cpufreq: intel_pstate: Implement QoS supported freq constraints
[linux-2.6-block.git] / mm / huge_memory.c
CommitLineData
20c8ccb1 1// SPDX-License-Identifier: GPL-2.0-only
71e3aac0
AA
2/*
3 * Copyright (C) 2009 Red Hat, Inc.
71e3aac0
AA
4 */
5
ae3a8c1c
AM
6#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7
71e3aac0
AA
8#include <linux/mm.h>
9#include <linux/sched.h>
f7ccbae4 10#include <linux/sched/coredump.h>
6a3827d7 11#include <linux/sched/numa_balancing.h>
71e3aac0
AA
12#include <linux/highmem.h>
13#include <linux/hugetlb.h>
14#include <linux/mmu_notifier.h>
15#include <linux/rmap.h>
16#include <linux/swap.h>
97ae1749 17#include <linux/shrinker.h>
ba76149f 18#include <linux/mm_inline.h>
e9b61f19 19#include <linux/swapops.h>
4897c765 20#include <linux/dax.h>
ba76149f 21#include <linux/khugepaged.h>
878aee7d 22#include <linux/freezer.h>
f25748e3 23#include <linux/pfn_t.h>
a664b2d8 24#include <linux/mman.h>
3565fce3 25#include <linux/memremap.h>
325adeb5 26#include <linux/pagemap.h>
49071d43 27#include <linux/debugfs.h>
4daae3b4 28#include <linux/migrate.h>
43b5fbbd 29#include <linux/hashtable.h>
6b251fc9 30#include <linux/userfaultfd_k.h>
33c3fc71 31#include <linux/page_idle.h>
baa355fd 32#include <linux/shmem_fs.h>
6b31d595 33#include <linux/oom.h>
98fa15f3 34#include <linux/numa.h>
97ae1749 35
71e3aac0
AA
36#include <asm/tlb.h>
37#include <asm/pgalloc.h>
38#include "internal.h"
39
ba76149f 40/*
b14d595a
MD
41 * By default, transparent hugepage support is disabled in order to avoid
42 * risking an increased memory footprint for applications that are not
43 * guaranteed to benefit from it. When transparent hugepage support is
44 * enabled, it is for all mappings, and khugepaged scans all mappings.
8bfa3f9a
JW
45 * Defrag is invoked by khugepaged hugepage allocations and by page faults
46 * for all hugepage allocations.
ba76149f 47 */
71e3aac0 48unsigned long transparent_hugepage_flags __read_mostly =
13ece886 49#ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
ba76149f 50 (1<<TRANSPARENT_HUGEPAGE_FLAG)|
13ece886
AA
51#endif
52#ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
53 (1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
54#endif
444eb2a4 55 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG)|
79da5407
KS
56 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)|
57 (1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
ba76149f 58
9a982250 59static struct shrinker deferred_split_shrinker;
f000565a 60
97ae1749 61static atomic_t huge_zero_refcount;
56873f43 62struct page *huge_zero_page __read_mostly;
4a6c1297 63
7635d9cb
MH
64bool transparent_hugepage_enabled(struct vm_area_struct *vma)
65{
c0630669
YS
66 /* The addr is used to check if the vma size fits */
67 unsigned long addr = (vma->vm_end & HPAGE_PMD_MASK) - HPAGE_PMD_SIZE;
68
69 if (!transhuge_vma_suitable(vma, addr))
70 return false;
7635d9cb
MH
71 if (vma_is_anonymous(vma))
72 return __transparent_hugepage_enabled(vma);
c0630669
YS
73 if (vma_is_shmem(vma))
74 return shmem_huge_enabled(vma);
7635d9cb
MH
75
76 return false;
77}
78
6fcb52a5 79static struct page *get_huge_zero_page(void)
97ae1749
KS
80{
81 struct page *zero_page;
82retry:
83 if (likely(atomic_inc_not_zero(&huge_zero_refcount)))
4db0c3c2 84 return READ_ONCE(huge_zero_page);
97ae1749
KS
85
86 zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE,
4a6c1297 87 HPAGE_PMD_ORDER);
d8a8e1f0
KS
88 if (!zero_page) {
89 count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED);
5918d10a 90 return NULL;
d8a8e1f0
KS
91 }
92 count_vm_event(THP_ZERO_PAGE_ALLOC);
97ae1749 93 preempt_disable();
5918d10a 94 if (cmpxchg(&huge_zero_page, NULL, zero_page)) {
97ae1749 95 preempt_enable();
5ddacbe9 96 __free_pages(zero_page, compound_order(zero_page));
97ae1749
KS
97 goto retry;
98 }
99
100 /* We take additional reference here. It will be put back by shrinker */
101 atomic_set(&huge_zero_refcount, 2);
102 preempt_enable();
4db0c3c2 103 return READ_ONCE(huge_zero_page);
4a6c1297
KS
104}
105
6fcb52a5 106static void put_huge_zero_page(void)
4a6c1297 107{
97ae1749
KS
108 /*
109 * Counter should never go to zero here. Only shrinker can put
110 * last reference.
111 */
112 BUG_ON(atomic_dec_and_test(&huge_zero_refcount));
4a6c1297
KS
113}
114
6fcb52a5
AL
115struct page *mm_get_huge_zero_page(struct mm_struct *mm)
116{
117 if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
118 return READ_ONCE(huge_zero_page);
119
120 if (!get_huge_zero_page())
121 return NULL;
122
123 if (test_and_set_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
124 put_huge_zero_page();
125
126 return READ_ONCE(huge_zero_page);
127}
128
129void mm_put_huge_zero_page(struct mm_struct *mm)
130{
131 if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
132 put_huge_zero_page();
133}
134
48896466
GC
135static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink,
136 struct shrink_control *sc)
4a6c1297 137{
48896466
GC
138 /* we can free zero page only if last reference remains */
139 return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0;
140}
97ae1749 141
48896466
GC
142static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink,
143 struct shrink_control *sc)
144{
97ae1749 145 if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) {
5918d10a
KS
146 struct page *zero_page = xchg(&huge_zero_page, NULL);
147 BUG_ON(zero_page == NULL);
5ddacbe9 148 __free_pages(zero_page, compound_order(zero_page));
48896466 149 return HPAGE_PMD_NR;
97ae1749
KS
150 }
151
152 return 0;
4a6c1297
KS
153}
154
97ae1749 155static struct shrinker huge_zero_page_shrinker = {
48896466
GC
156 .count_objects = shrink_huge_zero_page_count,
157 .scan_objects = shrink_huge_zero_page_scan,
97ae1749
KS
158 .seeks = DEFAULT_SEEKS,
159};
160
71e3aac0 161#ifdef CONFIG_SYSFS
71e3aac0
AA
162static ssize_t enabled_show(struct kobject *kobj,
163 struct kobj_attribute *attr, char *buf)
164{
444eb2a4
MG
165 if (test_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags))
166 return sprintf(buf, "[always] madvise never\n");
167 else if (test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags))
168 return sprintf(buf, "always [madvise] never\n");
169 else
170 return sprintf(buf, "always madvise [never]\n");
71e3aac0 171}
444eb2a4 172
71e3aac0
AA
173static ssize_t enabled_store(struct kobject *kobj,
174 struct kobj_attribute *attr,
175 const char *buf, size_t count)
176{
21440d7e 177 ssize_t ret = count;
ba76149f 178
21440d7e
DR
179 if (!memcmp("always", buf,
180 min(sizeof("always")-1, count))) {
181 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
182 set_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
183 } else if (!memcmp("madvise", buf,
184 min(sizeof("madvise")-1, count))) {
185 clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
186 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
187 } else if (!memcmp("never", buf,
188 min(sizeof("never")-1, count))) {
189 clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
190 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
191 } else
192 ret = -EINVAL;
ba76149f
AA
193
194 if (ret > 0) {
b46e756f 195 int err = start_stop_khugepaged();
ba76149f
AA
196 if (err)
197 ret = err;
198 }
ba76149f 199 return ret;
71e3aac0
AA
200}
201static struct kobj_attribute enabled_attr =
202 __ATTR(enabled, 0644, enabled_show, enabled_store);
203
b46e756f 204ssize_t single_hugepage_flag_show(struct kobject *kobj,
71e3aac0
AA
205 struct kobj_attribute *attr, char *buf,
206 enum transparent_hugepage_flag flag)
207{
e27e6151
BH
208 return sprintf(buf, "%d\n",
209 !!test_bit(flag, &transparent_hugepage_flags));
71e3aac0 210}
e27e6151 211
b46e756f 212ssize_t single_hugepage_flag_store(struct kobject *kobj,
71e3aac0
AA
213 struct kobj_attribute *attr,
214 const char *buf, size_t count,
215 enum transparent_hugepage_flag flag)
216{
e27e6151
BH
217 unsigned long value;
218 int ret;
219
220 ret = kstrtoul(buf, 10, &value);
221 if (ret < 0)
222 return ret;
223 if (value > 1)
224 return -EINVAL;
225
226 if (value)
71e3aac0 227 set_bit(flag, &transparent_hugepage_flags);
e27e6151 228 else
71e3aac0 229 clear_bit(flag, &transparent_hugepage_flags);
71e3aac0
AA
230
231 return count;
232}
233
71e3aac0
AA
234static ssize_t defrag_show(struct kobject *kobj,
235 struct kobj_attribute *attr, char *buf)
236{
444eb2a4 237 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
21440d7e 238 return sprintf(buf, "[always] defer defer+madvise madvise never\n");
444eb2a4 239 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
21440d7e
DR
240 return sprintf(buf, "always [defer] defer+madvise madvise never\n");
241 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags))
242 return sprintf(buf, "always defer [defer+madvise] madvise never\n");
243 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
244 return sprintf(buf, "always defer defer+madvise [madvise] never\n");
245 return sprintf(buf, "always defer defer+madvise madvise [never]\n");
71e3aac0 246}
21440d7e 247
71e3aac0
AA
248static ssize_t defrag_store(struct kobject *kobj,
249 struct kobj_attribute *attr,
250 const char *buf, size_t count)
251{
21440d7e
DR
252 if (!memcmp("always", buf,
253 min(sizeof("always")-1, count))) {
254 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
255 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
256 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
257 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
21440d7e
DR
258 } else if (!memcmp("defer+madvise", buf,
259 min(sizeof("defer+madvise")-1, count))) {
260 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
261 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
262 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
263 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
4fad7fb6
DR
264 } else if (!memcmp("defer", buf,
265 min(sizeof("defer")-1, count))) {
266 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
267 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
268 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
269 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
21440d7e
DR
270 } else if (!memcmp("madvise", buf,
271 min(sizeof("madvise")-1, count))) {
272 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
273 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
274 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
275 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
276 } else if (!memcmp("never", buf,
277 min(sizeof("never")-1, count))) {
278 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
279 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
280 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
281 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
282 } else
283 return -EINVAL;
284
285 return count;
71e3aac0
AA
286}
287static struct kobj_attribute defrag_attr =
288 __ATTR(defrag, 0644, defrag_show, defrag_store);
289
79da5407
KS
290static ssize_t use_zero_page_show(struct kobject *kobj,
291 struct kobj_attribute *attr, char *buf)
292{
b46e756f 293 return single_hugepage_flag_show(kobj, attr, buf,
79da5407
KS
294 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
295}
296static ssize_t use_zero_page_store(struct kobject *kobj,
297 struct kobj_attribute *attr, const char *buf, size_t count)
298{
b46e756f 299 return single_hugepage_flag_store(kobj, attr, buf, count,
79da5407
KS
300 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
301}
302static struct kobj_attribute use_zero_page_attr =
303 __ATTR(use_zero_page, 0644, use_zero_page_show, use_zero_page_store);
49920d28
HD
304
305static ssize_t hpage_pmd_size_show(struct kobject *kobj,
306 struct kobj_attribute *attr, char *buf)
307{
308 return sprintf(buf, "%lu\n", HPAGE_PMD_SIZE);
309}
310static struct kobj_attribute hpage_pmd_size_attr =
311 __ATTR_RO(hpage_pmd_size);
312
71e3aac0
AA
313#ifdef CONFIG_DEBUG_VM
314static ssize_t debug_cow_show(struct kobject *kobj,
315 struct kobj_attribute *attr, char *buf)
316{
b46e756f 317 return single_hugepage_flag_show(kobj, attr, buf,
71e3aac0
AA
318 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
319}
320static ssize_t debug_cow_store(struct kobject *kobj,
321 struct kobj_attribute *attr,
322 const char *buf, size_t count)
323{
b46e756f 324 return single_hugepage_flag_store(kobj, attr, buf, count,
71e3aac0
AA
325 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
326}
327static struct kobj_attribute debug_cow_attr =
328 __ATTR(debug_cow, 0644, debug_cow_show, debug_cow_store);
329#endif /* CONFIG_DEBUG_VM */
330
331static struct attribute *hugepage_attr[] = {
332 &enabled_attr.attr,
333 &defrag_attr.attr,
79da5407 334 &use_zero_page_attr.attr,
49920d28 335 &hpage_pmd_size_attr.attr,
e496cf3d 336#if defined(CONFIG_SHMEM) && defined(CONFIG_TRANSPARENT_HUGE_PAGECACHE)
5a6e75f8
KS
337 &shmem_enabled_attr.attr,
338#endif
71e3aac0
AA
339#ifdef CONFIG_DEBUG_VM
340 &debug_cow_attr.attr,
341#endif
342 NULL,
343};
344
8aa95a21 345static const struct attribute_group hugepage_attr_group = {
71e3aac0 346 .attrs = hugepage_attr,
ba76149f
AA
347};
348
569e5590 349static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
71e3aac0 350{
71e3aac0
AA
351 int err;
352
569e5590
SL
353 *hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
354 if (unlikely(!*hugepage_kobj)) {
ae3a8c1c 355 pr_err("failed to create transparent hugepage kobject\n");
569e5590 356 return -ENOMEM;
ba76149f
AA
357 }
358
569e5590 359 err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
ba76149f 360 if (err) {
ae3a8c1c 361 pr_err("failed to register transparent hugepage group\n");
569e5590 362 goto delete_obj;
ba76149f
AA
363 }
364
569e5590 365 err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
ba76149f 366 if (err) {
ae3a8c1c 367 pr_err("failed to register transparent hugepage group\n");
569e5590 368 goto remove_hp_group;
ba76149f 369 }
569e5590
SL
370
371 return 0;
372
373remove_hp_group:
374 sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
375delete_obj:
376 kobject_put(*hugepage_kobj);
377 return err;
378}
379
380static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
381{
382 sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
383 sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
384 kobject_put(hugepage_kobj);
385}
386#else
387static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
388{
389 return 0;
390}
391
392static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
393{
394}
395#endif /* CONFIG_SYSFS */
396
397static int __init hugepage_init(void)
398{
399 int err;
400 struct kobject *hugepage_kobj;
401
402 if (!has_transparent_hugepage()) {
403 transparent_hugepage_flags = 0;
404 return -EINVAL;
405 }
406
ff20c2e0
KS
407 /*
408 * hugepages can't be allocated by the buddy allocator
409 */
410 MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER >= MAX_ORDER);
411 /*
412 * we use page->mapping and page->index in second tail page
413 * as list_head: assuming THP order >= 2
414 */
415 MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER < 2);
416
569e5590
SL
417 err = hugepage_init_sysfs(&hugepage_kobj);
418 if (err)
65ebb64f 419 goto err_sysfs;
ba76149f 420
b46e756f 421 err = khugepaged_init();
ba76149f 422 if (err)
65ebb64f 423 goto err_slab;
ba76149f 424
65ebb64f
KS
425 err = register_shrinker(&huge_zero_page_shrinker);
426 if (err)
427 goto err_hzp_shrinker;
9a982250
KS
428 err = register_shrinker(&deferred_split_shrinker);
429 if (err)
430 goto err_split_shrinker;
97ae1749 431
97562cd2
RR
432 /*
433 * By default disable transparent hugepages on smaller systems,
434 * where the extra memory used could hurt more than TLB overhead
435 * is likely to save. The admin can still enable it through /sys.
436 */
ca79b0c2 437 if (totalram_pages() < (512 << (20 - PAGE_SHIFT))) {
97562cd2 438 transparent_hugepage_flags = 0;
79553da2
KS
439 return 0;
440 }
97562cd2 441
79553da2 442 err = start_stop_khugepaged();
65ebb64f
KS
443 if (err)
444 goto err_khugepaged;
ba76149f 445
569e5590 446 return 0;
65ebb64f 447err_khugepaged:
9a982250
KS
448 unregister_shrinker(&deferred_split_shrinker);
449err_split_shrinker:
65ebb64f
KS
450 unregister_shrinker(&huge_zero_page_shrinker);
451err_hzp_shrinker:
b46e756f 452 khugepaged_destroy();
65ebb64f 453err_slab:
569e5590 454 hugepage_exit_sysfs(hugepage_kobj);
65ebb64f 455err_sysfs:
ba76149f 456 return err;
71e3aac0 457}
a64fb3cd 458subsys_initcall(hugepage_init);
71e3aac0
AA
459
460static int __init setup_transparent_hugepage(char *str)
461{
462 int ret = 0;
463 if (!str)
464 goto out;
465 if (!strcmp(str, "always")) {
466 set_bit(TRANSPARENT_HUGEPAGE_FLAG,
467 &transparent_hugepage_flags);
468 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
469 &transparent_hugepage_flags);
470 ret = 1;
471 } else if (!strcmp(str, "madvise")) {
472 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
473 &transparent_hugepage_flags);
474 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
475 &transparent_hugepage_flags);
476 ret = 1;
477 } else if (!strcmp(str, "never")) {
478 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
479 &transparent_hugepage_flags);
480 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
481 &transparent_hugepage_flags);
482 ret = 1;
483 }
484out:
485 if (!ret)
ae3a8c1c 486 pr_warn("transparent_hugepage= cannot parse, ignored\n");
71e3aac0
AA
487 return ret;
488}
489__setup("transparent_hugepage=", setup_transparent_hugepage);
490
f55e1014 491pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
71e3aac0 492{
f55e1014 493 if (likely(vma->vm_flags & VM_WRITE))
71e3aac0
AA
494 pmd = pmd_mkwrite(pmd);
495 return pmd;
496}
497
9a982250
KS
498static inline struct list_head *page_deferred_list(struct page *page)
499{
fa3015b7
MW
500 /* ->lru in the tail pages is occupied by compound_head. */
501 return &page[2].deferred_list;
9a982250
KS
502}
503
504void prep_transhuge_page(struct page *page)
505{
506 /*
507 * we use page->mapping and page->indexlru in second tail page
508 * as list_head: assuming THP order >= 2
509 */
9a982250
KS
510
511 INIT_LIST_HEAD(page_deferred_list(page));
512 set_compound_page_dtor(page, TRANSHUGE_PAGE_DTOR);
513}
514
b3b07077 515static unsigned long __thp_get_unmapped_area(struct file *filp, unsigned long len,
74d2fad1
TK
516 loff_t off, unsigned long flags, unsigned long size)
517{
518 unsigned long addr;
519 loff_t off_end = off + len;
520 loff_t off_align = round_up(off, size);
521 unsigned long len_pad;
522
523 if (off_end <= off_align || (off_end - off_align) < size)
524 return 0;
525
526 len_pad = len + size;
527 if (len_pad < len || (off + len_pad) < off)
528 return 0;
529
530 addr = current->mm->get_unmapped_area(filp, 0, len_pad,
531 off >> PAGE_SHIFT, flags);
532 if (IS_ERR_VALUE(addr))
533 return 0;
534
535 addr += (off - addr) & (size - 1);
536 return addr;
537}
538
539unsigned long thp_get_unmapped_area(struct file *filp, unsigned long addr,
540 unsigned long len, unsigned long pgoff, unsigned long flags)
541{
542 loff_t off = (loff_t)pgoff << PAGE_SHIFT;
543
544 if (addr)
545 goto out;
546 if (!IS_DAX(filp->f_mapping->host) || !IS_ENABLED(CONFIG_FS_DAX_PMD))
547 goto out;
548
549 addr = __thp_get_unmapped_area(filp, len, off, flags, PMD_SIZE);
550 if (addr)
551 return addr;
552
553 out:
554 return current->mm->get_unmapped_area(filp, addr, len, pgoff, flags);
555}
556EXPORT_SYMBOL_GPL(thp_get_unmapped_area);
557
2b740303
SJ
558static vm_fault_t __do_huge_pmd_anonymous_page(struct vm_fault *vmf,
559 struct page *page, gfp_t gfp)
71e3aac0 560{
82b0f8c3 561 struct vm_area_struct *vma = vmf->vma;
00501b53 562 struct mem_cgroup *memcg;
71e3aac0 563 pgtable_t pgtable;
82b0f8c3 564 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
2b740303 565 vm_fault_t ret = 0;
71e3aac0 566
309381fe 567 VM_BUG_ON_PAGE(!PageCompound(page), page);
00501b53 568
2cf85583 569 if (mem_cgroup_try_charge_delay(page, vma->vm_mm, gfp, &memcg, true)) {
6b251fc9
AA
570 put_page(page);
571 count_vm_event(THP_FAULT_FALLBACK);
572 return VM_FAULT_FALLBACK;
573 }
00501b53 574
4cf58924 575 pgtable = pte_alloc_one(vma->vm_mm);
00501b53 576 if (unlikely(!pgtable)) {
6b31d595
MH
577 ret = VM_FAULT_OOM;
578 goto release;
00501b53 579 }
71e3aac0 580
c79b57e4 581 clear_huge_page(page, vmf->address, HPAGE_PMD_NR);
52f37629
MK
582 /*
583 * The memory barrier inside __SetPageUptodate makes sure that
584 * clear_huge_page writes become visible before the set_pmd_at()
585 * write.
586 */
71e3aac0
AA
587 __SetPageUptodate(page);
588
82b0f8c3
JK
589 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
590 if (unlikely(!pmd_none(*vmf->pmd))) {
6b31d595 591 goto unlock_release;
71e3aac0
AA
592 } else {
593 pmd_t entry;
6b251fc9 594
6b31d595
MH
595 ret = check_stable_address_space(vma->vm_mm);
596 if (ret)
597 goto unlock_release;
598
6b251fc9
AA
599 /* Deliver the page fault to userland */
600 if (userfaultfd_missing(vma)) {
2b740303 601 vm_fault_t ret2;
6b251fc9 602
82b0f8c3 603 spin_unlock(vmf->ptl);
f627c2f5 604 mem_cgroup_cancel_charge(page, memcg, true);
6b251fc9 605 put_page(page);
bae473a4 606 pte_free(vma->vm_mm, pgtable);
2b740303
SJ
607 ret2 = handle_userfault(vmf, VM_UFFD_MISSING);
608 VM_BUG_ON(ret2 & VM_FAULT_FALLBACK);
609 return ret2;
6b251fc9
AA
610 }
611
3122359a 612 entry = mk_huge_pmd(page, vma->vm_page_prot);
f55e1014 613 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
d281ee61 614 page_add_new_anon_rmap(page, vma, haddr, true);
f627c2f5 615 mem_cgroup_commit_charge(page, memcg, false, true);
00501b53 616 lru_cache_add_active_or_unevictable(page, vma);
82b0f8c3
JK
617 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, pgtable);
618 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
bae473a4 619 add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
c4812909 620 mm_inc_nr_ptes(vma->vm_mm);
82b0f8c3 621 spin_unlock(vmf->ptl);
6b251fc9 622 count_vm_event(THP_FAULT_ALLOC);
1ff9e6e1 623 count_memcg_events(memcg, THP_FAULT_ALLOC, 1);
71e3aac0
AA
624 }
625
aa2e878e 626 return 0;
6b31d595
MH
627unlock_release:
628 spin_unlock(vmf->ptl);
629release:
630 if (pgtable)
631 pte_free(vma->vm_mm, pgtable);
632 mem_cgroup_cancel_charge(page, memcg, true);
633 put_page(page);
634 return ret;
635
71e3aac0
AA
636}
637
444eb2a4 638/*
21440d7e
DR
639 * always: directly stall for all thp allocations
640 * defer: wake kswapd and fail if not immediately available
641 * defer+madvise: wake kswapd and directly stall for MADV_HUGEPAGE, otherwise
642 * fail if not immediately available
643 * madvise: directly stall for MADV_HUGEPAGE, otherwise fail if not immediately
644 * available
645 * never: never stall for any thp allocation
444eb2a4 646 */
92717d42 647static inline gfp_t alloc_hugepage_direct_gfpmask(struct vm_area_struct *vma, unsigned long addr)
444eb2a4 648{
21440d7e 649 const bool vma_madvised = !!(vma->vm_flags & VM_HUGEPAGE);
a8282608 650 gfp_t this_node = 0;
25160354 651
a8282608
AA
652#ifdef CONFIG_NUMA
653 struct mempolicy *pol;
654 /*
655 * __GFP_THISNODE is used only when __GFP_DIRECT_RECLAIM is not
656 * specified, to express a general desire to stay on the current
657 * node for optimistic allocation attempts. If the defrag mode
658 * and/or madvise hint requires the direct reclaim then we prefer
659 * to fallback to other node rather than node reclaim because that
660 * can lead to excessive reclaim even though there is free memory
661 * on other nodes. We expect that NUMA preferences are specified
662 * by memory policies.
663 */
664 pol = get_vma_policy(vma, addr);
665 if (pol->mode != MPOL_BIND)
666 this_node = __GFP_THISNODE;
667 mpol_cond_put(pol);
668#endif
2f0799a0 669
a8282608
AA
670 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
671 return GFP_TRANSHUGE | (vma_madvised ? 0 : __GFP_NORETRY);
21440d7e 672 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
a8282608 673 return GFP_TRANSHUGE_LIGHT | __GFP_KSWAPD_RECLAIM | this_node;
21440d7e 674 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags))
a8282608
AA
675 return GFP_TRANSHUGE_LIGHT | (vma_madvised ? __GFP_DIRECT_RECLAIM :
676 __GFP_KSWAPD_RECLAIM | this_node);
21440d7e 677 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
a8282608
AA
678 return GFP_TRANSHUGE_LIGHT | (vma_madvised ? __GFP_DIRECT_RECLAIM :
679 this_node);
680 return GFP_TRANSHUGE_LIGHT | this_node;
444eb2a4
MG
681}
682
c4088ebd 683/* Caller must hold page table lock. */
d295e341 684static bool set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm,
97ae1749 685 struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd,
5918d10a 686 struct page *zero_page)
fc9fe822
KS
687{
688 pmd_t entry;
7c414164
AM
689 if (!pmd_none(*pmd))
690 return false;
5918d10a 691 entry = mk_pmd(zero_page, vma->vm_page_prot);
fc9fe822 692 entry = pmd_mkhuge(entry);
12c9d70b
MW
693 if (pgtable)
694 pgtable_trans_huge_deposit(mm, pmd, pgtable);
fc9fe822 695 set_pmd_at(mm, haddr, pmd, entry);
c4812909 696 mm_inc_nr_ptes(mm);
7c414164 697 return true;
fc9fe822
KS
698}
699
2b740303 700vm_fault_t do_huge_pmd_anonymous_page(struct vm_fault *vmf)
71e3aac0 701{
82b0f8c3 702 struct vm_area_struct *vma = vmf->vma;
077fcf11 703 gfp_t gfp;
71e3aac0 704 struct page *page;
82b0f8c3 705 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
71e3aac0 706
43675e6f 707 if (!transhuge_vma_suitable(vma, haddr))
c0292554 708 return VM_FAULT_FALLBACK;
128ec037
KS
709 if (unlikely(anon_vma_prepare(vma)))
710 return VM_FAULT_OOM;
6d50e60c 711 if (unlikely(khugepaged_enter(vma, vma->vm_flags)))
128ec037 712 return VM_FAULT_OOM;
82b0f8c3 713 if (!(vmf->flags & FAULT_FLAG_WRITE) &&
bae473a4 714 !mm_forbids_zeropage(vma->vm_mm) &&
128ec037
KS
715 transparent_hugepage_use_zero_page()) {
716 pgtable_t pgtable;
717 struct page *zero_page;
718 bool set;
2b740303 719 vm_fault_t ret;
4cf58924 720 pgtable = pte_alloc_one(vma->vm_mm);
128ec037 721 if (unlikely(!pgtable))
ba76149f 722 return VM_FAULT_OOM;
6fcb52a5 723 zero_page = mm_get_huge_zero_page(vma->vm_mm);
128ec037 724 if (unlikely(!zero_page)) {
bae473a4 725 pte_free(vma->vm_mm, pgtable);
81ab4201 726 count_vm_event(THP_FAULT_FALLBACK);
c0292554 727 return VM_FAULT_FALLBACK;
b9bbfbe3 728 }
82b0f8c3 729 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
6b251fc9
AA
730 ret = 0;
731 set = false;
82b0f8c3 732 if (pmd_none(*vmf->pmd)) {
6b31d595
MH
733 ret = check_stable_address_space(vma->vm_mm);
734 if (ret) {
735 spin_unlock(vmf->ptl);
736 } else if (userfaultfd_missing(vma)) {
82b0f8c3
JK
737 spin_unlock(vmf->ptl);
738 ret = handle_userfault(vmf, VM_UFFD_MISSING);
6b251fc9
AA
739 VM_BUG_ON(ret & VM_FAULT_FALLBACK);
740 } else {
bae473a4 741 set_huge_zero_page(pgtable, vma->vm_mm, vma,
82b0f8c3
JK
742 haddr, vmf->pmd, zero_page);
743 spin_unlock(vmf->ptl);
6b251fc9
AA
744 set = true;
745 }
746 } else
82b0f8c3 747 spin_unlock(vmf->ptl);
6fcb52a5 748 if (!set)
bae473a4 749 pte_free(vma->vm_mm, pgtable);
6b251fc9 750 return ret;
71e3aac0 751 }
92717d42
AA
752 gfp = alloc_hugepage_direct_gfpmask(vma, haddr);
753 page = alloc_pages_vma(gfp, HPAGE_PMD_ORDER, vma, haddr, numa_node_id());
128ec037
KS
754 if (unlikely(!page)) {
755 count_vm_event(THP_FAULT_FALLBACK);
c0292554 756 return VM_FAULT_FALLBACK;
128ec037 757 }
9a982250 758 prep_transhuge_page(page);
82b0f8c3 759 return __do_huge_pmd_anonymous_page(vmf, page, gfp);
71e3aac0
AA
760}
761
ae18d6dc 762static void insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
3b6521f5
OH
763 pmd_t *pmd, pfn_t pfn, pgprot_t prot, bool write,
764 pgtable_t pgtable)
5cad465d
MW
765{
766 struct mm_struct *mm = vma->vm_mm;
767 pmd_t entry;
768 spinlock_t *ptl;
769
770 ptl = pmd_lock(mm, pmd);
c6f3c5ee
AK
771 if (!pmd_none(*pmd)) {
772 if (write) {
773 if (pmd_pfn(*pmd) != pfn_t_to_pfn(pfn)) {
774 WARN_ON_ONCE(!is_huge_zero_pmd(*pmd));
775 goto out_unlock;
776 }
777 entry = pmd_mkyoung(*pmd);
778 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
779 if (pmdp_set_access_flags(vma, addr, pmd, entry, 1))
780 update_mmu_cache_pmd(vma, addr, pmd);
781 }
782
783 goto out_unlock;
784 }
785
f25748e3
DW
786 entry = pmd_mkhuge(pfn_t_pmd(pfn, prot));
787 if (pfn_t_devmap(pfn))
788 entry = pmd_mkdevmap(entry);
01871e59 789 if (write) {
f55e1014
LT
790 entry = pmd_mkyoung(pmd_mkdirty(entry));
791 entry = maybe_pmd_mkwrite(entry, vma);
5cad465d 792 }
3b6521f5
OH
793
794 if (pgtable) {
795 pgtable_trans_huge_deposit(mm, pmd, pgtable);
c4812909 796 mm_inc_nr_ptes(mm);
c6f3c5ee 797 pgtable = NULL;
3b6521f5
OH
798 }
799
01871e59
RZ
800 set_pmd_at(mm, addr, pmd, entry);
801 update_mmu_cache_pmd(vma, addr, pmd);
c6f3c5ee
AK
802
803out_unlock:
5cad465d 804 spin_unlock(ptl);
c6f3c5ee
AK
805 if (pgtable)
806 pte_free(mm, pgtable);
5cad465d
MW
807}
808
fce86ff5 809vm_fault_t vmf_insert_pfn_pmd(struct vm_fault *vmf, pfn_t pfn, bool write)
5cad465d 810{
fce86ff5
DW
811 unsigned long addr = vmf->address & PMD_MASK;
812 struct vm_area_struct *vma = vmf->vma;
5cad465d 813 pgprot_t pgprot = vma->vm_page_prot;
3b6521f5 814 pgtable_t pgtable = NULL;
fce86ff5 815
5cad465d
MW
816 /*
817 * If we had pmd_special, we could avoid all these restrictions,
818 * but we need to be consistent with PTEs and architectures that
819 * can't support a 'special' bit.
820 */
e1fb4a08
DJ
821 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) &&
822 !pfn_t_devmap(pfn));
5cad465d
MW
823 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
824 (VM_PFNMAP|VM_MIXEDMAP));
825 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
5cad465d
MW
826
827 if (addr < vma->vm_start || addr >= vma->vm_end)
828 return VM_FAULT_SIGBUS;
308a047c 829
3b6521f5 830 if (arch_needs_pgtable_deposit()) {
4cf58924 831 pgtable = pte_alloc_one(vma->vm_mm);
3b6521f5
OH
832 if (!pgtable)
833 return VM_FAULT_OOM;
834 }
835
308a047c
BP
836 track_pfn_insert(vma, &pgprot, pfn);
837
fce86ff5 838 insert_pfn_pmd(vma, addr, vmf->pmd, pfn, pgprot, write, pgtable);
ae18d6dc 839 return VM_FAULT_NOPAGE;
5cad465d 840}
dee41079 841EXPORT_SYMBOL_GPL(vmf_insert_pfn_pmd);
5cad465d 842
a00cc7d9 843#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
f55e1014 844static pud_t maybe_pud_mkwrite(pud_t pud, struct vm_area_struct *vma)
a00cc7d9 845{
f55e1014 846 if (likely(vma->vm_flags & VM_WRITE))
a00cc7d9
MW
847 pud = pud_mkwrite(pud);
848 return pud;
849}
850
851static void insert_pfn_pud(struct vm_area_struct *vma, unsigned long addr,
852 pud_t *pud, pfn_t pfn, pgprot_t prot, bool write)
853{
854 struct mm_struct *mm = vma->vm_mm;
855 pud_t entry;
856 spinlock_t *ptl;
857
858 ptl = pud_lock(mm, pud);
c6f3c5ee
AK
859 if (!pud_none(*pud)) {
860 if (write) {
861 if (pud_pfn(*pud) != pfn_t_to_pfn(pfn)) {
862 WARN_ON_ONCE(!is_huge_zero_pud(*pud));
863 goto out_unlock;
864 }
865 entry = pud_mkyoung(*pud);
866 entry = maybe_pud_mkwrite(pud_mkdirty(entry), vma);
867 if (pudp_set_access_flags(vma, addr, pud, entry, 1))
868 update_mmu_cache_pud(vma, addr, pud);
869 }
870 goto out_unlock;
871 }
872
a00cc7d9
MW
873 entry = pud_mkhuge(pfn_t_pud(pfn, prot));
874 if (pfn_t_devmap(pfn))
875 entry = pud_mkdevmap(entry);
876 if (write) {
f55e1014
LT
877 entry = pud_mkyoung(pud_mkdirty(entry));
878 entry = maybe_pud_mkwrite(entry, vma);
a00cc7d9
MW
879 }
880 set_pud_at(mm, addr, pud, entry);
881 update_mmu_cache_pud(vma, addr, pud);
c6f3c5ee
AK
882
883out_unlock:
a00cc7d9
MW
884 spin_unlock(ptl);
885}
886
fce86ff5 887vm_fault_t vmf_insert_pfn_pud(struct vm_fault *vmf, pfn_t pfn, bool write)
a00cc7d9 888{
fce86ff5
DW
889 unsigned long addr = vmf->address & PUD_MASK;
890 struct vm_area_struct *vma = vmf->vma;
a00cc7d9 891 pgprot_t pgprot = vma->vm_page_prot;
fce86ff5 892
a00cc7d9
MW
893 /*
894 * If we had pud_special, we could avoid all these restrictions,
895 * but we need to be consistent with PTEs and architectures that
896 * can't support a 'special' bit.
897 */
62ec0d8c
DJ
898 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) &&
899 !pfn_t_devmap(pfn));
a00cc7d9
MW
900 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
901 (VM_PFNMAP|VM_MIXEDMAP));
902 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
a00cc7d9
MW
903
904 if (addr < vma->vm_start || addr >= vma->vm_end)
905 return VM_FAULT_SIGBUS;
906
907 track_pfn_insert(vma, &pgprot, pfn);
908
fce86ff5 909 insert_pfn_pud(vma, addr, vmf->pud, pfn, pgprot, write);
a00cc7d9
MW
910 return VM_FAULT_NOPAGE;
911}
912EXPORT_SYMBOL_GPL(vmf_insert_pfn_pud);
913#endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
914
3565fce3 915static void touch_pmd(struct vm_area_struct *vma, unsigned long addr,
a8f97366 916 pmd_t *pmd, int flags)
3565fce3
DW
917{
918 pmd_t _pmd;
919
a8f97366
KS
920 _pmd = pmd_mkyoung(*pmd);
921 if (flags & FOLL_WRITE)
922 _pmd = pmd_mkdirty(_pmd);
3565fce3 923 if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK,
a8f97366 924 pmd, _pmd, flags & FOLL_WRITE))
3565fce3
DW
925 update_mmu_cache_pmd(vma, addr, pmd);
926}
927
928struct page *follow_devmap_pmd(struct vm_area_struct *vma, unsigned long addr,
df06b37f 929 pmd_t *pmd, int flags, struct dev_pagemap **pgmap)
3565fce3
DW
930{
931 unsigned long pfn = pmd_pfn(*pmd);
932 struct mm_struct *mm = vma->vm_mm;
3565fce3
DW
933 struct page *page;
934
935 assert_spin_locked(pmd_lockptr(mm, pmd));
936
8310d48b
KF
937 /*
938 * When we COW a devmap PMD entry, we split it into PTEs, so we should
939 * not be in this function with `flags & FOLL_COW` set.
940 */
941 WARN_ONCE(flags & FOLL_COW, "mm: In follow_devmap_pmd with FOLL_COW set");
942
f6f37321 943 if (flags & FOLL_WRITE && !pmd_write(*pmd))
3565fce3
DW
944 return NULL;
945
946 if (pmd_present(*pmd) && pmd_devmap(*pmd))
947 /* pass */;
948 else
949 return NULL;
950
951 if (flags & FOLL_TOUCH)
a8f97366 952 touch_pmd(vma, addr, pmd, flags);
3565fce3
DW
953
954 /*
955 * device mapped pages can only be returned if the
956 * caller will manage the page reference count.
957 */
958 if (!(flags & FOLL_GET))
959 return ERR_PTR(-EEXIST);
960
961 pfn += (addr & ~PMD_MASK) >> PAGE_SHIFT;
df06b37f
KB
962 *pgmap = get_dev_pagemap(pfn, *pgmap);
963 if (!*pgmap)
3565fce3
DW
964 return ERR_PTR(-EFAULT);
965 page = pfn_to_page(pfn);
966 get_page(page);
3565fce3
DW
967
968 return page;
969}
970
71e3aac0
AA
971int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
972 pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
973 struct vm_area_struct *vma)
974{
c4088ebd 975 spinlock_t *dst_ptl, *src_ptl;
71e3aac0
AA
976 struct page *src_page;
977 pmd_t pmd;
12c9d70b 978 pgtable_t pgtable = NULL;
628d47ce 979 int ret = -ENOMEM;
71e3aac0 980
628d47ce
KS
981 /* Skip if can be re-fill on fault */
982 if (!vma_is_anonymous(vma))
983 return 0;
984
4cf58924 985 pgtable = pte_alloc_one(dst_mm);
628d47ce
KS
986 if (unlikely(!pgtable))
987 goto out;
71e3aac0 988
c4088ebd
KS
989 dst_ptl = pmd_lock(dst_mm, dst_pmd);
990 src_ptl = pmd_lockptr(src_mm, src_pmd);
991 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
71e3aac0
AA
992
993 ret = -EAGAIN;
994 pmd = *src_pmd;
84c3fc4e
ZY
995
996#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
997 if (unlikely(is_swap_pmd(pmd))) {
998 swp_entry_t entry = pmd_to_swp_entry(pmd);
999
1000 VM_BUG_ON(!is_pmd_migration_entry(pmd));
1001 if (is_write_migration_entry(entry)) {
1002 make_migration_entry_read(&entry);
1003 pmd = swp_entry_to_pmd(entry);
ab6e3d09
NH
1004 if (pmd_swp_soft_dirty(*src_pmd))
1005 pmd = pmd_swp_mksoft_dirty(pmd);
84c3fc4e
ZY
1006 set_pmd_at(src_mm, addr, src_pmd, pmd);
1007 }
dd8a67f9 1008 add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
af5b0f6a 1009 mm_inc_nr_ptes(dst_mm);
dd8a67f9 1010 pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
84c3fc4e
ZY
1011 set_pmd_at(dst_mm, addr, dst_pmd, pmd);
1012 ret = 0;
1013 goto out_unlock;
1014 }
1015#endif
1016
628d47ce 1017 if (unlikely(!pmd_trans_huge(pmd))) {
71e3aac0
AA
1018 pte_free(dst_mm, pgtable);
1019 goto out_unlock;
1020 }
fc9fe822 1021 /*
c4088ebd 1022 * When page table lock is held, the huge zero pmd should not be
fc9fe822
KS
1023 * under splitting since we don't split the page itself, only pmd to
1024 * a page table.
1025 */
1026 if (is_huge_zero_pmd(pmd)) {
5918d10a 1027 struct page *zero_page;
97ae1749
KS
1028 /*
1029 * get_huge_zero_page() will never allocate a new page here,
1030 * since we already have a zero page to copy. It just takes a
1031 * reference.
1032 */
6fcb52a5 1033 zero_page = mm_get_huge_zero_page(dst_mm);
6b251fc9 1034 set_huge_zero_page(pgtable, dst_mm, vma, addr, dst_pmd,
5918d10a 1035 zero_page);
fc9fe822
KS
1036 ret = 0;
1037 goto out_unlock;
1038 }
de466bd6 1039
628d47ce
KS
1040 src_page = pmd_page(pmd);
1041 VM_BUG_ON_PAGE(!PageHead(src_page), src_page);
1042 get_page(src_page);
1043 page_dup_rmap(src_page, true);
1044 add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
c4812909 1045 mm_inc_nr_ptes(dst_mm);
628d47ce 1046 pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
71e3aac0
AA
1047
1048 pmdp_set_wrprotect(src_mm, addr, src_pmd);
1049 pmd = pmd_mkold(pmd_wrprotect(pmd));
1050 set_pmd_at(dst_mm, addr, dst_pmd, pmd);
71e3aac0
AA
1051
1052 ret = 0;
1053out_unlock:
c4088ebd
KS
1054 spin_unlock(src_ptl);
1055 spin_unlock(dst_ptl);
71e3aac0
AA
1056out:
1057 return ret;
1058}
1059
a00cc7d9
MW
1060#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
1061static void touch_pud(struct vm_area_struct *vma, unsigned long addr,
a8f97366 1062 pud_t *pud, int flags)
a00cc7d9
MW
1063{
1064 pud_t _pud;
1065
a8f97366
KS
1066 _pud = pud_mkyoung(*pud);
1067 if (flags & FOLL_WRITE)
1068 _pud = pud_mkdirty(_pud);
a00cc7d9 1069 if (pudp_set_access_flags(vma, addr & HPAGE_PUD_MASK,
a8f97366 1070 pud, _pud, flags & FOLL_WRITE))
a00cc7d9
MW
1071 update_mmu_cache_pud(vma, addr, pud);
1072}
1073
1074struct page *follow_devmap_pud(struct vm_area_struct *vma, unsigned long addr,
df06b37f 1075 pud_t *pud, int flags, struct dev_pagemap **pgmap)
a00cc7d9
MW
1076{
1077 unsigned long pfn = pud_pfn(*pud);
1078 struct mm_struct *mm = vma->vm_mm;
a00cc7d9
MW
1079 struct page *page;
1080
1081 assert_spin_locked(pud_lockptr(mm, pud));
1082
f6f37321 1083 if (flags & FOLL_WRITE && !pud_write(*pud))
a00cc7d9
MW
1084 return NULL;
1085
1086 if (pud_present(*pud) && pud_devmap(*pud))
1087 /* pass */;
1088 else
1089 return NULL;
1090
1091 if (flags & FOLL_TOUCH)
a8f97366 1092 touch_pud(vma, addr, pud, flags);
a00cc7d9
MW
1093
1094 /*
1095 * device mapped pages can only be returned if the
1096 * caller will manage the page reference count.
1097 */
1098 if (!(flags & FOLL_GET))
1099 return ERR_PTR(-EEXIST);
1100
1101 pfn += (addr & ~PUD_MASK) >> PAGE_SHIFT;
df06b37f
KB
1102 *pgmap = get_dev_pagemap(pfn, *pgmap);
1103 if (!*pgmap)
a00cc7d9
MW
1104 return ERR_PTR(-EFAULT);
1105 page = pfn_to_page(pfn);
1106 get_page(page);
a00cc7d9
MW
1107
1108 return page;
1109}
1110
1111int copy_huge_pud(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1112 pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
1113 struct vm_area_struct *vma)
1114{
1115 spinlock_t *dst_ptl, *src_ptl;
1116 pud_t pud;
1117 int ret;
1118
1119 dst_ptl = pud_lock(dst_mm, dst_pud);
1120 src_ptl = pud_lockptr(src_mm, src_pud);
1121 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1122
1123 ret = -EAGAIN;
1124 pud = *src_pud;
1125 if (unlikely(!pud_trans_huge(pud) && !pud_devmap(pud)))
1126 goto out_unlock;
1127
1128 /*
1129 * When page table lock is held, the huge zero pud should not be
1130 * under splitting since we don't split the page itself, only pud to
1131 * a page table.
1132 */
1133 if (is_huge_zero_pud(pud)) {
1134 /* No huge zero pud yet */
1135 }
1136
1137 pudp_set_wrprotect(src_mm, addr, src_pud);
1138 pud = pud_mkold(pud_wrprotect(pud));
1139 set_pud_at(dst_mm, addr, dst_pud, pud);
1140
1141 ret = 0;
1142out_unlock:
1143 spin_unlock(src_ptl);
1144 spin_unlock(dst_ptl);
1145 return ret;
1146}
1147
1148void huge_pud_set_accessed(struct vm_fault *vmf, pud_t orig_pud)
1149{
1150 pud_t entry;
1151 unsigned long haddr;
1152 bool write = vmf->flags & FAULT_FLAG_WRITE;
1153
1154 vmf->ptl = pud_lock(vmf->vma->vm_mm, vmf->pud);
1155 if (unlikely(!pud_same(*vmf->pud, orig_pud)))
1156 goto unlock;
1157
1158 entry = pud_mkyoung(orig_pud);
1159 if (write)
1160 entry = pud_mkdirty(entry);
1161 haddr = vmf->address & HPAGE_PUD_MASK;
1162 if (pudp_set_access_flags(vmf->vma, haddr, vmf->pud, entry, write))
1163 update_mmu_cache_pud(vmf->vma, vmf->address, vmf->pud);
1164
1165unlock:
1166 spin_unlock(vmf->ptl);
1167}
1168#endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
1169
82b0f8c3 1170void huge_pmd_set_accessed(struct vm_fault *vmf, pmd_t orig_pmd)
a1dd450b
WD
1171{
1172 pmd_t entry;
1173 unsigned long haddr;
20f664aa 1174 bool write = vmf->flags & FAULT_FLAG_WRITE;
a1dd450b 1175
82b0f8c3
JK
1176 vmf->ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd);
1177 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
a1dd450b
WD
1178 goto unlock;
1179
1180 entry = pmd_mkyoung(orig_pmd);
20f664aa
MK
1181 if (write)
1182 entry = pmd_mkdirty(entry);
82b0f8c3 1183 haddr = vmf->address & HPAGE_PMD_MASK;
20f664aa 1184 if (pmdp_set_access_flags(vmf->vma, haddr, vmf->pmd, entry, write))
82b0f8c3 1185 update_mmu_cache_pmd(vmf->vma, vmf->address, vmf->pmd);
a1dd450b
WD
1186
1187unlock:
82b0f8c3 1188 spin_unlock(vmf->ptl);
a1dd450b
WD
1189}
1190
2b740303
SJ
1191static vm_fault_t do_huge_pmd_wp_page_fallback(struct vm_fault *vmf,
1192 pmd_t orig_pmd, struct page *page)
71e3aac0 1193{
82b0f8c3
JK
1194 struct vm_area_struct *vma = vmf->vma;
1195 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
00501b53 1196 struct mem_cgroup *memcg;
71e3aac0
AA
1197 pgtable_t pgtable;
1198 pmd_t _pmd;
2b740303
SJ
1199 int i;
1200 vm_fault_t ret = 0;
71e3aac0 1201 struct page **pages;
ac46d4f3 1202 struct mmu_notifier_range range;
71e3aac0 1203
6da2ec56
KC
1204 pages = kmalloc_array(HPAGE_PMD_NR, sizeof(struct page *),
1205 GFP_KERNEL);
71e3aac0
AA
1206 if (unlikely(!pages)) {
1207 ret |= VM_FAULT_OOM;
1208 goto out;
1209 }
1210
1211 for (i = 0; i < HPAGE_PMD_NR; i++) {
41b6167e 1212 pages[i] = alloc_page_vma_node(GFP_HIGHUSER_MOVABLE, vma,
82b0f8c3 1213 vmf->address, page_to_nid(page));
b9bbfbe3 1214 if (unlikely(!pages[i] ||
2cf85583 1215 mem_cgroup_try_charge_delay(pages[i], vma->vm_mm,
bae473a4 1216 GFP_KERNEL, &memcg, false))) {
b9bbfbe3 1217 if (pages[i])
71e3aac0 1218 put_page(pages[i]);
b9bbfbe3 1219 while (--i >= 0) {
00501b53
JW
1220 memcg = (void *)page_private(pages[i]);
1221 set_page_private(pages[i], 0);
f627c2f5
KS
1222 mem_cgroup_cancel_charge(pages[i], memcg,
1223 false);
b9bbfbe3
AA
1224 put_page(pages[i]);
1225 }
71e3aac0
AA
1226 kfree(pages);
1227 ret |= VM_FAULT_OOM;
1228 goto out;
1229 }
00501b53 1230 set_page_private(pages[i], (unsigned long)memcg);
71e3aac0
AA
1231 }
1232
1233 for (i = 0; i < HPAGE_PMD_NR; i++) {
1234 copy_user_highpage(pages[i], page + i,
0089e485 1235 haddr + PAGE_SIZE * i, vma);
71e3aac0
AA
1236 __SetPageUptodate(pages[i]);
1237 cond_resched();
1238 }
1239
7269f999
JG
1240 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1241 haddr, haddr + HPAGE_PMD_SIZE);
ac46d4f3 1242 mmu_notifier_invalidate_range_start(&range);
2ec74c3e 1243
82b0f8c3
JK
1244 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
1245 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
71e3aac0 1246 goto out_free_pages;
309381fe 1247 VM_BUG_ON_PAGE(!PageHead(page), page);
71e3aac0 1248
0f10851e
JG
1249 /*
1250 * Leave pmd empty until pte is filled note we must notify here as
1251 * concurrent CPU thread might write to new page before the call to
1252 * mmu_notifier_invalidate_range_end() happens which can lead to a
1253 * device seeing memory write in different order than CPU.
1254 *
ad56b738 1255 * See Documentation/vm/mmu_notifier.rst
0f10851e 1256 */
82b0f8c3 1257 pmdp_huge_clear_flush_notify(vma, haddr, vmf->pmd);
71e3aac0 1258
82b0f8c3 1259 pgtable = pgtable_trans_huge_withdraw(vma->vm_mm, vmf->pmd);
bae473a4 1260 pmd_populate(vma->vm_mm, &_pmd, pgtable);
71e3aac0
AA
1261
1262 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
bae473a4 1263 pte_t entry;
71e3aac0
AA
1264 entry = mk_pte(pages[i], vma->vm_page_prot);
1265 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
00501b53
JW
1266 memcg = (void *)page_private(pages[i]);
1267 set_page_private(pages[i], 0);
82b0f8c3 1268 page_add_new_anon_rmap(pages[i], vmf->vma, haddr, false);
f627c2f5 1269 mem_cgroup_commit_charge(pages[i], memcg, false, false);
00501b53 1270 lru_cache_add_active_or_unevictable(pages[i], vma);
82b0f8c3
JK
1271 vmf->pte = pte_offset_map(&_pmd, haddr);
1272 VM_BUG_ON(!pte_none(*vmf->pte));
1273 set_pte_at(vma->vm_mm, haddr, vmf->pte, entry);
1274 pte_unmap(vmf->pte);
71e3aac0
AA
1275 }
1276 kfree(pages);
1277
71e3aac0 1278 smp_wmb(); /* make pte visible before pmd */
82b0f8c3 1279 pmd_populate(vma->vm_mm, vmf->pmd, pgtable);
d281ee61 1280 page_remove_rmap(page, true);
82b0f8c3 1281 spin_unlock(vmf->ptl);
71e3aac0 1282
4645b9fe
JG
1283 /*
1284 * No need to double call mmu_notifier->invalidate_range() callback as
1285 * the above pmdp_huge_clear_flush_notify() did already call it.
1286 */
ac46d4f3 1287 mmu_notifier_invalidate_range_only_end(&range);
2ec74c3e 1288
71e3aac0
AA
1289 ret |= VM_FAULT_WRITE;
1290 put_page(page);
1291
1292out:
1293 return ret;
1294
1295out_free_pages:
82b0f8c3 1296 spin_unlock(vmf->ptl);
ac46d4f3 1297 mmu_notifier_invalidate_range_end(&range);
b9bbfbe3 1298 for (i = 0; i < HPAGE_PMD_NR; i++) {
00501b53
JW
1299 memcg = (void *)page_private(pages[i]);
1300 set_page_private(pages[i], 0);
f627c2f5 1301 mem_cgroup_cancel_charge(pages[i], memcg, false);
71e3aac0 1302 put_page(pages[i]);
b9bbfbe3 1303 }
71e3aac0
AA
1304 kfree(pages);
1305 goto out;
1306}
1307
2b740303 1308vm_fault_t do_huge_pmd_wp_page(struct vm_fault *vmf, pmd_t orig_pmd)
71e3aac0 1309{
82b0f8c3 1310 struct vm_area_struct *vma = vmf->vma;
93b4796d 1311 struct page *page = NULL, *new_page;
00501b53 1312 struct mem_cgroup *memcg;
82b0f8c3 1313 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
ac46d4f3 1314 struct mmu_notifier_range range;
3b363692 1315 gfp_t huge_gfp; /* for allocation and charge */
2b740303 1316 vm_fault_t ret = 0;
71e3aac0 1317
82b0f8c3 1318 vmf->ptl = pmd_lockptr(vma->vm_mm, vmf->pmd);
81d1b09c 1319 VM_BUG_ON_VMA(!vma->anon_vma, vma);
93b4796d
KS
1320 if (is_huge_zero_pmd(orig_pmd))
1321 goto alloc;
82b0f8c3
JK
1322 spin_lock(vmf->ptl);
1323 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
71e3aac0
AA
1324 goto out_unlock;
1325
1326 page = pmd_page(orig_pmd);
309381fe 1327 VM_BUG_ON_PAGE(!PageCompound(page) || !PageHead(page), page);
1f25fe20
KS
1328 /*
1329 * We can only reuse the page if nobody else maps the huge page or it's
6d0a07ed 1330 * part.
1f25fe20 1331 */
ba3c4ce6
HY
1332 if (!trylock_page(page)) {
1333 get_page(page);
1334 spin_unlock(vmf->ptl);
1335 lock_page(page);
1336 spin_lock(vmf->ptl);
1337 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
1338 unlock_page(page);
1339 put_page(page);
1340 goto out_unlock;
1341 }
1342 put_page(page);
1343 }
1344 if (reuse_swap_page(page, NULL)) {
71e3aac0
AA
1345 pmd_t entry;
1346 entry = pmd_mkyoung(orig_pmd);
f55e1014 1347 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
82b0f8c3
JK
1348 if (pmdp_set_access_flags(vma, haddr, vmf->pmd, entry, 1))
1349 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
71e3aac0 1350 ret |= VM_FAULT_WRITE;
ba3c4ce6 1351 unlock_page(page);
71e3aac0
AA
1352 goto out_unlock;
1353 }
ba3c4ce6 1354 unlock_page(page);
ddc58f27 1355 get_page(page);
82b0f8c3 1356 spin_unlock(vmf->ptl);
93b4796d 1357alloc:
7635d9cb 1358 if (__transparent_hugepage_enabled(vma) &&
077fcf11 1359 !transparent_hugepage_debug_cow()) {
92717d42
AA
1360 huge_gfp = alloc_hugepage_direct_gfpmask(vma, haddr);
1361 new_page = alloc_pages_vma(huge_gfp, HPAGE_PMD_ORDER, vma,
1362 haddr, numa_node_id());
077fcf11 1363 } else
71e3aac0
AA
1364 new_page = NULL;
1365
9a982250
KS
1366 if (likely(new_page)) {
1367 prep_transhuge_page(new_page);
1368 } else {
eecc1e42 1369 if (!page) {
82b0f8c3 1370 split_huge_pmd(vma, vmf->pmd, vmf->address);
e9b71ca9 1371 ret |= VM_FAULT_FALLBACK;
93b4796d 1372 } else {
82b0f8c3 1373 ret = do_huge_pmd_wp_page_fallback(vmf, orig_pmd, page);
9845cbbd 1374 if (ret & VM_FAULT_OOM) {
82b0f8c3 1375 split_huge_pmd(vma, vmf->pmd, vmf->address);
9845cbbd
KS
1376 ret |= VM_FAULT_FALLBACK;
1377 }
ddc58f27 1378 put_page(page);
93b4796d 1379 }
17766dde 1380 count_vm_event(THP_FAULT_FALLBACK);
71e3aac0
AA
1381 goto out;
1382 }
1383
2cf85583 1384 if (unlikely(mem_cgroup_try_charge_delay(new_page, vma->vm_mm,
2a70f6a7 1385 huge_gfp, &memcg, true))) {
b9bbfbe3 1386 put_page(new_page);
82b0f8c3 1387 split_huge_pmd(vma, vmf->pmd, vmf->address);
bae473a4 1388 if (page)
ddc58f27 1389 put_page(page);
9845cbbd 1390 ret |= VM_FAULT_FALLBACK;
17766dde 1391 count_vm_event(THP_FAULT_FALLBACK);
b9bbfbe3
AA
1392 goto out;
1393 }
1394
17766dde 1395 count_vm_event(THP_FAULT_ALLOC);
1ff9e6e1 1396 count_memcg_events(memcg, THP_FAULT_ALLOC, 1);
17766dde 1397
eecc1e42 1398 if (!page)
c79b57e4 1399 clear_huge_page(new_page, vmf->address, HPAGE_PMD_NR);
93b4796d 1400 else
c9f4cd71
HY
1401 copy_user_huge_page(new_page, page, vmf->address,
1402 vma, HPAGE_PMD_NR);
71e3aac0
AA
1403 __SetPageUptodate(new_page);
1404
7269f999
JG
1405 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1406 haddr, haddr + HPAGE_PMD_SIZE);
ac46d4f3 1407 mmu_notifier_invalidate_range_start(&range);
2ec74c3e 1408
82b0f8c3 1409 spin_lock(vmf->ptl);
93b4796d 1410 if (page)
ddc58f27 1411 put_page(page);
82b0f8c3
JK
1412 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
1413 spin_unlock(vmf->ptl);
f627c2f5 1414 mem_cgroup_cancel_charge(new_page, memcg, true);
71e3aac0 1415 put_page(new_page);
2ec74c3e 1416 goto out_mn;
b9bbfbe3 1417 } else {
71e3aac0 1418 pmd_t entry;
3122359a 1419 entry = mk_huge_pmd(new_page, vma->vm_page_prot);
f55e1014 1420 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
82b0f8c3 1421 pmdp_huge_clear_flush_notify(vma, haddr, vmf->pmd);
d281ee61 1422 page_add_new_anon_rmap(new_page, vma, haddr, true);
f627c2f5 1423 mem_cgroup_commit_charge(new_page, memcg, false, true);
00501b53 1424 lru_cache_add_active_or_unevictable(new_page, vma);
82b0f8c3
JK
1425 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
1426 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
eecc1e42 1427 if (!page) {
bae473a4 1428 add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
97ae1749 1429 } else {
309381fe 1430 VM_BUG_ON_PAGE(!PageHead(page), page);
d281ee61 1431 page_remove_rmap(page, true);
93b4796d
KS
1432 put_page(page);
1433 }
71e3aac0
AA
1434 ret |= VM_FAULT_WRITE;
1435 }
82b0f8c3 1436 spin_unlock(vmf->ptl);
2ec74c3e 1437out_mn:
4645b9fe
JG
1438 /*
1439 * No need to double call mmu_notifier->invalidate_range() callback as
1440 * the above pmdp_huge_clear_flush_notify() did already call it.
1441 */
ac46d4f3 1442 mmu_notifier_invalidate_range_only_end(&range);
71e3aac0
AA
1443out:
1444 return ret;
2ec74c3e 1445out_unlock:
82b0f8c3 1446 spin_unlock(vmf->ptl);
2ec74c3e 1447 return ret;
71e3aac0
AA
1448}
1449
8310d48b
KF
1450/*
1451 * FOLL_FORCE can write to even unwritable pmd's, but only
1452 * after we've gone through a COW cycle and they are dirty.
1453 */
1454static inline bool can_follow_write_pmd(pmd_t pmd, unsigned int flags)
1455{
f6f37321 1456 return pmd_write(pmd) ||
8310d48b
KF
1457 ((flags & FOLL_FORCE) && (flags & FOLL_COW) && pmd_dirty(pmd));
1458}
1459
b676b293 1460struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
71e3aac0
AA
1461 unsigned long addr,
1462 pmd_t *pmd,
1463 unsigned int flags)
1464{
b676b293 1465 struct mm_struct *mm = vma->vm_mm;
71e3aac0
AA
1466 struct page *page = NULL;
1467
c4088ebd 1468 assert_spin_locked(pmd_lockptr(mm, pmd));
71e3aac0 1469
8310d48b 1470 if (flags & FOLL_WRITE && !can_follow_write_pmd(*pmd, flags))
71e3aac0
AA
1471 goto out;
1472
85facf25
KS
1473 /* Avoid dumping huge zero page */
1474 if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd))
1475 return ERR_PTR(-EFAULT);
1476
2b4847e7 1477 /* Full NUMA hinting faults to serialise migration in fault paths */
8a0516ed 1478 if ((flags & FOLL_NUMA) && pmd_protnone(*pmd))
2b4847e7
MG
1479 goto out;
1480
71e3aac0 1481 page = pmd_page(*pmd);
ca120cf6 1482 VM_BUG_ON_PAGE(!PageHead(page) && !is_zone_device_page(page), page);
3565fce3 1483 if (flags & FOLL_TOUCH)
a8f97366 1484 touch_pmd(vma, addr, pmd, flags);
de60f5f1 1485 if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
e90309c9
KS
1486 /*
1487 * We don't mlock() pte-mapped THPs. This way we can avoid
1488 * leaking mlocked pages into non-VM_LOCKED VMAs.
1489 *
9a73f61b
KS
1490 * For anon THP:
1491 *
e90309c9
KS
1492 * In most cases the pmd is the only mapping of the page as we
1493 * break COW for the mlock() -- see gup_flags |= FOLL_WRITE for
1494 * writable private mappings in populate_vma_page_range().
1495 *
1496 * The only scenario when we have the page shared here is if we
1497 * mlocking read-only mapping shared over fork(). We skip
1498 * mlocking such pages.
9a73f61b
KS
1499 *
1500 * For file THP:
1501 *
1502 * We can expect PageDoubleMap() to be stable under page lock:
1503 * for file pages we set it in page_add_file_rmap(), which
1504 * requires page to be locked.
e90309c9 1505 */
9a73f61b
KS
1506
1507 if (PageAnon(page) && compound_mapcount(page) != 1)
1508 goto skip_mlock;
1509 if (PageDoubleMap(page) || !page->mapping)
1510 goto skip_mlock;
1511 if (!trylock_page(page))
1512 goto skip_mlock;
1513 lru_add_drain();
1514 if (page->mapping && !PageDoubleMap(page))
1515 mlock_vma_page(page);
1516 unlock_page(page);
b676b293 1517 }
9a73f61b 1518skip_mlock:
71e3aac0 1519 page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
ca120cf6 1520 VM_BUG_ON_PAGE(!PageCompound(page) && !is_zone_device_page(page), page);
71e3aac0 1521 if (flags & FOLL_GET)
ddc58f27 1522 get_page(page);
71e3aac0
AA
1523
1524out:
1525 return page;
1526}
1527
d10e63f2 1528/* NUMA hinting page fault entry point for trans huge pmds */
2b740303 1529vm_fault_t do_huge_pmd_numa_page(struct vm_fault *vmf, pmd_t pmd)
d10e63f2 1530{
82b0f8c3 1531 struct vm_area_struct *vma = vmf->vma;
b8916634 1532 struct anon_vma *anon_vma = NULL;
b32967ff 1533 struct page *page;
82b0f8c3 1534 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
98fa15f3 1535 int page_nid = NUMA_NO_NODE, this_nid = numa_node_id();
90572890 1536 int target_nid, last_cpupid = -1;
8191acbd
MG
1537 bool page_locked;
1538 bool migrated = false;
b191f9b1 1539 bool was_writable;
6688cc05 1540 int flags = 0;
d10e63f2 1541
82b0f8c3
JK
1542 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
1543 if (unlikely(!pmd_same(pmd, *vmf->pmd)))
d10e63f2
MG
1544 goto out_unlock;
1545
de466bd6
MG
1546 /*
1547 * If there are potential migrations, wait for completion and retry
1548 * without disrupting NUMA hinting information. Do not relock and
1549 * check_same as the page may no longer be mapped.
1550 */
82b0f8c3
JK
1551 if (unlikely(pmd_trans_migrating(*vmf->pmd))) {
1552 page = pmd_page(*vmf->pmd);
3c226c63
MR
1553 if (!get_page_unless_zero(page))
1554 goto out_unlock;
82b0f8c3 1555 spin_unlock(vmf->ptl);
9a1ea439 1556 put_and_wait_on_page_locked(page);
de466bd6
MG
1557 goto out;
1558 }
1559
d10e63f2 1560 page = pmd_page(pmd);
a1a46184 1561 BUG_ON(is_huge_zero_page(page));
8191acbd 1562 page_nid = page_to_nid(page);
90572890 1563 last_cpupid = page_cpupid_last(page);
03c5a6e1 1564 count_vm_numa_event(NUMA_HINT_FAULTS);
04bb2f94 1565 if (page_nid == this_nid) {
03c5a6e1 1566 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
04bb2f94
RR
1567 flags |= TNF_FAULT_LOCAL;
1568 }
4daae3b4 1569
bea66fbd 1570 /* See similar comment in do_numa_page for explanation */
288bc549 1571 if (!pmd_savedwrite(pmd))
6688cc05
PZ
1572 flags |= TNF_NO_GROUP;
1573
ff9042b1
MG
1574 /*
1575 * Acquire the page lock to serialise THP migrations but avoid dropping
1576 * page_table_lock if at all possible
1577 */
b8916634
MG
1578 page_locked = trylock_page(page);
1579 target_nid = mpol_misplaced(page, vma, haddr);
98fa15f3 1580 if (target_nid == NUMA_NO_NODE) {
b8916634 1581 /* If the page was locked, there are no parallel migrations */
a54a407f 1582 if (page_locked)
b8916634 1583 goto clear_pmdnuma;
2b4847e7 1584 }
4daae3b4 1585
de466bd6 1586 /* Migration could have started since the pmd_trans_migrating check */
2b4847e7 1587 if (!page_locked) {
98fa15f3 1588 page_nid = NUMA_NO_NODE;
3c226c63
MR
1589 if (!get_page_unless_zero(page))
1590 goto out_unlock;
82b0f8c3 1591 spin_unlock(vmf->ptl);
9a1ea439 1592 put_and_wait_on_page_locked(page);
b8916634
MG
1593 goto out;
1594 }
1595
2b4847e7
MG
1596 /*
1597 * Page is misplaced. Page lock serialises migrations. Acquire anon_vma
1598 * to serialises splits
1599 */
b8916634 1600 get_page(page);
82b0f8c3 1601 spin_unlock(vmf->ptl);
b8916634 1602 anon_vma = page_lock_anon_vma_read(page);
4daae3b4 1603
c69307d5 1604 /* Confirm the PMD did not change while page_table_lock was released */
82b0f8c3
JK
1605 spin_lock(vmf->ptl);
1606 if (unlikely(!pmd_same(pmd, *vmf->pmd))) {
b32967ff
MG
1607 unlock_page(page);
1608 put_page(page);
98fa15f3 1609 page_nid = NUMA_NO_NODE;
4daae3b4 1610 goto out_unlock;
b32967ff 1611 }
ff9042b1 1612
c3a489ca
MG
1613 /* Bail if we fail to protect against THP splits for any reason */
1614 if (unlikely(!anon_vma)) {
1615 put_page(page);
98fa15f3 1616 page_nid = NUMA_NO_NODE;
c3a489ca
MG
1617 goto clear_pmdnuma;
1618 }
1619
8b1b436d
PZ
1620 /*
1621 * Since we took the NUMA fault, we must have observed the !accessible
1622 * bit. Make sure all other CPUs agree with that, to avoid them
1623 * modifying the page we're about to migrate.
1624 *
1625 * Must be done under PTL such that we'll observe the relevant
ccde85ba
PZ
1626 * inc_tlb_flush_pending().
1627 *
1628 * We are not sure a pending tlb flush here is for a huge page
1629 * mapping or not. Hence use the tlb range variant
8b1b436d 1630 */
7066f0f9 1631 if (mm_tlb_flush_pending(vma->vm_mm)) {
ccde85ba 1632 flush_tlb_range(vma, haddr, haddr + HPAGE_PMD_SIZE);
7066f0f9
AA
1633 /*
1634 * change_huge_pmd() released the pmd lock before
1635 * invalidating the secondary MMUs sharing the primary
1636 * MMU pagetables (with ->invalidate_range()). The
1637 * mmu_notifier_invalidate_range_end() (which
1638 * internally calls ->invalidate_range()) in
1639 * change_pmd_range() will run after us, so we can't
1640 * rely on it here and we need an explicit invalidate.
1641 */
1642 mmu_notifier_invalidate_range(vma->vm_mm, haddr,
1643 haddr + HPAGE_PMD_SIZE);
1644 }
8b1b436d 1645
a54a407f
MG
1646 /*
1647 * Migrate the THP to the requested node, returns with page unlocked
8a0516ed 1648 * and access rights restored.
a54a407f 1649 */
82b0f8c3 1650 spin_unlock(vmf->ptl);
8b1b436d 1651
bae473a4 1652 migrated = migrate_misplaced_transhuge_page(vma->vm_mm, vma,
82b0f8c3 1653 vmf->pmd, pmd, vmf->address, page, target_nid);
6688cc05
PZ
1654 if (migrated) {
1655 flags |= TNF_MIGRATED;
8191acbd 1656 page_nid = target_nid;
074c2381
MG
1657 } else
1658 flags |= TNF_MIGRATE_FAIL;
b32967ff 1659
8191acbd 1660 goto out;
b32967ff 1661clear_pmdnuma:
a54a407f 1662 BUG_ON(!PageLocked(page));
288bc549 1663 was_writable = pmd_savedwrite(pmd);
4d942466 1664 pmd = pmd_modify(pmd, vma->vm_page_prot);
b7b04004 1665 pmd = pmd_mkyoung(pmd);
b191f9b1
MG
1666 if (was_writable)
1667 pmd = pmd_mkwrite(pmd);
82b0f8c3
JK
1668 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, pmd);
1669 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
a54a407f 1670 unlock_page(page);
d10e63f2 1671out_unlock:
82b0f8c3 1672 spin_unlock(vmf->ptl);
b8916634
MG
1673
1674out:
1675 if (anon_vma)
1676 page_unlock_anon_vma_read(anon_vma);
1677
98fa15f3 1678 if (page_nid != NUMA_NO_NODE)
82b0f8c3 1679 task_numa_fault(last_cpupid, page_nid, HPAGE_PMD_NR,
9a8b300f 1680 flags);
8191acbd 1681
d10e63f2
MG
1682 return 0;
1683}
1684
319904ad
HY
1685/*
1686 * Return true if we do MADV_FREE successfully on entire pmd page.
1687 * Otherwise, return false.
1688 */
1689bool madvise_free_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
b8d3c4c3 1690 pmd_t *pmd, unsigned long addr, unsigned long next)
b8d3c4c3
MK
1691{
1692 spinlock_t *ptl;
1693 pmd_t orig_pmd;
1694 struct page *page;
1695 struct mm_struct *mm = tlb->mm;
319904ad 1696 bool ret = false;
b8d3c4c3 1697
ed6a7935 1698 tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
07e32661 1699
b6ec57f4
KS
1700 ptl = pmd_trans_huge_lock(pmd, vma);
1701 if (!ptl)
25eedabe 1702 goto out_unlocked;
b8d3c4c3
MK
1703
1704 orig_pmd = *pmd;
319904ad 1705 if (is_huge_zero_pmd(orig_pmd))
b8d3c4c3 1706 goto out;
b8d3c4c3 1707
84c3fc4e
ZY
1708 if (unlikely(!pmd_present(orig_pmd))) {
1709 VM_BUG_ON(thp_migration_supported() &&
1710 !is_pmd_migration_entry(orig_pmd));
1711 goto out;
1712 }
1713
b8d3c4c3
MK
1714 page = pmd_page(orig_pmd);
1715 /*
1716 * If other processes are mapping this page, we couldn't discard
1717 * the page unless they all do MADV_FREE so let's skip the page.
1718 */
1719 if (page_mapcount(page) != 1)
1720 goto out;
1721
1722 if (!trylock_page(page))
1723 goto out;
1724
1725 /*
1726 * If user want to discard part-pages of THP, split it so MADV_FREE
1727 * will deactivate only them.
1728 */
1729 if (next - addr != HPAGE_PMD_SIZE) {
1730 get_page(page);
1731 spin_unlock(ptl);
9818b8cd 1732 split_huge_page(page);
b8d3c4c3 1733 unlock_page(page);
bbf29ffc 1734 put_page(page);
b8d3c4c3
MK
1735 goto out_unlocked;
1736 }
1737
1738 if (PageDirty(page))
1739 ClearPageDirty(page);
1740 unlock_page(page);
1741
b8d3c4c3 1742 if (pmd_young(orig_pmd) || pmd_dirty(orig_pmd)) {
58ceeb6b 1743 pmdp_invalidate(vma, addr, pmd);
b8d3c4c3
MK
1744 orig_pmd = pmd_mkold(orig_pmd);
1745 orig_pmd = pmd_mkclean(orig_pmd);
1746
1747 set_pmd_at(mm, addr, pmd, orig_pmd);
1748 tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1749 }
802a3a92
SL
1750
1751 mark_page_lazyfree(page);
319904ad 1752 ret = true;
b8d3c4c3
MK
1753out:
1754 spin_unlock(ptl);
1755out_unlocked:
1756 return ret;
1757}
1758
953c66c2
AK
1759static inline void zap_deposited_table(struct mm_struct *mm, pmd_t *pmd)
1760{
1761 pgtable_t pgtable;
1762
1763 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
1764 pte_free(mm, pgtable);
c4812909 1765 mm_dec_nr_ptes(mm);
953c66c2
AK
1766}
1767
71e3aac0 1768int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
f21760b1 1769 pmd_t *pmd, unsigned long addr)
71e3aac0 1770{
da146769 1771 pmd_t orig_pmd;
bf929152 1772 spinlock_t *ptl;
71e3aac0 1773
ed6a7935 1774 tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
07e32661 1775
b6ec57f4
KS
1776 ptl = __pmd_trans_huge_lock(pmd, vma);
1777 if (!ptl)
da146769
KS
1778 return 0;
1779 /*
1780 * For architectures like ppc64 we look at deposited pgtable
1781 * when calling pmdp_huge_get_and_clear. So do the
1782 * pgtable_trans_huge_withdraw after finishing pmdp related
1783 * operations.
1784 */
1785 orig_pmd = pmdp_huge_get_and_clear_full(tlb->mm, addr, pmd,
1786 tlb->fullmm);
1787 tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1788 if (vma_is_dax(vma)) {
3b6521f5
OH
1789 if (arch_needs_pgtable_deposit())
1790 zap_deposited_table(tlb->mm, pmd);
da146769
KS
1791 spin_unlock(ptl);
1792 if (is_huge_zero_pmd(orig_pmd))
c0f2e176 1793 tlb_remove_page_size(tlb, pmd_page(orig_pmd), HPAGE_PMD_SIZE);
da146769 1794 } else if (is_huge_zero_pmd(orig_pmd)) {
c14a6eb4 1795 zap_deposited_table(tlb->mm, pmd);
da146769 1796 spin_unlock(ptl);
c0f2e176 1797 tlb_remove_page_size(tlb, pmd_page(orig_pmd), HPAGE_PMD_SIZE);
da146769 1798 } else {
616b8371
ZY
1799 struct page *page = NULL;
1800 int flush_needed = 1;
1801
1802 if (pmd_present(orig_pmd)) {
1803 page = pmd_page(orig_pmd);
1804 page_remove_rmap(page, true);
1805 VM_BUG_ON_PAGE(page_mapcount(page) < 0, page);
1806 VM_BUG_ON_PAGE(!PageHead(page), page);
1807 } else if (thp_migration_supported()) {
1808 swp_entry_t entry;
1809
1810 VM_BUG_ON(!is_pmd_migration_entry(orig_pmd));
1811 entry = pmd_to_swp_entry(orig_pmd);
1812 page = pfn_to_page(swp_offset(entry));
1813 flush_needed = 0;
1814 } else
1815 WARN_ONCE(1, "Non present huge pmd without pmd migration enabled!");
1816
b5072380 1817 if (PageAnon(page)) {
c14a6eb4 1818 zap_deposited_table(tlb->mm, pmd);
b5072380
KS
1819 add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
1820 } else {
953c66c2
AK
1821 if (arch_needs_pgtable_deposit())
1822 zap_deposited_table(tlb->mm, pmd);
fadae295 1823 add_mm_counter(tlb->mm, mm_counter_file(page), -HPAGE_PMD_NR);
b5072380 1824 }
616b8371 1825
da146769 1826 spin_unlock(ptl);
616b8371
ZY
1827 if (flush_needed)
1828 tlb_remove_page_size(tlb, page, HPAGE_PMD_SIZE);
025c5b24 1829 }
da146769 1830 return 1;
71e3aac0
AA
1831}
1832
1dd38b6c
AK
1833#ifndef pmd_move_must_withdraw
1834static inline int pmd_move_must_withdraw(spinlock_t *new_pmd_ptl,
1835 spinlock_t *old_pmd_ptl,
1836 struct vm_area_struct *vma)
1837{
1838 /*
1839 * With split pmd lock we also need to move preallocated
1840 * PTE page table if new_pmd is on different PMD page table.
1841 *
1842 * We also don't deposit and withdraw tables for file pages.
1843 */
1844 return (new_pmd_ptl != old_pmd_ptl) && vma_is_anonymous(vma);
1845}
1846#endif
1847
ab6e3d09
NH
1848static pmd_t move_soft_dirty_pmd(pmd_t pmd)
1849{
1850#ifdef CONFIG_MEM_SOFT_DIRTY
1851 if (unlikely(is_pmd_migration_entry(pmd)))
1852 pmd = pmd_swp_mksoft_dirty(pmd);
1853 else if (pmd_present(pmd))
1854 pmd = pmd_mksoft_dirty(pmd);
1855#endif
1856 return pmd;
1857}
1858
bf8616d5 1859bool move_huge_pmd(struct vm_area_struct *vma, unsigned long old_addr,
37a1c49a 1860 unsigned long new_addr, unsigned long old_end,
eb66ae03 1861 pmd_t *old_pmd, pmd_t *new_pmd)
37a1c49a 1862{
bf929152 1863 spinlock_t *old_ptl, *new_ptl;
37a1c49a 1864 pmd_t pmd;
37a1c49a 1865 struct mm_struct *mm = vma->vm_mm;
5d190420 1866 bool force_flush = false;
37a1c49a
AA
1867
1868 if ((old_addr & ~HPAGE_PMD_MASK) ||
1869 (new_addr & ~HPAGE_PMD_MASK) ||
bf8616d5 1870 old_end - old_addr < HPAGE_PMD_SIZE)
4b471e88 1871 return false;
37a1c49a
AA
1872
1873 /*
1874 * The destination pmd shouldn't be established, free_pgtables()
1875 * should have release it.
1876 */
1877 if (WARN_ON(!pmd_none(*new_pmd))) {
1878 VM_BUG_ON(pmd_trans_huge(*new_pmd));
4b471e88 1879 return false;
37a1c49a
AA
1880 }
1881
bf929152
KS
1882 /*
1883 * We don't have to worry about the ordering of src and dst
1884 * ptlocks because exclusive mmap_sem prevents deadlock.
1885 */
b6ec57f4
KS
1886 old_ptl = __pmd_trans_huge_lock(old_pmd, vma);
1887 if (old_ptl) {
bf929152
KS
1888 new_ptl = pmd_lockptr(mm, new_pmd);
1889 if (new_ptl != old_ptl)
1890 spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
8809aa2d 1891 pmd = pmdp_huge_get_and_clear(mm, old_addr, old_pmd);
eb66ae03 1892 if (pmd_present(pmd))
a2ce2666 1893 force_flush = true;
025c5b24 1894 VM_BUG_ON(!pmd_none(*new_pmd));
3592806c 1895
1dd38b6c 1896 if (pmd_move_must_withdraw(new_ptl, old_ptl, vma)) {
b3084f4d 1897 pgtable_t pgtable;
3592806c
KS
1898 pgtable = pgtable_trans_huge_withdraw(mm, old_pmd);
1899 pgtable_trans_huge_deposit(mm, new_pmd, pgtable);
3592806c 1900 }
ab6e3d09
NH
1901 pmd = move_soft_dirty_pmd(pmd);
1902 set_pmd_at(mm, new_addr, new_pmd, pmd);
5d190420
AL
1903 if (force_flush)
1904 flush_tlb_range(vma, old_addr, old_addr + PMD_SIZE);
eb66ae03
LT
1905 if (new_ptl != old_ptl)
1906 spin_unlock(new_ptl);
bf929152 1907 spin_unlock(old_ptl);
4b471e88 1908 return true;
37a1c49a 1909 }
4b471e88 1910 return false;
37a1c49a
AA
1911}
1912
f123d74a
MG
1913/*
1914 * Returns
1915 * - 0 if PMD could not be locked
1916 * - 1 if PMD was locked but protections unchange and TLB flush unnecessary
1917 * - HPAGE_PMD_NR is protections changed and TLB flush necessary
1918 */
cd7548ab 1919int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
e944fd67 1920 unsigned long addr, pgprot_t newprot, int prot_numa)
cd7548ab
JW
1921{
1922 struct mm_struct *mm = vma->vm_mm;
bf929152 1923 spinlock_t *ptl;
0a85e51d
KS
1924 pmd_t entry;
1925 bool preserve_write;
1926 int ret;
cd7548ab 1927
b6ec57f4 1928 ptl = __pmd_trans_huge_lock(pmd, vma);
0a85e51d
KS
1929 if (!ptl)
1930 return 0;
e944fd67 1931
0a85e51d
KS
1932 preserve_write = prot_numa && pmd_write(*pmd);
1933 ret = 1;
e944fd67 1934
84c3fc4e
ZY
1935#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1936 if (is_swap_pmd(*pmd)) {
1937 swp_entry_t entry = pmd_to_swp_entry(*pmd);
1938
1939 VM_BUG_ON(!is_pmd_migration_entry(*pmd));
1940 if (is_write_migration_entry(entry)) {
1941 pmd_t newpmd;
1942 /*
1943 * A protection check is difficult so
1944 * just be safe and disable write
1945 */
1946 make_migration_entry_read(&entry);
1947 newpmd = swp_entry_to_pmd(entry);
ab6e3d09
NH
1948 if (pmd_swp_soft_dirty(*pmd))
1949 newpmd = pmd_swp_mksoft_dirty(newpmd);
84c3fc4e
ZY
1950 set_pmd_at(mm, addr, pmd, newpmd);
1951 }
1952 goto unlock;
1953 }
1954#endif
1955
0a85e51d
KS
1956 /*
1957 * Avoid trapping faults against the zero page. The read-only
1958 * data is likely to be read-cached on the local CPU and
1959 * local/remote hits to the zero page are not interesting.
1960 */
1961 if (prot_numa && is_huge_zero_pmd(*pmd))
1962 goto unlock;
025c5b24 1963
0a85e51d
KS
1964 if (prot_numa && pmd_protnone(*pmd))
1965 goto unlock;
1966
ced10803
KS
1967 /*
1968 * In case prot_numa, we are under down_read(mmap_sem). It's critical
1969 * to not clear pmd intermittently to avoid race with MADV_DONTNEED
1970 * which is also under down_read(mmap_sem):
1971 *
1972 * CPU0: CPU1:
1973 * change_huge_pmd(prot_numa=1)
1974 * pmdp_huge_get_and_clear_notify()
1975 * madvise_dontneed()
1976 * zap_pmd_range()
1977 * pmd_trans_huge(*pmd) == 0 (without ptl)
1978 * // skip the pmd
1979 * set_pmd_at();
1980 * // pmd is re-established
1981 *
1982 * The race makes MADV_DONTNEED miss the huge pmd and don't clear it
1983 * which may break userspace.
1984 *
1985 * pmdp_invalidate() is required to make sure we don't miss
1986 * dirty/young flags set by hardware.
1987 */
a3cf988f 1988 entry = pmdp_invalidate(vma, addr, pmd);
ced10803 1989
0a85e51d
KS
1990 entry = pmd_modify(entry, newprot);
1991 if (preserve_write)
1992 entry = pmd_mk_savedwrite(entry);
1993 ret = HPAGE_PMD_NR;
1994 set_pmd_at(mm, addr, pmd, entry);
1995 BUG_ON(vma_is_anonymous(vma) && !preserve_write && pmd_write(entry));
1996unlock:
1997 spin_unlock(ptl);
025c5b24
NH
1998 return ret;
1999}
2000
2001/*
8f19b0c0 2002 * Returns page table lock pointer if a given pmd maps a thp, NULL otherwise.
025c5b24 2003 *
8f19b0c0
HY
2004 * Note that if it returns page table lock pointer, this routine returns without
2005 * unlocking page table lock. So callers must unlock it.
025c5b24 2006 */
b6ec57f4 2007spinlock_t *__pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma)
025c5b24 2008{
b6ec57f4
KS
2009 spinlock_t *ptl;
2010 ptl = pmd_lock(vma->vm_mm, pmd);
84c3fc4e
ZY
2011 if (likely(is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) ||
2012 pmd_devmap(*pmd)))
b6ec57f4
KS
2013 return ptl;
2014 spin_unlock(ptl);
2015 return NULL;
cd7548ab
JW
2016}
2017
a00cc7d9
MW
2018/*
2019 * Returns true if a given pud maps a thp, false otherwise.
2020 *
2021 * Note that if it returns true, this routine returns without unlocking page
2022 * table lock. So callers must unlock it.
2023 */
2024spinlock_t *__pud_trans_huge_lock(pud_t *pud, struct vm_area_struct *vma)
2025{
2026 spinlock_t *ptl;
2027
2028 ptl = pud_lock(vma->vm_mm, pud);
2029 if (likely(pud_trans_huge(*pud) || pud_devmap(*pud)))
2030 return ptl;
2031 spin_unlock(ptl);
2032 return NULL;
2033}
2034
2035#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
2036int zap_huge_pud(struct mmu_gather *tlb, struct vm_area_struct *vma,
2037 pud_t *pud, unsigned long addr)
2038{
a00cc7d9
MW
2039 spinlock_t *ptl;
2040
2041 ptl = __pud_trans_huge_lock(pud, vma);
2042 if (!ptl)
2043 return 0;
2044 /*
2045 * For architectures like ppc64 we look at deposited pgtable
2046 * when calling pudp_huge_get_and_clear. So do the
2047 * pgtable_trans_huge_withdraw after finishing pudp related
2048 * operations.
2049 */
70516b93 2050 pudp_huge_get_and_clear_full(tlb->mm, addr, pud, tlb->fullmm);
a00cc7d9
MW
2051 tlb_remove_pud_tlb_entry(tlb, pud, addr);
2052 if (vma_is_dax(vma)) {
2053 spin_unlock(ptl);
2054 /* No zero page support yet */
2055 } else {
2056 /* No support for anonymous PUD pages yet */
2057 BUG();
2058 }
2059 return 1;
2060}
2061
2062static void __split_huge_pud_locked(struct vm_area_struct *vma, pud_t *pud,
2063 unsigned long haddr)
2064{
2065 VM_BUG_ON(haddr & ~HPAGE_PUD_MASK);
2066 VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
2067 VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PUD_SIZE, vma);
2068 VM_BUG_ON(!pud_trans_huge(*pud) && !pud_devmap(*pud));
2069
ce9311cf 2070 count_vm_event(THP_SPLIT_PUD);
a00cc7d9
MW
2071
2072 pudp_huge_clear_flush_notify(vma, haddr, pud);
2073}
2074
2075void __split_huge_pud(struct vm_area_struct *vma, pud_t *pud,
2076 unsigned long address)
2077{
2078 spinlock_t *ptl;
ac46d4f3 2079 struct mmu_notifier_range range;
a00cc7d9 2080
7269f999 2081 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
6f4f13e8 2082 address & HPAGE_PUD_MASK,
ac46d4f3
JG
2083 (address & HPAGE_PUD_MASK) + HPAGE_PUD_SIZE);
2084 mmu_notifier_invalidate_range_start(&range);
2085 ptl = pud_lock(vma->vm_mm, pud);
a00cc7d9
MW
2086 if (unlikely(!pud_trans_huge(*pud) && !pud_devmap(*pud)))
2087 goto out;
ac46d4f3 2088 __split_huge_pud_locked(vma, pud, range.start);
a00cc7d9
MW
2089
2090out:
2091 spin_unlock(ptl);
4645b9fe
JG
2092 /*
2093 * No need to double call mmu_notifier->invalidate_range() callback as
2094 * the above pudp_huge_clear_flush_notify() did already call it.
2095 */
ac46d4f3 2096 mmu_notifier_invalidate_range_only_end(&range);
a00cc7d9
MW
2097}
2098#endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
2099
eef1b3ba
KS
2100static void __split_huge_zero_page_pmd(struct vm_area_struct *vma,
2101 unsigned long haddr, pmd_t *pmd)
2102{
2103 struct mm_struct *mm = vma->vm_mm;
2104 pgtable_t pgtable;
2105 pmd_t _pmd;
2106 int i;
2107
0f10851e
JG
2108 /*
2109 * Leave pmd empty until pte is filled note that it is fine to delay
2110 * notification until mmu_notifier_invalidate_range_end() as we are
2111 * replacing a zero pmd write protected page with a zero pte write
2112 * protected page.
2113 *
ad56b738 2114 * See Documentation/vm/mmu_notifier.rst
0f10851e
JG
2115 */
2116 pmdp_huge_clear_flush(vma, haddr, pmd);
eef1b3ba
KS
2117
2118 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2119 pmd_populate(mm, &_pmd, pgtable);
2120
2121 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
2122 pte_t *pte, entry;
2123 entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
2124 entry = pte_mkspecial(entry);
2125 pte = pte_offset_map(&_pmd, haddr);
2126 VM_BUG_ON(!pte_none(*pte));
2127 set_pte_at(mm, haddr, pte, entry);
2128 pte_unmap(pte);
2129 }
2130 smp_wmb(); /* make pte visible before pmd */
2131 pmd_populate(mm, pmd, pgtable);
eef1b3ba
KS
2132}
2133
2134static void __split_huge_pmd_locked(struct vm_area_struct *vma, pmd_t *pmd,
ba988280 2135 unsigned long haddr, bool freeze)
eef1b3ba
KS
2136{
2137 struct mm_struct *mm = vma->vm_mm;
2138 struct page *page;
2139 pgtable_t pgtable;
423ac9af 2140 pmd_t old_pmd, _pmd;
a3cf988f 2141 bool young, write, soft_dirty, pmd_migration = false;
2ac015e2 2142 unsigned long addr;
eef1b3ba
KS
2143 int i;
2144
2145 VM_BUG_ON(haddr & ~HPAGE_PMD_MASK);
2146 VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
2147 VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PMD_SIZE, vma);
84c3fc4e
ZY
2148 VM_BUG_ON(!is_pmd_migration_entry(*pmd) && !pmd_trans_huge(*pmd)
2149 && !pmd_devmap(*pmd));
eef1b3ba
KS
2150
2151 count_vm_event(THP_SPLIT_PMD);
2152
d21b9e57
KS
2153 if (!vma_is_anonymous(vma)) {
2154 _pmd = pmdp_huge_clear_flush_notify(vma, haddr, pmd);
953c66c2
AK
2155 /*
2156 * We are going to unmap this huge page. So
2157 * just go ahead and zap it
2158 */
2159 if (arch_needs_pgtable_deposit())
2160 zap_deposited_table(mm, pmd);
d21b9e57
KS
2161 if (vma_is_dax(vma))
2162 return;
2163 page = pmd_page(_pmd);
e1f1b157
HD
2164 if (!PageDirty(page) && pmd_dirty(_pmd))
2165 set_page_dirty(page);
d21b9e57
KS
2166 if (!PageReferenced(page) && pmd_young(_pmd))
2167 SetPageReferenced(page);
2168 page_remove_rmap(page, true);
2169 put_page(page);
fadae295 2170 add_mm_counter(mm, mm_counter_file(page), -HPAGE_PMD_NR);
eef1b3ba
KS
2171 return;
2172 } else if (is_huge_zero_pmd(*pmd)) {
4645b9fe
JG
2173 /*
2174 * FIXME: Do we want to invalidate secondary mmu by calling
2175 * mmu_notifier_invalidate_range() see comments below inside
2176 * __split_huge_pmd() ?
2177 *
2178 * We are going from a zero huge page write protected to zero
2179 * small page also write protected so it does not seems useful
2180 * to invalidate secondary mmu at this time.
2181 */
eef1b3ba
KS
2182 return __split_huge_zero_page_pmd(vma, haddr, pmd);
2183 }
2184
423ac9af
AK
2185 /*
2186 * Up to this point the pmd is present and huge and userland has the
2187 * whole access to the hugepage during the split (which happens in
2188 * place). If we overwrite the pmd with the not-huge version pointing
2189 * to the pte here (which of course we could if all CPUs were bug
2190 * free), userland could trigger a small page size TLB miss on the
2191 * small sized TLB while the hugepage TLB entry is still established in
2192 * the huge TLB. Some CPU doesn't like that.
2193 * See http://support.amd.com/us/Processor_TechDocs/41322.pdf, Erratum
2194 * 383 on page 93. Intel should be safe but is also warns that it's
2195 * only safe if the permission and cache attributes of the two entries
2196 * loaded in the two TLB is identical (which should be the case here).
2197 * But it is generally safer to never allow small and huge TLB entries
2198 * for the same virtual address to be loaded simultaneously. So instead
2199 * of doing "pmd_populate(); flush_pmd_tlb_range();" we first mark the
2200 * current pmd notpresent (atomically because here the pmd_trans_huge
2201 * must remain set at all times on the pmd until the split is complete
2202 * for this pmd), then we flush the SMP TLB and finally we write the
2203 * non-huge version of the pmd entry with pmd_populate.
2204 */
2205 old_pmd = pmdp_invalidate(vma, haddr, pmd);
2206
423ac9af 2207 pmd_migration = is_pmd_migration_entry(old_pmd);
2e83ee1d 2208 if (unlikely(pmd_migration)) {
84c3fc4e
ZY
2209 swp_entry_t entry;
2210
423ac9af 2211 entry = pmd_to_swp_entry(old_pmd);
84c3fc4e 2212 page = pfn_to_page(swp_offset(entry));
2e83ee1d
PX
2213 write = is_write_migration_entry(entry);
2214 young = false;
2215 soft_dirty = pmd_swp_soft_dirty(old_pmd);
2216 } else {
423ac9af 2217 page = pmd_page(old_pmd);
2e83ee1d
PX
2218 if (pmd_dirty(old_pmd))
2219 SetPageDirty(page);
2220 write = pmd_write(old_pmd);
2221 young = pmd_young(old_pmd);
2222 soft_dirty = pmd_soft_dirty(old_pmd);
2223 }
eef1b3ba 2224 VM_BUG_ON_PAGE(!page_count(page), page);
fe896d18 2225 page_ref_add(page, HPAGE_PMD_NR - 1);
eef1b3ba 2226
423ac9af
AK
2227 /*
2228 * Withdraw the table only after we mark the pmd entry invalid.
2229 * This's critical for some architectures (Power).
2230 */
eef1b3ba
KS
2231 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2232 pmd_populate(mm, &_pmd, pgtable);
2233
2ac015e2 2234 for (i = 0, addr = haddr; i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE) {
eef1b3ba
KS
2235 pte_t entry, *pte;
2236 /*
2237 * Note that NUMA hinting access restrictions are not
2238 * transferred to avoid any possibility of altering
2239 * permissions across VMAs.
2240 */
84c3fc4e 2241 if (freeze || pmd_migration) {
ba988280
KS
2242 swp_entry_t swp_entry;
2243 swp_entry = make_migration_entry(page + i, write);
2244 entry = swp_entry_to_pte(swp_entry);
804dd150
AA
2245 if (soft_dirty)
2246 entry = pte_swp_mksoft_dirty(entry);
ba988280 2247 } else {
6d2329f8 2248 entry = mk_pte(page + i, READ_ONCE(vma->vm_page_prot));
b8d3c4c3 2249 entry = maybe_mkwrite(entry, vma);
ba988280
KS
2250 if (!write)
2251 entry = pte_wrprotect(entry);
2252 if (!young)
2253 entry = pte_mkold(entry);
804dd150
AA
2254 if (soft_dirty)
2255 entry = pte_mksoft_dirty(entry);
ba988280 2256 }
2ac015e2 2257 pte = pte_offset_map(&_pmd, addr);
eef1b3ba 2258 BUG_ON(!pte_none(*pte));
2ac015e2 2259 set_pte_at(mm, addr, pte, entry);
eef1b3ba
KS
2260 atomic_inc(&page[i]._mapcount);
2261 pte_unmap(pte);
2262 }
2263
2264 /*
2265 * Set PG_double_map before dropping compound_mapcount to avoid
2266 * false-negative page_mapped().
2267 */
2268 if (compound_mapcount(page) > 1 && !TestSetPageDoubleMap(page)) {
2269 for (i = 0; i < HPAGE_PMD_NR; i++)
2270 atomic_inc(&page[i]._mapcount);
2271 }
2272
2273 if (atomic_add_negative(-1, compound_mapcount_ptr(page))) {
2274 /* Last compound_mapcount is gone. */
11fb9989 2275 __dec_node_page_state(page, NR_ANON_THPS);
eef1b3ba
KS
2276 if (TestClearPageDoubleMap(page)) {
2277 /* No need in mapcount reference anymore */
2278 for (i = 0; i < HPAGE_PMD_NR; i++)
2279 atomic_dec(&page[i]._mapcount);
2280 }
2281 }
2282
2283 smp_wmb(); /* make pte visible before pmd */
2284 pmd_populate(mm, pmd, pgtable);
e9b61f19
KS
2285
2286 if (freeze) {
2ac015e2 2287 for (i = 0; i < HPAGE_PMD_NR; i++) {
e9b61f19
KS
2288 page_remove_rmap(page + i, false);
2289 put_page(page + i);
2290 }
2291 }
eef1b3ba
KS
2292}
2293
2294void __split_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
33f4751e 2295 unsigned long address, bool freeze, struct page *page)
eef1b3ba
KS
2296{
2297 spinlock_t *ptl;
ac46d4f3 2298 struct mmu_notifier_range range;
eef1b3ba 2299
7269f999 2300 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
6f4f13e8 2301 address & HPAGE_PMD_MASK,
ac46d4f3
JG
2302 (address & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE);
2303 mmu_notifier_invalidate_range_start(&range);
2304 ptl = pmd_lock(vma->vm_mm, pmd);
33f4751e
NH
2305
2306 /*
2307 * If caller asks to setup a migration entries, we need a page to check
2308 * pmd against. Otherwise we can end up replacing wrong page.
2309 */
2310 VM_BUG_ON(freeze && !page);
2311 if (page && page != pmd_page(*pmd))
2312 goto out;
2313
5c7fb56e 2314 if (pmd_trans_huge(*pmd)) {
33f4751e 2315 page = pmd_page(*pmd);
5c7fb56e 2316 if (PageMlocked(page))
5f737714 2317 clear_page_mlock(page);
84c3fc4e 2318 } else if (!(pmd_devmap(*pmd) || is_pmd_migration_entry(*pmd)))
e90309c9 2319 goto out;
ac46d4f3 2320 __split_huge_pmd_locked(vma, pmd, range.start, freeze);
e90309c9 2321out:
eef1b3ba 2322 spin_unlock(ptl);
4645b9fe
JG
2323 /*
2324 * No need to double call mmu_notifier->invalidate_range() callback.
2325 * They are 3 cases to consider inside __split_huge_pmd_locked():
2326 * 1) pmdp_huge_clear_flush_notify() call invalidate_range() obvious
2327 * 2) __split_huge_zero_page_pmd() read only zero page and any write
2328 * fault will trigger a flush_notify before pointing to a new page
2329 * (it is fine if the secondary mmu keeps pointing to the old zero
2330 * page in the meantime)
2331 * 3) Split a huge pmd into pte pointing to the same page. No need
2332 * to invalidate secondary tlb entry they are all still valid.
2333 * any further changes to individual pte will notify. So no need
2334 * to call mmu_notifier->invalidate_range()
2335 */
ac46d4f3 2336 mmu_notifier_invalidate_range_only_end(&range);
eef1b3ba
KS
2337}
2338
fec89c10
KS
2339void split_huge_pmd_address(struct vm_area_struct *vma, unsigned long address,
2340 bool freeze, struct page *page)
94fcc585 2341{
f72e7dcd 2342 pgd_t *pgd;
c2febafc 2343 p4d_t *p4d;
f72e7dcd 2344 pud_t *pud;
94fcc585
AA
2345 pmd_t *pmd;
2346
78ddc534 2347 pgd = pgd_offset(vma->vm_mm, address);
f72e7dcd
HD
2348 if (!pgd_present(*pgd))
2349 return;
2350
c2febafc
KS
2351 p4d = p4d_offset(pgd, address);
2352 if (!p4d_present(*p4d))
2353 return;
2354
2355 pud = pud_offset(p4d, address);
f72e7dcd
HD
2356 if (!pud_present(*pud))
2357 return;
2358
2359 pmd = pmd_offset(pud, address);
fec89c10 2360
33f4751e 2361 __split_huge_pmd(vma, pmd, address, freeze, page);
94fcc585
AA
2362}
2363
e1b9996b 2364void vma_adjust_trans_huge(struct vm_area_struct *vma,
94fcc585
AA
2365 unsigned long start,
2366 unsigned long end,
2367 long adjust_next)
2368{
2369 /*
2370 * If the new start address isn't hpage aligned and it could
2371 * previously contain an hugepage: check if we need to split
2372 * an huge pmd.
2373 */
2374 if (start & ~HPAGE_PMD_MASK &&
2375 (start & HPAGE_PMD_MASK) >= vma->vm_start &&
2376 (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
fec89c10 2377 split_huge_pmd_address(vma, start, false, NULL);
94fcc585
AA
2378
2379 /*
2380 * If the new end address isn't hpage aligned and it could
2381 * previously contain an hugepage: check if we need to split
2382 * an huge pmd.
2383 */
2384 if (end & ~HPAGE_PMD_MASK &&
2385 (end & HPAGE_PMD_MASK) >= vma->vm_start &&
2386 (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
fec89c10 2387 split_huge_pmd_address(vma, end, false, NULL);
94fcc585
AA
2388
2389 /*
2390 * If we're also updating the vma->vm_next->vm_start, if the new
2391 * vm_next->vm_start isn't page aligned and it could previously
2392 * contain an hugepage: check if we need to split an huge pmd.
2393 */
2394 if (adjust_next > 0) {
2395 struct vm_area_struct *next = vma->vm_next;
2396 unsigned long nstart = next->vm_start;
2397 nstart += adjust_next << PAGE_SHIFT;
2398 if (nstart & ~HPAGE_PMD_MASK &&
2399 (nstart & HPAGE_PMD_MASK) >= next->vm_start &&
2400 (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end)
fec89c10 2401 split_huge_pmd_address(next, nstart, false, NULL);
94fcc585
AA
2402 }
2403}
e9b61f19 2404
906f9cdf 2405static void unmap_page(struct page *page)
e9b61f19 2406{
baa355fd 2407 enum ttu_flags ttu_flags = TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS |
c7ab0d2f 2408 TTU_RMAP_LOCKED | TTU_SPLIT_HUGE_PMD;
666e5a40 2409 bool unmap_success;
e9b61f19
KS
2410
2411 VM_BUG_ON_PAGE(!PageHead(page), page);
2412
baa355fd 2413 if (PageAnon(page))
b5ff8161 2414 ttu_flags |= TTU_SPLIT_FREEZE;
baa355fd 2415
666e5a40
MK
2416 unmap_success = try_to_unmap(page, ttu_flags);
2417 VM_BUG_ON_PAGE(!unmap_success, page);
e9b61f19
KS
2418}
2419
906f9cdf 2420static void remap_page(struct page *page)
e9b61f19 2421{
fec89c10 2422 int i;
ace71a19
KS
2423 if (PageTransHuge(page)) {
2424 remove_migration_ptes(page, page, true);
2425 } else {
2426 for (i = 0; i < HPAGE_PMD_NR; i++)
2427 remove_migration_ptes(page + i, page + i, true);
2428 }
e9b61f19
KS
2429}
2430
8df651c7 2431static void __split_huge_page_tail(struct page *head, int tail,
e9b61f19
KS
2432 struct lruvec *lruvec, struct list_head *list)
2433{
e9b61f19
KS
2434 struct page *page_tail = head + tail;
2435
8df651c7 2436 VM_BUG_ON_PAGE(atomic_read(&page_tail->_mapcount) != -1, page_tail);
e9b61f19
KS
2437
2438 /*
605ca5ed
KK
2439 * Clone page flags before unfreezing refcount.
2440 *
2441 * After successful get_page_unless_zero() might follow flags change,
2442 * for exmaple lock_page() which set PG_waiters.
e9b61f19 2443 */
e9b61f19
KS
2444 page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
2445 page_tail->flags |= (head->flags &
2446 ((1L << PG_referenced) |
2447 (1L << PG_swapbacked) |
38d8b4e6 2448 (1L << PG_swapcache) |
e9b61f19
KS
2449 (1L << PG_mlocked) |
2450 (1L << PG_uptodate) |
2451 (1L << PG_active) |
1899ad18 2452 (1L << PG_workingset) |
e9b61f19 2453 (1L << PG_locked) |
b8d3c4c3
MK
2454 (1L << PG_unevictable) |
2455 (1L << PG_dirty)));
e9b61f19 2456
173d9d9f
HD
2457 /* ->mapping in first tail page is compound_mapcount */
2458 VM_BUG_ON_PAGE(tail > 2 && page_tail->mapping != TAIL_MAPPING,
2459 page_tail);
2460 page_tail->mapping = head->mapping;
2461 page_tail->index = head->index + tail;
2462
605ca5ed 2463 /* Page flags must be visible before we make the page non-compound. */
e9b61f19
KS
2464 smp_wmb();
2465
605ca5ed
KK
2466 /*
2467 * Clear PageTail before unfreezing page refcount.
2468 *
2469 * After successful get_page_unless_zero() might follow put_page()
2470 * which needs correct compound_head().
2471 */
e9b61f19
KS
2472 clear_compound_head(page_tail);
2473
605ca5ed
KK
2474 /* Finally unfreeze refcount. Additional reference from page cache. */
2475 page_ref_unfreeze(page_tail, 1 + (!PageAnon(head) ||
2476 PageSwapCache(head)));
2477
e9b61f19
KS
2478 if (page_is_young(head))
2479 set_page_young(page_tail);
2480 if (page_is_idle(head))
2481 set_page_idle(page_tail);
2482
e9b61f19 2483 page_cpupid_xchg_last(page_tail, page_cpupid_last(head));
94723aaf
MH
2484
2485 /*
2486 * always add to the tail because some iterators expect new
2487 * pages to show after the currently processed elements - e.g.
2488 * migrate_pages
2489 */
e9b61f19 2490 lru_add_page_tail(head, page_tail, lruvec, list);
e9b61f19
KS
2491}
2492
baa355fd 2493static void __split_huge_page(struct page *page, struct list_head *list,
006d3ff2 2494 pgoff_t end, unsigned long flags)
e9b61f19
KS
2495{
2496 struct page *head = compound_head(page);
f4b7e272 2497 pg_data_t *pgdat = page_pgdat(head);
e9b61f19 2498 struct lruvec *lruvec;
8df651c7 2499 int i;
e9b61f19 2500
f4b7e272 2501 lruvec = mem_cgroup_page_lruvec(head, pgdat);
e9b61f19
KS
2502
2503 /* complete memcg works before add pages to LRU */
2504 mem_cgroup_split_huge_fixup(head);
2505
baa355fd 2506 for (i = HPAGE_PMD_NR - 1; i >= 1; i--) {
8df651c7 2507 __split_huge_page_tail(head, i, lruvec, list);
baa355fd
KS
2508 /* Some pages can be beyond i_size: drop them from page cache */
2509 if (head[i].index >= end) {
2d077d4b 2510 ClearPageDirty(head + i);
baa355fd 2511 __delete_from_page_cache(head + i, NULL);
800d8c63
KS
2512 if (IS_ENABLED(CONFIG_SHMEM) && PageSwapBacked(head))
2513 shmem_uncharge(head->mapping->host, 1);
baa355fd
KS
2514 put_page(head + i);
2515 }
2516 }
e9b61f19
KS
2517
2518 ClearPageCompound(head);
baa355fd
KS
2519 /* See comment in __split_huge_page_tail() */
2520 if (PageAnon(head)) {
aa5dc07f 2521 /* Additional pin to swap cache */
38d8b4e6
HY
2522 if (PageSwapCache(head))
2523 page_ref_add(head, 2);
2524 else
2525 page_ref_inc(head);
baa355fd 2526 } else {
aa5dc07f 2527 /* Additional pin to page cache */
baa355fd 2528 page_ref_add(head, 2);
b93b0163 2529 xa_unlock(&head->mapping->i_pages);
baa355fd
KS
2530 }
2531
f4b7e272 2532 spin_unlock_irqrestore(&pgdat->lru_lock, flags);
e9b61f19 2533
906f9cdf 2534 remap_page(head);
e9b61f19
KS
2535
2536 for (i = 0; i < HPAGE_PMD_NR; i++) {
2537 struct page *subpage = head + i;
2538 if (subpage == page)
2539 continue;
2540 unlock_page(subpage);
2541
2542 /*
2543 * Subpages may be freed if there wasn't any mapping
2544 * like if add_to_swap() is running on a lru page that
2545 * had its mapping zapped. And freeing these pages
2546 * requires taking the lru_lock so we do the put_page
2547 * of the tail pages after the split is complete.
2548 */
2549 put_page(subpage);
2550 }
2551}
2552
b20ce5e0
KS
2553int total_mapcount(struct page *page)
2554{
dd78fedd 2555 int i, compound, ret;
b20ce5e0
KS
2556
2557 VM_BUG_ON_PAGE(PageTail(page), page);
2558
2559 if (likely(!PageCompound(page)))
2560 return atomic_read(&page->_mapcount) + 1;
2561
dd78fedd 2562 compound = compound_mapcount(page);
b20ce5e0 2563 if (PageHuge(page))
dd78fedd
KS
2564 return compound;
2565 ret = compound;
b20ce5e0
KS
2566 for (i = 0; i < HPAGE_PMD_NR; i++)
2567 ret += atomic_read(&page[i]._mapcount) + 1;
dd78fedd
KS
2568 /* File pages has compound_mapcount included in _mapcount */
2569 if (!PageAnon(page))
2570 return ret - compound * HPAGE_PMD_NR;
b20ce5e0
KS
2571 if (PageDoubleMap(page))
2572 ret -= HPAGE_PMD_NR;
2573 return ret;
2574}
2575
6d0a07ed
AA
2576/*
2577 * This calculates accurately how many mappings a transparent hugepage
2578 * has (unlike page_mapcount() which isn't fully accurate). This full
2579 * accuracy is primarily needed to know if copy-on-write faults can
2580 * reuse the page and change the mapping to read-write instead of
2581 * copying them. At the same time this returns the total_mapcount too.
2582 *
2583 * The function returns the highest mapcount any one of the subpages
2584 * has. If the return value is one, even if different processes are
2585 * mapping different subpages of the transparent hugepage, they can
2586 * all reuse it, because each process is reusing a different subpage.
2587 *
2588 * The total_mapcount is instead counting all virtual mappings of the
2589 * subpages. If the total_mapcount is equal to "one", it tells the
2590 * caller all mappings belong to the same "mm" and in turn the
2591 * anon_vma of the transparent hugepage can become the vma->anon_vma
2592 * local one as no other process may be mapping any of the subpages.
2593 *
2594 * It would be more accurate to replace page_mapcount() with
2595 * page_trans_huge_mapcount(), however we only use
2596 * page_trans_huge_mapcount() in the copy-on-write faults where we
2597 * need full accuracy to avoid breaking page pinning, because
2598 * page_trans_huge_mapcount() is slower than page_mapcount().
2599 */
2600int page_trans_huge_mapcount(struct page *page, int *total_mapcount)
2601{
2602 int i, ret, _total_mapcount, mapcount;
2603
2604 /* hugetlbfs shouldn't call it */
2605 VM_BUG_ON_PAGE(PageHuge(page), page);
2606
2607 if (likely(!PageTransCompound(page))) {
2608 mapcount = atomic_read(&page->_mapcount) + 1;
2609 if (total_mapcount)
2610 *total_mapcount = mapcount;
2611 return mapcount;
2612 }
2613
2614 page = compound_head(page);
2615
2616 _total_mapcount = ret = 0;
2617 for (i = 0; i < HPAGE_PMD_NR; i++) {
2618 mapcount = atomic_read(&page[i]._mapcount) + 1;
2619 ret = max(ret, mapcount);
2620 _total_mapcount += mapcount;
2621 }
2622 if (PageDoubleMap(page)) {
2623 ret -= 1;
2624 _total_mapcount -= HPAGE_PMD_NR;
2625 }
2626 mapcount = compound_mapcount(page);
2627 ret += mapcount;
2628 _total_mapcount += mapcount;
2629 if (total_mapcount)
2630 *total_mapcount = _total_mapcount;
2631 return ret;
2632}
2633
b8f593cd
HY
2634/* Racy check whether the huge page can be split */
2635bool can_split_huge_page(struct page *page, int *pextra_pins)
2636{
2637 int extra_pins;
2638
aa5dc07f 2639 /* Additional pins from page cache */
b8f593cd
HY
2640 if (PageAnon(page))
2641 extra_pins = PageSwapCache(page) ? HPAGE_PMD_NR : 0;
2642 else
2643 extra_pins = HPAGE_PMD_NR;
2644 if (pextra_pins)
2645 *pextra_pins = extra_pins;
2646 return total_mapcount(page) == page_count(page) - extra_pins - 1;
2647}
2648
e9b61f19
KS
2649/*
2650 * This function splits huge page into normal pages. @page can point to any
2651 * subpage of huge page to split. Split doesn't change the position of @page.
2652 *
2653 * Only caller must hold pin on the @page, otherwise split fails with -EBUSY.
2654 * The huge page must be locked.
2655 *
2656 * If @list is null, tail pages will be added to LRU list, otherwise, to @list.
2657 *
2658 * Both head page and tail pages will inherit mapping, flags, and so on from
2659 * the hugepage.
2660 *
2661 * GUP pin and PG_locked transferred to @page. Rest subpages can be freed if
2662 * they are not mapped.
2663 *
2664 * Returns 0 if the hugepage is split successfully.
2665 * Returns -EBUSY if the page is pinned or if anon_vma disappeared from under
2666 * us.
2667 */
2668int split_huge_page_to_list(struct page *page, struct list_head *list)
2669{
2670 struct page *head = compound_head(page);
a3d0a918 2671 struct pglist_data *pgdata = NODE_DATA(page_to_nid(head));
baa355fd
KS
2672 struct anon_vma *anon_vma = NULL;
2673 struct address_space *mapping = NULL;
2674 int count, mapcount, extra_pins, ret;
d9654322 2675 bool mlocked;
0b9b6fff 2676 unsigned long flags;
006d3ff2 2677 pgoff_t end;
e9b61f19
KS
2678
2679 VM_BUG_ON_PAGE(is_huge_zero_page(page), page);
e9b61f19 2680 VM_BUG_ON_PAGE(!PageLocked(page), page);
e9b61f19
KS
2681 VM_BUG_ON_PAGE(!PageCompound(page), page);
2682
59807685
HY
2683 if (PageWriteback(page))
2684 return -EBUSY;
2685
baa355fd
KS
2686 if (PageAnon(head)) {
2687 /*
2688 * The caller does not necessarily hold an mmap_sem that would
2689 * prevent the anon_vma disappearing so we first we take a
2690 * reference to it and then lock the anon_vma for write. This
2691 * is similar to page_lock_anon_vma_read except the write lock
2692 * is taken to serialise against parallel split or collapse
2693 * operations.
2694 */
2695 anon_vma = page_get_anon_vma(head);
2696 if (!anon_vma) {
2697 ret = -EBUSY;
2698 goto out;
2699 }
006d3ff2 2700 end = -1;
baa355fd
KS
2701 mapping = NULL;
2702 anon_vma_lock_write(anon_vma);
2703 } else {
2704 mapping = head->mapping;
2705
2706 /* Truncated ? */
2707 if (!mapping) {
2708 ret = -EBUSY;
2709 goto out;
2710 }
2711
baa355fd
KS
2712 anon_vma = NULL;
2713 i_mmap_lock_read(mapping);
006d3ff2
HD
2714
2715 /*
2716 *__split_huge_page() may need to trim off pages beyond EOF:
2717 * but on 32-bit, i_size_read() takes an irq-unsafe seqlock,
2718 * which cannot be nested inside the page tree lock. So note
2719 * end now: i_size itself may be changed at any moment, but
2720 * head page lock is good enough to serialize the trimming.
2721 */
2722 end = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
e9b61f19 2723 }
e9b61f19
KS
2724
2725 /*
906f9cdf 2726 * Racy check if we can split the page, before unmap_page() will
e9b61f19
KS
2727 * split PMDs
2728 */
b8f593cd 2729 if (!can_split_huge_page(head, &extra_pins)) {
e9b61f19
KS
2730 ret = -EBUSY;
2731 goto out_unlock;
2732 }
2733
d9654322 2734 mlocked = PageMlocked(page);
906f9cdf 2735 unmap_page(head);
e9b61f19
KS
2736 VM_BUG_ON_PAGE(compound_mapcount(head), head);
2737
d9654322
KS
2738 /* Make sure the page is not on per-CPU pagevec as it takes pin */
2739 if (mlocked)
2740 lru_add_drain();
2741
baa355fd 2742 /* prevent PageLRU to go away from under us, and freeze lru stats */
f4b7e272 2743 spin_lock_irqsave(&pgdata->lru_lock, flags);
baa355fd
KS
2744
2745 if (mapping) {
aa5dc07f 2746 XA_STATE(xas, &mapping->i_pages, page_index(head));
baa355fd 2747
baa355fd 2748 /*
aa5dc07f 2749 * Check if the head page is present in page cache.
baa355fd
KS
2750 * We assume all tail are present too, if head is there.
2751 */
aa5dc07f
MW
2752 xa_lock(&mapping->i_pages);
2753 if (xas_load(&xas) != head)
baa355fd
KS
2754 goto fail;
2755 }
2756
0139aa7b 2757 /* Prevent deferred_split_scan() touching ->_refcount */
baa355fd 2758 spin_lock(&pgdata->split_queue_lock);
e9b61f19
KS
2759 count = page_count(head);
2760 mapcount = total_mapcount(head);
baa355fd 2761 if (!mapcount && page_ref_freeze(head, 1 + extra_pins)) {
9a982250 2762 if (!list_empty(page_deferred_list(head))) {
a3d0a918 2763 pgdata->split_queue_len--;
9a982250
KS
2764 list_del(page_deferred_list(head));
2765 }
65c45377 2766 if (mapping)
11fb9989 2767 __dec_node_page_state(page, NR_SHMEM_THPS);
baa355fd 2768 spin_unlock(&pgdata->split_queue_lock);
006d3ff2 2769 __split_huge_page(page, list, end, flags);
59807685
HY
2770 if (PageSwapCache(head)) {
2771 swp_entry_t entry = { .val = page_private(head) };
2772
2773 ret = split_swap_cluster(entry);
2774 } else
2775 ret = 0;
e9b61f19 2776 } else {
baa355fd
KS
2777 if (IS_ENABLED(CONFIG_DEBUG_VM) && mapcount) {
2778 pr_alert("total_mapcount: %u, page_count(): %u\n",
2779 mapcount, count);
2780 if (PageTail(page))
2781 dump_page(head, NULL);
2782 dump_page(page, "total_mapcount(head) > 0");
2783 BUG();
2784 }
2785 spin_unlock(&pgdata->split_queue_lock);
2786fail: if (mapping)
b93b0163 2787 xa_unlock(&mapping->i_pages);
f4b7e272 2788 spin_unlock_irqrestore(&pgdata->lru_lock, flags);
906f9cdf 2789 remap_page(head);
e9b61f19
KS
2790 ret = -EBUSY;
2791 }
2792
2793out_unlock:
baa355fd
KS
2794 if (anon_vma) {
2795 anon_vma_unlock_write(anon_vma);
2796 put_anon_vma(anon_vma);
2797 }
2798 if (mapping)
2799 i_mmap_unlock_read(mapping);
e9b61f19
KS
2800out:
2801 count_vm_event(!ret ? THP_SPLIT_PAGE : THP_SPLIT_PAGE_FAILED);
2802 return ret;
2803}
9a982250
KS
2804
2805void free_transhuge_page(struct page *page)
2806{
a3d0a918 2807 struct pglist_data *pgdata = NODE_DATA(page_to_nid(page));
9a982250
KS
2808 unsigned long flags;
2809
a3d0a918 2810 spin_lock_irqsave(&pgdata->split_queue_lock, flags);
9a982250 2811 if (!list_empty(page_deferred_list(page))) {
a3d0a918 2812 pgdata->split_queue_len--;
9a982250
KS
2813 list_del(page_deferred_list(page));
2814 }
a3d0a918 2815 spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
9a982250
KS
2816 free_compound_page(page);
2817}
2818
2819void deferred_split_huge_page(struct page *page)
2820{
a3d0a918 2821 struct pglist_data *pgdata = NODE_DATA(page_to_nid(page));
9a982250
KS
2822 unsigned long flags;
2823
2824 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
2825
a3d0a918 2826 spin_lock_irqsave(&pgdata->split_queue_lock, flags);
9a982250 2827 if (list_empty(page_deferred_list(page))) {
f9719a03 2828 count_vm_event(THP_DEFERRED_SPLIT_PAGE);
a3d0a918
KS
2829 list_add_tail(page_deferred_list(page), &pgdata->split_queue);
2830 pgdata->split_queue_len++;
9a982250 2831 }
a3d0a918 2832 spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
9a982250
KS
2833}
2834
2835static unsigned long deferred_split_count(struct shrinker *shrink,
2836 struct shrink_control *sc)
2837{
a3d0a918 2838 struct pglist_data *pgdata = NODE_DATA(sc->nid);
6aa7de05 2839 return READ_ONCE(pgdata->split_queue_len);
9a982250
KS
2840}
2841
2842static unsigned long deferred_split_scan(struct shrinker *shrink,
2843 struct shrink_control *sc)
2844{
a3d0a918 2845 struct pglist_data *pgdata = NODE_DATA(sc->nid);
9a982250
KS
2846 unsigned long flags;
2847 LIST_HEAD(list), *pos, *next;
2848 struct page *page;
2849 int split = 0;
2850
a3d0a918 2851 spin_lock_irqsave(&pgdata->split_queue_lock, flags);
9a982250 2852 /* Take pin on all head pages to avoid freeing them under us */
ae026204 2853 list_for_each_safe(pos, next, &pgdata->split_queue) {
9a982250
KS
2854 page = list_entry((void *)pos, struct page, mapping);
2855 page = compound_head(page);
e3ae1953
KS
2856 if (get_page_unless_zero(page)) {
2857 list_move(page_deferred_list(page), &list);
2858 } else {
2859 /* We lost race with put_compound_page() */
9a982250 2860 list_del_init(page_deferred_list(page));
a3d0a918 2861 pgdata->split_queue_len--;
9a982250 2862 }
e3ae1953
KS
2863 if (!--sc->nr_to_scan)
2864 break;
9a982250 2865 }
a3d0a918 2866 spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
9a982250
KS
2867
2868 list_for_each_safe(pos, next, &list) {
2869 page = list_entry((void *)pos, struct page, mapping);
fa41b900
KS
2870 if (!trylock_page(page))
2871 goto next;
9a982250
KS
2872 /* split_huge_page() removes page from list on success */
2873 if (!split_huge_page(page))
2874 split++;
2875 unlock_page(page);
fa41b900 2876next:
9a982250
KS
2877 put_page(page);
2878 }
2879
a3d0a918
KS
2880 spin_lock_irqsave(&pgdata->split_queue_lock, flags);
2881 list_splice_tail(&list, &pgdata->split_queue);
2882 spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
9a982250 2883
cb8d68ec
KS
2884 /*
2885 * Stop shrinker if we didn't split any page, but the queue is empty.
2886 * This can happen if pages were freed under us.
2887 */
2888 if (!split && list_empty(&pgdata->split_queue))
2889 return SHRINK_STOP;
2890 return split;
9a982250
KS
2891}
2892
2893static struct shrinker deferred_split_shrinker = {
2894 .count_objects = deferred_split_count,
2895 .scan_objects = deferred_split_scan,
2896 .seeks = DEFAULT_SEEKS,
a3d0a918 2897 .flags = SHRINKER_NUMA_AWARE,
9a982250 2898};
49071d43
KS
2899
2900#ifdef CONFIG_DEBUG_FS
2901static int split_huge_pages_set(void *data, u64 val)
2902{
2903 struct zone *zone;
2904 struct page *page;
2905 unsigned long pfn, max_zone_pfn;
2906 unsigned long total = 0, split = 0;
2907
2908 if (val != 1)
2909 return -EINVAL;
2910
2911 for_each_populated_zone(zone) {
2912 max_zone_pfn = zone_end_pfn(zone);
2913 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) {
2914 if (!pfn_valid(pfn))
2915 continue;
2916
2917 page = pfn_to_page(pfn);
2918 if (!get_page_unless_zero(page))
2919 continue;
2920
2921 if (zone != page_zone(page))
2922 goto next;
2923
baa355fd 2924 if (!PageHead(page) || PageHuge(page) || !PageLRU(page))
49071d43
KS
2925 goto next;
2926
2927 total++;
2928 lock_page(page);
2929 if (!split_huge_page(page))
2930 split++;
2931 unlock_page(page);
2932next:
2933 put_page(page);
2934 }
2935 }
2936
145bdaa1 2937 pr_info("%lu of %lu THP split\n", split, total);
49071d43
KS
2938
2939 return 0;
2940}
2941DEFINE_SIMPLE_ATTRIBUTE(split_huge_pages_fops, NULL, split_huge_pages_set,
2942 "%llu\n");
2943
2944static int __init split_huge_pages_debugfs(void)
2945{
d9f7979c
GKH
2946 debugfs_create_file("split_huge_pages", 0200, NULL, NULL,
2947 &split_huge_pages_fops);
49071d43
KS
2948 return 0;
2949}
2950late_initcall(split_huge_pages_debugfs);
2951#endif
616b8371
ZY
2952
2953#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
2954void set_pmd_migration_entry(struct page_vma_mapped_walk *pvmw,
2955 struct page *page)
2956{
2957 struct vm_area_struct *vma = pvmw->vma;
2958 struct mm_struct *mm = vma->vm_mm;
2959 unsigned long address = pvmw->address;
2960 pmd_t pmdval;
2961 swp_entry_t entry;
ab6e3d09 2962 pmd_t pmdswp;
616b8371
ZY
2963
2964 if (!(pvmw->pmd && !pvmw->pte))
2965 return;
2966
616b8371
ZY
2967 flush_cache_range(vma, address, address + HPAGE_PMD_SIZE);
2968 pmdval = *pvmw->pmd;
2969 pmdp_invalidate(vma, address, pvmw->pmd);
2970 if (pmd_dirty(pmdval))
2971 set_page_dirty(page);
2972 entry = make_migration_entry(page, pmd_write(pmdval));
ab6e3d09
NH
2973 pmdswp = swp_entry_to_pmd(entry);
2974 if (pmd_soft_dirty(pmdval))
2975 pmdswp = pmd_swp_mksoft_dirty(pmdswp);
2976 set_pmd_at(mm, address, pvmw->pmd, pmdswp);
616b8371
ZY
2977 page_remove_rmap(page, true);
2978 put_page(page);
616b8371
ZY
2979}
2980
2981void remove_migration_pmd(struct page_vma_mapped_walk *pvmw, struct page *new)
2982{
2983 struct vm_area_struct *vma = pvmw->vma;
2984 struct mm_struct *mm = vma->vm_mm;
2985 unsigned long address = pvmw->address;
2986 unsigned long mmun_start = address & HPAGE_PMD_MASK;
2987 pmd_t pmde;
2988 swp_entry_t entry;
2989
2990 if (!(pvmw->pmd && !pvmw->pte))
2991 return;
2992
2993 entry = pmd_to_swp_entry(*pvmw->pmd);
2994 get_page(new);
2995 pmde = pmd_mkold(mk_huge_pmd(new, vma->vm_page_prot));
ab6e3d09
NH
2996 if (pmd_swp_soft_dirty(*pvmw->pmd))
2997 pmde = pmd_mksoft_dirty(pmde);
616b8371 2998 if (is_write_migration_entry(entry))
f55e1014 2999 pmde = maybe_pmd_mkwrite(pmde, vma);
616b8371
ZY
3000
3001 flush_cache_range(vma, mmun_start, mmun_start + HPAGE_PMD_SIZE);
e71769ae
NH
3002 if (PageAnon(new))
3003 page_add_anon_rmap(new, vma, mmun_start, true);
3004 else
3005 page_add_file_rmap(new, true);
616b8371 3006 set_pmd_at(mm, mmun_start, pvmw->pmd, pmde);
e125fe40 3007 if ((vma->vm_flags & VM_LOCKED) && !PageDoubleMap(new))
616b8371
ZY
3008 mlock_vma_page(new);
3009 update_mmu_cache_pmd(vma, address, pvmw->pmd);
3010}
3011#endif