Merge tag 'drm-fixes-2018-12-07' of git://anongit.freedesktop.org/drm/drm
[linux-2.6-block.git] / mm / huge_memory.c
CommitLineData
71e3aac0
AA
1/*
2 * Copyright (C) 2009 Red Hat, Inc.
3 *
4 * This work is licensed under the terms of the GNU GPL, version 2. See
5 * the COPYING file in the top-level directory.
6 */
7
ae3a8c1c
AM
8#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
9
71e3aac0
AA
10#include <linux/mm.h>
11#include <linux/sched.h>
f7ccbae4 12#include <linux/sched/coredump.h>
6a3827d7 13#include <linux/sched/numa_balancing.h>
71e3aac0
AA
14#include <linux/highmem.h>
15#include <linux/hugetlb.h>
16#include <linux/mmu_notifier.h>
17#include <linux/rmap.h>
18#include <linux/swap.h>
97ae1749 19#include <linux/shrinker.h>
ba76149f 20#include <linux/mm_inline.h>
e9b61f19 21#include <linux/swapops.h>
4897c765 22#include <linux/dax.h>
ba76149f 23#include <linux/khugepaged.h>
878aee7d 24#include <linux/freezer.h>
f25748e3 25#include <linux/pfn_t.h>
a664b2d8 26#include <linux/mman.h>
3565fce3 27#include <linux/memremap.h>
325adeb5 28#include <linux/pagemap.h>
49071d43 29#include <linux/debugfs.h>
4daae3b4 30#include <linux/migrate.h>
43b5fbbd 31#include <linux/hashtable.h>
6b251fc9 32#include <linux/userfaultfd_k.h>
33c3fc71 33#include <linux/page_idle.h>
baa355fd 34#include <linux/shmem_fs.h>
6b31d595 35#include <linux/oom.h>
97ae1749 36
71e3aac0
AA
37#include <asm/tlb.h>
38#include <asm/pgalloc.h>
39#include "internal.h"
40
ba76149f 41/*
b14d595a
MD
42 * By default, transparent hugepage support is disabled in order to avoid
43 * risking an increased memory footprint for applications that are not
44 * guaranteed to benefit from it. When transparent hugepage support is
45 * enabled, it is for all mappings, and khugepaged scans all mappings.
8bfa3f9a
JW
46 * Defrag is invoked by khugepaged hugepage allocations and by page faults
47 * for all hugepage allocations.
ba76149f 48 */
71e3aac0 49unsigned long transparent_hugepage_flags __read_mostly =
13ece886 50#ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
ba76149f 51 (1<<TRANSPARENT_HUGEPAGE_FLAG)|
13ece886
AA
52#endif
53#ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
54 (1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
55#endif
444eb2a4 56 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG)|
79da5407
KS
57 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)|
58 (1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
ba76149f 59
9a982250 60static struct shrinker deferred_split_shrinker;
f000565a 61
97ae1749 62static atomic_t huge_zero_refcount;
56873f43 63struct page *huge_zero_page __read_mostly;
4a6c1297 64
6fcb52a5 65static struct page *get_huge_zero_page(void)
97ae1749
KS
66{
67 struct page *zero_page;
68retry:
69 if (likely(atomic_inc_not_zero(&huge_zero_refcount)))
4db0c3c2 70 return READ_ONCE(huge_zero_page);
97ae1749
KS
71
72 zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE,
4a6c1297 73 HPAGE_PMD_ORDER);
d8a8e1f0
KS
74 if (!zero_page) {
75 count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED);
5918d10a 76 return NULL;
d8a8e1f0
KS
77 }
78 count_vm_event(THP_ZERO_PAGE_ALLOC);
97ae1749 79 preempt_disable();
5918d10a 80 if (cmpxchg(&huge_zero_page, NULL, zero_page)) {
97ae1749 81 preempt_enable();
5ddacbe9 82 __free_pages(zero_page, compound_order(zero_page));
97ae1749
KS
83 goto retry;
84 }
85
86 /* We take additional reference here. It will be put back by shrinker */
87 atomic_set(&huge_zero_refcount, 2);
88 preempt_enable();
4db0c3c2 89 return READ_ONCE(huge_zero_page);
4a6c1297
KS
90}
91
6fcb52a5 92static void put_huge_zero_page(void)
4a6c1297 93{
97ae1749
KS
94 /*
95 * Counter should never go to zero here. Only shrinker can put
96 * last reference.
97 */
98 BUG_ON(atomic_dec_and_test(&huge_zero_refcount));
4a6c1297
KS
99}
100
6fcb52a5
AL
101struct page *mm_get_huge_zero_page(struct mm_struct *mm)
102{
103 if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
104 return READ_ONCE(huge_zero_page);
105
106 if (!get_huge_zero_page())
107 return NULL;
108
109 if (test_and_set_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
110 put_huge_zero_page();
111
112 return READ_ONCE(huge_zero_page);
113}
114
115void mm_put_huge_zero_page(struct mm_struct *mm)
116{
117 if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
118 put_huge_zero_page();
119}
120
48896466
GC
121static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink,
122 struct shrink_control *sc)
4a6c1297 123{
48896466
GC
124 /* we can free zero page only if last reference remains */
125 return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0;
126}
97ae1749 127
48896466
GC
128static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink,
129 struct shrink_control *sc)
130{
97ae1749 131 if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) {
5918d10a
KS
132 struct page *zero_page = xchg(&huge_zero_page, NULL);
133 BUG_ON(zero_page == NULL);
5ddacbe9 134 __free_pages(zero_page, compound_order(zero_page));
48896466 135 return HPAGE_PMD_NR;
97ae1749
KS
136 }
137
138 return 0;
4a6c1297
KS
139}
140
97ae1749 141static struct shrinker huge_zero_page_shrinker = {
48896466
GC
142 .count_objects = shrink_huge_zero_page_count,
143 .scan_objects = shrink_huge_zero_page_scan,
97ae1749
KS
144 .seeks = DEFAULT_SEEKS,
145};
146
71e3aac0 147#ifdef CONFIG_SYSFS
71e3aac0
AA
148static ssize_t enabled_show(struct kobject *kobj,
149 struct kobj_attribute *attr, char *buf)
150{
444eb2a4
MG
151 if (test_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags))
152 return sprintf(buf, "[always] madvise never\n");
153 else if (test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags))
154 return sprintf(buf, "always [madvise] never\n");
155 else
156 return sprintf(buf, "always madvise [never]\n");
71e3aac0 157}
444eb2a4 158
71e3aac0
AA
159static ssize_t enabled_store(struct kobject *kobj,
160 struct kobj_attribute *attr,
161 const char *buf, size_t count)
162{
21440d7e 163 ssize_t ret = count;
ba76149f 164
21440d7e
DR
165 if (!memcmp("always", buf,
166 min(sizeof("always")-1, count))) {
167 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
168 set_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
169 } else if (!memcmp("madvise", buf,
170 min(sizeof("madvise")-1, count))) {
171 clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
172 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
173 } else if (!memcmp("never", buf,
174 min(sizeof("never")-1, count))) {
175 clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
176 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
177 } else
178 ret = -EINVAL;
ba76149f
AA
179
180 if (ret > 0) {
b46e756f 181 int err = start_stop_khugepaged();
ba76149f
AA
182 if (err)
183 ret = err;
184 }
ba76149f 185 return ret;
71e3aac0
AA
186}
187static struct kobj_attribute enabled_attr =
188 __ATTR(enabled, 0644, enabled_show, enabled_store);
189
b46e756f 190ssize_t single_hugepage_flag_show(struct kobject *kobj,
71e3aac0
AA
191 struct kobj_attribute *attr, char *buf,
192 enum transparent_hugepage_flag flag)
193{
e27e6151
BH
194 return sprintf(buf, "%d\n",
195 !!test_bit(flag, &transparent_hugepage_flags));
71e3aac0 196}
e27e6151 197
b46e756f 198ssize_t single_hugepage_flag_store(struct kobject *kobj,
71e3aac0
AA
199 struct kobj_attribute *attr,
200 const char *buf, size_t count,
201 enum transparent_hugepage_flag flag)
202{
e27e6151
BH
203 unsigned long value;
204 int ret;
205
206 ret = kstrtoul(buf, 10, &value);
207 if (ret < 0)
208 return ret;
209 if (value > 1)
210 return -EINVAL;
211
212 if (value)
71e3aac0 213 set_bit(flag, &transparent_hugepage_flags);
e27e6151 214 else
71e3aac0 215 clear_bit(flag, &transparent_hugepage_flags);
71e3aac0
AA
216
217 return count;
218}
219
71e3aac0
AA
220static ssize_t defrag_show(struct kobject *kobj,
221 struct kobj_attribute *attr, char *buf)
222{
444eb2a4 223 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
21440d7e 224 return sprintf(buf, "[always] defer defer+madvise madvise never\n");
444eb2a4 225 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
21440d7e
DR
226 return sprintf(buf, "always [defer] defer+madvise madvise never\n");
227 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags))
228 return sprintf(buf, "always defer [defer+madvise] madvise never\n");
229 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
230 return sprintf(buf, "always defer defer+madvise [madvise] never\n");
231 return sprintf(buf, "always defer defer+madvise madvise [never]\n");
71e3aac0 232}
21440d7e 233
71e3aac0
AA
234static ssize_t defrag_store(struct kobject *kobj,
235 struct kobj_attribute *attr,
236 const char *buf, size_t count)
237{
21440d7e
DR
238 if (!memcmp("always", buf,
239 min(sizeof("always")-1, count))) {
240 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
241 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
242 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
243 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
21440d7e
DR
244 } else if (!memcmp("defer+madvise", buf,
245 min(sizeof("defer+madvise")-1, count))) {
246 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
247 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
248 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
249 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
4fad7fb6
DR
250 } else if (!memcmp("defer", buf,
251 min(sizeof("defer")-1, count))) {
252 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
253 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
254 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
255 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
21440d7e
DR
256 } else if (!memcmp("madvise", buf,
257 min(sizeof("madvise")-1, count))) {
258 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
259 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
260 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
261 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
262 } else if (!memcmp("never", buf,
263 min(sizeof("never")-1, count))) {
264 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
265 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
266 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
267 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
268 } else
269 return -EINVAL;
270
271 return count;
71e3aac0
AA
272}
273static struct kobj_attribute defrag_attr =
274 __ATTR(defrag, 0644, defrag_show, defrag_store);
275
79da5407
KS
276static ssize_t use_zero_page_show(struct kobject *kobj,
277 struct kobj_attribute *attr, char *buf)
278{
b46e756f 279 return single_hugepage_flag_show(kobj, attr, buf,
79da5407
KS
280 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
281}
282static ssize_t use_zero_page_store(struct kobject *kobj,
283 struct kobj_attribute *attr, const char *buf, size_t count)
284{
b46e756f 285 return single_hugepage_flag_store(kobj, attr, buf, count,
79da5407
KS
286 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
287}
288static struct kobj_attribute use_zero_page_attr =
289 __ATTR(use_zero_page, 0644, use_zero_page_show, use_zero_page_store);
49920d28
HD
290
291static ssize_t hpage_pmd_size_show(struct kobject *kobj,
292 struct kobj_attribute *attr, char *buf)
293{
294 return sprintf(buf, "%lu\n", HPAGE_PMD_SIZE);
295}
296static struct kobj_attribute hpage_pmd_size_attr =
297 __ATTR_RO(hpage_pmd_size);
298
71e3aac0
AA
299#ifdef CONFIG_DEBUG_VM
300static ssize_t debug_cow_show(struct kobject *kobj,
301 struct kobj_attribute *attr, char *buf)
302{
b46e756f 303 return single_hugepage_flag_show(kobj, attr, buf,
71e3aac0
AA
304 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
305}
306static ssize_t debug_cow_store(struct kobject *kobj,
307 struct kobj_attribute *attr,
308 const char *buf, size_t count)
309{
b46e756f 310 return single_hugepage_flag_store(kobj, attr, buf, count,
71e3aac0
AA
311 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
312}
313static struct kobj_attribute debug_cow_attr =
314 __ATTR(debug_cow, 0644, debug_cow_show, debug_cow_store);
315#endif /* CONFIG_DEBUG_VM */
316
317static struct attribute *hugepage_attr[] = {
318 &enabled_attr.attr,
319 &defrag_attr.attr,
79da5407 320 &use_zero_page_attr.attr,
49920d28 321 &hpage_pmd_size_attr.attr,
e496cf3d 322#if defined(CONFIG_SHMEM) && defined(CONFIG_TRANSPARENT_HUGE_PAGECACHE)
5a6e75f8
KS
323 &shmem_enabled_attr.attr,
324#endif
71e3aac0
AA
325#ifdef CONFIG_DEBUG_VM
326 &debug_cow_attr.attr,
327#endif
328 NULL,
329};
330
8aa95a21 331static const struct attribute_group hugepage_attr_group = {
71e3aac0 332 .attrs = hugepage_attr,
ba76149f
AA
333};
334
569e5590 335static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
71e3aac0 336{
71e3aac0
AA
337 int err;
338
569e5590
SL
339 *hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
340 if (unlikely(!*hugepage_kobj)) {
ae3a8c1c 341 pr_err("failed to create transparent hugepage kobject\n");
569e5590 342 return -ENOMEM;
ba76149f
AA
343 }
344
569e5590 345 err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
ba76149f 346 if (err) {
ae3a8c1c 347 pr_err("failed to register transparent hugepage group\n");
569e5590 348 goto delete_obj;
ba76149f
AA
349 }
350
569e5590 351 err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
ba76149f 352 if (err) {
ae3a8c1c 353 pr_err("failed to register transparent hugepage group\n");
569e5590 354 goto remove_hp_group;
ba76149f 355 }
569e5590
SL
356
357 return 0;
358
359remove_hp_group:
360 sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
361delete_obj:
362 kobject_put(*hugepage_kobj);
363 return err;
364}
365
366static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
367{
368 sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
369 sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
370 kobject_put(hugepage_kobj);
371}
372#else
373static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
374{
375 return 0;
376}
377
378static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
379{
380}
381#endif /* CONFIG_SYSFS */
382
383static int __init hugepage_init(void)
384{
385 int err;
386 struct kobject *hugepage_kobj;
387
388 if (!has_transparent_hugepage()) {
389 transparent_hugepage_flags = 0;
390 return -EINVAL;
391 }
392
ff20c2e0
KS
393 /*
394 * hugepages can't be allocated by the buddy allocator
395 */
396 MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER >= MAX_ORDER);
397 /*
398 * we use page->mapping and page->index in second tail page
399 * as list_head: assuming THP order >= 2
400 */
401 MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER < 2);
402
569e5590
SL
403 err = hugepage_init_sysfs(&hugepage_kobj);
404 if (err)
65ebb64f 405 goto err_sysfs;
ba76149f 406
b46e756f 407 err = khugepaged_init();
ba76149f 408 if (err)
65ebb64f 409 goto err_slab;
ba76149f 410
65ebb64f
KS
411 err = register_shrinker(&huge_zero_page_shrinker);
412 if (err)
413 goto err_hzp_shrinker;
9a982250
KS
414 err = register_shrinker(&deferred_split_shrinker);
415 if (err)
416 goto err_split_shrinker;
97ae1749 417
97562cd2
RR
418 /*
419 * By default disable transparent hugepages on smaller systems,
420 * where the extra memory used could hurt more than TLB overhead
421 * is likely to save. The admin can still enable it through /sys.
422 */
79553da2 423 if (totalram_pages < (512 << (20 - PAGE_SHIFT))) {
97562cd2 424 transparent_hugepage_flags = 0;
79553da2
KS
425 return 0;
426 }
97562cd2 427
79553da2 428 err = start_stop_khugepaged();
65ebb64f
KS
429 if (err)
430 goto err_khugepaged;
ba76149f 431
569e5590 432 return 0;
65ebb64f 433err_khugepaged:
9a982250
KS
434 unregister_shrinker(&deferred_split_shrinker);
435err_split_shrinker:
65ebb64f
KS
436 unregister_shrinker(&huge_zero_page_shrinker);
437err_hzp_shrinker:
b46e756f 438 khugepaged_destroy();
65ebb64f 439err_slab:
569e5590 440 hugepage_exit_sysfs(hugepage_kobj);
65ebb64f 441err_sysfs:
ba76149f 442 return err;
71e3aac0 443}
a64fb3cd 444subsys_initcall(hugepage_init);
71e3aac0
AA
445
446static int __init setup_transparent_hugepage(char *str)
447{
448 int ret = 0;
449 if (!str)
450 goto out;
451 if (!strcmp(str, "always")) {
452 set_bit(TRANSPARENT_HUGEPAGE_FLAG,
453 &transparent_hugepage_flags);
454 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
455 &transparent_hugepage_flags);
456 ret = 1;
457 } else if (!strcmp(str, "madvise")) {
458 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
459 &transparent_hugepage_flags);
460 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
461 &transparent_hugepage_flags);
462 ret = 1;
463 } else if (!strcmp(str, "never")) {
464 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
465 &transparent_hugepage_flags);
466 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
467 &transparent_hugepage_flags);
468 ret = 1;
469 }
470out:
471 if (!ret)
ae3a8c1c 472 pr_warn("transparent_hugepage= cannot parse, ignored\n");
71e3aac0
AA
473 return ret;
474}
475__setup("transparent_hugepage=", setup_transparent_hugepage);
476
f55e1014 477pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
71e3aac0 478{
f55e1014 479 if (likely(vma->vm_flags & VM_WRITE))
71e3aac0
AA
480 pmd = pmd_mkwrite(pmd);
481 return pmd;
482}
483
9a982250
KS
484static inline struct list_head *page_deferred_list(struct page *page)
485{
fa3015b7
MW
486 /* ->lru in the tail pages is occupied by compound_head. */
487 return &page[2].deferred_list;
9a982250
KS
488}
489
490void prep_transhuge_page(struct page *page)
491{
492 /*
493 * we use page->mapping and page->indexlru in second tail page
494 * as list_head: assuming THP order >= 2
495 */
9a982250
KS
496
497 INIT_LIST_HEAD(page_deferred_list(page));
498 set_compound_page_dtor(page, TRANSHUGE_PAGE_DTOR);
499}
500
74d2fad1
TK
501unsigned long __thp_get_unmapped_area(struct file *filp, unsigned long len,
502 loff_t off, unsigned long flags, unsigned long size)
503{
504 unsigned long addr;
505 loff_t off_end = off + len;
506 loff_t off_align = round_up(off, size);
507 unsigned long len_pad;
508
509 if (off_end <= off_align || (off_end - off_align) < size)
510 return 0;
511
512 len_pad = len + size;
513 if (len_pad < len || (off + len_pad) < off)
514 return 0;
515
516 addr = current->mm->get_unmapped_area(filp, 0, len_pad,
517 off >> PAGE_SHIFT, flags);
518 if (IS_ERR_VALUE(addr))
519 return 0;
520
521 addr += (off - addr) & (size - 1);
522 return addr;
523}
524
525unsigned long thp_get_unmapped_area(struct file *filp, unsigned long addr,
526 unsigned long len, unsigned long pgoff, unsigned long flags)
527{
528 loff_t off = (loff_t)pgoff << PAGE_SHIFT;
529
530 if (addr)
531 goto out;
532 if (!IS_DAX(filp->f_mapping->host) || !IS_ENABLED(CONFIG_FS_DAX_PMD))
533 goto out;
534
535 addr = __thp_get_unmapped_area(filp, len, off, flags, PMD_SIZE);
536 if (addr)
537 return addr;
538
539 out:
540 return current->mm->get_unmapped_area(filp, addr, len, pgoff, flags);
541}
542EXPORT_SYMBOL_GPL(thp_get_unmapped_area);
543
2b740303
SJ
544static vm_fault_t __do_huge_pmd_anonymous_page(struct vm_fault *vmf,
545 struct page *page, gfp_t gfp)
71e3aac0 546{
82b0f8c3 547 struct vm_area_struct *vma = vmf->vma;
00501b53 548 struct mem_cgroup *memcg;
71e3aac0 549 pgtable_t pgtable;
82b0f8c3 550 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
2b740303 551 vm_fault_t ret = 0;
71e3aac0 552
309381fe 553 VM_BUG_ON_PAGE(!PageCompound(page), page);
00501b53 554
2cf85583 555 if (mem_cgroup_try_charge_delay(page, vma->vm_mm, gfp, &memcg, true)) {
6b251fc9
AA
556 put_page(page);
557 count_vm_event(THP_FAULT_FALLBACK);
558 return VM_FAULT_FALLBACK;
559 }
00501b53 560
bae473a4 561 pgtable = pte_alloc_one(vma->vm_mm, haddr);
00501b53 562 if (unlikely(!pgtable)) {
6b31d595
MH
563 ret = VM_FAULT_OOM;
564 goto release;
00501b53 565 }
71e3aac0 566
c79b57e4 567 clear_huge_page(page, vmf->address, HPAGE_PMD_NR);
52f37629
MK
568 /*
569 * The memory barrier inside __SetPageUptodate makes sure that
570 * clear_huge_page writes become visible before the set_pmd_at()
571 * write.
572 */
71e3aac0
AA
573 __SetPageUptodate(page);
574
82b0f8c3
JK
575 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
576 if (unlikely(!pmd_none(*vmf->pmd))) {
6b31d595 577 goto unlock_release;
71e3aac0
AA
578 } else {
579 pmd_t entry;
6b251fc9 580
6b31d595
MH
581 ret = check_stable_address_space(vma->vm_mm);
582 if (ret)
583 goto unlock_release;
584
6b251fc9
AA
585 /* Deliver the page fault to userland */
586 if (userfaultfd_missing(vma)) {
2b740303 587 vm_fault_t ret2;
6b251fc9 588
82b0f8c3 589 spin_unlock(vmf->ptl);
f627c2f5 590 mem_cgroup_cancel_charge(page, memcg, true);
6b251fc9 591 put_page(page);
bae473a4 592 pte_free(vma->vm_mm, pgtable);
2b740303
SJ
593 ret2 = handle_userfault(vmf, VM_UFFD_MISSING);
594 VM_BUG_ON(ret2 & VM_FAULT_FALLBACK);
595 return ret2;
6b251fc9
AA
596 }
597
3122359a 598 entry = mk_huge_pmd(page, vma->vm_page_prot);
f55e1014 599 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
d281ee61 600 page_add_new_anon_rmap(page, vma, haddr, true);
f627c2f5 601 mem_cgroup_commit_charge(page, memcg, false, true);
00501b53 602 lru_cache_add_active_or_unevictable(page, vma);
82b0f8c3
JK
603 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, pgtable);
604 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
bae473a4 605 add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
c4812909 606 mm_inc_nr_ptes(vma->vm_mm);
82b0f8c3 607 spin_unlock(vmf->ptl);
6b251fc9 608 count_vm_event(THP_FAULT_ALLOC);
71e3aac0
AA
609 }
610
aa2e878e 611 return 0;
6b31d595
MH
612unlock_release:
613 spin_unlock(vmf->ptl);
614release:
615 if (pgtable)
616 pte_free(vma->vm_mm, pgtable);
617 mem_cgroup_cancel_charge(page, memcg, true);
618 put_page(page);
619 return ret;
620
71e3aac0
AA
621}
622
444eb2a4 623/*
21440d7e
DR
624 * always: directly stall for all thp allocations
625 * defer: wake kswapd and fail if not immediately available
626 * defer+madvise: wake kswapd and directly stall for MADV_HUGEPAGE, otherwise
627 * fail if not immediately available
628 * madvise: directly stall for MADV_HUGEPAGE, otherwise fail if not immediately
629 * available
630 * never: never stall for any thp allocation
444eb2a4 631 */
89c83fb5 632static inline gfp_t alloc_hugepage_direct_gfpmask(struct vm_area_struct *vma, unsigned long addr)
444eb2a4 633{
21440d7e 634 const bool vma_madvised = !!(vma->vm_flags & VM_HUGEPAGE);
2f0799a0 635 const gfp_t gfp_mask = GFP_TRANSHUGE_LIGHT | __GFP_THISNODE;
25160354 636
2f0799a0 637 /* Always do synchronous compaction */
21440d7e 638 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
2f0799a0
DR
639 return GFP_TRANSHUGE | __GFP_THISNODE |
640 (vma_madvised ? 0 : __GFP_NORETRY);
641
642 /* Kick kcompactd and fail quickly */
21440d7e 643 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
2f0799a0
DR
644 return gfp_mask | __GFP_KSWAPD_RECLAIM;
645
646 /* Synchronous compaction if madvised, otherwise kick kcompactd */
21440d7e 647 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags))
2f0799a0
DR
648 return gfp_mask | (vma_madvised ? __GFP_DIRECT_RECLAIM :
649 __GFP_KSWAPD_RECLAIM);
650
651 /* Only do synchronous compaction if madvised */
21440d7e 652 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
2f0799a0
DR
653 return gfp_mask | (vma_madvised ? __GFP_DIRECT_RECLAIM : 0);
654
655 return gfp_mask;
444eb2a4
MG
656}
657
c4088ebd 658/* Caller must hold page table lock. */
d295e341 659static bool set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm,
97ae1749 660 struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd,
5918d10a 661 struct page *zero_page)
fc9fe822
KS
662{
663 pmd_t entry;
7c414164
AM
664 if (!pmd_none(*pmd))
665 return false;
5918d10a 666 entry = mk_pmd(zero_page, vma->vm_page_prot);
fc9fe822 667 entry = pmd_mkhuge(entry);
12c9d70b
MW
668 if (pgtable)
669 pgtable_trans_huge_deposit(mm, pmd, pgtable);
fc9fe822 670 set_pmd_at(mm, haddr, pmd, entry);
c4812909 671 mm_inc_nr_ptes(mm);
7c414164 672 return true;
fc9fe822
KS
673}
674
2b740303 675vm_fault_t do_huge_pmd_anonymous_page(struct vm_fault *vmf)
71e3aac0 676{
82b0f8c3 677 struct vm_area_struct *vma = vmf->vma;
077fcf11 678 gfp_t gfp;
71e3aac0 679 struct page *page;
82b0f8c3 680 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
71e3aac0 681
128ec037 682 if (haddr < vma->vm_start || haddr + HPAGE_PMD_SIZE > vma->vm_end)
c0292554 683 return VM_FAULT_FALLBACK;
128ec037
KS
684 if (unlikely(anon_vma_prepare(vma)))
685 return VM_FAULT_OOM;
6d50e60c 686 if (unlikely(khugepaged_enter(vma, vma->vm_flags)))
128ec037 687 return VM_FAULT_OOM;
82b0f8c3 688 if (!(vmf->flags & FAULT_FLAG_WRITE) &&
bae473a4 689 !mm_forbids_zeropage(vma->vm_mm) &&
128ec037
KS
690 transparent_hugepage_use_zero_page()) {
691 pgtable_t pgtable;
692 struct page *zero_page;
693 bool set;
2b740303 694 vm_fault_t ret;
bae473a4 695 pgtable = pte_alloc_one(vma->vm_mm, haddr);
128ec037 696 if (unlikely(!pgtable))
ba76149f 697 return VM_FAULT_OOM;
6fcb52a5 698 zero_page = mm_get_huge_zero_page(vma->vm_mm);
128ec037 699 if (unlikely(!zero_page)) {
bae473a4 700 pte_free(vma->vm_mm, pgtable);
81ab4201 701 count_vm_event(THP_FAULT_FALLBACK);
c0292554 702 return VM_FAULT_FALLBACK;
b9bbfbe3 703 }
82b0f8c3 704 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
6b251fc9
AA
705 ret = 0;
706 set = false;
82b0f8c3 707 if (pmd_none(*vmf->pmd)) {
6b31d595
MH
708 ret = check_stable_address_space(vma->vm_mm);
709 if (ret) {
710 spin_unlock(vmf->ptl);
711 } else if (userfaultfd_missing(vma)) {
82b0f8c3
JK
712 spin_unlock(vmf->ptl);
713 ret = handle_userfault(vmf, VM_UFFD_MISSING);
6b251fc9
AA
714 VM_BUG_ON(ret & VM_FAULT_FALLBACK);
715 } else {
bae473a4 716 set_huge_zero_page(pgtable, vma->vm_mm, vma,
82b0f8c3
JK
717 haddr, vmf->pmd, zero_page);
718 spin_unlock(vmf->ptl);
6b251fc9
AA
719 set = true;
720 }
721 } else
82b0f8c3 722 spin_unlock(vmf->ptl);
6fcb52a5 723 if (!set)
bae473a4 724 pte_free(vma->vm_mm, pgtable);
6b251fc9 725 return ret;
71e3aac0 726 }
89c83fb5
MH
727 gfp = alloc_hugepage_direct_gfpmask(vma, haddr);
728 page = alloc_pages_vma(gfp, HPAGE_PMD_ORDER, vma, haddr, numa_node_id());
128ec037
KS
729 if (unlikely(!page)) {
730 count_vm_event(THP_FAULT_FALLBACK);
c0292554 731 return VM_FAULT_FALLBACK;
128ec037 732 }
9a982250 733 prep_transhuge_page(page);
82b0f8c3 734 return __do_huge_pmd_anonymous_page(vmf, page, gfp);
71e3aac0
AA
735}
736
ae18d6dc 737static void insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
3b6521f5
OH
738 pmd_t *pmd, pfn_t pfn, pgprot_t prot, bool write,
739 pgtable_t pgtable)
5cad465d
MW
740{
741 struct mm_struct *mm = vma->vm_mm;
742 pmd_t entry;
743 spinlock_t *ptl;
744
745 ptl = pmd_lock(mm, pmd);
f25748e3
DW
746 entry = pmd_mkhuge(pfn_t_pmd(pfn, prot));
747 if (pfn_t_devmap(pfn))
748 entry = pmd_mkdevmap(entry);
01871e59 749 if (write) {
f55e1014
LT
750 entry = pmd_mkyoung(pmd_mkdirty(entry));
751 entry = maybe_pmd_mkwrite(entry, vma);
5cad465d 752 }
3b6521f5
OH
753
754 if (pgtable) {
755 pgtable_trans_huge_deposit(mm, pmd, pgtable);
c4812909 756 mm_inc_nr_ptes(mm);
3b6521f5
OH
757 }
758
01871e59
RZ
759 set_pmd_at(mm, addr, pmd, entry);
760 update_mmu_cache_pmd(vma, addr, pmd);
5cad465d 761 spin_unlock(ptl);
5cad465d
MW
762}
763
226ab561 764vm_fault_t vmf_insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
f25748e3 765 pmd_t *pmd, pfn_t pfn, bool write)
5cad465d
MW
766{
767 pgprot_t pgprot = vma->vm_page_prot;
3b6521f5 768 pgtable_t pgtable = NULL;
5cad465d
MW
769 /*
770 * If we had pmd_special, we could avoid all these restrictions,
771 * but we need to be consistent with PTEs and architectures that
772 * can't support a 'special' bit.
773 */
e1fb4a08
DJ
774 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) &&
775 !pfn_t_devmap(pfn));
5cad465d
MW
776 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
777 (VM_PFNMAP|VM_MIXEDMAP));
778 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
5cad465d
MW
779
780 if (addr < vma->vm_start || addr >= vma->vm_end)
781 return VM_FAULT_SIGBUS;
308a047c 782
3b6521f5
OH
783 if (arch_needs_pgtable_deposit()) {
784 pgtable = pte_alloc_one(vma->vm_mm, addr);
785 if (!pgtable)
786 return VM_FAULT_OOM;
787 }
788
308a047c
BP
789 track_pfn_insert(vma, &pgprot, pfn);
790
3b6521f5 791 insert_pfn_pmd(vma, addr, pmd, pfn, pgprot, write, pgtable);
ae18d6dc 792 return VM_FAULT_NOPAGE;
5cad465d 793}
dee41079 794EXPORT_SYMBOL_GPL(vmf_insert_pfn_pmd);
5cad465d 795
a00cc7d9 796#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
f55e1014 797static pud_t maybe_pud_mkwrite(pud_t pud, struct vm_area_struct *vma)
a00cc7d9 798{
f55e1014 799 if (likely(vma->vm_flags & VM_WRITE))
a00cc7d9
MW
800 pud = pud_mkwrite(pud);
801 return pud;
802}
803
804static void insert_pfn_pud(struct vm_area_struct *vma, unsigned long addr,
805 pud_t *pud, pfn_t pfn, pgprot_t prot, bool write)
806{
807 struct mm_struct *mm = vma->vm_mm;
808 pud_t entry;
809 spinlock_t *ptl;
810
811 ptl = pud_lock(mm, pud);
812 entry = pud_mkhuge(pfn_t_pud(pfn, prot));
813 if (pfn_t_devmap(pfn))
814 entry = pud_mkdevmap(entry);
815 if (write) {
f55e1014
LT
816 entry = pud_mkyoung(pud_mkdirty(entry));
817 entry = maybe_pud_mkwrite(entry, vma);
a00cc7d9
MW
818 }
819 set_pud_at(mm, addr, pud, entry);
820 update_mmu_cache_pud(vma, addr, pud);
821 spin_unlock(ptl);
822}
823
226ab561 824vm_fault_t vmf_insert_pfn_pud(struct vm_area_struct *vma, unsigned long addr,
a00cc7d9
MW
825 pud_t *pud, pfn_t pfn, bool write)
826{
827 pgprot_t pgprot = vma->vm_page_prot;
828 /*
829 * If we had pud_special, we could avoid all these restrictions,
830 * but we need to be consistent with PTEs and architectures that
831 * can't support a 'special' bit.
832 */
62ec0d8c
DJ
833 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) &&
834 !pfn_t_devmap(pfn));
a00cc7d9
MW
835 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
836 (VM_PFNMAP|VM_MIXEDMAP));
837 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
a00cc7d9
MW
838
839 if (addr < vma->vm_start || addr >= vma->vm_end)
840 return VM_FAULT_SIGBUS;
841
842 track_pfn_insert(vma, &pgprot, pfn);
843
844 insert_pfn_pud(vma, addr, pud, pfn, pgprot, write);
845 return VM_FAULT_NOPAGE;
846}
847EXPORT_SYMBOL_GPL(vmf_insert_pfn_pud);
848#endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
849
3565fce3 850static void touch_pmd(struct vm_area_struct *vma, unsigned long addr,
a8f97366 851 pmd_t *pmd, int flags)
3565fce3
DW
852{
853 pmd_t _pmd;
854
a8f97366
KS
855 _pmd = pmd_mkyoung(*pmd);
856 if (flags & FOLL_WRITE)
857 _pmd = pmd_mkdirty(_pmd);
3565fce3 858 if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK,
a8f97366 859 pmd, _pmd, flags & FOLL_WRITE))
3565fce3
DW
860 update_mmu_cache_pmd(vma, addr, pmd);
861}
862
863struct page *follow_devmap_pmd(struct vm_area_struct *vma, unsigned long addr,
df06b37f 864 pmd_t *pmd, int flags, struct dev_pagemap **pgmap)
3565fce3
DW
865{
866 unsigned long pfn = pmd_pfn(*pmd);
867 struct mm_struct *mm = vma->vm_mm;
3565fce3
DW
868 struct page *page;
869
870 assert_spin_locked(pmd_lockptr(mm, pmd));
871
8310d48b
KF
872 /*
873 * When we COW a devmap PMD entry, we split it into PTEs, so we should
874 * not be in this function with `flags & FOLL_COW` set.
875 */
876 WARN_ONCE(flags & FOLL_COW, "mm: In follow_devmap_pmd with FOLL_COW set");
877
f6f37321 878 if (flags & FOLL_WRITE && !pmd_write(*pmd))
3565fce3
DW
879 return NULL;
880
881 if (pmd_present(*pmd) && pmd_devmap(*pmd))
882 /* pass */;
883 else
884 return NULL;
885
886 if (flags & FOLL_TOUCH)
a8f97366 887 touch_pmd(vma, addr, pmd, flags);
3565fce3
DW
888
889 /*
890 * device mapped pages can only be returned if the
891 * caller will manage the page reference count.
892 */
893 if (!(flags & FOLL_GET))
894 return ERR_PTR(-EEXIST);
895
896 pfn += (addr & ~PMD_MASK) >> PAGE_SHIFT;
df06b37f
KB
897 *pgmap = get_dev_pagemap(pfn, *pgmap);
898 if (!*pgmap)
3565fce3
DW
899 return ERR_PTR(-EFAULT);
900 page = pfn_to_page(pfn);
901 get_page(page);
3565fce3
DW
902
903 return page;
904}
905
71e3aac0
AA
906int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
907 pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
908 struct vm_area_struct *vma)
909{
c4088ebd 910 spinlock_t *dst_ptl, *src_ptl;
71e3aac0
AA
911 struct page *src_page;
912 pmd_t pmd;
12c9d70b 913 pgtable_t pgtable = NULL;
628d47ce 914 int ret = -ENOMEM;
71e3aac0 915
628d47ce
KS
916 /* Skip if can be re-fill on fault */
917 if (!vma_is_anonymous(vma))
918 return 0;
919
920 pgtable = pte_alloc_one(dst_mm, addr);
921 if (unlikely(!pgtable))
922 goto out;
71e3aac0 923
c4088ebd
KS
924 dst_ptl = pmd_lock(dst_mm, dst_pmd);
925 src_ptl = pmd_lockptr(src_mm, src_pmd);
926 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
71e3aac0
AA
927
928 ret = -EAGAIN;
929 pmd = *src_pmd;
84c3fc4e
ZY
930
931#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
932 if (unlikely(is_swap_pmd(pmd))) {
933 swp_entry_t entry = pmd_to_swp_entry(pmd);
934
935 VM_BUG_ON(!is_pmd_migration_entry(pmd));
936 if (is_write_migration_entry(entry)) {
937 make_migration_entry_read(&entry);
938 pmd = swp_entry_to_pmd(entry);
ab6e3d09
NH
939 if (pmd_swp_soft_dirty(*src_pmd))
940 pmd = pmd_swp_mksoft_dirty(pmd);
84c3fc4e
ZY
941 set_pmd_at(src_mm, addr, src_pmd, pmd);
942 }
dd8a67f9 943 add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
af5b0f6a 944 mm_inc_nr_ptes(dst_mm);
dd8a67f9 945 pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
84c3fc4e
ZY
946 set_pmd_at(dst_mm, addr, dst_pmd, pmd);
947 ret = 0;
948 goto out_unlock;
949 }
950#endif
951
628d47ce 952 if (unlikely(!pmd_trans_huge(pmd))) {
71e3aac0
AA
953 pte_free(dst_mm, pgtable);
954 goto out_unlock;
955 }
fc9fe822 956 /*
c4088ebd 957 * When page table lock is held, the huge zero pmd should not be
fc9fe822
KS
958 * under splitting since we don't split the page itself, only pmd to
959 * a page table.
960 */
961 if (is_huge_zero_pmd(pmd)) {
5918d10a 962 struct page *zero_page;
97ae1749
KS
963 /*
964 * get_huge_zero_page() will never allocate a new page here,
965 * since we already have a zero page to copy. It just takes a
966 * reference.
967 */
6fcb52a5 968 zero_page = mm_get_huge_zero_page(dst_mm);
6b251fc9 969 set_huge_zero_page(pgtable, dst_mm, vma, addr, dst_pmd,
5918d10a 970 zero_page);
fc9fe822
KS
971 ret = 0;
972 goto out_unlock;
973 }
de466bd6 974
628d47ce
KS
975 src_page = pmd_page(pmd);
976 VM_BUG_ON_PAGE(!PageHead(src_page), src_page);
977 get_page(src_page);
978 page_dup_rmap(src_page, true);
979 add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
c4812909 980 mm_inc_nr_ptes(dst_mm);
628d47ce 981 pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
71e3aac0
AA
982
983 pmdp_set_wrprotect(src_mm, addr, src_pmd);
984 pmd = pmd_mkold(pmd_wrprotect(pmd));
985 set_pmd_at(dst_mm, addr, dst_pmd, pmd);
71e3aac0
AA
986
987 ret = 0;
988out_unlock:
c4088ebd
KS
989 spin_unlock(src_ptl);
990 spin_unlock(dst_ptl);
71e3aac0
AA
991out:
992 return ret;
993}
994
a00cc7d9
MW
995#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
996static void touch_pud(struct vm_area_struct *vma, unsigned long addr,
a8f97366 997 pud_t *pud, int flags)
a00cc7d9
MW
998{
999 pud_t _pud;
1000
a8f97366
KS
1001 _pud = pud_mkyoung(*pud);
1002 if (flags & FOLL_WRITE)
1003 _pud = pud_mkdirty(_pud);
a00cc7d9 1004 if (pudp_set_access_flags(vma, addr & HPAGE_PUD_MASK,
a8f97366 1005 pud, _pud, flags & FOLL_WRITE))
a00cc7d9
MW
1006 update_mmu_cache_pud(vma, addr, pud);
1007}
1008
1009struct page *follow_devmap_pud(struct vm_area_struct *vma, unsigned long addr,
df06b37f 1010 pud_t *pud, int flags, struct dev_pagemap **pgmap)
a00cc7d9
MW
1011{
1012 unsigned long pfn = pud_pfn(*pud);
1013 struct mm_struct *mm = vma->vm_mm;
a00cc7d9
MW
1014 struct page *page;
1015
1016 assert_spin_locked(pud_lockptr(mm, pud));
1017
f6f37321 1018 if (flags & FOLL_WRITE && !pud_write(*pud))
a00cc7d9
MW
1019 return NULL;
1020
1021 if (pud_present(*pud) && pud_devmap(*pud))
1022 /* pass */;
1023 else
1024 return NULL;
1025
1026 if (flags & FOLL_TOUCH)
a8f97366 1027 touch_pud(vma, addr, pud, flags);
a00cc7d9
MW
1028
1029 /*
1030 * device mapped pages can only be returned if the
1031 * caller will manage the page reference count.
1032 */
1033 if (!(flags & FOLL_GET))
1034 return ERR_PTR(-EEXIST);
1035
1036 pfn += (addr & ~PUD_MASK) >> PAGE_SHIFT;
df06b37f
KB
1037 *pgmap = get_dev_pagemap(pfn, *pgmap);
1038 if (!*pgmap)
a00cc7d9
MW
1039 return ERR_PTR(-EFAULT);
1040 page = pfn_to_page(pfn);
1041 get_page(page);
a00cc7d9
MW
1042
1043 return page;
1044}
1045
1046int copy_huge_pud(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1047 pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
1048 struct vm_area_struct *vma)
1049{
1050 spinlock_t *dst_ptl, *src_ptl;
1051 pud_t pud;
1052 int ret;
1053
1054 dst_ptl = pud_lock(dst_mm, dst_pud);
1055 src_ptl = pud_lockptr(src_mm, src_pud);
1056 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1057
1058 ret = -EAGAIN;
1059 pud = *src_pud;
1060 if (unlikely(!pud_trans_huge(pud) && !pud_devmap(pud)))
1061 goto out_unlock;
1062
1063 /*
1064 * When page table lock is held, the huge zero pud should not be
1065 * under splitting since we don't split the page itself, only pud to
1066 * a page table.
1067 */
1068 if (is_huge_zero_pud(pud)) {
1069 /* No huge zero pud yet */
1070 }
1071
1072 pudp_set_wrprotect(src_mm, addr, src_pud);
1073 pud = pud_mkold(pud_wrprotect(pud));
1074 set_pud_at(dst_mm, addr, dst_pud, pud);
1075
1076 ret = 0;
1077out_unlock:
1078 spin_unlock(src_ptl);
1079 spin_unlock(dst_ptl);
1080 return ret;
1081}
1082
1083void huge_pud_set_accessed(struct vm_fault *vmf, pud_t orig_pud)
1084{
1085 pud_t entry;
1086 unsigned long haddr;
1087 bool write = vmf->flags & FAULT_FLAG_WRITE;
1088
1089 vmf->ptl = pud_lock(vmf->vma->vm_mm, vmf->pud);
1090 if (unlikely(!pud_same(*vmf->pud, orig_pud)))
1091 goto unlock;
1092
1093 entry = pud_mkyoung(orig_pud);
1094 if (write)
1095 entry = pud_mkdirty(entry);
1096 haddr = vmf->address & HPAGE_PUD_MASK;
1097 if (pudp_set_access_flags(vmf->vma, haddr, vmf->pud, entry, write))
1098 update_mmu_cache_pud(vmf->vma, vmf->address, vmf->pud);
1099
1100unlock:
1101 spin_unlock(vmf->ptl);
1102}
1103#endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
1104
82b0f8c3 1105void huge_pmd_set_accessed(struct vm_fault *vmf, pmd_t orig_pmd)
a1dd450b
WD
1106{
1107 pmd_t entry;
1108 unsigned long haddr;
20f664aa 1109 bool write = vmf->flags & FAULT_FLAG_WRITE;
a1dd450b 1110
82b0f8c3
JK
1111 vmf->ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd);
1112 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
a1dd450b
WD
1113 goto unlock;
1114
1115 entry = pmd_mkyoung(orig_pmd);
20f664aa
MK
1116 if (write)
1117 entry = pmd_mkdirty(entry);
82b0f8c3 1118 haddr = vmf->address & HPAGE_PMD_MASK;
20f664aa 1119 if (pmdp_set_access_flags(vmf->vma, haddr, vmf->pmd, entry, write))
82b0f8c3 1120 update_mmu_cache_pmd(vmf->vma, vmf->address, vmf->pmd);
a1dd450b
WD
1121
1122unlock:
82b0f8c3 1123 spin_unlock(vmf->ptl);
a1dd450b
WD
1124}
1125
2b740303
SJ
1126static vm_fault_t do_huge_pmd_wp_page_fallback(struct vm_fault *vmf,
1127 pmd_t orig_pmd, struct page *page)
71e3aac0 1128{
82b0f8c3
JK
1129 struct vm_area_struct *vma = vmf->vma;
1130 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
00501b53 1131 struct mem_cgroup *memcg;
71e3aac0
AA
1132 pgtable_t pgtable;
1133 pmd_t _pmd;
2b740303
SJ
1134 int i;
1135 vm_fault_t ret = 0;
71e3aac0 1136 struct page **pages;
2ec74c3e
SG
1137 unsigned long mmun_start; /* For mmu_notifiers */
1138 unsigned long mmun_end; /* For mmu_notifiers */
71e3aac0 1139
6da2ec56
KC
1140 pages = kmalloc_array(HPAGE_PMD_NR, sizeof(struct page *),
1141 GFP_KERNEL);
71e3aac0
AA
1142 if (unlikely(!pages)) {
1143 ret |= VM_FAULT_OOM;
1144 goto out;
1145 }
1146
1147 for (i = 0; i < HPAGE_PMD_NR; i++) {
41b6167e 1148 pages[i] = alloc_page_vma_node(GFP_HIGHUSER_MOVABLE, vma,
82b0f8c3 1149 vmf->address, page_to_nid(page));
b9bbfbe3 1150 if (unlikely(!pages[i] ||
2cf85583 1151 mem_cgroup_try_charge_delay(pages[i], vma->vm_mm,
bae473a4 1152 GFP_KERNEL, &memcg, false))) {
b9bbfbe3 1153 if (pages[i])
71e3aac0 1154 put_page(pages[i]);
b9bbfbe3 1155 while (--i >= 0) {
00501b53
JW
1156 memcg = (void *)page_private(pages[i]);
1157 set_page_private(pages[i], 0);
f627c2f5
KS
1158 mem_cgroup_cancel_charge(pages[i], memcg,
1159 false);
b9bbfbe3
AA
1160 put_page(pages[i]);
1161 }
71e3aac0
AA
1162 kfree(pages);
1163 ret |= VM_FAULT_OOM;
1164 goto out;
1165 }
00501b53 1166 set_page_private(pages[i], (unsigned long)memcg);
71e3aac0
AA
1167 }
1168
1169 for (i = 0; i < HPAGE_PMD_NR; i++) {
1170 copy_user_highpage(pages[i], page + i,
0089e485 1171 haddr + PAGE_SIZE * i, vma);
71e3aac0
AA
1172 __SetPageUptodate(pages[i]);
1173 cond_resched();
1174 }
1175
2ec74c3e
SG
1176 mmun_start = haddr;
1177 mmun_end = haddr + HPAGE_PMD_SIZE;
bae473a4 1178 mmu_notifier_invalidate_range_start(vma->vm_mm, mmun_start, mmun_end);
2ec74c3e 1179
82b0f8c3
JK
1180 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
1181 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
71e3aac0 1182 goto out_free_pages;
309381fe 1183 VM_BUG_ON_PAGE(!PageHead(page), page);
71e3aac0 1184
0f10851e
JG
1185 /*
1186 * Leave pmd empty until pte is filled note we must notify here as
1187 * concurrent CPU thread might write to new page before the call to
1188 * mmu_notifier_invalidate_range_end() happens which can lead to a
1189 * device seeing memory write in different order than CPU.
1190 *
ad56b738 1191 * See Documentation/vm/mmu_notifier.rst
0f10851e 1192 */
82b0f8c3 1193 pmdp_huge_clear_flush_notify(vma, haddr, vmf->pmd);
71e3aac0 1194
82b0f8c3 1195 pgtable = pgtable_trans_huge_withdraw(vma->vm_mm, vmf->pmd);
bae473a4 1196 pmd_populate(vma->vm_mm, &_pmd, pgtable);
71e3aac0
AA
1197
1198 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
bae473a4 1199 pte_t entry;
71e3aac0
AA
1200 entry = mk_pte(pages[i], vma->vm_page_prot);
1201 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
00501b53
JW
1202 memcg = (void *)page_private(pages[i]);
1203 set_page_private(pages[i], 0);
82b0f8c3 1204 page_add_new_anon_rmap(pages[i], vmf->vma, haddr, false);
f627c2f5 1205 mem_cgroup_commit_charge(pages[i], memcg, false, false);
00501b53 1206 lru_cache_add_active_or_unevictable(pages[i], vma);
82b0f8c3
JK
1207 vmf->pte = pte_offset_map(&_pmd, haddr);
1208 VM_BUG_ON(!pte_none(*vmf->pte));
1209 set_pte_at(vma->vm_mm, haddr, vmf->pte, entry);
1210 pte_unmap(vmf->pte);
71e3aac0
AA
1211 }
1212 kfree(pages);
1213
71e3aac0 1214 smp_wmb(); /* make pte visible before pmd */
82b0f8c3 1215 pmd_populate(vma->vm_mm, vmf->pmd, pgtable);
d281ee61 1216 page_remove_rmap(page, true);
82b0f8c3 1217 spin_unlock(vmf->ptl);
71e3aac0 1218
4645b9fe
JG
1219 /*
1220 * No need to double call mmu_notifier->invalidate_range() callback as
1221 * the above pmdp_huge_clear_flush_notify() did already call it.
1222 */
1223 mmu_notifier_invalidate_range_only_end(vma->vm_mm, mmun_start,
1224 mmun_end);
2ec74c3e 1225
71e3aac0
AA
1226 ret |= VM_FAULT_WRITE;
1227 put_page(page);
1228
1229out:
1230 return ret;
1231
1232out_free_pages:
82b0f8c3 1233 spin_unlock(vmf->ptl);
bae473a4 1234 mmu_notifier_invalidate_range_end(vma->vm_mm, mmun_start, mmun_end);
b9bbfbe3 1235 for (i = 0; i < HPAGE_PMD_NR; i++) {
00501b53
JW
1236 memcg = (void *)page_private(pages[i]);
1237 set_page_private(pages[i], 0);
f627c2f5 1238 mem_cgroup_cancel_charge(pages[i], memcg, false);
71e3aac0 1239 put_page(pages[i]);
b9bbfbe3 1240 }
71e3aac0
AA
1241 kfree(pages);
1242 goto out;
1243}
1244
2b740303 1245vm_fault_t do_huge_pmd_wp_page(struct vm_fault *vmf, pmd_t orig_pmd)
71e3aac0 1246{
82b0f8c3 1247 struct vm_area_struct *vma = vmf->vma;
93b4796d 1248 struct page *page = NULL, *new_page;
00501b53 1249 struct mem_cgroup *memcg;
82b0f8c3 1250 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
2ec74c3e
SG
1251 unsigned long mmun_start; /* For mmu_notifiers */
1252 unsigned long mmun_end; /* For mmu_notifiers */
3b363692 1253 gfp_t huge_gfp; /* for allocation and charge */
2b740303 1254 vm_fault_t ret = 0;
71e3aac0 1255
82b0f8c3 1256 vmf->ptl = pmd_lockptr(vma->vm_mm, vmf->pmd);
81d1b09c 1257 VM_BUG_ON_VMA(!vma->anon_vma, vma);
93b4796d
KS
1258 if (is_huge_zero_pmd(orig_pmd))
1259 goto alloc;
82b0f8c3
JK
1260 spin_lock(vmf->ptl);
1261 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
71e3aac0
AA
1262 goto out_unlock;
1263
1264 page = pmd_page(orig_pmd);
309381fe 1265 VM_BUG_ON_PAGE(!PageCompound(page) || !PageHead(page), page);
1f25fe20
KS
1266 /*
1267 * We can only reuse the page if nobody else maps the huge page or it's
6d0a07ed 1268 * part.
1f25fe20 1269 */
ba3c4ce6
HY
1270 if (!trylock_page(page)) {
1271 get_page(page);
1272 spin_unlock(vmf->ptl);
1273 lock_page(page);
1274 spin_lock(vmf->ptl);
1275 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
1276 unlock_page(page);
1277 put_page(page);
1278 goto out_unlock;
1279 }
1280 put_page(page);
1281 }
1282 if (reuse_swap_page(page, NULL)) {
71e3aac0
AA
1283 pmd_t entry;
1284 entry = pmd_mkyoung(orig_pmd);
f55e1014 1285 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
82b0f8c3
JK
1286 if (pmdp_set_access_flags(vma, haddr, vmf->pmd, entry, 1))
1287 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
71e3aac0 1288 ret |= VM_FAULT_WRITE;
ba3c4ce6 1289 unlock_page(page);
71e3aac0
AA
1290 goto out_unlock;
1291 }
ba3c4ce6 1292 unlock_page(page);
ddc58f27 1293 get_page(page);
82b0f8c3 1294 spin_unlock(vmf->ptl);
93b4796d 1295alloc:
71e3aac0 1296 if (transparent_hugepage_enabled(vma) &&
077fcf11 1297 !transparent_hugepage_debug_cow()) {
89c83fb5
MH
1298 huge_gfp = alloc_hugepage_direct_gfpmask(vma, haddr);
1299 new_page = alloc_pages_vma(huge_gfp, HPAGE_PMD_ORDER, vma,
1300 haddr, numa_node_id());
077fcf11 1301 } else
71e3aac0
AA
1302 new_page = NULL;
1303
9a982250
KS
1304 if (likely(new_page)) {
1305 prep_transhuge_page(new_page);
1306 } else {
eecc1e42 1307 if (!page) {
82b0f8c3 1308 split_huge_pmd(vma, vmf->pmd, vmf->address);
e9b71ca9 1309 ret |= VM_FAULT_FALLBACK;
93b4796d 1310 } else {
82b0f8c3 1311 ret = do_huge_pmd_wp_page_fallback(vmf, orig_pmd, page);
9845cbbd 1312 if (ret & VM_FAULT_OOM) {
82b0f8c3 1313 split_huge_pmd(vma, vmf->pmd, vmf->address);
9845cbbd
KS
1314 ret |= VM_FAULT_FALLBACK;
1315 }
ddc58f27 1316 put_page(page);
93b4796d 1317 }
17766dde 1318 count_vm_event(THP_FAULT_FALLBACK);
71e3aac0
AA
1319 goto out;
1320 }
1321
2cf85583 1322 if (unlikely(mem_cgroup_try_charge_delay(new_page, vma->vm_mm,
2a70f6a7 1323 huge_gfp, &memcg, true))) {
b9bbfbe3 1324 put_page(new_page);
82b0f8c3 1325 split_huge_pmd(vma, vmf->pmd, vmf->address);
bae473a4 1326 if (page)
ddc58f27 1327 put_page(page);
9845cbbd 1328 ret |= VM_FAULT_FALLBACK;
17766dde 1329 count_vm_event(THP_FAULT_FALLBACK);
b9bbfbe3
AA
1330 goto out;
1331 }
1332
17766dde
DR
1333 count_vm_event(THP_FAULT_ALLOC);
1334
eecc1e42 1335 if (!page)
c79b57e4 1336 clear_huge_page(new_page, vmf->address, HPAGE_PMD_NR);
93b4796d 1337 else
c9f4cd71
HY
1338 copy_user_huge_page(new_page, page, vmf->address,
1339 vma, HPAGE_PMD_NR);
71e3aac0
AA
1340 __SetPageUptodate(new_page);
1341
2ec74c3e
SG
1342 mmun_start = haddr;
1343 mmun_end = haddr + HPAGE_PMD_SIZE;
bae473a4 1344 mmu_notifier_invalidate_range_start(vma->vm_mm, mmun_start, mmun_end);
2ec74c3e 1345
82b0f8c3 1346 spin_lock(vmf->ptl);
93b4796d 1347 if (page)
ddc58f27 1348 put_page(page);
82b0f8c3
JK
1349 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
1350 spin_unlock(vmf->ptl);
f627c2f5 1351 mem_cgroup_cancel_charge(new_page, memcg, true);
71e3aac0 1352 put_page(new_page);
2ec74c3e 1353 goto out_mn;
b9bbfbe3 1354 } else {
71e3aac0 1355 pmd_t entry;
3122359a 1356 entry = mk_huge_pmd(new_page, vma->vm_page_prot);
f55e1014 1357 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
82b0f8c3 1358 pmdp_huge_clear_flush_notify(vma, haddr, vmf->pmd);
d281ee61 1359 page_add_new_anon_rmap(new_page, vma, haddr, true);
f627c2f5 1360 mem_cgroup_commit_charge(new_page, memcg, false, true);
00501b53 1361 lru_cache_add_active_or_unevictable(new_page, vma);
82b0f8c3
JK
1362 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
1363 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
eecc1e42 1364 if (!page) {
bae473a4 1365 add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
97ae1749 1366 } else {
309381fe 1367 VM_BUG_ON_PAGE(!PageHead(page), page);
d281ee61 1368 page_remove_rmap(page, true);
93b4796d
KS
1369 put_page(page);
1370 }
71e3aac0
AA
1371 ret |= VM_FAULT_WRITE;
1372 }
82b0f8c3 1373 spin_unlock(vmf->ptl);
2ec74c3e 1374out_mn:
4645b9fe
JG
1375 /*
1376 * No need to double call mmu_notifier->invalidate_range() callback as
1377 * the above pmdp_huge_clear_flush_notify() did already call it.
1378 */
1379 mmu_notifier_invalidate_range_only_end(vma->vm_mm, mmun_start,
1380 mmun_end);
71e3aac0
AA
1381out:
1382 return ret;
2ec74c3e 1383out_unlock:
82b0f8c3 1384 spin_unlock(vmf->ptl);
2ec74c3e 1385 return ret;
71e3aac0
AA
1386}
1387
8310d48b
KF
1388/*
1389 * FOLL_FORCE can write to even unwritable pmd's, but only
1390 * after we've gone through a COW cycle and they are dirty.
1391 */
1392static inline bool can_follow_write_pmd(pmd_t pmd, unsigned int flags)
1393{
f6f37321 1394 return pmd_write(pmd) ||
8310d48b
KF
1395 ((flags & FOLL_FORCE) && (flags & FOLL_COW) && pmd_dirty(pmd));
1396}
1397
b676b293 1398struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
71e3aac0
AA
1399 unsigned long addr,
1400 pmd_t *pmd,
1401 unsigned int flags)
1402{
b676b293 1403 struct mm_struct *mm = vma->vm_mm;
71e3aac0
AA
1404 struct page *page = NULL;
1405
c4088ebd 1406 assert_spin_locked(pmd_lockptr(mm, pmd));
71e3aac0 1407
8310d48b 1408 if (flags & FOLL_WRITE && !can_follow_write_pmd(*pmd, flags))
71e3aac0
AA
1409 goto out;
1410
85facf25
KS
1411 /* Avoid dumping huge zero page */
1412 if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd))
1413 return ERR_PTR(-EFAULT);
1414
2b4847e7 1415 /* Full NUMA hinting faults to serialise migration in fault paths */
8a0516ed 1416 if ((flags & FOLL_NUMA) && pmd_protnone(*pmd))
2b4847e7
MG
1417 goto out;
1418
71e3aac0 1419 page = pmd_page(*pmd);
ca120cf6 1420 VM_BUG_ON_PAGE(!PageHead(page) && !is_zone_device_page(page), page);
3565fce3 1421 if (flags & FOLL_TOUCH)
a8f97366 1422 touch_pmd(vma, addr, pmd, flags);
de60f5f1 1423 if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
e90309c9
KS
1424 /*
1425 * We don't mlock() pte-mapped THPs. This way we can avoid
1426 * leaking mlocked pages into non-VM_LOCKED VMAs.
1427 *
9a73f61b
KS
1428 * For anon THP:
1429 *
e90309c9
KS
1430 * In most cases the pmd is the only mapping of the page as we
1431 * break COW for the mlock() -- see gup_flags |= FOLL_WRITE for
1432 * writable private mappings in populate_vma_page_range().
1433 *
1434 * The only scenario when we have the page shared here is if we
1435 * mlocking read-only mapping shared over fork(). We skip
1436 * mlocking such pages.
9a73f61b
KS
1437 *
1438 * For file THP:
1439 *
1440 * We can expect PageDoubleMap() to be stable under page lock:
1441 * for file pages we set it in page_add_file_rmap(), which
1442 * requires page to be locked.
e90309c9 1443 */
9a73f61b
KS
1444
1445 if (PageAnon(page) && compound_mapcount(page) != 1)
1446 goto skip_mlock;
1447 if (PageDoubleMap(page) || !page->mapping)
1448 goto skip_mlock;
1449 if (!trylock_page(page))
1450 goto skip_mlock;
1451 lru_add_drain();
1452 if (page->mapping && !PageDoubleMap(page))
1453 mlock_vma_page(page);
1454 unlock_page(page);
b676b293 1455 }
9a73f61b 1456skip_mlock:
71e3aac0 1457 page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
ca120cf6 1458 VM_BUG_ON_PAGE(!PageCompound(page) && !is_zone_device_page(page), page);
71e3aac0 1459 if (flags & FOLL_GET)
ddc58f27 1460 get_page(page);
71e3aac0
AA
1461
1462out:
1463 return page;
1464}
1465
d10e63f2 1466/* NUMA hinting page fault entry point for trans huge pmds */
2b740303 1467vm_fault_t do_huge_pmd_numa_page(struct vm_fault *vmf, pmd_t pmd)
d10e63f2 1468{
82b0f8c3 1469 struct vm_area_struct *vma = vmf->vma;
b8916634 1470 struct anon_vma *anon_vma = NULL;
b32967ff 1471 struct page *page;
82b0f8c3 1472 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
8191acbd 1473 int page_nid = -1, this_nid = numa_node_id();
90572890 1474 int target_nid, last_cpupid = -1;
8191acbd
MG
1475 bool page_locked;
1476 bool migrated = false;
b191f9b1 1477 bool was_writable;
6688cc05 1478 int flags = 0;
d10e63f2 1479
82b0f8c3
JK
1480 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
1481 if (unlikely(!pmd_same(pmd, *vmf->pmd)))
d10e63f2
MG
1482 goto out_unlock;
1483
de466bd6
MG
1484 /*
1485 * If there are potential migrations, wait for completion and retry
1486 * without disrupting NUMA hinting information. Do not relock and
1487 * check_same as the page may no longer be mapped.
1488 */
82b0f8c3
JK
1489 if (unlikely(pmd_trans_migrating(*vmf->pmd))) {
1490 page = pmd_page(*vmf->pmd);
3c226c63
MR
1491 if (!get_page_unless_zero(page))
1492 goto out_unlock;
82b0f8c3 1493 spin_unlock(vmf->ptl);
5d833062 1494 wait_on_page_locked(page);
3c226c63 1495 put_page(page);
de466bd6
MG
1496 goto out;
1497 }
1498
d10e63f2 1499 page = pmd_page(pmd);
a1a46184 1500 BUG_ON(is_huge_zero_page(page));
8191acbd 1501 page_nid = page_to_nid(page);
90572890 1502 last_cpupid = page_cpupid_last(page);
03c5a6e1 1503 count_vm_numa_event(NUMA_HINT_FAULTS);
04bb2f94 1504 if (page_nid == this_nid) {
03c5a6e1 1505 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
04bb2f94
RR
1506 flags |= TNF_FAULT_LOCAL;
1507 }
4daae3b4 1508
bea66fbd 1509 /* See similar comment in do_numa_page for explanation */
288bc549 1510 if (!pmd_savedwrite(pmd))
6688cc05
PZ
1511 flags |= TNF_NO_GROUP;
1512
ff9042b1
MG
1513 /*
1514 * Acquire the page lock to serialise THP migrations but avoid dropping
1515 * page_table_lock if at all possible
1516 */
b8916634
MG
1517 page_locked = trylock_page(page);
1518 target_nid = mpol_misplaced(page, vma, haddr);
1519 if (target_nid == -1) {
1520 /* If the page was locked, there are no parallel migrations */
a54a407f 1521 if (page_locked)
b8916634 1522 goto clear_pmdnuma;
2b4847e7 1523 }
4daae3b4 1524
de466bd6 1525 /* Migration could have started since the pmd_trans_migrating check */
2b4847e7 1526 if (!page_locked) {
3c226c63
MR
1527 page_nid = -1;
1528 if (!get_page_unless_zero(page))
1529 goto out_unlock;
82b0f8c3 1530 spin_unlock(vmf->ptl);
b8916634 1531 wait_on_page_locked(page);
3c226c63 1532 put_page(page);
b8916634
MG
1533 goto out;
1534 }
1535
2b4847e7
MG
1536 /*
1537 * Page is misplaced. Page lock serialises migrations. Acquire anon_vma
1538 * to serialises splits
1539 */
b8916634 1540 get_page(page);
82b0f8c3 1541 spin_unlock(vmf->ptl);
b8916634 1542 anon_vma = page_lock_anon_vma_read(page);
4daae3b4 1543
c69307d5 1544 /* Confirm the PMD did not change while page_table_lock was released */
82b0f8c3
JK
1545 spin_lock(vmf->ptl);
1546 if (unlikely(!pmd_same(pmd, *vmf->pmd))) {
b32967ff
MG
1547 unlock_page(page);
1548 put_page(page);
a54a407f 1549 page_nid = -1;
4daae3b4 1550 goto out_unlock;
b32967ff 1551 }
ff9042b1 1552
c3a489ca
MG
1553 /* Bail if we fail to protect against THP splits for any reason */
1554 if (unlikely(!anon_vma)) {
1555 put_page(page);
1556 page_nid = -1;
1557 goto clear_pmdnuma;
1558 }
1559
8b1b436d
PZ
1560 /*
1561 * Since we took the NUMA fault, we must have observed the !accessible
1562 * bit. Make sure all other CPUs agree with that, to avoid them
1563 * modifying the page we're about to migrate.
1564 *
1565 * Must be done under PTL such that we'll observe the relevant
ccde85ba
PZ
1566 * inc_tlb_flush_pending().
1567 *
1568 * We are not sure a pending tlb flush here is for a huge page
1569 * mapping or not. Hence use the tlb range variant
8b1b436d 1570 */
7066f0f9 1571 if (mm_tlb_flush_pending(vma->vm_mm)) {
ccde85ba 1572 flush_tlb_range(vma, haddr, haddr + HPAGE_PMD_SIZE);
7066f0f9
AA
1573 /*
1574 * change_huge_pmd() released the pmd lock before
1575 * invalidating the secondary MMUs sharing the primary
1576 * MMU pagetables (with ->invalidate_range()). The
1577 * mmu_notifier_invalidate_range_end() (which
1578 * internally calls ->invalidate_range()) in
1579 * change_pmd_range() will run after us, so we can't
1580 * rely on it here and we need an explicit invalidate.
1581 */
1582 mmu_notifier_invalidate_range(vma->vm_mm, haddr,
1583 haddr + HPAGE_PMD_SIZE);
1584 }
8b1b436d 1585
a54a407f
MG
1586 /*
1587 * Migrate the THP to the requested node, returns with page unlocked
8a0516ed 1588 * and access rights restored.
a54a407f 1589 */
82b0f8c3 1590 spin_unlock(vmf->ptl);
8b1b436d 1591
bae473a4 1592 migrated = migrate_misplaced_transhuge_page(vma->vm_mm, vma,
82b0f8c3 1593 vmf->pmd, pmd, vmf->address, page, target_nid);
6688cc05
PZ
1594 if (migrated) {
1595 flags |= TNF_MIGRATED;
8191acbd 1596 page_nid = target_nid;
074c2381
MG
1597 } else
1598 flags |= TNF_MIGRATE_FAIL;
b32967ff 1599
8191acbd 1600 goto out;
b32967ff 1601clear_pmdnuma:
a54a407f 1602 BUG_ON(!PageLocked(page));
288bc549 1603 was_writable = pmd_savedwrite(pmd);
4d942466 1604 pmd = pmd_modify(pmd, vma->vm_page_prot);
b7b04004 1605 pmd = pmd_mkyoung(pmd);
b191f9b1
MG
1606 if (was_writable)
1607 pmd = pmd_mkwrite(pmd);
82b0f8c3
JK
1608 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, pmd);
1609 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
a54a407f 1610 unlock_page(page);
d10e63f2 1611out_unlock:
82b0f8c3 1612 spin_unlock(vmf->ptl);
b8916634
MG
1613
1614out:
1615 if (anon_vma)
1616 page_unlock_anon_vma_read(anon_vma);
1617
8191acbd 1618 if (page_nid != -1)
82b0f8c3 1619 task_numa_fault(last_cpupid, page_nid, HPAGE_PMD_NR,
9a8b300f 1620 flags);
8191acbd 1621
d10e63f2
MG
1622 return 0;
1623}
1624
319904ad
HY
1625/*
1626 * Return true if we do MADV_FREE successfully on entire pmd page.
1627 * Otherwise, return false.
1628 */
1629bool madvise_free_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
b8d3c4c3 1630 pmd_t *pmd, unsigned long addr, unsigned long next)
b8d3c4c3
MK
1631{
1632 spinlock_t *ptl;
1633 pmd_t orig_pmd;
1634 struct page *page;
1635 struct mm_struct *mm = tlb->mm;
319904ad 1636 bool ret = false;
b8d3c4c3 1637
07e32661
AK
1638 tlb_remove_check_page_size_change(tlb, HPAGE_PMD_SIZE);
1639
b6ec57f4
KS
1640 ptl = pmd_trans_huge_lock(pmd, vma);
1641 if (!ptl)
25eedabe 1642 goto out_unlocked;
b8d3c4c3
MK
1643
1644 orig_pmd = *pmd;
319904ad 1645 if (is_huge_zero_pmd(orig_pmd))
b8d3c4c3 1646 goto out;
b8d3c4c3 1647
84c3fc4e
ZY
1648 if (unlikely(!pmd_present(orig_pmd))) {
1649 VM_BUG_ON(thp_migration_supported() &&
1650 !is_pmd_migration_entry(orig_pmd));
1651 goto out;
1652 }
1653
b8d3c4c3
MK
1654 page = pmd_page(orig_pmd);
1655 /*
1656 * If other processes are mapping this page, we couldn't discard
1657 * the page unless they all do MADV_FREE so let's skip the page.
1658 */
1659 if (page_mapcount(page) != 1)
1660 goto out;
1661
1662 if (!trylock_page(page))
1663 goto out;
1664
1665 /*
1666 * If user want to discard part-pages of THP, split it so MADV_FREE
1667 * will deactivate only them.
1668 */
1669 if (next - addr != HPAGE_PMD_SIZE) {
1670 get_page(page);
1671 spin_unlock(ptl);
9818b8cd 1672 split_huge_page(page);
b8d3c4c3 1673 unlock_page(page);
bbf29ffc 1674 put_page(page);
b8d3c4c3
MK
1675 goto out_unlocked;
1676 }
1677
1678 if (PageDirty(page))
1679 ClearPageDirty(page);
1680 unlock_page(page);
1681
b8d3c4c3 1682 if (pmd_young(orig_pmd) || pmd_dirty(orig_pmd)) {
58ceeb6b 1683 pmdp_invalidate(vma, addr, pmd);
b8d3c4c3
MK
1684 orig_pmd = pmd_mkold(orig_pmd);
1685 orig_pmd = pmd_mkclean(orig_pmd);
1686
1687 set_pmd_at(mm, addr, pmd, orig_pmd);
1688 tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1689 }
802a3a92
SL
1690
1691 mark_page_lazyfree(page);
319904ad 1692 ret = true;
b8d3c4c3
MK
1693out:
1694 spin_unlock(ptl);
1695out_unlocked:
1696 return ret;
1697}
1698
953c66c2
AK
1699static inline void zap_deposited_table(struct mm_struct *mm, pmd_t *pmd)
1700{
1701 pgtable_t pgtable;
1702
1703 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
1704 pte_free(mm, pgtable);
c4812909 1705 mm_dec_nr_ptes(mm);
953c66c2
AK
1706}
1707
71e3aac0 1708int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
f21760b1 1709 pmd_t *pmd, unsigned long addr)
71e3aac0 1710{
da146769 1711 pmd_t orig_pmd;
bf929152 1712 spinlock_t *ptl;
71e3aac0 1713
07e32661
AK
1714 tlb_remove_check_page_size_change(tlb, HPAGE_PMD_SIZE);
1715
b6ec57f4
KS
1716 ptl = __pmd_trans_huge_lock(pmd, vma);
1717 if (!ptl)
da146769
KS
1718 return 0;
1719 /*
1720 * For architectures like ppc64 we look at deposited pgtable
1721 * when calling pmdp_huge_get_and_clear. So do the
1722 * pgtable_trans_huge_withdraw after finishing pmdp related
1723 * operations.
1724 */
1725 orig_pmd = pmdp_huge_get_and_clear_full(tlb->mm, addr, pmd,
1726 tlb->fullmm);
1727 tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1728 if (vma_is_dax(vma)) {
3b6521f5
OH
1729 if (arch_needs_pgtable_deposit())
1730 zap_deposited_table(tlb->mm, pmd);
da146769
KS
1731 spin_unlock(ptl);
1732 if (is_huge_zero_pmd(orig_pmd))
c0f2e176 1733 tlb_remove_page_size(tlb, pmd_page(orig_pmd), HPAGE_PMD_SIZE);
da146769 1734 } else if (is_huge_zero_pmd(orig_pmd)) {
c14a6eb4 1735 zap_deposited_table(tlb->mm, pmd);
da146769 1736 spin_unlock(ptl);
c0f2e176 1737 tlb_remove_page_size(tlb, pmd_page(orig_pmd), HPAGE_PMD_SIZE);
da146769 1738 } else {
616b8371
ZY
1739 struct page *page = NULL;
1740 int flush_needed = 1;
1741
1742 if (pmd_present(orig_pmd)) {
1743 page = pmd_page(orig_pmd);
1744 page_remove_rmap(page, true);
1745 VM_BUG_ON_PAGE(page_mapcount(page) < 0, page);
1746 VM_BUG_ON_PAGE(!PageHead(page), page);
1747 } else if (thp_migration_supported()) {
1748 swp_entry_t entry;
1749
1750 VM_BUG_ON(!is_pmd_migration_entry(orig_pmd));
1751 entry = pmd_to_swp_entry(orig_pmd);
1752 page = pfn_to_page(swp_offset(entry));
1753 flush_needed = 0;
1754 } else
1755 WARN_ONCE(1, "Non present huge pmd without pmd migration enabled!");
1756
b5072380 1757 if (PageAnon(page)) {
c14a6eb4 1758 zap_deposited_table(tlb->mm, pmd);
b5072380
KS
1759 add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
1760 } else {
953c66c2
AK
1761 if (arch_needs_pgtable_deposit())
1762 zap_deposited_table(tlb->mm, pmd);
fadae295 1763 add_mm_counter(tlb->mm, mm_counter_file(page), -HPAGE_PMD_NR);
b5072380 1764 }
616b8371 1765
da146769 1766 spin_unlock(ptl);
616b8371
ZY
1767 if (flush_needed)
1768 tlb_remove_page_size(tlb, page, HPAGE_PMD_SIZE);
025c5b24 1769 }
da146769 1770 return 1;
71e3aac0
AA
1771}
1772
1dd38b6c
AK
1773#ifndef pmd_move_must_withdraw
1774static inline int pmd_move_must_withdraw(spinlock_t *new_pmd_ptl,
1775 spinlock_t *old_pmd_ptl,
1776 struct vm_area_struct *vma)
1777{
1778 /*
1779 * With split pmd lock we also need to move preallocated
1780 * PTE page table if new_pmd is on different PMD page table.
1781 *
1782 * We also don't deposit and withdraw tables for file pages.
1783 */
1784 return (new_pmd_ptl != old_pmd_ptl) && vma_is_anonymous(vma);
1785}
1786#endif
1787
ab6e3d09
NH
1788static pmd_t move_soft_dirty_pmd(pmd_t pmd)
1789{
1790#ifdef CONFIG_MEM_SOFT_DIRTY
1791 if (unlikely(is_pmd_migration_entry(pmd)))
1792 pmd = pmd_swp_mksoft_dirty(pmd);
1793 else if (pmd_present(pmd))
1794 pmd = pmd_mksoft_dirty(pmd);
1795#endif
1796 return pmd;
1797}
1798
bf8616d5 1799bool move_huge_pmd(struct vm_area_struct *vma, unsigned long old_addr,
37a1c49a 1800 unsigned long new_addr, unsigned long old_end,
eb66ae03 1801 pmd_t *old_pmd, pmd_t *new_pmd)
37a1c49a 1802{
bf929152 1803 spinlock_t *old_ptl, *new_ptl;
37a1c49a 1804 pmd_t pmd;
37a1c49a 1805 struct mm_struct *mm = vma->vm_mm;
5d190420 1806 bool force_flush = false;
37a1c49a
AA
1807
1808 if ((old_addr & ~HPAGE_PMD_MASK) ||
1809 (new_addr & ~HPAGE_PMD_MASK) ||
bf8616d5 1810 old_end - old_addr < HPAGE_PMD_SIZE)
4b471e88 1811 return false;
37a1c49a
AA
1812
1813 /*
1814 * The destination pmd shouldn't be established, free_pgtables()
1815 * should have release it.
1816 */
1817 if (WARN_ON(!pmd_none(*new_pmd))) {
1818 VM_BUG_ON(pmd_trans_huge(*new_pmd));
4b471e88 1819 return false;
37a1c49a
AA
1820 }
1821
bf929152
KS
1822 /*
1823 * We don't have to worry about the ordering of src and dst
1824 * ptlocks because exclusive mmap_sem prevents deadlock.
1825 */
b6ec57f4
KS
1826 old_ptl = __pmd_trans_huge_lock(old_pmd, vma);
1827 if (old_ptl) {
bf929152
KS
1828 new_ptl = pmd_lockptr(mm, new_pmd);
1829 if (new_ptl != old_ptl)
1830 spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
8809aa2d 1831 pmd = pmdp_huge_get_and_clear(mm, old_addr, old_pmd);
eb66ae03 1832 if (pmd_present(pmd))
a2ce2666 1833 force_flush = true;
025c5b24 1834 VM_BUG_ON(!pmd_none(*new_pmd));
3592806c 1835
1dd38b6c 1836 if (pmd_move_must_withdraw(new_ptl, old_ptl, vma)) {
b3084f4d 1837 pgtable_t pgtable;
3592806c
KS
1838 pgtable = pgtable_trans_huge_withdraw(mm, old_pmd);
1839 pgtable_trans_huge_deposit(mm, new_pmd, pgtable);
3592806c 1840 }
ab6e3d09
NH
1841 pmd = move_soft_dirty_pmd(pmd);
1842 set_pmd_at(mm, new_addr, new_pmd, pmd);
5d190420
AL
1843 if (force_flush)
1844 flush_tlb_range(vma, old_addr, old_addr + PMD_SIZE);
eb66ae03
LT
1845 if (new_ptl != old_ptl)
1846 spin_unlock(new_ptl);
bf929152 1847 spin_unlock(old_ptl);
4b471e88 1848 return true;
37a1c49a 1849 }
4b471e88 1850 return false;
37a1c49a
AA
1851}
1852
f123d74a
MG
1853/*
1854 * Returns
1855 * - 0 if PMD could not be locked
1856 * - 1 if PMD was locked but protections unchange and TLB flush unnecessary
1857 * - HPAGE_PMD_NR is protections changed and TLB flush necessary
1858 */
cd7548ab 1859int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
e944fd67 1860 unsigned long addr, pgprot_t newprot, int prot_numa)
cd7548ab
JW
1861{
1862 struct mm_struct *mm = vma->vm_mm;
bf929152 1863 spinlock_t *ptl;
0a85e51d
KS
1864 pmd_t entry;
1865 bool preserve_write;
1866 int ret;
cd7548ab 1867
b6ec57f4 1868 ptl = __pmd_trans_huge_lock(pmd, vma);
0a85e51d
KS
1869 if (!ptl)
1870 return 0;
e944fd67 1871
0a85e51d
KS
1872 preserve_write = prot_numa && pmd_write(*pmd);
1873 ret = 1;
e944fd67 1874
84c3fc4e
ZY
1875#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1876 if (is_swap_pmd(*pmd)) {
1877 swp_entry_t entry = pmd_to_swp_entry(*pmd);
1878
1879 VM_BUG_ON(!is_pmd_migration_entry(*pmd));
1880 if (is_write_migration_entry(entry)) {
1881 pmd_t newpmd;
1882 /*
1883 * A protection check is difficult so
1884 * just be safe and disable write
1885 */
1886 make_migration_entry_read(&entry);
1887 newpmd = swp_entry_to_pmd(entry);
ab6e3d09
NH
1888 if (pmd_swp_soft_dirty(*pmd))
1889 newpmd = pmd_swp_mksoft_dirty(newpmd);
84c3fc4e
ZY
1890 set_pmd_at(mm, addr, pmd, newpmd);
1891 }
1892 goto unlock;
1893 }
1894#endif
1895
0a85e51d
KS
1896 /*
1897 * Avoid trapping faults against the zero page. The read-only
1898 * data is likely to be read-cached on the local CPU and
1899 * local/remote hits to the zero page are not interesting.
1900 */
1901 if (prot_numa && is_huge_zero_pmd(*pmd))
1902 goto unlock;
025c5b24 1903
0a85e51d
KS
1904 if (prot_numa && pmd_protnone(*pmd))
1905 goto unlock;
1906
ced10803
KS
1907 /*
1908 * In case prot_numa, we are under down_read(mmap_sem). It's critical
1909 * to not clear pmd intermittently to avoid race with MADV_DONTNEED
1910 * which is also under down_read(mmap_sem):
1911 *
1912 * CPU0: CPU1:
1913 * change_huge_pmd(prot_numa=1)
1914 * pmdp_huge_get_and_clear_notify()
1915 * madvise_dontneed()
1916 * zap_pmd_range()
1917 * pmd_trans_huge(*pmd) == 0 (without ptl)
1918 * // skip the pmd
1919 * set_pmd_at();
1920 * // pmd is re-established
1921 *
1922 * The race makes MADV_DONTNEED miss the huge pmd and don't clear it
1923 * which may break userspace.
1924 *
1925 * pmdp_invalidate() is required to make sure we don't miss
1926 * dirty/young flags set by hardware.
1927 */
a3cf988f 1928 entry = pmdp_invalidate(vma, addr, pmd);
ced10803 1929
0a85e51d
KS
1930 entry = pmd_modify(entry, newprot);
1931 if (preserve_write)
1932 entry = pmd_mk_savedwrite(entry);
1933 ret = HPAGE_PMD_NR;
1934 set_pmd_at(mm, addr, pmd, entry);
1935 BUG_ON(vma_is_anonymous(vma) && !preserve_write && pmd_write(entry));
1936unlock:
1937 spin_unlock(ptl);
025c5b24
NH
1938 return ret;
1939}
1940
1941/*
8f19b0c0 1942 * Returns page table lock pointer if a given pmd maps a thp, NULL otherwise.
025c5b24 1943 *
8f19b0c0
HY
1944 * Note that if it returns page table lock pointer, this routine returns without
1945 * unlocking page table lock. So callers must unlock it.
025c5b24 1946 */
b6ec57f4 1947spinlock_t *__pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma)
025c5b24 1948{
b6ec57f4
KS
1949 spinlock_t *ptl;
1950 ptl = pmd_lock(vma->vm_mm, pmd);
84c3fc4e
ZY
1951 if (likely(is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) ||
1952 pmd_devmap(*pmd)))
b6ec57f4
KS
1953 return ptl;
1954 spin_unlock(ptl);
1955 return NULL;
cd7548ab
JW
1956}
1957
a00cc7d9
MW
1958/*
1959 * Returns true if a given pud maps a thp, false otherwise.
1960 *
1961 * Note that if it returns true, this routine returns without unlocking page
1962 * table lock. So callers must unlock it.
1963 */
1964spinlock_t *__pud_trans_huge_lock(pud_t *pud, struct vm_area_struct *vma)
1965{
1966 spinlock_t *ptl;
1967
1968 ptl = pud_lock(vma->vm_mm, pud);
1969 if (likely(pud_trans_huge(*pud) || pud_devmap(*pud)))
1970 return ptl;
1971 spin_unlock(ptl);
1972 return NULL;
1973}
1974
1975#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
1976int zap_huge_pud(struct mmu_gather *tlb, struct vm_area_struct *vma,
1977 pud_t *pud, unsigned long addr)
1978{
1979 pud_t orig_pud;
1980 spinlock_t *ptl;
1981
1982 ptl = __pud_trans_huge_lock(pud, vma);
1983 if (!ptl)
1984 return 0;
1985 /*
1986 * For architectures like ppc64 we look at deposited pgtable
1987 * when calling pudp_huge_get_and_clear. So do the
1988 * pgtable_trans_huge_withdraw after finishing pudp related
1989 * operations.
1990 */
1991 orig_pud = pudp_huge_get_and_clear_full(tlb->mm, addr, pud,
1992 tlb->fullmm);
1993 tlb_remove_pud_tlb_entry(tlb, pud, addr);
1994 if (vma_is_dax(vma)) {
1995 spin_unlock(ptl);
1996 /* No zero page support yet */
1997 } else {
1998 /* No support for anonymous PUD pages yet */
1999 BUG();
2000 }
2001 return 1;
2002}
2003
2004static void __split_huge_pud_locked(struct vm_area_struct *vma, pud_t *pud,
2005 unsigned long haddr)
2006{
2007 VM_BUG_ON(haddr & ~HPAGE_PUD_MASK);
2008 VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
2009 VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PUD_SIZE, vma);
2010 VM_BUG_ON(!pud_trans_huge(*pud) && !pud_devmap(*pud));
2011
ce9311cf 2012 count_vm_event(THP_SPLIT_PUD);
a00cc7d9
MW
2013
2014 pudp_huge_clear_flush_notify(vma, haddr, pud);
2015}
2016
2017void __split_huge_pud(struct vm_area_struct *vma, pud_t *pud,
2018 unsigned long address)
2019{
2020 spinlock_t *ptl;
2021 struct mm_struct *mm = vma->vm_mm;
2022 unsigned long haddr = address & HPAGE_PUD_MASK;
2023
2024 mmu_notifier_invalidate_range_start(mm, haddr, haddr + HPAGE_PUD_SIZE);
2025 ptl = pud_lock(mm, pud);
2026 if (unlikely(!pud_trans_huge(*pud) && !pud_devmap(*pud)))
2027 goto out;
2028 __split_huge_pud_locked(vma, pud, haddr);
2029
2030out:
2031 spin_unlock(ptl);
4645b9fe
JG
2032 /*
2033 * No need to double call mmu_notifier->invalidate_range() callback as
2034 * the above pudp_huge_clear_flush_notify() did already call it.
2035 */
2036 mmu_notifier_invalidate_range_only_end(mm, haddr, haddr +
2037 HPAGE_PUD_SIZE);
a00cc7d9
MW
2038}
2039#endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
2040
eef1b3ba
KS
2041static void __split_huge_zero_page_pmd(struct vm_area_struct *vma,
2042 unsigned long haddr, pmd_t *pmd)
2043{
2044 struct mm_struct *mm = vma->vm_mm;
2045 pgtable_t pgtable;
2046 pmd_t _pmd;
2047 int i;
2048
0f10851e
JG
2049 /*
2050 * Leave pmd empty until pte is filled note that it is fine to delay
2051 * notification until mmu_notifier_invalidate_range_end() as we are
2052 * replacing a zero pmd write protected page with a zero pte write
2053 * protected page.
2054 *
ad56b738 2055 * See Documentation/vm/mmu_notifier.rst
0f10851e
JG
2056 */
2057 pmdp_huge_clear_flush(vma, haddr, pmd);
eef1b3ba
KS
2058
2059 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2060 pmd_populate(mm, &_pmd, pgtable);
2061
2062 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
2063 pte_t *pte, entry;
2064 entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
2065 entry = pte_mkspecial(entry);
2066 pte = pte_offset_map(&_pmd, haddr);
2067 VM_BUG_ON(!pte_none(*pte));
2068 set_pte_at(mm, haddr, pte, entry);
2069 pte_unmap(pte);
2070 }
2071 smp_wmb(); /* make pte visible before pmd */
2072 pmd_populate(mm, pmd, pgtable);
eef1b3ba
KS
2073}
2074
2075static void __split_huge_pmd_locked(struct vm_area_struct *vma, pmd_t *pmd,
ba988280 2076 unsigned long haddr, bool freeze)
eef1b3ba
KS
2077{
2078 struct mm_struct *mm = vma->vm_mm;
2079 struct page *page;
2080 pgtable_t pgtable;
423ac9af 2081 pmd_t old_pmd, _pmd;
a3cf988f 2082 bool young, write, soft_dirty, pmd_migration = false;
2ac015e2 2083 unsigned long addr;
eef1b3ba
KS
2084 int i;
2085
2086 VM_BUG_ON(haddr & ~HPAGE_PMD_MASK);
2087 VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
2088 VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PMD_SIZE, vma);
84c3fc4e
ZY
2089 VM_BUG_ON(!is_pmd_migration_entry(*pmd) && !pmd_trans_huge(*pmd)
2090 && !pmd_devmap(*pmd));
eef1b3ba
KS
2091
2092 count_vm_event(THP_SPLIT_PMD);
2093
d21b9e57
KS
2094 if (!vma_is_anonymous(vma)) {
2095 _pmd = pmdp_huge_clear_flush_notify(vma, haddr, pmd);
953c66c2
AK
2096 /*
2097 * We are going to unmap this huge page. So
2098 * just go ahead and zap it
2099 */
2100 if (arch_needs_pgtable_deposit())
2101 zap_deposited_table(mm, pmd);
d21b9e57
KS
2102 if (vma_is_dax(vma))
2103 return;
2104 page = pmd_page(_pmd);
e1f1b157
HD
2105 if (!PageDirty(page) && pmd_dirty(_pmd))
2106 set_page_dirty(page);
d21b9e57
KS
2107 if (!PageReferenced(page) && pmd_young(_pmd))
2108 SetPageReferenced(page);
2109 page_remove_rmap(page, true);
2110 put_page(page);
fadae295 2111 add_mm_counter(mm, mm_counter_file(page), -HPAGE_PMD_NR);
eef1b3ba
KS
2112 return;
2113 } else if (is_huge_zero_pmd(*pmd)) {
4645b9fe
JG
2114 /*
2115 * FIXME: Do we want to invalidate secondary mmu by calling
2116 * mmu_notifier_invalidate_range() see comments below inside
2117 * __split_huge_pmd() ?
2118 *
2119 * We are going from a zero huge page write protected to zero
2120 * small page also write protected so it does not seems useful
2121 * to invalidate secondary mmu at this time.
2122 */
eef1b3ba
KS
2123 return __split_huge_zero_page_pmd(vma, haddr, pmd);
2124 }
2125
423ac9af
AK
2126 /*
2127 * Up to this point the pmd is present and huge and userland has the
2128 * whole access to the hugepage during the split (which happens in
2129 * place). If we overwrite the pmd with the not-huge version pointing
2130 * to the pte here (which of course we could if all CPUs were bug
2131 * free), userland could trigger a small page size TLB miss on the
2132 * small sized TLB while the hugepage TLB entry is still established in
2133 * the huge TLB. Some CPU doesn't like that.
2134 * See http://support.amd.com/us/Processor_TechDocs/41322.pdf, Erratum
2135 * 383 on page 93. Intel should be safe but is also warns that it's
2136 * only safe if the permission and cache attributes of the two entries
2137 * loaded in the two TLB is identical (which should be the case here).
2138 * But it is generally safer to never allow small and huge TLB entries
2139 * for the same virtual address to be loaded simultaneously. So instead
2140 * of doing "pmd_populate(); flush_pmd_tlb_range();" we first mark the
2141 * current pmd notpresent (atomically because here the pmd_trans_huge
2142 * must remain set at all times on the pmd until the split is complete
2143 * for this pmd), then we flush the SMP TLB and finally we write the
2144 * non-huge version of the pmd entry with pmd_populate.
2145 */
2146 old_pmd = pmdp_invalidate(vma, haddr, pmd);
2147
84c3fc4e 2148#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
423ac9af 2149 pmd_migration = is_pmd_migration_entry(old_pmd);
84c3fc4e
ZY
2150 if (pmd_migration) {
2151 swp_entry_t entry;
2152
423ac9af 2153 entry = pmd_to_swp_entry(old_pmd);
84c3fc4e
ZY
2154 page = pfn_to_page(swp_offset(entry));
2155 } else
2156#endif
423ac9af 2157 page = pmd_page(old_pmd);
eef1b3ba 2158 VM_BUG_ON_PAGE(!page_count(page), page);
fe896d18 2159 page_ref_add(page, HPAGE_PMD_NR - 1);
423ac9af
AK
2160 if (pmd_dirty(old_pmd))
2161 SetPageDirty(page);
2162 write = pmd_write(old_pmd);
2163 young = pmd_young(old_pmd);
2164 soft_dirty = pmd_soft_dirty(old_pmd);
eef1b3ba 2165
423ac9af
AK
2166 /*
2167 * Withdraw the table only after we mark the pmd entry invalid.
2168 * This's critical for some architectures (Power).
2169 */
eef1b3ba
KS
2170 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2171 pmd_populate(mm, &_pmd, pgtable);
2172
2ac015e2 2173 for (i = 0, addr = haddr; i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE) {
eef1b3ba
KS
2174 pte_t entry, *pte;
2175 /*
2176 * Note that NUMA hinting access restrictions are not
2177 * transferred to avoid any possibility of altering
2178 * permissions across VMAs.
2179 */
84c3fc4e 2180 if (freeze || pmd_migration) {
ba988280
KS
2181 swp_entry_t swp_entry;
2182 swp_entry = make_migration_entry(page + i, write);
2183 entry = swp_entry_to_pte(swp_entry);
804dd150
AA
2184 if (soft_dirty)
2185 entry = pte_swp_mksoft_dirty(entry);
ba988280 2186 } else {
6d2329f8 2187 entry = mk_pte(page + i, READ_ONCE(vma->vm_page_prot));
b8d3c4c3 2188 entry = maybe_mkwrite(entry, vma);
ba988280
KS
2189 if (!write)
2190 entry = pte_wrprotect(entry);
2191 if (!young)
2192 entry = pte_mkold(entry);
804dd150
AA
2193 if (soft_dirty)
2194 entry = pte_mksoft_dirty(entry);
ba988280 2195 }
2ac015e2 2196 pte = pte_offset_map(&_pmd, addr);
eef1b3ba 2197 BUG_ON(!pte_none(*pte));
2ac015e2 2198 set_pte_at(mm, addr, pte, entry);
eef1b3ba
KS
2199 atomic_inc(&page[i]._mapcount);
2200 pte_unmap(pte);
2201 }
2202
2203 /*
2204 * Set PG_double_map before dropping compound_mapcount to avoid
2205 * false-negative page_mapped().
2206 */
2207 if (compound_mapcount(page) > 1 && !TestSetPageDoubleMap(page)) {
2208 for (i = 0; i < HPAGE_PMD_NR; i++)
2209 atomic_inc(&page[i]._mapcount);
2210 }
2211
2212 if (atomic_add_negative(-1, compound_mapcount_ptr(page))) {
2213 /* Last compound_mapcount is gone. */
11fb9989 2214 __dec_node_page_state(page, NR_ANON_THPS);
eef1b3ba
KS
2215 if (TestClearPageDoubleMap(page)) {
2216 /* No need in mapcount reference anymore */
2217 for (i = 0; i < HPAGE_PMD_NR; i++)
2218 atomic_dec(&page[i]._mapcount);
2219 }
2220 }
2221
2222 smp_wmb(); /* make pte visible before pmd */
2223 pmd_populate(mm, pmd, pgtable);
e9b61f19
KS
2224
2225 if (freeze) {
2ac015e2 2226 for (i = 0; i < HPAGE_PMD_NR; i++) {
e9b61f19
KS
2227 page_remove_rmap(page + i, false);
2228 put_page(page + i);
2229 }
2230 }
eef1b3ba
KS
2231}
2232
2233void __split_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
33f4751e 2234 unsigned long address, bool freeze, struct page *page)
eef1b3ba
KS
2235{
2236 spinlock_t *ptl;
2237 struct mm_struct *mm = vma->vm_mm;
2238 unsigned long haddr = address & HPAGE_PMD_MASK;
2239
2240 mmu_notifier_invalidate_range_start(mm, haddr, haddr + HPAGE_PMD_SIZE);
2241 ptl = pmd_lock(mm, pmd);
33f4751e
NH
2242
2243 /*
2244 * If caller asks to setup a migration entries, we need a page to check
2245 * pmd against. Otherwise we can end up replacing wrong page.
2246 */
2247 VM_BUG_ON(freeze && !page);
2248 if (page && page != pmd_page(*pmd))
2249 goto out;
2250
5c7fb56e 2251 if (pmd_trans_huge(*pmd)) {
33f4751e 2252 page = pmd_page(*pmd);
5c7fb56e 2253 if (PageMlocked(page))
5f737714 2254 clear_page_mlock(page);
84c3fc4e 2255 } else if (!(pmd_devmap(*pmd) || is_pmd_migration_entry(*pmd)))
e90309c9 2256 goto out;
fec89c10 2257 __split_huge_pmd_locked(vma, pmd, haddr, freeze);
e90309c9 2258out:
eef1b3ba 2259 spin_unlock(ptl);
4645b9fe
JG
2260 /*
2261 * No need to double call mmu_notifier->invalidate_range() callback.
2262 * They are 3 cases to consider inside __split_huge_pmd_locked():
2263 * 1) pmdp_huge_clear_flush_notify() call invalidate_range() obvious
2264 * 2) __split_huge_zero_page_pmd() read only zero page and any write
2265 * fault will trigger a flush_notify before pointing to a new page
2266 * (it is fine if the secondary mmu keeps pointing to the old zero
2267 * page in the meantime)
2268 * 3) Split a huge pmd into pte pointing to the same page. No need
2269 * to invalidate secondary tlb entry they are all still valid.
2270 * any further changes to individual pte will notify. So no need
2271 * to call mmu_notifier->invalidate_range()
2272 */
2273 mmu_notifier_invalidate_range_only_end(mm, haddr, haddr +
2274 HPAGE_PMD_SIZE);
eef1b3ba
KS
2275}
2276
fec89c10
KS
2277void split_huge_pmd_address(struct vm_area_struct *vma, unsigned long address,
2278 bool freeze, struct page *page)
94fcc585 2279{
f72e7dcd 2280 pgd_t *pgd;
c2febafc 2281 p4d_t *p4d;
f72e7dcd 2282 pud_t *pud;
94fcc585
AA
2283 pmd_t *pmd;
2284
78ddc534 2285 pgd = pgd_offset(vma->vm_mm, address);
f72e7dcd
HD
2286 if (!pgd_present(*pgd))
2287 return;
2288
c2febafc
KS
2289 p4d = p4d_offset(pgd, address);
2290 if (!p4d_present(*p4d))
2291 return;
2292
2293 pud = pud_offset(p4d, address);
f72e7dcd
HD
2294 if (!pud_present(*pud))
2295 return;
2296
2297 pmd = pmd_offset(pud, address);
fec89c10 2298
33f4751e 2299 __split_huge_pmd(vma, pmd, address, freeze, page);
94fcc585
AA
2300}
2301
e1b9996b 2302void vma_adjust_trans_huge(struct vm_area_struct *vma,
94fcc585
AA
2303 unsigned long start,
2304 unsigned long end,
2305 long adjust_next)
2306{
2307 /*
2308 * If the new start address isn't hpage aligned and it could
2309 * previously contain an hugepage: check if we need to split
2310 * an huge pmd.
2311 */
2312 if (start & ~HPAGE_PMD_MASK &&
2313 (start & HPAGE_PMD_MASK) >= vma->vm_start &&
2314 (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
fec89c10 2315 split_huge_pmd_address(vma, start, false, NULL);
94fcc585
AA
2316
2317 /*
2318 * If the new end address isn't hpage aligned and it could
2319 * previously contain an hugepage: check if we need to split
2320 * an huge pmd.
2321 */
2322 if (end & ~HPAGE_PMD_MASK &&
2323 (end & HPAGE_PMD_MASK) >= vma->vm_start &&
2324 (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
fec89c10 2325 split_huge_pmd_address(vma, end, false, NULL);
94fcc585
AA
2326
2327 /*
2328 * If we're also updating the vma->vm_next->vm_start, if the new
2329 * vm_next->vm_start isn't page aligned and it could previously
2330 * contain an hugepage: check if we need to split an huge pmd.
2331 */
2332 if (adjust_next > 0) {
2333 struct vm_area_struct *next = vma->vm_next;
2334 unsigned long nstart = next->vm_start;
2335 nstart += adjust_next << PAGE_SHIFT;
2336 if (nstart & ~HPAGE_PMD_MASK &&
2337 (nstart & HPAGE_PMD_MASK) >= next->vm_start &&
2338 (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end)
fec89c10 2339 split_huge_pmd_address(next, nstart, false, NULL);
94fcc585
AA
2340 }
2341}
e9b61f19 2342
906f9cdf 2343static void unmap_page(struct page *page)
e9b61f19 2344{
baa355fd 2345 enum ttu_flags ttu_flags = TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS |
c7ab0d2f 2346 TTU_RMAP_LOCKED | TTU_SPLIT_HUGE_PMD;
666e5a40 2347 bool unmap_success;
e9b61f19
KS
2348
2349 VM_BUG_ON_PAGE(!PageHead(page), page);
2350
baa355fd 2351 if (PageAnon(page))
b5ff8161 2352 ttu_flags |= TTU_SPLIT_FREEZE;
baa355fd 2353
666e5a40
MK
2354 unmap_success = try_to_unmap(page, ttu_flags);
2355 VM_BUG_ON_PAGE(!unmap_success, page);
e9b61f19
KS
2356}
2357
906f9cdf 2358static void remap_page(struct page *page)
e9b61f19 2359{
fec89c10 2360 int i;
ace71a19
KS
2361 if (PageTransHuge(page)) {
2362 remove_migration_ptes(page, page, true);
2363 } else {
2364 for (i = 0; i < HPAGE_PMD_NR; i++)
2365 remove_migration_ptes(page + i, page + i, true);
2366 }
e9b61f19
KS
2367}
2368
8df651c7 2369static void __split_huge_page_tail(struct page *head, int tail,
e9b61f19
KS
2370 struct lruvec *lruvec, struct list_head *list)
2371{
e9b61f19
KS
2372 struct page *page_tail = head + tail;
2373
8df651c7 2374 VM_BUG_ON_PAGE(atomic_read(&page_tail->_mapcount) != -1, page_tail);
e9b61f19
KS
2375
2376 /*
605ca5ed
KK
2377 * Clone page flags before unfreezing refcount.
2378 *
2379 * After successful get_page_unless_zero() might follow flags change,
2380 * for exmaple lock_page() which set PG_waiters.
e9b61f19 2381 */
e9b61f19
KS
2382 page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
2383 page_tail->flags |= (head->flags &
2384 ((1L << PG_referenced) |
2385 (1L << PG_swapbacked) |
38d8b4e6 2386 (1L << PG_swapcache) |
e9b61f19
KS
2387 (1L << PG_mlocked) |
2388 (1L << PG_uptodate) |
2389 (1L << PG_active) |
1899ad18 2390 (1L << PG_workingset) |
e9b61f19 2391 (1L << PG_locked) |
b8d3c4c3
MK
2392 (1L << PG_unevictable) |
2393 (1L << PG_dirty)));
e9b61f19 2394
173d9d9f
HD
2395 /* ->mapping in first tail page is compound_mapcount */
2396 VM_BUG_ON_PAGE(tail > 2 && page_tail->mapping != TAIL_MAPPING,
2397 page_tail);
2398 page_tail->mapping = head->mapping;
2399 page_tail->index = head->index + tail;
2400
605ca5ed 2401 /* Page flags must be visible before we make the page non-compound. */
e9b61f19
KS
2402 smp_wmb();
2403
605ca5ed
KK
2404 /*
2405 * Clear PageTail before unfreezing page refcount.
2406 *
2407 * After successful get_page_unless_zero() might follow put_page()
2408 * which needs correct compound_head().
2409 */
e9b61f19
KS
2410 clear_compound_head(page_tail);
2411
605ca5ed
KK
2412 /* Finally unfreeze refcount. Additional reference from page cache. */
2413 page_ref_unfreeze(page_tail, 1 + (!PageAnon(head) ||
2414 PageSwapCache(head)));
2415
e9b61f19
KS
2416 if (page_is_young(head))
2417 set_page_young(page_tail);
2418 if (page_is_idle(head))
2419 set_page_idle(page_tail);
2420
e9b61f19 2421 page_cpupid_xchg_last(page_tail, page_cpupid_last(head));
94723aaf
MH
2422
2423 /*
2424 * always add to the tail because some iterators expect new
2425 * pages to show after the currently processed elements - e.g.
2426 * migrate_pages
2427 */
e9b61f19 2428 lru_add_page_tail(head, page_tail, lruvec, list);
e9b61f19
KS
2429}
2430
baa355fd 2431static void __split_huge_page(struct page *page, struct list_head *list,
006d3ff2 2432 pgoff_t end, unsigned long flags)
e9b61f19
KS
2433{
2434 struct page *head = compound_head(page);
2435 struct zone *zone = page_zone(head);
2436 struct lruvec *lruvec;
8df651c7 2437 int i;
e9b61f19 2438
599d0c95 2439 lruvec = mem_cgroup_page_lruvec(head, zone->zone_pgdat);
e9b61f19
KS
2440
2441 /* complete memcg works before add pages to LRU */
2442 mem_cgroup_split_huge_fixup(head);
2443
baa355fd 2444 for (i = HPAGE_PMD_NR - 1; i >= 1; i--) {
8df651c7 2445 __split_huge_page_tail(head, i, lruvec, list);
baa355fd
KS
2446 /* Some pages can be beyond i_size: drop them from page cache */
2447 if (head[i].index >= end) {
2d077d4b 2448 ClearPageDirty(head + i);
baa355fd 2449 __delete_from_page_cache(head + i, NULL);
800d8c63
KS
2450 if (IS_ENABLED(CONFIG_SHMEM) && PageSwapBacked(head))
2451 shmem_uncharge(head->mapping->host, 1);
baa355fd
KS
2452 put_page(head + i);
2453 }
2454 }
e9b61f19
KS
2455
2456 ClearPageCompound(head);
baa355fd
KS
2457 /* See comment in __split_huge_page_tail() */
2458 if (PageAnon(head)) {
aa5dc07f 2459 /* Additional pin to swap cache */
38d8b4e6
HY
2460 if (PageSwapCache(head))
2461 page_ref_add(head, 2);
2462 else
2463 page_ref_inc(head);
baa355fd 2464 } else {
aa5dc07f 2465 /* Additional pin to page cache */
baa355fd 2466 page_ref_add(head, 2);
b93b0163 2467 xa_unlock(&head->mapping->i_pages);
baa355fd
KS
2468 }
2469
a52633d8 2470 spin_unlock_irqrestore(zone_lru_lock(page_zone(head)), flags);
e9b61f19 2471
906f9cdf 2472 remap_page(head);
e9b61f19
KS
2473
2474 for (i = 0; i < HPAGE_PMD_NR; i++) {
2475 struct page *subpage = head + i;
2476 if (subpage == page)
2477 continue;
2478 unlock_page(subpage);
2479
2480 /*
2481 * Subpages may be freed if there wasn't any mapping
2482 * like if add_to_swap() is running on a lru page that
2483 * had its mapping zapped. And freeing these pages
2484 * requires taking the lru_lock so we do the put_page
2485 * of the tail pages after the split is complete.
2486 */
2487 put_page(subpage);
2488 }
2489}
2490
b20ce5e0
KS
2491int total_mapcount(struct page *page)
2492{
dd78fedd 2493 int i, compound, ret;
b20ce5e0
KS
2494
2495 VM_BUG_ON_PAGE(PageTail(page), page);
2496
2497 if (likely(!PageCompound(page)))
2498 return atomic_read(&page->_mapcount) + 1;
2499
dd78fedd 2500 compound = compound_mapcount(page);
b20ce5e0 2501 if (PageHuge(page))
dd78fedd
KS
2502 return compound;
2503 ret = compound;
b20ce5e0
KS
2504 for (i = 0; i < HPAGE_PMD_NR; i++)
2505 ret += atomic_read(&page[i]._mapcount) + 1;
dd78fedd
KS
2506 /* File pages has compound_mapcount included in _mapcount */
2507 if (!PageAnon(page))
2508 return ret - compound * HPAGE_PMD_NR;
b20ce5e0
KS
2509 if (PageDoubleMap(page))
2510 ret -= HPAGE_PMD_NR;
2511 return ret;
2512}
2513
6d0a07ed
AA
2514/*
2515 * This calculates accurately how many mappings a transparent hugepage
2516 * has (unlike page_mapcount() which isn't fully accurate). This full
2517 * accuracy is primarily needed to know if copy-on-write faults can
2518 * reuse the page and change the mapping to read-write instead of
2519 * copying them. At the same time this returns the total_mapcount too.
2520 *
2521 * The function returns the highest mapcount any one of the subpages
2522 * has. If the return value is one, even if different processes are
2523 * mapping different subpages of the transparent hugepage, they can
2524 * all reuse it, because each process is reusing a different subpage.
2525 *
2526 * The total_mapcount is instead counting all virtual mappings of the
2527 * subpages. If the total_mapcount is equal to "one", it tells the
2528 * caller all mappings belong to the same "mm" and in turn the
2529 * anon_vma of the transparent hugepage can become the vma->anon_vma
2530 * local one as no other process may be mapping any of the subpages.
2531 *
2532 * It would be more accurate to replace page_mapcount() with
2533 * page_trans_huge_mapcount(), however we only use
2534 * page_trans_huge_mapcount() in the copy-on-write faults where we
2535 * need full accuracy to avoid breaking page pinning, because
2536 * page_trans_huge_mapcount() is slower than page_mapcount().
2537 */
2538int page_trans_huge_mapcount(struct page *page, int *total_mapcount)
2539{
2540 int i, ret, _total_mapcount, mapcount;
2541
2542 /* hugetlbfs shouldn't call it */
2543 VM_BUG_ON_PAGE(PageHuge(page), page);
2544
2545 if (likely(!PageTransCompound(page))) {
2546 mapcount = atomic_read(&page->_mapcount) + 1;
2547 if (total_mapcount)
2548 *total_mapcount = mapcount;
2549 return mapcount;
2550 }
2551
2552 page = compound_head(page);
2553
2554 _total_mapcount = ret = 0;
2555 for (i = 0; i < HPAGE_PMD_NR; i++) {
2556 mapcount = atomic_read(&page[i]._mapcount) + 1;
2557 ret = max(ret, mapcount);
2558 _total_mapcount += mapcount;
2559 }
2560 if (PageDoubleMap(page)) {
2561 ret -= 1;
2562 _total_mapcount -= HPAGE_PMD_NR;
2563 }
2564 mapcount = compound_mapcount(page);
2565 ret += mapcount;
2566 _total_mapcount += mapcount;
2567 if (total_mapcount)
2568 *total_mapcount = _total_mapcount;
2569 return ret;
2570}
2571
b8f593cd
HY
2572/* Racy check whether the huge page can be split */
2573bool can_split_huge_page(struct page *page, int *pextra_pins)
2574{
2575 int extra_pins;
2576
aa5dc07f 2577 /* Additional pins from page cache */
b8f593cd
HY
2578 if (PageAnon(page))
2579 extra_pins = PageSwapCache(page) ? HPAGE_PMD_NR : 0;
2580 else
2581 extra_pins = HPAGE_PMD_NR;
2582 if (pextra_pins)
2583 *pextra_pins = extra_pins;
2584 return total_mapcount(page) == page_count(page) - extra_pins - 1;
2585}
2586
e9b61f19
KS
2587/*
2588 * This function splits huge page into normal pages. @page can point to any
2589 * subpage of huge page to split. Split doesn't change the position of @page.
2590 *
2591 * Only caller must hold pin on the @page, otherwise split fails with -EBUSY.
2592 * The huge page must be locked.
2593 *
2594 * If @list is null, tail pages will be added to LRU list, otherwise, to @list.
2595 *
2596 * Both head page and tail pages will inherit mapping, flags, and so on from
2597 * the hugepage.
2598 *
2599 * GUP pin and PG_locked transferred to @page. Rest subpages can be freed if
2600 * they are not mapped.
2601 *
2602 * Returns 0 if the hugepage is split successfully.
2603 * Returns -EBUSY if the page is pinned or if anon_vma disappeared from under
2604 * us.
2605 */
2606int split_huge_page_to_list(struct page *page, struct list_head *list)
2607{
2608 struct page *head = compound_head(page);
a3d0a918 2609 struct pglist_data *pgdata = NODE_DATA(page_to_nid(head));
baa355fd
KS
2610 struct anon_vma *anon_vma = NULL;
2611 struct address_space *mapping = NULL;
2612 int count, mapcount, extra_pins, ret;
d9654322 2613 bool mlocked;
0b9b6fff 2614 unsigned long flags;
006d3ff2 2615 pgoff_t end;
e9b61f19
KS
2616
2617 VM_BUG_ON_PAGE(is_huge_zero_page(page), page);
e9b61f19 2618 VM_BUG_ON_PAGE(!PageLocked(page), page);
e9b61f19
KS
2619 VM_BUG_ON_PAGE(!PageCompound(page), page);
2620
59807685
HY
2621 if (PageWriteback(page))
2622 return -EBUSY;
2623
baa355fd
KS
2624 if (PageAnon(head)) {
2625 /*
2626 * The caller does not necessarily hold an mmap_sem that would
2627 * prevent the anon_vma disappearing so we first we take a
2628 * reference to it and then lock the anon_vma for write. This
2629 * is similar to page_lock_anon_vma_read except the write lock
2630 * is taken to serialise against parallel split or collapse
2631 * operations.
2632 */
2633 anon_vma = page_get_anon_vma(head);
2634 if (!anon_vma) {
2635 ret = -EBUSY;
2636 goto out;
2637 }
006d3ff2 2638 end = -1;
baa355fd
KS
2639 mapping = NULL;
2640 anon_vma_lock_write(anon_vma);
2641 } else {
2642 mapping = head->mapping;
2643
2644 /* Truncated ? */
2645 if (!mapping) {
2646 ret = -EBUSY;
2647 goto out;
2648 }
2649
baa355fd
KS
2650 anon_vma = NULL;
2651 i_mmap_lock_read(mapping);
006d3ff2
HD
2652
2653 /*
2654 *__split_huge_page() may need to trim off pages beyond EOF:
2655 * but on 32-bit, i_size_read() takes an irq-unsafe seqlock,
2656 * which cannot be nested inside the page tree lock. So note
2657 * end now: i_size itself may be changed at any moment, but
2658 * head page lock is good enough to serialize the trimming.
2659 */
2660 end = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
e9b61f19 2661 }
e9b61f19
KS
2662
2663 /*
906f9cdf 2664 * Racy check if we can split the page, before unmap_page() will
e9b61f19
KS
2665 * split PMDs
2666 */
b8f593cd 2667 if (!can_split_huge_page(head, &extra_pins)) {
e9b61f19
KS
2668 ret = -EBUSY;
2669 goto out_unlock;
2670 }
2671
d9654322 2672 mlocked = PageMlocked(page);
906f9cdf 2673 unmap_page(head);
e9b61f19
KS
2674 VM_BUG_ON_PAGE(compound_mapcount(head), head);
2675
d9654322
KS
2676 /* Make sure the page is not on per-CPU pagevec as it takes pin */
2677 if (mlocked)
2678 lru_add_drain();
2679
baa355fd 2680 /* prevent PageLRU to go away from under us, and freeze lru stats */
a52633d8 2681 spin_lock_irqsave(zone_lru_lock(page_zone(head)), flags);
baa355fd
KS
2682
2683 if (mapping) {
aa5dc07f 2684 XA_STATE(xas, &mapping->i_pages, page_index(head));
baa355fd 2685
baa355fd 2686 /*
aa5dc07f 2687 * Check if the head page is present in page cache.
baa355fd
KS
2688 * We assume all tail are present too, if head is there.
2689 */
aa5dc07f
MW
2690 xa_lock(&mapping->i_pages);
2691 if (xas_load(&xas) != head)
baa355fd
KS
2692 goto fail;
2693 }
2694
0139aa7b 2695 /* Prevent deferred_split_scan() touching ->_refcount */
baa355fd 2696 spin_lock(&pgdata->split_queue_lock);
e9b61f19
KS
2697 count = page_count(head);
2698 mapcount = total_mapcount(head);
baa355fd 2699 if (!mapcount && page_ref_freeze(head, 1 + extra_pins)) {
9a982250 2700 if (!list_empty(page_deferred_list(head))) {
a3d0a918 2701 pgdata->split_queue_len--;
9a982250
KS
2702 list_del(page_deferred_list(head));
2703 }
65c45377 2704 if (mapping)
11fb9989 2705 __dec_node_page_state(page, NR_SHMEM_THPS);
baa355fd 2706 spin_unlock(&pgdata->split_queue_lock);
006d3ff2 2707 __split_huge_page(page, list, end, flags);
59807685
HY
2708 if (PageSwapCache(head)) {
2709 swp_entry_t entry = { .val = page_private(head) };
2710
2711 ret = split_swap_cluster(entry);
2712 } else
2713 ret = 0;
e9b61f19 2714 } else {
baa355fd
KS
2715 if (IS_ENABLED(CONFIG_DEBUG_VM) && mapcount) {
2716 pr_alert("total_mapcount: %u, page_count(): %u\n",
2717 mapcount, count);
2718 if (PageTail(page))
2719 dump_page(head, NULL);
2720 dump_page(page, "total_mapcount(head) > 0");
2721 BUG();
2722 }
2723 spin_unlock(&pgdata->split_queue_lock);
2724fail: if (mapping)
b93b0163 2725 xa_unlock(&mapping->i_pages);
a52633d8 2726 spin_unlock_irqrestore(zone_lru_lock(page_zone(head)), flags);
906f9cdf 2727 remap_page(head);
e9b61f19
KS
2728 ret = -EBUSY;
2729 }
2730
2731out_unlock:
baa355fd
KS
2732 if (anon_vma) {
2733 anon_vma_unlock_write(anon_vma);
2734 put_anon_vma(anon_vma);
2735 }
2736 if (mapping)
2737 i_mmap_unlock_read(mapping);
e9b61f19
KS
2738out:
2739 count_vm_event(!ret ? THP_SPLIT_PAGE : THP_SPLIT_PAGE_FAILED);
2740 return ret;
2741}
9a982250
KS
2742
2743void free_transhuge_page(struct page *page)
2744{
a3d0a918 2745 struct pglist_data *pgdata = NODE_DATA(page_to_nid(page));
9a982250
KS
2746 unsigned long flags;
2747
a3d0a918 2748 spin_lock_irqsave(&pgdata->split_queue_lock, flags);
9a982250 2749 if (!list_empty(page_deferred_list(page))) {
a3d0a918 2750 pgdata->split_queue_len--;
9a982250
KS
2751 list_del(page_deferred_list(page));
2752 }
a3d0a918 2753 spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
9a982250
KS
2754 free_compound_page(page);
2755}
2756
2757void deferred_split_huge_page(struct page *page)
2758{
a3d0a918 2759 struct pglist_data *pgdata = NODE_DATA(page_to_nid(page));
9a982250
KS
2760 unsigned long flags;
2761
2762 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
2763
a3d0a918 2764 spin_lock_irqsave(&pgdata->split_queue_lock, flags);
9a982250 2765 if (list_empty(page_deferred_list(page))) {
f9719a03 2766 count_vm_event(THP_DEFERRED_SPLIT_PAGE);
a3d0a918
KS
2767 list_add_tail(page_deferred_list(page), &pgdata->split_queue);
2768 pgdata->split_queue_len++;
9a982250 2769 }
a3d0a918 2770 spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
9a982250
KS
2771}
2772
2773static unsigned long deferred_split_count(struct shrinker *shrink,
2774 struct shrink_control *sc)
2775{
a3d0a918 2776 struct pglist_data *pgdata = NODE_DATA(sc->nid);
6aa7de05 2777 return READ_ONCE(pgdata->split_queue_len);
9a982250
KS
2778}
2779
2780static unsigned long deferred_split_scan(struct shrinker *shrink,
2781 struct shrink_control *sc)
2782{
a3d0a918 2783 struct pglist_data *pgdata = NODE_DATA(sc->nid);
9a982250
KS
2784 unsigned long flags;
2785 LIST_HEAD(list), *pos, *next;
2786 struct page *page;
2787 int split = 0;
2788
a3d0a918 2789 spin_lock_irqsave(&pgdata->split_queue_lock, flags);
9a982250 2790 /* Take pin on all head pages to avoid freeing them under us */
ae026204 2791 list_for_each_safe(pos, next, &pgdata->split_queue) {
9a982250
KS
2792 page = list_entry((void *)pos, struct page, mapping);
2793 page = compound_head(page);
e3ae1953
KS
2794 if (get_page_unless_zero(page)) {
2795 list_move(page_deferred_list(page), &list);
2796 } else {
2797 /* We lost race with put_compound_page() */
9a982250 2798 list_del_init(page_deferred_list(page));
a3d0a918 2799 pgdata->split_queue_len--;
9a982250 2800 }
e3ae1953
KS
2801 if (!--sc->nr_to_scan)
2802 break;
9a982250 2803 }
a3d0a918 2804 spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
9a982250
KS
2805
2806 list_for_each_safe(pos, next, &list) {
2807 page = list_entry((void *)pos, struct page, mapping);
fa41b900
KS
2808 if (!trylock_page(page))
2809 goto next;
9a982250
KS
2810 /* split_huge_page() removes page from list on success */
2811 if (!split_huge_page(page))
2812 split++;
2813 unlock_page(page);
fa41b900 2814next:
9a982250
KS
2815 put_page(page);
2816 }
2817
a3d0a918
KS
2818 spin_lock_irqsave(&pgdata->split_queue_lock, flags);
2819 list_splice_tail(&list, &pgdata->split_queue);
2820 spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
9a982250 2821
cb8d68ec
KS
2822 /*
2823 * Stop shrinker if we didn't split any page, but the queue is empty.
2824 * This can happen if pages were freed under us.
2825 */
2826 if (!split && list_empty(&pgdata->split_queue))
2827 return SHRINK_STOP;
2828 return split;
9a982250
KS
2829}
2830
2831static struct shrinker deferred_split_shrinker = {
2832 .count_objects = deferred_split_count,
2833 .scan_objects = deferred_split_scan,
2834 .seeks = DEFAULT_SEEKS,
a3d0a918 2835 .flags = SHRINKER_NUMA_AWARE,
9a982250 2836};
49071d43
KS
2837
2838#ifdef CONFIG_DEBUG_FS
2839static int split_huge_pages_set(void *data, u64 val)
2840{
2841 struct zone *zone;
2842 struct page *page;
2843 unsigned long pfn, max_zone_pfn;
2844 unsigned long total = 0, split = 0;
2845
2846 if (val != 1)
2847 return -EINVAL;
2848
2849 for_each_populated_zone(zone) {
2850 max_zone_pfn = zone_end_pfn(zone);
2851 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) {
2852 if (!pfn_valid(pfn))
2853 continue;
2854
2855 page = pfn_to_page(pfn);
2856 if (!get_page_unless_zero(page))
2857 continue;
2858
2859 if (zone != page_zone(page))
2860 goto next;
2861
baa355fd 2862 if (!PageHead(page) || PageHuge(page) || !PageLRU(page))
49071d43
KS
2863 goto next;
2864
2865 total++;
2866 lock_page(page);
2867 if (!split_huge_page(page))
2868 split++;
2869 unlock_page(page);
2870next:
2871 put_page(page);
2872 }
2873 }
2874
145bdaa1 2875 pr_info("%lu of %lu THP split\n", split, total);
49071d43
KS
2876
2877 return 0;
2878}
2879DEFINE_SIMPLE_ATTRIBUTE(split_huge_pages_fops, NULL, split_huge_pages_set,
2880 "%llu\n");
2881
2882static int __init split_huge_pages_debugfs(void)
2883{
2884 void *ret;
2885
145bdaa1 2886 ret = debugfs_create_file("split_huge_pages", 0200, NULL, NULL,
49071d43
KS
2887 &split_huge_pages_fops);
2888 if (!ret)
2889 pr_warn("Failed to create split_huge_pages in debugfs");
2890 return 0;
2891}
2892late_initcall(split_huge_pages_debugfs);
2893#endif
616b8371
ZY
2894
2895#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
2896void set_pmd_migration_entry(struct page_vma_mapped_walk *pvmw,
2897 struct page *page)
2898{
2899 struct vm_area_struct *vma = pvmw->vma;
2900 struct mm_struct *mm = vma->vm_mm;
2901 unsigned long address = pvmw->address;
2902 pmd_t pmdval;
2903 swp_entry_t entry;
ab6e3d09 2904 pmd_t pmdswp;
616b8371
ZY
2905
2906 if (!(pvmw->pmd && !pvmw->pte))
2907 return;
2908
616b8371
ZY
2909 flush_cache_range(vma, address, address + HPAGE_PMD_SIZE);
2910 pmdval = *pvmw->pmd;
2911 pmdp_invalidate(vma, address, pvmw->pmd);
2912 if (pmd_dirty(pmdval))
2913 set_page_dirty(page);
2914 entry = make_migration_entry(page, pmd_write(pmdval));
ab6e3d09
NH
2915 pmdswp = swp_entry_to_pmd(entry);
2916 if (pmd_soft_dirty(pmdval))
2917 pmdswp = pmd_swp_mksoft_dirty(pmdswp);
2918 set_pmd_at(mm, address, pvmw->pmd, pmdswp);
616b8371
ZY
2919 page_remove_rmap(page, true);
2920 put_page(page);
616b8371
ZY
2921}
2922
2923void remove_migration_pmd(struct page_vma_mapped_walk *pvmw, struct page *new)
2924{
2925 struct vm_area_struct *vma = pvmw->vma;
2926 struct mm_struct *mm = vma->vm_mm;
2927 unsigned long address = pvmw->address;
2928 unsigned long mmun_start = address & HPAGE_PMD_MASK;
2929 pmd_t pmde;
2930 swp_entry_t entry;
2931
2932 if (!(pvmw->pmd && !pvmw->pte))
2933 return;
2934
2935 entry = pmd_to_swp_entry(*pvmw->pmd);
2936 get_page(new);
2937 pmde = pmd_mkold(mk_huge_pmd(new, vma->vm_page_prot));
ab6e3d09
NH
2938 if (pmd_swp_soft_dirty(*pvmw->pmd))
2939 pmde = pmd_mksoft_dirty(pmde);
616b8371 2940 if (is_write_migration_entry(entry))
f55e1014 2941 pmde = maybe_pmd_mkwrite(pmde, vma);
616b8371
ZY
2942
2943 flush_cache_range(vma, mmun_start, mmun_start + HPAGE_PMD_SIZE);
e71769ae
NH
2944 if (PageAnon(new))
2945 page_add_anon_rmap(new, vma, mmun_start, true);
2946 else
2947 page_add_file_rmap(new, true);
616b8371 2948 set_pmd_at(mm, mmun_start, pvmw->pmd, pmde);
e125fe40 2949 if ((vma->vm_flags & VM_LOCKED) && !PageDoubleMap(new))
616b8371
ZY
2950 mlock_vma_page(new);
2951 update_mmu_cache_pmd(vma, address, pvmw->pmd);
2952}
2953#endif