thp, x86: introduce HAVE_ARCH_TRANSPARENT_HUGEPAGE
[linux-2.6-block.git] / mm / huge_memory.c
CommitLineData
71e3aac0
AA
1/*
2 * Copyright (C) 2009 Red Hat, Inc.
3 *
4 * This work is licensed under the terms of the GNU GPL, version 2. See
5 * the COPYING file in the top-level directory.
6 */
7
8#include <linux/mm.h>
9#include <linux/sched.h>
10#include <linux/highmem.h>
11#include <linux/hugetlb.h>
12#include <linux/mmu_notifier.h>
13#include <linux/rmap.h>
14#include <linux/swap.h>
ba76149f
AA
15#include <linux/mm_inline.h>
16#include <linux/kthread.h>
17#include <linux/khugepaged.h>
878aee7d 18#include <linux/freezer.h>
a664b2d8 19#include <linux/mman.h>
71e3aac0
AA
20#include <asm/tlb.h>
21#include <asm/pgalloc.h>
22#include "internal.h"
23
ba76149f
AA
24/*
25 * By default transparent hugepage support is enabled for all mappings
26 * and khugepaged scans all mappings. Defrag is only invoked by
27 * khugepaged hugepage allocations and by page faults inside
28 * MADV_HUGEPAGE regions to avoid the risk of slowing down short lived
29 * allocations.
30 */
71e3aac0 31unsigned long transparent_hugepage_flags __read_mostly =
13ece886 32#ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
ba76149f 33 (1<<TRANSPARENT_HUGEPAGE_FLAG)|
13ece886
AA
34#endif
35#ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
36 (1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
37#endif
d39d33c3 38 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_FLAG)|
ba76149f
AA
39 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
40
41/* default scan 8*512 pte (or vmas) every 30 second */
42static unsigned int khugepaged_pages_to_scan __read_mostly = HPAGE_PMD_NR*8;
43static unsigned int khugepaged_pages_collapsed;
44static unsigned int khugepaged_full_scans;
45static unsigned int khugepaged_scan_sleep_millisecs __read_mostly = 10000;
46/* during fragmentation poll the hugepage allocator once every minute */
47static unsigned int khugepaged_alloc_sleep_millisecs __read_mostly = 60000;
48static struct task_struct *khugepaged_thread __read_mostly;
49static DEFINE_MUTEX(khugepaged_mutex);
50static DEFINE_SPINLOCK(khugepaged_mm_lock);
51static DECLARE_WAIT_QUEUE_HEAD(khugepaged_wait);
52/*
53 * default collapse hugepages if there is at least one pte mapped like
54 * it would have happened if the vma was large enough during page
55 * fault.
56 */
57static unsigned int khugepaged_max_ptes_none __read_mostly = HPAGE_PMD_NR-1;
58
59static int khugepaged(void *none);
60static int mm_slots_hash_init(void);
61static int khugepaged_slab_init(void);
62static void khugepaged_slab_free(void);
63
64#define MM_SLOTS_HASH_HEADS 1024
65static struct hlist_head *mm_slots_hash __read_mostly;
66static struct kmem_cache *mm_slot_cache __read_mostly;
67
68/**
69 * struct mm_slot - hash lookup from mm to mm_slot
70 * @hash: hash collision list
71 * @mm_node: khugepaged scan list headed in khugepaged_scan.mm_head
72 * @mm: the mm that this information is valid for
73 */
74struct mm_slot {
75 struct hlist_node hash;
76 struct list_head mm_node;
77 struct mm_struct *mm;
78};
79
80/**
81 * struct khugepaged_scan - cursor for scanning
82 * @mm_head: the head of the mm list to scan
83 * @mm_slot: the current mm_slot we are scanning
84 * @address: the next address inside that to be scanned
85 *
86 * There is only the one khugepaged_scan instance of this cursor structure.
87 */
88struct khugepaged_scan {
89 struct list_head mm_head;
90 struct mm_slot *mm_slot;
91 unsigned long address;
2f1da642
HS
92};
93static struct khugepaged_scan khugepaged_scan = {
ba76149f
AA
94 .mm_head = LIST_HEAD_INIT(khugepaged_scan.mm_head),
95};
96
f000565a
AA
97
98static int set_recommended_min_free_kbytes(void)
99{
100 struct zone *zone;
101 int nr_zones = 0;
102 unsigned long recommended_min;
103 extern int min_free_kbytes;
104
17c230af 105 if (!khugepaged_enabled())
f000565a
AA
106 return 0;
107
108 for_each_populated_zone(zone)
109 nr_zones++;
110
111 /* Make sure at least 2 hugepages are free for MIGRATE_RESERVE */
112 recommended_min = pageblock_nr_pages * nr_zones * 2;
113
114 /*
115 * Make sure that on average at least two pageblocks are almost free
116 * of another type, one for a migratetype to fall back to and a
117 * second to avoid subsequent fallbacks of other types There are 3
118 * MIGRATE_TYPES we care about.
119 */
120 recommended_min += pageblock_nr_pages * nr_zones *
121 MIGRATE_PCPTYPES * MIGRATE_PCPTYPES;
122
123 /* don't ever allow to reserve more than 5% of the lowmem */
124 recommended_min = min(recommended_min,
125 (unsigned long) nr_free_buffer_pages() / 20);
126 recommended_min <<= (PAGE_SHIFT-10);
127
128 if (recommended_min > min_free_kbytes)
129 min_free_kbytes = recommended_min;
130 setup_per_zone_wmarks();
131 return 0;
132}
133late_initcall(set_recommended_min_free_kbytes);
134
ba76149f
AA
135static int start_khugepaged(void)
136{
137 int err = 0;
138 if (khugepaged_enabled()) {
ba76149f
AA
139 if (!khugepaged_thread)
140 khugepaged_thread = kthread_run(khugepaged, NULL,
141 "khugepaged");
142 if (unlikely(IS_ERR(khugepaged_thread))) {
143 printk(KERN_ERR
144 "khugepaged: kthread_run(khugepaged) failed\n");
145 err = PTR_ERR(khugepaged_thread);
146 khugepaged_thread = NULL;
147 }
911891af
XG
148
149 if (!list_empty(&khugepaged_scan.mm_head))
ba76149f 150 wake_up_interruptible(&khugepaged_wait);
f000565a
AA
151
152 set_recommended_min_free_kbytes();
911891af 153 } else if (khugepaged_thread) {
911891af
XG
154 kthread_stop(khugepaged_thread);
155 khugepaged_thread = NULL;
156 }
637e3a27 157
ba76149f
AA
158 return err;
159}
71e3aac0
AA
160
161#ifdef CONFIG_SYSFS
ba76149f 162
71e3aac0
AA
163static ssize_t double_flag_show(struct kobject *kobj,
164 struct kobj_attribute *attr, char *buf,
165 enum transparent_hugepage_flag enabled,
166 enum transparent_hugepage_flag req_madv)
167{
168 if (test_bit(enabled, &transparent_hugepage_flags)) {
169 VM_BUG_ON(test_bit(req_madv, &transparent_hugepage_flags));
170 return sprintf(buf, "[always] madvise never\n");
171 } else if (test_bit(req_madv, &transparent_hugepage_flags))
172 return sprintf(buf, "always [madvise] never\n");
173 else
174 return sprintf(buf, "always madvise [never]\n");
175}
176static ssize_t double_flag_store(struct kobject *kobj,
177 struct kobj_attribute *attr,
178 const char *buf, size_t count,
179 enum transparent_hugepage_flag enabled,
180 enum transparent_hugepage_flag req_madv)
181{
182 if (!memcmp("always", buf,
183 min(sizeof("always")-1, count))) {
184 set_bit(enabled, &transparent_hugepage_flags);
185 clear_bit(req_madv, &transparent_hugepage_flags);
186 } else if (!memcmp("madvise", buf,
187 min(sizeof("madvise")-1, count))) {
188 clear_bit(enabled, &transparent_hugepage_flags);
189 set_bit(req_madv, &transparent_hugepage_flags);
190 } else if (!memcmp("never", buf,
191 min(sizeof("never")-1, count))) {
192 clear_bit(enabled, &transparent_hugepage_flags);
193 clear_bit(req_madv, &transparent_hugepage_flags);
194 } else
195 return -EINVAL;
196
197 return count;
198}
199
200static ssize_t enabled_show(struct kobject *kobj,
201 struct kobj_attribute *attr, char *buf)
202{
203 return double_flag_show(kobj, attr, buf,
204 TRANSPARENT_HUGEPAGE_FLAG,
205 TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
206}
207static ssize_t enabled_store(struct kobject *kobj,
208 struct kobj_attribute *attr,
209 const char *buf, size_t count)
210{
ba76149f
AA
211 ssize_t ret;
212
213 ret = double_flag_store(kobj, attr, buf, count,
214 TRANSPARENT_HUGEPAGE_FLAG,
215 TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
216
217 if (ret > 0) {
911891af
XG
218 int err;
219
220 mutex_lock(&khugepaged_mutex);
221 err = start_khugepaged();
222 mutex_unlock(&khugepaged_mutex);
223
ba76149f
AA
224 if (err)
225 ret = err;
226 }
227
228 return ret;
71e3aac0
AA
229}
230static struct kobj_attribute enabled_attr =
231 __ATTR(enabled, 0644, enabled_show, enabled_store);
232
233static ssize_t single_flag_show(struct kobject *kobj,
234 struct kobj_attribute *attr, char *buf,
235 enum transparent_hugepage_flag flag)
236{
e27e6151
BH
237 return sprintf(buf, "%d\n",
238 !!test_bit(flag, &transparent_hugepage_flags));
71e3aac0 239}
e27e6151 240
71e3aac0
AA
241static ssize_t single_flag_store(struct kobject *kobj,
242 struct kobj_attribute *attr,
243 const char *buf, size_t count,
244 enum transparent_hugepage_flag flag)
245{
e27e6151
BH
246 unsigned long value;
247 int ret;
248
249 ret = kstrtoul(buf, 10, &value);
250 if (ret < 0)
251 return ret;
252 if (value > 1)
253 return -EINVAL;
254
255 if (value)
71e3aac0 256 set_bit(flag, &transparent_hugepage_flags);
e27e6151 257 else
71e3aac0 258 clear_bit(flag, &transparent_hugepage_flags);
71e3aac0
AA
259
260 return count;
261}
262
263/*
264 * Currently defrag only disables __GFP_NOWAIT for allocation. A blind
265 * __GFP_REPEAT is too aggressive, it's never worth swapping tons of
266 * memory just to allocate one more hugepage.
267 */
268static ssize_t defrag_show(struct kobject *kobj,
269 struct kobj_attribute *attr, char *buf)
270{
271 return double_flag_show(kobj, attr, buf,
272 TRANSPARENT_HUGEPAGE_DEFRAG_FLAG,
273 TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
274}
275static ssize_t defrag_store(struct kobject *kobj,
276 struct kobj_attribute *attr,
277 const char *buf, size_t count)
278{
279 return double_flag_store(kobj, attr, buf, count,
280 TRANSPARENT_HUGEPAGE_DEFRAG_FLAG,
281 TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
282}
283static struct kobj_attribute defrag_attr =
284 __ATTR(defrag, 0644, defrag_show, defrag_store);
285
286#ifdef CONFIG_DEBUG_VM
287static ssize_t debug_cow_show(struct kobject *kobj,
288 struct kobj_attribute *attr, char *buf)
289{
290 return single_flag_show(kobj, attr, buf,
291 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
292}
293static ssize_t debug_cow_store(struct kobject *kobj,
294 struct kobj_attribute *attr,
295 const char *buf, size_t count)
296{
297 return single_flag_store(kobj, attr, buf, count,
298 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
299}
300static struct kobj_attribute debug_cow_attr =
301 __ATTR(debug_cow, 0644, debug_cow_show, debug_cow_store);
302#endif /* CONFIG_DEBUG_VM */
303
304static struct attribute *hugepage_attr[] = {
305 &enabled_attr.attr,
306 &defrag_attr.attr,
307#ifdef CONFIG_DEBUG_VM
308 &debug_cow_attr.attr,
309#endif
310 NULL,
311};
312
313static struct attribute_group hugepage_attr_group = {
314 .attrs = hugepage_attr,
ba76149f
AA
315};
316
317static ssize_t scan_sleep_millisecs_show(struct kobject *kobj,
318 struct kobj_attribute *attr,
319 char *buf)
320{
321 return sprintf(buf, "%u\n", khugepaged_scan_sleep_millisecs);
322}
323
324static ssize_t scan_sleep_millisecs_store(struct kobject *kobj,
325 struct kobj_attribute *attr,
326 const char *buf, size_t count)
327{
328 unsigned long msecs;
329 int err;
330
331 err = strict_strtoul(buf, 10, &msecs);
332 if (err || msecs > UINT_MAX)
333 return -EINVAL;
334
335 khugepaged_scan_sleep_millisecs = msecs;
336 wake_up_interruptible(&khugepaged_wait);
337
338 return count;
339}
340static struct kobj_attribute scan_sleep_millisecs_attr =
341 __ATTR(scan_sleep_millisecs, 0644, scan_sleep_millisecs_show,
342 scan_sleep_millisecs_store);
343
344static ssize_t alloc_sleep_millisecs_show(struct kobject *kobj,
345 struct kobj_attribute *attr,
346 char *buf)
347{
348 return sprintf(buf, "%u\n", khugepaged_alloc_sleep_millisecs);
349}
350
351static ssize_t alloc_sleep_millisecs_store(struct kobject *kobj,
352 struct kobj_attribute *attr,
353 const char *buf, size_t count)
354{
355 unsigned long msecs;
356 int err;
357
358 err = strict_strtoul(buf, 10, &msecs);
359 if (err || msecs > UINT_MAX)
360 return -EINVAL;
361
362 khugepaged_alloc_sleep_millisecs = msecs;
363 wake_up_interruptible(&khugepaged_wait);
364
365 return count;
366}
367static struct kobj_attribute alloc_sleep_millisecs_attr =
368 __ATTR(alloc_sleep_millisecs, 0644, alloc_sleep_millisecs_show,
369 alloc_sleep_millisecs_store);
370
371static ssize_t pages_to_scan_show(struct kobject *kobj,
372 struct kobj_attribute *attr,
373 char *buf)
374{
375 return sprintf(buf, "%u\n", khugepaged_pages_to_scan);
376}
377static ssize_t pages_to_scan_store(struct kobject *kobj,
378 struct kobj_attribute *attr,
379 const char *buf, size_t count)
380{
381 int err;
382 unsigned long pages;
383
384 err = strict_strtoul(buf, 10, &pages);
385 if (err || !pages || pages > UINT_MAX)
386 return -EINVAL;
387
388 khugepaged_pages_to_scan = pages;
389
390 return count;
391}
392static struct kobj_attribute pages_to_scan_attr =
393 __ATTR(pages_to_scan, 0644, pages_to_scan_show,
394 pages_to_scan_store);
395
396static ssize_t pages_collapsed_show(struct kobject *kobj,
397 struct kobj_attribute *attr,
398 char *buf)
399{
400 return sprintf(buf, "%u\n", khugepaged_pages_collapsed);
401}
402static struct kobj_attribute pages_collapsed_attr =
403 __ATTR_RO(pages_collapsed);
404
405static ssize_t full_scans_show(struct kobject *kobj,
406 struct kobj_attribute *attr,
407 char *buf)
408{
409 return sprintf(buf, "%u\n", khugepaged_full_scans);
410}
411static struct kobj_attribute full_scans_attr =
412 __ATTR_RO(full_scans);
413
414static ssize_t khugepaged_defrag_show(struct kobject *kobj,
415 struct kobj_attribute *attr, char *buf)
416{
417 return single_flag_show(kobj, attr, buf,
418 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
419}
420static ssize_t khugepaged_defrag_store(struct kobject *kobj,
421 struct kobj_attribute *attr,
422 const char *buf, size_t count)
423{
424 return single_flag_store(kobj, attr, buf, count,
425 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
426}
427static struct kobj_attribute khugepaged_defrag_attr =
428 __ATTR(defrag, 0644, khugepaged_defrag_show,
429 khugepaged_defrag_store);
430
431/*
432 * max_ptes_none controls if khugepaged should collapse hugepages over
433 * any unmapped ptes in turn potentially increasing the memory
434 * footprint of the vmas. When max_ptes_none is 0 khugepaged will not
435 * reduce the available free memory in the system as it
436 * runs. Increasing max_ptes_none will instead potentially reduce the
437 * free memory in the system during the khugepaged scan.
438 */
439static ssize_t khugepaged_max_ptes_none_show(struct kobject *kobj,
440 struct kobj_attribute *attr,
441 char *buf)
442{
443 return sprintf(buf, "%u\n", khugepaged_max_ptes_none);
444}
445static ssize_t khugepaged_max_ptes_none_store(struct kobject *kobj,
446 struct kobj_attribute *attr,
447 const char *buf, size_t count)
448{
449 int err;
450 unsigned long max_ptes_none;
451
452 err = strict_strtoul(buf, 10, &max_ptes_none);
453 if (err || max_ptes_none > HPAGE_PMD_NR-1)
454 return -EINVAL;
455
456 khugepaged_max_ptes_none = max_ptes_none;
457
458 return count;
459}
460static struct kobj_attribute khugepaged_max_ptes_none_attr =
461 __ATTR(max_ptes_none, 0644, khugepaged_max_ptes_none_show,
462 khugepaged_max_ptes_none_store);
463
464static struct attribute *khugepaged_attr[] = {
465 &khugepaged_defrag_attr.attr,
466 &khugepaged_max_ptes_none_attr.attr,
467 &pages_to_scan_attr.attr,
468 &pages_collapsed_attr.attr,
469 &full_scans_attr.attr,
470 &scan_sleep_millisecs_attr.attr,
471 &alloc_sleep_millisecs_attr.attr,
472 NULL,
473};
474
475static struct attribute_group khugepaged_attr_group = {
476 .attrs = khugepaged_attr,
477 .name = "khugepaged",
71e3aac0 478};
71e3aac0 479
569e5590 480static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
71e3aac0 481{
71e3aac0
AA
482 int err;
483
569e5590
SL
484 *hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
485 if (unlikely(!*hugepage_kobj)) {
ba76149f 486 printk(KERN_ERR "hugepage: failed kobject create\n");
569e5590 487 return -ENOMEM;
ba76149f
AA
488 }
489
569e5590 490 err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
ba76149f
AA
491 if (err) {
492 printk(KERN_ERR "hugepage: failed register hugeage group\n");
569e5590 493 goto delete_obj;
ba76149f
AA
494 }
495
569e5590 496 err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
ba76149f
AA
497 if (err) {
498 printk(KERN_ERR "hugepage: failed register hugeage group\n");
569e5590 499 goto remove_hp_group;
ba76149f 500 }
569e5590
SL
501
502 return 0;
503
504remove_hp_group:
505 sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
506delete_obj:
507 kobject_put(*hugepage_kobj);
508 return err;
509}
510
511static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
512{
513 sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
514 sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
515 kobject_put(hugepage_kobj);
516}
517#else
518static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
519{
520 return 0;
521}
522
523static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
524{
525}
526#endif /* CONFIG_SYSFS */
527
528static int __init hugepage_init(void)
529{
530 int err;
531 struct kobject *hugepage_kobj;
532
533 if (!has_transparent_hugepage()) {
534 transparent_hugepage_flags = 0;
535 return -EINVAL;
536 }
537
538 err = hugepage_init_sysfs(&hugepage_kobj);
539 if (err)
540 return err;
ba76149f
AA
541
542 err = khugepaged_slab_init();
543 if (err)
544 goto out;
545
546 err = mm_slots_hash_init();
547 if (err) {
548 khugepaged_slab_free();
549 goto out;
550 }
551
97562cd2
RR
552 /*
553 * By default disable transparent hugepages on smaller systems,
554 * where the extra memory used could hurt more than TLB overhead
555 * is likely to save. The admin can still enable it through /sys.
556 */
557 if (totalram_pages < (512 << (20 - PAGE_SHIFT)))
558 transparent_hugepage_flags = 0;
559
ba76149f
AA
560 start_khugepaged();
561
569e5590 562 return 0;
ba76149f 563out:
569e5590 564 hugepage_exit_sysfs(hugepage_kobj);
ba76149f 565 return err;
71e3aac0
AA
566}
567module_init(hugepage_init)
568
569static int __init setup_transparent_hugepage(char *str)
570{
571 int ret = 0;
572 if (!str)
573 goto out;
574 if (!strcmp(str, "always")) {
575 set_bit(TRANSPARENT_HUGEPAGE_FLAG,
576 &transparent_hugepage_flags);
577 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
578 &transparent_hugepage_flags);
579 ret = 1;
580 } else if (!strcmp(str, "madvise")) {
581 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
582 &transparent_hugepage_flags);
583 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
584 &transparent_hugepage_flags);
585 ret = 1;
586 } else if (!strcmp(str, "never")) {
587 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
588 &transparent_hugepage_flags);
589 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
590 &transparent_hugepage_flags);
591 ret = 1;
592 }
593out:
594 if (!ret)
595 printk(KERN_WARNING
596 "transparent_hugepage= cannot parse, ignored\n");
597 return ret;
598}
599__setup("transparent_hugepage=", setup_transparent_hugepage);
600
601static void prepare_pmd_huge_pte(pgtable_t pgtable,
602 struct mm_struct *mm)
603{
604 assert_spin_locked(&mm->page_table_lock);
605
606 /* FIFO */
607 if (!mm->pmd_huge_pte)
608 INIT_LIST_HEAD(&pgtable->lru);
609 else
610 list_add(&pgtable->lru, &mm->pmd_huge_pte->lru);
611 mm->pmd_huge_pte = pgtable;
612}
613
614static inline pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
615{
616 if (likely(vma->vm_flags & VM_WRITE))
617 pmd = pmd_mkwrite(pmd);
618 return pmd;
619}
620
621static int __do_huge_pmd_anonymous_page(struct mm_struct *mm,
622 struct vm_area_struct *vma,
623 unsigned long haddr, pmd_t *pmd,
624 struct page *page)
625{
71e3aac0
AA
626 pgtable_t pgtable;
627
628 VM_BUG_ON(!PageCompound(page));
629 pgtable = pte_alloc_one(mm, haddr);
edad9d2c 630 if (unlikely(!pgtable))
71e3aac0 631 return VM_FAULT_OOM;
71e3aac0
AA
632
633 clear_huge_page(page, haddr, HPAGE_PMD_NR);
634 __SetPageUptodate(page);
635
636 spin_lock(&mm->page_table_lock);
637 if (unlikely(!pmd_none(*pmd))) {
638 spin_unlock(&mm->page_table_lock);
b9bbfbe3 639 mem_cgroup_uncharge_page(page);
71e3aac0
AA
640 put_page(page);
641 pte_free(mm, pgtable);
642 } else {
643 pmd_t entry;
644 entry = mk_pmd(page, vma->vm_page_prot);
645 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
646 entry = pmd_mkhuge(entry);
647 /*
648 * The spinlocking to take the lru_lock inside
649 * page_add_new_anon_rmap() acts as a full memory
650 * barrier to be sure clear_huge_page writes become
651 * visible after the set_pmd_at() write.
652 */
653 page_add_new_anon_rmap(page, vma, haddr);
654 set_pmd_at(mm, haddr, pmd, entry);
655 prepare_pmd_huge_pte(pgtable, mm);
656 add_mm_counter(mm, MM_ANONPAGES, HPAGE_PMD_NR);
1c641e84 657 mm->nr_ptes++;
71e3aac0
AA
658 spin_unlock(&mm->page_table_lock);
659 }
660
aa2e878e 661 return 0;
71e3aac0
AA
662}
663
cc5d462f 664static inline gfp_t alloc_hugepage_gfpmask(int defrag, gfp_t extra_gfp)
0bbbc0b3 665{
cc5d462f 666 return (GFP_TRANSHUGE & ~(defrag ? 0 : __GFP_WAIT)) | extra_gfp;
0bbbc0b3
AA
667}
668
669static inline struct page *alloc_hugepage_vma(int defrag,
670 struct vm_area_struct *vma,
cc5d462f
AK
671 unsigned long haddr, int nd,
672 gfp_t extra_gfp)
0bbbc0b3 673{
cc5d462f 674 return alloc_pages_vma(alloc_hugepage_gfpmask(defrag, extra_gfp),
5c4b4be3 675 HPAGE_PMD_ORDER, vma, haddr, nd);
0bbbc0b3
AA
676}
677
678#ifndef CONFIG_NUMA
71e3aac0
AA
679static inline struct page *alloc_hugepage(int defrag)
680{
cc5d462f 681 return alloc_pages(alloc_hugepage_gfpmask(defrag, 0),
71e3aac0
AA
682 HPAGE_PMD_ORDER);
683}
0bbbc0b3 684#endif
71e3aac0
AA
685
686int do_huge_pmd_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
687 unsigned long address, pmd_t *pmd,
688 unsigned int flags)
689{
690 struct page *page;
691 unsigned long haddr = address & HPAGE_PMD_MASK;
692 pte_t *pte;
693
694 if (haddr >= vma->vm_start && haddr + HPAGE_PMD_SIZE <= vma->vm_end) {
695 if (unlikely(anon_vma_prepare(vma)))
696 return VM_FAULT_OOM;
ba76149f
AA
697 if (unlikely(khugepaged_enter(vma)))
698 return VM_FAULT_OOM;
0bbbc0b3 699 page = alloc_hugepage_vma(transparent_hugepage_defrag(vma),
cc5d462f 700 vma, haddr, numa_node_id(), 0);
81ab4201
AK
701 if (unlikely(!page)) {
702 count_vm_event(THP_FAULT_FALLBACK);
71e3aac0 703 goto out;
81ab4201
AK
704 }
705 count_vm_event(THP_FAULT_ALLOC);
b9bbfbe3
AA
706 if (unlikely(mem_cgroup_newpage_charge(page, mm, GFP_KERNEL))) {
707 put_page(page);
708 goto out;
709 }
edad9d2c
DR
710 if (unlikely(__do_huge_pmd_anonymous_page(mm, vma, haddr, pmd,
711 page))) {
712 mem_cgroup_uncharge_page(page);
713 put_page(page);
714 goto out;
715 }
71e3aac0 716
edad9d2c 717 return 0;
71e3aac0
AA
718 }
719out:
720 /*
721 * Use __pte_alloc instead of pte_alloc_map, because we can't
722 * run pte_offset_map on the pmd, if an huge pmd could
723 * materialize from under us from a different thread.
724 */
725 if (unlikely(__pte_alloc(mm, vma, pmd, address)))
726 return VM_FAULT_OOM;
727 /* if an huge pmd materialized from under us just retry later */
728 if (unlikely(pmd_trans_huge(*pmd)))
729 return 0;
730 /*
731 * A regular pmd is established and it can't morph into a huge pmd
732 * from under us anymore at this point because we hold the mmap_sem
733 * read mode and khugepaged takes it in write mode. So now it's
734 * safe to run pte_offset_map().
735 */
736 pte = pte_offset_map(pmd, address);
737 return handle_pte_fault(mm, vma, address, pte, pmd, flags);
738}
739
740int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
741 pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
742 struct vm_area_struct *vma)
743{
744 struct page *src_page;
745 pmd_t pmd;
746 pgtable_t pgtable;
747 int ret;
748
749 ret = -ENOMEM;
750 pgtable = pte_alloc_one(dst_mm, addr);
751 if (unlikely(!pgtable))
752 goto out;
753
754 spin_lock(&dst_mm->page_table_lock);
755 spin_lock_nested(&src_mm->page_table_lock, SINGLE_DEPTH_NESTING);
756
757 ret = -EAGAIN;
758 pmd = *src_pmd;
759 if (unlikely(!pmd_trans_huge(pmd))) {
760 pte_free(dst_mm, pgtable);
761 goto out_unlock;
762 }
763 if (unlikely(pmd_trans_splitting(pmd))) {
764 /* split huge page running from under us */
765 spin_unlock(&src_mm->page_table_lock);
766 spin_unlock(&dst_mm->page_table_lock);
767 pte_free(dst_mm, pgtable);
768
769 wait_split_huge_page(vma->anon_vma, src_pmd); /* src_vma */
770 goto out;
771 }
772 src_page = pmd_page(pmd);
773 VM_BUG_ON(!PageHead(src_page));
774 get_page(src_page);
775 page_dup_rmap(src_page);
776 add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
777
778 pmdp_set_wrprotect(src_mm, addr, src_pmd);
779 pmd = pmd_mkold(pmd_wrprotect(pmd));
780 set_pmd_at(dst_mm, addr, dst_pmd, pmd);
781 prepare_pmd_huge_pte(pgtable, dst_mm);
1c641e84 782 dst_mm->nr_ptes++;
71e3aac0
AA
783
784 ret = 0;
785out_unlock:
786 spin_unlock(&src_mm->page_table_lock);
787 spin_unlock(&dst_mm->page_table_lock);
788out:
789 return ret;
790}
791
792/* no "address" argument so destroys page coloring of some arch */
793pgtable_t get_pmd_huge_pte(struct mm_struct *mm)
794{
795 pgtable_t pgtable;
796
797 assert_spin_locked(&mm->page_table_lock);
798
799 /* FIFO */
800 pgtable = mm->pmd_huge_pte;
801 if (list_empty(&pgtable->lru))
802 mm->pmd_huge_pte = NULL;
803 else {
804 mm->pmd_huge_pte = list_entry(pgtable->lru.next,
805 struct page, lru);
806 list_del(&pgtable->lru);
807 }
808 return pgtable;
809}
810
811static int do_huge_pmd_wp_page_fallback(struct mm_struct *mm,
812 struct vm_area_struct *vma,
813 unsigned long address,
814 pmd_t *pmd, pmd_t orig_pmd,
815 struct page *page,
816 unsigned long haddr)
817{
818 pgtable_t pgtable;
819 pmd_t _pmd;
820 int ret = 0, i;
821 struct page **pages;
822
823 pages = kmalloc(sizeof(struct page *) * HPAGE_PMD_NR,
824 GFP_KERNEL);
825 if (unlikely(!pages)) {
826 ret |= VM_FAULT_OOM;
827 goto out;
828 }
829
830 for (i = 0; i < HPAGE_PMD_NR; i++) {
cc5d462f
AK
831 pages[i] = alloc_page_vma_node(GFP_HIGHUSER_MOVABLE |
832 __GFP_OTHER_NODE,
19ee151e 833 vma, address, page_to_nid(page));
b9bbfbe3
AA
834 if (unlikely(!pages[i] ||
835 mem_cgroup_newpage_charge(pages[i], mm,
836 GFP_KERNEL))) {
837 if (pages[i])
71e3aac0 838 put_page(pages[i]);
b9bbfbe3
AA
839 mem_cgroup_uncharge_start();
840 while (--i >= 0) {
841 mem_cgroup_uncharge_page(pages[i]);
842 put_page(pages[i]);
843 }
844 mem_cgroup_uncharge_end();
71e3aac0
AA
845 kfree(pages);
846 ret |= VM_FAULT_OOM;
847 goto out;
848 }
849 }
850
851 for (i = 0; i < HPAGE_PMD_NR; i++) {
852 copy_user_highpage(pages[i], page + i,
0089e485 853 haddr + PAGE_SIZE * i, vma);
71e3aac0
AA
854 __SetPageUptodate(pages[i]);
855 cond_resched();
856 }
857
858 spin_lock(&mm->page_table_lock);
859 if (unlikely(!pmd_same(*pmd, orig_pmd)))
860 goto out_free_pages;
861 VM_BUG_ON(!PageHead(page));
862
863 pmdp_clear_flush_notify(vma, haddr, pmd);
864 /* leave pmd empty until pte is filled */
865
866 pgtable = get_pmd_huge_pte(mm);
867 pmd_populate(mm, &_pmd, pgtable);
868
869 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
870 pte_t *pte, entry;
871 entry = mk_pte(pages[i], vma->vm_page_prot);
872 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
873 page_add_new_anon_rmap(pages[i], vma, haddr);
874 pte = pte_offset_map(&_pmd, haddr);
875 VM_BUG_ON(!pte_none(*pte));
876 set_pte_at(mm, haddr, pte, entry);
877 pte_unmap(pte);
878 }
879 kfree(pages);
880
71e3aac0
AA
881 smp_wmb(); /* make pte visible before pmd */
882 pmd_populate(mm, pmd, pgtable);
883 page_remove_rmap(page);
884 spin_unlock(&mm->page_table_lock);
885
886 ret |= VM_FAULT_WRITE;
887 put_page(page);
888
889out:
890 return ret;
891
892out_free_pages:
893 spin_unlock(&mm->page_table_lock);
b9bbfbe3
AA
894 mem_cgroup_uncharge_start();
895 for (i = 0; i < HPAGE_PMD_NR; i++) {
896 mem_cgroup_uncharge_page(pages[i]);
71e3aac0 897 put_page(pages[i]);
b9bbfbe3
AA
898 }
899 mem_cgroup_uncharge_end();
71e3aac0
AA
900 kfree(pages);
901 goto out;
902}
903
904int do_huge_pmd_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
905 unsigned long address, pmd_t *pmd, pmd_t orig_pmd)
906{
907 int ret = 0;
908 struct page *page, *new_page;
909 unsigned long haddr;
910
911 VM_BUG_ON(!vma->anon_vma);
912 spin_lock(&mm->page_table_lock);
913 if (unlikely(!pmd_same(*pmd, orig_pmd)))
914 goto out_unlock;
915
916 page = pmd_page(orig_pmd);
917 VM_BUG_ON(!PageCompound(page) || !PageHead(page));
918 haddr = address & HPAGE_PMD_MASK;
919 if (page_mapcount(page) == 1) {
920 pmd_t entry;
921 entry = pmd_mkyoung(orig_pmd);
922 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
923 if (pmdp_set_access_flags(vma, haddr, pmd, entry, 1))
924 update_mmu_cache(vma, address, entry);
925 ret |= VM_FAULT_WRITE;
926 goto out_unlock;
927 }
928 get_page(page);
929 spin_unlock(&mm->page_table_lock);
930
931 if (transparent_hugepage_enabled(vma) &&
932 !transparent_hugepage_debug_cow())
0bbbc0b3 933 new_page = alloc_hugepage_vma(transparent_hugepage_defrag(vma),
cc5d462f 934 vma, haddr, numa_node_id(), 0);
71e3aac0
AA
935 else
936 new_page = NULL;
937
938 if (unlikely(!new_page)) {
81ab4201 939 count_vm_event(THP_FAULT_FALLBACK);
71e3aac0
AA
940 ret = do_huge_pmd_wp_page_fallback(mm, vma, address,
941 pmd, orig_pmd, page, haddr);
1f1d06c3
DR
942 if (ret & VM_FAULT_OOM)
943 split_huge_page(page);
71e3aac0
AA
944 put_page(page);
945 goto out;
946 }
81ab4201 947 count_vm_event(THP_FAULT_ALLOC);
71e3aac0 948
b9bbfbe3
AA
949 if (unlikely(mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL))) {
950 put_page(new_page);
1f1d06c3 951 split_huge_page(page);
b9bbfbe3
AA
952 put_page(page);
953 ret |= VM_FAULT_OOM;
954 goto out;
955 }
956
71e3aac0
AA
957 copy_user_huge_page(new_page, page, haddr, vma, HPAGE_PMD_NR);
958 __SetPageUptodate(new_page);
959
960 spin_lock(&mm->page_table_lock);
961 put_page(page);
b9bbfbe3 962 if (unlikely(!pmd_same(*pmd, orig_pmd))) {
6f60b69d 963 spin_unlock(&mm->page_table_lock);
b9bbfbe3 964 mem_cgroup_uncharge_page(new_page);
71e3aac0 965 put_page(new_page);
6f60b69d 966 goto out;
b9bbfbe3 967 } else {
71e3aac0
AA
968 pmd_t entry;
969 VM_BUG_ON(!PageHead(page));
970 entry = mk_pmd(new_page, vma->vm_page_prot);
971 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
972 entry = pmd_mkhuge(entry);
973 pmdp_clear_flush_notify(vma, haddr, pmd);
974 page_add_new_anon_rmap(new_page, vma, haddr);
975 set_pmd_at(mm, haddr, pmd, entry);
976 update_mmu_cache(vma, address, entry);
977 page_remove_rmap(page);
978 put_page(page);
979 ret |= VM_FAULT_WRITE;
980 }
981out_unlock:
982 spin_unlock(&mm->page_table_lock);
983out:
984 return ret;
985}
986
987struct page *follow_trans_huge_pmd(struct mm_struct *mm,
988 unsigned long addr,
989 pmd_t *pmd,
990 unsigned int flags)
991{
992 struct page *page = NULL;
993
994 assert_spin_locked(&mm->page_table_lock);
995
996 if (flags & FOLL_WRITE && !pmd_write(*pmd))
997 goto out;
998
999 page = pmd_page(*pmd);
1000 VM_BUG_ON(!PageHead(page));
1001 if (flags & FOLL_TOUCH) {
1002 pmd_t _pmd;
1003 /*
1004 * We should set the dirty bit only for FOLL_WRITE but
1005 * for now the dirty bit in the pmd is meaningless.
1006 * And if the dirty bit will become meaningful and
1007 * we'll only set it with FOLL_WRITE, an atomic
1008 * set_bit will be required on the pmd to set the
1009 * young bit, instead of the current set_pmd_at.
1010 */
1011 _pmd = pmd_mkyoung(pmd_mkdirty(*pmd));
1012 set_pmd_at(mm, addr & HPAGE_PMD_MASK, pmd, _pmd);
1013 }
1014 page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
1015 VM_BUG_ON(!PageCompound(page));
1016 if (flags & FOLL_GET)
70b50f94 1017 get_page_foll(page);
71e3aac0
AA
1018
1019out:
1020 return page;
1021}
1022
1023int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
f21760b1 1024 pmd_t *pmd, unsigned long addr)
71e3aac0
AA
1025{
1026 int ret = 0;
1027
025c5b24
NH
1028 if (__pmd_trans_huge_lock(pmd, vma) == 1) {
1029 struct page *page;
1030 pgtable_t pgtable;
1031 pgtable = get_pmd_huge_pte(tlb->mm);
1032 page = pmd_page(*pmd);
1033 pmd_clear(pmd);
1034 tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1035 page_remove_rmap(page);
1036 VM_BUG_ON(page_mapcount(page) < 0);
1037 add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
1038 VM_BUG_ON(!PageHead(page));
1039 tlb->mm->nr_ptes--;
71e3aac0 1040 spin_unlock(&tlb->mm->page_table_lock);
025c5b24
NH
1041 tlb_remove_page(tlb, page);
1042 pte_free(tlb->mm, pgtable);
1043 ret = 1;
1044 }
71e3aac0
AA
1045 return ret;
1046}
1047
0ca1634d
JW
1048int mincore_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1049 unsigned long addr, unsigned long end,
1050 unsigned char *vec)
1051{
1052 int ret = 0;
1053
025c5b24
NH
1054 if (__pmd_trans_huge_lock(pmd, vma) == 1) {
1055 /*
1056 * All logical pages in the range are present
1057 * if backed by a huge page.
1058 */
0ca1634d 1059 spin_unlock(&vma->vm_mm->page_table_lock);
025c5b24
NH
1060 memset(vec, 1, (end - addr) >> PAGE_SHIFT);
1061 ret = 1;
1062 }
0ca1634d
JW
1063
1064 return ret;
1065}
1066
37a1c49a
AA
1067int move_huge_pmd(struct vm_area_struct *vma, struct vm_area_struct *new_vma,
1068 unsigned long old_addr,
1069 unsigned long new_addr, unsigned long old_end,
1070 pmd_t *old_pmd, pmd_t *new_pmd)
1071{
1072 int ret = 0;
1073 pmd_t pmd;
1074
1075 struct mm_struct *mm = vma->vm_mm;
1076
1077 if ((old_addr & ~HPAGE_PMD_MASK) ||
1078 (new_addr & ~HPAGE_PMD_MASK) ||
1079 old_end - old_addr < HPAGE_PMD_SIZE ||
1080 (new_vma->vm_flags & VM_NOHUGEPAGE))
1081 goto out;
1082
1083 /*
1084 * The destination pmd shouldn't be established, free_pgtables()
1085 * should have release it.
1086 */
1087 if (WARN_ON(!pmd_none(*new_pmd))) {
1088 VM_BUG_ON(pmd_trans_huge(*new_pmd));
1089 goto out;
1090 }
1091
025c5b24
NH
1092 ret = __pmd_trans_huge_lock(old_pmd, vma);
1093 if (ret == 1) {
1094 pmd = pmdp_get_and_clear(mm, old_addr, old_pmd);
1095 VM_BUG_ON(!pmd_none(*new_pmd));
1096 set_pmd_at(mm, new_addr, new_pmd, pmd);
37a1c49a
AA
1097 spin_unlock(&mm->page_table_lock);
1098 }
1099out:
1100 return ret;
1101}
1102
cd7548ab
JW
1103int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1104 unsigned long addr, pgprot_t newprot)
1105{
1106 struct mm_struct *mm = vma->vm_mm;
1107 int ret = 0;
1108
025c5b24
NH
1109 if (__pmd_trans_huge_lock(pmd, vma) == 1) {
1110 pmd_t entry;
1111 entry = pmdp_get_and_clear(mm, addr, pmd);
1112 entry = pmd_modify(entry, newprot);
1113 set_pmd_at(mm, addr, pmd, entry);
1114 spin_unlock(&vma->vm_mm->page_table_lock);
1115 ret = 1;
1116 }
1117
1118 return ret;
1119}
1120
1121/*
1122 * Returns 1 if a given pmd maps a stable (not under splitting) thp.
1123 * Returns -1 if it maps a thp under splitting. Returns 0 otherwise.
1124 *
1125 * Note that if it returns 1, this routine returns without unlocking page
1126 * table locks. So callers must unlock them.
1127 */
1128int __pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma)
1129{
1130 spin_lock(&vma->vm_mm->page_table_lock);
cd7548ab
JW
1131 if (likely(pmd_trans_huge(*pmd))) {
1132 if (unlikely(pmd_trans_splitting(*pmd))) {
025c5b24 1133 spin_unlock(&vma->vm_mm->page_table_lock);
cd7548ab 1134 wait_split_huge_page(vma->anon_vma, pmd);
025c5b24 1135 return -1;
cd7548ab 1136 } else {
025c5b24
NH
1137 /* Thp mapped by 'pmd' is stable, so we can
1138 * handle it as it is. */
1139 return 1;
cd7548ab 1140 }
025c5b24
NH
1141 }
1142 spin_unlock(&vma->vm_mm->page_table_lock);
1143 return 0;
cd7548ab
JW
1144}
1145
71e3aac0
AA
1146pmd_t *page_check_address_pmd(struct page *page,
1147 struct mm_struct *mm,
1148 unsigned long address,
1149 enum page_check_address_pmd_flag flag)
1150{
1151 pgd_t *pgd;
1152 pud_t *pud;
1153 pmd_t *pmd, *ret = NULL;
1154
1155 if (address & ~HPAGE_PMD_MASK)
1156 goto out;
1157
1158 pgd = pgd_offset(mm, address);
1159 if (!pgd_present(*pgd))
1160 goto out;
1161
1162 pud = pud_offset(pgd, address);
1163 if (!pud_present(*pud))
1164 goto out;
1165
1166 pmd = pmd_offset(pud, address);
1167 if (pmd_none(*pmd))
1168 goto out;
1169 if (pmd_page(*pmd) != page)
1170 goto out;
94fcc585
AA
1171 /*
1172 * split_vma() may create temporary aliased mappings. There is
1173 * no risk as long as all huge pmd are found and have their
1174 * splitting bit set before __split_huge_page_refcount
1175 * runs. Finding the same huge pmd more than once during the
1176 * same rmap walk is not a problem.
1177 */
1178 if (flag == PAGE_CHECK_ADDRESS_PMD_NOTSPLITTING_FLAG &&
1179 pmd_trans_splitting(*pmd))
1180 goto out;
71e3aac0
AA
1181 if (pmd_trans_huge(*pmd)) {
1182 VM_BUG_ON(flag == PAGE_CHECK_ADDRESS_PMD_SPLITTING_FLAG &&
1183 !pmd_trans_splitting(*pmd));
1184 ret = pmd;
1185 }
1186out:
1187 return ret;
1188}
1189
1190static int __split_huge_page_splitting(struct page *page,
1191 struct vm_area_struct *vma,
1192 unsigned long address)
1193{
1194 struct mm_struct *mm = vma->vm_mm;
1195 pmd_t *pmd;
1196 int ret = 0;
1197
1198 spin_lock(&mm->page_table_lock);
1199 pmd = page_check_address_pmd(page, mm, address,
1200 PAGE_CHECK_ADDRESS_PMD_NOTSPLITTING_FLAG);
1201 if (pmd) {
1202 /*
1203 * We can't temporarily set the pmd to null in order
1204 * to split it, the pmd must remain marked huge at all
1205 * times or the VM won't take the pmd_trans_huge paths
2b575eb6 1206 * and it won't wait on the anon_vma->root->mutex to
71e3aac0
AA
1207 * serialize against split_huge_page*.
1208 */
1209 pmdp_splitting_flush_notify(vma, address, pmd);
1210 ret = 1;
1211 }
1212 spin_unlock(&mm->page_table_lock);
1213
1214 return ret;
1215}
1216
1217static void __split_huge_page_refcount(struct page *page)
1218{
1219 int i;
71e3aac0 1220 struct zone *zone = page_zone(page);
fa9add64 1221 struct lruvec *lruvec;
70b50f94 1222 int tail_count = 0;
71e3aac0
AA
1223
1224 /* prevent PageLRU to go away from under us, and freeze lru stats */
1225 spin_lock_irq(&zone->lru_lock);
fa9add64
HD
1226 lruvec = mem_cgroup_page_lruvec(page, zone);
1227
71e3aac0 1228 compound_lock(page);
e94c8a9c
KH
1229 /* complete memcg works before add pages to LRU */
1230 mem_cgroup_split_huge_fixup(page);
71e3aac0 1231
45676885 1232 for (i = HPAGE_PMD_NR - 1; i >= 1; i--) {
71e3aac0
AA
1233 struct page *page_tail = page + i;
1234
70b50f94
AA
1235 /* tail_page->_mapcount cannot change */
1236 BUG_ON(page_mapcount(page_tail) < 0);
1237 tail_count += page_mapcount(page_tail);
1238 /* check for overflow */
1239 BUG_ON(tail_count < 0);
1240 BUG_ON(atomic_read(&page_tail->_count) != 0);
1241 /*
1242 * tail_page->_count is zero and not changing from
1243 * under us. But get_page_unless_zero() may be running
1244 * from under us on the tail_page. If we used
1245 * atomic_set() below instead of atomic_add(), we
1246 * would then run atomic_set() concurrently with
1247 * get_page_unless_zero(), and atomic_set() is
1248 * implemented in C not using locked ops. spin_unlock
1249 * on x86 sometime uses locked ops because of PPro
1250 * errata 66, 92, so unless somebody can guarantee
1251 * atomic_set() here would be safe on all archs (and
1252 * not only on x86), it's safer to use atomic_add().
1253 */
1254 atomic_add(page_mapcount(page) + page_mapcount(page_tail) + 1,
1255 &page_tail->_count);
71e3aac0
AA
1256
1257 /* after clearing PageTail the gup refcount can be released */
1258 smp_mb();
1259
a6d30ddd
JD
1260 /*
1261 * retain hwpoison flag of the poisoned tail page:
1262 * fix for the unsuitable process killed on Guest Machine(KVM)
1263 * by the memory-failure.
1264 */
1265 page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP | __PG_HWPOISON;
71e3aac0
AA
1266 page_tail->flags |= (page->flags &
1267 ((1L << PG_referenced) |
1268 (1L << PG_swapbacked) |
1269 (1L << PG_mlocked) |
1270 (1L << PG_uptodate)));
1271 page_tail->flags |= (1L << PG_dirty);
1272
70b50f94 1273 /* clear PageTail before overwriting first_page */
71e3aac0
AA
1274 smp_wmb();
1275
1276 /*
1277 * __split_huge_page_splitting() already set the
1278 * splitting bit in all pmd that could map this
1279 * hugepage, that will ensure no CPU can alter the
1280 * mapcount on the head page. The mapcount is only
1281 * accounted in the head page and it has to be
1282 * transferred to all tail pages in the below code. So
1283 * for this code to be safe, the split the mapcount
1284 * can't change. But that doesn't mean userland can't
1285 * keep changing and reading the page contents while
1286 * we transfer the mapcount, so the pmd splitting
1287 * status is achieved setting a reserved bit in the
1288 * pmd, not by clearing the present bit.
1289 */
71e3aac0
AA
1290 page_tail->_mapcount = page->_mapcount;
1291
1292 BUG_ON(page_tail->mapping);
1293 page_tail->mapping = page->mapping;
1294
45676885 1295 page_tail->index = page->index + i;
71e3aac0
AA
1296
1297 BUG_ON(!PageAnon(page_tail));
1298 BUG_ON(!PageUptodate(page_tail));
1299 BUG_ON(!PageDirty(page_tail));
1300 BUG_ON(!PageSwapBacked(page_tail));
1301
fa9add64 1302 lru_add_page_tail(page, page_tail, lruvec);
71e3aac0 1303 }
70b50f94
AA
1304 atomic_sub(tail_count, &page->_count);
1305 BUG_ON(atomic_read(&page->_count) <= 0);
71e3aac0 1306
fa9add64 1307 __mod_zone_page_state(zone, NR_ANON_TRANSPARENT_HUGEPAGES, -1);
79134171
AA
1308 __mod_zone_page_state(zone, NR_ANON_PAGES, HPAGE_PMD_NR);
1309
71e3aac0
AA
1310 ClearPageCompound(page);
1311 compound_unlock(page);
1312 spin_unlock_irq(&zone->lru_lock);
1313
1314 for (i = 1; i < HPAGE_PMD_NR; i++) {
1315 struct page *page_tail = page + i;
1316 BUG_ON(page_count(page_tail) <= 0);
1317 /*
1318 * Tail pages may be freed if there wasn't any mapping
1319 * like if add_to_swap() is running on a lru page that
1320 * had its mapping zapped. And freeing these pages
1321 * requires taking the lru_lock so we do the put_page
1322 * of the tail pages after the split is complete.
1323 */
1324 put_page(page_tail);
1325 }
1326
1327 /*
1328 * Only the head page (now become a regular page) is required
1329 * to be pinned by the caller.
1330 */
1331 BUG_ON(page_count(page) <= 0);
1332}
1333
1334static int __split_huge_page_map(struct page *page,
1335 struct vm_area_struct *vma,
1336 unsigned long address)
1337{
1338 struct mm_struct *mm = vma->vm_mm;
1339 pmd_t *pmd, _pmd;
1340 int ret = 0, i;
1341 pgtable_t pgtable;
1342 unsigned long haddr;
1343
1344 spin_lock(&mm->page_table_lock);
1345 pmd = page_check_address_pmd(page, mm, address,
1346 PAGE_CHECK_ADDRESS_PMD_SPLITTING_FLAG);
1347 if (pmd) {
1348 pgtable = get_pmd_huge_pte(mm);
1349 pmd_populate(mm, &_pmd, pgtable);
1350
1351 for (i = 0, haddr = address; i < HPAGE_PMD_NR;
1352 i++, haddr += PAGE_SIZE) {
1353 pte_t *pte, entry;
1354 BUG_ON(PageCompound(page+i));
1355 entry = mk_pte(page + i, vma->vm_page_prot);
1356 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1357 if (!pmd_write(*pmd))
1358 entry = pte_wrprotect(entry);
1359 else
1360 BUG_ON(page_mapcount(page) != 1);
1361 if (!pmd_young(*pmd))
1362 entry = pte_mkold(entry);
1363 pte = pte_offset_map(&_pmd, haddr);
1364 BUG_ON(!pte_none(*pte));
1365 set_pte_at(mm, haddr, pte, entry);
1366 pte_unmap(pte);
1367 }
1368
71e3aac0
AA
1369 smp_wmb(); /* make pte visible before pmd */
1370 /*
1371 * Up to this point the pmd is present and huge and
1372 * userland has the whole access to the hugepage
1373 * during the split (which happens in place). If we
1374 * overwrite the pmd with the not-huge version
1375 * pointing to the pte here (which of course we could
1376 * if all CPUs were bug free), userland could trigger
1377 * a small page size TLB miss on the small sized TLB
1378 * while the hugepage TLB entry is still established
1379 * in the huge TLB. Some CPU doesn't like that. See
1380 * http://support.amd.com/us/Processor_TechDocs/41322.pdf,
1381 * Erratum 383 on page 93. Intel should be safe but is
1382 * also warns that it's only safe if the permission
1383 * and cache attributes of the two entries loaded in
1384 * the two TLB is identical (which should be the case
1385 * here). But it is generally safer to never allow
1386 * small and huge TLB entries for the same virtual
1387 * address to be loaded simultaneously. So instead of
1388 * doing "pmd_populate(); flush_tlb_range();" we first
1389 * mark the current pmd notpresent (atomically because
1390 * here the pmd_trans_huge and pmd_trans_splitting
1391 * must remain set at all times on the pmd until the
1392 * split is complete for this pmd), then we flush the
1393 * SMP TLB and finally we write the non-huge version
1394 * of the pmd entry with pmd_populate.
1395 */
1396 set_pmd_at(mm, address, pmd, pmd_mknotpresent(*pmd));
1397 flush_tlb_range(vma, address, address + HPAGE_PMD_SIZE);
1398 pmd_populate(mm, pmd, pgtable);
1399 ret = 1;
1400 }
1401 spin_unlock(&mm->page_table_lock);
1402
1403 return ret;
1404}
1405
2b575eb6 1406/* must be called with anon_vma->root->mutex hold */
71e3aac0
AA
1407static void __split_huge_page(struct page *page,
1408 struct anon_vma *anon_vma)
1409{
1410 int mapcount, mapcount2;
1411 struct anon_vma_chain *avc;
1412
1413 BUG_ON(!PageHead(page));
1414 BUG_ON(PageTail(page));
1415
1416 mapcount = 0;
1417 list_for_each_entry(avc, &anon_vma->head, same_anon_vma) {
1418 struct vm_area_struct *vma = avc->vma;
1419 unsigned long addr = vma_address(page, vma);
1420 BUG_ON(is_vma_temporary_stack(vma));
1421 if (addr == -EFAULT)
1422 continue;
1423 mapcount += __split_huge_page_splitting(page, vma, addr);
1424 }
05759d38
AA
1425 /*
1426 * It is critical that new vmas are added to the tail of the
1427 * anon_vma list. This guarantes that if copy_huge_pmd() runs
1428 * and establishes a child pmd before
1429 * __split_huge_page_splitting() freezes the parent pmd (so if
1430 * we fail to prevent copy_huge_pmd() from running until the
1431 * whole __split_huge_page() is complete), we will still see
1432 * the newly established pmd of the child later during the
1433 * walk, to be able to set it as pmd_trans_splitting too.
1434 */
1435 if (mapcount != page_mapcount(page))
1436 printk(KERN_ERR "mapcount %d page_mapcount %d\n",
1437 mapcount, page_mapcount(page));
71e3aac0
AA
1438 BUG_ON(mapcount != page_mapcount(page));
1439
1440 __split_huge_page_refcount(page);
1441
1442 mapcount2 = 0;
1443 list_for_each_entry(avc, &anon_vma->head, same_anon_vma) {
1444 struct vm_area_struct *vma = avc->vma;
1445 unsigned long addr = vma_address(page, vma);
1446 BUG_ON(is_vma_temporary_stack(vma));
1447 if (addr == -EFAULT)
1448 continue;
1449 mapcount2 += __split_huge_page_map(page, vma, addr);
1450 }
05759d38
AA
1451 if (mapcount != mapcount2)
1452 printk(KERN_ERR "mapcount %d mapcount2 %d page_mapcount %d\n",
1453 mapcount, mapcount2, page_mapcount(page));
71e3aac0
AA
1454 BUG_ON(mapcount != mapcount2);
1455}
1456
1457int split_huge_page(struct page *page)
1458{
1459 struct anon_vma *anon_vma;
1460 int ret = 1;
1461
1462 BUG_ON(!PageAnon(page));
1463 anon_vma = page_lock_anon_vma(page);
1464 if (!anon_vma)
1465 goto out;
1466 ret = 0;
1467 if (!PageCompound(page))
1468 goto out_unlock;
1469
1470 BUG_ON(!PageSwapBacked(page));
1471 __split_huge_page(page, anon_vma);
81ab4201 1472 count_vm_event(THP_SPLIT);
71e3aac0
AA
1473
1474 BUG_ON(PageCompound(page));
1475out_unlock:
1476 page_unlock_anon_vma(anon_vma);
1477out:
1478 return ret;
1479}
1480
4b6e1e37 1481#define VM_NO_THP (VM_SPECIAL|VM_MIXEDMAP|VM_HUGETLB|VM_SHARED|VM_MAYSHARE)
78f11a25 1482
60ab3244
AA
1483int hugepage_madvise(struct vm_area_struct *vma,
1484 unsigned long *vm_flags, int advice)
0af4e98b 1485{
a664b2d8
AA
1486 switch (advice) {
1487 case MADV_HUGEPAGE:
1488 /*
1489 * Be somewhat over-protective like KSM for now!
1490 */
78f11a25 1491 if (*vm_flags & (VM_HUGEPAGE | VM_NO_THP))
a664b2d8
AA
1492 return -EINVAL;
1493 *vm_flags &= ~VM_NOHUGEPAGE;
1494 *vm_flags |= VM_HUGEPAGE;
60ab3244
AA
1495 /*
1496 * If the vma become good for khugepaged to scan,
1497 * register it here without waiting a page fault that
1498 * may not happen any time soon.
1499 */
1500 if (unlikely(khugepaged_enter_vma_merge(vma)))
1501 return -ENOMEM;
a664b2d8
AA
1502 break;
1503 case MADV_NOHUGEPAGE:
1504 /*
1505 * Be somewhat over-protective like KSM for now!
1506 */
78f11a25 1507 if (*vm_flags & (VM_NOHUGEPAGE | VM_NO_THP))
a664b2d8
AA
1508 return -EINVAL;
1509 *vm_flags &= ~VM_HUGEPAGE;
1510 *vm_flags |= VM_NOHUGEPAGE;
60ab3244
AA
1511 /*
1512 * Setting VM_NOHUGEPAGE will prevent khugepaged from scanning
1513 * this vma even if we leave the mm registered in khugepaged if
1514 * it got registered before VM_NOHUGEPAGE was set.
1515 */
a664b2d8
AA
1516 break;
1517 }
0af4e98b
AA
1518
1519 return 0;
1520}
1521
ba76149f
AA
1522static int __init khugepaged_slab_init(void)
1523{
1524 mm_slot_cache = kmem_cache_create("khugepaged_mm_slot",
1525 sizeof(struct mm_slot),
1526 __alignof__(struct mm_slot), 0, NULL);
1527 if (!mm_slot_cache)
1528 return -ENOMEM;
1529
1530 return 0;
1531}
1532
1533static void __init khugepaged_slab_free(void)
1534{
1535 kmem_cache_destroy(mm_slot_cache);
1536 mm_slot_cache = NULL;
1537}
1538
1539static inline struct mm_slot *alloc_mm_slot(void)
1540{
1541 if (!mm_slot_cache) /* initialization failed */
1542 return NULL;
1543 return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
1544}
1545
1546static inline void free_mm_slot(struct mm_slot *mm_slot)
1547{
1548 kmem_cache_free(mm_slot_cache, mm_slot);
1549}
1550
1551static int __init mm_slots_hash_init(void)
1552{
1553 mm_slots_hash = kzalloc(MM_SLOTS_HASH_HEADS * sizeof(struct hlist_head),
1554 GFP_KERNEL);
1555 if (!mm_slots_hash)
1556 return -ENOMEM;
1557 return 0;
1558}
1559
1560#if 0
1561static void __init mm_slots_hash_free(void)
1562{
1563 kfree(mm_slots_hash);
1564 mm_slots_hash = NULL;
1565}
1566#endif
1567
1568static struct mm_slot *get_mm_slot(struct mm_struct *mm)
1569{
1570 struct mm_slot *mm_slot;
1571 struct hlist_head *bucket;
1572 struct hlist_node *node;
1573
1574 bucket = &mm_slots_hash[((unsigned long)mm / sizeof(struct mm_struct))
1575 % MM_SLOTS_HASH_HEADS];
1576 hlist_for_each_entry(mm_slot, node, bucket, hash) {
1577 if (mm == mm_slot->mm)
1578 return mm_slot;
1579 }
1580 return NULL;
1581}
1582
1583static void insert_to_mm_slots_hash(struct mm_struct *mm,
1584 struct mm_slot *mm_slot)
1585{
1586 struct hlist_head *bucket;
1587
1588 bucket = &mm_slots_hash[((unsigned long)mm / sizeof(struct mm_struct))
1589 % MM_SLOTS_HASH_HEADS];
1590 mm_slot->mm = mm;
1591 hlist_add_head(&mm_slot->hash, bucket);
1592}
1593
1594static inline int khugepaged_test_exit(struct mm_struct *mm)
1595{
1596 return atomic_read(&mm->mm_users) == 0;
1597}
1598
1599int __khugepaged_enter(struct mm_struct *mm)
1600{
1601 struct mm_slot *mm_slot;
1602 int wakeup;
1603
1604 mm_slot = alloc_mm_slot();
1605 if (!mm_slot)
1606 return -ENOMEM;
1607
1608 /* __khugepaged_exit() must not run from under us */
1609 VM_BUG_ON(khugepaged_test_exit(mm));
1610 if (unlikely(test_and_set_bit(MMF_VM_HUGEPAGE, &mm->flags))) {
1611 free_mm_slot(mm_slot);
1612 return 0;
1613 }
1614
1615 spin_lock(&khugepaged_mm_lock);
1616 insert_to_mm_slots_hash(mm, mm_slot);
1617 /*
1618 * Insert just behind the scanning cursor, to let the area settle
1619 * down a little.
1620 */
1621 wakeup = list_empty(&khugepaged_scan.mm_head);
1622 list_add_tail(&mm_slot->mm_node, &khugepaged_scan.mm_head);
1623 spin_unlock(&khugepaged_mm_lock);
1624
1625 atomic_inc(&mm->mm_count);
1626 if (wakeup)
1627 wake_up_interruptible(&khugepaged_wait);
1628
1629 return 0;
1630}
1631
1632int khugepaged_enter_vma_merge(struct vm_area_struct *vma)
1633{
1634 unsigned long hstart, hend;
1635 if (!vma->anon_vma)
1636 /*
1637 * Not yet faulted in so we will register later in the
1638 * page fault if needed.
1639 */
1640 return 0;
78f11a25 1641 if (vma->vm_ops)
ba76149f
AA
1642 /* khugepaged not yet working on file or special mappings */
1643 return 0;
b3b9c293 1644 VM_BUG_ON(vma->vm_flags & VM_NO_THP);
ba76149f
AA
1645 hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
1646 hend = vma->vm_end & HPAGE_PMD_MASK;
1647 if (hstart < hend)
1648 return khugepaged_enter(vma);
1649 return 0;
1650}
1651
1652void __khugepaged_exit(struct mm_struct *mm)
1653{
1654 struct mm_slot *mm_slot;
1655 int free = 0;
1656
1657 spin_lock(&khugepaged_mm_lock);
1658 mm_slot = get_mm_slot(mm);
1659 if (mm_slot && khugepaged_scan.mm_slot != mm_slot) {
1660 hlist_del(&mm_slot->hash);
1661 list_del(&mm_slot->mm_node);
1662 free = 1;
1663 }
d788e80a 1664 spin_unlock(&khugepaged_mm_lock);
ba76149f
AA
1665
1666 if (free) {
ba76149f
AA
1667 clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
1668 free_mm_slot(mm_slot);
1669 mmdrop(mm);
1670 } else if (mm_slot) {
ba76149f
AA
1671 /*
1672 * This is required to serialize against
1673 * khugepaged_test_exit() (which is guaranteed to run
1674 * under mmap sem read mode). Stop here (after we
1675 * return all pagetables will be destroyed) until
1676 * khugepaged has finished working on the pagetables
1677 * under the mmap_sem.
1678 */
1679 down_write(&mm->mmap_sem);
1680 up_write(&mm->mmap_sem);
d788e80a 1681 }
ba76149f
AA
1682}
1683
1684static void release_pte_page(struct page *page)
1685{
1686 /* 0 stands for page_is_file_cache(page) == false */
1687 dec_zone_page_state(page, NR_ISOLATED_ANON + 0);
1688 unlock_page(page);
1689 putback_lru_page(page);
1690}
1691
1692static void release_pte_pages(pte_t *pte, pte_t *_pte)
1693{
1694 while (--_pte >= pte) {
1695 pte_t pteval = *_pte;
1696 if (!pte_none(pteval))
1697 release_pte_page(pte_page(pteval));
1698 }
1699}
1700
1701static void release_all_pte_pages(pte_t *pte)
1702{
1703 release_pte_pages(pte, pte + HPAGE_PMD_NR);
1704}
1705
1706static int __collapse_huge_page_isolate(struct vm_area_struct *vma,
1707 unsigned long address,
1708 pte_t *pte)
1709{
1710 struct page *page;
1711 pte_t *_pte;
1712 int referenced = 0, isolated = 0, none = 0;
1713 for (_pte = pte; _pte < pte+HPAGE_PMD_NR;
1714 _pte++, address += PAGE_SIZE) {
1715 pte_t pteval = *_pte;
1716 if (pte_none(pteval)) {
1717 if (++none <= khugepaged_max_ptes_none)
1718 continue;
1719 else {
1720 release_pte_pages(pte, _pte);
1721 goto out;
1722 }
1723 }
1724 if (!pte_present(pteval) || !pte_write(pteval)) {
1725 release_pte_pages(pte, _pte);
1726 goto out;
1727 }
1728 page = vm_normal_page(vma, address, pteval);
1729 if (unlikely(!page)) {
1730 release_pte_pages(pte, _pte);
1731 goto out;
1732 }
1733 VM_BUG_ON(PageCompound(page));
1734 BUG_ON(!PageAnon(page));
1735 VM_BUG_ON(!PageSwapBacked(page));
1736
1737 /* cannot use mapcount: can't collapse if there's a gup pin */
1738 if (page_count(page) != 1) {
1739 release_pte_pages(pte, _pte);
1740 goto out;
1741 }
1742 /*
1743 * We can do it before isolate_lru_page because the
1744 * page can't be freed from under us. NOTE: PG_lock
1745 * is needed to serialize against split_huge_page
1746 * when invoked from the VM.
1747 */
1748 if (!trylock_page(page)) {
1749 release_pte_pages(pte, _pte);
1750 goto out;
1751 }
1752 /*
1753 * Isolate the page to avoid collapsing an hugepage
1754 * currently in use by the VM.
1755 */
1756 if (isolate_lru_page(page)) {
1757 unlock_page(page);
1758 release_pte_pages(pte, _pte);
1759 goto out;
1760 }
1761 /* 0 stands for page_is_file_cache(page) == false */
1762 inc_zone_page_state(page, NR_ISOLATED_ANON + 0);
1763 VM_BUG_ON(!PageLocked(page));
1764 VM_BUG_ON(PageLRU(page));
1765
1766 /* If there is no mapped pte young don't collapse the page */
8ee53820
AA
1767 if (pte_young(pteval) || PageReferenced(page) ||
1768 mmu_notifier_test_young(vma->vm_mm, address))
ba76149f
AA
1769 referenced = 1;
1770 }
1771 if (unlikely(!referenced))
1772 release_all_pte_pages(pte);
1773 else
1774 isolated = 1;
1775out:
1776 return isolated;
1777}
1778
1779static void __collapse_huge_page_copy(pte_t *pte, struct page *page,
1780 struct vm_area_struct *vma,
1781 unsigned long address,
1782 spinlock_t *ptl)
1783{
1784 pte_t *_pte;
1785 for (_pte = pte; _pte < pte+HPAGE_PMD_NR; _pte++) {
1786 pte_t pteval = *_pte;
1787 struct page *src_page;
1788
1789 if (pte_none(pteval)) {
1790 clear_user_highpage(page, address);
1791 add_mm_counter(vma->vm_mm, MM_ANONPAGES, 1);
1792 } else {
1793 src_page = pte_page(pteval);
1794 copy_user_highpage(page, src_page, address, vma);
1795 VM_BUG_ON(page_mapcount(src_page) != 1);
ba76149f
AA
1796 release_pte_page(src_page);
1797 /*
1798 * ptl mostly unnecessary, but preempt has to
1799 * be disabled to update the per-cpu stats
1800 * inside page_remove_rmap().
1801 */
1802 spin_lock(ptl);
1803 /*
1804 * paravirt calls inside pte_clear here are
1805 * superfluous.
1806 */
1807 pte_clear(vma->vm_mm, address, _pte);
1808 page_remove_rmap(src_page);
1809 spin_unlock(ptl);
1810 free_page_and_swap_cache(src_page);
1811 }
1812
1813 address += PAGE_SIZE;
1814 page++;
1815 }
1816}
1817
26234f36 1818static void khugepaged_alloc_sleep(void)
ba76149f 1819{
26234f36
XG
1820 wait_event_freezable_timeout(khugepaged_wait, false,
1821 msecs_to_jiffies(khugepaged_alloc_sleep_millisecs));
1822}
ba76149f 1823
26234f36
XG
1824#ifdef CONFIG_NUMA
1825static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
1826{
1827 if (IS_ERR(*hpage)) {
1828 if (!*wait)
1829 return false;
1830
1831 *wait = false;
1832 khugepaged_alloc_sleep();
1833 } else if (*hpage) {
1834 put_page(*hpage);
1835 *hpage = NULL;
1836 }
1837
1838 return true;
1839}
1840
1841static struct page
1842*khugepaged_alloc_page(struct page **hpage, struct mm_struct *mm,
1843 struct vm_area_struct *vma, unsigned long address,
1844 int node)
1845{
0bbbc0b3 1846 VM_BUG_ON(*hpage);
ce83d217
AA
1847 /*
1848 * Allocate the page while the vma is still valid and under
1849 * the mmap_sem read mode so there is no memory allocation
1850 * later when we take the mmap_sem in write mode. This is more
1851 * friendly behavior (OTOH it may actually hide bugs) to
1852 * filesystems in userland with daemons allocating memory in
1853 * the userland I/O paths. Allocating memory with the
1854 * mmap_sem in read mode is good idea also to allow greater
1855 * scalability.
1856 */
26234f36 1857 *hpage = alloc_hugepage_vma(khugepaged_defrag(), vma, address,
cc5d462f 1858 node, __GFP_OTHER_NODE);
692e0b35
AA
1859
1860 /*
1861 * After allocating the hugepage, release the mmap_sem read lock in
1862 * preparation for taking it in write mode.
1863 */
1864 up_read(&mm->mmap_sem);
26234f36 1865 if (unlikely(!*hpage)) {
81ab4201 1866 count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
ce83d217 1867 *hpage = ERR_PTR(-ENOMEM);
26234f36 1868 return NULL;
ce83d217 1869 }
26234f36 1870
65b3c07b 1871 count_vm_event(THP_COLLAPSE_ALLOC);
26234f36
XG
1872 return *hpage;
1873}
1874#else
1875static struct page *khugepaged_alloc_hugepage(bool *wait)
1876{
1877 struct page *hpage;
1878
1879 do {
1880 hpage = alloc_hugepage(khugepaged_defrag());
1881 if (!hpage) {
1882 count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
1883 if (!*wait)
1884 return NULL;
1885
1886 *wait = false;
1887 khugepaged_alloc_sleep();
1888 } else
1889 count_vm_event(THP_COLLAPSE_ALLOC);
1890 } while (unlikely(!hpage) && likely(khugepaged_enabled()));
1891
1892 return hpage;
1893}
1894
1895static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
1896{
1897 if (!*hpage)
1898 *hpage = khugepaged_alloc_hugepage(wait);
1899
1900 if (unlikely(!*hpage))
1901 return false;
1902
1903 return true;
1904}
1905
1906static struct page
1907*khugepaged_alloc_page(struct page **hpage, struct mm_struct *mm,
1908 struct vm_area_struct *vma, unsigned long address,
1909 int node)
1910{
1911 up_read(&mm->mmap_sem);
1912 VM_BUG_ON(!*hpage);
1913 return *hpage;
1914}
692e0b35
AA
1915#endif
1916
26234f36
XG
1917static void collapse_huge_page(struct mm_struct *mm,
1918 unsigned long address,
1919 struct page **hpage,
1920 struct vm_area_struct *vma,
1921 int node)
1922{
1923 pgd_t *pgd;
1924 pud_t *pud;
1925 pmd_t *pmd, _pmd;
1926 pte_t *pte;
1927 pgtable_t pgtable;
1928 struct page *new_page;
1929 spinlock_t *ptl;
1930 int isolated;
1931 unsigned long hstart, hend;
1932
1933 VM_BUG_ON(address & ~HPAGE_PMD_MASK);
1934
1935 /* release the mmap_sem read lock. */
1936 new_page = khugepaged_alloc_page(hpage, mm, vma, address, node);
1937 if (!new_page)
1938 return;
1939
420256ef 1940 if (unlikely(mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL)))
ce83d217 1941 return;
ba76149f
AA
1942
1943 /*
1944 * Prevent all access to pagetables with the exception of
1945 * gup_fast later hanlded by the ptep_clear_flush and the VM
1946 * handled by the anon_vma lock + PG_lock.
1947 */
1948 down_write(&mm->mmap_sem);
1949 if (unlikely(khugepaged_test_exit(mm)))
1950 goto out;
1951
1952 vma = find_vma(mm, address);
1953 hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
1954 hend = vma->vm_end & HPAGE_PMD_MASK;
1955 if (address < hstart || address + HPAGE_PMD_SIZE > hend)
1956 goto out;
1957
60ab3244
AA
1958 if ((!(vma->vm_flags & VM_HUGEPAGE) && !khugepaged_always()) ||
1959 (vma->vm_flags & VM_NOHUGEPAGE))
ba76149f
AA
1960 goto out;
1961
78f11a25 1962 if (!vma->anon_vma || vma->vm_ops)
ba76149f 1963 goto out;
a7d6e4ec
AA
1964 if (is_vma_temporary_stack(vma))
1965 goto out;
b3b9c293 1966 VM_BUG_ON(vma->vm_flags & VM_NO_THP);
ba76149f
AA
1967
1968 pgd = pgd_offset(mm, address);
1969 if (!pgd_present(*pgd))
1970 goto out;
1971
1972 pud = pud_offset(pgd, address);
1973 if (!pud_present(*pud))
1974 goto out;
1975
1976 pmd = pmd_offset(pud, address);
1977 /* pmd can't go away or become huge under us */
1978 if (!pmd_present(*pmd) || pmd_trans_huge(*pmd))
1979 goto out;
1980
ba76149f
AA
1981 anon_vma_lock(vma->anon_vma);
1982
1983 pte = pte_offset_map(pmd, address);
1984 ptl = pte_lockptr(mm, pmd);
1985
1986 spin_lock(&mm->page_table_lock); /* probably unnecessary */
1987 /*
1988 * After this gup_fast can't run anymore. This also removes
1989 * any huge TLB entry from the CPU so we won't allow
1990 * huge and small TLB entries for the same virtual address
1991 * to avoid the risk of CPU bugs in that area.
1992 */
1993 _pmd = pmdp_clear_flush_notify(vma, address, pmd);
1994 spin_unlock(&mm->page_table_lock);
1995
1996 spin_lock(ptl);
1997 isolated = __collapse_huge_page_isolate(vma, address, pte);
1998 spin_unlock(ptl);
ba76149f
AA
1999
2000 if (unlikely(!isolated)) {
453c7192 2001 pte_unmap(pte);
ba76149f
AA
2002 spin_lock(&mm->page_table_lock);
2003 BUG_ON(!pmd_none(*pmd));
2004 set_pmd_at(mm, address, pmd, _pmd);
2005 spin_unlock(&mm->page_table_lock);
2006 anon_vma_unlock(vma->anon_vma);
ce83d217 2007 goto out;
ba76149f
AA
2008 }
2009
2010 /*
2011 * All pages are isolated and locked so anon_vma rmap
2012 * can't run anymore.
2013 */
2014 anon_vma_unlock(vma->anon_vma);
2015
2016 __collapse_huge_page_copy(pte, new_page, vma, address, ptl);
453c7192 2017 pte_unmap(pte);
ba76149f
AA
2018 __SetPageUptodate(new_page);
2019 pgtable = pmd_pgtable(_pmd);
2020 VM_BUG_ON(page_count(pgtable) != 1);
2021 VM_BUG_ON(page_mapcount(pgtable) != 0);
2022
2023 _pmd = mk_pmd(new_page, vma->vm_page_prot);
2024 _pmd = maybe_pmd_mkwrite(pmd_mkdirty(_pmd), vma);
2025 _pmd = pmd_mkhuge(_pmd);
2026
2027 /*
2028 * spin_lock() below is not the equivalent of smp_wmb(), so
2029 * this is needed to avoid the copy_huge_page writes to become
2030 * visible after the set_pmd_at() write.
2031 */
2032 smp_wmb();
2033
2034 spin_lock(&mm->page_table_lock);
2035 BUG_ON(!pmd_none(*pmd));
2036 page_add_new_anon_rmap(new_page, vma, address);
2037 set_pmd_at(mm, address, pmd, _pmd);
35d8c7ad 2038 update_mmu_cache(vma, address, _pmd);
ba76149f 2039 prepare_pmd_huge_pte(pgtable, mm);
ba76149f
AA
2040 spin_unlock(&mm->page_table_lock);
2041
2042 *hpage = NULL;
420256ef 2043
ba76149f 2044 khugepaged_pages_collapsed++;
ce83d217 2045out_up_write:
ba76149f 2046 up_write(&mm->mmap_sem);
0bbbc0b3
AA
2047 return;
2048
ce83d217 2049out:
678ff896 2050 mem_cgroup_uncharge_page(new_page);
ce83d217 2051 goto out_up_write;
ba76149f
AA
2052}
2053
2054static int khugepaged_scan_pmd(struct mm_struct *mm,
2055 struct vm_area_struct *vma,
2056 unsigned long address,
2057 struct page **hpage)
2058{
2059 pgd_t *pgd;
2060 pud_t *pud;
2061 pmd_t *pmd;
2062 pte_t *pte, *_pte;
2063 int ret = 0, referenced = 0, none = 0;
2064 struct page *page;
2065 unsigned long _address;
2066 spinlock_t *ptl;
5c4b4be3 2067 int node = -1;
ba76149f
AA
2068
2069 VM_BUG_ON(address & ~HPAGE_PMD_MASK);
2070
2071 pgd = pgd_offset(mm, address);
2072 if (!pgd_present(*pgd))
2073 goto out;
2074
2075 pud = pud_offset(pgd, address);
2076 if (!pud_present(*pud))
2077 goto out;
2078
2079 pmd = pmd_offset(pud, address);
2080 if (!pmd_present(*pmd) || pmd_trans_huge(*pmd))
2081 goto out;
2082
2083 pte = pte_offset_map_lock(mm, pmd, address, &ptl);
2084 for (_address = address, _pte = pte; _pte < pte+HPAGE_PMD_NR;
2085 _pte++, _address += PAGE_SIZE) {
2086 pte_t pteval = *_pte;
2087 if (pte_none(pteval)) {
2088 if (++none <= khugepaged_max_ptes_none)
2089 continue;
2090 else
2091 goto out_unmap;
2092 }
2093 if (!pte_present(pteval) || !pte_write(pteval))
2094 goto out_unmap;
2095 page = vm_normal_page(vma, _address, pteval);
2096 if (unlikely(!page))
2097 goto out_unmap;
5c4b4be3
AK
2098 /*
2099 * Chose the node of the first page. This could
2100 * be more sophisticated and look at more pages,
2101 * but isn't for now.
2102 */
2103 if (node == -1)
2104 node = page_to_nid(page);
ba76149f
AA
2105 VM_BUG_ON(PageCompound(page));
2106 if (!PageLRU(page) || PageLocked(page) || !PageAnon(page))
2107 goto out_unmap;
2108 /* cannot use mapcount: can't collapse if there's a gup pin */
2109 if (page_count(page) != 1)
2110 goto out_unmap;
8ee53820
AA
2111 if (pte_young(pteval) || PageReferenced(page) ||
2112 mmu_notifier_test_young(vma->vm_mm, address))
ba76149f
AA
2113 referenced = 1;
2114 }
2115 if (referenced)
2116 ret = 1;
2117out_unmap:
2118 pte_unmap_unlock(pte, ptl);
ce83d217
AA
2119 if (ret)
2120 /* collapse_huge_page will return with the mmap_sem released */
5c4b4be3 2121 collapse_huge_page(mm, address, hpage, vma, node);
ba76149f
AA
2122out:
2123 return ret;
2124}
2125
2126static void collect_mm_slot(struct mm_slot *mm_slot)
2127{
2128 struct mm_struct *mm = mm_slot->mm;
2129
b9980cdc 2130 VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
ba76149f
AA
2131
2132 if (khugepaged_test_exit(mm)) {
2133 /* free mm_slot */
2134 hlist_del(&mm_slot->hash);
2135 list_del(&mm_slot->mm_node);
2136
2137 /*
2138 * Not strictly needed because the mm exited already.
2139 *
2140 * clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
2141 */
2142
2143 /* khugepaged_mm_lock actually not necessary for the below */
2144 free_mm_slot(mm_slot);
2145 mmdrop(mm);
2146 }
2147}
2148
2149static unsigned int khugepaged_scan_mm_slot(unsigned int pages,
2150 struct page **hpage)
2f1da642
HS
2151 __releases(&khugepaged_mm_lock)
2152 __acquires(&khugepaged_mm_lock)
ba76149f
AA
2153{
2154 struct mm_slot *mm_slot;
2155 struct mm_struct *mm;
2156 struct vm_area_struct *vma;
2157 int progress = 0;
2158
2159 VM_BUG_ON(!pages);
b9980cdc 2160 VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
ba76149f
AA
2161
2162 if (khugepaged_scan.mm_slot)
2163 mm_slot = khugepaged_scan.mm_slot;
2164 else {
2165 mm_slot = list_entry(khugepaged_scan.mm_head.next,
2166 struct mm_slot, mm_node);
2167 khugepaged_scan.address = 0;
2168 khugepaged_scan.mm_slot = mm_slot;
2169 }
2170 spin_unlock(&khugepaged_mm_lock);
2171
2172 mm = mm_slot->mm;
2173 down_read(&mm->mmap_sem);
2174 if (unlikely(khugepaged_test_exit(mm)))
2175 vma = NULL;
2176 else
2177 vma = find_vma(mm, khugepaged_scan.address);
2178
2179 progress++;
2180 for (; vma; vma = vma->vm_next) {
2181 unsigned long hstart, hend;
2182
2183 cond_resched();
2184 if (unlikely(khugepaged_test_exit(mm))) {
2185 progress++;
2186 break;
2187 }
2188
60ab3244
AA
2189 if ((!(vma->vm_flags & VM_HUGEPAGE) &&
2190 !khugepaged_always()) ||
2191 (vma->vm_flags & VM_NOHUGEPAGE)) {
a7d6e4ec 2192 skip:
ba76149f
AA
2193 progress++;
2194 continue;
2195 }
78f11a25 2196 if (!vma->anon_vma || vma->vm_ops)
a7d6e4ec
AA
2197 goto skip;
2198 if (is_vma_temporary_stack(vma))
2199 goto skip;
b3b9c293 2200 VM_BUG_ON(vma->vm_flags & VM_NO_THP);
ba76149f
AA
2201
2202 hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
2203 hend = vma->vm_end & HPAGE_PMD_MASK;
a7d6e4ec
AA
2204 if (hstart >= hend)
2205 goto skip;
2206 if (khugepaged_scan.address > hend)
2207 goto skip;
ba76149f
AA
2208 if (khugepaged_scan.address < hstart)
2209 khugepaged_scan.address = hstart;
a7d6e4ec 2210 VM_BUG_ON(khugepaged_scan.address & ~HPAGE_PMD_MASK);
ba76149f
AA
2211
2212 while (khugepaged_scan.address < hend) {
2213 int ret;
2214 cond_resched();
2215 if (unlikely(khugepaged_test_exit(mm)))
2216 goto breakouterloop;
2217
2218 VM_BUG_ON(khugepaged_scan.address < hstart ||
2219 khugepaged_scan.address + HPAGE_PMD_SIZE >
2220 hend);
2221 ret = khugepaged_scan_pmd(mm, vma,
2222 khugepaged_scan.address,
2223 hpage);
2224 /* move to next address */
2225 khugepaged_scan.address += HPAGE_PMD_SIZE;
2226 progress += HPAGE_PMD_NR;
2227 if (ret)
2228 /* we released mmap_sem so break loop */
2229 goto breakouterloop_mmap_sem;
2230 if (progress >= pages)
2231 goto breakouterloop;
2232 }
2233 }
2234breakouterloop:
2235 up_read(&mm->mmap_sem); /* exit_mmap will destroy ptes after this */
2236breakouterloop_mmap_sem:
2237
2238 spin_lock(&khugepaged_mm_lock);
a7d6e4ec 2239 VM_BUG_ON(khugepaged_scan.mm_slot != mm_slot);
ba76149f
AA
2240 /*
2241 * Release the current mm_slot if this mm is about to die, or
2242 * if we scanned all vmas of this mm.
2243 */
2244 if (khugepaged_test_exit(mm) || !vma) {
2245 /*
2246 * Make sure that if mm_users is reaching zero while
2247 * khugepaged runs here, khugepaged_exit will find
2248 * mm_slot not pointing to the exiting mm.
2249 */
2250 if (mm_slot->mm_node.next != &khugepaged_scan.mm_head) {
2251 khugepaged_scan.mm_slot = list_entry(
2252 mm_slot->mm_node.next,
2253 struct mm_slot, mm_node);
2254 khugepaged_scan.address = 0;
2255 } else {
2256 khugepaged_scan.mm_slot = NULL;
2257 khugepaged_full_scans++;
2258 }
2259
2260 collect_mm_slot(mm_slot);
2261 }
2262
2263 return progress;
2264}
2265
2266static int khugepaged_has_work(void)
2267{
2268 return !list_empty(&khugepaged_scan.mm_head) &&
2269 khugepaged_enabled();
2270}
2271
2272static int khugepaged_wait_event(void)
2273{
2274 return !list_empty(&khugepaged_scan.mm_head) ||
2017c0bf 2275 kthread_should_stop();
ba76149f
AA
2276}
2277
d516904b 2278static void khugepaged_do_scan(void)
ba76149f 2279{
d516904b 2280 struct page *hpage = NULL;
ba76149f
AA
2281 unsigned int progress = 0, pass_through_head = 0;
2282 unsigned int pages = khugepaged_pages_to_scan;
d516904b 2283 bool wait = true;
ba76149f
AA
2284
2285 barrier(); /* write khugepaged_pages_to_scan to local stack */
2286
2287 while (progress < pages) {
26234f36 2288 if (!khugepaged_prealloc_page(&hpage, &wait))
d516904b 2289 break;
26234f36 2290
420256ef 2291 cond_resched();
ba76149f 2292
878aee7d
AA
2293 if (unlikely(kthread_should_stop() || freezing(current)))
2294 break;
2295
ba76149f
AA
2296 spin_lock(&khugepaged_mm_lock);
2297 if (!khugepaged_scan.mm_slot)
2298 pass_through_head++;
2299 if (khugepaged_has_work() &&
2300 pass_through_head < 2)
2301 progress += khugepaged_scan_mm_slot(pages - progress,
d516904b 2302 &hpage);
ba76149f
AA
2303 else
2304 progress = pages;
2305 spin_unlock(&khugepaged_mm_lock);
2306 }
ba76149f 2307
d516904b
XG
2308 if (!IS_ERR_OR_NULL(hpage))
2309 put_page(hpage);
0bbbc0b3
AA
2310}
2311
2017c0bf
XG
2312static void khugepaged_wait_work(void)
2313{
2314 try_to_freeze();
2315
2316 if (khugepaged_has_work()) {
2317 if (!khugepaged_scan_sleep_millisecs)
2318 return;
2319
2320 wait_event_freezable_timeout(khugepaged_wait,
2321 kthread_should_stop(),
2322 msecs_to_jiffies(khugepaged_scan_sleep_millisecs));
2323 return;
2324 }
2325
2326 if (khugepaged_enabled())
2327 wait_event_freezable(khugepaged_wait, khugepaged_wait_event());
2328}
2329
ba76149f
AA
2330static int khugepaged(void *none)
2331{
2332 struct mm_slot *mm_slot;
2333
878aee7d 2334 set_freezable();
ba76149f
AA
2335 set_user_nice(current, 19);
2336
b7231789
XG
2337 while (!kthread_should_stop()) {
2338 khugepaged_do_scan();
2339 khugepaged_wait_work();
2340 }
ba76149f
AA
2341
2342 spin_lock(&khugepaged_mm_lock);
2343 mm_slot = khugepaged_scan.mm_slot;
2344 khugepaged_scan.mm_slot = NULL;
2345 if (mm_slot)
2346 collect_mm_slot(mm_slot);
2347 spin_unlock(&khugepaged_mm_lock);
ba76149f
AA
2348 return 0;
2349}
2350
71e3aac0
AA
2351void __split_huge_page_pmd(struct mm_struct *mm, pmd_t *pmd)
2352{
2353 struct page *page;
2354
2355 spin_lock(&mm->page_table_lock);
2356 if (unlikely(!pmd_trans_huge(*pmd))) {
2357 spin_unlock(&mm->page_table_lock);
2358 return;
2359 }
2360 page = pmd_page(*pmd);
2361 VM_BUG_ON(!page_count(page));
2362 get_page(page);
2363 spin_unlock(&mm->page_table_lock);
2364
2365 split_huge_page(page);
2366
2367 put_page(page);
2368 BUG_ON(pmd_trans_huge(*pmd));
2369}
94fcc585
AA
2370
2371static void split_huge_page_address(struct mm_struct *mm,
2372 unsigned long address)
2373{
2374 pgd_t *pgd;
2375 pud_t *pud;
2376 pmd_t *pmd;
2377
2378 VM_BUG_ON(!(address & ~HPAGE_PMD_MASK));
2379
2380 pgd = pgd_offset(mm, address);
2381 if (!pgd_present(*pgd))
2382 return;
2383
2384 pud = pud_offset(pgd, address);
2385 if (!pud_present(*pud))
2386 return;
2387
2388 pmd = pmd_offset(pud, address);
2389 if (!pmd_present(*pmd))
2390 return;
2391 /*
2392 * Caller holds the mmap_sem write mode, so a huge pmd cannot
2393 * materialize from under us.
2394 */
2395 split_huge_page_pmd(mm, pmd);
2396}
2397
2398void __vma_adjust_trans_huge(struct vm_area_struct *vma,
2399 unsigned long start,
2400 unsigned long end,
2401 long adjust_next)
2402{
2403 /*
2404 * If the new start address isn't hpage aligned and it could
2405 * previously contain an hugepage: check if we need to split
2406 * an huge pmd.
2407 */
2408 if (start & ~HPAGE_PMD_MASK &&
2409 (start & HPAGE_PMD_MASK) >= vma->vm_start &&
2410 (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2411 split_huge_page_address(vma->vm_mm, start);
2412
2413 /*
2414 * If the new end address isn't hpage aligned and it could
2415 * previously contain an hugepage: check if we need to split
2416 * an huge pmd.
2417 */
2418 if (end & ~HPAGE_PMD_MASK &&
2419 (end & HPAGE_PMD_MASK) >= vma->vm_start &&
2420 (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2421 split_huge_page_address(vma->vm_mm, end);
2422
2423 /*
2424 * If we're also updating the vma->vm_next->vm_start, if the new
2425 * vm_next->vm_start isn't page aligned and it could previously
2426 * contain an hugepage: check if we need to split an huge pmd.
2427 */
2428 if (adjust_next > 0) {
2429 struct vm_area_struct *next = vma->vm_next;
2430 unsigned long nstart = next->vm_start;
2431 nstart += adjust_next << PAGE_SHIFT;
2432 if (nstart & ~HPAGE_PMD_MASK &&
2433 (nstart & HPAGE_PMD_MASK) >= next->vm_start &&
2434 (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end)
2435 split_huge_page_address(next->vm_mm, nstart);
2436 }
2437}