3aac0
AA
1090 if (unlikely(!pmd_same(*pmd, orig_pmd)))
1091 goto out_unlock;
1092
1093 page = pmd_page(orig_pmd);
309381fe 1094 VM_BUG_ON_PAGE(!PageCompound(page) || !PageHead(page), page);
71e3aac0
AA
1095 if (page_mapcount(page) == 1) {
1096 pmd_t entry;
1097 entry = pmd_mkyoung(orig_pmd);
1098 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1099 if (pmdp_set_access_flags(vma, haddr, pmd, entry, 1))
b113da65 1100 update_mmu_cache_pmd(vma, address, pmd);
71e3aac0
AA
1101 ret |= VM_FAULT_WRITE;
1102 goto out_unlock;
1103 }
5338a937 1104 get_user_huge_page(page);
c4088ebd 1105 spin_unlock(ptl);
93b4796d 1106alloc:
71e3aac0 1107 if (transparent_hugepage_enabled(vma) &&
077fcf11
AK
1108 !transparent_hugepage_debug_cow()) {
1109 gfp_t gfp;
1110
1111 gfp = alloc_hugepage_gfpmask(transparent_hugepage_defrag(vma), 0);
1112 new_page = alloc_hugepage_vma(gfp, vma, haddr, HPAGE_PMD_ORDER);
1113 } else
71e3aac0
AA
1114 new_page = NULL;
1115
1116 if (unlikely(!new_page)) {
eecc1e42 1117 if (!page) {
e9b71ca9
KS
1118 split_huge_page_pmd(vma, address, pmd);
1119 ret |= VM_FAULT_FALLBACK;
93b4796d
KS
1120 } else {
1121 ret = do_huge_pmd_wp_page_fallback(mm, vma, address,
1122 pmd, orig_pmd, page, haddr);
9845cbbd 1123 if (ret & VM_FAULT_OOM) {
93b4796d 1124 split_huge_page(page);
9845cbbd
KS
1125 ret |= VM_FAULT_FALLBACK;
1126 }
5338a937 1127 put_user_huge_page(page);
93b4796d 1128 }
17766dde 1129 count_vm_event(THP_FAULT_FALLBACK);
71e3aac0
AA
1130 goto out;
1131 }
1132
00501b53
JW
1133 if (unlikely(mem_cgroup_try_charge(new_page, mm,
1134 GFP_TRANSHUGE, &memcg))) {
b9bbfbe3 1135 put_page(new_page);
93b4796d
KS
1136 if (page) {
1137 split_huge_page(page);
5338a937 1138 put_user_huge_page(page);
9845cbbd
KS
1139 } else
1140 split_huge_page_pmd(vma, address, pmd);
1141 ret |= VM_FAULT_FALLBACK;
17766dde 1142 count_vm_event(THP_FAULT_FALLBACK);
b9bbfbe3
AA
1143 goto out;
1144 }
1145
17766dde
DR
1146 count_vm_event(THP_FAULT_ALLOC);
1147
eecc1e42 1148 if (!page)
93b4796d
KS
1149 clear_huge_page(new_page, haddr, HPAGE_PMD_NR);
1150 else
1151 copy_user_huge_page(new_page, page, haddr, vma, HPAGE_PMD_NR);
71e3aac0
AA
1152 __SetPageUptodate(new_page);
1153
2ec74c3e
SG
1154 mmun_start = haddr;
1155 mmun_end = haddr + HPAGE_PMD_SIZE;
1156 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1157
c4088ebd 1158 spin_lock(ptl);
93b4796d 1159 if (page)
5338a937 1160 put_user_huge_page(page);
b9bbfbe3 1161 if (unlikely(!pmd_same(*pmd, orig_pmd))) {
c4088ebd 1162 spin_unlock(ptl);
00501b53 1163 mem_cgroup_cancel_charge(new_page, memcg);
71e3aac0 1164 put_page(new_page);
2ec74c3e 1165 goto out_mn;
b9bbfbe3 1166 } else {
71e3aac0 1167 pmd_t entry;
3122359a
KS
1168 entry = mk_huge_pmd(new_page, vma->vm_page_prot);
1169 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
34ee645e 1170 pmdp_clear_flush_notify(vma, haddr, pmd);
71e3aac0 1171 page_add_new_anon_rmap(new_page, vma, haddr);
00501b53
JW
1172 mem_cgroup_commit_charge(new_page, memcg, false);
1173 lru_cache_add_active_or_unevictable(new_page, vma);
71e3aac0 1174 set_pmd_at(mm, haddr, pmd, entry);
b113da65 1175 update_mmu_cache_pmd(vma, address, pmd);
eecc1e42 1176 if (!page) {
93b4796d 1177 add_mm_counter(mm, MM_ANONPAGES, HPAGE_PMD_NR);
97ae1749
KS
1178 put_huge_zero_page();
1179 } else {
309381fe 1180 VM_BUG_ON_PAGE(!PageHead(page), page);
93b4796d
KS
1181 page_remove_rmap(page);
1182 put_page(page);
1183 }
71e3aac0
AA
1184 ret |= VM_FAULT_WRITE;
1185 }
c4088ebd 1186 spin_unlock(ptl);
2ec74c3e
SG
1187out_mn:
1188 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
71e3aac0
AA
1189out:
1190 return ret;
2ec74c3e 1191out_unlock:
c4088ebd 1192 spin_unlock(ptl);
2ec74c3e 1193 return ret;
71e3aac0
AA
1194}
1195
b676b293 1196struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
71e3aac0
AA
1197 unsigned long addr,
1198 pmd_t *pmd,
1199 unsigned int flags)
1200{
b676b293 1201 struct mm_struct *mm = vma->vm_mm;
71e3aac0
AA
1202 struct page *page = NULL;
1203
c4088ebd 1204 assert_spin_locked(pmd_lockptr(mm, pmd));
71e3aac0
AA
1205
1206 if (flags & FOLL_WRITE && !pmd_write(*pmd))
1207 goto out;
1208
85facf25
KS
1209 /* Avoid dumping huge zero page */
1210 if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd))
1211 return ERR_PTR(-EFAULT);
1212
2b4847e7
MG
1213 /* Full NUMA hinting faults to serialise migration in fault paths */
1214 if ((flags & FOLL_NUMA) && pmd_numa(*pmd))
1215 goto out;
1216
71e3aac0 1217 page = pmd_page(*pmd);
309381fe 1218 VM_BUG_ON_PAGE(!PageHead(page), page);
71e3aac0
AA
1219 if (flags & FOLL_TOUCH) {
1220 pmd_t _pmd;
1221 /*
1222 * We should set the dirty bit only for FOLL_WRITE but
1223 * for now the dirty bit in the pmd is meaningless.
1224 * And if the dirty bit will become meaningful and
1225 * we'll only set it with FOLL_WRITE, an atomic
1226 * set_bit will be required on the pmd to set the
1227 * young bit, instead of the current set_pmd_at.
1228 */
1229 _pmd = pmd_mkyoung(pmd_mkdirty(*pmd));
8663890a
AK
1230 if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK,
1231 pmd, _pmd, 1))
1232 update_mmu_cache_pmd(vma, addr, pmd);
71e3aac0 1233 }
b676b293
DR
1234 if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
1235 if (page->mapping && trylock_page(page)) {
1236 lru_add_drain();
1237 if (page->mapping)
1238 mlock_vma_page(page);
1239 unlock_page(page);
1240 }
1241 }
71e3aac0 1242 page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
309381fe 1243 VM_BUG_ON_PAGE(!PageCompound(page), page);
71e3aac0 1244 if (flags & FOLL_GET)
70b50f94 1245 get_page_foll(page);
71e3aac0
AA
1246
1247out:
1248 return page;
1249}
1250
d10e63f2 1251/* NUMA hinting page fault entry point for trans huge pmds */
4daae3b4
MG
1252int do_huge_pmd_numa_page(struct mm_struct *mm, struct vm_area_struct *vma,
1253 unsigned long addr, pmd_t pmd, pmd_t *pmdp)
d10e63f2 1254{
c4088ebd 1255 spinlock_t *ptl;
b8916634 1256 struct anon_vma *anon_vma = NULL;
b32967ff 1257 struct page *page;
d10e63f2 1258 unsigned long haddr = addr & HPAGE_PMD_MASK;
8191acbd 1259 int page_nid = -1, this_nid = numa_node_id();
90572890 1260 int target_nid, last_cpupid = -1;
8191acbd
MG
1261 bool page_locked;
1262 bool migrated = false;
6688cc05 1263 int flags = 0;
d10e63f2 1264
c4088ebd 1265 ptl = pmd_lock(mm, pmdp);
d10e63f2
MG
1266 if (unlikely(!pmd_same(pmd, *pmdp)))
1267 goto out_unlock;
1268
de466bd6
MG
1269 /*
1270 * If there are potential migrations, wait for completion and retry
1271 * without disrupting NUMA hinting information. Do not relock and
1272 * check_same as the page may no longer be mapped.
1273 */
1274 if (unlikely(pmd_trans_migrating(*pmdp))) {
1275 spin_unlock(ptl);
1276 wait_migrate_huge_page(vma->anon_vma, pmdp);
1277 goto out;
1278 }
1279
d10e63f2 1280 page = pmd_page(pmd);
a1a46184 1281 BUG_ON(is_huge_zero_page(page));
8191acbd 1282 page_nid = page_to_nid(page);
90572890 1283 last_cpupid = page_cpupid_last(page);
03c5a6e1 1284 count_vm_numa_event(NUMA_HINT_FAULTS);
04bb2f94 1285 if (page_nid == this_nid) {
03c5a6e1 1286 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
04bb2f94
RR
1287 flags |= TNF_FAULT_LOCAL;
1288 }
4daae3b4 1289
6688cc05
PZ
1290 /*
1291 * Avoid grouping on DSO/COW pages in specific and RO pages
1292 * in general, RO pages shouldn't hurt as much anyway since
1293 * they can be in shared cache state.
1294 */
1295 if (!pmd_write(pmd))
1296 flags |= TNF_NO_GROUP;
1297
ff9042b1
MG
1298 /*
1299 * Acquire the page lock to serialise THP migrations but avoid dropping
1300 * page_table_lock if at all possible
1301 */
b8916634
MG
1302 page_locked = trylock_page(page);
1303 target_nid = mpol_misplaced(page, vma, haddr);
1304 if (target_nid == -1) {
1305 /* If the page was locked, there are no parallel migrations */
a54a407f 1306 if (page_locked)
b8916634 1307 goto clear_pmdnuma;
2b4847e7 1308 }
4daae3b4 1309
de466bd6 1310 /* Migration could have started since the pmd_trans_migrating check */
2b4847e7 1311 if (!page_locked) {
c4088ebd 1312 spin_unlock(ptl);
b8916634 1313 wait_on_page_locked(page);
a54a407f 1314 page_nid = -1;
b8916634
MG
1315 goto out;
1316 }
1317
2b4847e7
MG
1318 /*
1319 * Page is misplaced. Page lock serialises migrations. Acquire anon_vma
1320 * to serialises splits
1321 */
b8916634 1322 get_page(page);
c4088ebd 1323 spin_unlock(ptl);
b8916634 1324 anon_vma = page_lock_anon_vma_read(page);
4daae3b4 1325
c69307d5 1326 /* Confirm the PMD did not change while page_table_lock was released */
c4088ebd 1327 spin_lock(ptl);
b32967ff
MG
1328 if (unlikely(!pmd_same(pmd, *pmdp))) {
1329 unlock_page(page);
1330 put_page(page);
a54a407f 1331 page_nid = -1;
4daae3b4 1332 goto out_unlock;
b32967ff 1333 }
ff9042b1 1334
c3a489ca
MG
1335 /* Bail if we fail to protect against THP splits for any reason */
1336 if (unlikely(!anon_vma)) {
1337 put_page(page);
1338 page_nid = -1;
1339 goto clear_pmdnuma;
1340 }
1341
a54a407f
MG
1342 /*
1343 * Migrate the THP to the requested node, returns with page unlocked
1344 * and pmd_numa cleared.
1345 */
c4088ebd 1346 spin_unlock(ptl);
b32967ff 1347 migrated = migrate_misplaced_transhuge_page(mm, vma,
340ef390 1348 pmdp, pmd, addr, page, target_nid);
6688cc05
PZ
1349 if (migrated) {
1350 flags |= TNF_MIGRATED;
8191acbd 1351 page_nid = target_nid;
6688cc05 1352 }
b32967ff 1353
8191acbd 1354 goto out;
b32967ff 1355clear_pmdnuma:
a54a407f 1356 BUG_ON(!PageLocked(page));
d10e63f2
MG
1357 pmd = pmd_mknonnuma(pmd);
1358 set_pmd_at(mm, haddr, pmdp, pmd);
1359 VM_BUG_ON(pmd_numa(*pmdp));
1360 update_mmu_cache_pmd(vma, addr, pmdp);
a54a407f 1361 unlock_page(page);
d10e63f2 1362out_unlock:
c4088ebd 1363 spin_unlock(ptl);
b8916634
MG
1364
1365out:
1366 if (anon_vma)
1367 page_unlock_anon_vma_read(anon_vma);
1368
8191acbd 1369 if (page_nid != -1)
6688cc05 1370 task_numa_fault(last_cpupid, page_nid, HPAGE_PMD_NR, flags);
8191acbd 1371
d10e63f2
MG
1372 return 0;
1373}
1374
71e3aac0 1375int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
f21760b1 1376 pmd_t *pmd, unsigned long addr)
71e3aac0 1377{
bf929152 1378 spinlock_t *ptl;
71e3aac0
AA
1379 int ret = 0;
1380
bf929152 1381 if (__pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
025c5b24
NH
1382 struct page *page;
1383 pgtable_t pgtable;
f5c8ad47 1384 pmd_t orig_pmd;
a6bf2bb0
AK
1385 /*
1386 * For architectures like ppc64 we look at deposited pgtable
1387 * when calling pmdp_get_and_clear. So do the
1388 * pgtable_trans_huge_withdraw after finishing pmdp related
1389 * operations.
1390 */
fcbe08d6
MS
1391 orig_pmd = pmdp_get_and_clear_full(tlb->mm, addr, pmd,
1392 tlb->fullmm);
025c5b24 1393 tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
a6bf2bb0 1394 pgtable = pgtable_trans_huge_withdraw(tlb->mm, pmd);
479f0abb 1395 if (is_huge_zero_pmd(orig_pmd)) {
e1f56c89 1396 atomic_long_dec(&tlb->mm->nr_ptes);
bf929152 1397 spin_unlock(ptl);
97ae1749 1398 put_huge_zero_page();
479f0abb
KS
1399 } else {
1400 page = pmd_page(orig_pmd);
1401 page_remove_rmap(page);
309381fe 1402 VM_BUG_ON_PAGE(page_mapcount(page) < 0, page);
479f0abb 1403 add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
309381fe 1404 VM_BUG_ON_PAGE(!PageHead(page), page);
e1f56c89 1405 atomic_long_dec(&tlb->mm->nr_ptes);
bf929152 1406 spin_unlock(ptl);
479f0abb
KS
1407 tlb_remove_page(tlb, page);
1408 }
025c5b24
NH
1409 pte_free(tlb->mm, pgtable);
1410 ret = 1;
1411 }
71e3aac0
AA
1412 return ret;
1413}
1414
37a1c49a
AA
1415int move_huge_pmd(struct vm_area_struct *vma, struct vm_area_struct *new_vma,
1416 unsigned long old_addr,
1417 unsigned long new_addr, unsigned long old_end,
1418 pmd_t *old_pmd, pmd_t *new_pmd)
1419{
bf929152 1420 spinlock_t *old_ptl, *new_ptl;
37a1c49a
AA
1421 int ret = 0;
1422 pmd_t pmd;
1423
1424 struct mm_struct *mm = vma->vm_mm;
1425
1426 if ((old_addr & ~HPAGE_PMD_MASK) ||
1427 (new_addr & ~HPAGE_PMD_MASK) ||
1428 old_end - old_addr < HPAGE_PMD_SIZE ||
1429 (new_vma->vm_flags & VM_NOHUGEPAGE))
1430 goto out;
1431
1432 /*
1433 * The destination pmd shouldn't be established, free_pgtables()
1434 * should have release it.
1435 */
1436 if (WARN_ON(!pmd_none(*new_pmd))) {
1437 VM_BUG_ON(pmd_trans_huge(*new_pmd));
1438 goto out;
1439 }
1440
bf929152
KS
1441 /*
1442 * We don't have to worry about the ordering of src and dst
1443 * ptlocks because exclusive mmap_sem prevents deadlock.
1444 */
1445 ret = __pmd_trans_huge_lock(old_pmd, vma, &old_ptl);
025c5b24 1446 if (ret == 1) {
bf929152
KS
1447 new_ptl = pmd_lockptr(mm, new_pmd);
1448 if (new_ptl != old_ptl)
1449 spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
025c5b24
NH
1450 pmd = pmdp_get_and_clear(mm, old_addr, old_pmd);
1451 VM_BUG_ON(!pmd_none(*new_pmd));
3592806c 1452
b3084f4d
AK
1453 if (pmd_move_must_withdraw(new_ptl, old_ptl)) {
1454 pgtable_t pgtable;
3592806c
KS
1455 pgtable = pgtable_trans_huge_withdraw(mm, old_pmd);
1456 pgtable_trans_huge_deposit(mm, new_pmd, pgtable);
3592806c 1457 }
b3084f4d
AK
1458 set_pmd_at(mm, new_addr, new_pmd, pmd_mksoft_dirty(pmd));
1459 if (new_ptl != old_ptl)
1460 spin_unlock(new_ptl);
bf929152 1461 spin_unlock(old_ptl);
37a1c49a
AA
1462 }
1463out:
1464 return ret;
1465}
1466
f123d74a
MG
1467/*
1468 * Returns
1469 * - 0 if PMD could not be locked
1470 * - 1 if PMD was locked but protections unchange and TLB flush unnecessary
1471 * - HPAGE_PMD_NR is protections changed and TLB flush necessary
1472 */
cd7548ab 1473int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
4b10e7d5 1474 unsigned long addr, pgprot_t newprot, int prot_numa)
cd7548ab
JW
1475{
1476 struct mm_struct *mm = vma->vm_mm;
bf929152 1477 spinlock_t *ptl;
cd7548ab
JW
1478 int ret = 0;
1479
bf929152 1480 if (__pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
025c5b24 1481 pmd_t entry;
f123d74a 1482 ret = 1;
a4f1de17 1483 if (!prot_numa) {
34ee645e 1484 entry = pmdp_get_and_clear_notify(mm, addr, pmd);
1667918b
MG
1485 if (pmd_numa(entry))
1486 entry = pmd_mknonnuma(entry);
4b10e7d5 1487 entry = pmd_modify(entry, newprot);
f123d74a 1488 ret = HPAGE_PMD_NR;
56eecdb9 1489 set_pmd_at(mm, addr, pmd, entry);
a4f1de17
HD
1490 BUG_ON(pmd_write(entry));
1491 } else {
4b10e7d5
MG
1492 struct page *page = pmd_page(*pmd);
1493
a1a46184 1494 /*
1bc115d8
MG
1495 * Do not trap faults against the zero page. The
1496 * read-only data is likely to be read-cached on the
1497 * local CPU cache and it is less useful to know about
1498 * local vs remote hits on the zero page.
a1a46184 1499 */
1bc115d8 1500 if (!is_huge_zero_page(page) &&
4b10e7d5 1501 !pmd_numa(*pmd)) {
56eecdb9 1502 pmdp_set_numa(mm, addr, pmd);
f123d74a 1503 ret = HPAGE_PMD_NR;
4b10e7d5
MG
1504 }
1505 }
bf929152 1506 spin_unlock(ptl);
025c5b24
NH
1507 }
1508
1509 return ret;
1510}
1511
1512/*
1513 * Returns 1 if a given pmd maps a stable (not under splitting) thp.
1514 * Returns -1 if it maps a thp under splitting. Returns 0 otherwise.
1515 *
1516 * Note that if it returns 1, this routine returns without unlocking page
1517 * table locks. So callers must unlock them.
1518 */
bf929152
KS
1519int __pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma,
1520 spinlock_t **ptl)
025c5b24 1521{
bf929152 1522 *ptl = pmd_lock(vma->vm_mm, pmd);
cd7548ab
JW
1523 if (likely(pmd_trans_huge(*pmd))) {
1524 if (unlikely(pmd_trans_splitting(*pmd))) {
bf929152 1525 spin_unlock(*ptl);
cd7548ab 1526 wait_split_huge_page(vma->anon_vma, pmd);
025c5b24 1527 return -1;
cd7548ab 1528 } else {
025c5b24
NH
1529 /* Thp mapped by 'pmd' is stable, so we can
1530 * handle it as it is. */
1531 return 1;
cd7548ab 1532 }
025c5b24 1533 }
bf929152 1534 spin_unlock(*ptl);
025c5b24 1535 return 0;
cd7548ab
JW
1536}
1537
117b0791
KS
1538/*
1539 * This function returns whether a given @page is mapped onto the @address
1540 * in the virtual space of @mm.
1541 *
1542 * When it's true, this function returns *pmd with holding the page table lock
1543 * and passing it back to the caller via @ptl.
1544 * If it's false, returns NULL without holding the page table lock.
1545 */
71e3aac0
AA
1546pmd_t *page_check_address_pmd(struct page *page,
1547 struct mm_struct *mm,
1548 unsigned long address,
117b0791
KS
1549 enum page_check_address_pmd_flag flag,
1550 spinlock_t **ptl)
71e3aac0 1551{
b5a8cad3
KS
1552 pgd_t *pgd;
1553 pud_t *pud;
117b0791 1554 pmd_t *pmd;
71e3aac0
AA
1555
1556 if (address & ~HPAGE_PMD_MASK)
117b0791 1557 return NULL;
71e3aac0 1558
b5a8cad3
KS
1559 pgd = pgd_offset(mm, address);
1560 if (!pgd_present(*pgd))
117b0791 1561 return NULL;
b5a8cad3
KS
1562 pud = pud_offset(pgd, address);
1563 if (!pud_present(*pud))
1564 return NULL;
1565 pmd = pmd_offset(pud, address);
1566
117b0791 1567 *ptl = pmd_lock(mm, pmd);
b5a8cad3 1568 if (!pmd_present(*pmd))
117b0791 1569 goto unlock;
71e3aac0 1570 if (pmd_page(*pmd) != page)
117b0791 1571 goto unlock;
94fcc585
AA
1572 /*
1573 * split_vma() may create temporary aliased mappings. There is
1574 * no risk as long as all huge pmd are found and have their
1575 * splitting bit set before __split_huge_page_refcount
1576 * runs. Finding the same huge pmd more than once during the
1577 * same rmap walk is not a problem.
1578 */
1579 if (flag == PAGE_CHECK_ADDRESS_PMD_NOTSPLITTING_FLAG &&
1580 pmd_trans_splitting(*pmd))
117b0791 1581 goto unlock;
71e3aac0
AA
1582 if (pmd_trans_huge(*pmd)) {
1583 VM_BUG_ON(flag == PAGE_CHECK_ADDRESS_PMD_SPLITTING_FLAG &&
1584 !pmd_trans_splitting(*pmd));
117b0791 1585 return pmd;
71e3aac0 1586 }
117b0791
KS
1587unlock:
1588 spin_unlock(*ptl);
1589 return NULL;
71e3aac0
AA
1590}
1591
1592static int __split_huge_page_splitting(struct page *page,
1593 struct vm_area_struct *vma,
1594 unsigned long address)
1595{
1596 struct mm_struct *mm = vma->vm_mm;
117b0791 1597 spinlock_t *ptl;
71e3aac0
AA
1598 pmd_t *pmd;
1599 int ret = 0;
2ec74c3e
SG
1600 /* For mmu_notifiers */
1601 const unsigned long mmun_start = address;
1602 const unsigned long mmun_end = address + HPAGE_PMD_SIZE;
71e3aac0 1603
2ec74c3e 1604 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
71e3aac0 1605 pmd = page_check_address_pmd(page, mm, address,
117b0791 1606 PAGE_CHECK_ADDRESS_PMD_NOTSPLITTING_FLAG, &ptl);
71e3aac0
AA
1607 if (pmd) {
1608 /*
1609 * We can't temporarily set the pmd to null in order
1610 * to split it, the pmd must remain marked huge at all
1611 * times or the VM won't take the pmd_trans_huge paths
5a505085 1612 * and it won't wait on the anon_vma->root->rwsem to
71e3aac0
AA
1613 * serialize against split_huge_page*.
1614 */
2ec74c3e 1615 pmdp_splitting_flush(vma, address, pmd);
34ee645e 1616
71e3aac0 1617 ret = 1;
117b0791 1618 spin_unlock(ptl);
71e3aac0 1619 }
2ec74c3e 1620 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
71e3aac0
AA
1621
1622 return ret;
1623}
1624
5bc7b8ac
SL
1625static void __split_huge_page_refcount(struct page *page,
1626 struct list_head *list)
71e3aac0
AA
1627{
1628 int i;
71e3aac0 1629 struct zone *zone = page_zone(page);
fa9add64 1630 struct lruvec *lruvec;
70b50f94 1631 int tail_count = 0;
71e3aac0
AA
1632
1633 /* prevent PageLRU to go away from under us, and freeze lru stats */
1634 spin_lock_irq(&zone->lru_lock);
fa9add64
HD
1635 lruvec = mem_cgroup_page_lruvec(page, zone);
1636
71e3aac0 1637 compound_lock(page);
e94c8a9c
KH
1638 /* complete memcg works before add pages to LRU */
1639 mem_cgroup_split_huge_fixup(page);
71e3aac0 1640
45676885 1641 for (i = HPAGE_PMD_NR - 1; i >= 1; i--) {
71e3aac0
AA
1642 struct page *page_tail = page + i;
1643
70b50f94
AA
1644 /* tail_page->_mapcount cannot change */
1645 BUG_ON(page_mapcount(page_tail) < 0);
1646 tail_count += page_mapcount(page_tail);
1647 /* check for overflow */
1648 BUG_ON(tail_count < 0);
1649 BUG_ON(atomic_read(&page_tail->_count) != 0);
1650 /*
1651 * tail_page->_count is zero and not changing from
1652 * under us. But get_page_unless_zero() may be running
1653 * from under us on the tail_page. If we used
1654 * atomic_set() below instead of atomic_add(), we
1655 * would then run atomic_set() concurrently with
1656 * get_page_unless_zero(), and atomic_set() is
1657 * implemented in C not using locked ops. spin_unlock
1658 * on x86 sometime uses locked ops because of PPro
1659 * errata 66, 92, so unless somebody can guarantee
1660 * atomic_set() here would be safe on all archs (and
1661 * not only on x86), it's safer to use atomic_add().
1662 */
1663 atomic_add(page_mapcount(page) + page_mapcount(page_tail) + 1,
1664 &page_tail->_count);
71e3aac0
AA
1665
1666 /* after clearing PageTail the gup refcount can be released */
3a79d52a 1667 smp_mb__after_atomic();
71e3aac0 1668
a6d30ddd
JD
1669 /*
1670 * retain hwpoison flag of the poisoned tail page:
1671 * fix for the unsuitable process killed on Guest Machine(KVM)
1672 * by the memory-failure.
1673 */
1674 page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP | __PG_HWPOISON;
71e3aac0
AA
1675 page_tail->flags |= (page->flags &
1676 ((1L << PG_referenced) |
1677 (1L << PG_swapbacked) |
1678 (1L << PG_mlocked) |
e180cf80
KS
1679 (1L << PG_uptodate) |
1680 (1L << PG_active) |
1681 (1L << PG_unevictable)));
71e3aac0
AA
1682 page_tail->flags |= (1L << PG_dirty);
1683
70b50f94 1684 /* clear PageTail before overwriting first_page */
71e3aac0
AA
1685 smp_wmb();
1686
1687 /*
1688 * __split_huge_page_splitting() already set the
1689 * splitting bit in all pmd that could map this
1690 * hugepage, that will ensure no CPU can alter the
1691 * mapcount on the head page. The mapcount is only
1692 * accounted in the head page and it has to be
1693 * transferred to all tail pages in the below code. So
1694 * for this code to be safe, the split the mapcount
1695 * can't change. But that doesn't mean userland can't
1696 * keep changing and reading the page contents while
1697 * we transfer the mapcount, so the pmd splitting
1698 * status is achieved setting a reserved bit in the
1699 * pmd, not by clearing the present bit.
1700 */
71e3aac0
AA
1701 page_tail->_mapcount = page->_mapcount;
1702
1703 BUG_ON(page_tail->mapping);
1704 page_tail->mapping = page->mapping;
1705
45676885 1706 page_tail->index = page->index + i;
90572890 1707 page_cpupid_xchg_last(page_tail, page_cpupid_last(page));
71e3aac0
AA
1708
1709 BUG_ON(!PageAnon(page_tail));
1710 BUG_ON(!PageUptodate(page_tail));
1711 BUG_ON(!PageDirty(page_tail));
1712 BUG_ON(!PageSwapBacked(page_tail));
1713
5bc7b8ac 1714 lru_add_page_tail(page, page_tail, lruvec, list);
71e3aac0 1715 }
70b50f94
AA
1716 atomic_sub(tail_count, &page->_count);
1717 BUG_ON(atomic_read(&page->_count) <= 0);
71e3aac0 1718
fa9add64 1719 __mod_zone_page_state(zone, NR_ANON_TRANSPARENT_HUGEPAGES, -1);
79134171 1720
71e3aac0
AA
1721 ClearPageCompound(page);
1722 compound_unlock(page);
1723 spin_unlock_irq(&zone->lru_lock);
1724
1725 for (i = 1; i < HPAGE_PMD_NR; i++) {
1726 struct page *page_tail = page + i;
1727 BUG_ON(page_count(page_tail) <= 0);
1728 /*
1729 * Tail pages may be freed if there wasn't any mapping
1730 * like if add_to_swap() is running on a lru page that
1731 * had its mapping zapped. And freeing these pages
1732 * requires taking the lru_lock so we do the put_page
1733 * of the tail pages after the split is complete.
1734 */
1735 put_page(page_tail);
1736 }
1737
1738 /*
1739 * Only the head page (now become a regular page) is required
1740 * to be pinned by the caller.
1741 */
1742 BUG_ON(page_count(page) <= 0);
1743}
1744
1745static int __split_huge_page_map(struct page *page,
1746 struct vm_area_struct *vma,
1747 unsigned long address)
1748{
1749 struct mm_struct *mm = vma->vm_mm;
117b0791 1750 spinlock_t *ptl;
71e3aac0
AA
1751 pmd_t *pmd, _pmd;
1752 int ret = 0, i;
1753 pgtable_t pgtable;
1754 unsigned long haddr;
1755
71e3aac0 1756 pmd = page_check_address_pmd(page, mm, address,
117b0791 1757 PAGE_CHECK_ADDRESS_PMD_SPLITTING_FLAG, &ptl);
71e3aac0 1758 if (pmd) {
6b0b50b0 1759 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
71e3aac0 1760 pmd_populate(mm, &_pmd, pgtable);
f8303c25
WL
1761 if (pmd_write(*pmd))
1762 BUG_ON(page_mapcount(page) != 1);
71e3aac0 1763
e3ebcf64
GS
1764 haddr = address;
1765 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
71e3aac0
AA
1766 pte_t *pte, entry;
1767 BUG_ON(PageCompound(page+i));
abc40bd2
MG
1768 /*
1769 * Note that pmd_numa is not transferred deliberately
1770 * to avoid any possibility that pte_numa leaks to
1771 * a PROT_NONE VMA by accident.
1772 */
71e3aac0
AA
1773 entry = mk_pte(page + i, vma->vm_page_prot);
1774 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1775 if (!pmd_write(*pmd))
1776 entry = pte_wrprotect(entry);
71e3aac0
AA
1777 if (!pmd_young(*pmd))
1778 entry = pte_mkold(entry);
1779 pte = pte_offset_map(&_pmd, haddr);
1780 BUG_ON(!pte_none(*pte));
1781 set_pte_at(mm, haddr, pte, entry);
1782 pte_unmap(pte);
1783 }
1784
71e3aac0
AA
1785 smp_wmb(); /* make pte visible before pmd */
1786 /*
1787 * Up to this point the pmd is present and huge and
1788 * userland has the whole access to the hugepage
1789 * during the split (which happens in place). If we
1790 * overwrite the pmd with the not-huge version
1791 * pointing to the pte here (which of course we could
1792 * if all CPUs were bug free), userland could trigger
1793 * a small page size TLB miss on the small sized TLB
1794 * while the hugepage TLB entry is still established
1795 * in the huge TLB. Some CPU doesn't like that. See
1796 * http://support.amd.com/us/Processor_TechDocs/41322.pdf,
1797 * Erratum 383 on page 93. Intel should be safe but is
1798 * also warns that it's only safe if the permission
1799 * and cache attributes of the two entries loaded in
1800 * the two TLB is identical (which should be the case
1801 * here). But it is generally safer to never allow
1802 * small and huge TLB entries for the same virtual
1803 * address to be loaded simultaneously. So instead of
1804 * doing "pmd_populate(); flush_tlb_range();" we first
1805 * mark the current pmd notpresent (atomically because
1806 * here the pmd_trans_huge and pmd_trans_splitting
1807 * must remain set at all times on the pmd until the
1808 * split is complete for this pmd), then we flush the
1809 * SMP TLB and finally we write the non-huge version
1810 * of the pmd entry with pmd_populate.
1811 */
46dcde73 1812 pmdp_invalidate(vma, address, pmd);
71e3aac0
AA
1813 pmd_populate(mm, pmd, pgtable);
1814 ret = 1;
117b0791 1815 spin_unlock(ptl);
71e3aac0 1816 }
71e3aac0
AA
1817
1818 return ret;
1819}
1820
5a505085 1821/* must be called with anon_vma->root->rwsem held */
71e3aac0 1822static void __split_huge_page(struct page *page,
5bc7b8ac
SL
1823 struct anon_vma *anon_vma,
1824 struct list_head *list)
71e3aac0
AA
1825{
1826 int mapcount, mapcount2;
bf181b9f 1827 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
71e3aac0
AA
1828 struct anon_vma_chain *avc;
1829
1830 BUG_ON(!PageHead(page));
1831 BUG_ON(PageTail(page));
1832
1833 mapcount = 0;
bf181b9f 1834 anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff, pgoff) {
71e3aac0
AA
1835 struct vm_area_struct *vma = avc->vma;
1836 unsigned long addr = vma_address(page, vma);
1837 BUG_ON(is_vma_temporary_stack(vma));
71e3aac0
AA
1838 mapcount += __split_huge_page_splitting(page, vma, addr);
1839 }
05759d38
AA
1840 /*
1841 * It is critical that new vmas are added to the tail of the
1842 * anon_vma list. This guarantes that if copy_huge_pmd() runs
1843 * and establishes a child pmd before
1844 * __split_huge_page_splitting() freezes the parent pmd (so if
1845 * we fail to prevent copy_huge_pmd() from running until the
1846 * whole __split_huge_page() is complete), we will still see
1847 * the newly established pmd of the child later during the
1848 * walk, to be able to set it as pmd_trans_splitting too.
1849 */
ff9e43eb 1850 if (mapcount != page_mapcount(page)) {
ae3a8c1c
AM
1851 pr_err("mapcount %d page_mapcount %d\n",
1852 mapcount, page_mapcount(page));
ff9e43eb
KS
1853 BUG();
1854 }
71e3aac0 1855
5bc7b8ac 1856 __split_huge_page_refcount(page, list);
71e3aac0
AA
1857
1858 mapcount2 = 0;
bf181b9f 1859 anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff, pgoff) {
71e3aac0
AA
1860 struct vm_area_struct *vma = avc->vma;
1861 unsigned long addr = vma_address(page, vma);
1862 BUG_ON(is_vma_temporary_stack(vma));
71e3aac0
AA
1863 mapcount2 += __split_huge_page_map(page, vma, addr);
1864 }
ff9e43eb 1865 if (mapcount != mapcount2) {
ae3a8c1c
AM
1866 pr_err("mapcount %d mapcount2 %d page_mapcount %d\n",
1867 mapcount, mapcount2, page_mapcount(page));
ff9e43eb
KS
1868 BUG();
1869 }
71e3aac0
AA
1870}
1871
5bc7b8ac
SL
1872/*
1873 * Split a hugepage into normal pages. This doesn't change the position of head
1874 * page. If @list is null, tail pages will be added to LRU list, otherwise, to
1875 * @list. Both head page and tail pages will inherit mapping, flags, and so on
1876 * from the hugepage.
1877 * Return 0 if the hugepage is split successfully otherwise return 1.
1878 */
1879int split_huge_page_to_list(struct page *page, struct list_head *list)
71e3aac0
AA
1880{
1881 struct anon_vma *anon_vma;
1882 int ret = 1;
1883
5918d10a 1884 BUG_ON(is_huge_zero_page(page));
71e3aac0 1885 BUG_ON(!PageAnon(page));
062f1af2
MG
1886
1887 /*
1888 * The caller does not necessarily hold an mmap_sem that would prevent
1889 * the anon_vma disappearing so we first we take a reference to it
1890 * and then lock the anon_vma for write. This is similar to
1891 * page_lock_anon_vma_read except the write lock is taken to serialise
1892 * against parallel split or collapse operations.
1893 */
1894 anon_vma = page_get_anon_vma(page);
71e3aac0
AA
1895 if (!anon_vma)
1896 goto out;
062f1af2
MG
1897 anon_vma_lock_write(anon_vma);
1898
71e3aac0
AA
1899 ret = 0;
1900 if (!PageCompound(page))
1901 goto out_unlock;
1902
1903 BUG_ON(!PageSwapBacked(page));
5bc7b8ac 1904 __split_huge_page(page, anon_vma, list);
81ab4201 1905 count_vm_event(THP_SPLIT);
71e3aac0
AA
1906
1907 BUG_ON(PageCompound(page));
1908out_unlock:
08b52706 1909 anon_vma_unlock_write(anon_vma);
062f1af2 1910 put_anon_vma(anon_vma);
71e3aac0
AA
1911out:
1912 return ret;
1913}
1914
9050d7eb 1915#define VM_NO_THP (VM_SPECIAL | VM_HUGETLB | VM_SHARED | VM_MAYSHARE)
78f11a25 1916
60ab3244
AA
1917int hugepage_madvise(struct vm_area_struct *vma,
1918 unsigned long *vm_flags, int advice)
0af4e98b 1919{
a664b2d8
AA
1920 switch (advice) {
1921 case MADV_HUGEPAGE:
1e1836e8
AT
1922#ifdef CONFIG_S390
1923 /*
1924 * qemu blindly sets MADV_HUGEPAGE on all allocations, but s390
1925 * can't handle this properly after s390_enable_sie, so we simply
1926 * ignore the madvise to prevent qemu from causing a SIGSEGV.
1927 */
1928 if (mm_has_pgste(vma->vm_mm))
1929 return 0;
1930#endif
a664b2d8
AA
1931 /*
1932 * Be somewhat over-protective like KSM for now!
1933 */
78f11a25 1934 if (*vm_flags & (VM_HUGEPAGE | VM_NO_THP))
a664b2d8
AA
1935 return -EINVAL;
1936 *vm_flags &= ~VM_NOHUGEPAGE;
1937 *vm_flags |= VM_HUGEPAGE;
60ab3244
AA
1938 /*
1939 * If the vma become good for khugepaged to scan,
1940 * register it here without waiting a page fault that
1941 * may not happen any time soon.
1942 */
6d50e60c 1943 if (unlikely(khugepaged_enter_vma_merge(vma, *vm_flags)))
60ab3244 1944 return -ENOMEM;
a664b2d8
AA
1945 break;
1946 case MADV_NOHUGEPAGE:
1947 /*
1948 * Be somewhat over-protective like KSM for now!
1949 */
78f11a25 1950 if (*vm_flags & (VM_NOHUGEPAGE | VM_NO_THP))
a664b2d8
AA
1951 return -EINVAL;
1952 *vm_flags &= ~VM_HUGEPAGE;
1953 *vm_flags |= VM_NOHUGEPAGE;
60ab3244
AA
1954 /*
1955 * Setting VM_NOHUGEPAGE will prevent khugepaged from scanning
1956 * this vma even if we leave the mm registered in khugepaged if
1957 * it got registered before VM_NOHUGEPAGE was set.
1958 */
a664b2d8
AA
1959 break;
1960 }
0af4e98b
AA
1961
1962 return 0;
1963}
1964
ba76149f
AA
1965static int __init khugepaged_slab_init(void)
1966{
1967 mm_slot_cache = kmem_cache_create("khugepaged_mm_slot",
1968 sizeof(struct mm_slot),
1969 __alignof__(struct mm_slot), 0, NULL);
1970 if (!mm_slot_cache)
1971 return -ENOMEM;
1972
1973 return 0;
1974}
1975
ba76149f
AA
1976static inline struct mm_slot *alloc_mm_slot(void)
1977{
1978 if (!mm_slot_cache) /* initialization failed */
1979 return NULL;
1980 return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
1981}
1982
1983static inline void free_mm_slot(struct mm_slot *mm_slot)
1984{
1985 kmem_cache_free(mm_slot_cache, mm_slot);
1986}
1987
ba76149f
AA
1988static struct mm_slot *get_mm_slot(struct mm_struct *mm)
1989{
1990 struct mm_slot *mm_slot;
ba76149f 1991
b67bfe0d 1992 hash_for_each_possible(mm_slots_hash, mm_slot, hash, (unsigned long)mm)
ba76149f
AA
1993 if (mm == mm_slot->mm)
1994 return mm_slot;
43b5fbbd 1995
ba76149f
AA
1996 return NULL;
1997}
1998
1999static void insert_to_mm_slots_hash(struct mm_struct *mm,
2000 struct mm_slot *mm_slot)
2001{
ba76149f 2002 mm_slot->mm = mm;
43b5fbbd 2003 hash_add(mm_slots_hash, &mm_slot->hash, (long)mm);
ba76149f
AA
2004}
2005
2006static inline int khugepaged_test_exit(struct mm_struct *mm)
2007{
2008 return atomic_read(&mm->mm_users) == 0;
2009}
2010
2011int __khugepaged_enter(struct mm_struct *mm)
2012{
2013 struct mm_slot *mm_slot;
2014 int wakeup;
2015
2016 mm_slot = alloc_mm_slot();
2017 if (!mm_slot)
2018 return -ENOMEM;
2019
2020 /* __khugepaged_exit() must not run from under us */
96dad67f 2021 VM_BUG_ON_MM(khugepaged_test_exit(mm), mm);
ba76149f
AA
2022 if (unlikely(test_and_set_bit(MMF_VM_HUGEPAGE, &mm->flags))) {
2023 free_mm_slot(mm_slot);
2024 return 0;
2025 }
2026
2027 spin_lock(&khugepaged_mm_lock);
2028 insert_to_mm_slots_hash(mm, mm_slot);
2029 /*
2030 * Insert just behind the scanning cursor, to let the area settle
2031 * down a little.
2032 */
2033 wakeup = list_empty(&khugepaged_scan.mm_head);
2034 list_add_tail(&mm_slot->mm_node, &khugepaged_scan.mm_head);
2035 spin_unlock(&khugepaged_mm_lock);
2036
2037 atomic_inc(&mm->mm_count);
2038 if (wakeup)
2039 wake_up_interruptible(&khugepaged_wait);
2040
2041 return 0;
2042}
2043
6d50e60c
DR
2044int khugepaged_enter_vma_merge(struct vm_area_struct *vma,
2045 unsigned long vm_flags)
ba76149f
AA
2046{
2047 unsigned long hstart, hend;
2048 if (!vma->anon_vma)
2049 /*
2050 * Not yet faulted in so we will register later in the
2051 * page fault if needed.
2052 */
2053 return 0;
78f11a25 2054 if (vma->vm_ops)
ba76149f
AA
2055 /* khugepaged not yet working on file or special mappings */
2056 return 0;
6d50e60c 2057 VM_BUG_ON_VMA(vm_flags & VM_NO_THP, vma);
ba76149f
AA
2058 hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
2059 hend = vma->vm_end & HPAGE_PMD_MASK;
2060 if (hstart < hend)
6d50e60c 2061 return khugepaged_enter(vma, vm_flags);
ba76149f
AA
2062 return 0;
2063}
2064
2065void __khugepaged_exit(struct mm_struct *mm)
2066{
2067 struct mm_slot *mm_slot;
2068 int free = 0;
2069
2070 spin_lock(&khugepaged_mm_lock);
2071 mm_slot = get_mm_slot(mm);
2072 if (mm_slot && khugepaged_scan.mm_slot != mm_slot) {
43b5fbbd 2073 hash_del(&mm_slot->hash);
ba76149f
AA
2074 list_del(&mm_slot->mm_node);
2075 free = 1;
2076 }
d788e80a 2077 spin_unlock(&khugepaged_mm_lock);
ba76149f
AA
2078
2079 if (free) {
ba76149f
AA
2080 clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
2081 free_mm_slot(mm_slot);
2082 mmdrop(mm);
2083 } else if (mm_slot) {
ba76149f
AA
2084 /*
2085 * This is required to serialize against
2086 * khugepaged_test_exit() (which is guaranteed to run
2087 * under mmap sem read mode). Stop here (after we
2088 * return all pagetables will be destroyed) until
2089 * khugepaged has finished working on the pagetables
2090 * under the mmap_sem.
2091 */
2092 down_write(&mm->mmap_sem);
2093 up_write(&mm->mmap_sem);
d788e80a 2094 }
ba76149f
AA
2095}
2096
2097static void release_pte_page(struct page *page)
2098{
2099 /* 0 stands for page_is_file_cache(page) == false */
2100 dec_zone_page_state(page, NR_ISOLATED_ANON + 0);
2101 unlock_page(page);
2102 putback_lru_page(page);
2103}
2104
2105static void release_pte_pages(pte_t *pte, pte_t *_pte)
2106{
2107 while (--_pte >= pte) {
2108 pte_t pteval = *_pte;
2109 if (!pte_none(pteval))
2110 release_pte_page(pte_page(pteval));
2111 }
2112}
2113
ba76149f
AA
2114static int __collapse_huge_page_isolate(struct vm_area_struct *vma,
2115 unsigned long address,
2116 pte_t *pte)
2117{
2118 struct page *page;
2119 pte_t *_pte;
344aa35c 2120 int referenced = 0, none = 0;
ba76149f
AA
2121 for (_pte = pte; _pte < pte+HPAGE_PMD_NR;
2122 _pte++, address += PAGE_SIZE) {
2123 pte_t pteval = *_pte;
2124 if (pte_none(pteval)) {
2125 if (++none <= khugepaged_max_ptes_none)
2126 continue;
344aa35c 2127 else
ba76149f 2128 goto out;
ba76149f 2129 }
344aa35c 2130 if (!pte_present(pteval) || !pte_write(pteval))
ba76149f 2131 goto out;
ba76149f 2132 page = vm_normal_page(vma, address, pteval);
344aa35c 2133 if (unlikely(!page))
ba76149f 2134 goto out;
344aa35c 2135
309381fe
SL
2136 VM_BUG_ON_PAGE(PageCompound(page), page);
2137 VM_BUG_ON_PAGE(!PageAnon(page), page);
2138 VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
ba76149f
AA
2139
2140 /* cannot use mapcount: can't collapse if there's a gup pin */
344aa35c 2141 if (page_count(page) != 1)
ba76149f 2142 goto out;
ba76149f
AA
2143 /*
2144 * We can do it before isolate_lru_page because the
2145 * page can't be freed from under us. NOTE: PG_lock
2146 * is needed to serialize against split_huge_page
2147 * when invoked from the VM.
2148 */
344aa35c 2149 if (!trylock_page(page))
ba76149f 2150 goto out;
ba76149f
AA
2151 /*
2152 * Isolate the page to avoid collapsing an hugepage
2153 * currently in use by the VM.
2154 */
2155 if (isolate_lru_page(page)) {
2156 unlock_page(page);
ba76149f
AA
2157 goto out;
2158 }
2159 /* 0 stands for page_is_file_cache(page) == false */
2160 inc_zone_page_state(page, NR_ISOLATED_ANON + 0);
309381fe
SL
2161 VM_BUG_ON_PAGE(!PageLocked(page), page);
2162 VM_BUG_ON_PAGE(PageLRU(page), page);
ba76149f
AA
2163
2164 /* If there is no mapped pte young don't collapse the page */
8ee53820
AA
2165 if (pte_young(pteval) || PageReferenced(page) ||
2166 mmu_notifier_test_young(vma->vm_mm, address))
ba76149f
AA
2167 referenced = 1;
2168 }
344aa35c
BL
2169 if (likely(referenced))
2170 return 1;
ba76149f 2171out:
344aa35c
BL
2172 release_pte_pages(pte, _pte);
2173 return 0;
ba76149f
AA
2174}
2175
2176static void __collapse_huge_page_copy(pte_t *pte, struct page *page,
2177 struct vm_area_struct *vma,
2178 unsigned long address,
2179 spinlock_t *ptl)
2180{
2181 pte_t *_pte;
2182 for (_pte = pte; _pte < pte+HPAGE_PMD_NR; _pte++) {
2183 pte_t pteval = *_pte;
2184 struct page *src_page;
2185
2186 if (pte_none(pteval)) {
2187 clear_user_highpage(page, address);
2188 add_mm_counter(vma->vm_mm, MM_ANONPAGES, 1);
2189 } else {
2190 src_page = pte_page(pteval);
2191 copy_user_highpage(page, src_page, address, vma);
309381fe 2192 VM_BUG_ON_PAGE(page_mapcount(src_page) != 1, src_page);
ba76149f
AA
2193 release_pte_page(src_page);
2194 /*
2195 * ptl mostly unnecessary, but preempt has to
2196 * be disabled to update the per-cpu stats
2197 * inside page_remove_rmap().
2198 */
2199 spin_lock(ptl);
2200 /*
2201 * paravirt calls inside pte_clear here are
2202 * superfluous.
2203 */
2204 pte_clear(vma->vm_mm, address, _pte);
2205 page_remove_rmap(src_page);
2206 spin_unlock(ptl);
2207 free_page_and_swap_cache(src_page);
2208 }
2209
2210 address += PAGE_SIZE;
2211 page++;
2212 }
2213}
2214
26234f36 2215static void khugepaged_alloc_sleep(void)
ba76149f 2216{
26234f36
XG
2217 wait_event_freezable_timeout(khugepaged_wait, false,
2218 msecs_to_jiffies(khugepaged_alloc_sleep_millisecs));
2219}
ba76149f 2220
9f1b868a
BL
2221static int khugepaged_node_load[MAX_NUMNODES];
2222
14a4e214
DR
2223static bool khugepaged_scan_abort(int nid)
2224{
2225 int i;
2226
2227 /*
2228 * If zone_reclaim_mode is disabled, then no extra effort is made to
2229 * allocate memory locally.
2230 */
2231 if (!zone_reclaim_mode)
2232 return false;
2233
2234 /* If there is a count for this node already, it must be acceptable */
2235 if (khugepaged_node_load[nid])
2236 return false;
2237
2238 for (i = 0; i < MAX_NUMNODES; i++) {
2239 if (!khugepaged_node_load[i])
2240 continue;
2241 if (node_distance(nid, i) > RECLAIM_DISTANCE)
2242 return true;
2243 }
2244 return false;
2245}
2246
26234f36 2247#ifdef CONFIG_NUMA
9f1b868a
BL
2248static int khugepaged_find_target_node(void)
2249{
2250 static int last_khugepaged_target_node = NUMA_NO_NODE;
2251 int nid, target_node = 0, max_value = 0;
2252
2253 /* find first node with max normal pages hit */
2254 for (nid = 0; nid < MAX_NUMNODES; nid++)
2255 if (khugepaged_node_load[nid] > max_value) {
2256 max_value = khugepaged_node_load[nid];
2257 target_node = nid;
2258 }
2259
2260 /* do some balance if several nodes have the same hit record */
2261 if (target_node <= last_khugepaged_target_node)
2262 for (nid = last_khugepaged_target_node + 1; nid < MAX_NUMNODES;
2263 nid++)
2264 if (max_value == khugepaged_node_load[nid]) {
2265 target_node = nid;
2266 break;
2267 }
2268
2269 last_khugepaged_target_node = target_node;
2270 return target_node;
2271}
2272
26234f36
XG
2273static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
2274{
2275 if (IS_ERR(*hpage)) {
2276 if (!*wait)
2277 return false;
2278
2279 *wait = false;
e3b4126c 2280 *hpage = NULL;
26234f36
XG
2281 khugepaged_alloc_sleep();
2282 } else if (*hpage) {
2283 put_page(*hpage);
2284 *hpage = NULL;
2285 }
2286
2287 return true;
2288}
2289
2290static struct page
2291*khugepaged_alloc_page(struct page **hpage, struct mm_struct *mm,
2292 struct vm_area_struct *vma, unsigned long address,
2293 int node)
2294{
309381fe 2295 VM_BUG_ON_PAGE(*hpage, *hpage);
8b164568 2296
ce83d217 2297 /*
8b164568
VB
2298 * Before allocating the hugepage, release the mmap_sem read lock.
2299 * The allocation can take potentially a long time if it involves
2300 * sync compaction, and we do not need to hold the mmap_sem during
2301 * that. We will recheck the vma after taking it again in write mode.
ce83d217 2302 */
8b164568
VB
2303 up_read(&mm->mmap_sem);
2304
9f1b868a
BL
2305 *hpage = alloc_pages_exact_node(node, alloc_hugepage_gfpmask(
2306 khugepaged_defrag(), __GFP_OTHER_NODE), HPAGE_PMD_ORDER);
26234f36 2307 if (unlikely(!*hpage)) {
81ab4201 2308 count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
ce83d217 2309 *hpage = ERR_PTR(-ENOMEM);
26234f36 2310 return NULL;
ce83d217 2311 }
26234f36 2312
65b3c07b 2313 count_vm_event(THP_COLLAPSE_ALLOC);
26234f36
XG
2314 return *hpage;
2315}
2316#else
9f1b868a
BL
2317static int khugepaged_find_target_node(void)
2318{
2319 return 0;
2320}
2321
10dc4155
BL
2322static inline struct page *alloc_hugepage(int defrag)
2323{
2324 return alloc_pages(alloc_hugepage_gfpmask(defrag, 0),
2325 HPAGE_PMD_ORDER);
2326}
2327
26234f36
XG
2328static struct page *khugepaged_alloc_hugepage(bool *wait)
2329{
2330 struct page *hpage;
2331
2332 do {
2333 hpage = alloc_hugepage(khugepaged_defrag());
2334 if (!hpage) {
2335 count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
2336 if (!*wait)
2337 return NULL;
2338
2339 *wait = false;
2340 khugepaged_alloc_sleep();
2341 } else
2342 count_vm_event(THP_COLLAPSE_ALLOC);
2343 } while (unlikely(!hpage) && likely(khugepaged_enabled()));
2344
2345 return hpage;
2346}
2347
2348static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
2349{
2350 if (!*hpage)
2351 *hpage = khugepaged_alloc_hugepage(wait);
2352
2353 if (unlikely(!*hpage))
2354 return false;
2355
2356 return true;
2357}
2358
2359static struct page
2360*khugepaged_alloc_page(struct page **hpage, struct mm_struct *mm,
2361 struct vm_area_struct *vma, unsigned long address,
2362 int node)
2363{
2364 up_read(&mm->mmap_sem);
2365 VM_BUG_ON(!*hpage);
2366 return *hpage;
2367}
692e0b35
AA
2368#endif
2369
fa475e51
BL
2370static bool hugepage_vma_check(struct vm_area_struct *vma)
2371{
2372 if ((!(vma->vm_flags & VM_HUGEPAGE) && !khugepaged_always()) ||
2373 (vma->vm_flags & VM_NOHUGEPAGE))
2374 return false;
2375
2376 if (!vma->anon_vma || vma->vm_ops)
2377 return false;
2378 if (is_vma_temporary_stack(vma))
2379 return false;
81d1b09c 2380 VM_BUG_ON_VMA(vma->vm_flags & VM_NO_THP, vma);
fa475e51
BL
2381 return true;
2382}
2383
26234f36
XG
2384static void collapse_huge_page(struct mm_struct *mm,
2385 unsigned long address,
2386 struct page **hpage,
2387 struct vm_area_struct *vma,
2388 int node)
2389{
26234f36
XG
2390 pmd_t *pmd, _pmd;
2391 pte_t *pte;
2392 pgtable_t pgtable;
2393 struct page *new_page;
c4088ebd 2394 spinlock_t *pmd_ptl, *pte_ptl;
26234f36
XG
2395 int isolated;
2396 unsigned long hstart, hend;
00501b53 2397 struct mem_cgroup *memcg;
2ec74c3e
SG
2398 unsigned long mmun_start; /* For mmu_notifiers */
2399 unsigned long mmun_end; /* For mmu_notifiers */
26234f36
XG
2400
2401 VM_BUG_ON(address & ~HPAGE_PMD_MASK);
2402
2403 /* release the mmap_sem read lock. */
2404 new_page = khugepaged_alloc_page(hpage, mm, vma, address, node);
2405 if (!new_page)
2406 return;
2407
00501b53
JW
2408 if (unlikely(mem_cgroup_try_charge(new_page, mm,
2409 GFP_TRANSHUGE, &memcg)))
ce83d217 2410 return;
ba76149f
AA
2411
2412 /*
2413 * Prevent all access to pagetables with the exception of
2414 * gup_fast later hanlded by the ptep_clear_flush and the VM
2415 * handled by the anon_vma lock + PG_lock.
2416 */
2417 down_write(&mm->mmap_sem);
2418 if (unlikely(khugepaged_test_exit(mm)))
2419 goto out;
2420
2421 vma = find_vma(mm, address);
a8f531eb
L
2422 if (!vma)
2423 goto out;
ba76149f
AA
2424 hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
2425 hend = vma->vm_end & HPAGE_PMD_MASK;
2426 if (address < hstart || address + HPAGE_PMD_SIZE > hend)
2427 goto out;
fa475e51 2428 if (!hugepage_vma_check(vma))
a7d6e4ec 2429 goto out;
6219049a
BL
2430 pmd = mm_find_pmd(mm, address);
2431 if (!pmd)
ba76149f 2432 goto out;
ba76149f 2433
4fc3f1d6 2434 anon_vma_lock_write(vma->anon_vma);
ba76149f
AA
2435
2436 pte = pte_offset_map(pmd, address);
c4088ebd 2437 pte_ptl = pte_lockptr(mm, pmd);
ba76149f 2438
2ec74c3e
SG
2439 mmun_start = address;
2440 mmun_end = address + HPAGE_PMD_SIZE;
2441 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
c4088ebd 2442 pmd_ptl = pmd_lock(mm, pmd); /* probably unnecessary */
ba76149f
AA
2443 /*
2444 * After this gup_fast can't run anymore. This also removes
2445 * any huge TLB entry from the CPU so we won't allow
2446 * huge and small TLB entries for the same virtual address
2447 * to avoid the risk of CPU bugs in that area.
2448 */
2ec74c3e 2449 _pmd = pmdp_clear_flush(vma, address, pmd);
c4088ebd 2450 spin_unlock(pmd_ptl);
2ec74c3e 2451 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
ba76149f 2452
c4088ebd 2453 spin_lock(pte_ptl);
ba76149f 2454 isolated = __collapse_huge_page_isolate(vma, address, pte);
c4088ebd 2455 spin_unlock(pte_ptl);
ba76149f
AA
2456
2457 if (unlikely(!isolated)) {
453c7192 2458 pte_unmap(pte);
c4088ebd 2459 spin_lock(pmd_ptl);
ba76149f 2460 BUG_ON(!pmd_none(*pmd));
7c342512
AK
2461 /*
2462 * We can only use set_pmd_at when establishing
2463 * hugepmds and never for establishing regular pmds that
2464 * points to regular pagetables. Use pmd_populate for that
2465 */
2466 pmd_populate(mm, pmd, pmd_pgtable(_pmd));
c4088ebd 2467 spin_unlock(pmd_ptl);
08b52706 2468 anon_vma_unlock_write(vma->anon_vma);
ce83d217 2469 goto out;
ba76149f
AA
2470 }
2471
2472 /*
2473 * All pages are isolated and locked so anon_vma rmap
2474 * can't run anymore.
2475 */
08b52706 2476 anon_vma_unlock_write(vma->anon_vma);
ba76149f 2477
c4088ebd 2478 __collapse_huge_page_copy(pte, new_page, vma, address, pte_ptl);
453c7192 2479 pte_unmap(pte);
ba76149f
AA
2480 __SetPageUptodate(new_page);
2481 pgtable = pmd_pgtable(_pmd);
ba76149f 2482
3122359a
KS
2483 _pmd = mk_huge_pmd(new_page, vma->vm_page_prot);
2484 _pmd = maybe_pmd_mkwrite(pmd_mkdirty(_pmd), vma);
ba76149f
AA
2485
2486 /*
2487 * spin_lock() below is not the equivalent of smp_wmb(), so
2488 * this is needed to avoid the copy_huge_page writes to become
2489 * visible after the set_pmd_at() write.
2490 */
2491 smp_wmb();
2492
c4088ebd 2493 spin_lock(pmd_ptl);
ba76149f
AA
2494 BUG_ON(!pmd_none(*pmd));
2495 page_add_new_anon_rmap(new_page, vma, address);
00501b53
JW
2496 mem_cgroup_commit_charge(new_page, memcg, false);
2497 lru_cache_add_active_or_unevictable(new_page, vma);
fce144b4 2498 pgtable_trans_huge_deposit(mm, pmd, pgtable);
ba76149f 2499 set_pmd_at(mm, address, pmd, _pmd);
b113da65 2500 update_mmu_cache_pmd(vma, address, pmd);
c4088ebd 2501 spin_unlock(pmd_ptl);
ba76149f
AA
2502
2503 *hpage = NULL;
420256ef 2504
ba76149f 2505 khugepaged_pages_collapsed++;
ce83d217 2506out_up_write:
ba76149f 2507 up_write(&mm->mmap_sem);
0bbbc0b3
AA
2508 return;
2509
ce83d217 2510out:
00501b53 2511 mem_cgroup_cancel_charge(new_page, memcg);
ce83d217 2512 goto out_up_write;
ba76149f
AA
2513}
2514
2515static int khugepaged_scan_pmd(struct mm_struct *mm,
2516 struct vm_area_struct *vma,
2517 unsigned long address,
2518 struct page **hpage)
2519{
ba76149f
AA
2520 pmd_t *pmd;
2521 pte_t *pte, *_pte;
2522 int ret = 0, referenced = 0, none = 0;
2523 struct page *page;
2524 unsigned long _address;
2525 spinlock_t *ptl;
00ef2d2f 2526 int node = NUMA_NO_NODE;
ba76149f
AA
2527
2528 VM_BUG_ON(address & ~HPAGE_PMD_MASK);
2529
6219049a
BL
2530 pmd = mm_find_pmd(mm, address);
2531 if (!pmd)
ba76149f 2532 goto out;
ba76149f 2533
9f1b868a 2534 memset(khugepaged_node_load, 0, sizeof(khugepaged_node_load));
ba76149f
AA
2535 pte = pte_offset_map_lock(mm, pmd, address, &ptl);
2536 for (_address = address, _pte = pte; _pte < pte+HPAGE_PMD_NR;
2537 _pte++, _address += PAGE_SIZE) {
2538 pte_t pteval = *_pte;
2539 if (pte_none(pteval)) {
2540 if (++none <= khugepaged_max_ptes_none)
2541 continue;
2542 else
2543 goto out_unmap;
2544 }
2545 if (!pte_present(pteval) || !pte_write(pteval))
2546 goto out_unmap;
2547 page = vm_normal_page(vma, _address, pteval);
2548 if (unlikely(!page))
2549 goto out_unmap;
5c4b4be3 2550 /*
9f1b868a
BL
2551 * Record which node the original page is from and save this
2552 * information to khugepaged_node_load[].
2553 * Khupaged will allocate hugepage from the node has the max
2554 * hit record.
5c4b4be3 2555 */
9f1b868a 2556 node = page_to_nid(page);
14a4e214
DR
2557 if (khugepaged_scan_abort(node))
2558 goto out_unmap;
9f1b868a 2559 khugepaged_node_load[node]++;
309381fe 2560 VM_BUG_ON_PAGE(PageCompound(page), page);
ba76149f
AA
2561 if (!PageLRU(page) || PageLocked(page) || !PageAnon(page))
2562 goto out_unmap;
2563 /* cannot use mapcount: can't collapse if there's a gup pin */
2564 if (page_count(page) != 1)
2565 goto out_unmap;
8ee53820
AA
2566 if (pte_young(pteval) || PageReferenced(page) ||
2567 mmu_notifier_test_young(vma->vm_mm, address))
ba76149f
AA
2568 referenced = 1;
2569 }
2570 if (referenced)
2571 ret = 1;
2572out_unmap:
2573 pte_unmap_unlock(pte, ptl);
9f1b868a
BL
2574 if (ret) {
2575 node = khugepaged_find_target_node();
ce83d217 2576 /* collapse_huge_page will return with the mmap_sem released */
5c4b4be3 2577 collapse_huge_page(mm, address, hpage, vma, node);
9f1b868a 2578 }
ba76149f
AA
2579out:
2580 return ret;
2581}
2582
2583static void collect_mm_slot(struct mm_slot *mm_slot)
2584{
2585 struct mm_struct *mm = mm_slot->mm;
2586
b9980cdc 2587 VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
ba76149f
AA
2588
2589 if (khugepaged_test_exit(mm)) {
2590 /* free mm_slot */
43b5fbbd 2591 hash_del(&mm_slot->hash);
ba76149f
AA
2592 list_del(&mm_slot->mm_node);
2593
2594 /*
2595 * Not strictly needed because the mm exited already.
2596 *
2597 * clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
2598 */
2599
2600 /* khugepaged_mm_lock actually not necessary for the below */
2601 free_mm_slot(mm_slot);
2602 mmdrop(mm);
2603 }
2604}
2605
2606static unsigned int khugepaged_scan_mm_slot(unsigned int pages,
2607 struct page **hpage)
2f1da642
HS
2608 __releases(&khugepaged_mm_lock)
2609 __acquires(&khugepaged_mm_lock)
ba76149f
AA
2610{
2611 struct mm_slot *mm_slot;
2612 struct mm_struct *mm;
2613 struct vm_area_struct *vma;
2614 int progress = 0;
2615
2616 VM_BUG_ON(!pages);
b9980cdc 2617 VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
ba76149f
AA
2618
2619 if (khugepaged_scan.mm_slot)
2620 mm_slot = khugepaged_scan.mm_slot;
2621 else {
2622 mm_slot = list_entry(khugepaged_scan.mm_head.next,
2623 struct mm_slot, mm_node);
2624 khugepaged_scan.address = 0;
2625 khugepaged_scan.mm_slot = mm_slot;
2626 }
2627 spin_unlock(&khugepaged_mm_lock);
2628
2629 mm = mm_slot->mm;
2630 down_read(&mm->mmap_sem);
2631 if (unlikely(khugepaged_test_exit(mm)))
2632 vma = NULL;
2633 else
2634 vma = find_vma(mm, khugepaged_scan.address);
2635
2636 progress++;
2637 for (; vma; vma = vma->vm_next) {
2638 unsigned long hstart, hend;
2639
2640 cond_resched();
2641 if (unlikely(khugepaged_test_exit(mm))) {
2642 progress++;
2643 break;
2644 }
fa475e51
BL
2645 if (!hugepage_vma_check(vma)) {
2646skip:
ba76149f
AA
2647 progress++;
2648 continue;
2649 }
ba76149f
AA
2650 hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
2651 hend = vma->vm_end & HPAGE_PMD_MASK;
a7d6e4ec
AA
2652 if (hstart >= hend)
2653 goto skip;
2654 if (khugepaged_scan.address > hend)
2655 goto skip;
ba76149f
AA
2656 if (khugepaged_scan.address < hstart)
2657 khugepaged_scan.address = hstart;
a7d6e4ec 2658 VM_BUG_ON(khugepaged_scan.address & ~HPAGE_PMD_MASK);
ba76149f
AA
2659
2660 while (khugepaged_scan.address < hend) {
2661 int ret;
2662 cond_resched();
2663 if (unlikely(khugepaged_test_exit(mm)))
2664 goto breakouterloop;
2665
2666 VM_BUG_ON(khugepaged_scan.address < hstart ||
2667 khugepaged_scan.address + HPAGE_PMD_SIZE >
2668 hend);
2669 ret = khugepaged_scan_pmd(mm, vma,
2670 khugepaged_scan.address,
2671 hpage);
2672 /* move to next address */
2673 khugepaged_scan.address += HPAGE_PMD_SIZE;
2674 progress += HPAGE_PMD_NR;
2675 if (ret)
2676 /* we released mmap_sem so break loop */
2677 goto breakouterloop_mmap_sem;
2678 if (progress >= pages)
2679 goto breakouterloop;
2680 }
2681 }
2682breakouterloop:
2683 up_read(&mm->mmap_sem); /* exit_mmap will destroy ptes after this */
2684breakouterloop_mmap_sem:
2685
2686 spin_lock(&khugepaged_mm_lock);
a7d6e4ec 2687 VM_BUG_ON(khugepaged_scan.mm_slot != mm_slot);
ba76149f
AA
2688 /*
2689 * Release the current mm_slot if this mm is about to die, or
2690 * if we scanned all vmas of this mm.
2691 */
2692 if (khugepaged_test_exit(mm) || !vma) {
2693 /*
2694 * Make sure that if mm_users is reaching zero while
2695 * khugepaged runs here, khugepaged_exit will find
2696 * mm_slot not pointing to the exiting mm.
2697 */
2698 if (mm_slot->mm_node.next != &khugepaged_scan.mm_head) {
2699 khugepaged_scan.mm_slot = list_entry(
2700 mm_slot->mm_node.next,
2701 struct mm_slot, mm_node);
2702 khugepaged_scan.address = 0;
2703 } else {
2704 khugepaged_scan.mm_slot = NULL;
2705 khugepaged_full_scans++;
2706 }
2707
2708 collect_mm_slot(mm_slot);
2709 }
2710
2711 return progress;
2712}
2713
2714static int khugepaged_has_work(void)
2715{
2716 return !list_empty(&khugepaged_scan.mm_head) &&
2717 khugepaged_enabled();
2718}
2719
2720static int khugepaged_wait_event(void)
2721{
2722 return !list_empty(&khugepaged_scan.mm_head) ||
2017c0bf 2723 kthread_should_stop();
ba76149f
AA
2724}
2725
d516904b 2726static void khugepaged_do_scan(void)
ba76149f 2727{
d516904b 2728 struct page *hpage = NULL;
ba76149f
AA
2729 unsigned int progress = 0, pass_through_head = 0;
2730 unsigned int pages = khugepaged_pages_to_scan;
d516904b 2731 bool wait = true;
ba76149f
AA
2732
2733 barrier(); /* write khugepaged_pages_to_scan to local stack */
2734
2735 while (progress < pages) {
26234f36 2736 if (!khugepaged_prealloc_page(&hpage, &wait))
d516904b 2737 break;
26234f36 2738
420256ef 2739 cond_resched();
ba76149f 2740
878aee7d
AA
2741 if (unlikely(kthread_should_stop() || freezing(current)))
2742 break;
2743
ba76149f
AA
2744 spin_lock(&khugepaged_mm_lock);
2745 if (!khugepaged_scan.mm_slot)
2746 pass_through_head++;
2747 if (khugepaged_has_work() &&
2748 pass_through_head < 2)
2749 progress += khugepaged_scan_mm_slot(pages - progress,
d516904b 2750 &hpage);
ba76149f
AA
2751 else
2752 progress = pages;
2753 spin_unlock(&khugepaged_mm_lock);
2754 }
ba76149f 2755
d516904b
XG
2756 if (!IS_ERR_OR_NULL(hpage))
2757 put_page(hpage);
0bbbc0b3
AA
2758}
2759
2017c0bf
XG
2760static void khugepaged_wait_work(void)
2761{
2762 try_to_freeze();
2763
2764 if (khugepaged_has_work()) {
2765 if (!khugepaged_scan_sleep_millisecs)
2766 return;
2767
2768 wait_event_freezable_timeout(khugepaged_wait,
2769 kthread_should_stop(),
2770 msecs_to_jiffies(khugepaged_scan_sleep_millisecs));
2771 return;
2772 }
2773
2774 if (khugepaged_enabled())
2775 wait_event_freezable(khugepaged_wait, khugepaged_wait_event());
2776}
2777
ba76149f
AA
2778static int khugepaged(void *none)
2779{
2780 struct mm_slot *mm_slot;
2781
878aee7d 2782 set_freezable();
8698a745 2783 set_user_nice(current, MAX_NICE);
ba76149f 2784
b7231789
XG
2785 while (!kthread_should_stop()) {
2786 khugepaged_do_scan();
2787 khugepaged_wait_work();
2788 }
ba76149f
AA
2789
2790 spin_lock(&khugepaged_mm_lock);
2791 mm_slot = khugepaged_scan.mm_slot;
2792 khugepaged_scan.mm_slot = NULL;
2793 if (mm_slot)
2794 collect_mm_slot(mm_slot);
2795 spin_unlock(&khugepaged_mm_lock);
ba76149f
AA
2796 return 0;
2797}
2798
c5a647d0
KS
2799static void __split_huge_zero_page_pmd(struct vm_area_struct *vma,
2800 unsigned long haddr, pmd_t *pmd)
2801{
2802 struct mm_struct *mm = vma->vm_mm;
2803 pgtable_t pgtable;
2804 pmd_t _pmd;
2805 int i;
2806
34ee645e 2807 pmdp_clear_flush_notify(vma, haddr, pmd);
c5a647d0
KS
2808 /* leave pmd empty until pte is filled */
2809
6b0b50b0 2810 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
c5a647d0
KS
2811 pmd_populate(mm, &_pmd, pgtable);
2812
2813 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
2814 pte_t *pte, entry;
2815 entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
2816 entry = pte_mkspecial(entry);
2817 pte = pte_offset_map(&_pmd, haddr);
2818 VM_BUG_ON(!pte_none(*pte));
2819 set_pte_at(mm, haddr, pte, entry);
2820 pte_unmap(pte);
2821 }
2822 smp_wmb(); /* make pte visible before pmd */
2823 pmd_populate(mm, pmd, pgtable);
97ae1749 2824 put_huge_zero_page();
c5a647d0
KS
2825}
2826
e180377f
KS
2827void __split_huge_page_pmd(struct vm_area_struct *vma, unsigned long address,
2828 pmd_t *pmd)
71e3aac0 2829{
c4088ebd 2830 spinlock_t *ptl;
71e3aac0 2831 struct page *page;
e180377f 2832 struct mm_struct *mm = vma->vm_mm;
c5a647d0
KS
2833 unsigned long haddr = address & HPAGE_PMD_MASK;
2834 unsigned long mmun_start; /* For mmu_notifiers */
2835 unsigned long mmun_end; /* For mmu_notifiers */
e180377f
KS
2836
2837 BUG_ON(vma->vm_start > haddr || vma->vm_end < haddr + HPAGE_PMD_SIZE);
71e3aac0 2838
c5a647d0
KS
2839 mmun_start = haddr;
2840 mmun_end = haddr + HPAGE_PMD_SIZE;
750e8165 2841again:
c5a647d0 2842 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
c4088ebd 2843 ptl = pmd_lock(mm, pmd);
71e3aac0 2844 if (unlikely(!pmd_trans_huge(*pmd))) {
c4088ebd 2845 spin_unlock(ptl);
c5a647d0
KS
2846 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2847 return;
2848 }
2849 if (is_huge_zero_pmd(*pmd)) {
2850 __split_huge_zero_page_pmd(vma, haddr, pmd);
c4088ebd 2851 spin_unlock(ptl);
c5a647d0 2852 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
71e3aac0
AA
2853 return;
2854 }
2855 page = pmd_page(*pmd);
309381fe 2856 VM_BUG_ON_PAGE(!page_count(page), page);
71e3aac0 2857 get_page(page);
c4088ebd 2858 spin_unlock(ptl);
c5a647d0 2859 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
71e3aac0
AA
2860
2861 split_huge_page(page);
2862
2863 put_page(page);
750e8165
HD
2864
2865 /*
2866 * We don't always have down_write of mmap_sem here: a racing
2867 * do_huge_pmd_wp_page() might have copied-on-write to another
2868 * huge page before our split_huge_page() got the anon_vma lock.
2869 */
2870 if (unlikely(pmd_trans_huge(*pmd)))
2871 goto again;
71e3aac0 2872}
94fcc585 2873
e180377f
KS
2874void split_huge_page_pmd_mm(struct mm_struct *mm, unsigned long address,
2875 pmd_t *pmd)
2876{
2877 struct vm_area_struct *vma;
2878
2879 vma = find_vma(mm, address);
2880 BUG_ON(vma == NULL);
2881 split_huge_page_pmd(vma, address, pmd);
2882}
2883
94fcc585
AA
2884static void split_huge_page_address(struct mm_struct *mm,
2885 unsigned long address)
2886{
f72e7dcd
HD
2887 pgd_t *pgd;
2888 pud_t *pud;
94fcc585
AA
2889 pmd_t *pmd;
2890
2891 VM_BUG_ON(!(address & ~HPAGE_PMD_MASK));
2892
f72e7dcd
HD
2893 pgd = pgd_offset(mm, address);
2894 if (!pgd_present(*pgd))
2895 return;
2896
2897 pud = pud_offset(pgd, address);
2898 if (!pud_present(*pud))
2899 return;
2900
2901 pmd = pmd_offset(pud, address);
2902 if (!pmd_present(*pmd))
94fcc585
AA
2903 return;
2904 /*
2905 * Caller holds the mmap_sem write mode, so a huge pmd cannot
2906 * materialize from under us.
2907 */
e180377f 2908 split_huge_page_pmd_mm(mm, address, pmd);
94fcc585
AA
2909}
2910
2911void __vma_adjust_trans_huge(struct vm_area_struct *vma,
2912 unsigned long start,
2913 unsigned long end,
2914 long adjust_next)
2915{
2916 /*
2917 * If the new start address isn't hpage aligned and it could
2918 * previously contain an hugepage: check if we need to split
2919 * an huge pmd.
2920 */
2921 if (start & ~HPAGE_PMD_MASK &&
2922 (start & HPAGE_PMD_MASK) >= vma->vm_start &&
2923 (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2924 split_huge_page_address(vma->vm_mm, start);
2925
2926 /*
2927 * If the new end address isn't hpage aligned and it could
2928 * previously contain an hugepage: check if we need to split
2929 * an huge pmd.
2930 */
2931 if (end & ~HPAGE_PMD_MASK &&
2932 (end & HPAGE_PMD_MASK) >= vma->vm_start &&
2933 (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2934 split_huge_page_address(vma->vm_mm, end);
2935
2936 /*
2937 * If we're also updating the vma->vm_next->vm_start, if the new
2938 * vm_next->vm_start isn't page aligned and it could previously
2939 * contain an hugepage: check if we need to split an huge pmd.
2940 */
2941 if (adjust_next > 0) {
2942 struct vm_area_struct *next = vma->vm_next;
2943 unsigned long nstart = next->vm_start;
2944 nstart += adjust_next << PAGE_SHIFT;
2945 if (nstart & ~HPAGE_PMD_MASK &&
2946 (nstart & HPAGE_PMD_MASK) >= next->vm_start &&
2947 (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end)
2948 split_huge_page_address(next->vm_mm, nstart);
2949 }
2950}